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1

1 Introduction

Retroviruses are arguably the best-studied microorganisms that infect wild non-human prim-

ates (NHPs) [90]. Simian immunodeficiency viruses (SIVs) and simian T-cell leukemia viruses

(STLVs) have naturally received considerable attention due to their proximity to human patho-

gens, but presumably non-pathogenic simian foamy viruses (SFVs) have also been intensively

studied. It was quickly realized that SFVs infect nearly all living wild NHPs, which applies

at different scales. That is, not only do SFVs infect most NHP species in the wild, they also

reach extremely high prevalence in wild NHP adults, e.g., close to 100 % in Western red colobus

monkeys (Piliocolobus badius badius) [79] or chimpanzees (Pan troglodytes) [89, 97]. Though,

the modalities and routes of transmission are still relatively unclear.

In this respect, a key question is whether in their primate hosts, which are highly social,

SFVs are transmitted horizontally, vertically, or both, vertical transmission being here under-

stood as mother-offspring transmission (whenever it occurs). Increases in seroprevalence and/or

SFV nucleic acid detection rate have been documented for several NHP colonies, pointing at

horizontal transmission, e.g., through aggressive contacts during adulthood, being a favored

route of transmission. However, vertical transmission was only rarely directly investigated and

not identified as major route for infection [22]. Given the high prevalence of SFVs, it is, how-

ever, likely that many individuals will get infected with different strains over their lifetime (i.e.,

super-infections), a fact that might pass unnoticed when using bulk-PCR product sequencing

(i.e., amplification starts from a pool of molecules, indicating, that the resulting sequence is a

mixture of various targets of the underlying viral population [40]). Further insights into in-host

SFV variability might therefore lead to different conclusions.

While investigating co-infection with retroviruses belonging to distinct genera does not raise

any specific technical difficulty – since independent, genus-specific serological/molecular meth-

ods will often be used (e.g., [41, 79]) – studying super-infection appears more challenging. To

date, end-point dilution (EPD) PCR is considered as gold standard for the depiction of intra-

individual retroviral diversity. It was successfully applied to the investigation of human immun-

odeficiency virus 1 (HIV-1) micro-evolutionary trends (e.g., [131]) including the detection of

super-infection events (e.g., [81]). EPD-PCR might therefore be considered a promising tool for

the detection of super-infection cases among wild primate hosts. There is however at least one

predictable barrier to its implementation in this context. As retrovirus-oriented studies of wild

primate populations essentially rely on the analysis of non-invasively collected samples (most
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often feces, e.g., [67, 89]), it is conceivable that samples will only contain retroviral/proviral

genomes in minute amounts [83]. Acquiring a substantial sample of EPD-PCR sequences might

therefore require prohibitively large amounts of, by definition, rare starting material [77], which

questions the use of the gold-standard EPD-PCR in the case of non-invasive samples.

Based on this background the aims of this study were:

1. To establish a diagnostic tool utilizing non-invasive samples, that allows the reconstruc-

tion of retrovirus diversity within a given host. Therefore, the aim was to compare costs

and benefits of the standard techniques in order to develope a method (bulk-PCR cloning)

using fecal samples from two distinct chimpanzee communities (Eastern chimpanzees

Pan troglodytes schweinfurthii and Western chimpanzees Pan troglodytes verus).

2. To investigate the biology of SFVs in a social primate community: a wild group of ha-

bituated Western chimpanzees from the Taï forest, Côte d’Ivoire using fecal samples and

adapted tools for powerful analyses. Beside SFV persistence and accumulation dynamics,

modes of transmission (vertical, horizontal or both) were of particular interest. Therefore,

the aim was to compare the influence of mother-offspring bond to relatively weaker so-

cial bonds linking offspring to their fathers or non-parental members of the same group

on SFV transmission.
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2 Literature

2.1 Foamy virus, the extraordinary retrovirus

Foamy viruses (FVs) constitute one of the seven genera of the family Retroviridae (Figure 1).

All members of this family consistently feature the same morphology, which is characterized

by a spherical to pleomorphic form, an envelope and a size of 80-100 nm (Figure 2). The FV

genome is relatively large (12 kb) and encodes in addition to usual retroviral structure proteins

Gag, Pol and Env two proteins with regulatory functions: Tas and Bet (reviewed in [85]).

However, FVs exhibit some unique biological features that justified the classification of the

genera in its own sub-family, Spumavirinae, while all other retroviral genera are gathered into

the Orthoretrovirinae sub-family [87]. An exceptional characteristic is the presence of dsDNA

in some SFV virions instead of the usual ss (+) RNA genome. This results from the “unusual

timing” of the reverse transcription during the assembly of novel virus particles. Another re-

markable feature of FVs is the wide cell tropism including both cell-lines and tissues, which is

probably related to an ubiquitous viral receptor. In vitro, FVs are extensively cytopathic causing

multinucleated and foamy-like, i.e., vacuolated cell syncytia, after which the virus was named

[55]. In contrast, in vivo the virus seems to be non-pathogenic.

FVs are highly prevalent in a wide host range of mammals [85, 132] with whom they evolved

in parallel. Recent studies on coelacanth yielded a co-divergence dating of even more than 400

Millions of years (Mya), which make FV the oldest known virus [48]. Co-divergence might

explain the lack of the development of any disease during persistent infections [86, 96, 102].

Although FV are widespread and lead to lifelong infections, the knowledge about its biology,

especially in natural hosts, is very limited.
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Figure 1: Phylogenetic tree of Retroviridae. The phylogenetic tree was generated on the conserved re-
gions of the polymerase genes using neighbor-joining algorithm. BFV: bovine foamy virus,
BLV: bovine leukemia virus, EIAV: equine infectious anemia virus, FeLV: feline leukemia
virus, FIV: feline immunodeficiency virus, GALV: gibbon ape leukemia virus, HFV: human
foamy virus, HTLV: human T-lymphotrophic virus, MMTV: mouse mammary tumor virus,
MPMV: Mason-Pfizer monkey virus, MuLV: murine leukemia virus, PHV: Perch hyperplasia
virus, RSV: rous sarcoma virus, SFV: simian foamy virus, SIV: simian immunodeficiency
virus, SnRV: snakehead retrovirus, SRV: simian retrovirus, STLV simian T-lymphotrophic
virus, WDSV: walleye dermal sarcoma virus, WEHV: walleye epidermal hyperplasia virus
([69] modified).
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2.1.1 Molecular biology of foamy virus

Figure 2: Cryo-electron micrograph of
foamy virus. Image by cour-
tesy of Steve Fuller, Thomas
Wilk and Martin Löchelt.

2.1.1.1 Virion structure Similar to other members

of the family FV virions feature a spherical to pleo-

morphic form, an envelope and a size of 80-100 nm

(Figure 2, Figure 3). The viral genome (dsDNA or

ssRNA) is surrounded by the nucleocapsid, which again

is surrounded by the capsid [127, 162]. Inside the capsid

is the core housing the genome, the nucleocapsid and

viral enzymes such as the protease, the integrase and the

reverse transcriptase. Matrix proteins line the inner sur-

face of the outer membrane of the virion, the envelope

(Env). The envelope consists of particles from the host

cell membrane and viral glycoproteins. FVs are specific

for their 10-15 nm prominent spikes on the virion’s surface. Similar to other Retroviridae, FV

envelope proteins are build in trimeric complexes [85].
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Figure 3: Components of the foamy virus virion and its encoding region.

2.1.1.2 Organization of the genome The FV genome composes of linear ssRNA or dsDNA

with a 5’-cap and a 3’ poly-A tail. With a size of 12 kb, FV genome is one of the largest among

the retroviruses. The genome encodes the three structural and enzymatic genes [132], which

2 Literature 5
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are common elements of the Retroviridae:

• The group-specific antigen (gag) coding core and structural proteins of the virus,

• The polymerase (pol) coding for reverse transcriptase, protease and integrase and

• The envelope (env) coding for the retroviral coat proteins.

In addition, FVs have up to three unique regulatory genes at the 3’ end of the provirus expressing

the transcriptional transactivator (Tas; previously called Bel1 for SFV) which is encoded from

open reading frame (ORF) tas/bel1 and Bet protein which is encoded from ORF tas and bel2

(Figure 4). In the case of the prototype HFV another ORF called bel3 could be identified, even

though its function remains still unclear. The regulatory genes rev and rex of HIV and human

T-lymphotrophic virus (HTLV), which are essential for the nuclear gene export, are absent,

though the cis-acting element of the FV pol gene in the viral mRNA is considered to replace

their role [26].

Within the FV genome pol is the most conserved region, especially the DD35E motif, which is

essential for viral replication among all retroviruses [34, 95]. The conservation of the two other

structural genes is unlike the Orthoretrovirinae: FV env is more conserved than gag [150].The

accessory regulatory gene bet is highly divergent. However, FVs are very consistent within

their FV species because of an extremely slow evolutionary rate with 1.7 · 10−8 substitutions

per site per year. FV is therefore the slowest-evolving RNA virus, which is known [148]. The

genome keeps relatively stable, even after cross-species transmission as demonstrated for SFVs

in humans [119, 142].
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Figure 4: Foamy virus genome with a size of 12 kb. The foamy virus (FV) genome consists of three
structural genes gag, pol and env and two accessory genes tas and bet, which are unique for
FVs. The replication proceeds in two steps: the Internal Promoter (IP) with basal transcripta-
tional activity expresses the transactivation protein Tas. This regulates the IP and in a later
stage the “silent” promoter Long-terminal repeat (LTR), which indicates the transcription of
viral RNA and structural proteins. The arrows indicate the major proteolytic cleavage within
the translated polyproteins. The following domains are shown: three glycine-arginine-rich
basis (GR-boxes) of the Gag protein; integrase (IN), reverse transcriptase (RT), protease (PR)
of the polymerase; signal peptide (SP), surface (SU) and the transmembrane (TM) of the en-
velope; tas and orf-2 of the Bet protein ([69] modified).

2.1.1.3 Gene expression The strategy of gene expression of FV being temporally regulated,

is unusual in retroviruses, but is often the case for complex DNA viruses [26]. The FV tran-

scription is regulated by the long-terminal repeats (LTRs) as well as the internal promoter (IP),

located in the env gene [7]. After integration of the FV provirus into the host DNA, the high

basal activity of IP induces the expression of Bet and Tas. In turn, the Tas protein transactiv-

ates the IP and therefore enhances its own production. In the late phase of an infection, when

a certain level of Tas is reached, it also transactivates the “silent” LTR-promoter. LTR is re-

sponsible for the expression of viral structural and enzymatic proteins and the synthesis of the

viral genomic RNA [91, 95]. The unspliced full length mRNAs will serve either as genomic

RNA, integrated into virions or as a template for the translation of gag. The spliced mRNAs

encode the genes (pro) pol and env. The splicing of the tas and bel2 sequences is essential for

the synthesis of the cytoplasmic Bet protein [85].
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2.1.1.4 Viral proteins The FV Gag protein is encoded from genomic RNA, though the

classical retroviral homology regions in the capsid domain and the cysteine-histidine box(es) in

the nucleocapsid domain are absent [7]. Instead, FV gag contains three glycine-arginine-rich

basis sequences (GR-boxes) in the carboxyl-terminus, binding viral nucleic acids (GR-box 1)

and initiating the transport of FV to the nucleus soon after infection using the nuclear localiza-

tion signal in the GR-box 2; [133, 138, 161]. The function of the GR-box 3 remains unknown.

GR-boxes are involved in the packaging of the RNA genome as well as the expression, cleavage

and packaging of Pol [144]. The Gag polyprotein is partially cleaved from the viral protease

during assembly [32, 163]. After infection of a new host cell, these proteins are even further di-

vided into smaller fragments, which is required for FV uncoating and subsequent integration of

DNA into the genome [117]. The resulting components differ in their composition and specific

function from the expected retroviral structure of matrix protein, capsid and nucleocapsid but

are also involved in assembly and budding of FV [32].

Unlike other retroviruses, no Gag-Pol polyprotein is synthesized from the full-length ge-

nomic RNA and coassembled into the virion. Instead, Pol is independently expressed from

a spliced, sub-genomic mRNA [13, 33, 161]. A unique feature of FVs is that the precursor

of Pol is not completely cleaved and only the integrase is separated, which yields a protease-

reverse transcriptase fusion protein or ribonuclease H protein [118]. All of these proteins are

essential for effective replication of retroviruses: the protease is required for the protein cleav-

age, the integrase for the integration into the host genome and the reverse transcriptase for the

transcription of RNA into DNA. The spliced mRNAs also encode the Env precursor protein,

which is cleaved into the surface and the transmembrane glycoprotein by a cellular protease

[82]. Similar to hepadnaviruses, envelope glycoproteins are important for FV assembly, release

and infectivity [5, 29].

While the Tas protein is essential for the regulation of FV gene expression, the function of

Bet is still unclear. A possible interaction with the host’s immune system is actually intensively

discussed [23, 25, 75]

2.1.1.5 Foamy virus life cycle Although FVs basically “act” as retroviruses during their

replication, a variety of unique features has been observed for their life cycle. Probably the

most important characteristic is the occurrence of either RNA or DNA in free viral particles

(Figure 5 {1}). However, both forms, are able to attach to the host cell through their surface
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glycoproteins. In vitro, all cells are susceptible for FV infections. This circumstance hampers

the identification of a possible receptor on the surface of the host cell. Though, the recent study

of Nasimuzzaman and Person, 2012 gives evidences that heparan sulfat proteoglycans conduce

as FV receptor molecules [104].

After attaching, the FV transmembrane glycoprotein indicates the fusion with the cell mem-

brane, which allows the cell entry through internalization. Following the release of the FV core,

which includes the genome and viral enzymes, FVs migrate within eight hours to the nucleus.

The FV core uses the microtubule (MT) network (Figure 5 {2}), which belongs to the cellular

cytoskeleton, to traffic to the MT-organization centre (MTOC; Figure 5 {3}), that is the origin

of the microtubules, placed in the center of the host cell. The process how FVs enter the nucleus

is not fully understood. For FV uncoating a structural and functional alteration of the core is

necessary. The essential Gag cleavage is therfore induced by the proteolytic impact of the FV

protease. It is expected that the import of the FV genome is triggered by specific components of

the Gag protein (GR-box 1, 2) instead of a passive transport after the dissolving of the nuclear

membrane during mitosis [80]. Subsequently, the FV cDNA is randomly and covalently inte-

grated into the host genome by the viral integrase and named “provirus” at that stage (Figure

5 {4}). In the case of FV particles with a RNA genome, the viral transcriptase is active early

after infection to generate cDNA (Figure 5 {5}). Although, such early reverse transcription is

common for retroviruses, it is much more complex in FVs than previously thought. There is

evidence, that the actual stage of the cell cycle is critical for the process of early reverse tran-

scription. Only replicating cells provide a high pool of nucleotides being essential for the viral

cDNA synthesis. Because of the lack of nucleotides in resting cells, only FVs already contain-

ing a DNA genome can lead to productive infections [26]. However, as most of the entering

viruses contain defective genomes, the number of productive infections resulting into effective

viral replication is limited. Similar observations have been described for HIV-1, where max-

imal 10 % of all particles were infectious [116]. The replication of non-defective proviruses

proceeds in the context of the cellular protein biosythesis. After the initial transcription of the

proviral DNA (Figure 5 {6}), the gene expression is regulated by the two promoters IP and

LTR and occurs two-folded. The transcription of the regulatory proteins Tas and Bet follows

the encoding of structural proteins Gag, Pol and Env. Because these proteins are expressed as

polyproteins (Figure 5 {7}), the viral protease is required for subsequent maturation to reach

their functionality [26, 85]. Together with the viral RNA genome (Figure 5 {8}) they serve
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as components of the novel virus particles. During the viral assembly, a step of late reverse

transcription can occur (Figure 5 {9}). Therefore, about 20 % of the released virions contain a

DNA genome, which is a remarkable feature of FVs [162]. The novel cDNA might also serve

as a “proviral pool” to reintegrate into the host genome. Such intracellular retrotranspositions

are known for Hepadnaviridae (Figure 5 {10}, [26]).

The process of encapsidation of Pol, Gag and the viral genome remains still unclear. The

classical myristoylation of Gag as part of the retroviral Gag-Pol polyprotein is lacking for FV.

It is suggested that the interaction between Pol and Gag or Pol and the viral genome (cis-acting

RNA sequence) is required for Pol incorporation. The interaction of all three components, that

form a ternary complex, seems to be essential for the complete encapsidation [26]. During FV

assembly cellular glycoproteins are attached to build the viral envelope [85]. Simultaneously,

the virion exits the cell. This process, called budding, occurs similar to Hepadnaviridae at

intracellular membranes such as the endoplasmic reticulum (Figure 5 {11}) and only excep-

tionally at the extracellular membrane, which, however, is “usual” for Retroviridae (Figure 5

{12}, [26]). The process of budding varies between FV species clades which might result from

a particular adaption to the host species and its immune system [68]. In contrast to the Or-

thoretrovirinae, maturation of the virions is even ongoing in the early infection phase of a new

host cell [26]. Beside the extracellular spread of virions, FV can directly transfer to neighboring

cells (Figure 5 {13}, [26]), even though this route seems to be cell specific [50].

Overall, the FV structure and life cycle clearly supports the classification in its own subfam-

ily of the Retroviridae. Although, general elements are shared with those of Orthoretrovirinae,

FVs are specific and in some points even more similar to the DNA virus family of Hepadnaviri-

dae [85].
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Figure 5: Overview of the foamy virus (FV) life cycle. FVs containing either RNA or DNA genome
can enter the host cell. A receptor is so far unknown {1}. After uncoating, the FV core migrates
among microtubule network (MT) {2} towards the MT-organization centre (MTOC) {3}. FV
entry into the nucleus and FV DNA integrates into host’s genome as provirus {4}. Early
reverse transcription of FV RNA genome to enable the integration into the host’s DNA {5}.
Transcription of proviral DNA {6} and expression of polyproteins {7}. Messenger RNA serves
directly as genomic RNA {8} or will be transcribed into DNA during late reverse transcription
{9}. Novel cDNA might also serve as “proviral pool” to re-integrate into the host’s genome
{10}. FV assembly and budding occur predominatly at intracellular membranes {11} and only
exceptionally at extracellular membranes {12}. In addition to extracellular spread, FV can
directly infect neighboring cells {13}. This figure uses underlying structures from [26].
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2.1.2 Foamy virus persistence

FVs are the slowest evolving retroviruses demonstrating a strong genetic stability during lifelong

persistence [22, 142, 148]. Thus, FVs have certainly developed strategies to escape the host’s

immunity and infect vertebrates persistently [123].

