
Chapter 7

Client Applets

A recorded E-Chalk lecture is replayed by Applets. When the remote user
opens the lecture’s Web site, one Applet per transmitted data stream is opened:
a board Applet, an audio Applet and a video Applet, or any subset of these
three if not all of the streams were recorded. The same Applets are used for live
transmission and replay of archived lectures, only the Applet parameters given
in the Web page differ. If the transmission is live, each client Applet opens
a TCP socket connections to the E-Chalk server and read the data from this
connection to display the current lecture data.1 For replay from an archive, an
additional Applet is opened. The control-panel Applet provides VCR operations
on the recording, see Figure 7.3. Timed slide shows can also be combined with
lecture recordings, see Section 6.13. Displaying them is handled by the slide-
show Applet.

For live transmission, the client Applets read the lecture data through a
socket connection from the E-Chalk server program. Because Java Applets
can only connect to the server their class code is loaded from, the E-Chalk
server must run on the Web server, or the Web server must act as proxy for
E-Chalk’s server sockets. For an overview to the client-server connections for
live transmittions, see Figure 7.1.

When the lecture is replayed from archive, all data are loaded using the Web
server’s HTTP service. As described below, the board, video, and slideshower
Applets can synchronize their replay with the Audio stream. The reason for
adapting everything according to the audio stream is that interruptions in the
audio stream are perceived as quite disturbing compared to stalls in the video
or board replay. See Figure 7.2 for an overview.

While the standard setup is to access a lecture with a Java-enabled browser
or with the Java appletviewer by an HTTP address, the client Applets can
also be run from the local file system, for both live and archived lectures. Of
course, for the live session the E-Chalk server must then be running on the same
server as the client.

1An early implementation of E-Chalk also allowed a live connected shifted in time for late
connects. When remote viewers connected ten minutes after the start of the recording, they
had option to get the lecture recording presented as a replay, shifted ten minutes in time
compared to the live stream. Since this feature was never used by real users, it is no longer
supported in E-Chalk .

129

130 CHAPTER 7. CLIENT APPLETS

Figure 7.1: Communication between an E-Chalk server and a client for live
transmissions. Board resources include images and data of Applets added to
the board.

7.1 Client Control Panel and Masi Interface

To be able to synchronize the different replay Applets, the abstract Applet sub-
class de.echalk.applet.Masi (Media-Applet Synchronization Interface) was
defined and all the content displaying Applets inherit from this class. A Masi
Applet provides methods which report the capabilities for navigation in time
(like “can jump forward”, “can jump backward”, “can pause”) and the current
replay status (like “is paused” and the current offset in time). Also, it provides
methods for modifying the play status (like modifying the play offset or toggle
pause mode).

The control panel scans for all Masi Applets started in the same Web page
and allows the user to access any controls that are simultaneously provided by
all Masi instances.2 In the E-Chalk client Applets, all capabilities for navigation
in time are supported: pausing, setting forward and backward offsets, rewind,
and jumping to random offsets.3

The control panel displays the time reported by the Masi Applets (if the
Applets’ local times differ, the control panel uses the maximum time value)
with both a slider and a text display. Clicking on the time display toggles the
display modes of elapsed time, remaining time, and total time. The control
panel displays a warning text at the bottom and changes the mouse cursor to a
wait cursor whenever the Masi instances are stalled, for example when they do
not get their data fast enough on a forwarding action.

When a Masi instance reports permanent errors (by its method boolean
hasPermanentErrors()) or if it is no longer active (determined by the Applet
method boolean isActive()), it is removed by the control panel from the list
of controlled Applets. When no Applet remains to be controlled, the control
panel closes.

2Except for navigation by chapters, which is defined in Masi but currently supported neither
by the control panel nor by the replay Applets.

3A possible improvement would be a capability to play at higher speeds.

