Chapter 4

Board Server

4.1 Painting on the Board

The code for displaying content on the board is shared between the client and
the server-side board for maintenance reasons. With the client Applet required
to run in a browser supporting only Java 1.1, this shared code cannot use more
recent Java library additions.

The elements that are painted are represented as instances of the abstract
class echalk.shared.form.Form: the subclass StrokeForm is used to represent
a stroke composed of a sequence of connected line segments, a TextForm a typed
text, an ImageForm an image on the board, and an AppletForm an Applet. A
Form object stores its position on the board, and provides a paint method to
draw itself and a method to test for an intersection with a given rectangle, which
is used to determine the visibility of Form objects on the board for the current
scroll offset. The Forms are stored sequentially in a dynamically growing array
in order of creation.

The board uses double buffering to avoid having to call the paint methods of
each visible Form each time a repaint request is issued by the window system, for
example when a portion of the board becomes visible again after being obscured
by another window. Whenever a new Form is added to the board content, it is
painted both to the screen and to the board’s offscreen buffer. On a repaint, the
offscreen buffer is simply copied to the screen, resulting in a fast and flicker-free
repaint.

A complete redraw of the offscreen buffer is only needed when scroll events
happen or when a clear-all command or an undo is issued, see Section 4.5. In
this case, all Forms have to be checked for their visibility given the current scroll
offset, and the visible ones have to be painted in the order they were added to
the board contents. The original brute-force approach ran sequentially through
all Form elements, roughly about 2.000 objects per hour of recording. On the
server-side board, the resulting redrawing behavior was still perceived as fast
enough in real lectures.! However, rewinding and fast-forwarding the client

I This was even true for extensive tests running on a 500 MHz, 256 MB Pentium I1I Windows
laptop, when the original data representation resulted in roughly 25,000-50,000 Form objects
per hour of lecture. The original data representation created a Form for each line segment
drawn. Now the board merges all line segments belonging to the same user stroke into a
single Form, which creates less than a tenth of the original number of Forms, speeding up

65

66 CHAPTER 4. BOARD SERVER

Figure 4.1: Typed text with the first line break created automatically and the
second defined explicitly by the user with [Shift]-[Enter].

board felt too slow. For fast redrawing, a data structure that allows fast access
to all visible Form objects in the order they are to be drawn is now used. The
virtual board space is separated into pages of the visible board area size. For
each page, there is a (dynamically growing) array of references to all Form
elements that intersect the given page, stored in their order of creation. For
each given scroll offset, the visible board area is then contained in up to two
pages and only the Forms referenced in the pages’ arrays have to be checked for
visibility. With the Forms of a single page being already ordered, all the relevant
Forms can be retrieved in the correct order from the page arrays in linear time.

Elements which are shown only temporarily on the board, like image-placing
frames and text-input cursors, are not painted to the offscreen buffer. Instead,
they are painted directly to the screen using XOR paint and removed by re-
painting with another XOR paint.

For the board client, an instance of the echalk.shared.DrawPanel class is
the component handling the actual display of the board content, implementing
double buffering and processing board events into new Forms or changes to ex-
isting ones. The subclass echalk.board.gui.ActiveDrawPanel is used for the
server-side board. The ActiveDrawPanel is capable of processing user inputs
to create board events. To allow adding Applets to the DrawPanel (see Section
4.10), the DrawPanel class inherits from the container? java.awt.Panel.

4.2 Drawing Lines

The board feature used most is the plain drawing feature. A drawing action
is achieved by a mouse-drag-like motion with a pointing device. The board
receives the points of the drag movement and connects these points to a stroke
in the current drawing color and drawing width. Eraser actions are handled like
drawings in the background color.

A stroke to be painted is stored in a echalk.util.form.StrokeForm object.
A StrokeForm stores the list of its vertex points, stroke width, and a color. The
line segments forming the stroke are drawn as if the pen were a circle with the
given width, i. e. round line joints and caps are used. A convenient way to draw
these lines would be to use an instance of the class java.awt.Graphics2D for
painting and set its drawing shape to circle with the setStroke method. Unfor-
tunately, Graphics2D is not available in Java 1.1. Because the code for drawing

redraws considerably.
2In Java, GUI components that permit embedding of other components are subclasses of
java.awt.Container.

4.3. TYPING TEXT 67

ascend line

baseline

Figure 4.2: Vertical font metrics to consider for laying out text. Similarly,
horizontal advance is composed into left side bearing, glyph width, and right
side bearing.

lines should be the same on the server and client sides and the because the client
side cannot be guaranteed to have the Graphics2D available, the drawing must
rely on the more basic drawing methods provided by java.awt.Graphics. The
board draws a line segment as a rectangle with circles at its ends.?

4.3 Typing Text

An echalk.shared.form.TextForm represents typed text by text color, font
size, and position on the board. If it is still active, i.e. is still being changed by
user key typing, it also displays a cursor in the text. The user can add all regular
characters to the text as well as use delete, backspace, left and right text arrows
to move the cursor in the text, and the home and end keys to jump to the start
or the end of the text. Also, paste from clipboard with Ctrl-V and emacs style
cut to clipboard (kill from cursor to end of line with Ctrl-K) are supported,
as well as a text history accessible with the up and down keys. The history is
kept between session. The number of entries in the history is determined by
a property in the echalk.conf file. Key inputs that are duplicates to their
predecessor are omitted from the history.

A TextForm splits the typed text in rows with dynamically created line
breaks to avoid the text running out of the board area, see Figure 4.1. The
vertical metrics of a font needed for the layout are illustrated in Figure 4.2.
When painting, a call to the java.awt.Graphics method drawString is done
for each row, because drawString does not handle newlines itself.

4.4 Images and Applets

An echalk.shared.form.ImageForm contains the board position of the repre-
sented image and the image data as java.awt.Image. Is paints itself by using
the java.awt.Graphics method drawImage.

An echalk.shared.form.AppletForm instance encapsulate an Applet as an
java.applet.Applet and its position on the board as rectangle. The painting

3Because the basic circle drawing with Graphics results in drawings with displeasing asym-
metries for even circle diameters due to a Java bug (see IDs 4080106, 4151279, 4151636 and
related in the Java bug database [43]), E-Chalk relies on its own implementation of the Bre-
senham circle drawing algorithm [Bre77].

68 CHAPTER 4. BOARD SERVER

New New New Undo Undo
P

)
)
)

Q
®

)
®
)

)
©
G
©

Undo Redo New Undo
A P & . 8

L4

®

O Form

{ }undone Form - insertion index

Figure 4.3: An example of handling a sequence undos, redos, and Form object
creations. The example sequence is taken from the UndoManager example in
[LEWT02].

is delegated to the Applet’s paint method. When the Applet is added to the
board, it is registered as a java.awt.Component to the DrawPanel. For this
reasons, the DrawPanel inherits from java.awt.Container, see Section 4.1.
Whenever the AppletForm’s absolute position changes due to a scroll event,
the Applet’s setBounds(java.awt.Rectangle) method is used to redefine its
area. For description of logging AWT events of Applets for replay purposes, see
Section 4.10.1.

4.5 Undo, Redo, and Clear All

To realize Undo and Redo actions, the board stores all Form events sequentially
in an array and keeps an index to the next point of insertion into the array, like
a stack. An undo command decreases the index by one, a redo reinserts an
undone element by increasing the index. When a new Form is added, redo of
previously undone elements becomes unavailable. See Figure 4.3 for illustration.

A C(lear All command is rarely used. It simply removes all elements from
the Form array.