Several studies on SFV and FFV provide evidences that the accessory protein Bet is involved

in the inhibition of cellular APOBEC proteins [23, 92, 101, 115, 130]. These proteins are im-

portant components of the intrinsic immunity against several viruses (e.g., HIV, Hepatitis B or

endogenous retroviruses) and deaminate the viral cytidin to uridine, which indicates frequent

proviral hypermutations (guanin-to-adenin in the plus strand) [25]. Infected cells highly express

Bet proteins, which can be detected in both the cytoplasm and the nucleus [75]. Bet proteins

even get secreted from infected cells and are able to enter neighboring naïve cells, whereby

they target the nucleus [75]. While HIV inhibits the human APOBEC protein by the virion

infectivity factor through degradation, primate FV’s Bet protein inhibits APOBEC through the

suppression of its dimerization [115]. Though, the influence of Bet proteins is still controver-

sially discussed [25, 123]. For instance a study detecting similar sensitivities of wild type and

bet-deleted FV questioned the effect of Bet on host immunity [25]. Therefore, alternative mech-

anisms, how FV escape the host’s immunity, have been discussed. The detection of low viral

loads in vivo provide evidences for low levels of viral replication intra-host, which might be an

important requirement for virus persistence [36, 128].

2.1.3 Foamy virus prevalence

In 1971, FV was discovered for the first time in a human and henceforth described as the proto-

type of the human foamy virus (HFV) [1]. Further insights revealed that no human specific FV

exists. Instead, humans become zoonotically infected with SFVs from Old World monkeys and

great apes [51, 53]. The infection rate of SFVs ranges from 1-6 % in humans occupationally

exposed to NHPs, e.g., in research institutes, zoos or primate centers [17, 51, 135, 140, 147].

Populations in Sub-Saharan Africa are frequently exposed to NHPs because of hunting or the

consumption of bushmeat. This resulted in a general SFV prevalence of 0.2-1 % in Africa

[9, 69] and 2.6 % in Asia, where NHPs, especially macaques, are kept as pets or ‘temple mon-

keys’ [31, 59, 60, 137]. People, reporting bites or scratches from NHPs, get frequently infected

with SFVs even up to a prevalence of 20 % [9].
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Furthermore, FV have been described for a variety of vertebrates such as cattle, horses, cats,

primates, sea lions, goats, sheep, hamsters [132], recently shrews [56] and an insectivorous bat

Rhinolophus affinis from China [159]. However, most studies were performed on foamy viruses

infecting feline (FFV), bovine (BFV) and primate (SFV) species [37, 132].

BFV, initially called bovine syncytial virus or bovine spumavirus, is present in 30-45 %

of cattle [132]. FFV (initially called FSFV or FeSFV for feline syncytium-forming virus) is

widespread among wild and domestic cats with 31-70 % seropositivity depending on age and

geographic origin [154, 155, 156]. In non-human primates SFVs (simian foamy viruses) are

highly frequent (44-100 %) in wild populations, which was shown for chimpanzees, colobus

monkeys and Asian macaques [41, 59, 61, 79, 89, 97]. The infection rates are even higher when

captive NHPs were investigated (80-100 %), probably because of close animal contact during

housing [12, 17, 18, 22, 98, 69].

2.1.4 Evolution of foamy virus

Although parasite-host co-speciation is notably rare in RNA viruses, this mechanism applies

to the FV evolution much more than previously thought [57, 148]. It could be demonstrated

that SFVs have developed over the last 30 Mya in close association with their primate host.

This pattern was substantiated by testing 44 species of old world primates: African and Asian

monkeys as well as great apes [148].

Extreme co-speciation of virus and host can even result into the integration of virus ele-

ments into the host genome. The development of endogenous forms is a particular feature of

retroviruses. The invasion of the virus into the host’s germline provides a “fossil record” of

the evolutionary history [54, 112]. The identification of the endogenous foamy virus in the

lemur species aye-aye (Daubentonia madagascariensis) gives evidences for the extension of

the co-speciation pattern to the Strepsirrhini lineage in addition to the Haplorrhini clade, which

includes amongst others old and new world monkeys and apes [49]. The “new” foamy virus

found in the strepsirrhine primate aye-aye is divergent from all known SFVs and evidence the

presence of SFVs in primates for more than 85 Mya, before primates split into the haplorrhine

and strepsirrhine clade [49].

Recently, the sequence analysis of FFVs from domestic cat species and FV isolated from

free-living pumas (Puma concolor; FFVpc) gave evidences for the process of co-speciation
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in non-primate FVs. Though, the evolutionary distance within FFVs is with 4 % in the highly

conserved pol gene very low compared up to 36 % within the Old World monkeys SFVs. There-

fore, a recent cross-species transmission within the family of Felidae cannot be ruled out. Much

stronger is the evidence for co-speciation of FVs in the clade of Bovidae/Equidae because of

the high evolutionary distance between BFV and EFV (35 %), which corresponds to the early

split of the hosts from their common ancestor about 50 Mya ago [68].

The discovery of endogenous FV in sloths (Choloepus hoffmanni, SloEFV) provides evid-

ences for the circulation of FV in ancestral mammals. Sloths [65] belong to Xenarthrans, a

basal group of mammals, and diverged from other mammals more than 100 Mya ago [10].

Recently, endogenous foamy virus-like elements were discovered even outside of mammalian

species, in particular in the genome of the West Indian Ocean coelacanth (Latimeria chalumnae,

CoeEFV). While the sequence distance of the highly conserved pol gene was 40 % for SloEFV

to other FVs, the distance of CoeEFV revealed even 51 % [68]. The coelacanth is a living fossil

from Devonian times and belongs to lobe-finned fishes “that branched off near the root of all

tetrapods” [48, 143]. Phylogenetic analyses demonstrated that the theory of co-speciation can

therefore be extended to vertebrate hosts for at least 407 Mya (Figure 6).
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Figure 6: Phylogenetic tree of foamy viruses and their hosts. The phylogenetic trees demonstrate
the congruence (dotted lines) between virus (right) and host (left) supporting a pattern of
co-speciation for more than 400 Million of years (Mya) ago. The foamy virus phylogeny
is the 50 % majority-rule consensus tree inferred from conserved region of the foamy virus
and Class III retrovirus Pol protein alignment using Bayesian analysis. Host branch length
(in Mya) are plotted versus virus branch length (in expected amino acid substitutions per site)
for every branch. SFVgor, simian foamy virus gorilla; SFVcpz, simian foamy virus chim-
panzee; SFVmac, simian foamy virus macaque; SFVagm, simian foamy virus african green
monkey; SFVspm, simian foamy virus spider monkey; BFV, bovine foamy virus; EFV, equine
foamy virus; FFV, feline foamy virus; SloEFV, sloth endogenous foamy-like virus; CoeEFV,
coelacanth endogenous foamy-like virus ([48] modified).

This analysis postdates FV existence to at least the Early Devonian, making it to the oldest

known virus. In this respect, the evolutionary conservation of foamy virus key features was of

particular interest. A comparison of full genome sequences of all known FV clades (FVs of

Figure 6 and bat FV: RaFV-1) demonstrated that FV specific motifs are present for at least 400

Mya. This includes the highly conserved motifs in the internal promotor (IP, located at the 3’

end of env) and in the p3 cleavage site of Gag. These conservations support their indispensable

function in the process of gene expression, infectivity (IP) and particle assembly (p3 cleavage

motif). Interestingly, other motifs (Gag-Env interaction locus in the N-terminus of Env, WxxW

motif for virus assembly and budding or the furin cleavage motif in Env for budding of viri-

ons) seem to be evolutionary younger because of their exclusive presence in mammal FVs and

their lack in CoeEFV [68]. The discovery from Han & Worobey provides evidences that FV

and therefore also retroviruses have a marine origin and underwent “remarkable evolutionary

transition from water to land simultaneously with their vertebrate hosts” [48]. The recent iden-

tification of foamy virus-like sequences in platyfish (Xiphophorus), cod species and zebrafish
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reinforced the marine origin of FVs. The discovery of “almost intact copies” of FV in the host

genome provides evidence that exogenous foamy viruses have been introduced recently or even

might circulate in the fish lineage [123, 136].

The long-term history of virus and host since the early Devonian might be the reason why

FV infections are non-pathogenic, persistent and stable within their host [48, 57, 84, 96, 102,

148]. Further investigations in vertebrates such as reptiles, birds or amphibians but also non-

vertebrates should help to understand FVs and also the retroviral evolution [48].

2.1.5 Modalities of foamy virus transmission in the natural host

Although FVs seem to be endemic in many host species, modalities of transmission are so far

not fully understood. Only a handful of studies addressed this question.

In cats, the increase of seroprevalence with age, observed in domestic as well as in wild pop-

ulations, point to horizontal transmissions between individuals [114, 156]. Frequent infections

of feral female cats and the isolation of FFVs from saliva provide evidences for a non-aggressive

transmission mode of FFVs through licking of social partners [113, 156, 160]. The detection of

a vertical transmission event from queen to kitten remain an exceptional case [47].

In cows, modalities of BFV transmissions have been controversially discussed. The study

of Johnson et al. hypothesized the exchange of saliva mainly through social licking as the pre-

dominant route for BFVs transmission based on infection trials [58]. Data on (sero)prevalence

provided evidences for the protective effect of maternal antibodies for the first half year of life.

Afterwards, BFVs spread horizontally within the herd demonstrated by a seroprevalence of

85 % in 2-3 years old cattle [58]. In contrast, other studies suggested vertical infections from

dam to calve. BVFs were isolated from milk indicating transmission to the offspring during

lactation even when maternal antibodies are present [93, 126]. Differences in livestock hus-

bandry support nursing as influencing factor on BFV spread. Early separation of calves from

their mothers – as is the practice in German dairy farming – highly decreased the number of

BFV infections [126].

To my knowledge, nothing is known about FV transmission modalities in Equidae.

Although, primate FVs (SFVs) observed more attention than their relative foamy viruses, the

routes of their transmission are also relatively unclear. Increases in seroprevalence and/or SFV

nucleic acid detection rate with age have been documented in captive or semi-captive colonies

of macaques (Macaca tonkeana [22]), baboons (Papio sp. [12, 18]), and mandrills (Mandrillus
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sphinx [98]). For wild primates comparable data were produced only for chimpanzees (Pan

troglodytes schweinfurthii) that showed a similar trend [89]. This was generally taken as indic-

ation of horizontal transmission being the most favored route, e.g., through aggressive contacts

during adulthood [22]. However, vertical transmission was only rarely directly investigated.

Anecdotal reports were made concerning chimpanzees, with one captive [147] and one wild

[89] mother-offspring pair being found to harbor indistinguishable SFV strains. Calattini et al.

addressed the question more specifically, focusing on a captive colony of macaques [22]. Show-

ing that 8 of 11 mother-offspring pairs harbored different SFV strains, these authors argued that

vertical transmission was likely not a major route of infection [22]. Instead, seroconversion

occurred contemporaneously to the onset of aggressive behavior in subadults and young adults.

The seroconversion and the detection of an identical SFV strain of macaques, with a history of

record frequent conflicts, evidenced severe biting as transmission route for SFVs.

Finally, these data provide evidences for horizontal transmission of FV through social inter-

actions such as licking or biting. Vertical transmissions from mother to offspring seem to be an

exception, even though it has been reported for FFV, BFV and SFV. To better understand the

transmission routes of foamy viruses further insights are needed.

2.1.6 Cross-species transmission of foamy virus

Despite the fact that SFVs are specific for their host-species and even subspecies, several inter-

species transmission events have been detected. Cross-species transmissions of SFV were doc-

umented in some hunter-prey systems in Sub-Saharan Africa. SFV inter-species transmissions

were reported for two wild chimpanzee males (SFVcpz) from the Taï National Park, who were

infected with SFV from red colobus monkeys (SFVwrc) [78]. These chimpanzees were identi-

fied as frequent hunters and therefore likely exposed to red colobus monkeys. Wounds, which

were received during hunting or during chewing prey’s bones [14], could provide an entry for

the virus. The risk of cross-species transmission for females and infants is expected to be much

lower since they hunt less and consume less meat than males. In contrast to the frequent trans-

mission of species-specific SFV, cross-species transmission events seem to occur only rarely,

also demonstrated by a broad screening of wild chimpanzees among Sub-Saharan Africa [89].

This might indicate that distinct super-infecting strains are not transmittable in the new species

and result into a dead-end infections [78].

However, recently a high prevalence of FV was reported in wild tree shrews (Tupaia be-
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langeri). The close relationship of their FV to SFVs of Macaca mulatta (99.3 %) was taken

as an evidence for cross-species transmission, though transmission routes remain unclear [56].

Limited data and the low evolutionary distance of virus and host as observed for, e.g., FFV

in Felidae or BFV in ungulate species so far prevented the identification of non-ambiguous

inter-species transmission events in non-simian FVs [68].

Most findings of inter-species transmission have been reported for humans and their numer-

ous primfate prey, more particularly great apes (e.g., [9, 21, 157]). The infected persons were

mainly men, who received bites from monkeys or great apes during hunting. Animal caretakers

or veterinarians being occupationally in close contact with potentially infected animals, tissues,

blood or body fluids also reported SFV infections [69].

Although humans are lifelong infected, no evidence for human-to-human transmission of

SFVs exists [9, 69]. The observation of low viral load in blood and saliva and the lack of SFV

viral gene expression were traced back to viral latency [129], which is in line with the dead-end

infection of SFV in humans. Though, SFV transmission through blood transfusion is of partic-

ular concern, since this route could be demonstrated for a monkey model [17, 69]. So far, SFVs

in NHP as well as in humans seem to be non-pathogenic, even though the turn into a pathogenic

virus is of major health concern [69]. In the Northern hemisphere, the contact to non-primate

animals carrying foamy virus (e.g., BFV, FFV and EFV) is much higher than to NHPs. Direct

contact to pets and livestock but also the consumption of animal products increase the risk for

zoonotic infection with FV. So far, studies are very limited and do not provide any evidence for

zoonotic transmission of non-primate FVs such as FFV, BFV or EFV [7]. Virus contact to BFV

might be indicated by the recent finding of 7 % sero-reactivity in veterinarians and cattle farm-

ers. Though, no DNA was detected in the samples to prove zoonotic transmission [68]. Beside

the quantity and quality of exposure, the virus makeup by itself plays an important role for the

risk of transmission across host barriers. Viral “structures determined by the host for instance

the glycosylation pattern and host-derived, virion-associated proteins, are directly identified by

the mechanisms of innate immunity or by passively adapted cross-reacting immune mechan-

isms” [7]. Therefore, the potential of cross-species transmission rises with the phylogenetic

relation of natural and novel hosts [7]. This contributes that the transmission from NHPs to

humans is more likely than from distantly related species like cats, horses or cattle [132].
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2.1.7 Foamy virus super-infections – definition and diagnostics

Given the high prevalence rates of FV infections, in particular SFVs, it seems reasonable to

predict that super-infections will occur frequently. Super-infections are here defined as simul-

taneous infection of the same individual host with several strains of the same virus. Although

intra-individual diversity is a key parameter of infectious dynamics, no studies on FV actu-

ally provide these data. The only efforts were undertaken to clarify potential cases of SFV

recombinants in wild chimpanzees [89]. Just recently, super-infections have been also found

in humans. Four women from Bangladesh were dually infected with different SFV strains of

macaques from various geographic origins [31].

Where it exists, intra-individual diversity can be determined using bulk-PCR and sequen-

cing. In that case, PCR products can be expected to contain a mixture of sequences reflecting

multiple targets in the underlying viral population. Even though the direct sequencing or het-

eroduplex mobility assays of bulk-PCR products enables a detection of heterogeneous retroviral

populations of the same species (through multiple peaks in chromatograms or different mobil-

ity; [44, 110]) a truly complete depiction of bulk-PCR product contents will require using some

kind of dissection method. For the latter purpose, cloning and subsequent sequencing or next

generation sequencing can be performed. In the case of low intra-individual diversity, which is

expected for SFVs, next generation sequencing results into an enormous dataset of highly re-

dundant sequences. However, both methods are known to be prone to Taq-induced errors while

cloning can result in selective biases since some sequences will be more likely to be cloned than

others [134].

This recently prompted the rise of end-point dilution PCR (EPD–PCR), which is inde-

pendent of preliminary bulk-PCR amplification. In theory, end-point dilution of the starting

material to one template per positive PCR reaction prevent Taq-induced errors. Therefore,

EPD-PCR provide the gold standard for the depiction of intra-individual diversity [111, 134].

Within this framework, EPD-PCR was successfully applied to the investigation of HIV-1 micro-

evolutionary trends (e.g., [131]), including the detection of super-infection events (e.g., [81]).

EPD-PCR might therefore be considered a promising tool for the detection of super-infection

cases among wild primate hosts. There is however at least one predictable barrier to its imple-

mentation in this context. As retrovirus-oriented studies of wild primate populations essentially

rely on the analysis of non-invasively collected samples (most often feces, e.g., [67, 89]), it

is conceivable that samples will only contain retroviral/proviral genomes in minute amounts
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[83]. Acquiring a substantial sample of EPD-PCR sequences might therefore require prohibit-

ively large amounts of, by definition, rare starting material [77]. Thus, applying initially biased

methods (e.g., bulk-PCR) might sometimes be preferable as long as the tools exist to extract

biological signal from biased datasets. In this study the costs and benefits of EPD-PCR and

multiple bulk-PCR cloning were assessed within the frame work of a case study focusing on

simian foamy virus super-infection in wild chimpanzees (Pan troglodytes).
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2.2 Chimpanzees

2.2.1 Overview about chimpanzees

Chimpanzees (genus Pan) belong to the great apes and are evolutionary the closest living relat-

ives to humans, sharing a common ancestor about seven to eight Mya ago [73]. The common

chimpanzee is classified into four subspecies: the West African subspecies Pan troglodytes (P.

t.) verus, the Nigeria-Cameroon Chimpanzee P. t. ellioti (primary named P. t. vellerosus), the

Central Chimpanzee P. t. troglodytes and the East African subspecies P. t. schweinfurthii (Fig-

ure 7) [108, 109]. Chimpanzee populations are distributed among Equatorial Africa between

13° North and 7° South and have a total population size of 173,000 to 300,000 [20].