7.1. CLIENT CONTROL PANEL AND MASI INTERFACE 131

Figure 7.2: Overview of the client Applets for replay of recorded lectures.

The Applet parameters recognized by the client control panel are:

• seconds

This is a mandatory parameter, defining the length of the recording in
seconds as a decimal integer.

The information is given to the control panel as parameter instead of
reporting such a information with Masi method, as E-Chalk data streams
do not report their total length at the beginning of the data.4

• title

This is an optional parameter defining the lecture title to be displayed.

• initfile

The optional init file (with the given path relative to the control panels
code base) defines a skin for the control panel. The init file is a Java
property file with property entries defining the position and sizes of the
control panel’s control elements as well as the positions and colors of text
font (including a “shadow” color), given separately for the title text, the
time display, and for warning messages printed at the bottom. Also, an
image file which contains the control panel’s background image with inac-
tive buttons, and the images of the control elements buttons for pressed
and for mouse-over look is contained. For the play/pause button, appear-
ance for both play and pause modes are defined. It may also contain an
image for filling the slider track. See Figure 7.4 for example skin graphics.

• autoplay

This is an optional flag to determine if the Masi instances should start
immediately by the control panel when their initialization phase is finished.
Otherwise the control panel will set the replay to pause mode at start and
it must be started manually by the user. The parameter defaults to true.

4In fact, this is not possible with streaming formats.

132 CHAPTER 7. CLIENT APPLETS

Figure 7.3: A snapshot of the client control panel frame with mouse-over effect
for the play/pause button.

• x and y

These are optional x and y-coordinates as decimal integer for the top-
left position of the control panels frame. By default, the position will be
determined by the users window manager.

7.2 Board Client

7.2.1 Event Handling

As described in Chapter 4, the board client uses the same classes as the board
server component, just without the authoring elements. It uses the DrawPanel
component5 to interpret the events. In addition to several classes the board
client shares with the server side board, the client board uses four classes.

First, the Applet class echalk.client.Client, which is the main class of
the client. It inherits from Masi (see above), realizing the interfaces for control
by the control panel, handles the Applet’s parameter-specific setup, and controls
the replay. An instance of the inner thread class Client.EventReaderThread
concurrently reads all the events: for live transmissions, that is done from a
server socket6, for a recorded lecture, directly from the event file7. The event-
reading thread submits the threads to the echalk.client.EventScheduler,
which handles the timed delivery of events to the DrawPanel. For a recorded
lecture including an audio stream, a thread EventScheduler.AudioSyncThread
is started, adjusting the local board time at regular intervals (every five seconds)
to match the audio client’s time and thus preventing a slowly accumulating
synchronization offset.

7.2.2 VCR Operations

While the audio and video stream need only the stream data of the current
point of time t0, the event-based nature of the board means the board needs to
examine all events in the interval [0, t0] to construct the board view for t0. When
the board has to jump from a time offset t0 to an offset t0 + ∆t in the future,

5See Section 4.1.
6See Section 4.11.
7See Section 4.10.

7.2. BOARD CLIENT 133

Figure 7.4: Two example skin graphics, left the default skin and right an OS X
Aqua–style one. Transparent image parts are shown in white.

the scheduler has to try to submit all missing events (events with timestamps in
[t0, t0 + ∆t]) immediately. This causes the board to stall if the event reader has
not yet read the events up to t0 + ∆t. Fortunately, this is usually only the case
if a replay is forwarded a considerable amount of time at the very beginning of
replay, and even then only for a short time, because the board event data are
relatively small in size.

Because there is no general reverse mechanism for a board event, jumping
back to a offset of t0 − ∆t is realized as a total rewind (jumping to offset zero
by clearing the whole board) and then jumping forward to t0 −∆t.

To speed up jumping to a new offset, the changes in the board content are
not shown immediately. Instead, the changes are applied to the offscreen buffer.
Intermediate changes are only shown by repaints during lengthy VCR operations
(when the adjustment takes more than one second to realize), and only in steps
of one second, giving the user some feedback that the board is still active. The
board also signals the user to be busy during the adjustment by changing the
mouse pointer to a wait pointer.

