Chapter 6

Tools, Converters, Add-ons

This chapter describes a number of sub-components and stand-alone tools of the
E-Chalk systems. These include converters for the E-Chalk formats, E-Chalk
components implementing E-Chalk API classes like the Launchable interface'
and board Chalklets?, as well as stand-alone tools for working on recorded
lectures. Unless explicitly stated otherwise, stand-alone tools are realized as
Java applications.

6.1 Export to PDF

As mentioned in Section 2.5, the E-Chalk system can automatically produce
a transcript of a board recording as an Adobe PDF file. The board-to-PDF
converter echalk.tools.pdf.Board2PDF is called as a Launchable from the
main E-Chalk application, but it can be also used as a stand-alone application.

In a first phase the board data from a given lecture are parsed by the con-
verter to get the board image as it looks like at the end of the lecture. Invisible
actions, like scroll events and drawings removed with undo, are ignored, all other
board elements are kept in memory.

For line strokes, the first phase also drops inner points which are collinear
with their neighbors, as they are not needed in statically painting pages. For
example, connecting the sequence of points (0,0), (1,0),(7,0),(8,0),(8,1) will
result in the same image as the sequence (0, 0), (8,0), (8,1). E-Chalk recordings
store each point delivered by the mouse driver during drawing actions. Because
mouse drivers often deliver points faster than users change drawing directions,
omitting the redundant points results in a considerable data reduction. In prac-
tice, the stroke points are reduced by a factor of two or three.

For obvious reasons, it is not possible to directly include an interactive Ap-
plet into the PDF. Instead, they are represented as an image with an Applet
symbol.3

In the second phase, page breaks are determined, and in the final phase the
actual PDF representation is constructed and written. An early implementation

1Launchable and its sub-interface Progressible are described in Section 3.10.1.

2See Section 4.6.4 for implementation details of Chalklets and associated classes.

3In fact, the PDF converter looks for a saved snapshot image of the Applet to include.
When no such snapshot is found, it uses a standard Applet icon to mark the Applet’s place.
However, the implementation of the server-side board does not store such snapshots yet.

105

106 CHAPTER 6. TOOLS, CONVERTERS, ADD-ONS

knipping@localhost> java echalk.tools.pdf.Board2PDF
usage>
java echalk.tools.pdf.Board2PDF [<key>=<val>...] <lecture dir>

Recognized standart keys and their values:

pdf.conf <filename>

pdf .media a[0-6] |letter|halfletter|legal Inote|ledger|11%17
pdf .portrait truel|false

pdf .bw true|false

pdf .bg2white truel|false

pdf.outlines truel|false

pdf.outfile <filename> (relative to <lecture dir>/pdf/)

Key-value pairs for debugging purposes:
pdf.grabjfifs true|false
pdf.grabgifs true|false
pdf .bin2ascii85 truel|false
pdf .noflate true|false
echalk.debug true|false

Listing 6.1: The board-to-PDF converter program prints a summary when called
without arguments.

simply split the data into pages at fixed offsets. The distribution of page breaks
has depended only on the PDF output paper format, not on the content. The
present algorithm uses a greedy strategy. It tries to place the next break as
a horizontal cut with as much content as possible put onto the page while no
visible* board element is being cut. If no such page break is found which uses
at least the upper two thirds of the page for content, and a kind of minimal cut
is searched for in the lower third of the page. This is realized by computing the
amount of “ink” weight of the content by the vertical coordinate. Each visible
elementary drawing (a line segment, an image, a typed text) adds its width to
the y-interval of its vertical extension. A weighted partition is generated of the
y-interval [0, co[, represented as a list of weighted intervals.> The weight of each
interval is a measure of how much board content is cut by a horizontal page
break which lies in the interval. The weight gives only an approximation, as
overdrawings and the rounded caps and joints of line strokes are not taken into
account, but in most cases this is sufficient to get pleasing page breaks.

Board content where horizontal cuts as breaks are not adequate due to writ-
ten lines overlapping vertically cannot be handled well by this method, see for
example Figure 6.1. A possible strategy to solve this would be to construct a
graph of board elements as nodes and edges between touching elements. Pages
are generated by distributing the elements on the pages so that elements of a

4Drawings in the board background color, like eraser actions, do not prevent the page
break.

5While the insertion of the weighted interval may take quadratic run time in the worst case,
the implementation used in the converter runs in near linear time for real world lecture data.
It uses the fact that almost all board elements have only a small y-offset from the previously
generated element. Using the previous insertion position as start position for searching the
next position results in a drastic speedup.

6.1. EXPORT TO PDF 107

SMZ'Q, MWMM %) gww

Vekborom.
.

s Fowap on. mw)W

dp - n=2, Xz = (k,“’(@k) h,"“"(%»
J——— o<k mpple

Figure 6.1: Handwritten lines that contain vertical overlay, either due to a
sloped baseline or to high ascents or low descents running into neighboring
lines, prevent straightforward page breaks using horizontal demarcation lines.
Descender lines are plotted in light gray.

connected graph component appear on the same page whenever possible.

6.1.1 PDF Structure

A PDF is organized as a tree of objects. The main element to organize the
document is the PageTree. A PageTree contains Pages objects, which list
other Pages and/or Page objects. A Page has a list of objects specifying the
actual content of the page. All PDF objects are numbered and used in other
objects by this reference. The trailer of a PDF file contains a table that maps
object references to their byte address in the file. See [Ado03] for details.

The PDF converter outputs a flat hierarchy of PDF objects that keeps the
number of objects low. This makes the resulting PDF smaller as the overhead
for defining objects is reduced. It also speeds up the process of loading and
rendering a PDF. Only a single Pages list is used and each Page has only a
single content object.%

The content part consists of basic PDF drawing commands, like line strokes,
text drawings, included images, and changes to the current graphic state, like
setting stroke width and paint color. The Portable Document Format allows
to compress content data’ with a range of compression filters, including run-
length-encoding (RLE), LZW [ZL78,Wel84], and flate compression [ZL77,DG96,
Deu96]. The PDF converter program uses flate compression® on the page con-
tent data, except for content objects where this does not save storage space.
This is true only for very small content objects, where the compression specifi-

6There may be a few extra objects for images and text: images are referenced indirectly in
the page contents and the image data representation may be split into several PDF objects,
for example a separate object for a color table. If the PDF contains text, the font must also
be included as a PDF object, but in the converter’s output a single font object is shared by
all pages.