Pan  troglodytes  verus

Pan  troglodytes  ellioti

Pan  troglodytes  troglodytes

Pan  troglodytes  schweinfurthii

*

*

*
*

Taï  National  Park,  Côte  d’Ivoire

Budongo  Forest  Reserve,  Uganda

Figure 7: Excerpt of Saharan and Sub-Saharan Africa highlighting chimpanzee dis-
tribution and study field sites. This Figure uses underlying structures from
http://www.greenpassage.org/chimp/indexE.html.

The habitat of chimpanzees consists of moist and dry forests as well as savanna woodlands.

They live in large gender mixed groups comprising up to 150 individuals, called communities,

with a complex social structure [109]. They live in so called fission-fusions where individuals

can be absent from the group for a period of time [14]. Although chimpanzees are under protec-
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tion in most countries and several conservation projects are ongoing, the communities suffered

a dramatic decline during the last 20 years mainly due to poaching, habitat loss and diseases.

Therefore, chimpanzees are ranked as “endangered species” from IUCN (International Union

for Conservation of Nature) Red list of Threatened Species [108].

2.2.2 Field sites

2.2.2.1 Budongo chimpanzees The study site is located in the west of Uganda, within

the Budongo Forest Reserve (1°37’-2°03’N, 31°22’-31°24’E), an East African semi-deciduous

tropical forest of 435 km2 size and home for 600-700 chimpanzees P. t. schweinfurthii (Figure

7) [125]. In 1960, the chimpanzees were originally studied by Professors Reynolds, Sugiyama

and Suzuki (http://culture.st-and.ac.uk/bcfs/outreach/chimps.html, [124]). Long-term data are

available for the Sonso group, which has been continuously monitored since 1990. In 2008, the

Budongo Forest exhibited even four habituated groups comprising approximately 75 individuals

in Sonso, ~80 in Busingiro, ~80 in Kaniyo-Pabidi and 15 in Kasokwa. All groups are exposed

to different levels on human pressure such as logging, encroachment, ecotourism or neighbor-

ing sugarcane fields. Ongoing projects compare these field sites to evaluate the changes in

the ecosystem on chimpanzee behavior and health (http://www.wildcru.org/research/research-

detail/?project_id=28; [164]).

2.2.2.2 Taï chimpanzees The study site is located in the south west of Côte d’Ivoire, within

the Taï National Park (5°15’-6°07’N, 7°25’-7°54’W), which is the largest forest in West Africa

(3300 km2) (Figure 7). In 1976, Christophe Boesch and his team began to habituate the first

group of chimpanzees and investigated behavior and genetics of the chimpanzees [14]. To date,

there are four habituated groups (South, North, Middle and East) with partly overlapping territ-

ories of up to 25 km2 [52]. In 2010, the communities included approximately 102 individuals

(North: 17, South: 38, East: approximately 47, Middle: 2) [70]. During the total observation

time the size of the population decreased dramatically, although the long-term presence of re-

searchers had a protective effect in the given habitat against forest destruction and poaching

[71].

Sample collection and health monitoring Due to the number of unexplained deaths, the Taï

Chimpanzee Health Project was established in cooperation with the Robert Koch-Institute in

2001. Under the permission of minimal human influence, including strict hygienic rules and
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minimum distance to the chimpanzees, continuous monitoring for any clinical symptoms and

sample collection were undertaken [77]. In the case of wild animals, non-invasive samples

are of particular importance. Capturing and anesthetizing of wild great apes to collect blood

samples is ethically questionable and encompass multiple risk factors for instances falling from

the tree, over-dosage or other negative impacts on health through anesthetics [77]. Therefore,

any biological material stemming from the chimpanzees like feces, urine, chimpanzee-meal-

remains (e.g., from their hunted prey or chewed fruits) and dead carcasses are collected and

individually assigned. The study group is unique for its long-term data on genetics, behavior

and sample collection. This background allowed for the identification of different pathogens

as causative agents in a number of outbreaks in the Taï National Park. Frequent sudden deaths

of chimpanzees could be traced back to a novel Ebola virus [74] but also a novel Bacillus an-

thracis [76]. In 2008, repeated waves of respiratory diseases affected the chimpanzees from the

Taï National Park, leading to a 90 % morbidity rate and up to 20 % mortality rate. Contempor-

aneous worldwide circulating human paramyxoviruses (human metapneumovirus and human

respiratory syncytial virus) with bacterial secondary infection (Streptococcus pneumoniae and

Pasteurella multocida) were identified as causative agent and represent the first evidence for the

introduction of human pathogens into an immunologically “naïve” chimpanzee population [71].

The close genetic relatedness between humans and great apes might facilitate cross-species dis-

ease transmission when humans are present in the natural habitat.

While acute disease contribution to population decline is very obvious, chronic infections

are much more hidden and can lead to long-term health impacts as it was demonstrated for SIV

in chimpanzees [35, 66]. Pathogens, such as retroviruses [62], hepatitis B virus (own studies,

unpublished) or Plasmodia spp. [63], known to cause chronic diseases in humans, have been

detected in Taï chimpanzees. These data demonstrate that numerous pathogens infect the Taï

chimpanzees. As their impact on health is often recognizable only in late stage of infections

surving as survival strategy of wild animals, regular monitoring is therefore of particular im-

portance.

2.2.3 Simian foamy virus infection in chimpanzees – Subject of this study

Previous investigations revealed that SFVs are highly endemic in the Taï National Park [78, 79,

97] and even the first cases of cross-species transmission from chimpanzee prey to chimpan-

zees originate from this field site [78]. While many data have accumulated about patterns of
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co-divergence with their hosts and cross-species transmission events, little is known about the

modalities of SFV transmission within NHP species, especially in the wild. Therefore, the aim

of the study was to investigate the dynamics of SFV circulation in a social primate community.

The group of Western chimpanzees in the Taï National Park was ideal for this investigation as

long-term behavioral and epizootic data as well as non-invasively collected samples were avail-

able. To increase the power of the analyses, the intra-individual diversity had to be determined.

The gold standard for the detection of retroviral super-infections (end-point dilution PCR, EPD-

PCR) has never been tested for the use of non-invasive material. Therefore, cost and benefits of

EPD-PCR and a novel tool based on bulk-PCR had to be evaluated to provide recommendations

for further investigations on material with expected low amounts of the target. These analyses

should subsequently allow addressing the question of the transmission modalities of SFVcpz.
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3 Material and Methods

3.1 Overview Materials

3.1.1 Chemicals

Product Manufacturer

10 x Rxn-buffer (PCR) InvitrogenT M, Germany

6 x DNA Loading Dye Fermentas GmbH, Germany1

Acetic acid Carl Roth GmbH, Germany

Carrier RNA Qiagen, Germany

Deoxynucleoside triphosphate (dNTP) InvitrogenT M, Germany

Desoxyuridine triphosphate (dUTP) Fermentas GmbH, Germany

Dithiothreitol (DTT) InvitrogenT M, Germany

Ethanol (> 99 %) Carl Roth GmbH, Germany

Ethidium bromide (10 mg/ mL) Promega GmbH, Germany

Ethylendiaminetetraacetic acid

(EDTA)

Carl Roth GmbH, Germany

GeneRulerT M 1 kb DNA Ladder Fermentas GmbH, Germany

GeneRulerT M 100 bp DNA Ladder Fermentas GmbH, Germany

Magnesium chloride (MgCl2) InvitrogenT M, Germany

Nuclease free water Applied Biosystems, Germany

Peq Gold Universal Agarose Peq Lab, Germany

Primers and probes InvitrogenT M, Germany; TIB Molbiol,

Germany

Random primer (Hexamer) Metabion, Germany

Tris (tris (hydroxymethyl)

aminomethane)

Carl Roth GmbH, Germany

1Fermentas GmbH, St. Leon-Rot belongs since 2010 to Thermo Fisher Scientific, USA.
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3.1.2 Buffer

Product Composition

Tris-acetate-EDTA-Buffer (50 x) 242.3 g Tris 0.4 M

60.1 mL acetic acid 0.2 M

18.61 g EDTA 10 mM

ad 1 L ddH2O; pH 8.0

3.1.3 Kits

Product Manufacturer

BigDye® Terminator v3.1 Cycle

Sequencing Kit

Applied Biosystems, Germany

ExoSAP-IT® For PCR Product

Clean-Up

USB Corporation, USA

GeneMATRIX Stool DNA Purification

Kit

Roboklon GmbH, Germany

Platinum® Taq DNA- Polymerase InvitrogenT M, Germany

SuperScriptT M II RT InvitrogenT M, Germany

TOPO TA cloning® Kit InvitrogenT M, Germany
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3.1.4 Consumables

Product Manufacturer

ABgene Clear Seal Diamond (Sealing

foil for TaqMan® plates)

Thermo Fisher Scientific, USA

ABgene PCR Plates (96-well plates) Thermo Fisher Scientific, USA

Falcon tubes (15 mL, 50 mL) Neolab, Germany

Micro tubes (1.5 mL, 2 mL) Sarstedt AG, Germany

Micropipettes Eppendorf AG, Germany

Optical tubes and caps for

TaqMan®-PCR

Applied Biosystems, Germany

Parafilm American National Can, USA

Pipette tips for micro pipettes Nerve plus GmbH, Germany

Reaction tubes (0.2 mL, 0.5 mL) PeqLab, Germany;

Thermo Fisher Scientific, USA;

Carl Roth GmbH, Germany
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3.1.5 Technical equipment

Product Manufacturer

Biological Safety cabinet HeraSafe Thermo Fisher Scientific, USA

FastPrep®-24 (high

speed-homogenizer)

MP Biomedicals, USA

FlexCycler Biozym Scientific GmbH, Germany

Gel electrophoresis chamber Neolab, Germany

Micro-spoon spatula for extraction Carl Roth GmbH, Germany

Microcentrifure for 1.5 mL reaction

tubes

Neolab, Germany

Microwaves SB-Großhandels GmbH, Quelle

Gruppe, Germany

Nanodrop ND-1000 Spectrometer Peq Lab, Germany

PCR Mastercycler epigradient Eppendorf AG, Germany

Power supply gel electrophoresis Neolab, Germany

Table-top centrifuge 5417C Eppendorf AG, Germany

Table-top scale Sartorius, Germany

TaqMan® Stratagene MX3005P Agilent Technologies, USA

Thermal block incubator Thermomixer

compact

Eppendorf AG, Germany

Transilluminator CN-1000 PeqLab, Germany

Vortexer (Labdancer) Carl Roth GmbH, Germany
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3.1.6 Software

Product Inventor/ Webpage

Adobe Illustrater CS5, Photoshop CS5 Adobe Systems

ALTER (ALignment Transformation

EnviRonment)

http://sing.ei.uvigo.es/ALTER/ [39]

BEAST v1.6.1, companion softwares http://beast.bio.ed.ac.uk/

BLAST http://blast.ncbi.nlm.nih.gov/Blast.cgi

[2], NCBI, Bethesda, MD, USA

Corel Draw 12 Corel Corporation, USA

DNASTAR® LasergeneT M

(SeqMan®II )

DNAStar Inc., USA

FABOX (fasta sequence toolbox) http://users-

birc.au.dk/biopv/php/fabox/[153]

FigTree v1.4.0 http://tree.bio.ed.ac.uk/software/figtree/

Genenious Pro 5.4 Biomatters Ltd., New Zealand

http://www.geneious.com/

JabRef 2.4.2 http://jabref.sourceforge.net/index.php

jModelTest v0.0.1, v0.1 [120]

LYX 1.6.1 http://www.lyx.org/

Mendeley http://www.mendeley.com

Microsoft Office Microsoft, USA

Network v4.610 http://www.fluxus-engineering.com/

PhyML 3.0 [45]

R package car [38]

R package lme4 [8]

R v2.10.1 Development Core Team, 2010

RDP3 v3.42, v3.44 [94]

SeaView v4 [43]

Stratagene MxPro 4.1 Stratagene, USA

TCS [24]

TREE-PUZZLE http://www.tree-puzzle.de [139]
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3.2 Sample description

The study was performed on non-invasive samples stemming from habituated chimpanzees.

To establish a method, which detects retroviral super-infections, the first part of the study was

conducted on a test dataset (dataset A), including individuals from two different chimpanzee

communities of western and eastern Africa: P. t. verus (South group) from Taï National Park,

Côte d’Ivoire and P. t. schweinfurthii (Sonso group) from Budongo Forest Reserve, Uganda.

The second part of the study, investigating the biology of SFV within a chimpanzee community,

refers to individuals from Taï National Park, Côte d’Ivoire only (dataset B).

In both field sites, chimpanzees have been continuously monitored for more than 20 years

(Budongo-Sonso group: http://culture.st-and.ac.uk/bcfs/outreach/chimps.html, Taï -South group:

[15]). This resulted in an initial behavioral determination of pedigrees, which were then further

defined genetically [16, 106, 152]. Fecal samples were collected immediately after defecation

by trained personnel, thereby allowing for immediate individual identification of the defecating

chimpanzees. All necessary permissions were obtained for the described field studies – from

the Ministry of the Environment and Forests, the Ministry of Research and the directorship of

the Taï National Park for the study site in Côte d’Ivoire and from the Uganda Wildlife Author-

ity and the Uganda National Council for Science and Technology for the study site in Uganda.

Fecal samples were placed on ice (Taï samples) or soaked in RNAlater (Qiagen, Hilden, Ger-

many; Budongo samples) directly after collection, before being stored in liquid nitrogen (Taï

samples) or at -20 °C (Budongo samples), as previously described [72, 77].

The test dataset consisted of 10 samples (dataset A), which were selected from individuals

older than ten year of age at the date of collection (range: 15-42) because primary infection

with SFV is assumed to occur in early adulthood [89, 97]. These samples originated from four

chimpanzees living in Budongo forest (two males and two females) and from six chimpanzees

living in Taï National Park (two males and four females) (Figure 7). All details about individual

samples are given in Table 1.

Long-term data on Taï chimpanzees, including a sample collection over the last 10 years,

enabled detailed studies on SFV biology and transmission modalities. An initial screening

of 208 fecal samples, collected from 37 chimpanzees showed that 32 individuals were SFV

infected. The final dataset B consisted of 37 fecal samples stemming from 23 individuals (Table

2). Those were selected to maximize the number of mother-offspring and father-offspring pairs

included in the study, ending up with 12 mother-offspring pairs and 7 father-offspring pairs
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(Table 3); altogether individuals corresponding to the same sample formed a total of 257 non-

mother-offspring non-father-offspring dyads. The 12 offspring had been sampled between 3 and

19 years of age, while the range within the complete dataset was 3 to 44 years. For 11 subjects,

longitudinal sampling was available (8 subjects with 2 samples, 3 subjects with 3 samples).

All experimental as well as analytical steps of the study were performed at the Robert Koch-

Institute.

Table 1: Individual sample characteristics of dataset A. Individuals whose name start with a “T” are
P. t. verus from Taï National Park, Côte d’Ivoire, with a “B” are P. t. schweinfurthii from
Budongo Forest Reserve, Uganda. * The infection status single respectively super-infection
(infection with different viral strains) of simian foamy virus was determined according to end-
point dilution PCR.

Individual Sex Birth date Sampling
date

Age at
sampling
(years)

Infection
status*

B1 male 1990 2007 17 super
B2 female 1990 2007 17 single
B3 female 1983 2007 24 single
B4 male 1982 2008 26 single
T1 female 1977 2002 25 super
T2 female 1970 2005 35 super
T3 male 1989 2006 17 single
T4 female 1965 2005 40 super
T5 female 1970 2004 34 super
T6 male 1964 2006 42 super

Table 2: Individual sample characteristics of dataset B. Samples were collected from (P. t. verus), the
South group in the Taï National Park, Côte d’Ivoire and have been ordered according to the name
of the chimpanzee. For each individual 1-3 samples$ were collected, which were named from
sample A (earliest sampling date) up to sample C (latest sampling date). For each individual
were 25 bulk-PCR clone sequences generated, except for Sumatra 38 years because of technical
limitations (15 sequences). * marks samples, which have been excluded from statistical analysis
of super-infection status in relation to age and sex because of their ambiguous infection status.

Individual Sex Birth date Sample$ Sampling
date

Age at
sampling
(years)

Caramel male 2002 A 2005 3
Celine female 1995 A 2005 10
Coco female 1980 A 2004 24
Coco* female 1980 B 2005 25
Gogol male 1991 A 2001 10
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Table 2. Cont.

Individual Sex Birth date Sample$ Sampling
date

Age at
sampling
(years)

Gogol male 1991 B 2008 17
Jacobo male 1998 A 2004 6
Julia* female 1970 A 2004 34
Kabisha female 1977 A 2001 24
Kabisha female 1977 B 2002 25
Kaos male 1977 A 2006 29
Kinshasa female 1990 A 2001 11
Kinshasa female 1990 B 2007 17
Kiriku male 2005 A 2008 3
Louise female 1980 A 2005 25
Lula* male 2003 A 2007 4
Rebecca female 1995 A 2002 7
Romario* male 1999 A 2004 5
Romario male 1999 B 2008 9
Rubra female 1970 A 2001 31
Rubra female 1970 B 2005 35
Rubra female 1970 C 2008 38
Sagu male 1989 A 2002 13
Sagu male 1989 B 2006 17
Sagu male 1989 C 2008 19
Settut* female 1996 A 2003 7
Shogun male 2001 A 2008 7
Sumatra female 1965 A 2003 38
Sumatra female 1965 B 2005 40
Utan male 1994 A 2001 7
Utan male 1994 B 2005 11
Yao male 1995 A 2003 8
Yucca female 1970 A 2002 32
Yucca female 1970 B 2004 34
Zyon male 1964 A 2001 37
Zyon male 1964 B 2006 42
Zyon male 1964 C 2008 44
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Table 3: Parental relationship of the Taï chimpanzees from dataset B. Members of one matrilineal
line (here mother and offspring) have the same initial letter.

