9. Experimenteller Teil

9.1 Meßgeräte und Probenpräperation

Die ¹H-NMR- und ¹³C-NMR-Spektren wurden bei einer Temperatur von 25 °C mit einem Bruker AC 250-Spektrometer aufgenommen. Als Lösungsmittel diente deuteriertes Chloroform (CDCl₃). Als innerer Standard wurde Tetramethylsilan (TMS) mit einer relativen chemischen Verschiebung von δ = 0 ppm verwendet. Für die Multiplizitäten der Spinkopplungen wurden folgende Abkürzungen verwendet: s= Singulett, d= Dublett, t= Triplett, q= Quartett, quin.= Quintett und m= unaufgelöstes Multiplett.

Die Massenspektren (MS) wurden bei der Elektronenstoß-Massenspektroskopie (*engl.: electron impact,* EI) mit einem MAT 711 (80 eV) und bei den FAB-Spektren (*fast atom bombardment*) mit einem CH 5 DF FINNIGAN MAT der Firma Varian aufgenommen.

Die Infrarot-Spektren (IR) wurden mit einem FT-IR-Interferometer 5 SXC der Firma Nicolet aufgenommen. Als Substanzträger dienten KBr- Preßlinge.

DieElementaranalysenwurdenmiteinemgaschromatographischenVerbrennungsanalysegerät Perkin Elmer 240 Elementar Analyser angefertigt.

Die **Dünnschichtchromatogramme** (**DC**) wurden mittels DC Alufolien (Kieselgel 60 F_{254}) der Firma Merk angefertigt.

Die Schmelzpunkte wurden mit einem 510 Melting Point der Firma Büchi ermittelt (unkorrigiert).

Alle während dieser Arbeit synthetisierten Porphyrine besitzen einen Schmelzpunkt, der über 300 °C liegt.

Die **Präparative Säulenchromatographie** wurde auf Kieselgel 60 (230-400 mesh) ohne Indikator durchgeführt. Die verwendeten Lösungsmittelgemische sind bei den Synthesevorschriften angegeben. **Kontaktwinkel-Messungen** wurden mit einem Goniometer der Fa. Ramé-Hart durchgeführt. Ein an der Kanüle gebildeter Wassertropfen (milli- Q^{TM} -Wasser) wurde in Kontakt mit der Oberfläche gebracht und anschließend auf ein Volumen von 2 µl vergrößert. Der Winkel zur Oberfläche wurde nach 20 s gemessen (advancing contact angle). Die Messungen erfolgten bei Raumtemperatur und ohne Möglichkeit, die Luftfeuchtigkeit zu kontrollieren.

UV/vis-Spektren wurden mit einem LAMBDA 16 Spektrometer (Perkin-Elmer) unter Verwendung von Quarz-Küvetten (Hellma) aufgezeichnet.

Rasterkraftmikroskopie

Für die rasterkraftmikroskopischen Aufnahmen wurde ein kommerzielles Gerät (*Multimode-AFM mit Nanoscope IIIa Controller, Digital Instruments, Santa Barbara, CA.*) im *tapping mode* verwendet. Die Messungen erfolgten bei Raumtemperatur. Die hier gezeigten Bilder wurden im Höhenmodus (Höhenbilder) aufgenommen, zu denen gleichzeitig die Phasenverschiebungen mit dem Zusatzgerät Extender Box EX-2 (Digital Instruments) aufgezeichnet wurden.

Bei allen Aufnahmen befand sich das Rasterkraftmikroskop zur Abschirmung von Gebäudeschwingungen auf einer mit Gummiseilen an der Decke befestigten Granitplatte. Für die Aufnahmen im *tapping mode* wurden Silizium-Cantilever (Nanosensors) mit intigrierter Siliziumspitze verwendet. Der Cantilever hat folgende Abmessungen und Eigenschaften:

- Länge $l = 122 \,\mu\text{m}$
- Resonanzfrequenz $f_0 = 274...387$ kHz
- Federkonstante $c_f = 46...60 \text{ N/m}$
- Spitzenradius r = 10 nm

Vor Beginn der Messungen wurde der Phasenwinkel des frei schwingenden Cantilevers auf 0° gesetzt. Die Auflösung pro Linie betrug in allen Fällen 512 Messpunkte.

Transmissionselektronenmikroskopie (TEM)

Als Probenträger dienten Kupfer-Drahtnetze ("Grids") mit 3 mm Durchmesser und 400 Maschen (Typ B 8010 Cu, Balzers Union), die im Hochvakuum mit einer Kohlenstoffschicht bedampft wurden.

Auf diese Kupfernetze wurden 20 µl der jeweiligen Porphyrinlösung aufgetragen. Nach einer Einwirkzeit von einer Minute wurde die Porphyrinlösung mit einem Filterpapier von der Seite entfernt, ohne dabei die Oberfläche des Grids zu berühren.

Die so präparierten Kupfernetze wurden transmissionselektronenmikroskopisch mit einem Phillips CM 12 untersucht.

Die cryo-transmissionselektronischen Aufnahmen der Zr(IV) - Octaphosphonatporphyrin 7 – Fasern in wässriger Lösung wurden wie folgt durchgeführt: 5 µl Lösung wurde auf ein Kupfernetz, das mit einem hydrophilisierten löchrigen Kohlenstoffilm beschichtet war (60 s Plasmabehandlung bei 8 W mit einer Baltec MED 020 Kleinbeschichtungsanlage), aufgetragen. Überschüssige Flüssigkeit wurde abgeblottet, um eine ultradünne Flüssigkeitsschicht in den Löchern zu bilden. Die Proben wurden sofort in flüssigem Ethan an dessen Schmelzpunkt bei 89 K eingefrohren. Anschliessend wurden die Proben unter flüssigem Stickstoff mit einem Gatan Cryo-Halter Modell 626 in ein Philips CM 12 Elektronenmikroskop überführt.

Rasterelektronenmikroskopie

Für die Aufnahmen mit dem Rasterelektronenmikroskop wurde ein Hitachi S-400 Gerät benutzt. Es wurde mit einer Beschleunigungsspannung von 15 kV, einer Magnetisierung von 150000 X und einem Arbeitsabstand von 8 mm gearbeitet.

9.2 Synthesevorschriften

9.2.1 Darstellung von (3-Brompropyl)-phosphonsäurediethylester 3

In einem 100 ml Rundkolben bei einer Badtemperatur von 150 °C wurden 20,56 ml (0,12 mol) Triethylphosphit **2** und 60,87 ml (0,60 mol) 1,3-Dibrompropan **1** erhitzt. Mit Hilfe einer Vigreux-Kolonne wurde während der folgenden 80 Minuten 10 ml Ethylbromid destilliert. Das abgekühlte Reaktionsgemisch wurde unter Wasserstrahlvakuum destilliert, um das überschüssige 1,3-Dibrompropan zu entfernen. Man erhielt 14,58 g (94 % d.Th.) einer farblosen Flüssigkeit.