4.6 Custom GUI elements

The board features a few GUI elements specifically customized for the E-Chalk
application. For choosing a drawing color, a subclass of javax.swing.Checkbox

4The Java package java.swing.undo provides an extensive collection of interfaces and
classes for undo and redo features. Unfortunately, the undo/redo managing mechanism is not
available with Java 1.1 and can therefore not be used in the code shared between the board
server and client. Another shortcoming is that the implementation does not support infinite
undo depth. For these reasons, the Java undo support is not used by the E-Chalk board.

4.7. BOARD RESOURCE LOADING 69

i @ [oplenc |
o [Nle (s & & |
CECHCHCOECONOS

3

25
J&a L ﬁ 1

12

Figure 4.4: Custom color and size chooser elements from the board’s tool dialog.

was implemented to allow graphical color labels (or an image of an eraser
as a label for the eraser tool) instead of textual labels. Instead of a regular
javax.swing.Slider an equivalent component with a logarithmic scale was
used for selecting the size of the drawing tool and the font size for typed text,
because the exactness of drawing sizes is the more important the smaller the
drawing size is. See Figure 4.4 for an illustration of the chooser components.
The implementation of the logarithmic slider relies on Java Swing Components
delegating their painting and controls to a ComponentUI class, using the model-
delegate variant of the model-view-controller (MVC) architecture. The board
instantiates a standard Java Slider component and sets its ComponentUI to
an echalk.util.LogarithmicSliderUI, which provides the logarithmic style
in painting and control.

The echalk.board.gui.URLDialog allows the user to choose a bookmark.
To make the Java Swing list component (an instance of the javax.swing.JList
class) display the thumbnail icons saved with the bookmarks®, an instance of
a custom list cell-renderer class is set to the list.5 The dialog also shows a
summary of the bookmark properties in the tooltips of a bookmark, which can
be especially helpful for bookmarks with parameters, namely for CGls, chalklets,
and macros. See Figure 4.5 for an example.

The bookmark lists for images and Applets are just named links to files with-
out any extra parameter data needed to load the resource. For these bookmark
lists, the displaying URLDialog also features an input line for the user to type
in a known URL address. For convenient selection of local files, a file chooser
can also be launched. Its file filters are preset to show only relevant files.

4.7 Board Resource Loading
The class echalk.board.rc.RcLoader handles access to external resource data,

i.e. Applets, images, CGI calls, requests to computer algebra systems, as well as
loading animations/chalklets. After loading, it passes the data on to resource-

5See Section 3.4.

6The class echalk.util.CellRenderer implements the java.swing.ListCellRenderer in-
terface and is used here. It also implements the java.swing.table.TableCellRenderer inter-
face to be used for rendering the thumbnails in the bookmark editors, where the bookmark
entries are shown in java.swing.JTable objects.

70 CHAPTER 4. BOARD SERVER

Bl Echalk: Load Image @ B| Echalk: Load Chalklet @

A Bookmarks: A Bookmarks:

g earth from space 3! Echo Demo Anim (horizontal)
- math lecture at TU Berlin 7l Echo Demo Anim (vertical)
FU Berlin computer science build = Logicrecognition %
uil Latest weather from METEOSAT =
2 Gerald
i Lars

W Raul
Ernesto
4l Christian
4

URL:
ht‘lp:.waw.eumetsat.deimdrsfimgfjd| ﬁl

| »

Logicrecognition
classname=de echalk logicrecognition. LogicAnimationkit
sre=httpefasan online-lectures. argichalkletsflogic jar
Feedback Disabled=faise

Confin File=ettogicrecognition.conf

Saved Gates Directon=eldlsavediZates

Diagram=false

] | 3

| ok | cancer | | ok || cancel |

Figure 4.5: URL bookmark dialogs of the board, left with textual input line
and button to launch a file chooser, right with tooltip for a chalklet bookmark.

type-specific handler objects which manage how they are integrated into the
board content. Macros are not loaded via the RcLoader.

The resource loading tasks for the resource loader are triggered in the GUTI’s
event handler thread, and because (potentially) longer actions should never be
handled directly in the event handler thread”, the RcLoader uses a separate
thread to handle these tasks. As described in Section 2.4.2, a feedback dialog
is shown when a load task needs more than half a second, and the dialog also
provides a cancel action for the task.

Canceling a load task is not easily done: it is not possible, for example, to
abort a read from a URL immediately. As long as the thread is 10 bound, it
cannot process the message to stop. As a workaround, the thread is not only
sent a signal to die, but it is also marked as “invalid”, so that any resulting data
are discarded.

For efficiency reasons, not every task creates a new thread. Instead the
loading thread is reused®, except when the user selects to cancel the loading
task. In the latter case a new thread is created to ensure that the user can
immediately start a new resource loading task. This means the RcLoader is
implemented according to the thread pool pattern [GHIJV95], but with only a
single worker thread being in the pool.

Resource requests are composed of two subtasks, represented in an abstract
class named echalk.board.rc.Task. First, the raw resource data are loaded,
like for example getting data of an image from its URL. In the second step, the
loaded data is decoded to an object that can be handled by the board, i.e. the
image byte data has to be converted to a Java Image object. After that, the
image is passed on to a handler object which knows how to add the resource to
the board. For example, the ImageHandler lets the user select the position of

"Responding to user input is done in the event handler thread. Having a longer action
being handled in the event handler effectively renders the program non-responsive. It would
not even handle cancel actions from the user until the pending action is finished.

8This is an implementation of the worker thread pattern, see [GHJV95].

4.7. BOARD RESOURCE LOADING 71

an image on the board.

The LoadTask objects contain the resource loading and decoding imple-
mentation as well as the methods for accessing information about the current
progress to display in the progress/cancel dialog: a textual message with a lo-
calized description of the step the loading process is currently performing and
a numerical progress, if it is available.”

The loading subtask also tries to determine the MIME-type of the resource
loaded. For most requests, like using image bookmarks, it is known in advance
what kind of data will be returned, but for CGI requests it cannot be decided
a priori which content decoding and handling is needed. The system then uses
the MIME-type information to decide which decoder to use.

See Figure 4.6 for an overview of the classes involved in board resource
loading.

4.7.1 URL Loading

Many of the board resources are loaded from URLs. In the case of CGI scripts,
there can be also POST arguments given for the URL request.'®

For a URL loading task, a URL connection is opened, any POST arguments
are sent sent over, and the returned data is read from the connection. If the
URL is a file URL, the URLLoad object does not use the Java URLConnection
mechanism. Instead, the more efficient standard file read is used. An early
implementation, which relied on the standard URL mechanism, suffered from
a noticeable slowdown due to overhead introduced by the Java URLConnection
mechanism.!!

Java also allows access to URLs which need authentication. The programmer
has to set a java.net.Authentificator to use the mechanism. The E-Chalk
board defines the echalk.board.util.LoginAuthentificator as such an au-
thenticator. When a user tries to access a protected URL resource, an authen-
tication dialog is displayed. The dialog shows all the information available for
the request, the authentication message from the remote side, and the address
of the protected resource, and allows it to input the user’s password without
the password to be shown, see Figure 4.7. On a failed authentication, the dialog
reopens until the user successfully authenticates or chooses to cancel. An au-
thentication for a resource is only needed once per session since authentication
data are cached by E-Chalk for the next request.

The standard URL handling of Java supports authentication only for HTTP
requests. However, Java allows to replace the handling mechanism of URLs
on a protocol basis (and to define handlers for new protocols) by a call to the
java.net.URL method setURLStreamHandlerFactory. In the E-Chalk system,
the FTP protocol handling was extended to support authentication.'?