Individual Mother Father
Caramel Coco Sagu
Celine Coco Kaos
Coco
Gogol
Jacobo Julia
Julia
Kabisha
Kaos
Kinshasa Kabisha
Kiriku Kinshasa
Louise
Lula Louise Sagu
Rebecca Rubra
Romario Rubra Kaos
Rubra
Sagu Sumatra
Settut Sumatra Kaos
Shogun Sumatra Zyon
Sumatra
Utan
Yao Yucca Zyon
Yucca
Zyon
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3.3 Molecular biology analyses

3.3.1 Nucleic acids’ extraction and cDNA generation

DNA and RNA were co-extracted with the GeneMATRIX Stool DNA Purification Kit (Robok-

lon GmbH, Berlin, Germany) using 80 mg feces (Taï samples) or 100 mL homogenate (Bud-

ongo samples) and 5 µL carrier RNA (Qiagen, Hilden, Germany) to enhance RNA yield.

First-strand cDNA synthesis was then performed using SuperScriptTMII Reverse transcriptase

(InvitrogenTM, Karlsruhe, Germany) with random hexamer primers (Table 4). RNA genomes

were not considered as specific targets. Therefore, extracts were not treated with DNAse so as

to allow for the detection of SFV DNA (either packaged in viral particles or proviral), would it

occur in fecal samples. Though published results suggest that SFV DNA will be shed much less

frequently in feces than SFV RNA [89], it should be considered that any sequence produced

here might come from RNA or DNA genomes found in viral particles or shed infected cells or

from proviral DNA.

Table 4: Single-stranded cDNA transcription protocol (InvitrogenTM).

Composition Protocol
Mix 1: Random hexamer primer (R6), 10 µM 1.0 µL for Mix 1:

dNTPs, 25 mM 0.4 µL 65 °C 5’
RNA extract 11.6 µL 4 °C ∞
total 13 µL

Mix 2: SS 5x Buffer 4 µL for Mix 2:
DTT 2 µL 37 °C 55’
SuperScript II RT 1 µL 70 °C 15’
Mix 1 13 µL 4 °C ∞
total 20 µL

3.3.2 Initial PCR screening

To identify SFV positive feces samples, a nested PCR assay using a set of generic primers

targeting a 470 base pair (bp) fragment of the integrase (int) gene was employed [89, 141],

using 1.5 µL cDNA as template in a 15 µL reaction mixture containing Platinum® Taq DNA-

Polymerase (InvitrogenTM, Karlsruhe, Germany) (Table 5, Table 6).
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Table 5: Simian foamy virus (SFV) nested PCR assay, integrase fragment.

Composition Protocol
Rxn Puffer 10x 1.5 µL 95 °C 5’
dNTPs (2.5 mM) 1.2 µL 95 °C 30”
MgCl2 (50 mM) 1.2 µL 56/60 °C 2 45” 35 x
forward primer SFVint1s 0.3 µL 72 °C 60”
reverse primer SFVint2as 0.3 µL 72 °C 10’
Platinum Taq Polymerase 1.15 µL
template 0.6/1.5 µL3

nuclease free water ad 15 µL

Table 6: Primer for nested PCR, integrase fragment [89, 141]. AT: annealing temperature; s: sense;
as: antisense.

Primer Sequence 5’-3’ AT (°C)
SFVint 1s GCCACCCAAGGGAGTTATGTGG 56
SFVint 2as GCTGCACCCTGATCAGAGTG 56
SFVint 3s CCTGGATGCAGAGTTGGATC 60
SFVint 4as GAAGGAGCCTTAGTGGGGTA 60

3.3.3 DNA/RNA quantification

To determine the viral load in feces, a TaqMan probe-based quantitative assay targeting another

short fragment of the polymerase gene (pol) was applied to the dataset A, using 2 µL cDNA as

template in reactions otherwise prepared as in Table 7, Table 8 [100]. All six samples obtained

from Taï National Park were tested, while Budongo samples had to be excluded from this ana-

lysis as samples were only available as RNAlater homogenate, which prevented determining

the mass of fecal matter effectively used (fecal matter mass was not determined at the time of

collection).

The TaqMan was also tested on dilutions of plasmids containing the corresponding sequence

and could detect < 5 molecules per reaction, including when plasmids were mixed in “fecal”

SFV-negative cDNA (Table 9).
2first round 56 °C; nested round: 60 °C
3first round 1.5 µL; nested round: 0.6 µL
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Table 7: Simian foamy virus (SFV) real-time PCR assay, polymerase fragment.

Composition Protocol
Rxn Puffer 10 x 2.5 µL 95 °C 8’
dNTPs (2.5 mM) 2.5 µL 95 °C 60”
MgCl2 (50 mM) 2.5 µL 58 °C 60” 50 x
forward primer SFVTs (10 pmol/ µL) 0.5 µL 72 °C 15”
reverse primer SFVTas (10 pmol/ µL) 0.5 µL
probe 0.5 µL
AmpliTaqGold (5 U/ µL) 0.2 µL
template 2.0 µL
nuclease free water ad 25 µL

Table 8: Primer for real-time PCR assay, polymerase fragment [100]. AT: annealing temperature; s:
sense; as: antisense.

Primer Sequence 5’-3’ AT (°C)
SFVT s CTTCAACCTTTGCTGAATG 58
SFVT as TAATACAGGGCTATAGGTGT 58
SFVT probe 6’-FAM-TTGGAATTCAGTACTCCTTATCACCC-3’BHQ1 58

Table 9: Sensitivity of real-time PCR assay. Different dilution of plasmids (Simian foamy virus, SFV
standard and a plasmid from SFV of chimpanzee Sumatra; with and without additional fecal
DNA) were compared based on the number of cycles at which the DNA-based fluorescence
exceeds the threshold (threshold cycle = Ct). Please note that all dilutions of the plasmid came
up with a detection less than 40 cycles.

Copy number of
plasmids

Ct for 1 µL
Plasmid-SFV
Standard

Ct for 1 µL
Plasmid SFV
Standard + 2 µL
SFV-negative
fecal DNA

Ct for
1 µL Plasmid
Sumatra

Ct for 1 µL
Plasmid
Sumatra + 2 µL
SFV-negative
fecal DNA

1 38 38 37 36
5 36 35 39 38
10 33 33 34 35
20 33 33 33 33
50 32 31 34 33
102 31 30 33 33
103 27 27 30 30
104 24 24 27 26
105 20 20 23 23
106 17 17 20 20
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3.3.4 End-point dilution PCR

The standard technique to determine intra-individual diversity was applied to all samples from

dataset A. Therefore, several dilutions of cDNA were tested for each isolate so as to identify

the dilutions resulting in success rates < 30 %, conditions in which about 80 % of the sequences

can be predicted to stem from a single starting template molecule [134]. For each of the ten

individuals, 15 EPD-PCR products were sequenced on both strands according to the Sanger’s

method.

3.3.5 Bulk-PCR and cloning

Bulk-PCR and cloning were considered as alternative method to determine retroviral diversity

and therefore initially applied to dataset A and in the second step to dataset B. Five pos-

itive bulk-PCR products were independently obtained from each individual, using the same

aforementioned nested PCR assay, which was run using 1.5 µL undiluted cDNA as template

(in the case of dataset A, cDNA was always derived from the same fecal sample as used

for EPD-PCR). All resulting PCR products were sub-cloned using the Topo TA cloning kit

(InvitrogenT M, Karlsruhe, Germany) according to the manufacturer’s instructions. Following

colony PCR and visualization on a 1.5 % agarose gel, five positive colony PCR products from

each of the amplicons were purified (ExoSAP-IT®) and sequenced on both strands according

to the Sanger’s method, thereby generating 25 clone sequences per individual.

3.4 Sequence analyses

3.4.1 Sequence processing

Chromatograms were analyzed using SeqMan®II (DNASTAR® LasergeneT M DNAStar Inc.,

USA). Sequences comprising mixed bases were discarded. In total, 400 sequences (150 EPD-

sequences and 250 bulk-PCR clone sequences) were generated for dataset A and 915 sequences

(bulk-PCR clone sequences) for dataset B. The chimpanzee origin of these sequences (more

precisely P. t. verus for dataset A and B, P. t. schweinfurthii for dataset A) was confirmed

by BLAST [2]. Sequences were aligned using the MUSCLE algorithm [30] as implemented

in SeaView v4 [43]. Modification of the sequence format or haplotyping to identify unique

sequence types were performed using webpage FaBox v1.4.1 [153] and ALTER [39].
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3.4.2 Recombination analysis

Aligned sequences were checked for evidence of recombination using the RDP, GENECONV,

MaxChi, Chimaera, SiScan, and 3Seq tools, as available in RDP3 v3.42 [94] but did not detect

any recombination event.

3.4.3 Sequence distance

The observed distance, i.e., the observed number of differences within sequence alignments,

were determined for each individual (dataset A; Table 11) and the overall community (dataset

B) using SeaView v4 [43].

3.5 Phylogenetic analyses

3.5.1 Evolutionary relationship of simian foamy virus within hosts

To test if phylogenetic analyses are a suitable tool to identify super-infections, the phylogenetic

signal comprised in the dataset, was determined. Therefore, the 10 individual alignments of

clone sequences (dataset A) were investigated by TREE-PUZZLE (Table 11, [139]). TREE-

PUZZLE is a maximum likelihood (ML) software generating phylogenetic trees. The imple-

mented quartet puzzling algorithm (i.e., likelihood mapping) provides weights of topologies

from quartet derived ML-trees (relationships for each set of four out of N sequences), differen-

tiating between resolved, partly resolved and unresolved quartets. Low phylogenetic signal is

indicated by a high percentage of partly or unresolved quartets, in that case ML-values are too

similar to identify only one of the three possible topologies.

On individual alignments (dataset A and B) phylogenetic analyses were performed using

PhyML v3.0 [45] as implemented in SeaView, approximate likelihood ratio test values served

as branch support values [3]. For all datasets and analyses, the same model of nucleotide substi-

tution was employed (global time reversible plus rate heterogeneity; GTR+G; Figure S1, Figure

S3).

3.5.2 Evolutionary relationship of simian foamy virus among great apes

To specify the origin of the SFV sequences, phylogenetic analyses were conducted on the gen-

erated clone sequences (dataset A separated by subspecies: Figure 13, Figure 14; dataset B
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founder sequences only: Figure 19) adding representative sequences from all chimpanzee sub-

species (P. t. verus, P. t. ellioti, P. t. troglodytes, and P. t. schweinfurthii) and rooting with

bonobo sequences (Pan paniscus) [89, 151, 148].

Model selection by Akaike’s information criterion score was first conducted using jModel-

Test v0.1 [121], which resulted for all alignments in selecting a global time-reversible (GTR)

matrix of substitution together with across-site rate variation (+G). For dataset B the propor-

tion of invariant sites (+I) was also selected. Tree reconstruction was then performed under the

chosen model using PhyML (for the large dataset, i.e., dataset A on a web server [46], oth-

erwise PhyML v3.0 [45] implemented in SeaView). Branch robustness was assessed through

non-parametric bootstrapping (500 pseudo-replicates). In addition, Bayesian analyses were per-

formed for dataset A using BEAST v1.6.1 [28]. Output of BEAST analyses was examined with

companion software (available at http://beast.bio.ed.ac.uk/ Main_Page), which notably allowed

for the computation of branch posterior probabilities, which were taken as branch robustness

measures.

3.5.3 Test for suspicious triple infections

A phylogenetic tree was also generated for three supspicious triple infection cases in dataset B

(Figure 18). Initial model selection resulted in selecting Kimura 2-parameters (K80) together

with across-site rate variation (+G). Branch support was performed by 500 pseudo-replicates to

estimate bootstrap values.

3.6 Statistical Analyses

3.6.1 Mismatch distribution-based identification of single/super-infections

3.6.1.1 Reasoning line The first objective was to develop a statistical tool that provides an

objective criterion for classifying individuals as single or super-infected, based on the analysis

of a multiple bulk-PCR product clone alignment. The shape of the frequency distribution of

the number of mismatches derived from an individual alignment (thereafter termed ‘mismatch

distribution’) served as a way to investigate the nature of the underlying infection process. The

assumption was that in case of single infection, mismatch distribution should be approximately

unimodal and can be fit with “unimodal” distribution laws. On the contrary, super-infections

were expected to result in bi- or multimodal distributions and should therefore better fit “bi-
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modal” distribution laws. This approach was initially applied to sequences generated by the

gold-standard method EPD-PCR (dataset A). Therefore, mismatch distributions were produced

for all individual EPD-PCR sequence alignments to identify the individuals as cases of single

or super-infection (Figure 11). At that stage, assignment was made by eye only as the limited

number of variants precluded any statistical assessment of the shape of the distributions. In

contrast, mismatch distribution derived from bulk-PCR product clone alignments of the same

individuals were much more variable (Figure 11) and therefore required the development of a

statistical approach.

In detail, several models (one or two Poisson or normal distributions) were fitted to the

observed mismatch distribution in a maximum likelihood framework. Models assuming a uni-

modal distribution (one Poisson or normal distribution; single infection) or a bimodal distribu-

tion (two Poisson or normal distributions; super-infection) were then compared using Akaike’s

information criterion, corrected for small samples (AICc) as a measure of model performance

[19]. The model with the smallest AICc was selected as most likely mismatch distribution.

However, when the smallest AICc-value differed by no more than two from the second small-

est, the simplest model (i.e., the one with the smallest number of estimated parameters) from

all models with AICc-values differing from the smallest AICc-value by at most two was chosen

(in case the model with one normal distribution and the model with two Poisson distributions

both fulfilled this criterion, the one with the smaller AICc was chosen). The resulting diagnosis

(single or super-infection) was confirmed by visual inspection of mismatch distributions and

networks. It should be noted here that this method is by nature independent of the definition of

a cutoff number of mismatches that would make two sequences unlikely to be derived from each

other: it relies only on shape analysis. The shape analysis essentially allows for the identifica-

tion of deviations from a single infection scenario and not for the determination of the number

of SFV strains involved in multiple infections with > 2 SFV strains (Figure 8), but note that

multiple infections with > 2 strains are properly identified as case of super-infection (tested by

the simulation of triple infections).

The new technique was then applied to the bulk-PCR clone sequence data stemming from

the Taï community (dataset B).
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Figure 8: Scheme of identifying super-infections by sequence analysis. Hypothetical super-infections
(a-d) illustrating that multiple modes (three in a-c; two in d) in mismatch distributions point to
super-infection, but not to the number of underlying infections.
In example a, there is an obvious triple infection, which will result in building three modes
in a mismatch distribution: one for local diversity around one founder sequence (large circles
and their little satellites), one for comparisons involving neighboring clouds of sequences (e.g.,
upper with middle cloud) and a last one for comparisons involving not-neighboring clouds (the
upper and the lower).
Examples b and c illustrates further infections that are, by chance, implicating viruses, which
are always more closely related to the initial central cloud of sequences and approximately as
distant to it as the preceding infecting viruses. Adding them will not change anything to the
overall shape of the mismatch distribution, which will still harbor the exact same three modes.
Here, the same three mode distribution therefore describes a triple, quadruple or quintuple
infection.
Example d further extends this reasoning line to a case of double mode distribution: it is enough
to consider a case very close to example c but where the central cloud is not involved in the
super-infection. There, only the first two abovementioned modes will appear, whatever the
number of equidistant founder sequences were involved in super-infection.

3.6.1.2 Power analyses

3.6.1.2.1 Influence of the number of bulk-PCR products To determine the number

of bulk-PCR products needed for an accurate determination of the infection status, analyses

were performed for the use of one to five bulk-PCR products and compared to results using

EPD-PCR. Therefore, mismatch distributions were produced for all ten individuals (dataset

A) to any possible combination of bulk-PCR product clone alignments; i.e., to the only pos-

sible combination of all five bulk-PCR product clone alignments (ABCDE), to the five possible

combinations of four bulk-PCR product clone alignments (ABCD, ABCE, ABDE, ACDE and

BCDE), and so on (Figure 15). In a few cases only two different numbers of mismatches were
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found in a sample. In these cases, uni-/bimodality were assessed based by visual inspection of

the distribution because it was impossible to fit the two means model to such a distribution.

3.6.1.2.2 Simulation of triple infections To demonstrate that infections more than two

SFV strains will be identified as super-infection and their mismatch distributions better fit to a

multimodal mode than an uni-modal mode, triple infection cases were simulated. For the sake

of biological relevance, these simulated datasets were generated from the “real” data, randomly

re-shuffling sequences of unambiguous “clouds” of sequences (supported by both phylogenetic

and network analyses), forming 84 “triple infection clone alignments” with 24-26 sequences

(from Taï specimens of dataset A). Most stand for triple infection with relatively distantly

related “clouds” (n = 78) while in six cases two of the three “clouds” are really closely related

(e.g., some sequences belonging to these “clouds” only differ at one position).