¹ H-NMR (CDCl ₃):	δ= 4,20-3,90 (4H, m; OC <u>H</u> ₂ CH ₃), 3,40 (2H, t; CH ₂ -3), 2,20-2,00 (2H,				
	m; CH ₂ -2), 1,90-1,	70 (2H, m; CH ₂ -1), 1,2	25 ppm (6H, t; OCH ₂ C <u>H</u> ₃).		
<u>¹³C-NMR (CDCl₃)</u> :	δ= 61,00 (O <u>C</u> H ₂ Cl	H ₃), 33,00 (Dublett; Cl	H ₂ -3), 25,00 (Dublett; CH ₂ -1),		
	22,50 (CH ₂ -2), 15,	50 ppm (OCH ₂ <u>C</u> H ₃).			
<u>IR (KBr)</u> :	v=2988 (v _{as} -CH ₂), 2910 (v _s -CH ₂), 2872 (v-CH ₂ von P-CH ₂), 1479				
	(CH ₂ von P-CH ₂), 1250 (v-P=O), 1164, 1055-1030, 963 und 787 cm ⁻¹				
	(v- und δ -P-O-C).				
Masse (EI):	Temperatur: 40 °	С			
	m/e	rel. Int.	Zuordnung		
	258	1,49 %	$[M]^{+\bullet}$		
	179	100 %	$[M-Br]^{+\bullet}$		
	165	20,96 %	$\left[\mathrm{M}\text{-}\mathrm{CH}_{2}\mathrm{Br}\right]^{+\bullet}.$		

<u>Analyse</u> :	C ₇ H ₁₆ BrPO ₃ (259,076 g/mol)			mol)
	ber.:	C 32,45 %	Н	6,23 %
	gef.:	C 31,68 %	Η	5,88 %

9.2.2 Darstellung von (3-{3'-[3''-(Diethoxyphosphoryl)-propoxy]-5'-formylphenoxy}propyl)-phosphonsäurediethylerster 5

Unter Argon-Schutzgasatmosphäre wurden 3 g (0,022 mol) 3,5-Dihydroxybenzaldehyd 4 und 14,34 g (0,044 mol) Cäsiumcarbonat in 200 ml abs. DMF gelöst. Nach 15 Minuten Rühren wurden 11,40 g (0,044 mol) (3-Brompropyl)-phosphonsäurediethylester **3**, gelöst in 50 ml abs. DMF, dem Reaktionsgemisch zugetropft und über Nacht rühren gelassen.

Zur Aufarbeitung wurden 500 ml Dichlormethan zugegeben und nacheinander mit 500 ml Wasser, 500 ml verdünnter, wässriger Natriumhydroxid-Lösung und erneut mit 500 ml Wasser ausgeschüttelt. Anschließend wurde die organische Phase über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum entfernt.

Durch zweimalige Säulenchromatographie (Säule #1 ($R_f = 0,10$): Kieselgel; Essigsäureethylester/*n*-Hexan 4:1; Säule #2 ($R_f = 0,60$): Kieselgel; Chloroform/Acetonitril/n-Hexan/Methanol 10:10:1:2) gelang die Isolierung von 6,26 g (58,32 % d.Th.) eines gelben Öls.

- $\frac{^{1}\text{H-NMR (CDCl}_{3})}{^{1}\text{H-NMR (CDCl}_{3})}: \quad \delta = 9,85 \text{ (1H, s; CHO), 6,95 (2H, s; Ar-H), 6,65 (1H, s; Ar-H), 4,20 4,00 (12H, m; OCH_2, POCH_2), 2,20-2,00 (4H, m; CH_2P), 2,00-1,80$ $(4H, m; CH_2CH_2P), 1,25 ppm (12H, t; POCH_2CH_3).$
- $\frac{^{13}\text{C-NMR} (\text{CDCl}_3)}{(\text{Ar-C}_2, \text{Ar-C}_6 \text{ und } \text{Ar-C}_4), 68,00 (\text{Ar-C}_2), 62,00 (\text{PO}_2\text{H}_2), 22,25 (\text{P}_2\text{H}_2), 21,00 (\text{PCH}_2\text{CH}_2), 17,50 \text{ ppm} (\text{POCH}_2\text{CH}_3).}$
- <u>IR (KBr)</u>: v= 3081 (v-arom. C-H), 2982 (v_{as}-CH₂), 2908 (v_s-CH₂), 2872 (v-CH₂ von P-CH₂), 2729 (v-C-H in CHO), 1698 (v-C=O in CHO), 1594 (Benzol-Ring), 1242 (v-C-O in Arylalkylether und v-P=O), 1165, 1054, 961 und 786 cm⁻¹ (v-und δ-P-O-C).

Masse (EI):	Temperatur:	Temperatur: 230 °C				
	m/e	rel. Int.	Zuordnung			
	494	15,92 %	$[M]^{+\bullet}$			
	343	61,09 %	$\left[\text{M-CH}_2\text{PO}(\text{OC}_2\text{H}_5)_2\right]^{+\bullet}$			
	329	100 %	$[M-(CH_2)_2PO(OC_2H_5)_2]^{+\bullet}$.			

<u>Analyse</u> :	$C_{21}H_3$	₆₆ P ₂ O ₉ (494,45	8 g/mol)
	ber.:	C 51,01 %	Н 7,34 %
	gef.:	C 49,22 %	Н 6,89 %.

9.2.3 Darstellung von *meso*-Tetrakis-[3,5-bis-{3'-(diethoxyphosphoryl)-propoxy}phenyl]-porphyrin 6

In 200 ml Propionsäure wurden 6 g (0,012 mol) (3-{3'-[3''-(Diethoxyphosphoryl)-propoxy]-5'-formylphenoxy}-propyl)-phosphonsäurediethylester **5** gelöst und auf 120 °C erhitzt. Nachdem 0,83 ml (0,012 mol) frisch destilliertes Pyrrol langsam zugetropft worden war, wurde das Reaktionsgemisch 6h bei 120 °C unter Rückfluss erhitzt und anschliessend über Nacht bei Raumtemperatur rühren gelassen.

Der grösste Teil der Propionsäure wurde im Vakuum entfernt. Um den Rest Propionsäure zu entfernen, wurde der schwarze Rückstand mit 250 ml Dichlormethan aufgenommen, mit 200 ml verdünnter, wässriger Natriumhydroxid-Lösung und anschliessend mit 200 ml Wasser gewaschen. Die organische Phase wurde über Natriumsulfat getrocknet und im Vakuum eingeengt.

Durch Säulenchromatographie (Kieselgel, Chloroform/Acetonitril/*n*-Hexan/Methanol 10:10:1:2; $R_f = 0,34$) gelang die Isolierung von 1,91 g (7,26 % d.Th.) einer violetten Substanz.

- ¹<u>H-NMR (CDCl₃)</u>: δ= 8,90 (8H, s; β-H), 7,25 (8H, s; 2'- und 6'-Ar-H), 6,85 (4H, s; 4'-Ar-H), 4,25-4,00 (48H, m; POCH₂, OCH₂), 2,25-2,05 (16H, m; PCH₂), 2,05-1,90 (16H, m; PCH₂C<u>H₂</u>), 1,30 (48H, t; POCH₂C<u>H₃</u>), -2,95 (2H, m; NH) ppm.
- ¹³C-NMR (CDCl₃): δ = 158,00 (Phenyl-C-3 und Phenyl-C-5), 143,50 (Pyrrol-α-C), 131,00 (Pyrrol-β-C), 119,60 (Phenyl-C-1), 114,00 (*meso*-C), 101,50 (Phenyl-C-2 und Phenyl-C-4), 68,00 (-<u>C</u>H₂-O-Ar), 62,00 (PO<u>C</u>H₂), 22,25 (P<u>C</u>H₂), 21,00 (PCH₂<u>C</u>H₂), 17,50 ppm (POCH₂<u>C</u>H₃).