7.2.3 Scrolling

The server board can be scrolled with mouse drags by the drag handles8, while
other mouse-drag actions are used to draw on the board. The client board, which
the remote viewer cannot paint on, allows to do scrolling-type drags everywhere
on the board.9 To give a feedback to the user, the mouse cursor changes to
move pointer defined by the operating system once he or she starts to drag.
Horizontal drags are also possible for client boards with a horizontal extension
smaller than those of the server. This can happen when the client screen has a
smaller resolution or because the remote user resized the board.

For vertical scrolls, the client has two possible sources, the user drags or
the transmitted scrolls from the lecturer at the server board. By default, the
client combines the two, always using the last defined scroll offset, regardless of
it source. This implementation assumes the standard case of the remote viewer
looking at the board section the teacher uses for the given lecture portion, while
still allowing them to peek at older portions.

8See Section 2.4.
9The only exception are the areas of embedded Applets, because the Applets consume

those mouse drags themselves.

134 CHAPTER 7. CLIENT APPLETS

Figure 7.5: Board client with context menu.

A pop-up menu in the client allows the user to change the mode of han-
dling scrolls. The behavior may be changed to handle only user drags or only
transmitted scrolls, see Figure 7.5.

7.2.4 Handling Applets

The Applets are managed basically in the same way as described in Section 4.9
apart from recording facilities, which are obviously not available at the client
side.

The local user can interact with the Applet regularly. While this can be
used as a feature for adding interactive elements to a lecture, this is a major
problem one wants a close reproduction of the live lecture, as the remote users
interactions will usually not fit together with the lecturer’s recorded Applet
interaction. See Section 4.9.1 for a discussion of the Applet replay problems.

For the Applet class to be loadable on the client side, they must located
in the board client Applets classpath. For replay from a repository, this can
be done by putting the Applet files into one Jar archive with the code for the
E-Chalk clients. For live transmissions, this is not possible, because the Jar
archive is loaded once when the remote user connects, and the Applets to be
used in the lecture are not yet stored by the server. In this case, the codebase
parameter should be used to load all the classes, both E-Chalk client Applets and
board-integrated Applets, from the applet directory. Therefore, the E-Chalk
code must then reside there, too.10

7.2.5 Board Parameters

There are no mandatory Applet parameters of the board client Applet, all are
optional. The parameters are:

• port

Giving this parameter marks a live transmission. The parameter is the
decimal port number to connect to on the live server. The server must

10For the current implementation of the E-Chalk system, this is not automatically handled.
The template handling in Section 3.7 can be easily configured to handle the live case, but
bundling together the Applet classes in a Jar archive is not yet supported and has to be done
manually.

7.2. BOARD CLIENT 135

be the Web server the Applet is loaded from since Java’s security model
does not allow unsigned Applets to connect to other servers. If Web server
and E-Chalk server are not running on the same machine, the Web server
must be running a proxy to forward the E-Chalk live streams between
E-Chalk server and E-Chalk client Applet. Otherwise, live transmission
is not possible. Of course, this restriction also holds for live transmissions
without the board stream, for example if only the audio signal is streamed.

The port parameter has no default value, meaning that replay from
archive is assumed as a default. If the parameter is set, but a parse error
occurs, or if the port number is out of the valid range, the parameter is
set to 9996, the server’s default port number.

• delayoffset

This parameter is used to give a delay in milliseconds for displaying live
events; it is ignored if the board does not run in live mode. The delay is
introduced to compensate for the delay the audio client needs for buffering.
The default value is 12,700ms, which is the live delay used by the old
WWR2 implementation of the audio client. See Section 7.3 for details.

• masiclient

The Applet name given to a Masi instance to synchronize with, usually
the audio client Applet.