"To be more exact, PDF stream data of PDF objects may be compressed.

8The compression factor achieved with flate is usually slightly superior to LZW and much
better than RLE. Also, LZW encoding was still protected by patents when the converter
application was developed. The US patent [Wel83] owned by Unisys expired on June 20, 2003,
and the counterpart patents in the United Kingdom, France, Germany, and Italy expired on
June 18, 2004. The Japanese counterpart patents expired on June 20, 2004, and the Canadian
counterpart patent expired on July 7, 2004. See [100]. IBM also holds a US patent [MW83]
with claims to LZW, that will expire on August 11, 2006.

108 CHAPTER 6. TOOLS, CONVERTERS, ADD-ONS

Figure 6.2: Full GIF image (top left), truncated non-interlaced image (top
right), truncated interlaced image (bottom left), and reconstruction of this in-
terlaced image (bottom right). Original image from the libungif [53] package,
version 4.1.0.

cation overhead of about 20 bytes is bigger than the gain from the compression.
Note that compression can be more effective having all the data of a page in a
single content object. This way, all of it can be compressed together instead of
compressing several chunks individually.

6.1.2 TImages

Accessing pixel data by the Java image rendering mechanism is used as a generic
method for getting the PDF representation of an image included in a board
lecture. The image file is loaded as a java.awt.Image, and a java.awt.im-
age.PixelGrabber is applied. The converter then tries to get a more compact
representation of these data. If the image contains 256 colors or less, a color-
lookup table is used. The image data are compressed using flate if this reduces
the amount of data. If a color table exists, it is also flate-encoded. Transparent
color can also be handled in the PDF converter, as PDF allows to mark color
entries as transparent.” Semi-transparency, a feature supported by PNG files,
cannot be represented in current PDF versions. Even full transparency is not
supported by all printer drivers. For example on PostScript printers, PostScript
level 3 must be supported for transparency being available.

For GIF and JPEG data, the converter uses faster methods by directly
parsing these formats. Still, the pixel-grabbing method serves to handle other
formats and as a fall-back, for example for damaged JPEG files, see below. At
the time being, the only image format used in E-Chalk recordings that is not
directly parsed is PNG.19

JPEG Parsing

The encoded image data from JPEG images can be directly included in a PDF
image object, as the JPEG decoding is supported by PDF. This is not only
much faster than the pixel-grabbing method, it also returns smaller PDF files

9The mechanism is called mask images by color in PDFs.
10PNGs are not used in E-Chalk with the default setup, see Section 2.4. Still, the direct
parsing of PNG files in the PDF converter is a desirable future extension.

6.1. EXPORT TO PDF 109

%39 2,17

plot ([t,sin(t) ,t=-Pi..Pi]);

Figure 6.3: Examples of outlined strokes and text element from a PDF tran-
script.

because the raw pixel data of the DCT encoded JPEG images do not compress
well with flate encoding.

Still parts of the JPEG data must be parsed by the converter for two reasons.
First, even though the image dimension and color space (like RGB or gray scale)
is given in the inline JPEG data, the information must also be stored in extra
fields of the PDF image objects. Second, inserting corrupted JPEG image data,
like for example from a truncated file, corrupts the whole PDF document; stan-
dard PDF viewers do not display such PDFs. For these reasons, the converter
scans the JPEG data for dimensions and color space and checks the integrity of
the image. If the image is damaged, the pixel-grabbing method described above
is used as a fall-back mechanism, as the Java rendering mechanism can also
handle truncated files, filling in the unknown portions with a background color.
If the data are damaged so badly that even the pixel-grabbing method fails, the
image is omitted from the PDF. In this case, it did not appear on the board
anyway, because the board relies on the Java image rendering mechanism, too.

GIF Parsing

For GIF images, the complete data are parsed by the converter. Its color-
lookup table is extracted, and the LZW encoded-data are decoded!! to be flate-
encoded in the PDF image object. As mentioned above, the flate encoding
usually compresses slightly better than LZW. Transparent colors are handled
in GIF data. If the GIF is a multiple image file, only the first one is used for
the PDF, like it was on the board. If the image data is truncated, the rest of
the image is reconstructed as far as possible: if the GIF image uses interlacing,
the empty pixels are copied from neighboring rows, see Figure 6.2. For non-
interlaced images, the data are filled with transparent color, if that is available
from the color table, or with the background color defined in the GIF data.
See [Com87,Com90] for details on the Graphic Interchange Format.

6.1.3 Color Conversions

The main application of the PDFs is printing. When the board’s background
color was not set to white, using the original background color would use a lot of
printer toner. For this reason, the background color in the PDF version is set to
white by default. In an older version of the PDF converter, background color and
white were simply exchanged. The drawback of this method is that it does not
preserve the contrast between drawings and background. For example, yellow

11 As mentioned above, Unisys patented the LZW algorithm. However, decoding data with
LZW was always considered free of charge by Unisys. Only software that encoded was subject
to patent fees.

110 CHAPTER 6. TOOLS, CONVERTERS, ADD-ONS

®E

Figure 6.4: For images with transparency, the outline border for the intranspar-
ent parts is computed.

Figure 6.5: An erasure stroke crossing a regular stroke interferes with the out-
line.

writing has good contrast against a black background, but are hard to read
against white. Also, drawings on images may be lost, for example if black board
drawings on white image parts are used with a black board background. Trying
to solve this by converting the background color in images is not recommendable,
as this often destroys the image impression and is difficult to handle properly
on colors which are similar, but not the same, like shades of white.

In the current version, a black outline for all visible board elements is added'?
when the background color is changed to white. For line strokes and texts this
is realized by drawing these elements, slightly fattened and turned to black,
below the colored elements. See Figure 6.3 for an example. For images, their
outline has to be computed, as transparency is to be handled, see Figure 6.4 for
an example.