<u>UV/vis (CHCl₃)</u>: $\lambda_{max} = 421, 514, 550, 590 \text{ und } 647 \text{ nm}.$

<u>IR (KBr)</u>: v= 3317 (v-NH; Pyrrol), 3080 (v-arom. C-H), 2979 (v_{as}-CH₂), 2905 (v_s-CH₂), 2874 (v-CH₂ von P-CH₂), 1589 (Benzol-Ring), 1242 (v-C-O in Arylalkylether und v-P=O), 1163,1054,1026, 959 und 803 (v- und δ-P-O-C), 738 cm⁻¹ (π-NH; Pyrrol).

Masse (pos. FAB):

	m/e	rel. Int.	Zuordnung
	2168	100 %	$[M]^{+\bullet}$
	2031	42,5 %	$[M-PO(OC_2H_3)_2]^{+\bullet}.$
Analyse:	$C_{100}H_{150}N_4P_8O_{32}$ (21)	168,088 g/mol)	
	ber.: C 55,40 %	H 6,97 % N 2	2,58 %
	gef.: C 52,16 %	H 6,59 % N 2	2,59 %.
Schmp.:	> 300 °C		

9.2.4 Darstellung von *meso*-Tetrakis-[3,5-bis-(3'-phosphonopropoxy)-phenyl]porphyrin 7

Unter Argon-Schutzgasatmosphäre wurden bei einer Temperatur von -40 °C zu 200 mg (1,16·10⁻⁴ mol) *meso*-Tetrakis-[3,5-bis-{3'-(diethoxyphosphoryl)-propoxy}-phenyl]porphyrin **6**, gelöst in 20 ml abs. Chloroform, 0,26 ml (1,86·10⁻³ mol) Trimethylsilyljodid zugetropft. Nachdem das Reaktionsgemisch auf Raumtemperatur gebracht wurde, wurde das überschüssige Trimethylsilyljodid im Vakuum entfernt, 5 ml Wasser zugegeben, 5 Minuten gerührt und im Vakuum das Lösungsmittel sowie alle Hydrolysenebenprodukte entfernt. Man erhielt 0,14 g (94 % d.Th.) violette, metallisch glänzende Plättchen.

<u>¹H-NMR (DMSO)</u>: δ = 8,90 (8H, s; β-H), 7,50 (8H, s; 2'- und 6'-Ar-H), 7,05 (4H, s; 4'-Ar-H), 4,25-4,10 (16H, m; OCH₂), 2,15-1,95 (16H, m; PCH₂), 1,95-1,75 (16H, m; PCH₂CH₂) ppm.

¹³C-NMR (DMSO): δ = 158,00 (Phenyl-C-3 und Phenyl-C-5), 145,00 (Pyrrol-α-C), 129,00 (Pyrrol-β-C), 121,00 (Phenyl-C-1), 119,00 (*meso*-C), 102,00 (Phenyl-C-2 und Phenyl-C-4), 68,00 (-<u>C</u>H₂-O-Ar), 25,00 (P<u>C</u>H₂), 22,00 ppm (PCH₂<u>C</u>H₂).

IR (KBr):v= 2875 und 2331 (v-OH in P-OH innerhalb H-Brücken), 1600 (v-OHin P-OH), 1590 (Benzol-Ring), 1490 (v-CH2 von P-CH2), 1165(v-P=O), 732 cm⁻¹ (π -NH; Pyrrol).

<u>UV/vis (H₂O, pH 7)</u>: λ_{max} = 418, 518, 560, 641 und 676 nm.

Masse (pos. FAB):

m/e	rel. Int.	Zuordnung
1720	4,80 %	$[M+H]^{+\bullet}$
1580	9,20 %	$[M-O(CH_2)_3PO(OH)_2]^{+\bullet}.$

<u>Schmp.</u>: > 300 °C

9.2.5 Darstellung von [3-(4'-Formylphenoxy)-propyl]-phosphonsäurediethylester 9

Unter Argon-Schutzgasatmosphäre wurden 10 g (0,082 mol) 4-Hydroxybenzaldehyd **8** und 26,72 g (0,082 mol) Cäsiumcarbonat in 300 ml abs. DMF gelöst. Nach 15minütigem Rühren wurden 21,24 g (0,082 mol) (3-Brompropyl)-phosphonsäurediethylester **3**, gelöst in 50 ml abs. DMF, dem Reaktionsgemisch zugetropft und über Nacht rühren gelassen. Zur Aufarbeitung wurden 500 ml Dichlormethan zugegeben und nacheinander mit 500 ml Wasser, 500 ml verdünnter, wässriger Natriumhydroxid-Lösung und erneut mit 500 ml Wasser ausgeschüttelt. Anschliessend wurde die organische Phase über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum entfernt. Durch zweimalige Säulenchromatographie [Säule #1 ($R_f = 0,20$): Kieselgel; Essigsäureethylester/*n*-Hexan 4:1; Säule #2 ($R_f = 0,50$): Kieselgel; Chloroform/Acetonitril/*n*-Hexan/Methanol 10:10:1:1] gelang die Isolierung von 9,45 g (76,83 % d.Th.) eines gelben Öls.

¹<u>H-NMR (CDCl₃)</u>: δ= 9,70 (1H, s; CHO), 7,65 (2H, d; *ortho*-Ar-H), 6,80 (2H, d; *meta*-Ar-H), 3,90 (6H, m; OCH₂, POCH₂), 1,90-2,10 (2H, m; CH₂P), 1,90-1,70 (2H, m; C<u>H₂CH₂P), 1,15 ppm (6H, t; POCH₂C<u>H₃).</u>
</u>

 $\frac{^{13}\text{C-NMR} (\text{CDCl}_3)}{(\text{Ar-C}_1), 115,00} \text{ (CHO)}, 162,50 \text{ (Ar-C}_4), 132,00 \text{ (Ar-C}_2 \text{ und } \text{Ar-C}_6), 129,95 \text{ (Ar-C}_1), 115,00 \text{ (Ar-C}_3 \text{ und } \text{Ar-C}_5), 68,00 \text{ (Ar-O}_2\text{H}_2), 61,50 \text{ (PO}_2\text{H}_2), 22,20 \text{ (P}_2\text{H}_2), 20,05 \text{ (PCH}_2\text{C}_2\text{H}_2), 17,50 \text{ ppm} \text{ (POCH}_2\text{C}_3\text{H}_3).}$

Masse (EI):	Temperatur:	120 °C	
	m/e	rel. Int.	Zuordnung
	300	8,89 %	$[M]^{+\bullet}$
	255	2,53 %	$\left[\text{M-OC}_2\text{H}_5\right]^{+\bullet}$
	179	53,09 %	[M-O-Ar-CHO] ^{+•}

- <u>IR (KBr)</u>: v= 3078 (v-arom. C-H), 2997 (v_{as}-CH₂), 2900 (v_s-CH₂), 2850 (v-CH₂ von P-CH₂), 2730 (v-C-H in CHO), 1694 (v-C=O in CHO), 1602 (Benzol-Ring), 1250 (v-C-O in Arylalkylether und v-P=O), 1165, 1050, 961 und 840 cm⁻¹ (v-und δ-P-O-C).
- <u>Analyse</u>: C₁₄H₂₁BrPO₅ (300,291 g/mol) ber.: C 56,00% H 7,05 % gef.: C 56,07 % H 6,94 %

Während der säulenchromatographischen Reinigung des 4-(3'-Propoxyphosphonsäurediethylester)benzaldehyds **9** gelang es die als Nebenprodukt auftretende 4-[3'-(Diethoxyphosphoryl)propoxy]-benzoesäure **9a** ($R_f = 0,10$) und den 4-{3-[3-(4-Formylphenoxy)-propoxy]propoxy}-benzaldehyd **9b** ($R_f = 0,80$) zu isolieren und mittels ¹H-NMR-Spektroskopie und Massenspektroskopie zu charakterisiert.