The HTTP protocol handling is also replaced in E-Chalk if it runs with a
Java version lower than 1.4 to improve user messages in case of a resource access

9The progress cannot always be determined numerically. For example, if a task for loading
a file from a URL is still waiting for the connection to the remote server, there is no way to
tell how long it has to wait. In these cases, the dialog displays an indeterminate progress bar.

10GET arguments cannot only be specified for the CGI requests, but also for any other
URL loading request, as they are encoded within the URL, see [FGM197, FGM*99].

1180 far, this speed was only tested in JRE 1.2.

12For Java 1.3 it also fixes a bug that prevents the specification of an alternative port in
FTP URLSs, see Java bug 4320992 [43]. In Java 1.4, this problem no longer occurs.

BOARD SERVER

CHAPTER 4.

72

resource request

evaluator handwriting
call recognition

CGI call add image add Applet

add chalklet add macro

] . Task
H ResourceAccessor
URL

: + param values : chalklet|bookmark
: Evaluation-— H
UrlLeoad d
Request H

a ChalkletLoad

ResourceDecoder

AppletDef-
Decoder

HtmlTextDecoder TextDecoder ImageDecoder

ResourceHandler macro [bookmark

Applet |

ChalkletKit y + parameters

AppletHandler TextHandler ChalkletHandler MacroHandler

ImageHandler

Figure 4.6: Overview of resource loading classes.

4.7. BOARD RESOURCE LOADING 73

E.J Echalk: Authorization Needed

Please enter authorization for
"protected area™ at http:ipage mifu-berlin.de:80.

Username: [knipping |

Passwaord: [|

| OK || Cancel |

Figure 4.7: Authentication dialog shown for loading password-protected re-
sources.

error. The java.net.HttpURLConnection has a method getResponseCode (),
which would allow the URLLoad to return the HT'TP request’s response code
to examine failed loadings in more detail, for example to distinguish between a
document not found, a forbidden access, a timeout, or a user-canceled autho-
rization. Unfortunately, this method does not always return the response code
when the document was not successfully loaded. It often throws an exception
due to a Java bug.!> The HTTP handling mechanism used in E-Chalk fixes this
problem.

For HTTP requests, the MIME-type is accessible via the URLConnection, as
HTTP-Server sent this information with their reply (for HT'TP versions since 1.0
[BLFN96]). For other protocols, this information is guessed from the extension
of the URL’s file-part, or, if an extension is not given, from the data content,
using the magic number entry for file types.

4.7.2 Requests to Computer Algebra Systems

Another type of resource access are requests to computer algebra systems.
E-Chalk’s API provides interfaces to develop connectors for arbitrary system.
The connectors for Mathematica and Maple are already provided as well as the
connector to a simple built-in calculator.

Note that requests to computer algebra systems must be cancelable, as it is
possible to send an infinite recursion or computing requests that are beyond the
power of the computer (e.g. 99%).

A connector is implemented by inheriting from the abstract class de.-
echalk.util.EvaluatorKit. It provides the localized setup information for
the E-Chalk setup dialog described in Section 3.3 and a static factory method
to build an object implementing the de.echalk.util.Evaluator interface. The
EvaluatorKit also defines the parameter list for the factory method and how
the parameters are set by user in the above-mentioned setup dialog. If an Eva-
luatorKit is activated, a connection to the computer algebra system is made
by building an Evaluator at startup.

13To be more precise, in Java 1.3 URLs for which the server’s response code was over 400
and where the URL file path does do not end in /, .htm, .html, or .txt trigger a java.-
io.FileNotFoundException whenever calling any of the methods getResponseCode(), get-
ResponseMessage (), getErrorStream(), getHeaderField(String name, long def), or get-
InputStream(). See Java bug 4160499 and the related 4150792, 4191207, 4222009, 4300174,
4314717, 4406592, 4492994, 4655826 [43].

74 CHAPTER 4. BOARD SERVER

plot{[t,sin{tli,t=-P1..Pi]3; plot([t,sini{tl, t=-Pi..Pi]3;

1

Figure 4.8: Maple plot without transparency (left) and modified for transparent
background (right).

The Evaluator is notified of the board’s background and is registered as a
listener to the board’s current foreground color. This allows for adjustments of
returned images for the board’s colors.

The Evaluator for Wolfram Mathematica uses a Java connection package
provided by Wolfram, called JLink [46]. E-Chalk’s implementation allows to
connect to a locally-installed Mathematica Kernel and can handle both textual
answers and graphical plots. As default plotting options, the plot color is set
to the board’s current foreground color and the plots background color is set to
transparent. When Mathematica is connected, it is also used to evaluate the
requests from E-Chalk’s mathematical handwriting recognition, see Section 4.9.

The EvaluatorKit for Maple was integrated due to user requests. Like the
Mathematica connection, the Maple integration can handle both text output
and graphical plots. It directly starts Maple as a process and realizes the data
exchange as reading and writing text data via the process’s standard IO streams
and plots data via temporary files. Maple does not support transparent back-
ground in plots, but E-Chalk’s MapleKit optionally allows transparency. This
is realized by parsing the plot’s GIF image data and setting its background color
to transparent.!* Also, any color that is equal to or very near to the board’s
background color is set to black (on light backgrounds) or white (on dark back-
grounds), so that they remain visible. See Figure 4.8 for an example. This color
modification is not possible for some older Maple versions, as they only allow
to plot in JPEG format, where transparency is unavailable.

To evaluate the mathematical terms identified by the handwriting recogni-
tion'® without Mathematica being available, a simple calculator program is part
of E-Chalk as an Evaluator. It can handle terms with integers and fraction
numbers as operands, brackets, and the operators +, —, %, /, and exponentia-
tion. A student has extended this calculator to handle function calls, definitions
of function, constants, and basic function plots for two and three dimensions,
see Figure 4.9 for example output.

With the E-Chalk API it is easy to integrate other computer algebra systems

14GIF images have a color table of up to 256 colors. One of the colors can be marked to be
fully transparent.
15The mathematical handwriting recognition is described in Section 4.9.

4.7. BOARD RESOURCE LOADING 75

Figure 4.9: Example plot from E-Chalk’s built-in computer algebra system.

like MuPAD or use different ways to connect, like using a remote Mathematica
server via a TCP socket connection. So far only Mathematica and the built-in
calculator can be used to process the results of the mathematical handwriting
recognition. In the future, the communication between the Evaluators and the
handwriting recognition should become part of the API.

4.7.3 Decoding

When the resource is loaded as raw byte data, it is transformed to data the
board can handle. Text data is decoded according to its character encoding.'®
For text/plain MIME-type the character is directly passed directly to the
board. For text/html the text is parsed and converted to plain text by the
echalk.board.util.HtmlDoc class. The transformation is similar to the for-
matting done by a text-only browser like Lynx [57], though only a subset of
HTML is currently supported. See Figure 4.10 for an example.

An alternative would be to convert the HTML to an image by using the
HTML-rendering capabilities of Java. The drawbacks are that using images
would need more bandwidth for the transmission, that the Java HTML inter-
pretation often fails due to non-standard HTML data, that its implementation
is very heavy weight and perceivably slow.

Images are decoded to an java.awt.Image object by using the standard
Java image creation methods. Before the image is given to the board, the raw
image data are saved in the image resource directory'” in order to make the
image accessible to any E-Chalk clients.