3.6.2 Influencing factors on super-infection status

To test for influencing factors on the kind of infection (single or super-infection) of chimpanzees

in natural settings, a generalized linear mixed model (GLMM) [4] with binominal error structure

and logit link function was used. In particular, the influence of the combined effect of sex and

age (categorical and continuous predictors) and their interaction (fixed effects) were analyzed

for the Taï community (dataset B). Subject identity was included as a random effect because

for several subjects samples from different ages were used in this study. The total number

of data points analyzed was reduced to 32 samples from 20 subjects (Table 2, Figure S2), as

the infection status of five samples was ambiguous. Into this model all variables were entered

simultaneously. Various diagnostics were used to check for model validity and stability. For

example, colinearity could be excluded by inspection of variance inflation factors (VIF) (both =

1.18, determined using the function vif of the R package car) [38]. Model stability was assessed

by excluding data points one by one and comparing the derived coefficients. This revealed no

obviously influential cases. To establish the significance of the full model a likelihood ratio test

was used [27], comparing its deviance with that of the null model comprising only the intercept

and the random effect. To test the significance of the interaction between age and sex, the

standard z-test, provided by the function lmer [8] was used.
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3.6.3 Effects of social relationships on simian foamy virus distribution

To test if close social relationships influence the virus circulation, the SFV pool of offspring

to their mother, father, and non-parental group members within the Taï community was com-

pared (dataset B). As a measure of dissimilarity between the SFV strains of samples from two

individuals, the minimum number of mismatches between any pair of their respective SFV se-

quences was determined. To test whether this similarity measures corresponded to the familial

relationship (mother-offspring, father-offspring, or non-mother-offspring non-father-offspring)

between the dyad’s members, a GLMM was used. In this model the similarity measures were

considered between all samples of each of the 12 offspring, on the one hand, and samples from

all group members, on the other hand, given they were collected prior to the respective sample

of the offspring. In addition to the relation between the two individuals the following predictors

were included, in order to control for their effects: the total time the two individuals have spent

together in the same community until the first of the two samples was collected, assuming that

longer times spent together might lead to increased similarity of their infecting strains; absolute

difference between their birthdays (number of days), assuming that individuals born close to one

another might be more similar; the sex of the offspring, assuming female and male offspring

might differ in their social/play behavior; the sex of the other individual, assuming that inter-

actions between offspring and other group members might be more likely when the other is a

female; the difference between the two sampling dates, assuming that larger differences lead to

decreased similarity; and, finally, offspring age, assuming that older offspring might have SFV

strains more similar to those of others than younger ones. In addition, the two-way interactions

between time spent together, on the one hand, and relation, difference between birthdays, and

sex of the other individual, on the other hand, were included in the model. The interaction

between time spent together and relation were included because it could be hypothesized that

offspring SFV population would generally become more similar to that of any other individuals

with increasing age but that this increase in similarity would be more pronounced in mother-

offspring dyads. The other two interactions were included to control for their potential effects,

assuming that a potentially increased similarity between offspring born close to one another in

time and offspring with females would show up only after some time spent together. All these

terms were included as fixed effects into the model. To control for the identity of the offspring

and the other individual they were included as random effects into the model. Prior to running

the model, all numerical predictors were inspected for their distribution and, as a consequence,
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square root transformed the difference between birthdays to achieve an approximately symmet-

rical distribution. Subsequently, all numerical predictors were z-transformed to a mean of zero

and a standard deviation of one. To test the overall effect of the factor relation and its inter-

action, the full model (as described above) was compared with a null model not comprising

relation or its interaction with time spent together but including all other terms present in the

full model. This comparison was based on a likelihood ratio test [27]. The model was fitted with

Poisson error structure and log link function. Using a Poisson error, structure was justified, as

the response (dissimilarity) comprised only integer numbers ≥ 0 and since overdispersion was

not an issue (dispersion parameter: 0.97; χ2 = 300.3; df = 310; p = 0.64). Also, colinearity was

no issue (largest VIF = 1.93).

All analyses were conducted in R (version 2.10.1; R Development Core Team, 2010). The

GLMM was run using the function lmer of the R package lme4 [8], VIF were calculated using

the functions vif of the R package car [38], and likelihood ratio tests were conducted with the

function anova with the argument test set to chisq.

3.7 Network Analyses

3.7.1 Network-based identification of founder strains of simian foamy virus

3.7.1.1 Reasoning line Sequences generated with EPD-PCR are in principle Taq-error free

sequences [134]. This is not the case for bulk-PCR clone sequences, which will on the contrary

often harbor singleton changes due to Taq errors. Hence, much of the observed variation will

be artifactual.

Therefore, it was of particular interest to develop a method that identifies biological se-

quences potentially comprised in clone alignments (including minor variants) and more partic-

ularly of those sequences which might be at the origin of the infection and/or have become main

components of the overall retroviral population (hereafter called founder sequences).

Founder sequences with respect to their biological variants – but also biological sequences

with respect to their Taq-modified variants – are expected to exhibit two distinctive properties:

i) high connectivity and ii) high frequency. While phylogenetic analyses cannot capture these

characteristics, tokogenetic analyses (i.e., network building) can in principle allow for their sim-

ultaneous assessment [122]. TCS [24], which implements statistical parsimony-based network

building as initially described in an article by Templeton, Crandall and Sing [149], offers the

advantage to produce “outgroup probabilities” (OP), a statistic, which summarizes sequence
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connectivity and frequency for all sequences examined. To identify founder sequences of SFV

infection, networks were performed for all individual clone alignments of dataset A (Figure

16) and dataset B (Figure S2).

For all alignments, median-joining networks [6] were also reconstructed using Network

v4.610 (www.fluxus-engineering.com). Those were always similar in shape to their statistical

parsimony counterparts. Median-joining networks are presented in this document, as their lay-

out could be much more easily reworked, using a dedicated tool, Network Publisher (www.fluxus-

engineering.com).

3.7.1.2 Power analysis To investigate the power of network analyses in pointing at likely

biological sequences, networks with according OP values were also generated for EPD-PCR

derived sequences (dataset A, Figure 9). Sequences with highest OPs (either the very best if

single infection or the two best ones if super-infection) were checked whether they match with

the same founder sequence identified from clone alignments (Table 12).

In addition, it was checked whether the appearance of a sequence in several of the five PCR

products (ability to replicate) was likely to point at it being a founder sequence. OP values

were determined from all possible alignments (dataset A) derived from 3 or 4 PCR products

only and in which no sequence was appearing in more than one PCR product so as to determine

whether OPs were pointing at EPD-PCR founder sequences when ability to replicate could not

be used as a criterion (Table 13).
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Figure 9: Median joining network analysis of end-point dilution (EPD) PCR dataset. The networks
are ordered by infection status as determined by EPD-PCR (first four individuals above the
bold bar are single infected; six individuals below the bar are super-infected). Individuals
whose name start with a “T” are P. t. verus from Taï National Park, Côte d’Ivoire, with a “B”
are P. t. schweinfurthii from Budongo Forest Reserve, Uganda. Within each network, node
size is proportional to the frequency of sequence occurrence. Branch lengths are proportionate
to the number of mutations between sequences, with values noted for differences greater than
two base pairs. Haplotypes 1-5 (as shown in Table 12) are noted within or adjacent to their
corresponding node. Networks generated by the parsimony-based network TCS were highly
similar (data not shown).
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3.7.2 Other networks

In addition, to the individual sample networks, further networks were produced for dataset

A and B. Eight networks from simulated triple infections of dataset A were built to check,

whether the three highest OPs were pointing to the appropriate “clouds” of sequences (Figure

17, Table 14). Different alignments of dataset B were also investigated using network analyses,

including all specimen taken from multiply sampled individuals (9 networks; Figure 25, S4),

all samples from mothers and their offspring (7 networks; Figure 22), and all samples included

in the study of dataset B (1 global network out of 915 sequences; Figure 20A). Two alternative

versions of the global network were also produced: (i) a streamlined network, which did not

comprise clone sequences that exhibited minimal OP values in individual sample networks, that

is, excluding these sequences more likely to be PCR-borne variants (128 sequences; Figure

20B), and (ii) a “founder” network including all founder sequences (n = 55; Figure 21). These

networks were also computed with Network and TCS, which yielded again in very comparable

structures.

3.8 Molecular evolution and substitution processes

To investigate the molecular evolution and substitution processes, clone sequences of data-

set B were examined for the presence of frameshift-inducing indels (insertion or the deletion of

bases), and in-frame stop codons using SeaView v4 [43]. In addition, the proportions of variable

sites at the first and second codon positions and at the third codon position were also determ-

ined as a proxy of selective forces operating on these sequences (Table 16). Finally, mutations

occurring as the first step away from founder sequences were recorded in all TCS-derived indi-

vidual networks (n = 37) allowing for the determination of a complete non-reversible nucleotide

substitution matrix including 471 mutational events (Table 17).

3.9 Estimation of virus persistence

For 9 individuals of the Taï community (dataset B), it was possible to unambiguously determ-

ine the infection status (single or super-infection) from two to three samples (n = 21) collected

1 to 7 years apart (mean, 3.3 years). Considering that some individuals were super-infected

over multiple sampling points and that each of the underlying major strains constituted an in-

dependent observation, the number of viral years was determined (Table 15). Here viral years
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were defined as the minimum number of consecutive years over which one SFV strain can be

assumed to have infected an individual. Practically, this means that if strain A and strain B are

detected during year n and strain A and strain B in year n = 1 while only strain A is detected

in year n = 2, strain A will have persisted over 2 years (2 viral years) while strain B will have

persisted over 1 year (1 viral year). It should be noted here that the assumption is made that two

consecutive observations of the same strain are explained by viral persistence rather than other

processes, e.g., re-infection.

3.10 Nucleotide sequence accession numbers

All EPD-PCR sequences (all unique sequences per individual of dataset A, n = 33) have

been deposited in the EMBL depository under accession numbers HE820059-HE820091. All

founder sequences (dataset B, n = 55), standing most likely for biological variants, are also

available in this database under the accession numbers HF568879-HF568933. The complete

sequence dataset, comprising all clone sequences (dataset B, n = 915), has been deposited in

DRYAD under doi: 10.5061/dryad.bb8r6.
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4 Results

4.1 Detection of simian foamy virus diversity within a given host

The first objective of this study was to establish a suitable technique for the detailed estimation

of intra-individual diversity, i.e., single infection versus multiple infection (super-infection) of

the given retrovirus. Therefore, ten SFV positive fecal samples collected from Eastern and

Western chimpanzees (dataset A: samples B1-B4 and T1-T6) were investigated using bulk-

PCR cloning and the gold-standard of EPD-PCR in comparison.

4.1.1 Quantification of retroviral loads in feces

Quantitative PCR performed on samples identified as positive by a nested PCR approach resul-

ted in negative results for the six samples tested, even though the former test exhibited a high

sensitivity (detection threshold < 5 molecules; Table 9). When extrapolating to the 80 mg feces

typically used for extraction, this suggested that SFV retroviral/proviral loads in feces are in the

range of at maximum a handful of copies per mg feces.

4.1.2 End-point dilution PCR

4.1.2.1 Sequence generation For each selected sample, a minimum of 15 EPD-PCR se-

quences were acquired, a point at which the average nucleotide distance most often reached

a plateau, thereby suggesting appropriate sampling of the underlying viral population (Figure

10). Moderate dilutions (down to a maximum factor of 20) were always sufficient to lower the

success rate to less than 30 % of the reactions (Table 10), [134]. On average, 69.3 µL of un-

diluted cDNA was necessary to gather the desired number of EPD-PCR sequences, though the

range of used material was highly variable (median volume: 47 µL, range: 11–179 µL; Table

10).
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Figure 10: Appropriate sampling using end-point dilution PCR: average number of mismatches
between end-point dilution-PCR sequences as a function of the number of sequences con-
sidered. All possible assemblages of two, three, and so on up to 15 sequences per sample
were considered. For each of those, the mean pairwise distance was computed. The average
of all mean pairwise distances was finally plotted. Appropriate sampling of the underlying
sequence population can be expected to result in reaching a plateau phase.

Table 10: Quantities of material used in the generation of end-point dilution (EPD) PCR sequences.
The total numbers of necessary experiments are reported in the left section, and those having
finally been performed in EPD-PCR conditions are reported in the right section. Individuals
whose name start with a “T” are P. t. verus from Taï National Park, Côte d’Ivoire, with a “B”
are P. t. schweinfurthii from Budongo Forest Reserve, Uganda. * marks individuals for which
it was necessary to re-extract from the same original fecal bolus to obtain a sufficient number
of EPD-PCR sequences. †indicates the threshold for EPD conditions: a maximum 30 % of
PCR products are simian foamy virus positive.

Performed experiments in total Performed experiments within EPD range
Individual Min/max of

dilution
Number of
PCRs
performed

cDNA
(µL)

Min/max of
end-point
dilution

Number of
PCRs
performed

Number of
Positive
PCR (%)†

B1* original/ 1:20 168 71 1:3/ 1:20 104 21 (20)
B2* original/ 1:5 218 179 original/ 1:5 191 17 (9)
B3 1:5/ 1:10 112 31 1:5/ 1:10 112 15 (13)
B4 1:3/ 1:5 146 56 1:4/ 1:5 130 17 (13)
T1 1:5/ 1:10 92 16 1:10 76 20 (26)
T2 1:4/ 1:5 93 34 1:4/ 1:5 93 22 (24)
T3* original/ 1:10 298 175 original/ 1:10 266 18 (7)
T4* original/ 1:5 176 82 1:5 152 17 (11)
T5 1:3 76 38 1:3 76 15 (25)
T6 1:5/ 1:20 92 11 1:20 76 18 (24)
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4.1.2.2 Identification of single/super-infections In all cases of dataset A, several unique

SFV sequences were identified by EPD-PCR (range: 2–5). These sequences were all assumed to

represent authentic biological variants and therefore directly used to make a decision regarding

chimpanzee-specific SFV super-infection, using mismatch distributions. In this way, eight of

the ten individuals could be unambiguously assigned as single or super- infected (6/6 P. t. verus:

T1 to T6, 2/4 P. t. schweinfurthii: B1 and B4; Figure 11). The two remaining individuals (B2

and B3) exhibited slightly ambiguous distributions but were ultimately assigned to the single

infection category, based on a rather small maximum divergence of 5 bp (as compared to a

minimum of 7 bp difference between different strains and a mean of 10 bp for unambiguously

super-infected individuals).
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Figure 11: Super-infection diagnostics using mismatch distribution analyses of end-point dilution
(EPD) PCR and clone sequence. As in Figure 9, individuals are ordered according their
infection status as determined by EPD-PCR (first four individuals above the bold bar are
single infected; six individuals below the bar are super-infected). Individuals whose name
start with a “T” are P. t. verus from Taï National Park, Côte d’Ivoire, with a “B” are P. t.
schweinfurthii from Budongo Forest Reserve, Uganda. Plots are paired for each individual
with the EPD-PCR dataset on the left and the bulk-PCR clone dataset on the right. EPD-PCR
distributions are black; bulk-PCR clone distributions identified as unimodal (∆ AICc < 2) are
green; bulk-PCR clone distributions identified as bimodal are purple (∆ AICc > 2).
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4.1.3 Bulk-PCR product cloning and sequencing

4.1.3.1 Sequence generation For each sample five bulk-PCR products were generated, con-

suming a median volume of 12.5 µL undiluted cDNA. All resulting PCR products (named A

to E) were sub-cloned and five clones were sequenced per product. Clone alignments typ-

ically exhibited higher levels of polymorphism than the corresponding EPD-PCR sequence

alignments, an expected consequence of the accumulation of random Taq-errors (e.g., Figure

12). All sequences supported the expected scheme of subspecies specific distribution of SFV,

demonstrated by maximum likelihood as well as Bayesian analyses (Figure 13, Figure 14, [89]).

1.      B1  EPD-­PCR  02
2.      B1  EPD-­PCR  03
3.      B1  EPD-­PCR  04
4.      B1  EPD-­PCR  05  
5.      B1  EPD-­PCR  06
6.      B1  EPD-­PCR  07
7.      B1  EPD-­PCR  08
8.      B1  EPD-­PCR  09
9.      B1  EPD-­PCR  10
10.  B1  EPD-­PCR  12
11.  B1  EPD-­PCR  13
12.  B1  EPD-­PCR  14
13.  B1  EPD-­PCR  15
14.  B1  EPD-­PCR  17
15.  B1  EPD-­PCR  18
16.  B1  Clone  A01
17.  B1  Clone  A02
18.  B1  Clone  A03
19.  B1  Clone  A05
20.  B1  Clone  A06
21.  B1  Clone  B01
22.  B1  Clone  B02
23.  B1  Clone  B03
24.  B1  Clone  B04
25.  B1  Clone  B05
26.  B1  Clone  C01
27.  B1  Clone  C02
28.  B1  Clone  C03
29.  B1  Clone  C04
30.  B1  Clone  C05
31.  B1  Clone  D01
32.  B1  Clone  D02
33.  B1  Clone  D03
34.  B1  Clone  D04
35.  B1  Clone  D05
36.  B1  Clone  E01
37.  B1  Clone  E02
38.  B1  Clone  E03
39.  B1  Clone  E04
40.  B1  Clone  E05
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Figure 12: Nucleotide alignment (425 bp of the Simian foamy virus integrase fragment) of end-
point dilution (EPD) PCR and bulk-PCR clone sequences for individual B1. Comparison
of generated sequences to one EPD sequence (first sequence). In case of identical base pairs:
gray bar, dissimilarities are shown as colored bar. The clone alignment exhibits a higher level
of polymorphism than the EPD-PCR alignment.
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Figure 13: Maximum likelihood tree of all unique simian foamy virus sequences (clone and end-
point dilution PCR sequences) derived from Budongo chimpanzees (blue boxes refer to
the given individual B1-B4). Reference sequences from all chimpanzee subspecies were in-
cluded, Pan paniscus was used as outgroup [89, 151, 148]. The topology was similar when
using Bayesian analyses. Branch robustness is shown as bootstrap values (Bp, produced
from 500 pseudo-replicates) and posterior probability values (pp). Bp (numbers above the
branches) and pp (italicized numbers below branches) are only presented where Bp ≥ 50 and
pp≥ 0.95. Scale bar indicates nucleotide substitutions per site.
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Figure 14: Maximum likelihood tree of all unique simian foamy virus sequences (clone and end-
point dilution PCR sequences) derived from Taï chimpanzees (green boxes refer to the
given individual T1-T6). Reference sequences from all chimpanzee subspecies were included,
Pan paniscus was used as outgroup [89, 151, 148]. The topology was similar when using
Bayesian analyses. Branch robustness is shown as bootstrap values (Bp, produced from 500
pseudo-replicates) and posterior probability values (pp). Bp (numbers above the branches)
and pp (italicized numbers below branches) are only presented where Bp≥ 50 and pp≥ 0.95.
Scale bar indicates nucleotide substitutions per site.

4.1.3.2 Identification of single/super-infections Simple statistics computed from individual

clone alignments, such as the mean observed distance among clones or the percentage of re-

solved/unresolved topologies obtained using quartet puzzling analysis (i.e., likelihood map-

ping), did not correlate well with infection status as determined through EPD-PCR sequence

analysis, even though trends could be observed (mean and standard deviation of observed dis-

tance and the proportion of resolved quartets tend to be higher for super-infection than for single

infections cases; Table 11). In addition, the proportion of unresolved quartets in the likelihood

mapping analyses (32.5–98.2 %; Table 11) suggested alignments only comprised little phylo-

genetic information. This was also reflected by generally low support of many branches of the

phylogenetic trees, though the main bipartition in super-infected individuals were always highly

supported (Figure S1).

Assessing the shape of the mismatch distribution (uni- or bimodal) for the 10 complete clone

alignments (i.e., all 25 sequences stemming from five bulk-PCR products of a subject), allowed

to properly infer individual status with respect to super-infection, as revealed by EPD-PCR

results, in 9 out of ten cases (Figure 11).