A drawback of this method is that erasure marks crossing normal drawings
are not handled well, as illustrated in Figure 6.5. Unfortunately, there is no way
to handle this without the converter computing the rendered page.

Because the PDF version is often printed in black and white, the PDF con-
verter supports creation of grayscale PDFs. Here, outlining board elements is
not necessary. Instead, all visible line drawings and text elements are created
in black. Images are converted to grayscale. A possible improvement would be
to use grayscale colors for the drawings with gray values corresponding to the
contrast of the original color to the background.

6.2 Export for Replay in Windows Media Player

To allow recorded lectures to be displayed in the Windows Media Player, a
Windows command-line converter to ASF'3 was implemented in Visual C. The
E-Chalk audio data is encoded as WMA (Windows Media Audio) in the ASF

12This is the default behavior now when the background color is changed. The old method is
still available through the E-Chalk settings or from the converter’s command-line parameters.
Background color conversion can also be suppressed. See Listing 6.1.

I3 ASF is the acronym for Advanced Streaming Format, later renamed in Advanced Systems
Format from the Windows Media framework. It is a general wrapper format for multimedia
data, allowing arbitrary codecs to be used for its contents.

6.3. EXPORT TO QUICKTIME AND AVI VIDEO 111

Best Case

a3 se] =«
———3 u-{ Veyluda

Worsh Coane
[6,5,4)3% 2,17

[3,1,0,2,5,7,10]
[4,3,0,2,5,%,10]

f4 .32 2 < 3 101

Figure 6.6: A recording converted to ASF replayed with Windows Media Player
using a DirectShow plug-in.

file. The board data is stored as the timestamped vector data given by the
original board events. This avoids huge bandwidth and blurring of sharp edges
in the board image that would result from generating a standard video stream
format based on DCT compression. On the other hand, this introduces the
need for installing a DirectShow plug-in for Windows Media Player, enabling
it to decode the events for video playback. See Figure 6.6 for an example of a
replay.

The implementation of the decoder plug-in can handle the most frequently
used board events: line drawings, pasted images, scrolls. Also, text events
are partially handled: typed text is supported, but the dynamic line breaking
provided by the board'* is missing, as well as handling of cursor movements
and backspace and delete. Clear-all requests, Applets, and undo/redo events
are not implemented either.

While this approach requires the user to install a plug-in, it has the advantage
of preserving the lossless representation of the board stream and thus enjoying
the advantages of clear board drawings with low storage space requirements.

For encoding the audio stream, the standard encoders from the Windows
Media API can be selected. However, decoding the E-Chalk-encoded audio and
re-encode it with another codec decreases the quality of the audio stream. Also,
the available codecs are often less specialized to speech data than the E-Chalk
audio codec. The quality of the audio stream usually decreases significantly
unless a higher bandwidth is used.

6.3 Export to QuickTime and AVI Video

A program was developed for converting the board and audio streams into a
QuickTime or AVI video using the Java Media Framework for encoding the
streams. The converter is realized both as a Java command-line application
and as Progressible to be easily integrated into the E-Chalk main system and
to be usable from the E-Chalk command-line console. Available codecs depend
on which one are installed on the system the program is running on. The calling

14See Section 4.3.

112 CHAPTER 6. TOOLS, CONVERTERS, ADD-ONS

&4 KovarianzMatrix.avi - Windows Media Player

File Wiew Play Favorites Go Help

Pi=te

2 Klasse 4

E\n“ :CJAv.lJuhj -
Vs

(ST TR

Figure 6.7: A recording converted to AVI replayed with Windows Media Player
with 50 % zoom.

syntax for the converter tool is:

java echalk.tools.video.Echalk2Video [<options>] <dir> <file>
<dir> directory containing the echalk recording to encode
<file> the video file to write
options: [-qtl-avi] [-c=<codec>|-c#=<n>] [-fps=<n>] [-w=<n>]
[-h=<n>] [-v] [-d]

-qt output quicktime, default

-avi output avi

-c=<codec> selects codec of given name

—-c#=<n> select codec of index <n> in the alphabetical list
of codecs available for the selected output format

-mute ignore audio track from the echalk recording

-fps=<n> frame rate for encoded video, defaults to 25,
may be ignored by some codecs

-w=<n> frame width, preserves aspect ratio unless -h is
given, may be ignored by some codecs

-h=<n> frame height, preserves aspect ratio unless -w is
given, may be ignored by some codecs

-V verbose output of progress

-d debug mode, makes error output more verbose

To get the available codecs listed, two other Launchable/command-line ap-
plications are included in the echalk.tools.video package: LsAviCodecs for
an alphabetical list of all AVI codes and LsQtCodecs for the QuickTime codecs.
Most video codecs suffer from quality problems introduced by dropping higher-
frequency parts of the frame images, as discussed in Section 1.1. However, note
that the encoded board stream is significantly superior in visual appearance to
encoded video-taped material, because the encoded signal is much cleaner.

Re-encoding the audio faces the problems already described for the conver-
sion for playback with Windows Media Player, see Section 6.2.

6.4. CREATING BOARD SNAPSHOTS 113

Figure 6.7 shows the playback of a lecture converted to AVI. The original
E-Chalk recording has a size of 39 MB for about 96 minutes. 37 MB of the data
were allocated by audio data. The board used a resolution of 1016x740. The
AVT video is encoded with the ms-mpg4 v2 encoder using 24-bit color and 25
frames per second and uncompressed 16-bit mono PCM audio. The AVI has a
size of 255 MB, 164 MB of that being allocated by the audio.