An Applet resource is given by an HTML page where the Applet is em-
bedded and its parameters are defined. The resource’s bytes are decoded by
transforming them into HTML text, taking the character encoding into account
and parsing all <applet>-blocks with the corresponding parameters using the
class echalk.shared.applet HtmlAppletBlock. After storing the HTML data
into the Applet resource directory (to make it accessible to E-Chalk clients, see
Section 7.2.4), the referenced Applets are loaded using a custom class loader

16For data returned from an HTTP request the encoding may be specified in the
Content-type header field. If unspecified, it defaults to is0-8859-1 (ISO Latinl) [FGM*99].
17See Section 4.11.2.

76 CHAPTER 4. BOARD SERVER

*Lars® *Knipping’s* *Home® *Pager

[photo: Lars Knipping]

Freie Universitar Berlin
Institut fur Infornatik

Takustrake 3
D-14195 Berlin

Room: 147 (st flaor)
Fon: ++49 (0730 G38-75 148
Fax: ++49 (0130 538-75 193
emails knippino@inf. fu-berlin.de

[horizontal bar]
P rogect sHR

o Electronic Chalkboard
o Robocup

o Hap Labeling

o Estina Ratio

WHRPURT T ati ons Wy

o Helnut A1t, Lars Knipping, Gerald Weher :
Jng fepplication/ fof/ /Point/ /Pattern/ /Matching/ /in/ /Astronautics/,
Technical Report B-93-16, FU Berlin, Institut fiir Informatik, Movember 1993.
Downloadable as Gzipped FOSTSCript (216 KB).

o Gerald Weber, Lars Knipping, Helnut A1t :
Jng fhpplication/ jof/ fRoint/ fPattern/ /Matching/ /ing/ sAstronautics/,
Journal of Symkolic Conputation, 17(4), pp. 321-340, April 1994,
Downloadable as Gzipped POSTSCript (193 KB).

o Lars Knipping:
/BeschriTrung, von/ oLinienzigen/,

Figure 4.10: The author’s home page converted to plain text on the board, only
top section of converted page shown.

and initialized. The class loading process also stores all class data in the Applet
resource directory. See Section 4.10.1 for further details.

4.7.4 Chalklets

When the user selects a chalklet bookmark, the ChalkletKit referenced by the
bookmark is loaded as a resource load task. To access the kit class from the
class path URL, the loading process uses the java.net.URLClassLoader and
Java reflection. The ChalkletKit is asked for the minimum area size its chalk-
lets need. Next, the echalk.board.rc.ChalkletHandler lets the user select
the board area the chalklet should live in, as described in Section 2.4.2. The
construction of the concrete chalklet instance is done in the handler following
the area selection, because the user-selected board area is needed in a param-
eter to the chalklet building method. In addition to the parameters given by
the chalklet bookmark!®, the factory is passed a echalk.board.rc.Chalklet-
Context instance, which serves as a communications interface between chalklet
and board. The ChalkletContext can be queried about information on the
environment the chalklet lives in, for example the location of the chalklet area
and the background color of the board, and provides methods for the chalklet to
send stroke paintings to the board. When the chalklet instance is constructed,
its area is outlined in gray on the board and it is registered as a stroke listener
to user strokes drawn in its area. See Section 4.8.1 for a detailed description of
the mechanisms for strokes being passed from the server-side board to chalklets
and vice versa.

In contrast to images and Applets, the server does not have to mirror the
chalklet, because the client does not have to load the chalklet itself. It only
receives the strokes produced by the chalklet and saved as board events.

18See Section 3.4 for setting chalklet parameters.

4.8. STROKE DELIVERY 7

4.7.5 Resource Handling

The echalk.board.rc.TextHandler pastes the text to handle directly a text
row below the request that produced the text.®

The echalk.board.rc.ImageHandler lets the user place the image resource
to the board as described in Section 2.4. Applet resources are placed similar
by the echalk.board.rc.AppletHandler, see Section 4.10 for the details of
Applets instantiation.

The echalk.board.rc.ChalkletHandler lets the user select the chalklet’s
area and marks it by drawing the area’s border. Once the area is determined, the
de.echalk.util.ChalkletContext for the new Chalklet can be constructed
and the ChalkletFactory is used to build a new Chalklet instance.

The new object is registered to the echalk.board.rc.StrokeSender queue,
which handles the forwarding of user-stroke events to the stroke listeners, see
Section 4.8.1. After that, the board returns to the default user paint mode.

The echalk.board.rc.MacroHandler lets the user select where the macro
should start and then starts to play the macro on the board in an extra thread.2°
Any user action on the board stops the macro. The board behaves like a client
while in macro play mode, as pre-recorded events are delivered to the board.

4.8 Stroke Delivery

4.8.1 Chalklet Strokes

The board sends all its users line drawing events as well as its undo and redos
of line strokes to the associated echalk.board.rc.StrokeSender instance.?!
Whenever a full stroke has arrived, e.g. when the a drawing is terminated by
a mouse-up event, or a stroke is undone, the StrokeSender sends this to its
echalk.board.rc.StrokeReceiver. Each registered StrokeListener like a
Chalklet is encapsuled StrokeReceiver, which checks the stroke events for
their relevance to the listener. In the case of a Chalklet, a stroke is considered
relevant if it occurred in the chalklet’s observed area and if the stroke was not
created before the chalklet became active. The latter restriction is important
for consistency when undos and redos occur. Any relevant stroke event is passed
on to the listener. That stroke is handled in a separate thread for each of the
listeners to avoid having a StrokeListener instance blocking the board. See
Figure 4.11 for an illustration of the stroke flow.

When a Chalklet wants to draw into its board area, it sends Strokes to
its ChalkletContext.?? The strokes are put into the board’s echalk.board.-

19The implementation of the TextHandler also allows to handle text resources without a
specified request position. In that case the handler would let the user place the text as in the
add text action described in Section 2.4. For the time being, there is no way to produce such
text resources.

20The rate of board events sent by the macro thread is restricted to 100 Hz to avoid band-
width bloats. See Section 4.11.1.

21Line drawings that are not drawn by the user, like the strokes produced by Chalklets are
not collected. The stroke forwarding is purely meant for interpreting human drawing actions.
This also prevents infinite loops that might easily occur if Chalklets are allowed to react to
Chalklet’s output with drawings.

22Gimilar to an AppletContext for Java Applets, the ChalkletContext is the communication
interface for a chalklet to its environment it runs in. The ChalkletContext for a chalklet is
provided when it is built, by passing it on as a parameter to the ChalkletKit’s chalklet build

78 CHAPTER 4. BOARD SERVER

stroke draw/undo/redo J fext/image resource

Request—

ing!
St rokeQueue StrokeSender 1 Resource Request HandlmgI

A cvaluation
undo/add stroke request

Strokel[] ‘
undo/add stroke

StrokeReceiver

Chalklet-
StrokeReceiver

Her—
StrokeReceiver
)

StrokeListener

"" undo/new stroke undo/new stroke

Y

]

Chalklet

ChalkletContext

Figure 4.11: Communication between the E-Chalk board and its stroke listeners,
the handwriting recognition, and active chalklets.

rc.RequestStrokeQueue. This queue has an extra thread which takes the line-
drawing data from the queue and sends them to the board. The queue processes
strokes using a FIFO strategy. The line segments a Stroke object is composed
of are associated with timestamps. If a timestamp is in the future, the queue
waits for the given time before passing on the line-draw event, otherwise it is
processed immediately. If the user is drawing, the draw event is delayed until
the user finishes his or her stroke. Users drawings can also split the synthetic
strokes into two parts. This is important to keep the complete control of the
board to the user. Handling the two drawing actions concurrently would not be
a suitable alternative, as this would destroy the connection of the user strokes
for undo/redo purposes.