If a name is given and if the board client can find a Masi-extending Applet
with the given name in its AppletContext11, it starts a thread that ensures
synchronization with the named Applet as described in Section 7.2.1. The
parameter has no default, meaning that no audio stream is assumed to
exists if the parameter is not set.

• topleftx and toplefty

These are optional entries for explicitly positioning the client-board’s win-
dow on the screen by defining the values of the window’s top left corner.
If not given, these parameters default to zero.

• scrollbar

This is a flag causing a vertical scrollbar to be added to the board window.
This provides a standard GUI element for vertical scrolling in addition to
the drag feature. The scrollbar slider’s position and size give a visual
feedback of the board area’s position in the total board history. On the
other hand, because the scrollbar needs a certain amount of space, this
can make the vertical space available on the user screen too small for the
board.

If not set, this parameter defaults to true. In the standard HTML tem-
plates of the E-Chalk system, the flag is set to the same value as the
scrollbar flag in the server, giving the remote user a scrollbar exactly
when the lecturer used one.

11See Section 4.9 for details on java.applet.AppletContext.

136 CHAPTER 7. CLIENT APPLETS

• autostart

When this flag is set to false, the board client starts in pause mode and
waits to be externally triggered via with the Masi unpause method for
starting to play. If the control panel Applet is used, it expects the client
Applets to wait to be started (and therefore letting the control panel
synchronize the start time), if no control panel is present, the client will
have to start automatically or it will pause indeterminately.

The default value for this entry is true for live transmissions (when no
control panel is present) and false for archived replay (when the control
panel Applet is used for control).

• embedded

Setting this parameter to true causes the client board to use the Applet
area in the HTML page rather than opening its own frame. The default
value is false.

This parameter was introduced due to user requests. In a distance teach-
ing project at Universität Regensburg, users wanted to combine video and
audio streams in Real format [79] with a timed display of Web pages (trig-
gered with SMIL [W3C98,W3C01]). Some of the pages were to contain
short board recordings. With their remote viewer already operating both
a RealPlayer window and a Web browser, they wanted to avoid another
window for the user to operate.

• autoclose

A client is notified of the end of a live transmission by a terminate event,
see Section 4.10.2. By default, or when autoclose is set to false, it
opens a message dialog to notify the user. This is especially important
for transmissions without audio signal, as the remote viewer would have
difficulty in distinguishing between a transmission that has ended, one
that stalls, or one where the teacher simply pauses for a while. Note that
for replayed lectures this is usually not needed due to the presence of the
control panel Applet, showing the lecture’s position in time.

When the autoclose parameter is set to true for a live transmission, the
board frame closes when the lecture ends. For the default setting, this is
not very useful, as keeping the board open allows the student to browse
through the board drawing. In fact, this parameter was introduced for a
special setup where the board client is opened from the server side, see
partt on setup of FU data wall in Section 8.1.1.

• yoffset

This integer parameter causes the client to shift the vertical scroll-offset
by the yoffset value. The default value is zero. The parameter is only
used in a special setup where the board content is displayed with multiple
board Applets. See part on setup of FU data wall in Section 8.1.1 for the
usage example.

• server

In practice, this parameter is only used for debugging purposes. It gives
an IP address or host name to connect to in live mode. Note that an

7.2. BOARD CLIENT 137

Figure 7.6: Standard client messages for debugging purposes written to the Java
console of the browser.

Applet is usually only allowed to connect to the host its code is loaded
from. As a consequence, this parameter is only used when starting the
client from a local HTML file. For this the Java appletviewer and some
browsers allow to loosen the security restrictions to connect to the local
host.