Using the same test it was also possible to investigate the impact of the number of bulk-PCR

products analyzed on the super-infection diagnostic. The latter revealed that the probability to

infer single infection for super-infected individuals (i.e., probability of a false negative) was

zero as soon as three or more products were analyzed (Figure 15 A). The probability to infer

super-infection for single infected individuals (i.e., probability of a false positive) was markedly

higher (up to 80 %; Figure 15 B).
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Table 11: Additional statistics computed from individual bulk-PCR clone sequence datasets. The
first four individuals (gray) have been identified as single infected using end-point dilution
(EPD) PCR, others below as super-infected. Individuals whose name start with a “T” are
P. t. verus from Taï National Park, Côte d’Ivoire, with a “B” are P. t. schweinfurthii from
Budongo Forest Reserve, Uganda. $ Likelihood mapping category “Partly resolved” is not
shown here but it was always under 2.5 % and can be determined from the other values using
the equation “Partly resolved” = 100 % - (“Unresolved”+ “Resolved”). # Branch support of
phylogenetic tree is given as approximate likelihood ratio test (aLRT) values and equals to
the main bipartition observed in corresponding networks. NA: Branch support for bipartition
could not be assessed. In case these statistics are ideal for super-infection diagnostic, following
results would have been expected: high values for observed distance in the alignment + high
value for “Resolved”, low value for “Unresolved” and “Partly resolved” + high branch support
for main bipartition in the phylogenetic tree.

Observed distance (%) Likelihood mapping$(%) Phylogeny
Individual Mean Standard

deviation
Unresolved
Star-like

Resolved
Tree-like

branch support
for main
bipartition#

B2 0.4 0.3 98.2 1.8 NA
B3 0.6 0.4 96.2 3.8 NA
B4 0.8 0.4 56 44 NA
T3 1 0.7 72.3 27 NA
B1 1.9 1.3 32.5 67.5 1
T1 1.5 1.1 57.6 42.3 0.99
T2 1 0.9 72.6 26.8 0.95
T4 1.4 0.8 32.6 64.9 0.97
T5 1.4 0.9 47.7 51.4 0.99
T6 1.2 1.1 77.3 22.7 1
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Figure 15: Appropriate sampling using bulk-PCR: false negativity and positivity as a function of
the number of bulk-PCR products analyzed. Probability to detect bimodality (i.e., super-
infection) in the frequency distribution of the number of mismatches per pair of sequences
(y-axis) as a function of the number of bulk-PCR products (x-axis) analyzed (A) for subjects
for which end-point dilution (EPD) PCR revealed a super-infection (n = 6); (B) for subjects for
which EPD-PCR revealed a single infection (n = 4). Shown are median, quartiles, minimum
and maximum, of the respective probabilities per subject.
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4.1.4 Identification of founder sequences

Sequences having likely founded the sampled retroviral populations (or at least standing for

major variants at the time of sampling) were identified from EPD-PCR sequence alignments

using outgroup probabilities (OPs) generated by TCS (Table 12). These EPD-PCR founder

sequences were actually captured in 14 of 16 cases (here one case equals one founder sequence),

when considering the total five bulk-PCR products generated for each sample (Table 12). From

these 14 clone sequences, 10 had been replicated. Replication was generally not observed for

other clone sequences, with two exceptions (B4 clone b and T1 clone e; Table 12). In the first

case, two distinct clone sequences determined from chimpanzee B4 were replicated (B4 had

been identified as single infected). Both sequences had been sampled through EPD-PCR and

were very closely related (1 bp divergence). In the second case, a T1 clone sequence could

be replicated which had not been identified through EPD-PCR, thereby revealing a possible

example of erroneous replication-based identification of clone sequences or the sampling of a

biological variant not sampled by EPD-PCR.

TCS networks were also computed from all clone alignments in order to assess the perfor-

mance of OPs in pointing at EPD-PCR-determined founder sequences. The overall shape of the

clone networks reflected expectations; “star-like” patterns were commonly observed, thereby

highlighting founder effects (both biological and Taq-error dependent; Figure 16). Super-

infected individuals also exhibited more complex networks (Figure 16), which were sometimes

even disconnected (when computed using statistical parsimony TCS, marked by * in Table 12).

The phylogenetic analyses of individual datasets always provided high support to the same

branch defining distinct clouds of sequences in networks of super-infected individuals (Table

11). In all the 14 aforementioned cases where EPD-PCR-determined founder sequences had

been sampled, the highest or two highest OP values, for single and super-infected individuals,

respectively, highlighted the correct clone sequences as founders (Table 12). The co-occurrence

of two very closely related sequences in B4 was also supported by OPs (B4 clone a and b;

Table 12). In the two remaining cases – where one of the two EPD-PCR founder sequences

had not been captured by cloning – selecting the sequences with the two highest OPs as poten-

tial founder sequences involved would have resulted in: i) misleadingly identifying a sequence

closely related to the sampled EPD-PCR founder sequence as the source of the second infec-

tion (T2 clone b; Figure 16 and Table 12); and ii) being unable to identify a second founder

sequence (T6; Figure 16 and Table 12), as all sequences differing from the first founder se-
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quence were only exhibiting the “noise” OP, i.e., the minimal OP value attributed to poorly

represented/connected sequences.
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Figure 16: Median joining network of bulk-PCR product clone sequences. As in Figure 11, the
individual networks are ordered by infection status. Within each network, node size is pro-
portional to the frequency of sequence occurrence (total n = 25 for each individual). Branch
lengths are directly related to the number of mutations between sequences, with values noted
for differences greater than two base pairs. Clone haplotypes a-f (as shown in Table 12) are
noted within or adjacent to their corresponding node. Networks generated by the parsimony-
based network TCS were highly similar (data not shown).
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Table 12: Identification of founder sequences from end-point dilution (EPD) PCR and bulk-PCR
clone sequence alignments. All EPD-PCR haplotypes, i.e., unique sequence types, are pre-
sented, while only those haplotypes reaching outgroup probability (OP) values above the min-
imum value are shown for bulk-PCR clone sequences. OPs are generated by the parsimony-
based network TCS and summarize sequence connectivity and frequency for all sequences
examined. Assumed founder sequences are highlighted in bold. # The origin of sequences
refer to the bulk-PCR products from which they originate (e.g., if haplotype a appeared two
times in PCR product B and once in PCR product C, then 2 x B and 1 x C will appear in this
column). * The individuals for which statistical parsimony analyses produced two separated
networks; here the sum of all OPs will be greater than one as OPs will be calculated indepen-
dently for each network. Individuals whose name start with a “T” are P. t. verus from Taï
National Park, Côte d’Ivoire, with a “B” are P. t. schweinfurthii from Budongo Forest Reserve,
Uganda.

Individual
EPD network Clone network
EPD-PCR
haplo-
types

Number
of
sequences

Haplotype
OP

Bulk-PCR
clone
haplotypes

Haplotype
OP

Number
and origin
of sequences#

B1* 1 13 0.93 a 0.36 1 x B
- - - b 0.26 3 x C
- - - c 0.10 2 x A
2 1 1 d * 0.50 2 x E
3 1 0.07 - - -

B2 1 11 0.88 a 0.48 2 x A, 4 x B, 2 x C,
1 x D, 2 x E

- - - b 0.35 1 x E
2 1 0.03 - - -
3 1 0.03 - - -
4 1 0.03 - - -
5 1 0.03 - - -

B3 1 12 0.90 a 0.33 3x B, 1 x C, 2 x D,
2 x E

- - - b 0.23 1 x C
- - - c 0.23 1 x D
2 1 0.03 - - -
3 1 0.03 - - -
4 1 0.03 - - -

B4 1 9 0.60 a 0.35 1 x B, 1 x C, 1 x E
2 6 0.40 b 0.26 2 x D, 1 x E
- - - c 0.15 2 x A

T1* 1 10 0.90 a 0.37 1 x E
2 4 1.00 b 0.11 1 x A, 1 x D
- - - c 0.07 1 x E
- - - d 0.07 1 x C
- - - e 0.04 1 x B, 1 x D
- - - f 0.04 2 x A
3 1 0.09 - - -
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Table 12. Cont.

Individual
EPD network Clone network
EPD-PCR
haplo-
types

Number
of
sequences

Haplotype
OP

Bulk-PCR
clone
haplotypes

Haplotype
OP

Number
and origin
of sequences#

T2* 1 10 0.89 a 0.33 1 x B, 3 x D, 4 x E
- - - b 0.26 2 x B
- - - b 0.23 1 x A
2 1 0.03 - - -
3 1 0.03 - - -
4 1 0.03 - - -
5 2 1.00 - - -

T3 1 14 0.93 a 0.29 2 x C, 2 x D, 2 x E
- - - b 0.17 1 x B
- - - c 0.17 1 x B
- - - d 0.17 1 x E
2 1 0.07 - - -

T4 1 7 0.50 a 0.32 2 x A
2 6 0.44 b 0.19 2 x D, 1 x E
- - - c 0.05 1 x E
3 1 0.03 - - -
4 1 0.03 - - -

T5 2 6 0.40 a 0.33 1 x C, 1 X E
1 9 0.60 b 0.22 2 x B, 2 x D
- - - c 0.11 1 x E

T6* 1 7 0.88 a 0.74 2 x A, 2 x B, 1 x C,
2 x D, 2 x E

2 1 0.13 - - -
3 7 1.00 - - -

In order to allow further comparison of replication-based and network/OP-based identifi-

cation methods, networks for all the possible combinations of three or four PCR products for

which EPD-PCR founder sequence(s) would not have been replicated (n = 41) were computed

(Table 13). Using OPs, EPD-PCR founder sequences were properly identified in 63 % of the

cases when only 100 % accurate identifications were considered, i.e., both founder sequences

were properly identified in cases of super-infection, (Table 13) and in 77 % of the cases when

partial identifications were considered as well, i.e., only one of the founder sequences was prop-

erly identified in cases of super-infection; data not shown.
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Table 13: Identification of end-point dilution (EDP)-PCR founder sequences from bulk-PCR clone sequence analyses where replication-based identi-
fication is not applicable. # replicated clones i.e. clones with the highest OP value(s), which appear in more than one of the five PCR products;
otherwise founder sequences are not represented in this column (e.g., two founder sequences of B1). Only the most conservative view (that showing
100 % accuracy in identification) is presented here. Outgroup probabilities (OPs) were computed with the parsimony-based network TCS for all pos-
sible combinations of bulk-PCR clone alignments which would not have allowed using replication as a criterion for end-point dilution PCR founder
sequence identification. * marks a case, where the founder sequences built separate networks consisting of less than 3 sequences; these were assumed
to be negative. Individuals whose name start with a “T” are P. t. verus from Taï National Park, Côte d’Ivoire, with a “B” are P. t. schweinfurthii from
Budongo Forest Reserve, Uganda.

Individual Infection status
according to
EPD-PCR

EPD-PCR founder
sequence later
identified as

Combination of three PCR
products without replication of
EPD-PCR founder sequence(s)

Combination of four PCR products
without replication of EPD-PCR
founder sequence(s)

analysis replicated clones#

(number of PCR
products)

Number of
possible
combinations

Occurrences of
EPD-PCR
founder
sequences in the
first, or first and
second, OP

Number of
possible
combinations

Occurrences of
EPD-PCR
founder
sequences in the
first, or first and
second, OP

B1 super
B2 single a (5) - - - -
B3 single a (4) - - - -
B4 single a (3) 3 2 - -
T1 super b (2) 6 1* 2 0
T2 super a (3) 3 3 - -
T3 single a (3) 3 3 - -
T4 super b (2) 6 3 2 1
T5 super a (2) 6 6 2 2

b (2) 6 4 2 1
T6 super a (5) - - - -

Summary 33 22 8 4
Success rate (%) 67 50



4 Results 66

4.1.5 Simulated triple infections

The shape of individual mismatch distributions, networks and phylogenetic trees did not pro-

vide evidence for triple infection cases in the experimental set of samples. Therefore 84 triple

infection cases were simulated which were all recognized as super-infection cases, including six

triplets consisting of two interspersed “clouds” plus one more distant one, i.e., actually cases of

double infection similar to those identified in the experimental panel. Eight randomly selected

simulated triple infections cases were also examined using networks and TCS: the three highest

OPs properly pointed to EPD-PCR sequences from the three “clouds” in all cases (Table 14,

Figure 17).



4 Results 67

Table 14: Identification of founder sequences from simulated triple infections. Triple infection cases
(n = 84) have been simulated from randomly re-shuffled bulk-PCR clone sequences (n = 24-
26), while eight randomly selected case were examined using the parsimony-based network
TCS. The according networks and mismatch distributions are shown in Figure 17. $ Name of
infection cases, e.g., “T1-A_T2-A_T4-A” refers to the origin of the three sequence clouds and
is generated as follows: [individual T1-T6]-[phylogenetically defined sequence type: “cloud”A
or B]. Sequence from pool A or B were randomly selected; therefore, e.g., “T4-A” in infec-
tion case one and three are not totally identical. For all infection cases haplotypes reaching
outgroup probability values (OPs) above the minimum value (a-e) are shown. # shows the
sequence frequency of the haplotype and its origin (e.g., haplotype “a” appears two times in
infection case one “T1-A_T2-A_T4-A”. Sequence frequency and connectivity are also demon-
strated in the according network (Figure 17). * Marks the triple infection cases for which sta-
tistical parsimony analyses produced two separated networks; here the sum of all OPs will be
greater than one as OPs will be calculated independently for each network.

Simulated triple infec-
tion case$

Bulk-PCR clone
haplotypes

Haplotype OP Number and origin of
sequences#

T1-A_T2-A_T4-A* a 0.29 2 x T2-A
b 0.29 7 x T2-A
c 0.23 1 x T4-A
d 0.03 1 x T4-A
e 0.5 1 x T1-A

T1-B_T3-A_T5-B a 0.27 4 x T3-A
b 0.21 3 x T1-B
c 0.18 4 x T5-B
d 0.15 1 x T1-B

T1-B_T4-A_T6-A a 0.31 6 x T6-A
b 0.24 3 x T1-B
c 0.17 1 x T4-A
d 0.03 2 x T1-B

T2-A_T5-A_T6-A a 0.38 6 x T6-A
b 0.25 5 x T2-A
c 0.13 2 x T5-A

T3-A_T4-A_T4-B a 0.35 5 x T3-A
b 0.35 1 x T4-B
c 0.21 1 x T4-A
d 0.14 2 x T4-B

T3-A_T5-A_T5-B a 0.29 5 x T3-A
b 0.24 2 x T5-B
c 0.18 3 x T5-A
d 0.09 1 x T5-B

T4-B_T5-B_T6-A* a 0.71 3 x T4-B
b 0.86 4 x T5-B, 8 x T6-A

T5-A_T5-B_T6-A a 0.46 1 x T5-B, 7 x T6-A
b 0.23 1 x T5-B
c 0.15 13 x T5-A
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Figure 17: legend please refer to page 70.
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Figure 17: Mismatch distributions and sequence networks for eight simulated triple infection cases.
Table 14 provides a detailed description of the simulated triple infection cases such as se-
quence origin: individual (T1-T6), sequence “cloud” A or B. Plots are paired for each case
with mismatch distribution on the right and network on the left. Within each network, node
color refers to the origin of the bulk-PCR clone sequence, node size is proportional to the
frequency of the sequence occurrence (total n = 24-26 for each case). Branch lengths are
directly related to the number of mutations between sequences, with values noted for differ-
ences greater than two base pairs. Clone haplotypes a-e (as shown in Table 14) are noted
within or adjacent to their corresponding node. Mismatch distributions present the frequency
of the number of mismatches (y-axis) according to the number of base pairs in the sequence
alignment (x-axis).
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4.2 Transmission modalities of simian foamy virus

The established method based on bulk-PCR cloning to estimate retroviral diversity was then

applied to a larger dataset derived from a single community in the Taï National Park (dataset

B). This allowed to study the biology of SFVs in a highly social community, investigating the

possibility of vertical transmission of SFVs in the wild in particular.

4.2.1 Sequence generation

A total of 183 bulk-PCR products were generated from 37 fecal samples obtained from 23 chim-

panzees (dataset B). All PCR products were cloned, resulting in a total of 915 clone sequences.

4.2.2 Sequence analyses

4.2.2.1 Identification of single/super-infections For 32 samples from 20 individuals, clear

assignment to either of the categories was possible: 14 samples showed single infection, 18

samples showed super-infection (Figure S2). The five remaining samples could not be unam-

biguously classified and were therefore excluded from further analyses.