The RequestStrokeQueue does not send the strokes’ data at a higher rate
than one line segment per ten milliseconds to limit the bandwidth taken up by
chalklets. As a comparison, user drawings with a typical USB mouse generate
125 line segments per second, while the chalklets are bound to 100 per second.
See Section 4.11.1 for a more detailed discussion.

When the board area is scrolled, the position of all active chalklets is checked.
When the area of a chalklet is no longer completely visible, it is deactivated.
It is unregistered from the StrokeSender, its pending strokes in the Request—
StrokeQueue are removed, and the Chalklet instance itself is notified of its
deactivation, so it can release any resources it still holds.

method.

4.9. MATHEMATICAL HANDWRITING RECOGNITION 79

9

Din2RiGREND
g v o = UL

L \Delta \partial
< > sum \arrow \inﬁf
d

b

a c e L om r x _y z W ete end

L pe e i mhe iyalT@ =
Figure 4.12: Recognized symbols.

4.8.2 Handwriting Recognized Strokes

If the handwriting recognition is activated, it gets the stroke events from listen-
ing to the StrokeSender, like chalklets do. The main difference is that its stroke
receiver tags all strokes as relevant which have the color which is associated with
the recognition, see board settings description in Section 2.4.1.

The results of the handwriting recognition are requests to an Evaluator,
see above. An overview of the included handwriting recognizer is given in the
following section.

4.9 Mathematical Handwriting Recognition

The first on-line handwriting recognition developed for the E-Chalk system used
a k-nearest neighbor classification. The sequence of strokes was grouped into
symbols, based on intersections of their bounding boxes and a constraint that
symbols can be only formed by one or two strokes. The recognizer returned its
result once a special end symbol was recognized. The approach worked quite
well for simple, calculator-type terms. However, the classification performance
decreased dramatically once a greater number of symbols were introduced and
it was not capable to handle spatial relationships between the mathematical
symbols, which are fundamental to the interpretation of more complex formulas.

For this reason, the current recognizer engine uses a two-step strategy similar
to well-known approaches [BG96, LW97, CY00]. The first step is the classifica-
tion of the stroke data, now relying on Support Vector Machines (SVMs) [TR02],
whose non-linear classifications [Vap98] yield superior classifications for the in-
creased number of symbol classes. The classification now also handled symbols
composed of three strokes. The second step is to apply a structural analysis
technique to obtain a hierarchical structure of the expression which describes

80 CHAPTER 4. BOARD SERVER

the mathematical relationships among the symbols. A detailed description of
the on-line mathematical handwriting recognizer can be found in [Tap04].

Data Preprocessing

Strokes delivered by the E-Chalk board are considered part of the same sym-
bol if their distance (considering the strokes brush radius) is below a certain
threshold. The online data is then preprocessed [TR03, FKST04] in a stan-
dard way for handwriting recognizer. First the direction of the stroke data is
normalized. A fixed number of points is then taken from the stroke’s list of
support points?3, the points are smoothed by averaging the coordinates with
those of their neighbors?*. The points are then resampled equidistantly: the
sequence of points (p1,...,p,) is replaced by a sequence of points (q1,...,qn)
having the same distances between successors on the polygonal chain formed by
(p1,-..,pn). Finally, the stroke data are scaled and translated to get a normal-
ize size and position for the bounding box of all strokes belonging to a single
symbol.

The feature vector used as input for the classifier is constructed from a num-
ber of local and global features. The local features for a stroke of length ¢ formed
by the preprocessed points (p1,...,p,) are the coordinates of the points p;, the
turning angle?® between the two consecutive segments (p;_1,p;) and (p;, pit1),
the points’ relative length position defined as ¢; = ;C_:ll(Hpk — pr+1]])/€ for
the point p;, and the change of the turning angle?% for two consecutive turning
angles. Global stroke features represented in the input vector are the center of
gravity of the stroke points, the length ¢ of the stroke, the relative stroke length
¢/d, where d is the distant between the first and last point of the stroke, and
the accumulated angle, i.e. the sum of all turning angles.

The SVM classifier

Three classifiers are used, depending of the number of strokes that form the
symbol. For symbols that there composed of more than one stroke, the feature
vector of each stroke is constructed and the concatenation of the feature vectors
content forms the full input vector which represents the symbol.

The classifier implementation uses DAG-SVMs [PCST00] as a multi-class
SVM-classifier with an RBF kernel for all the classification nodes and the first
modification of the Sequential Minimal Optimization (SMO) algorithm from
[Pla99, KSBM99] with 72 = 0.001.

Experimental Classification Results

Experimental data were obtained by having a volunteer writing 50 samples of
each of the symbols shown in Figure 4.12 with a Wacom Graphire 2 tablet.
The number of symbols was then artificially increased ten times by means of
transformations related to the tangent distance [SM96]. The data were ran-
domly split into three sets. 50 % of the samples were used for training, 25 %
for testing, and the remaining 25 % for validation. For comparison, an Artificial

23In the current implementation, 16 points are taken.

24Smoothing is done using the Kernel (0.25,0.5,0.25).

25The angles are represented as their sine and cosine values.

26 Again, the difference angles are represented as their sine and cosine values.

4.9. MATHEMATICAL HANDWRITING RECOGNITION 81

support error
classifier type strokes | vectors | train test | validate
Support Vector Machines 1 29.65% | 0.31% | 0.93% | 0.76%

- 0.72% | 1.17% | 1.27%
36.73% | 0.00% | 0.62% | 0.70%
- 0.69% | 1.31% | 2.09%
39.41% | 0.00% | 0.00% | 1.17%
- 0.00% | 1.17% | 1.17%

Artificial Neural Networks
Support Vector Machines
Artificial Neural Networks
Support Vector Machines
Artificial Neural Networks

W WIN N

Table 4.1: Experimental classification rates for Support Vector Machines and
Artificial Neural Networks with classifiers built for symbols composed of one,
two, or three strokes. The column support vectors gives the share of training
vectors stored as support vectors in the SVM representation.

superscript op-

ibove
superscrpt left
gkt o sight F | supersrpt saght
bl right
subscript belom Teft
below
belo

subscript

right

b
subseript subecagt

Figure 4.13: Regions, thresholds, and centroids of different symbol types.

Neural Network was trained with the RPROP algorithm applying the standard
sigmoid and its standard parameter values [RB93|. The number of hidden units
for each one were the same of the dimension of the feature vector. Table 4.1
summarizes the results obtained for each of the classifiers.

Structural Analysis of Mathematical Expressions

Relations in mathematical notation are defined explicitly or implicitly by the
position and size of symbols in the expressions [Cha70]. Depending on a sym-
bol’s meaning, it can have relations to symbols in regions classified as top-left,
above, superscript, right, subscript, below, below-left, and suberpression. Figure
4.13 shows such regions. For example, the operands of the fraction operator, a
horizontal bar, are the numerator and denominator and are expected to lie in
the regions above and bottom, respectively.

Mathematical notation is represented by a recognizer in a data structure
similar to the one used in [ZBC02], as a hierarchical structure of nested baselines,
where a baseline is a list of symbols which represent a horizontal arrangement
of symbols in the expression. Each symbol has links to other baselines, symbol
lists which satisfy the spatial relations mentioned above.

The method in [Mat99] describes a minimum-spanning-tree construction for
groups of strokes, considering the centers of the stroke bounding boxes as nodes
of a completely connected weighted graph with a custom weight function. The
approach is robust in terms of stroke grouping, but not in terms of structural
analysis, so the algorithm is used in the recognizer to build the baseline tree,
which is then recursively changed to take the constraints of the above-described
spatial relations into account [TR04]. See Figure 4.14.