6.4 Creating Board Snapshots

A tool for creating static board images from board recordings was developed
as a side product from the converter to QuickTime and AVI videos described
in Section 6.3. Output formats supported so far are JPEG and PPM.'® The
converter is implemented both as a Java command-line application and as an
E-Chalk Launchable. The calling syntax for the command line is as follows:

java echalk.tools.video.Board2Image [...] <lecture dir> <trg>
options: [-w=<n>] [-h=<n>] [-jpgl|-ppm] [-p=<n>|-yoff=<n>|-yatend]
[-t=<ts>] [-d]

-w=<n> output width, preserves aspect ratio unless -h given
-h=<n> output height, preserves aspect ratio unless -w given
-jpg output as jpeg (default)

-ppm output in portable pixmap file format (*.ppm)

-p=<n> show scrolled to page no <n> (defaults to 0)

-yoff=<n> show for scroll offset <n>

-yatend show for scroll offset used at last event

-t=<ts> load only events up to timestamp <ts>, format
[[<hh>] :<mm>:]<sec> with <hh>,<mm> integers,
<sec> float (significant up to milliseconds)

-d debug mode

6.5 Audio Format Updater

Another tool available both as a command-line application and a Progressible
component is a converter for updating audio recordings from the WWR2 format
to WWR3. It was integrated into the main E-Chalk application to make the
append mode with the new audio format available on existing lectures recorded
with the old format. When a user chooses to append to such a recording, the
audio format is upgraded, showing a progress dialog with a cancel option during
the process.

When executed as a stand-alone application, it allows to define an audio
profile!® for basic noise reduction and to choose the codec by its bandwidth:

usage> java wwr2wwr3.Wwr2wwr3 [<options>] <infile> <outdir>
options: [-p <profile>] [-c <codec>]
-p <profile> audio profile for sound quality improvement
-c <codec> one of {128, 64, 48, 32} kbps, 128 being lossless,
default tries to conserve bandwidth

15 Portable PizelMap (PPM) is the color image format from the netpbm [67] package.
16See Section 5.2 for creating and using audio profiles.

114 CHAPTER 6. TOOLS, CONVERTERS, ADD-ONS

When executed as a Progressible from the main E-Chalk system to upgrade
the lecture to append, the system assumes the audio profile selected to be ap-
plicable to the old recording as well: speaker and recording equipment should
be the same in both. The current profile will be used for the conversion. The
upgrading process chooses the lowest bandwidth for the codec that is not lower
than the original bandwidth. This should preserve the original quality with-
out increasing the data volume too much. The same behavior is used for the
command-line application when no codec option is given.

6.6 Repairing Damaged Recordings

From regular use of the E-Chalk system the demand arose for a tool to restore
damaged recordings. At Technische Universitdt Berlin, several recordings were
damaged due to a faulty memory chip in the machine running the E-Chalk
server. The recorded data were corrupted by bit flips, and sometimes even the
OS crashed. The recording was then shut down without properly closing the
output files, so that nonsense data were appended.

A command-line tool was developed for checking the integrity of audio and
board data and restoring them by replacing damaged audio packets with si-
lence and dropping invalid board events.!” The tool can handle both E-Chalk
audio formats, WWR2 and WWR3. Checking and repairing video is not yet
supported.

usage> echalk.tools.checker.Main [<options>] <lecture>
options: [-o<outdir>] [-nal|-va] [-nb]
-o<outdir> write fixed lecture to the given directory

-na do not check/repair audio data
-va output verbose audio packet info
-nb do not check/repair board data

Replacing the damaged audio packets with “silent” packets prevents board
and audio from becoming unsynchronized, unless the audio data is so badly
damaged that the number of packets cannot be identified anymore. In this
case, synchronization must be adjusted manually using the Exymen editor, see
Section 6.13. A possible extension would be a capability to repair board events
where the redundancy of the event representation allows reconstruction.

6.7 Import of PowerPoint Presentations

With the abundance of material already produced as PowerPoint presentations,
there is considerable demand to import this material into other lecturing tools.
The eClass'® system includes the TransferMation tool for automatically con-
verting PowerPoint presentations to images and importing them into eClass

17Note that damaged board events in unrepaired lectures do not prevent the recording from
being used for replay or append mode, as the board event interpreter just skips unrecognized
events with logging a warning to its error stream, unless the option to abort on invalid events
is explicitly set. The same holds true for the PDF converter and for the events interpreter
used by Exymen.

18For a description of eClass, see Section 1.8.5.

6.8. KEYWORDS FROM HANDWRITING RECOGNITION 115

sessions. Written as a wizard interface in Visual Basic, it runs only on Win-
dows98 [Bro01].

Another example is the ppt2aof [1] add-on for PowerPoint, which enables
PowerPoint to export the presentation to the format used by the AOF!® tool
AQFwb, a .wb index file and GIF images of the individual slides.

For E-Chalk, a program originally developed as a student’s project will
convert Microsoft PowerPoint presentations into E-Chalk board macros. The
ppt2echalk converter is a Windows command-line executable written in Del-
phi, relying on the MS PowerPoint automation API to convert the presentation’s
slides into image files. This means the converter program needs PowerPoint to
be installed on the system and running the converter starts PowerPoint, though
the application is partially hidden since as it runs in iconified mode.

The resulting macro adds the slides one after another to the board, from
top to bottom. Depending on the converter’s command-line options, the macro
contains scroll events to change from one slide to the next:

usage> ppt2echalk [<ts>|(<ts>)] <lecture dir> <out dir>

When called without any options, all the slides are added to the board im-
mediately and the macro ends, allowing to scroll the slides at the user’s own
pace.

When a number <ts> is given, it denotes the time in seconds that the macro
pauses between slide images before the next slide is added and a scroll event is
issued to move to the new slide image, simulating a slide show with automated
transitions. When the number is given in brackets, it will only be used on those
slides for which the presentation does not define its own transition time.

The board width the macro will produce is determined by the width of the
output slide images. The converter provides no option to choose this size, as
the PowerPoint automation API does not (currently) allow to change the image
dimensions. To provide control over the macro’s dimension, the slide images
would need to be scaled by the converter program, a feature that has not been
implemented so far.

6.8 Keywords from Handwriting Recognition

To automatically generate keywords for indexing purposes, both speech recog-
nition on the recorded audio data [HKWO02,Hiir03] and handwriting recognition
on the board data may be used. For the given purpose, even a relatively low
recognition rate is sufficient.