Beside the pattern of uni- or bimodality, three samples (Coco, 24 y; Rebecca, 7 y; Rubra, 38

y) showed some trend to trimodality. Therefore, a phylogenetic tree was recommitted including

all corresponding clone sequences of the suspicious samples and all founder sequences of the

community to check whether a pattern suggestive of triple infections was emerging. Only a

handful of branches receive decent support and none of these branches allow for the definition

of unambiguous triple infection (Figure 18). Similar findings were observed when individual

networks and individual phylogenetic trees were examined (Figure S2, S3). All in all, there is

no evidence for unambiguous instances of infection with more than two SFV strains within the

Taï dataset.
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Figure 18: Maximum likelihood tree of suspicious triple infections. The phylogenetic tree includes
all clones of the three individuals for which triple infection might be suspected (one color
per individual) plus all founder sequences of the study (dataset B: 20 individuals from Taï
National Park; Table 2). Sequence names are built as follows: [individual ]_[sample “A” or
“B”]_[founder sequence “1” or “2”] respectively [PCR product “A” to “E” and clone number
“01” to “09”] for the bulk-PCR clone sequences (n = 25) of the three of suspicious triple
infection cases. The tree is unrooted. Branch robustness is shown as bootstrap values (Bp;
produced from 500 pseudo-replicates). Bp, indicated by an asterisk (*), are only presented
where Bp ≥ 70. Scale bar indicates nucleotide substitutions per site. Please note that most
branches are not statistically supported.
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4.2.2.2 Identification of simian foamy virus diversity within the community To investig-

ate the overall SFV diversity within the community, a phylogenetic tree was performed includ-

ing founder sequences of all individuals. The analysis evidenced that most inner branches were

poorly supported (for a definition of founder sequences please refer to Materials and Methods)

(Figure 19). This was interpreted as reflecting the inappropriateness of phylogenetic methods

in depicting reticulate evolution and most notably here the fact that some sequences are likely

ancestral to others. Therefore, network analyses were implemented on three datasets: (i) a

full dataset comprising the 652 unique sequences (Figure 20A), (ii) a streamlined dataset, from

which sequences likely to stand only for “methodological noise” had been removed (Figure

20B), and (iii) a dataset only comprising founder sequences (Figure 21). All networks, includ-

ing both streamlined versions, exhibited considerable complexity, despite a maximum observed

pairwise distance of only 6 % (Figure 20A and B, Figure 21).
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Figure 19: Maximum likelihood tree of founder sequences (n = 55). The phylogenetic tree includes all founder sequences of dataset B: 20 individuals (one
color per individual) from Taï National Park (Table 2). Sequence names are built as follows: [individual ]_[sample “A” or “B”]_[founder sequence “1”
or “2”]. Reference sequences from all chimpanzee subspecies were included, Pan paniscus was used as outgroup [89, 151, 148]. Branch robustness is
shown as bootstrap values (Bp; produced from 500 pseudo-replicates). Bp, indicated by an asterisk (*), are only presented where Bp ≥ 70. Scale bar
indicates nucleotide substitutions per site. Please note that most branches are not statistically supported.
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Figure 20: Networks of all SFV sequences (dataset B). A/Comprehensive version including all se-
quences generated; B/Streamlined version. Only those SFV sequences less likely to comprise
“noise”, Taq-induced mutations, were included. The legend illustrates matrilineal lines in-
cluded in this dataset: mothers to the left, followed by their offspring (starting with the first
generation) as well as additional group members. When individuals were repeatedly sampled,
the number of samples are given between brackets in the legend. Within the networks, node
size is proportional to the frequency of sequence occurrence. Branch lengths are directly re-
lated to the number of mutations between sequences [total length of aligned sequences: 432
bp (A), 426 bp (B)]. Please note that the streamlined network still comprise all but two of the
shared SFV sequences, the two exceptions consisting of sequences closely related to other
shared sequences (1 bp difference). Dataset reduction therefore did not result in any loss of
information about SFV transmission.
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Figure 21: Network of founder sequences (n = 55). Node size is proportional to the frequency of
sequence occurrence in the dataset. Branch lengths are directly related to the number of
mutations between sequences, with values noted for differences greater than two base pairs.
Legend conventions are the same as in Figure 20.

4.2.3 Transmission patterns of simian foamy virus

A number of individuals harbored identical SFV sequences/strains: 16/23 individuals did, 7

times with one other individual and 3 times with two other group members (Figure 20A and

B). Among these, identical sequences were shared by six mother-offspring dyads (Figure 22).

A GLMM revealed that similarity between the SFV strains found in samples was clearly influ-

enced by the relatedness of the two respective individuals (likelihood ratio test comparing full

model with null model not comprising relation or its interaction with time spent together but

with all other terms present in the full model: χ2 = 37.9; df = 4; p = 0.001). No interaction was

detected between relation and time spent together in the community (χ2 = 0.1193; df = 2; p =

0.94). After removing this interaction a clearly significant impact of the main effect relatedness

was found (χ2 = 37.8; df = 2; p = 0.0001). Visual inspection of the data revealed that offspring

SFV pools exhibited much more similarity to their mothers’ than to their fathers’ or unrelated

individuals’ (Figure 23). None of the other predictors nor their interactions (time spent to-

gether and difference between birthdays, time spent together, and sex of the other) appeared to

significantly influence similarity measures (smallest p = 0.14).
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Figure 22: Networks for all mother-offspring pairs. The bottom right illustrates matrilineal lines in-
cluded in dataset B. The column family marks the individuals belonging to the family with the
same initial (letter). Legend conventions are the same as in Figure 20. Within each network,
node size is proportional to the frequency of sequence occurrence. Branch lengths are dir-
ectly related to the number of mutations between sequences, with values noted for differences
greater than two base pairs (total length of aligned sequences: C, L, Y family, 425 bp; J, K
family, 426 bp; R, S family, 428 bp).



4 Results 78

Figure 23: Simian foamy virus similarity as a function of host relatedness. Circle size represents
the number of dyads exhibiting the corresponding relationship with the offspring (dataset B,
Table 3).

4.2.4 Persistence of simian foamy virus

Nine individuals included in this study were sampled at multiple time points. Altogether, this

provided a record of 42 years of chimpanzee lifetime and 57 viral years (for a definition of viral

years please see Materials and Methods). Over this period, nearly identical sequences (exhibit-

ing < 3 bp differences, i.e., 0.7 % divergence) were found in consecutive samples spanning 55

viral years. Hence, 96 % of viral years were characterized by a close-to-perfect SFV sequence

stability (Table 15).



Table 15: Persistence of simian foamy virus. Individuals for which multiple samples were available were tested for virus stability. Strains identified in the earlier
samples were compared with strains found in the later corresponding sample. A virus strain was defined using network-based analysis [identification
of the founder sequence(s)/group of closely related sequences in the absence of the founder sequence]. Strains were defined as stable in the consecutive
sample(s) if sequences revealed a maximal distance of 0.7 % observed divergence (up to 3 bp difference). Of note, estimation of the number of
independent infection events is a minimum estimate.

Individual Age at
sampling
(years)

Infection
status

Number of virus
strains

Number of virus
strains
transmitted

Time between
samplings
(years)

Virus years based on
number of strains
and time between
samplings

Virus stability
(years)

Gogol 10 single
Gogol 17 single 1 1 7 7 7
Kabisha 24 super
Kabisha 25 super 2 2 1 2 2
Kinshasa 11 single
Kinshasa 17 single 1 1 6 6 6
Rubra 31 single
Rubra 35 super 1 1 4 4 4
Rubra 38 super 2 2 3 6 6
Sagu 13 single
Sagu 17 super 1 1 4 4 4
Sagu 19 super 2 1 2 4 2
Sumatra 38 single
Sumatra 40 super 1 1 2 2 2
Utan 7 single
Utan 11 single 1 1 4 4 4
Yucca 32 super
Yucca 34 super 2 2 2 4 4
Zyon 37 super
Zyon 42 super 2 2 5 10 10
Zyon 44 super 2 2 2 4 4
Total 42 57 55
Persistence (%) 96
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4.2.5 Accumulation dynamics of simian foamy virus

The design of this study included investigations of the accumulation of SFV strains through

time based on the preliminary discrimination between single and super-infection cases. Most

infected infants (0 to 4 year old), juveniles (5 to 9), and adolescents (10 to 14) were singly

infected, while most adults showed evidence for super-infection (Figure 24). Correcting for

multiple sampling of individuals, that is, considering only one sample per individual when

consecutive samples had the same status within the age class, revealed that 3/12 non-adults

and 9/11 adults were super-infected. Correspondingly, a GLMM revealed that super-infection

status was clearly influenced by age, sex, and their interaction (likelihood ratio test comparing

the full with the null model comprising only the random effect subject identity: χ2 = 14.76; df

= 3; p = 0.002). As there was no interaction between age and sex (estimate + standard error

[SE] = 0.258 + 0.169; z = 1.522; p = 0.128), it was removed from the model. The final model

confirmed that super-infection was significantly more likely with increasing age (estimate + SE

= 0.110 + 0.047; z = 2.337; p = 0.019) but did not support any obvious effect of sex (estimate +

SE = -0.815 + 1.050; z = -0.776; p = 0.438) (Figure 24).

The cases of the 9 chimpanzees for which multiple samples were available also allowed for a

longitudinal investigation of the dynamics of super-infection. Out of the six chimpanzees, which

were initially single infected, a minimum of three super-infection events affecting Sagu, Rubra,

and Sumatra, could be identified (Figure S4). Confirming the trend derived from the cross-

sectional analysis, these super-infection events were recorded close to or during adulthood,

between 13 and 19, 31 and 35, and 38 and 40 years of age, respectively. Of special note, two

of these super-infections actually occurred in relatively old individuals (30 years old). Among

individuals identified as super-infected over multiple sampling points, marked frequency shifts

were observed in the number of clones belonging to one or the other clouds of sequences in

two cases for which consecutive super-infected samples were available. For both Yucca and

Kabisha, the smaller cloud of sequences doubled its relative size between the two samplings,

with frequencies rising from 28 % to 56 % and from 40 % to 80 %, respectively (Figure 25).
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Figure 24: Simian foamy virus accumulation dynamics. Super-infection status (no/yes) is shown as
a function of age. Circle size represents the number of samples at the corresponding combi-
nation of age and infection status; colors indicate the sex of the individuals (dataset B). The
dashed line indicates the fitted model’s prediction.
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Figure 25: In-host population dynamics of simian foamy virus. Chimpanzees Yucca and Kabisha
were sampled at different time points (y, years of age). Within the networks, node size is
proportional to the frequency of sequence occurrence. Branch lengths are directly related to
the number of mutations between sequences, with values noted for differences greater than
two base pairs (total length of aligned sequences: 425 bp).

4.2.6 Molecular evolution of simian foamy virus

All clone sequences and the 55 founder sequences were examined for mutations indicating

possibly defective viruses (i.e., frameshift-inducing indels and in-frame stop codons). While

14.1 % of clone sequences were “defective,” the proportion dropped to 1.8 % for founder se-

quences (Table 16), providing additional support in favor of these sequences’ biological relev-

ance. For founder sequences, variation occurred more often in the third codon position (mostly

degenerate; 22.5 %) than in the first and second codon positions (mostly non-degenerate; 6.7 %,

supporting an overall trend to purifying selection on this fragment (Table 16). Point mutations

(other than nonsense) were also investigated to detect possible selective effects exerted by chim-

panzee antiviral mechanisms, in particular through APOBEC proteins’ editing activity (G-to-A
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mutations). Analysis of the first mutational step away from the founder sequence(s) identified

in individual networks supported a strong dominance of transitions (82 %) versus transversions

(18 %). Among the former, G-to-A mutations were not particularly frequent (11 %; Table 17).

Table 16: Defective sequences and variable sites. All clone sequences and the 55 founder sequences
(dataset B) were examined for mutations indicating possibly defective viruses and variable sites
[number/total number (%)]. *Variable sites were calculated based on apparently non-defective
viral sequences.

Defective viruses Variable sites*
Group Indels Stop codons 1st+ 2nd codon

position
3rd codon
position

All clones 90/915 (9.8 %) 39/915 (4.3 %) 217/283 (76.7 %) 121/142 (85.2 %)
Founder
sequences

1/55 (1.8 %) 0/55 (0 %) 19/283 (6.7 %) 32/142 (22.5 %)

Table 17: Nucleotide substitution matrix. Point mutations (n = 471) occurring as the first step away
from founder sequences were recorded for all individual parsimony-based network TCS net-
works (dataset B). Mean and standard deviation (SD) of percentages are shown. Transitions
are shown in gray boxes.

Mean (SD) in %
Initial/ final state A C T G
A - 2 (4) 6 (7) 28 (11)
C 1 (3) - 7 (8) 0 (2)
T 5 (6) 36 (13) - 2 (5)
G 11 (10) 1 (2) 1 (3) -
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5 Discussion

5.1 Evaluation of super-infection diagnostics

5.1.1 End-point dilution PCR

The first objective addresses the question of the applicability of EPD-PCR when samples only

contain minute quantities of the targeted retrovirus/provirus, as present in fecal samples. Here it

could be demonstrated that in such cases the amount of biological material required for proper

EPD-PCR analysis can largely exceed the requirements of “classical” standard bulk-PCR assays

(with a ca. 30-fold increase). This is in sharp contrast with applications of EPD-PCR on samples

exhibiting high retroviremia, where requirements in undiluted cDNA might often be comparable

to those of a single bulk-PCR assay. The magnitude of the increase poses a serious problem

when one considers that limitation of biological material is an inherent characteristic of samples

obtained from wild and endangered animal populations [77]. In these conditions, biological

material used has to be optimized so as to allow investigating the biology and evolution of the

broadest possible spectrum of pathogens. As an example, one could cite the recent use of the

same collection of fecal samples from wild-living chimpanzees for the investigation of host

[11], SIV [67], SFV [89] and Plasmodium [88] genetics. The implementation of EPD-PCR for

the investigation of super-infection might therefore be unreasonable where “native” end-point

dilution of pathogen DNA/RNA is to be encountered. In such situations, careful alternatives,

which would still allow for a fair depiction of the underlying retroviral/proviral populations,

should be favored.

There are two main alternatives to EPD-PCR analysis: bulk-PCR product cloning and se-

quencing and next generation sequencing. Though the latter strategy would be less labor-

intensive and possibly even cheaper [110], it can be likely considered that highly redundant

information will be produced where bulk-PCR amplification starts from only a few template

molecules. Therefore focusing on bulk-PCR product cloning and sequencing, was considered

appropriately scaled to the objectives of this study.

5.1.2 Bulk-PCR product cloning and sequencing

Here it could be shown that bulk-PCR product cloning is more parsimonious than EPD-PCR,

even when gathering several bulk-PCR products per sample. Thus, in the present conditions,

producing five bulk-PCR products required ca. 4-times less material than performing an equiv-
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alent EPD-PCR analysis. Interestingly, using a comparable amount of material, EPD-PCR

analyses would have resulted in gathering only 4 sequences, in which case three out of the six

aforementioned cases of super-infection, namely B1, T1 and T2, would have faced a high prob-

ability of going unnoticed: 56 %, 29 % and 56 %, respectively. This clearly demonstrates that

re-scaling EPD-PCR so as to spare material would significantly alter the probability to detect

super-infection.

However, bulk-PCR product cloning is itself known to yield a biased view on within host

retrovirus/provirus populations, at least when a detailed view is needed (e.g., stoechiometries of

viral genomes will likely be significantly skewed; [134]).

Here, the aim was to establish a coherent analytical framework likely to identify super-

infection cases and the respective underlying main strains from bulk-PCR product cloning re-

sults, even where phylogenetic signal is low (Table 11).

The developed strategy was two-fold. First, a statistical method, which allows for the quick

identification of super-infection cases from clone alignments had to be established. It could be

shown here that using the shape of the mismatch distribution from clone alignments is a wor-

thy approach. Using clones stemming from five independent bulk-PCR products, a satisfying

90% success rate, i.e., rate of agreement with EPD-PCR results (T3 was the only case with

disagreement) was reached, notably identifying the six super-infected individuals. In addition

to yielding robust estimates of the expected results of an EPD-PCR experiment, the implemen-

tation of such a statistic also has the advantage to allow for a quick assessment of the number

of samples needed to detect super-infection. Here, it can be suggested that using clones de-

rived from fewer PCR products (n ≥ 3) would still have allowed for reaching a high success

rate (100%) but at the cost of a rather large false positive rate (up to 60 %; Figure 15). This

high false positive rate is however entirely dependent on the inclusion of a single individual,

T3, since running the same analysis with sequences stemming from the three other individu-

als results in a 0 % false positive rate (when ≥ 3 PCR products are considered). Interestingly,

T3 was identified as single-infected by EPD-PCR analysis, while the global, five bulk-PCR

product-based alignment rather supported a super-infection (the only faulty assignation in our

sample). As the “second” strain evidenced by bulk-PCR cloning results only appears in one of

the PCR products, T3 might well be a case where bulk-PCR cloning actually revealed a minor

variant whose presence went undetected by EPD-PCR. Accordingly, the abovementioned can

be interpreted as high false positive rate as likely resulting from a sampling artefact. All in all,
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this case study therefore illustrates well how a careful use of the statistical approach could help

in ascertaining the most efficient bulk-PCR based sampling method, e.g., at the very beginning

of larger projects.

The second step of the strategy consisted of identifying biological sequences with a partic-

ular focus on founder sequences, here understood as sequences having been at the origin of the

infection or as sequences which ultimately became main components of the overall retroviral

population. One of the most severe drawbacks of a bulk-PCR based method when compared

to EPD-PCR lies in the fact that, contrary to EPD-PCR sequences, many clone sequences are

expected to comprise artifactual mutations [134]. The ability to identify biological sequences

from Taq-modified ones would further support the use of bulk-PCR derived clone alignments.

Theoretically, in-host evolution of retroviruses/proviruses is likely to be well captured by net-

work analyses, which should point at such sequences (assuming they have been sampled). It

could be shown here that, in addition to providing an excellent visual support for the analysis of

retroviral/proviral evolution, networks can also be used to identify truly biological (as opposed

to Taq-error modified) founder sequences, through the use of OPs (as implemented in TCS;

[24]). In this study, the highest OPs in clone networks always pointed at founder sequences,

which were supported by EPD-PCR results, and, where super-infection was assumed, always

identified the two founder sequences, when they had been sampled. Importantly, it could also

be shown that network/OP-based analysis actually supersedes replication-based identification

of founder sequences, notably exhibiting good performance where no replicated sequence is

available. This good performance is in striking contrast with the results that would have pro-

vided the only possible alternative method, i.e., phylogenetic analyses. Though it is sometimes

argued that in phylogenetic trees ancestral sequences should appear as short branches basal to

the longer branches of their descendants [122], it is indeed very unlikely that Taq-modified se-

quences will ever be separated from the biological sequence from which they are derived by a

branch receiving strong statistical support (individual datasets only comprised weak phyloge-

netic information; Table 11). Therefore, networks and TCS-calculated OPs provide a unique,

and so far under-explored, opportunity to identify founder sequences out of the Taq-induced

noise.

The results obtained on simulated triple infections (no triple infection case could be iden-

tified from the experimental dataset) further support the robustness of the two-step algorithm.

Mismatch distributions derived from simulations are indeed always a better fit to a bimodal dis-
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tribution model, suggesting that the statistical tool actually detects deviation from a unimodal

distribution model. On condition that it is known that super-infection involves more than two

major type of sequences (which will require visual inspection of the networks), TCS-assessed

OPs are also very efficient in identifying more than two likely founder sequences.