82 CHAPTER 4. BOARD SERVER

a6 > G680 r
ZLOO (X&\/) o B M’LO mmu ZLOO (X&\/j o B Mio Vﬂmu
X X+ ¢ HE IZJL 1 @ Ht
= MEL L T 2as &P e WS 3 T s &P
{m=d -y M~ 7 Tk @1m:¢‘w = PI s

Figure 4.14: Left: Baseline tree after the first recursion. Right: Final tree of
spatial relations.

4.10 Applet Control

As mentioned in Section 4.7.3, any Applet added to the board content is loaded
by an instance of a custom ClassLoader. This object saves a local copy of the
loaded classes to make them available for the client-board Applet, see Section
7.2.4. The board then acts like a kind a Java-enabled browser for the Applet: It
constructs an instance of the Applet using the default (i.e. the parameterless)
constructor, and then sets a java.applet.AppletStub by calling the Applet’s
setStub method. The AppletStub and the java.applet.AppletContex acces-
sible through the stub serve as interface between the Applet and the “browser”
it is running in. For example, the Applet accesses its parameters and any other
Applet on the same Web site through these classes.?” Therefore E-Chalk pro-
vides its own AppletStub and AppletContext classes for the Applets to run
with.

Actually E-Chalk has two classes implementing the AppletContext inter-
face, because Java 1.4 made a change to the interface which is not backward-
compatible to Java 1.1. In 1.4 the two methods getStream and setStream where
added to the interface. Unfortunately, a Java 1.4 compatible implementation
of the interface will cause an exception when loaded in a Java 1.1 environment
with JIT (just-in-time) compiling. The JIT compiler looks at all the classes
methods, including the new ones, which use the class java.io.InputStream
in their signatures. Because this class is not available in Java before 1.2, the
process will fail. Using such a class will cause the exception, even in code parts
not run due conditional execution. To be able to provide an AppletContext
to the JVM on both the server side running on 1.4 and the client side, which
may run in any Java version from 1.1 on, the appropriate AppletContext is
loaded dynamically, utilizing reflection and therefore preventing the JVM from
JIT compilation of an inapplicable class.

After the AppletStub is set, the init() method of the Applet is called,
where all the initializations depending on parameters should be made by the
Applet.?8

Then the Applet is placed by the user on the board and added as a compo-
nent to the boards DrawPanel, see Section 4.4 The Applet’s position and size
are set by calling the Applet’s setBounds (java.awt.Rectangle) method. The
Applet’s execution begins by calling its start () method, after adding a number

27A distinct AppletStub instance is used for each Applet running in a browser, while an
instance of AppletContex exists for each HTML page with Applets. The Applets parameter
are accessible through the stub and the other Applets can be communicated with through the
context.

28These cannot be done in the constructor, because at that time an Applet has no access
to parameters via the AppletStub.

4.10. APPLET CONTROL 83

for all Applet definitions from HTML page
load given Applet class c
instantiate ¢ with default constructor
construct AppletContex (with access to all Applets instances)
for all Applets a
construct AppletStup s from definition and context
call a.setStub(s)
for all Applets a
call a.init()
for all Applets
user places Applet a on board to Rectangle r
call dp.add(a) for DrawPanel dp
call a.setBounds(r)
for all Applets a
call a.start() in a new thread

Listing 4.1: Steps to initialize a number of Applets given in an HTML page.

of event listeners, to be able to record the lecturer’s interaction with the Applet,
see below.

For multiple Applets from a single HTML page, each of these steps has to
be executed for all Applets before the next step is performed, realizing a simple
barrier synchronization. For example all Applets must be constructed and made
accessible via the stub setting before the Applets are initialized, where they may
try to access other Applets. See Listing 4.1 for details.

When an Applet is removed from the board, for example by a clear-all event
or by rewind on the client, it is removed from the component list of the Draw-
Panel, its stop() and destroy() methods are called, the thread the Applet
were started in is stopped, and all references to the Applet and its classes are
cleared. According to Java’s implementation advises on Applets, the destroy ()
method should release any resources the Applet used (like extra threads) and
they can then be garbage collected. Unfortunately, it seems that few of the
Applets around in the Web adhere to Java’s implementation guide.

4.10.1 Applet Events

To be able to transmit the user interaction to the remote clients, the AWT events
on the Applet’s components have to be logged. To do that, AWT listeners are
registered to the Applet and recursively to all its subcomponents. When a
listener is notified of a low-level AWT event happening, it registers the event
to the board for storing?®, thus the remote client can recreate the event to be
handled.

While the lecturer’s basic interaction with the Applet can be reproduced,
this strategy has a number of problems with achieving an exact replay:

e Changes to the Applet’s component hierarchy are not handled.

The event listeners are only registered to Applet components that exists
after the Applets init() method returned. When the Applet adds new

29Gee Section 4.11.2 for the event format for logged Applet events.

84 CHAPTER 4. BOARD SERVER

components afterwards, events delivered to them will be lost in replay.
This problem can be solved by adding a java.event.ContainerListener
to the Applet and all its subcomponents that inherit from java.awt.-
Container (and can thus contain other components). The listener is then
notified whenever an adding or removal of components happens and can
add and remove the event listeners accordingly.

e Extra windows are not handled.

Applets opening their own windows do not only break the board metaphor,
but the windows and their subcomponents go unnoticed by the described
recursive event listener registration. All events on these components will
be lost.

On the server side, it would be possible to prevent the Applet from ac-
cessing the frame display methods via a java.lang.SecurityManager,
throwing a java.lang.SecurityException on an access attempt. The
SecurityManager can also be used to prevent the Applets from increas-
ing the priority of their threads or accessing E-Chalk’s system threads.

Unfortunately this mechanism cannot be used on the board client to
achieve identical results for the replay: the board client is an unsigned
Applet and is therefore not allowed to change the system’s SecurityMa-

nager.?’

e Applets may modify their listener registration.

The Applet logic may remove E-Chalk’s event listeners, for example by
removing all event listeners to replace them. Also, the logic of the Ap-
plet may rely on the registered event listeners, an Applet state which we
changed on the server side.

e Platform or time-dependent Applet behavior.

If the behavior of the Applet is dependent on random numbers given by
the Java system or on execution time or information about the platform,
like OS name or Java version, the Applet’s behavior on the server side
may differ from that on the client side.

In addition, the different thread scheduling-mechanisms of the underlying
operating system may introduce race conditions and result in platform-
dependent replay behavior.

Finally the Applets themselves may rely on special versions of the un-
derlying Java system, for example by using library classes not available
in older versions, by relying on running as a signed Applet, or even by
depending on the occurrence of bugs fixed in later Java version.

e Different execution speed on server and client.

The execution speed of the Applet on the client side and on the server side
can be expected to differ, as they usually run on different hardware and
share resources with different processes. For example when the lecturer

30While this security mechanism does not really help for Applets on the board due to its
restriction to the server side, it would be worth to integrate it for the use of chalklets, as these
are only running on the server side, while the board client only handles their stroke events.

4.11. EVENT STORAGE 85

clicks on a moving target displayed in an Applet at the server board and
the target moves with a different speed on the client board, the mouse
event might miss the target in the replay.

Even worse, the board has no appropriate way to handle time-dependent
states in replay for navigation in time, leading to inconsistencies when the
user uses fast forward or rewind on the replay.

e Applets reading from the network.

When the Applet reads from a network connection, the data read will
usually not be available for the replay. For example the lecturer might
use a chat client Applet, that reads the communication data from a chat
server. The chat server must run on the same server the chat Applet came
from, as the security model of Java does not allow Applets to connect to
different locations. During replay, the chat Applet can only connect to
the side where the board replay came from, and usually there will be no
appropriate chat server.

e User AWT events generated on client side.