When the Applet is loaded from a remote connection, the server location
of the Applet’s code-base entry is used instead. When the Applet is loaded
locally, the server parameter is used instead, or if it is not set, its default
value of 127.0.0.1 is used.12

• baseurl

This parameter is used as the root location for all board data to be loaded:
the events data file board/events, the image data files images/no.dat,
and the Applet HTML files applets/no.html. It is given as a relative
path to the code-base URL of the Applet and defaults to the code base.
Because of the security restrictions of Applets, it has to be the code base
itself or a subdirectory.

The parameter is used for debugging purposes only.

• debug

The board client writes certain status messages to the browser’s Java text
console. See Figure 7.6 for typical messages produced by the client control
panel and the three E-Chalk clients, board, audio, and video.

The boolean parameter debug activates additional messages for debugging
purposes similar to the server debugging mode described in Section 3.10.2.
The parameter’s default value is false.

12The parameter was introduced for use on those Windows systems that do not recognize
the loop-back address 127.0.0.1. Note that Windows systems of the 2000/XP family can
handle it.

138 CHAPTER 7. CLIENT APPLETS

7.3 Audio Client

The audio client Applet can play both the older WWR2 and the new WWR3
audio format described in Section 5.1. A WWR2 input stream is decoded with
E-Chalk’s ADPCM to an 8-bit, 8-kHz µ-law mono audio stream, which can
directly be played by the Java audio system, irrespective of the underlying
Java version. With a WWR3 stream, the data decodes to a 16-bit, 16-kHz
linear mono audio stream. This can also be played directly within the browser,
provided is supports Java 1.3 or later. If only Java 1.2 or earlier is supported,
the client converts the data to 8-bit, 8-kHz µ-law to replay them. This means
that users with a more recent Java version can listen to the audio at a higher
quality than others. The recording data and the client used are the same for
both types of users.

To compensate for network jitter, the audio client uses a buffer. Filling the
buffer with data introduces a delay for live transmissions. For two-way trans-
missions, round-trip delay would be twice that. The WWR2 implementation
used a delay of 12,700 ms, while in the new WWR3 version, the buffer time was
reduced to 4,763 ms. The values are results of experiments to find a good trade-
off between interruption-free transmission and small delay. The smaller delay
in the newer version reflects improvements in the Internet’s quality of service
achieved in the last five years.13

7.3.1 VCR Operations

The audio-data stream consists of packets that contain audio data for a fixed
duration (4,763 ms). The storage size of the packets varies and is stored in the
packet’s header. To fast-forward WWR2 recordings, the client runs through
the packet’s headers until it skipped enough packets. Even worse, for jumping
backwards in time, the client has to read the audio data from the beginning
until it reaches the desired packet.

For WWR3 data, this method is used only as fallback. Nearly all Web servers
today support HTTP requests for random-access reads [FGM+97, FGM+99].
The WWR3 server stores both the encoded audio data and an index file, which
contains the sizes of the audio packets. With the index information, the audio
client can jump directly to the right packet, dramatically speeding up the oper-
ation. The old method is used only if the index file cannot be accessed or if the
Web server does not support byte-range requests.

7.3.2 Parameters

Parameters recognized by the audio client Applet include14:

• archivemode

This parameter gives the location of the recorded audio data as a relative
URL. If the value ends with a slash, it is assumed to be a directory that
contains the encoded WWR3 audio file content.wwr and the packet index

13The delay compares well to other streaming systems. For example, streaming with the
Real Presenter has a one-way delay of 30 s. Even satellite phones have a delay of about one
to two seconds [ZS02].

14Parameters that are supported only for backwards compatibility are omitted.

7.3. AUDIO CLIENT 139

file index.wwr, see Section 7.3.1. Otherwise, the parameter is assumed to
be a WWR2 audio file (or a WWR3 audio file if wwr3mode is set to on,
see below). When this parameter is undefined, the client assumes a live-
stream connection. For historical reasons, the parameter ondemandmode
can be used instead of archivemode.

The default setup of the E-Chalk system sets the archivemode parameter
to audio/ for archived lectures. When the WWR2 format was still in use,
the parameter was set to lecture.wwr.