4-[3'-(Diethoxyphosphoryl)-propoxy]-benzoesäure 9a

¹<u>H-NMR (CDCl₃)</u>: δ= 10,00 (1H, m; COOH), 7,90 (2H, d; *ortho*-Ar-H), 6,80 (2H, d; *meta*-Ar-H), 4,05-3,90 (6H, m; OCH₂, POCH₂), 2,05-1,95 (2H, m; CH₂P), 1,95-1,75 (2H, m; CH₂CH₂P), 1,15 ppm (6H, t; POCH₂CH₃).

Masse (EI):	Temperatur:	120 °C	
	m/e	rel. Int.	Zuordnung
	316	22,62 %	$[M]^{+\bullet}$
	271	6,76 %	$\left[\text{M-OC}_2\text{H}_5\right]^{+\bullet}$
	179	100 %	$\left[\mathrm{M-PO}(\mathrm{OC}_{2}\mathrm{H}_{5})_{2}\right]^{+\bullet}.$

4-{3-[3-(4-Formylphenoxy)-propoxy]-propoxy}-benzaldehyd 9b

<u>¹H-NMR (CDCl₃)</u>: δ= 9,90 (2H, s; CHO), 7,90 (4H, d; *ortho*-Ar-H), 6,95 (4H, d; *meta*-Ar-H), 4,10 (4H, t; Ar-OCH₂), 3,75 (4H, t; Ar-O(CH₂)₂C<u>H₂</u>), 2,05 ppm (6H, q; Ar-OCH₂ C<u>H₂</u>).

Masse (EI):	Temperatur:	100 °C	
	m/e	rel. Int.	Zuordnung
	342	100 %	$[M]^{+\bullet}$
	212	7,23 %	$[M-OHC-Ar-O]^{+\bullet}$
	179	8,64 %	$[OHC-Ar-O(CH_2)_3O]^+$
	163	11,71 %	$[OHC-Ar-O(CH_2)_3]^{+\bullet}$
	135	33,27 %	$[OHC-Ar-OCH_2]^{+\bullet}$
	121	20,18 %	$[OHC-Ar-O]^{+\bullet}$.

9.2.6 Darstellung von *meso*-Tetrakis[4-{3'-(diethoxyphosphoryl)-propoxy}-phenyl]porphyrin 10

In 200 ml Propionsäure wurden 9,45 g (0,032 mol) [3-(4'-Formylphenoxy)-propyl]phosphonsäurediethylester 9 gelöst und auf 120 °C erhitzt. Nachdem 2,21 ml (0,032 mol) frisch destilliertes Pyrrol langsam zugetropft worden war, wurde das Reaktionsgemisch 6h bei 120 °C unter Rückfluss erhitzt und anschliessend über Nacht bei Raumtemperatur rühren gelassen.

Der grösste Teil der Propionsäure wurde im Vakuum entfernt. Um den Rest Propionsäure zu entfernen, wurde der schwarze Rückstand mit 250 ml Dichlormethan aufgenommen, mit 200 ml verdünnter, wässriger Natriumhydroxid-Lösung und anschliessend mit 200 ml Wasser gewaschen. Die organische Phase wurde über Natriumsulfat getrocknet und im Vakuum eingeengt.

Durch Säulenchromatographie (Kieselgel, Chloroform/Acetonitril/*n*-Hexan/Methanol 10:10:1:1; $R_f = 0,13$) gelang die Isolierung von 5 g (11,42 % d.Th.) einer violetten Substanz.

<u>¹H-NMR (CDCl₃)</u>: δ= 8,95 (8H, s; β-H), 8,05 (8H, d; 2'- und 6'-Ar-H), 7,10 (8H, d; 3'- und 5'-Ar-H), 4,15 (24H, m; POCH₂, OCH₂), 2,40-2,20 (8H, m; PCH₂), 2,20-2,00 (8H, m; PCH₂C<u>H₂</u>), 1,30 (24H, t; POCH₂C<u>H₃</u>), -2,80 ppm (2H, m; NH).

- $\frac{^{13}\text{C-NMR} (\text{CDCl}_3)}{^{13}\text{C-NMR} (\text{CDCl}_3)}: \delta = 158,00 \text{ (Phenyl-C-4)}, 136,00 \text{ (Pyrrol-α-C)}, 135,00 \text{ (Phenyl-C-2 und Phenyl-C-6)}, 131,00 \text{ (Pyrrol-β-C)}, 119,90 \text{ (Phenyl-C-1)}, 113,00 \text{ (meso-C, Phenyl-C-3 und Phenyl-C-5)}, 68,00 \text{ (-CH}_2\text{-O-Ar)}, 61,00 \text{ (POCH}_2\text{)}, 22,25 \text{ (PCH}_2), 21,00 \text{ (PCH}_2\text{CH}_2), 17,50 \text{ ppm} (POCH}_2\text{CH}_3\text{)}.$
- <u>UV/vis (CHCl₃)</u>: $\lambda_{max} = 422, 518, 555, 593 \text{ und } 650 \text{ nm}.$
- <u>IR (KBr)</u>: v= 3317 (v-NH; Pyrrol), 3034 (v-arom. C-H), 2979 (v_{as}-CH₂), 2925 (v_s-CH₂), 2882 (v-CH₂ von P-CH₂), 1607 (Benzol-Ring), 1242 (v-C-O in Arylalkylether und v-P=O), 1178, 1054, 1030, 965 und 803 (v- und δ-P-O-C), 742 cm⁻¹ (π-NH; Pyrrol).

Masse (pos. FAB):	Temperatur:	120 °C	
	m/e	rel. Int.	Zuordnung
	1391	99,00 %	$[M + H^+]^{+\bullet}$
	1376	10,00 %	$[M-CH_3]^{+\bullet}$
	1362	17,50 %	$\left[\text{M-C}_2\text{H}_5\right]^{+\bullet}$
	1346	5,00 %	$[M-OC_2H_5]^{+\bullet}$
	1253	18,09 %	$\left[\text{M-PO}(\text{OC}_2\text{H}_5)_2\right]^{+\bullet}$
	1225	10,00 %	$\left[\text{M-(CH_2)_2PO(OC_2H_5)_2}\right]^{+\bullet}$
	1212	21,03 %	$[M-(CH_2)_3PO(OC_2H_5)_2]^{+\bullet}$.

Analyse:	C ₇₂ H ₉₀ N ₄ P ₄ O ₁₆ (1392,428 g/mol)				
	ber.:	C 62,11 %	Н 6,59%	N	4,02 %
	gef.:	C 62,36 %	Н 6,48 %	N	3,61 %.

9.2.7 Darstellung von meso-Tetrakis[4-(3'-phosphonopropoxy)-phenyl]-porphyrin 11

Unter Argon-Schutzgasatmosphäre wurden bei einer Temperatur von -40 °C zu 0,10 g (7,2 $\cdot 10^{-5}$ mol) *meso*-Tetrakis[4-{3'-(diethoxyphosphoryl)-propoxy}-phenyl]-porphyrin **10**, gelöst in 10 ml abs. Chloroform, 0,08 ml (5,8 $\cdot 10^{-4}$ mol) Trimethylsilyljodid zugetropft. Nachdem das Reaktionsgemisch auf Raumtemperatur gebracht wurde, wurde das überschüssige Trimethylsilyljodid im Vakuum entfernt, 5 ml Wasser zugegeben, 5 Minuten gerührt und im Vakuum das Lösungsmittel sowie alle Hydrolysenebenprodukte entfernt. Man erhält 81 mg (98 % d.Th.) violette, metallisch glänzende Plättchen.