The remote user cannot be prevented from interacting with the Applet
in the replay. By having Applets receive both kinds of AWT events, the
lecturer’s recorded events and the input at the client side, the Applet may
easily reach inconsistent states, for example if it keeps track of the mouse
pointer, assuming these is only one mouse while receiving events from two.
Even if the internal logic can cope with the remote users events, it will
not resemble a replay of the Applet’s behavior during recording.

As a summary, replaying Applets in general is a hard problem. Many of
the problems disappear when the reproduction of the AWT events is dropped
and the Applets are more used as an interactive element in the lecture to be
operated by the individual learner. However, this does not fit well to the overall
philosophy of E-Chalk lecture recording, where remote participants should get
the same information as the listeners in the class room.

For these reasons, the handling of Applets in E-Chalk stayed at a very ex-
perimental stage.

4.11 Event Storage

4.11.1 Encoding

All board events are concurrently stored to a file named board/events in the
lecture recording directory. Applets and images are referenced indirectly in the
events file and stored in extra directories, see below. An event file is organized
by lines.3! Everything is stored in plain text (ISO Latin-1 encoding). This
makes the events files readable to humans, a great advantage in debugging. On
the other side, this results in higher bandwidth use for transmission than for
a binary representation. In practice, the bandwidth consumed by the board

31E-Chalk’s event parsers allow any of the platform-dependent end-of-line markers, single
newline, single line feed, or a new line followed by a line feed. The board always saves events
with Unix-style line breaks.

86 CHAPTER 4. BOARD SERVER

is negligible compared to the one used by the audio transmission. As shown
in Table 4.2, real lectures need less than 1kbps in average. The peaks are in
the range of 3 to 5kbps, as standard mouse devices generate between 50 and
125 mouse events per second.?> Up to one line segment event is stored per
mouse event. Considering the syntax of a line form event described below, and
assuming x coordinates up to 4095 (hexadecimal FFF), y offsets with scrolling
less than 641024, lecture duration of up to 4.5h (less than 167 milliseconds),
and Unix-style line breaks (single newline character), a line form event needs
up to 46 bytes.??

Note that for embedded image and Applet resources total bandwidth may
peak higher, although these data are loaded concurrently to the event stream
and thus do not block the board event’s loading.

With the introduction of macros and chalklets, the bandwidth may also peak
higher if no limit for their line events production rate is introduced. For this
reason, the stroke-handling queue currently constraints the chalklet output* to
a line-event rate of 100 Hz, roughly the same rate as produced by drawing with
a USB mouse. For the same reason, the event rate for a macro is limited to 100
events per second.?®

Another approach to keep the bandwidth produced by chalklets low enough
is to change the event format to a more compact representation. The format
should be changed to a binary one with a differential encoding being applied.
The event data will compress very well using a differential encoding, because
it consists largely of long sequences of line segments with its data entries only
slightly changed (position on board) or even identical (color and stroke width).
An additional entropy encoding like gzip can be applied afterwards, except for
live transmission where the events cannot be gathered in packets as they have
to be transmitted without delay. While compression will still not allow for
an unlimited rate of chalklet events, it permits the limit to be relaxed. As a
drawback of using compressed event encoding, the task of providing a repair
tool for damaged event files will become much more difficult, see Section 6.6.

For the text-encoded event file, one may consider to use XML encoding.
The main advantage of using XML is the availability of generic parsers for the
overall structure. Also, one gains a self-documentation of the format with the
DTD for the XML data.

While Java includes XML parsing support since version 1.3, there is no XML
parser in 1.1. Because the events need to be parsed on both the client and server
sides, E-Chalk needs to implement its own event parsing anyway.3¢ Therefore

32Serial mice report at a rate of 33 Hz, PS/2 mice default to 40Hz on Win98/ME and to
60Hz on WinNT /2000, but can sometimes be speeded up to a rate of up to 200Hz. USB
mice have a default sampling rate of 125 Hz, wireless mice often below that. The data rates
of commercial pen-input devices tested by the author (Numonics IPM whiteboard, Hitachi
StarBoard, different Wacom Tablets) range from 50 Hz to 80 Hz. Specifications for high-end
graphic tablets (Wacom Intous2 and Cintiq) state up to 205 Hz, but in practice rates of about
110 Hz are produced.

33Logging mouse-move events on Applets may produce even bigger events, as the size de-
pends on the depth of the Applet’s component tree, see below for Applet event formats.
Because Applet support in E-Chalk is rather rudimentary, it is not analyzed here in detail.

34See Section 4.8.1.

35Macros are nevertheless able to produce undesirably high data volumes by rapidly loading
images. A mechanism to limit the bandwidth in this scenario still needs to be introduced to
the server board.

36 A parser would be especially difficult to realize for the lecture repair tool described in

4.11. EVENT STORAGE 87

length events bytes
topic min:sec | total | /s total /s
bubblesort (capsule) [81] 12:16 | 8124 | 8.3 | 335297 | 455.5
quicksort (capsule) [82] 20:51 | 12910 | 10.3 | 528955 | 422.8
wavelets [83] 73:27 | 58661 | 13.3 | 2570274 | 583.2
colors [84] 71:00 | 38535 | 9.0 | 1663785 | 390.6
two’s complement [85] 16:43 | 14352 | 14.3 | 596287 | 594.5
eigenvalues [80 102:12 | 70039 | 11.4 | 2975178 | 485.2
eigenvalues (87 103:18 | 52897 | 8.5 | 2244007 | 362.0
eigenvalues [111] 102:51 | 77080 | 12.5 | 3292172 | 533.5
optics [96] 94:03 | 47334 | 8.4 | 1985525 | 351.9
thermodynamics I [97] 91:57 | 42202 | 7.6 | 1829194 | 331.6
disc. Fourier-transformation [6] 89:24 | 88233 | 16.5 | 3832611 | 715.8
polynomial interpolation [7] 79:38 | 78190 | 16.4 | 3362383 | 703.7
surface integrals [98] 99:11 | 90992 | 15.3 | 3978159 | 668.5
stokes’ theorem [99] 89:23 | 89913 | 16.8 | 3919085 | 732.1

Table 4.2: Recorded E-Chalk sessions from courses at Freie Universitat Berlin
and at Technische Universitiat Berlin. Capsules denote short modules recorded
without listeners, the other entries are produced as full lectures held with
E-Chalk. Horizontal lines separate recordings from different authors.

it makes more sense to implement a simple custom format that is both better
readable for humans and simpler to parse by programs. Also, using XML would
introduce a structuring overhead that would noticeably increase the size of the
representation.

4.11.2 Structure

The first five lines form the header of the file, starting with the magic file marker
ecl in the first line, followed by width and height of the board in decimal ASCII
representation, a line containing the lecture’s title, and finally the background
color. All colors in the event file are stored as hexadecimal a-RGB values, even
though a-values are not yet supported. Any « other than FF (intransparent) is
currently ignored.3”

Each of the following lines contains an event, given in the order of creation
time. An event line is separated into tokens by the character $. The first token is
always the timestamp of the event, given in milliseconds relative to the lecture’s
start time. It is saved in hexadecimal formar, like all numerical values in the
event file if not stated otherwise.?® After the timestamp, tokens specify the
type of event, followed by tokens for the event-specific parameters. Any extra
trailing tokens are ignored. In the following events, these optional entries are
only given for the NOP operation, where they are used for commentaries, see

Section 6.6, which then would have to be able to parse files in an erroneous format.
37Transparency for images is supported, but the color values of images are not saved directly
in the events file, see below on image events.
38 Any usage of decimal numbers is due to historical reasons. Examples are the numbers for
image and Applet resource file and the decimal encoding for board width and height entries
in the header.