The performance of the handwriting recognition that comes with the Tablet
PC Edition of Microsoft Windows XP has recently been tested with recordings
from the Classroom Presenter described in Section 1.7.2. The recognition engine
was tested on slide annotations from five lecture recordings, with segmentation
done by manual preprocessing. Recognition was reported as “good” (68 %),
even though the lectures are considered to be a difficult recognition task by the
authors [AHP*04a].

An application has been developed for E-Chalk to extract text from board
writing using a handwriting recognition [The04a]. Like in the Classroom Pre-
senter project, it uses the handwriting recognition that is part of the Microsoft

19For a description of AOF and its tools, see Section 1.8.6.

116 CHAPTER 6. TOOLS, CONVERTERS, ADD-ONS

W £.Chalk Hncognitien Tast Applicatien

Facognizer Input

o101 0007 4200 ebbde S BFOOOOOONENop Scorveried 1o ﬂ
V1011125 14 2316 GHT 01
112247 i Lane 412454551 208 A0IHD0E T

E BEAE 1 AR ATHIONNOE R
130545 oanviLine 31 2454 7§ 1 34000
1 HdFamELinad 13084381 31 SAdE 00005

i | e |[we]

—F—— [1mAm

The dectionaiy contans B291 31 moide.
™ Heuisid: AN Wiordit AND Google
~ Hsizi AND fwosist DR Gocgiel et wnclits..
™ Husaizti: AR Wordia Askilional werds
% Heuist: -1
T \Without Conzrsm:
SebctLorgasgr [Genan 4]
Cenzcls -]
|;| I *
= Feck] th wosch
L] I

Figure 6.8: The indexing tool as a GUI-based application with control output
for the developer. Figure from [The04a].

Windows XP Tablet PC Edition and Microsoft Windows CE. The analyzer
works as a post-processor for recordings, implemented both as Java library and
as a stand-alone application with a graphic front-end. The application is shown
in Figure 6.8.

The recognition process performed rather poorly in distinguishing between
drawings and text. This part of the segmentation process is handled by the
Microsoft Tablet PC SDKs Divider, see [63]. This caused drawings to be
interpreted as text, cluttering the good recognition results with random ones.
Several approaches for a post-processing have been tried in the project to remove
the bad recognitions from the output. Simple heuristics on word structure and
dictionary lookups were applied. Unfortunately, dictionary approaches often
remove the most significant of the correctly recognized keywords since more
unusual words are more important for indexing purposes. See [The04b] for
details.

Any further development of this tool should improve the Divider’s strategy.
A likely reason for the poor performance of the Divider provided by the SDK is
that the development kit currently does not allow to tag the strokes generated
from the board with timestamps.2°

208trokes fetched from a connection with a mouse driver are generated with time informa-
tion, but there is no method to add them to strokes generated synthetically. The SDK allows
to associate extra information with its Stroke objects by lookup keys. It it possible that a
key already exists for timestamps, but none is given by the current SDK documentation.

6.9. MACRO RECORDER 117

_) Echalk: Recard Macros

Macro Hame: |Macro #1 |

Save Dir: |macr05!macr0001 | = Choose ...
[v] Add to Bookmarks with Speed Factor E.D

Figure 6.9: The setup dialog of the macro recorder.

6.9 Macro Recorder

The format for a board macro is the same as for a lecture containing a board
stream. Only Applet and clear-all events are disallowed in board macros.
Macros are basically a short lecture recording with the board being the sole
recorded stream.

The macro recorder application allows to create a sequence of macros using
the current board settings from the main application. To enforce compatible
assumptions between the macro recording and the board session, a macro is
only available at the board if they use the same background color and the width
is not bigger than the current board width. Note that macros recorded with the
macro creator are available on recordings with the current board settings.

When the macro recorder is started, it opens the dialog shown in Figure
6.9. It allows the user to define the storage path and macro name as well as
optionally appending the macro to the macro bookmark list. The entries for
macro name and path are preset to generic names, enabling the user to start
recording immediately. If a previous recording made is encountered, the name
is generated from the previous recording’s name plus a trailing number, or by
increasing an already existing trailing number. Path name generation is done
the same way, only adding capabilities to handle name clashes with existing files.
Path information is saved from the last macro recording and used to determine
the preset to be displayed at the next macro recorder start.

When the user hits OK, the application starts recording after checking for
any write conflicts, like possible overwrites to be confirmed by the user or any
storage permission problems. The code that prepares a directory for recording
and starting the recording components is part of the main application described
in Chapter 3. With the main E-Chalk application being a Launchable, the
macro creator just uses it as a subcomponent to be started. Normally, this
would show the main setup dialog. To prevent that from appearing, certain
configuration properties are redefined. Others properties are used to suppress
dialogs like the Append/Overwrite/Cancel dialog?!, as the macro recorder al-
ready handles such conflicts itself. The redefinition of the properties is realized
by calling the Launchable’s init method with arguments. These arguments are
handled exactly like the command-line parameters for E-Chalk being executed
as an application, see Section 3.1. Parameters in the form <key>=<wvalue> are
used to change the configuration properties. Parameters -X<key>=<wvalue> are
used to modify the recording settings, to assign title, and target directory, and to

21G8ee part on Recording in Section 2.4.

118 CHAPTER 6. TOOLS, CONVERTERS, ADD-ONS

Database
SQL textual control BLOB
query data
connection
E-Chalk
sl Middleware
HTML HTML lecture
control
query pages stream

starts E—-Chalk

Browser .
Clients

Figure 6.10: Communication between browser and database.

set the recorded streams to board only, as well as to disable macro-incompatible
board actions (clear-all requests and Applet usage). To prevent these settings
from being stored in the standard echalk.conf file and thus being effective at
the next E-Chalk start, the macro recorder creates a temporary copy of the file
and assigns the copy to the Launchable as a settings file through setting the
echalk.conf property by an init parameter.

When the user finishes the recording, the macro creator dialog opens again,
with new default values set for title and target directory, allowing to record
another macro until the user chooses to close.