- <u>¹H-NMR (MeOD)</u>: δ = 8,80 (8H, s; β-H), 8,00 (8H, d; 2'- und 6'-Ar-H), 7,30 (8H, d; 3'und 5'-Ar-H), 4,15 (8H, t; OCH₂), 2,40-2,20 (8H, m; PCH₂), 2,00-1,80 (8H, m; PCH₂C<u>H₂</u>) ppm.
- ¹³C-NMR (MeOD): δ = 161,00 (Phenyl-C-4), 137,25 (Pyrrol-α-C), 136,00 (Pyrrol-β-C, Phenyl-C-2 und Phenyl-C-6), 121,00 (Phenyl-C-1), 118,00 (*meso*-C, Phenyl-C-3 und Phenyl-C-5), 70,00 (-<u>C</u>H₂-O-Ar), 27,50 (P<u>C</u>H₂), 25,00 ppm (PCH₂<u>C</u>H₂).

<u>UV/vis (H₂O, pH 6)</u>: $\lambda_{max} = 419, 521, 560, 580 \text{ und } 642 \text{ nm}.$

<u>IR (KBr)</u>: v= 3426 (v-OH), 2926 und 2336 (v-OH in P-OH innerhalb H-Brücken), 1639 (v-OH in P-OH), 1603 (Benzol-Ring), 1507 (v-CH₂ von P-CH₂), 1174 (v-P=O), 728 cm⁻¹ (π-NH; Pyrrol).

Masse (pos. FAB):	m/e	rel. Int.	Zuordnung
	1167	8,00 %	$[M]^{+\bullet}$.

<u>Schmp.</u>: > 300 °C

9.2.8 Darstellung von 3-(Hydroxydimethylsilyl)propanphosphonsäure 15

In einem ausgeheitzten 50 ml Kolben wurden unter Argonschutzgasatmosphäre 5,80 ml (20 mmol) Bis(3-chlorpropyl)tetrametyldisiloxan **12** und 34 ml (200 mmol) Trietylphosphit **2** 10 Tage bei 160 °C erhitzt. Die Reaktion wurde mittels ¹H-NMR-Spektroskopie überwacht, um die quantitative Umsetzung zum Bis(3-phosphonsäurediethylesterpropyl)tetramethyldisiloxan **13** zu gewährleisten.

$\frac{^{1}\text{H-NMR} (\text{CDCl}_{3})}{^{1}\text{H-NMR} (\text{CDCl}_{3})}: \quad \delta = 4,25 \text{ (8H, m; POCH}_{2}\text{), 2,00-1,60 (8H, m; PCH}_{2}\text{CH}_{2}\text{), 1,45 (12H, t; POCH}_{2}\text{CH}_{3}\text{), 0,80-0,70 (4H, m; SiCH}_{2}\text{), 0,15 ppm (12H, s; SiCH}_{3}\text{).}$

Der Überschuß an Triethylphosphit **2** wurde mittels Vakuumdestillation entfernt und der ölige Rückstand mit 20 ml einer 37 %iger Salzsäure für 15 Stunden bei 100 °C unter Rückfluß erhitzt. Das Bis(3-phosphonsäurediethylesterpropyl)tetramethyldisiloxan **13**, die monomere 3-(Chlordimethylsilyl)- **14** und 3-(Hydroxydimethylsilyl)propanphosphonsäure **15**, die miteinander im Gleichgewicht stehen, wurden nicht isoliert, sondern mit Methanol auf ein Volumen von 250 ml aufgefüllt und als stabile Lösung aufbewahrt.

9.2.9 Darstellung von (3-Mercaptopropyl)-phosphonsäurediethylester 16

5,18 g (0,02 mol) (3-Brompropyl)-phosphonsäurediethylester **3** und 1,67 g (0,022 mol) Thioharnstoff wurden in 50 ml 95 %igem Ethanol unter Rückfluss erhitzt. Nach 6 h wurde das Ethanol im Vakuum entfernt und man erhielt ein farbloses Öl.

Das farblose Öl wurde mit 7,6 g (0,04 mol) Natriumdisulfit in einem Gemisch aus 50 ml Wasser und 50 ml Chloroform 2 h unter Rückfluss erhitzt. Danach wurde die wässrige Phase abgetrennt und zweimal mit je 50 ml Chloroform gewaschen. Die organischen Phasen wurden vereinigt, über Magnesiumsulfat getrocknet und das Lösungsmittel im Vakuum entfernt. Man erhielt 3,6 g eines gelben Öls (85 % d.Th.).

<u>¹H-NMR (CDCl₃)</u>: δ = 3,90 (4H, m; POCH₂), 2,40 (2H, t; C<u>H</u>₂SH), 2,50-2,80 (4H, m; PC<u>H</u>₂C<u>H</u>₂), 1,10 ppm (POCH₂CH₃).

 $\frac{{}^{13}\text{C-NMR} (\text{CDCl}_3)}{16,5 \text{ ppm} (\text{POCH}_2), 27,2 (\text{CH}_2\text{SH}), 25,0 (\text{PCH}_2), 23,0 (\text{PCH}_2\underline{\text{CH}}_2), 16,5 \text{ ppm} (\text{POCH}_2\underline{\text{CH}}_3).$

<u>IR (KBr)</u>: v=2982 (v_{as}-CH₂), 2920 (v_s-CH₂), 2870 (v-CH₂ von P-CH₂), 2528 (v-SH), 1479 (CH₂ von P-CH₂), 1250 (v-P=O), 1164, 1054 bis 1028, 963 und 828 cm⁻¹ (v- und δ-P-O-C).

9.2.10 Darstellung von (3-Mercaptopropyl)-phosphonsäure 17

Unter Argon-Schutzgasatmosphäre wurden bei einer Temperatur von -40 °C zu 1 g (0,0047 mol) (3-Mercaptopropyl)-phosphonsäurediethylester **16**, gelöst in 20 ml abs. Chloroform, 2,68 ml (0,018 mol) Trimethylsilyljodid zugetropft. Nachdem das Reaktionsgemisch 30 Minuten bei -40 °C gerührt wurde, wurde es 1 h unter Rückfluss erhitzt, auf Raum-temperatur gebracht und anschliessend mit 50 ml Wasser hydrolysiert. Die wässrige Phase wurde mit 50 nml Chloroform gewaschen und das Lösungsmittel im Vakuum entfernt. Man erhielt 0,7 g eines wasser- und methanollöslichen, gelben Öls (95 % d.Th.).

- $\frac{^{1}\text{H-NMR} (D_{2}\text{O})}{(2\text{H}, \text{ t}; \text{ C}\underline{H}_{2}\text{SH}), 1,80\text{-}1,90 (2\text{H}, \text{ m}; \text{ PCH}_{2}), 1,90\text{-}2,00 \text{ ppm}}{(\text{PCH}_{2}\text{C}\underline{H}_{2})}.$
- IR (KBr):v= 2928 und 2335 (v-OH in P-OH innerhalb H-Brücken), 1635 (v-OHin P-OH), 1440 (v-CH₂ von P-CH₂), 1146 cm⁻¹ (v-P=O).