• port

The parameter is the decimal port number to connect to on the live server.
When not given, it defaults to port 9998. The parameter is ignored when
replaying from archive.

• loopmode

With the audio system originating from an Internet radio streaming sys-
tem, the audio Applet terminates by default when reaching the end of the
audio stream, releasing all system resources. The audio client terminates
at the end of replay and cannot be played back. To avoid this, the param-
eter loopmode has to be set to on, being basically inverse in effect to the
board’s autoclose parameter.

• syncalpha

A problem when recording audio is that sound cards do not return the
audio samples at a precise enough rate for our synchronizing purposes.
Even for high-quality sound cards the actual duration of the audio sample
usually differs from the requested duration by a few seconds per hour of
recording. The audio client determines its time offset by counting the
audio samples, while the other streams use the system clock. With an
average sound card used for recording, the differences may add up to
about 30 seconds for a lecture of 90 minutes, and the offset may become
quite irritating at the end of a longer recording.15

To get decent synchronization between the board and audio streams, the
offset time computed by the audio stream is multiplied by a correction
factor α. This value is determined by the E-Chalk application at the
end of the recording as Tboard/Taudio where Tboard and Taudio are the
total times of the board and audio recordings. (This is done similarly for
recording audio and video without the board stream.) The syncalpha
parameter is set accordingly in the default templates, stored as a string
representation of a positive double value.

• wwr3mode

When set to on, the audio client assumes the input to be in WWR3 format,
even if the archivemode parameter is a non-directory file (not ending with
a slash), see above. The parameter must also be set in live streaming mode
(i. e. when the parameter archivemode is undefined) if WWR3 data are
streamed.

15For live transmissions, this problem does not occur since the replay time is determined
by the receiving time.

140 CHAPTER 7. CLIENT APPLETS

Figure 7.7: A video of the instructor replayed in the video client Applet.

• server

This parameter is identical in function to the board Applet parameter of
the same name. It is used for debugging purposes only.

• errorurl and endurl

The parameter errorurl defines a URL to redirect the browser to if the
connection is down or too slow. In Internet radio, this was used to either
redirect to an alternative broadcaster or to change to an HTML page
with the audio client for a connection serving at a lower bandwidth. The
latter approach allows to have a set of streams with different bandwidth
where the client automatically selects the highest bandwidth the listener’s
connection can handle.

The parameter endurl was also only used for Internet radio. If set to a
URL, the browser changes to the given location when the client terminates
on reaching the end of the stream.

7.4 Video Client

As stated in Section 5.3 in the description of the video format, the E-Chalk
video is intended more to add a personal touch to recorded lectures than to
be a major source of information. As high-resolution video consumes lots of
bandwidth, the videos recorded with E-Chalk are normally of low resolution.
See Figure 7.7 for an example.

The buffering strategy of the video client the differs from the one in the audio
client, as many client systems may not have enough memory available for buffer-
ing video for several seconds. For video, a dynamic cache is implemented, that
increases and decreases with the amount of memory available. Fortunately, dis-
continuous image streams are not as disturbing as discontinuous audio streams.

Jumping forward and backwards in recorded video is by now handled as in
the WWR2 audio. The faster approach of VCR operations in WWR3 audio,
using the index file to jump to the proper offset in the video data file, is planned
as a future enhancement. Since video encoding uses only difference frames
(except for the very first frame), jumping in time generates artifacts in areas
which changed only in the skipped time. This can be avoided by storing full
frames (I-Frames) every few seconds in separate files, another feature planned
for the recent future. In combination with the index file, this allows the client

7.5. SLIDE SHOW 141

fast random access and to fully construct the video by loading the most recent
I-Frame. While the storage of the I-frames would increase the size of the stored
video notably, only a single I-frame per jump has to be loaded, keeping the low
bandwidth requirements for the remote user.