6.10 Automated DB or LMS Storage

Already in the early stages of the system’s development, experimental support
for creating repositories of E-Chalk recordings was implemented. A tool for
automated storage of lectures into an Oracle database was developed in addition
to a middleware to provide access to the replay feature [FKR02]. The insertion
tool was developed as a command-line application, but it was also integrated for
automatic call in some early E-Chalk versions. The user interface was realized as
a Web front-end for a search engine, allowing to search for lectures by different
criteria, such as lecturer, topic, dates, keywords, etc. The front-end supported
direct replay of the search results in the browser, as illustrated in Figure 6.10.
The system also included management of the clients’ Jar files, delivering the
latest compatible client version instead of the client code used at the time of
the recording.

Since Oracle database supports random access to stored BLOBs, it is pos-
sible to use the fast-forward /rewind audio methods described in Section 7.3.1.
While the audio format used at that time was WWR2, lacking a jump table
for random access, insertion in the database created a similar data structure to
enable random access by time offsets using the middleware. User administration
for access restriction to the recordings are also featured. Administration of the

6.11. HANDWRITING SYNTHESIS 119

Figure 6.11: Board output generated by handwriting synthesis for the input
string "handwriting synthesis".

Figure 6.12: Tic Tac Toe test chalklet. The computer places crosses, the human
player circles.

database content and the users is done via another Web interface.

This is not the only repository support tested with E-Chalk. In the con-
text of a lecture given in the winter term of 2003/04 where E-Chalk and a
Learning Management System (LMS) were employed??, a GUI application was
created for storing into the LMS, namely BlackBoard [4] Version 6. However,
the implementation of the tool remained at a very experimental stage.

6.11 Handwriting Synthesis

Another application that started as a student project converts ASCII text to
handwritten text on the E-Chalk board. The output features script-style con-
nections between different characters of a word, and strokes are timed. Figure
6.11 shows an example of the output. The handwriting synthesis application
was written as a command-line tool that generates an E-Chalk lecture usable
as a board macro. Another application provides a graphical interface to define
character shapes and the types of connection with neighboring characters.

The application can be thought of as an inverse handwriting recognition
software, generating human-like output from machine input. A later version
might be used in future E-Chalk implementations to replace all remaining ASCII
output on the board, like the text output of computing algebra servers or from
CGI queries. In addition, a converter for text to board strokes should be added
to the E-Chalk API for the benefit of chalklet developers.

22The lecture is the course on Neural Networks evaluated in the study described in Section
8.4.2.

120 CHAPTER 6. TOOLS, CONVERTERS, ADD-ONS

Figure 6.13: Chalklet for animated algorithms in mid-operation. Left: Sorting
handdrawn lines according to their height with Bubble Sort. Right: Finding
the shortest path in a weighted graph with Dijkstra’s algorithm. Figures from
[Esp04].

6.12 Example Chalklets
6.12.1 EchoChalklet and TicTacToe

Two chalklets that were not developed for use in actual lecturing are nonethe-
less included to serve as examples for developers using the E-Chalk API to
create their own chalklets. Their source code is linked in the documentation
of E-Chalk’s Java API classes. The EchoChalklet just reflects any Stroke it
receives at a center line in its input area, with a certain delay to the input.
The delay and whether the reflection is to be done horizontally or vertically are
parameters for the chalklet’s bookmark setup.

The TicTacToe chalklet allows to play a game of Tic Tac Toe against a
computer opponent, see Figure 6.12. The computer does not play an optimal
strategy, it only pre-computes the results for one move of the opponent, giving
human players a chance to win. The chalklet does not take any parameters.
Which player gets the first move is determined at random. As long as the
match has not reached a decision, undos are handled by the chalklet. Marks to
positions already set or marks that can be attributed to more than one position
are considered invalid and are deleted with background-colored repaints by the
chalklet.

6.12.2 Animated Algorithms

A number of animated sorting and graph algorithms have been realized as chalk-
lets [Esp04], see for example Figure 6.13. They aim at visualizing algorithms in
computer-science teaching. These chalklets take user strokes as handdrawn in-
put to the algorithm, e. g. a collection of strokes to sort according to their height,
or handdrawn graphs, using the lengths of the connecting edges as weights.
[Esp04] also presents an engine called Flashdance that produces algorithm
animation in Flash from pseudocode input and provides a framework for gener-
ating E-Chalk macros via Flashdance. The algorithm uses handdrawn strokes
from an E-Chalk recording as input. The event file with the strokes and the
definition of the algorithm are fed into an animation generator, producing a

6.12. EXAMPLE CHALKLETS 121

AN A
ath

T
SO
oo

8
8
8
S
D
0
0
D.

oF
pt =}

Figure 6.14: Two snapshots from the Neural Networks simulating chalklet. Im-
ages courtesy of Olga Krupina.

Flashdance script that is then converted to an E-Chalk macro. This allows to
generate macros showing animated algorithms. Unlike the chalklets described
above, these animation macros are not interactive on the board, and their oper-
ations have to be generated in advance to the teaching. However, in [Wat04] an
approach is researched to extend the Flashdance engine to produce chalklets.

6.12.3 Simulation of Neural Networks

A solution for simulating biological and pulse-coded Neural Networks is pre-
sented in [Kru05]. The author has developed a board chalklet that allows to
define networks by drawings and pen-drawing actions for loading parameters of
neurons. The chalklet can graphically simulate these networks. The numerical
simulation underlying the chalklet visualization is computed by a server that
the chalklet connects to using Java RMI calls. See Figure 6.14 for example
snapshots.

6.12.4 Simulation of Logic Circuits

A chalklet has been written for teaching computer-architecture principles, which
is capable of simulating hand-drawn logic circuits [Liw04]. To classify the user
input, the chalklet uses a multilayer neural network trained with backpropaga-
tion. It recognizes clock elements, And, Or, Not, Multiplexer and Demultiplexer
gates, and connections between the control elements. Circuits can also be saved
to the local disk for reuse as “modules” in other logic chalklet instances. El-
ements that are touched by the eraser are completely erased by the chalklet,
repainting the element using the background color. The recognized circuit is
simulated by using the Hades framework [Hen98] [32].

Handwritten zeros and ones set the inputs of the circuits for simulation.
Alternatively, the user can choose an animated simulation for all possible inputs,
optionally combined with a state-timing diagram, as shown in Figure 6.15.