9.3 Darstellung von Porphyrin-Türmen auf Siliziumwafern

9.3.1 Bei der self-assembly verwendete Materialien und Schreibweisen

Siliziumwafer

Alle verwendeten Siliziumwafer haben eine Fläche von 1 cm² und eine (111)-Orientation. Die an der Oberfläche chemisch veränderten Siliziumwafer wurden als modifizierte Siliziumwafer bezeichnet und mit römischen Zahlen nummeriert.

milli-QTM-Wasser

Bei den allen wässrigen self-assembly- und Waschprozessen wurde milli-QTM-Wasser verwendet. Zur Herstellung von milli-QTM-Wasser wurde das *ZFM Q 230 04 Standard System* der Firma MILLIPORE GmbH verwendet.

meta-n Türme

Bei der Darstellung der n Türme wurde das *meso*-Tetrakis[3,5-bis(3'-propoxyphosphon-säure)phenyl]porphyrin 7 verwendet.

para-n Türme

Bei der Darstellung der n Türme wurde das *meso*-Tetrakis[4-(3'-propoxyphosphonsäure)phenyl]porphyrin **11** verwendet.

Kurzschreibweise für Porphyrin-Lösungen

Bei allen self-assembly-Prozessen wurden für die verwendeten Porphyrin-Lösungen folgende Kurzschreibweisen eingeführt:

Lösungsmittel:	milli-Q TM -Wasser	Methanol	Acetonitril
	<i>meta</i> -H ₂ O	meta-MeOH	<i>meta</i> -N-Acetonitril
		meta-N-MeOH	para-N-Acetonitril

meta	:	meso-Tetrakis[3,5-bis(3'-propoxyphosphonsäure)phenyl]porphyrin 7

para : meso-Tetrakis[4-(3'-propoxyphosphonsäure)phenyl]porphyrin 11

N : Tetrabutylammoniumhydroxid

9.3.2 Darstellung der zur self-assembly verwendeten Porphyrin-Lösungen

meta-H₂O (10⁻⁶ molare Porphyrin-Lösung):

Verwendung einer 10⁻⁶ molaren, wässrigen *meso*-Tetrakis[3,5-bis(3'-propoxyphosphonsäure)-phenyl]porphyrin **7** - Lösung.

Der pH-Wert des milli-QTM-Wassers wurde mit wässriger Natriumhydroxid-Lösung oder mit Salzsäure eingestellt.

meta-MeOH (10⁻⁶ molare Porphyrin-Lösung):

Verwendung einer 10⁻⁶ molaren, methanolischen *meso*-Tetrakis[3,5-bis(3'-propoxyphosphon-säure)phenyl]porphyrin **7** - Lösung.

meta-N-MeOH (10⁻⁶ molare Porphyrin-Lösung):

Zu einer 10^{-6} molaren, methanolischen *meso*-Tetrakis[3,5-bis(3'-propoxyphosphonsäure)phenyl]porphyrin **7** - Lösung wurde 1 µl einer 1,5 molaren, wässrigen Tetrabutylammoniumhydroxid-Lösung gegeben.

meta-N-Acetonitril (10⁻⁶ molare Porphyrin-Lösung):

1 μl einer 10⁻³ molaren, wässrigen *meso*-Tetrakis[3,5-bis(3'-propoxyphosphonsäure)phenyl]porphyrin 7 - Lösung wurde mit 1ml Acetonitril aufgefüllt und anschliessend mit 1μl einer 1,5 molaren, wässrigen Tetrabutylammoniumhydroxid-Lösung versetzt.

para-N-Acetonitril (10⁻⁶ molare Porphyrin-Lösung):

1 μ l einer 10⁻³ molaren, wässrigen *meso*-Tetrakis[4-(3'-propoxyphosphonsäure)phenyl]porphyrin **11** - Lösung wurde mit 1ml Acetonitril aufgefüllt und anschliessend mit 1 μ l einer 1,5 molaren, wässrigen Tetrabutylammoniumhydroxid-Lösung versetzt.

10.3.3 Darstellung der mit Phosphonsäuregruppen modifizierten Siliziumwafer II

In einem 50 ml Erlenmeyerkolben wurden 6 Siliziumwafer I bei einer Temperatur von 60 °C in 20 ml einer methanolischen 3-(Hydroxydimethylsilyl)propanphosphonsäure 15 - Lösung erhitzt. Nach 3 Tagen wurde jeder Siliziumwafer mit 5 ml Methanol gewaschen und anschliessend 10 Sekunden mit milli-QTM-Wasser gespühlt. Das auf der Oberfläche

zurückbleibende Wasser wurde von der Seite mit Filterpapier abgesaugt, ohne die Oberfläche zu berühren.

9.3.4 Darstellung von zirkonierten, mit Phosphonsäuregruppen modifizierten Siliziumwafer III

Die mit Phosphonsäuregruppen modifizierten Siliziumwafer II wurden mit 0,2 ml einer 10⁻³ molaren, wässrigen Zirkonylchlorid-Octahydrat-Lösung benetzt und nach 15 Minuten 10 Sekunden mit milli-QTM-Wasser gespühlt. Das auf der Oberfläche zurückbleibende Wasser wurde von der Seite mit Filterpapier abgesaugt, ohne die Oberfläche zu berühren.

Da der Kontaktwinkel kleiner war als 10 Grad, blieb ein dünner Wasserfilm auf dem Siliziumwafer III zurück, den man eintrocknen liess.

9.3.5 Darstellung von *meta-*1 Türmen auf zirkonierten Siliziumwafern III unter Verwendung der wässrigen Porphyrin-Lösung *meta-*H₂O

Die zirkonierten Siliziumwafer **III** wurden mit 0,2 ml der Porphyrin-Lösung *meta*-H₂O benetzt und nach 15 Sekunden 10 Sekunden mit milli-QTM-Wasser gespühlt. Das auf der Oberfläche zurückbleibende Wasser wurde von der Seite mit Filterpapier abgesaugt, ohne die Oberfläche zu berühren.

Da der Kontaktwinkel kleiner war als 10 Grad, blieb ein dünner Wasserfilm auf dem Siliziumwafer zurück, den man eintrocknen liess.

Diese Präperation wurde mit den pH-Werten 2-10 durchgeführt.

9.3.6 Darstellung von *meta*-1 Türmen auf zirkonierten Siliziumwafern III unter Verwendung der methanolischer Porphyrin-Lösung *meta*-MeOH

Die zirkonierten Siliziumwafer III wurden mit 0,2 ml der Porphyrin-Lösung *meta*-MeOH benetzt und nach 15 Sekunden 10 Sekunden mit milli-QTM-Wasser gespühlt. Das auf der

Oberfläche zurückbleibende Wasser wurde von der Seite mit Filterpapier abgesaugt, ohne die Oberfläche zu berühren.

Da der Kontaktwinkel kleiner war als 10 Grad, blieb ein dünner Wasserfilm auf dem Siliziumwafer zurück, den man eintrocknen liess.

9.3.7 Darstellung von *meta*-1 Türmen auf zirkonierten Siliziumwafern III unter Verwendung der methanolischer Porphyrin-Lösung mit Tetrabutylammoniumhydroxid *meta*-N-MeOH

Die zirkonierten Siliziumwafer III wurden mit 0,2 ml der Porphyrin-Lösung *meta*-N-MeOH benetzt und nach 15 Sekunden 10 Sekunden mit milli-QTM-Wasser gespühlt. Das auf der Oberfläche zurückbleibende Wasser wurde von der Seite mit Filterpapier abgesaugt, ohne die Oberfläche zu berühren.