Nevertheless, it should be kept in mind that the method discussed here, even though all

in all robust, remains bulk-PCR-based. As such, it is potentially heavily influenced by PCR-

and/or sub-cloning-induced selective biases. The latter could presumably influence the results

in both directions, i.e., lead to false negatives when sequences of one of the infecting group

of strains will be preferentially amplified and/or false positives when sequences of one minor

infecting group of strains will be preferentially amplified. Selective biases are however unlikely

to result in the ultimate identification of super-infection where individuals are truly single in-

fected, i.e., where no minor super-infection occurs. The main problem would therefore lie in

accurately determining the frequency of biologically significant super-infection events, such as

those resulting in several relatively distant strains becoming quantitatively important players in

the overall retroviral population. This could however be corrected by applying the same ap-

proach to several genomic markers at one and the same time, since independent primer pairs

are unlikely to result in congruent selective biases.
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5.2 Transmission modalities of simian foamy virus

Using the above discussed method, the biology of SFV circulation within the Taï community

could be investigated. The results provide unambiguous evidence that vertical transmission is

an important modality of transmission in wild chimpanzees. Interestingly, this fits well with

the assumed non-pathogenicity of SFVs. Because of their reliance on their host reproductive

success, vertically transmitted microorganisms are indeed expected to evolve reduced virulence

[145]. A consequence of reduced virulence is that microorganisms’ selective pressure on their

host decreases; that is, a very efficient immune response to the infection is not a selective

advantage anymore. In this part of the study, two additional points are consistent with such

a co-evolved “taming” process: (i) SFVs infecting Taï chimpanzees do not seem to undergo

diversifying selection, as expected under strong immune pressure (but note that the fragment

examined here encodes the integrase), and (ii) APOBEC editing does not seem to influence

strongly these SFVs’ mutational patterns (in contrast to previously published results obtained

in vitro; [25]). It should, however, be noted that while mother-offspring SFV transmission is

strongly supported here, other studies led on captive primates did not identify the same trend

[12, 22], which might suggest that SFVs infecting distinct primate species are characterized by

distinct transmission traits. The very long co-speciation history of SFV and their hosts would

certainly have allowed for such divergence in SFV transmission patterns [148].

It is for the moment only possible to speculate about the possible medium or media sup-

porting mother-offspring transmission. Mother-offspring dyads face numerous opportunities

for body fluid exchanges. This includes intrauterine, perinatal, and/or breast-feeding-mediated

transmission as observed for other exogenous retroviruses (e.g., deltaretroviruses, lentiviruses),

saliva-saliva contacts through fruit sharing, and saliva-blood contact through grooming on wounds

or bites and nips received by infants during weaning. Although saliva has not yet been proven to

be the main shedding site of SF viral particles in chimpanzees (in contrast to findings for other

primates; [36, 103]), transmission of SFV from chimpanzees to humans following severe bites

[9, 99, 148] and SF viral particle detection from chimpanzee fecal samples [40, 89] qualify it as

the most likely medium for effective transmission of SFV among chimpanzees.

While it is shown here that mother-offspring transmission of SFV occurs frequently and

therefore likely stands as a privileged route for primary infection, it is worth noting that not

all siblings were infected with one of their mother’s SFVs. This clearly points at the com-

plexity of mother-offspring transmission patterns, which most likely depend on a variety of
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parameters, e.g., variation in maternal viral load and shedding as well as immune status of the

offspring. Adding to the complexity of mother-offspring SFV transmission is the complexity

of contemporary or subsequent horizontal transmissions. Assuming that saliva is the driving

medium for infection, numerous opportunities of transmission will indeed also exist outside

mother-offspring relationships. In this respect it is interesting to note that in this study father-

offspring relationships did not measurably influence the circulation of SFVs. This does not

come as a surprise, as in chimpanzees father-offspring relationships are notoriously weaker

than mother-offspring relationships [15, 42, 107, 158]. Other relationships, e.g., friendships,

might be influential but could not be investigated here.

Whatever the quality of the relationships supporting their transmission, the data are also

strongly supportive of a lifelong accumulation of SFV strains in chimpanzees. Some of the

results support the possibility of significant SFV population shifts after super-infection and a

natural extension of this is the possibility that some SFVs get extinct, e.g., through the effects

of genetic drift. Population shifts have recently been even identified in dually SFVmac infected

humans during serial sampling of the variable gag gene [31]. However, a generally high persis-

tence rate was recorded for the chimpanzee community investigated here based on the highly

conserved integrase gene. Lifelong persistence of SFV is therefore likely to be the rule in wild

chimpanzees, which mirrors observations made on a similar time series and similar gene region

of samples taken from captive Macaca tonkeana [22]. In addition, the data provide very strong

evidence that SFV super-infection becomes more common with increasing age, which suggests

continuous acquiring of new strains through horizontal transmission events. Therefore, well-

known pattern of increasing sero- and/or genoprevalence with age found in other chimpanzee

subspecies and primates [22, 89] may hide very complex SFV dynamics as well.

An important question is that of the behaviors supporting horizontal transmission and there-

fore lifelong accumulation of SFVs, beyond a likely primary infection with mothers’ SFVs. It

has been hypothesized that truly violent aggressive behaviors, that is, those behaviors resulting

in severe wounds providing opportunity for body fluid exchange, could fulfill the requirements

for SFV transmission [22]. In primates in general and in chimpanzees in particular, such ag-

gressive behaviors usually involve subadults and adults, for either the defense of social rank,

territory, or access to food or reproductive partners. Interestingly, the onset of these behav-

iors fits well with our observation that super-infection events mainly occur during adulthood.

The finding that SFV accumulation is not influenced by sex might at first seem somewhat con-
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tradictory as males more frequently commit aggressive behaviors. However, it should not be

considered that only males get involved into aggressive contacts or that aggressive contacts are

systematically male-male or female-female events. For example, in Taï National Park, rates

of male aggression toward females approach 0.08 per hour of female observation; that is, any

female will be attacked by a male every 2 days [146]. During these frequent aggressive attacks,

opportunities exist for both male-to-female and female-to-male SFV transmission since females

also reply aggressively. Taken together with effective vertical transmission, this contributes to

making marked sex differences in SFV transmission unlikely, although slight differences cannot

be ruled out.

Another important factor that will influence SFV accumulation in chimpanzees is life expectancy.

It is for example known that chimpanzees in Taï National Park have a relatively short life ex-

pectancy, with only 20 % individuals reaching adulthood and less than 5 % living to be older

than 25, compared to 40 % individuals being expected to live at least 25 years in Gombe, Tan-

zania or Kibale, Uganda, for example P. t. schweinfurthii; [64]. Therefore triple or quadruple

SFV infections could be expected to be more common in the latter subspecies/communities.

De facto, no unambiguous triple or quadruple SFV infections were detected for in P. t. verus

from Taï National Park, even for those individuals for which several samples collected during

adulthood were identified as super-infected (n = 5). On the contrary, a quadruple infection was

already reported in a wild Central chimpanzee (P. t. troglodytes, age unknown; [89]). It should

however be noted that the ability to detect triple or quadruple infections depends on local SFV

genetic diversity – the more divergent from each other are the strains circulating in a community,

the more likely complex mixes of strains will be detected – and on the methodology deployed

– depth of population description, analytic pathway, etc. Therefore, no clear-cut conclusion can

be drawn at that stage.
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5.3 Conclusions and outlook

This study presents an overall methodology that could stand for an acceptable alternative to

EPD-PCR analysis for studies which involve the detection of retroviral super-infections from

non-invasive samples. SFVs have the slowest evolutionary rates of all retroviruses [148], which

should result in making the task of identifying super-infection harder than for other members

of this viral family. The fact that this method is efficient in unveiling SFV super-infection

instances thus offers a good perspective for its implementation for studies focused on other

primate retroviruses such as STLV-1 and SIV. So far, this method was successfully applied to

one community of chimpanzees in the Taï National Park to extensively study the biology of SFV

in the wild. Super-infections with species-specific SFV could be frequently detected which have

only been reported incidentally a couple of times, also in the case of chimpanzees [89]. Such

a high preliminary estimate is both an expected result, since SFV reach very high prevalence

rates in the species [89], and a puzzling finding as SFV, like other retroviruses, have evolved

mechanisms aimed at restricting super-infection [105]. It clearly underlines how little we know

about retroviral super-infection in the wild, and consequently, the necessity for further studies

to address this question. The focus on in-host SFV diversity finally enabled for the development

of a new model of SFV transmission in wild chimpanzee communities.

In this model (Figure 26), primary infection with SFV would likely occur through the

mother-offspring relationship, a strong social bond, which is a major route of SFV circulation

in this community. Subsequent SFV infections (that is, super-infections, since SFVs persist in

wild chimpanzees) would occur during adulthood, possibly as a consequence of the onset of ag-

gressive interactions with other members of the group. Within this framework, different strains

of SFV might experience different population dynamics within individuals.

Further investigation of SFV transmission patterns in the wild are clearly needed. For chim-

panzees, studies investigating the influence of other social bonds, such as other forms of kinship

or friendship, would be highly desirable. Determining likely modes of SFV transmission in

other wild NHP species would also be a welcome addition and would help determine whether

the model of transmission proposed here for chimpanzees is applicable across parts or the en-

tire phylogenetic tree of NHP and therefore whether SFV have maintained their transmission

strategies over literally ten to hundred Mya. This could be further investigated by extending

such studies to other tetrapods. This will also require gathering considerable amounts of behav-

ioral and epizootic data. It might also provide useful information about possible patterns of FV
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transmission within new host species, including humans.

vertical  transmission

horizontal  transmission

Figure 26: Model of simian foamy virus (SFV) transmission. The circle includes a chimpanzee (dark-
green) becoming persistently infected with SFV (color corresponds to the SFV strain). The
chimpanzee receives the primary infection from its mother (lime-green) due to their close
social bond (vertical transmission). The individual receives subsequent infections (i.e. super-
infections) from other group members during adulthood, possibly as a consequence of the
onset of aggressive interactions.
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Modalities of Transmission of Simian Foamy Virus in Wild Chimpanzees

(Anja Blasse)

The discovery of the zoonotic potential of retroviruses infecting non-human primates (NHPs)

aroused the interest in simian retroviruses such as simian immunodeficiency virus, simian T-cell

leukemia virus or simian foamy virus (SFV). However, investigations of retroviral circulation in

wild primate communities are rare. Of particular interest are the transmission modalities of SFV,

obviously successful strategies, which have led to frequent, persistent infections of NHPs for at

least 40 million years. This work is an attempt to determine these modalities in wild chimpan-

zees from the Taï National Park, Côte d’Ivoire, where SFVs are highly endemic. These analyses

presume a fine diagnostic tool to estimate the SFV diversity within each host and identify super-

infection cases,i.e., the simultaneous infection of the same individual host with several strains

of the same virus. So far, methods possibly allowing such investigations from samples collected

non-invasively (such as feces) have never been properly compared. Therefore, the costs and be-

nefits of the gold standard (end-point dilution PCR, EPD-PCR) and multiple bulk-PCR cloning

methods were assessed for SFV super-infections based on a case study using fecal samples of

two different chimpanzee subspecies (Pantroglodytes verusand P. t. schweinfurthii ). It could

be shown that in these conditions EPD-PCR can lead to massive consumption of biological ma-

terial. This constitutes a serious drawback in a field in which rarity of biological material is a

fundamental constraint. In addition, data demonstrated that EPD-PCR results (single/multiple

infection; founder strains) could be well predicted from multiple bulk-PCR clone experiments,

by applying simple statistical and network analyses to sequence alignments. Therefore, the

implementation of the latter method can be recommended, when the focus is put on retroviral

super-infection and only low retroviral loads are encountered. Using this approach, SFV di-

versity was then estimated for each sample of the study community in Taï National Park to

investigate dynamics of SFVs. The results indicate, that vertical transmission (being here un-

derstood as mother-offspring transmission) is a common route of SFV transmission within the

community whereas previous studies so far only pointed at horizontal transmissions of SFVs.

The strong bond between mother and offspring is likely to be responsible for primary infections.

With increasing age subsequent infections with SFVs could be observed (super-infections). The

93
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development of truly aggressive behavior during the onset of adulthood is hypothesized to result

into frequent horizontal transmissions of SFVs between other members of the group. Finally,

these data gives evidence for complex SFV dynamics in wild chimpanzees, even at a single

community scale, and show that linking wild NHP social interactions and their microorgan-

isms’ dynamics is feasible.
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7 Zusammenfassung

Vorkommen und Übertragung von Simianen Foamy Viren bei wildlebenden

Schimpansen

(Anja Blasse)

Erst die Erkenntnis über das zoonotische Potential von simianen Retroviren, welche nicht-

humane Primaten (NHP) infizieren, lenkte das wissenschaftliche Interesse auf simiane Retro-

viren wie das Simiane Immunodefizienz Virus, das Simiane T-cell Leukämie Virus oder das

Simiane Foamy Virus (SFV). Dennoch gibt es nur wenige Untersuchungen zur Verbreitung von

Retroviren bei wildlebenden Primaten. Von besonderem Interesse sind dabei die Übertragung-

swege von SFV, welche offenbar eine so erfolgreiche Strategie verfolgen, dass sie bei NHPs

seit über 40 Millionen Jahren verbreitet sind und diese persistent infizieren. Die vorliegende

Arbeit verfolgt das Ziel die Übertragungswege bei wildlebenden Schimpansen aus dem Taï Na-

tionalpark, Côte d’Ivoire, wo SFV endemisch vorkommt, aufzuzeigen. Solche Analysen setzen

jedoch präzise diagnostische Methoden voraus, um die Diversität von SFV innerhalb des Wirtes

und dadurch Superinfektionen, i.e., ein Individuum ist parallel mit mehreren Stämmen eines

Virus infiziert, zu bestimmen. Die zur Verfügung stehenden Methoden wurden jedoch bisher

nicht für den Gebrauch von nicht-invasiv gesammeltem Probenmaterial (z.B. Kotproben) ge-

testet. Daher wurden hier an einem Fallbeispiel mit Kotproben von zwei verschiedenen Schim-

pansensubspezies Vor- und Nachteile des Goldstandards (Endpunkt-Verdünnungs-PCR, EPD-

PCR) und der klassischen PCR mit anschließender Klonierung zur Bestimmung von Superin-

fektionen verglichen. Dabei konnte gezeigt werden, dass unter diesen Konditionen EPD–PCR

zu erheblichem Verbrauch von biologischem Material führt. Dies bedeutet eine große Einsch-

ränkung in Untersuchungsgebieten, wo biologisches Material nur in begrenztem Maße zur Ver-

fügung steht. Weiterhin zeigen die Daten, dass Ergebnisse der EPD-PCR (Einfach-/ Superin-

fektion, Identifizierung von Gründersequenzen) auch mittels Experimenten der klassischer PCR

und Klonierung erhoben werden können, soweit dabei die Sequenzalignments statistischen und

Netzwerkanalysen unterzogen werden. Die Verwendung der letztgenannten Methode kann ins-

besondere empfohlen werden, wenn retrovirale Superinfektionen im Fokus der Untersuchung

stehen und nur eine geringe Viruslast in den Proben vorliegt. Nach diesem Vorgehen wurde

im Anschluss die SFV Diversität je Probe erfasst, um die Dynamik von SFV innerhalb der
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Studiengruppe im Taï National Park zu untersuchen. Im Gegensatz zu bisherigen Studien kon-

nte gezeigt werden, dass die vertikale Übertragung (hier definiert als Mutter-Kind-Übertragung)

neben der horizontalen Übertragung eine große Rolle bei der Verbreitung von SFV spielt. Diese

Übertragung ist sehr wahrscheinlich für die Primärinfektion mit dem Erreger verantwortlich,

da Mutter und Kind zunächst eng miteinander verbunden sind. Mit zunehmendem Alter der

Schimpansen wurden jedoch Infektionen mit weiteren SFV Stämmen beobachtet (Superinfek-

tion). Diese sind vermutlich auf horizontale Übertragungen von SFV zwischen Gruppenmit-

gliedern durch aggressives Verhalten untereinander während des Erwachsenwerdens zurück-

zuführen. Insgesamt gibt es Hinweise auf eine sehr komplexe Dynamik von Foamy Viren bei

wildlebenden Schimpansen bereits auf der Ebene einer einzelnen Schimpansengruppe. Es kon-

nte außerdem gezeigt werden, dass die sozialen Interaktionen des Wirtes Einfluss auf die Dy-

namik der Mikroorganismen nehmen können.
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Figure S1: legend please refer to page 115.
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Figure S1: Maximum likelihood trees of all individuals of dataset A, sorted by community: P. t.
schweinfurthii B1-B4 followed by P. t. verus T1-T6. Sequence names are built as follows:
[individual]_[PCR product “A”or “B” and clone “01” to “09”]. The tree is not rooted. Branch
robustness is shown as approximate likelihood ratio test (aLRT). Only aLRT values≥ 0.95 are
presented. Please note that most inner branches, except for main bipartition of super-infected
individuals, are not statistically supported. The scale bar indicates nucleotide substitutions
per site.
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Figure S2: Mismatch distributions and sequence networks of all individuals of Taï chimpanzees
(dataset B), sorted by infection status: A/single infection cases, B/super-infection cases,
which were unambiguously identified. Plots are paired for each individual chimpanzee
sample (age at time of sampling in years, y) with the mismatch distribution indicated on
the bottom and the parsimony-based network TCS on the top. The mismatch distribution
presents the frequency of the number of mismatches (y-axis) according to the number of base
pairs in the sequence alignment (x-axis). Within each network, node size is proportional to the
frequency of the sequence occurrence (25 for each individual, 15 for Sumatra 38 y). Branch
lengths are directly related to the number of mutations between sequences, with values noted
for differences greater than two base pairs.
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Figure S3/A: legend please refer to page 132.
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Figure S3/B: legend please refer to page 132.
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Figure S3/B: legend please refer to page 132.
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Figure S3: Maximum likelihood trees of all individuals of Taï chimpanzees (dataset B), sorted by in-
fection status: A/single infection cases, B/super-infection cases, which were unambiguously
identified. Phylogenetic trees include the complete set of bulk-PCR clone sequences (25 for
each individual, 15 for Sumatra 38 y) of each individual (age at time of sampling in years,
y) of dataset B. Sequence names are built as follows: [individual]_[sample “A” to “C”]_[PCR
product “A” or “B” and clone “01” to “09”]. The tree is not rooted. Branch robustness is
shown as approximate likelihood ratio test (aLRT). Only aLRT values ≥ 0.95 are presented.
Please note that most inner branches are not statistically supported. The scale bar indicates
nucleotide substitutions per site.
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Figure S4: legend please refer to page 143.
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Figure S4: Networks for all serially sampled chimpanzees (dataset B). Within each network, the node
color refers to individual age at time of sampling in years (y), the node size is proportional
to the frequency of the sequence occurrence (25 for each individual, 15 for Sumatra 38 y).
Branch lengths are directly related to the number of mutations between sequences, with values
noted for differences greater than two base pairs.
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