88 CHAPTER 4. BOARD SERVER

ecl

680

420

Example Lecture

££000000

O0Nopcreated 03-10-28 14:50:36 GMT+01
ed3$Form$Line$48$2a$48$59$ff00££00$3
efe$Form$Line$48$59$47$65$ff00f£00$3
[...]
31e9Form$Line$218$117$218$118$£f00££00$3
4d2e8Nopend 03-10-28 14:50:52 GMT+01
4d2e8Nopappend 03-10-28 15:05:13 GMT+01
5325$Scrollbar$6

5340$Scrollbar$16

[...]

54a5$Scrollbar$i3c
6567$Form$Text$$42$19e$££00££00$c
6e0c$Text$SetTxt$plot ([t,sin(t) ,t=-Pi..Pi]);
7406$Text$End$plot ([t,sin(t) ,t=-Pi..Pil);
83b6$Form$Image$0$3e$1a8

908a$Undo

[...]

Listing 4.2: Excerpt from a board event file.

below.

Nop, Scroll, Clear All, Undo, Redo, Terminate

The simplest event is NOP, having no mandatory parameters:
timestamp$Nop{$plain ascii text}

The board creates these at the start and end of a recording as commentary
entries: date and time are stored as a commentary token, as well as the creation
mode (created or appended). See Listing 4.2 for an example.

The events for clearing the whole board, for undo and redo also do not need
any parameters, and scrolling events use the single parameter scrolloffset, the
new vertical offset of the board’s top position:

timestamp$RemoveAll
timestamp$Undo

timestamp$Redo
timestamp$Scrollbar$scrolloffset

The terminate event is exclusively used in live transmissions to signal to a
client the end of transmission, see Section 4.12:

timestamp$Terminate

4.11. EVENT STORAGE 89

Line Segments

A line segment from point (zg, yo) to point (z1,y;) drawn with stroke radius r
in color ¢ has the form:

timestamp$Form$Line$zoSyo$x13y1rc

with all numbers given in hexadecimal. Again, see Listing 4.2 for an example.

Images

An image added to the board with (z,y) being the position of the upper left
corner is represented as

timestamp$Form$ImagePid$r Sy

with the image itself is stored in the file images/id.dat in the lecture session
directory. The id parts are created as ascending decimal numbers, but the
event-file parsers do not rely on this.

Applets and Applets Events

An Applet with (x,y) being the position of the upper left corner is represented
as:

timestamp$Form$Appletidz$y

with the HTML file containing the definition being stored as applets/id.html.
Again, the file names are created as ascending decimal numbers.
Input events on Applets are also encoded. The event

timestamp$AppletEvent$Mousenidmodxy clicks$popup{$comp}

encodes a mouse or mouse-motion event for the Applet, internally numbered n.
The integer entry id is the Java event identifier for distinguishing between mouse
pressed, mouse released, mouse moved, etc. and mod is the integer modifier key
mask for Shift, Ctrl, Alt, and/or Meta key down. The values (z,y) give the
position of the mouse event in its triggering component, clicks is the click count
for this event, for example for identifying double clicks, and popup is true or
false, marking the mouse event as a pop-up trigger on the platform where
the event was created.?® The originating component is encoded by a trailing
list of indices: the sequence ng$...$nx_1$n, means the event is on the nith
subcomponent of the ng_1th subcomponent etc. of the ngth subcomponent of
the Applet.0 If the list is empty, the mouse event is on the Applet itself.
Action events and key events have the form

timestamp$AppletEvent$Actionnid$actionname$mod{$comp}
timestamp$AppletEvent$Keynid$keycode$mod{$comp}

39The pop-up-triggering mouse event is platform-dependent. For example, on Mac OS X,
the pop-up menus are triggered by the mouse button being pressed down, on Windows on the
mouse button being released.

40To identify the event component, the client relies on the subcomponent enumerating
methods returning the elements in the same order. As the Java API does not specify this
order, it may differ among different Java environments, even though this has not been observed
in tests of E-Chalk so far.

90 CHAPTER 4. BOARD SERVER

with n, id, mod, and component sequence given, the same as for mouse events.
The entry actionname is the command string associated with the action event,
keycode is the integer key code of the key typed, pressed, or released with the
event.

Text and Text Input

The event for creating a new text form takes the following arguments: string,
its initial value; (x,y), the inital baseline position for the text; ¢, the text color;
and size, the font size. The event is defined by

timestamp$Form$Text$string$xSy$cPsize

where the string is MIME-encoded to ensure encoding-independent representa-
tion. As long as the text is in edit mode, it features a text-input cursor and
accepts editing changes from the user. The text-creating event positions the
cursor at the end of the text. When the user presses the enter key, the text
form is closed by a

timestamp$Text$End$ string

event and the cursor is removed. The string text stored in the event is the
MIME-encoded final content of the text form including any line breaks from the
board’s dynamic line breaking. The client board does not need this information
for replay, but it is used by the PDF converter. With this extra field, the PDF
converter does not have to recalculate the text layout from the automatic line
breaking done by the board.

A text is also automatically closed when a new Form is created. or when an
Undo event happens. This means there can never be more than one TextForm
receiving key input.

A key input of the printable character ¢ for an open TextForm is represented
as

timestamp$Text$Char$c

with ¢ being MIME-encoded. Some control characters, backspace and delete,
and the cursor-moving left and right arrow keys have their own events:

timestamp$Text$Backspace
timestamp$Text$Delete
timestamp$Text$Left
timestamp$Text$Right

When the user sets the whole text content using the text history (with the up
and down arrow keys), the event

timestamp$Text$SetTxt$string

is used to set the TextForm’s content to the content of the MIME-encoded
string. For pasting from the clipboard, a string is inserted at the current cursor
position. The event

timestamp$Text$Str$siring

4.12. LIVE SERVER 91

with the MIME-encoded string is used. Finally, for bringing the cursor to the
beginning of the text with the home key or to the end with the end key, the
event

timestamp$Text$Cursor$ide

allows to move the cursor to an arbitrary character index idx.

4.12 Live Server

The board’s live server thread listens at the TCP server socket for incoming con-
nections. When a client connects, a connection thread is spawned for the client
and the offset to the board’s initial time index (the offset to event timestamp
0) is sent as hexadecimal ASCII followed by a newline. This enables the client-
board Applet to synchronize its timing with the server-board timestamps. Then
the current content of the event file is flushed over the socket connection. The
connection is maintained until the server or the client terminates. Whenever a
new event is created on the board, is it sent over to all open client connections.
For a description of the client side, see Section 7.2. When the board session
ends, it sends clients a single terminate event, see Section 4.11.2.

92

CHAPTER 4. BOARD SERVER

	4.1 Painting on the Board
	4.2 Drawing Lines
	4.3 Typing Text
	4.4 Images and Applets
	4.5 Undo, Redo, and Clear All
	4.6 Custom GUI elements
	4.7 Board Resource Loading
	4.7.1 URL Loading
	4.7.2 Requests to Computer Algebra Systems
	4.7.3 Decoding
	4.7.4 Chalklets
	4.7.5 Resource Handling

	4.8 Stroke Delivery
	4.8.1 Chalklet Strokes
	4.8.2 Handwriting Recognized Strokes

	4.9 Mathematical Handwriting Recognition
	4.10 Applet Control
	4.10.1 Applet Events

	4.11 Event Storage
	4.11.1 Encoding
	4.11.2 Structure

	4.12 Live Server