Da der Kontaktwinkel kleiner war als 10 Grad, blieb ein dünner Wasserfilm auf dem Siliziumwafer zurück, den man eintrocknen liess.

9.3.8 Darstellung von *meta*-1 Türmen auf zirkonierten Siliziumwafern III unter Verwendung der acetonitrilischen Porphyrin-Lösung *meta*-N-Acetonitril

Die zirkonierten Siliziumwafer **III** wurden mit 0,2 ml *meta*-N-Acetonitril benetzt und nach 15 Sekunden mit 5 ml Acetonitril gespühlt. Das auf der Oberfläche zurückbleibende Acetonitril wurde von der Seite mit Filterpapier abgesaugt, ohne die Oberfläche zu berühren.

9.3.9 Darstellung von zirkonierten meta-1 Türmen auf zirkonierten Siliziumwafern III

Die mit *meta*-1 Türmen modifizierten Siliziumwafer **III** wurden mit 0,2 ml einer 10⁻³ molaren, wässrigen Zirkonylchlorid-Octahydrat-Lösung benetzt und nach 15 Sekunden mit 5 ml Acetonitril gespühlt. Das auf der Oberfläche zurückbleibende Acetonitril wurde von der Seite mit Filterpapier abgesaugt, ohne die Oberfläche zu berühren.

9.3.10 Darstellung von *meta-2* Türmen auf zirkonierten Siliziumwafern III unter Verwendung der Porphyrin-Lösung *meta-N-Acetonitril*

Die mit zirkonierten 1 Türmen modifizierten Siliziumwafer III wurden mit 0,2 ml *meta*-N-Acetonitril benetzt und nach 15 Sekunden mit 5 ml Acetonitril gespühlt. Das auf der Oberfläche zurückbleibende Acetonitril wurde von der Seite mit Filterpapier abgesaugt, ohne die Oberfläche zu berühren

9.3.11 Darstellung von 3 - und höherwertigen *meta*-n Türmen auf zirkonierten Siliziumwafern III unter Verwendung der Porphyrin-Lösung *meta*-N-Acetonitril

Zur Darstellung von 3- und höherwertigen *meta*-n Türmen auf zirkonierten Siliziumwafern III wurden die Zirkonierungs- und Porphyrin-self-assembly-Prozesse unter der Verwendung der Porphyrin-Lösung *meta*-N-Acetonitril so oft wiederholt, bis man die gewünschte Wertigkeit n der Türme erhielt.

9.3.12 Darstellung von *tert.*-Butylphosphonsäure – beschichteten Siliziumwafern mit *meta-*1 Türmen

Die mit *meta*-1 Türmen modifizierten Siliziumwafer **III** wurden mit 0,2 ml einer 10⁻³ molaren, wässrigen *tert*.-Butylphosphonsäure – Lösung benetzt und nach 1 Stunde mit 10 Sekunden milli-QTM-Wasser gespühlt. Das auf der Oberfläche zurückbleibende milli-QTM-Wasser wurde von der Seite mit Filterpapier abgesaugt, ohne die Oberfläche zu berühren.

9.3.13 Darstellung von *tert.*-Butylphosphonsäure – beschichteten Siliziumwafern mit zirkonierten *meta-*1 Türmen

Die mit *tert.*-Butylphosphonsäure – beschichteten Siliziumwafer **III** mit *meta*-1 Türmen wurden mit 0,2 ml einer 10⁻³ molaren, wässrigen Zirkonylchlorid-Octahydrat-Lösung benetzt und nach 15 Sekunden mit 5 ml Acetonitril gespühlt. Das auf der Oberfläche zurückbleibende Acetonitril wurde von der Seite mit Filterpapier abgesaugt, ohne die Oberfläche zu berühren.

9.3.14 Darstellung von *tert.*-Butylphosphonsäure – beschichteten Siliziumwafern mit *meta-*2 Türmen

Die mit mit *tert.*-Butylphosphonsäure – beschichteten zirkonierten Siliziumwafer III mit *meta*-1 Türmen wurden mit 0,2 ml *meta*-N-Acetonitril benetzt und nach 15 Sekunden mit 5 ml Acetonitril gespühlt. Das auf der Oberfläche zurückbleibende Acetonitril wurde von der Seite mit Filterpapier abgesaugt, ohne die Oberfläche zu berühren.

9.3.15 Darstellung von *tert.*-Butylphosphonsäure – beschichteten Siliziumwafern mit 3und höherwertigen *meta*-n Türmen

Zur Darstellung von 3- und höherwertigen *meta*-n Türmen auf *tert*.-Butylphosphonsäure – beschichteten Siliziumwafern wurden die Zirkonierungs- und Porphyrin-self-assembly-Prozesse unter der Verwendung der Porphyrin-Lösung *meta*-N-Acetonitril so oft wiederholt, bis man die gewünschte Wertigkeit n der Türme erhielt.

9.3.16 Darstellung von Phenylphosphonsäure – beschichteten Siliziumwafern mit *meta*-1 Türmen

Die mit *meta*-1 Türmen modifizierten Siliziumwafer **III** wurden mit 0,2 ml einer 10⁻³ molaren, wässrigen Phenylphosphonsäure – Lösung benetzt und nach 1 Stunde mit 10 Sekunden milli-QTM-Wasser gespühlt. Das auf der Oberfläche zurückbleibende milli-QTM-Wasser wurde von der Seite mit Filterpapier abgesaugt, ohne die Oberfläche zu berühren.

9.3.17 Darstellung von Phenylphosphonsäure – beschichteten Siliziumwafern mit zirkonierten *meta-*1 Türmen

Die mit Phenylphosphonsäure – beschichteten Siliziumwafer III mit *meta*-1 Türmen wurden mit 0,2 ml einer 10⁻³ molaren, wässrigen Zirkonylchlorid-Octahydrat-Lösung benetzt und nach 15 Sekunden mit 5 ml Acetonitril gespühlt. Das auf der Oberfläche zurückbleibende Acetonitril wurde von der Seite mit Filterpapier abgesaugt, ohne die Oberfläche zu berühren.

9.3.18 Darstellung von Phenylphosphonsäure – beschichteten Siliziumwafern mit *meta*-2 Türmen

Die mit mit Phenylphosphonsäure – beschichteten zirkonierten Siliziumwafer III mit *meta*-1 Türmen wurden mit 0,2 ml *meta*-N-Acetonitril benetzt und nach 15 Sekunden mit 5 ml Acetonitril gespühlt. Das auf der Oberfläche zurückbleibende Acetonitril wurde von der Seite mit Filterpapier abgesaugt, ohne die Oberfläche zu berühren.

9.3.19 Darstellung von Phenylphosphonsäure – beschichteten Siliziumwafern mit 3und höherwertigen *meta*-n Türmen

Zur Darstellung von 3- und höherwertigen *meta*-n Türmen auf Phenylphosphonsäure – beschichteten Siliziumwafern wurden die Zirkonierungs- und Porphyrin-Self-Assembly-Prozesse unter der Verwendung der Porphyrin-Lösung *meta*-N-Acetonitril so oft wiederholt, bis man die gewünschte Wertigkeit n der Türme erhielt.