122 CHAPTER 6. TOOLS, CONVERTERS, ADD-ONS

Figure 6.15: The logic circuits chalklet simulating a clocked RS Flip-Flop. High
inputs are shown with red lines, low inputs with blue lines. A state-timing
diagram for the circuit is shown at the bottom left. Figure from [Liw04].

The chalklet usability has been tested in a video-taped laboratory test.??
Eight users with different background knowledge about logic circuits and the
E-Chalk system got a 15 minute introduction into logic circuits and using the
chalklet. Then they received a number of exercises, requiring them to use the
chalklet. Afterward, they were interviewed for their experiences and opinions.
Some minor interface flaws in the chalklet were identified in the test, notably
of features not being being recognized as connected by wires (due to the rec-
ognizer’s distance tolerance being to small) and in the workflow for storing
circuits for reuse. The feedback resulted in certain adjustments being made to
the chalklet. See [Liw04] for details.

6.12.5 Python Interpreter

Python [vRDO03] [78] is a programming language that was conceived as a teaching
language. The technical overhead from language syntax is very small compared
to most other languages. Python programs look very similar to algorithms
in pseudo-code notation. The idea of building a Python-interpreter chalklet
came in mind when Computing Science lecturers were looking for a tool to
interactively teach programming and algorithms with E-Chalk.

Hence, a Python interpreter chalklet was developed [Ste04]. Its supports
interaction types of a Python programming environment interface to be used
during a lecture. It accepts handwritten Python commands that are then rec-
ognized by the chalklet. Recognized lines can be combined and reordered into
a Python script by drag-like pen drawings. Recognized writing can also be
inserted at arbitrary program positions, again by a drag-like gesture, and recog-
nized letters can be deleted by a strike through. As a fallback input possibility,
the chalklet provides a keyboard-like input. It shows all letters and takes any
letters stroked out as input. The scripts can be run using the Jython [48] inter-
preter, a Python implementation in Java. A running script can be stopped by
the lecturer, allowing to exit from programs with long runtimes or with infinite
loops. As scripts and program output can be too long to fit in their chalklet
areas, horizontal and vertical scrolling by horizontal and vertical pen strokes is
supported.

23For a short introduction to usability laboratory tests, see [Shn9g].

6.13. POST-PRODUCTION WITH EXYMEN 123

i in range{n):
§ = "X X (i + 1)

Figure 6.16: Python interpreter chalklet. At the top, the program “window”, at
the bottom an area used for both handwriting input by the user and program
output for running Python scripts. Image courtesy of Henrik Steffien.

The handwriting mechanism uses the Microsoft Tablet PC recognizer.?* To
avoid having to run E-Chalk on Windows XP Tablet PC edition, a Java interface
to the recognizer engine has been developed which allows to be queried by RMI
calls. With this approach, one can use the Python chalklet on any platform with
using the handwriting recognizer by remote calls, as long as the server program
can be connected via a network connection. When E-Chalk actually runs on a
Tablet PC Windows, the server can be started locally and queries can be made
without a network connection.

6.13 Post-production with Exymen

Although E-Chalk has been conceived as a tool for capturing live and sponta-
neous lectures, instructors would like, of course, to edit the result of a lecture
in order to correct errors or just to eliminate superfluous parts. By editing,
recordings can be shortened, parts of lectures can be reused and recombined,
and lectures can be dubbed. For this, an editor capable of handling the three
multimedia streams used by E-Chalk is needed: audio and video streams as well
as the event-based board format must be supported.

Instead of writing a specialized editor for E-Chalk, a generic editor for
streamed data formats called Exymen [Fri02a, Fri02b] [25] has been developed.
It provides a single GUI for all kinds of multimedia editing and a framework
to represent multimedia data. A number of formats are handled by plug-ins
filling the abstract data containers of the Exymen API and providing editing
operations on them. To make for convenient extension of the editor, a pow-
erful plug-in management system has been included.?® Figure 6.17 shows a

24The Java connection to the Tablet SDK is based on the work described in Section 6.8.

25Speaking of the E-Chalk client, a major point in usability was to avoid having to install
plug-ins or any other special viewer software, see Section 1.2.

On the other hand, employing a plug-in architecture is not a problem for the server side,
where the Exymen editor is used. The server software needs to be installed anyway, and all
necessary Exymen plug-ins are installed automatically by the E-Chalk server installer. The

124 CHAPTER 6. TOOLS, CONVERTERS, ADD-ONS

Figure 6.17: Exymen being used to edit three E-Chalk streams: video, audio,
and board. The streams are shown at the bottom along a timeline. At the
upper left, the state of the board for the timeline’s cursor position is visible.
The frames at the top right and middle right show the video and the audio
signal curve for the same time. Figure from [Fri02b].

screenshot of the editor.

6.13.1 Plug-in Management

Programs using plug-ins often irritate their users by consuming a lot of time
for loading the plug-ins on each startup, even if the plug-in is not needed for
the current session. Also, many applications require a restart of the application
or, even worse, of the operating system when new plug-ins have been installed.
Exymen avoids these problems by using a solution based on an open-source
implementation of the OSGi standard, named Oscar [70]. While the OSGi
standard was originally conceived for component management in the field of
Ubiquitous Computing, it is also suited for desktop applications. Having been
developed for small, mobile devices, it was designed to be small, compact, and
efficient. It allows the editor to install and update plug-ins via the Internet or
remove installed ones, all while the application runs and without requiring a
restart.

Plug-ins can also manage themselves for handling version updates or in-
stalling other plug-ins. For example if an Exymen format handler encounters
an unknown data format, it may search for a plug-in to handle it, install the
plug-in and let it loose on the data. Plug-ins may also extend other plug-ins,
providing a kind of modular construction system. The Oscar/OSGi system takes
care of all resulting dependencies. On shutdown, all plug-in states are stored to

plug-in mechanism is effectively hidden from the standard E-Chalk user. The same holds true
for the SOPA plug-in architecture underlying the audio and video server components. In both
cases, the plug-in architecture is only relevant for developers extending E-Chalk.