Parameters recognized by the video client Applet are:

• archivemode (or ondemandmode)

Similarly to the audio client parameter of the same name, this gives the
URL (relative to the code base) of the directory containing the encoded
video content.wwv. If the parameter is not set, the client works in live-
streaming mode.

• delayoffset and masiclient

These parameters are identical to the board client parameters of the same
name, used for synchronization with the audio client, see Section 7.2.5.

• server, loopmode, and port

These parameters are identical in function to the parameters of the same
name for the audio client, see Section 7.3.2. The only difference is that
the default value for the live port is 9997.

7.5 Slide Show

The slideshower Applet allows timed display of Web pages and to combine
it with the other client Applets shown before. The slide show in Figure 7.8
combines a sequence of pages with the replay of a talk.

The implementation of the slide-show Applet does not support streaming
of slide display command. The slide events are loaded on startup before the
replay starts and thus live transmission is not supported. While the other client
Applets can be run with the Java appletviewer, the slide-show Applet needs
a browser environment, as the appletviewer cannot display Web pages.16

With no live server currently available for the slide-show Applet, this client
currently supports only archived replay. It causes the browser to load URLs at
given timestamps. The data for the slide show are a text file containing one
entry per line (irrespective of the platform-specific encoding standard different
line separators may adhere to). A command to display a document is

showurl url hh mm ss[target]

where url is the URL of the document to be displayed, and hh, mm, ss are the
display time as hour, minute and second offset to replay start time, given as two-
digit decimals. The optional field target specifies the frame to open the document
in either the name of the frame in the HTML or one of the symbolic targets

16The java.applet.AppletContext method showDocument(URL, String) is used to show
the pages. According to the Java API documentation, browsers are free to ignore the calls,
see Java API [42]. In practice, however, all Java-capable browsers can be assumed to support
this method.

As a side note, these document to be shown need not be stored locally in contrast to the
images and Applets loaded by the board client. As the slide-show documents are loaded into
the browser and not into the Applet, the usual Applet security restrictions do not apply to
these resources.

142 CHAPTER 7. CLIENT APPLETS

Figure 7.8: A snapshot from [23], a slide show with audio and control panel
created by Schule des Sehens [86], an e-learning project on art. The different
lesson slides illustrate different details of the art work explained.

self the frame, that contains the slide-show Applet, parent, the Applet’s
parent frame, top, the top-level frame of the Applet’s window, and blank,
a new unnamed top-level window.17 If a named frame is used and a frame of
that name does not already exist, a new top-level window with the specified
name is created and the document is shown there. If the parameter is omitted,
the default target is used, initially set to the target name slideframe. The
showurl commands are executed in the order of their timestamp values. When
two commands use the same timestamp, they may be executed in any order.

The other type of entry is used to set the default target for following showurl
lines. Its syntax is

defaulttarget[target]

where target is the new target. If it is omitted, the default target is set to the
frame with the name slideframe, creating it in a new top level window, if it
does not yet exist.

The data file for the slide show can be created either directly with a text
editor or, more comfortably, with the Exymen editor, see Section 6.13.

Jumping to a timestamp t0 is realized as displaying the last document to be
shown in the interval [0, t0].

The parameter recognized by the slide-show Applet are:

• slidefile

This mandatory parameter gives the (relative) URL of the slide-show com-
mand file to be used.

• delayoffset and masiclient

These parameters are identical to the board-client parameters of the same
name, used for synchronizing with the audio client, see Section 7.2.5.

17See [RLJ98] for target names.

	7.1 Client Control Panel and Masi Interface
	7.2 Board Client
	7.2.1 Event Handling
	7.2.2 VCR Operations
	7.2.3 Scrolling
	7.2.4 Handling Applets
	7.2.5 Board Parameters

	7.3 Audio Client
	7.3.1 VCR Operations
	7.3.2 Parameters

	7.4 Video Client
	7.5 Slide Show