6.13. POST-PRODUCTION WITH EXYMEN 125

Figure 6.18: Board chunk visualization and explanatory legend. Figure from
[Fri02a).

provide for fast system startup without checking the dependencies again.
Download time for installations and updates is low since plug-ins tend to
be small. Even including an HTML-based online help, none of the plug-ins
described in Section 6.13.3 is bigger than 200 kB.
The approach of Exymen is inspired Emacs philosophy of free extensibility of
the program, formulated by Richard Stallman [Sta81]. It motivated the choice
of the acronym for “EXtend Your Media Editor Now!” as the editor’s name.

6.13.2 Data Structures

Media data in Exymen are organized in a hierarchical way, similar to Apple’s
QuickTime [App01b] format, which also serves as a wrapper for different media
types.26 The top-level data structure is the Program, which would correspond
to a film reel of the analogous video cutting domain. A Program contains a
number of MediaTracks. A MediaTrack is composed of a sequence of Chunks
(corresponding to a tape snippet in video cutting), ordered along the timeline
without overlaps within the track. An Exymen plug-in fills the chunks with
its data. It may use an arbitrary representation and has to implement a small
number of basic operations on the data, e.g. splitting, merging, and cloning.
With these operations, video-cutting operations along the time scale in Exymen
become possible. A plug-in also has to provide a graphical visualization along
the time scale. See Figure 6.18 for an example.

Optionally, a plug-in may provide media chunk scaling, in both time and
space, and define arbitrary effects on its chunks, called filters, for example to
adjust the gain of an audio chunk. Plug-ins can provide a MediaEditor to
record new data. A MediaEditor also acts as a replay tool. Optionally, it may
allow editing actions in the space coordinates, see for example Figure 6.20.

6.13.3 Editable Formats

Exymen is distributed [26] including a number of standard plug-ins for the
following formats:

e E-Chalk board format, described in Section 4.10,

e E-Chalk audio format, both the old WWR2 and the new WWR3 audio,
described in Section 5.1,

e E-Chalk video format, described in Section 5.3,

e E-Chalk slide-show format, described in Section 7.5,

26The TISO based their file format specification for MPEG-4 on QuickTime, too [PE02].

126 CHAPTER 6. TOOLS, CONVERTERS, ADD-ONS

[E [0 Side Viewer: httikazan.intfu berlindefechalklecturesiarth... o &7 [ff 5 Bin

Dis englische Kunst des 18. Jhs.
Tell 1: William Hogarth

L vious |
[—

TR
LI

R 4 i 0 AR uostor i azont i toeca.. 2Bl

e s o A I | A [

Figure 6.19: Editing an E-Chalk lecture combing a slide show and audio.

e E-Chalk lecture recordings, handled by a meta-plug-in using all four plug-
ins listed above,

e JMF-supported audio formats [44], including MP3, QuickTime audio, and
PCM audio data (.wav, aiff, .snd, .au, etc.),

e C64 SID audio [Com82, Yan83]. This was integrated mainly for educa-
tional purposes on historical computer architecture. The fact that the C64
SID format is a fully computationally complete program format made the
editing support of this format quite challenging [JFK03, FJK04a].

The audio plug-ins allow to convert a stream of any of its supported for-
mats to any other of the audio formats listed above. Another Exymen plug-in
available with the standard distribution allows to convert Microsoft PowerPoint-
Presentations exported as HTML pages to the E-Chalk slide-show format and
to be edited with the above mentioned plug-in for the slide-show format.

An example of editing an E-Chalk lecture of a slide show including an audio
stream is shown in Figure 6.19.

E-Chalk Board Plug-in

While editing the multimedia data for audio, video, and slide shows is pretty
straightforward, editing the board content poses a few challenges. The board
stream represents the development of the board content as a sequence of timed
events, but events are not independent from previous events. For example, a
redo event is only allowed after an undo event and a line drawing can only
happen on the visible portion of the board, meaning it is dependent on the
offset generated by the antecedent scroll event.

These structural and spatial dependencies are classified in [Fri02a]. It de-
scribes how the plug-in manages to constantly maintain the dependencies within
a Chunk for all editing operations. The main idea behind preserving the non-
spatial dependencies is to organize the board chunks’ content data into atomic

6.13. POST-PRODUCTION WITH EXYMEN 127

Length

‘Sln . — —i
Ilﬂ — i]g
]6 [; Cut to bin

Copy to hin

x Delete

OVEA Insert scrollpoint here

S e s

Figure 6.20: Removing a vertical board interval with the board MediaEditor.
Figure from [Fri02a].

sequences of dependent events.?”

The MediaEditor for the board stream not only allows recording new chunks
and replay of the stream. It also lets the user insert scroll events and apply
other spatial editing operations. Users may select rectangular board sections
for cut, copy, and paste operations, as well as for moving the selected elements
by dragging. They may also remove vertical intervals from the board, see for
example Figure 6.20.

27T A coarse separation into atoms would seriously constrain the editing facilities on board
data. Fortunately, the atoms are almost always single strokes. Only interactions with Applets
and undo/redo operations can create longer atoms.

128 CHAPTER 6. TOOLS, CONVERTERS, ADD-ONS

	6.1 Export to PDF
	6.1.1 PDF Structure
	6.1.2 Images
	6.1.3 Color Conversions

	6.2 Export for Replay in Windows Media Player
	6.3 Export to QuickTime and AVI Video
	6.4 Creating Board Snapshots
	6.5 Audio Format Updater
	6.6 Repairing Damaged Recordings
	6.7 Import of PowerPoint Presentations
	6.8 Keywords from Handwriting Recognition
	6.9 Macro Recorder
	6.10 Automated DB or LMS Storage
	6.11 Handwriting Synthesis
	6.12 Example Chalklets
	6.12.1 EchoChalklet and TicTacToe
	6.12.2 Animated Algorithms
	6.12.3 Simulation of Neural Networks
	6.12.4 Simulation of Logic Circuits
	6.12.5 Python Interpreter

	6.13 Post-production with Exymen
	6.13.1 Plug-in Management
	6.13.2 Data Structures
	6.13.3 Editable Formats