9.3.20 Darstellung von Alizarin S – beschichteten Siliziumwafer IV

Die zirkonierten Siliziumwafer III wurden mit 0,2 ml einer 10^{-3} molaren, wässrigen Alizarin S - Lösung benetzt und nach 1 Stunde 10 Sekunden mit 5 ml Acetonitril gespühlt. Das auf der Oberfläche zurückbleibende Acetonitril wurde von der Seite mit Filterpapier abgesaugt, ohne die Oberfläche zu berühren.

9.3.21 Darstellung von *meta-1 Türmen* auf Alizarin S – beschichteten Siliziumwafern IV unter Verwendung der Porphyrin-Lösung *meta*-N-Acetonitril

Die mit Alizarin S – beschichteten Siliziumwafer **IV** wurden mit 0,2 ml *meta*-N-Acetonitril benetzt und nach 15 Sekunden mit 5 ml Acetonitril gespühlt. Das auf der Oberfläche zurückbleibende Acetonitril wurde von der Seite mit Filterpapier abgesaugt, ohne die Oberfläche zu berühren.

9.3.22 Darstellung von zirkonierten *meta-*1 Türmen auf Alizarin S – beschichteten Siliziumwafern IV

Die mit *meta*-1 Türmen modifizierten Siliziumwafer wurden mit 0,2 ml einer 10⁻³ molaren, wässrigen Zirkonylchlorid-Octahydrat-Lösung benetzt und nach 15 Sekunden mit 5 ml Acetonitril gespühlt. Das auf der Oberfläche zurückbleibende Acetonitril wurde von der Seite mit Filterpapier abgesaugt, ohne die Oberfläche zu berühren.

9.3.23 Darstellung von *meta-*2 Türmen auf Alizarin S – beschichteten Siliziumwafern IV unter Verwendung der Porphyrin-Lösung *meta-*N-Acetonitril

Die mit zirkonierten 1 Türmen modifizierten Siliziumwafer wurden mit 0,2 ml *meta*-N-Acetonitril benetzt und nach 15 Sekunden mit 5 ml Acetonitril gespühlt. Das auf der Oberfläche zurückbleibende Acetonitril wurde von der Seite mit Filterpapier abgesaugt, ohne die Oberfläche zu berühren.

9.3.24 Darstellung von 3- und höherwertigen *meta*-n Türmen auf Alizarin S – beschichteten Siliziumwafern IV unter Verwendung der Porphyrin-Lösung *meta*-N-Acetonitril

Zur Darstellung von 3- und höherwertigen *meta*-n Türmen auf Alizarin S – beschichteten Siliziumwafern **IV** wurden die Zirkonierungs- und Porphyrin-Self-Assembly-Prozesse unter der Verwendung der Porphyrin-Lösung *meta*-N-Acetonitril so oft wiederholt, bis man die gewünschte Wertigkeit n der Türme erhielt.

9.3.21 Darstellung von *para*-1 Türmen auf Alizarin S – beschichteten Siliziumwafern IV unter Verwendung der Porphyrin-Lösung *para*-N- Acetonitril

Die mit Alizarin S – beschichteten Siliziumwafer IV wurden mit 0,2 ml *para*-N-Acetonitril benetzt und nach 15 Sekunden mit 5 ml Acetonitril gespühlt. Das auf der Oberfläche

zurückbleibende Acetonitril wurde von der Seite mit Filterpapier abgesaugt, ohne die Oberfläche zu berühren.

9.3.22 Darstellung von zirkonierten *para*-1 Türmen auf Alizarin S – beschichteten Siliziumwafern IV

Die mit *para*-1 Türmen modifizierten Siliziumwafer wurden mit 0,2 ml einer 10⁻³ molaren, wässrigen Zirkonylchlorid-Octahydrat-Lösung benetzt und nach 15 Sekunden mit 5 ml Acetonitril gespühlt. Das auf der Oberfläche zurückbleibende Acetonitril wurde von der Seite mit Filterpapier abgesaugt, ohne die Oberfläche zu berühren.

9.3.23 Darstellung von *para*-2 Türmen auf Alizarin S – beschichteten Siliziumwafern IV unter Verwendung der Porphyrin-Lösung *para*-N- Acetonitril

Die mit zirkonierten 1 Türmen modifizierten Siliziumwafer wurden mit 0,2 ml *para*-N-Acetonitril benetzt und nach 15 Sekunden mit 5 ml Acetonitril gespühlt. Das auf der Oberfläche zurückbleibende Acetonitril wurde von der Seite mit Filterpapier abgesaugt, ohne die Oberfläche zu berühren.

9.3.24 Darstellung von 3- und höherwertigen *para*-n Türmen auf Alizarin S – beschichteten Siliziumwafern IV unter Verwendung der Porphyrin-Lösung *para*-N-Acetonitril

Zur Darstellung von 3- und höherwertigen *para*-n Türmen auf Alizarin S – beschichteten Siliziumwafern **IV** wurden die Zirkonierungs- und Porphyrin-self-assembly-Prozesse unter der Verwendung der Porphyrin-Lösung *para*-N-Acetonitril so oft wiederholt, bis man die gewünschte Wertigkeit n der Türme erhielt.

9.4 Versuch der Darstellung von Porphyrinphosphonat-Zr(IV) – Türmen auf Cab-O-Sil[®]- Nanopartikel

9.4.1 Darstellung der mit Phosphonsäuregruppen modifizierten Cab-O-Sil[®] I -Nanopartikel

500 mg Cab-O-Sil[®]- Nanopartikel wurden mit Ultraschall in 25 ml Methanol suspendiert. Anschließend wurden 25 ml einer methanolischen 3-(Hydroxydimethylsilyl)propanphosphonsäure **15**- Lösung hinzugegeben und das Reaktionsgemisch 3 Tage in einer verschraubbaren Polypropylenflasche bei 60 °C gerührt. Um überschüssige 3-(Hydroxydimethylsilyl)propanphosphonsäure **15** vom modifizierten Cab-O-Sil[®] I abzutrennen, wurde das Reaktionsgemisch fünfmal durch wiederholtes Zentrifugieren und Dekantieren mit jeweils 25 ml Methanol gewaschen, wobei die Wiederherstellung der Cab-O-Sil[®] I -Dispersion nach dem Zentrifugieren mittels Ultraschall erfolgte. Das modifizierte Cab-O-Sil[®] I wurde in 25 ml milli-QTM-Wasser als Suspension aufbewahrt.

9.4.2 Darstellung von zirkonierten, mit Phosphonsäuregruppen modifizierten Cab-O-Sil[®] II - Nanopartikel

Zu 0,5 ml einer wässrigen Cab-O-Sil[®] I - Nanopartikel - Dispersion wurden 0,5 ml einer 10⁻³ molaren, wässrigen Zirkonylchlorid-Octahydrat-Lösung gegeben und nach 15 Sekunden mit Acetonitril auf ein Volumen von 10 ml aufgefüllt. Anschließend wurde dreimal durch wiederholtes Zentrifugieren und Dekantieren mit jeweils 10 ml Acetonitril gewaschen. Das modifizierte Cab-O-Sil[®] II wurde in 0,5 ml milli-QTM-Wasser als Dispersion aufbewahrt.

9.4.3 Darstellung von Alizarin S beschichteten Cab-O-Sil[®] III - Nanopartikel

Zu 0,5 ml einer wässrigen Cab-O-Sil[®] II - Nanopartikel - Dispersion wurden 0,5 ml einer 10⁻³ molaren, wässrigen Alizarin S – Lösung gegeben und nach 15 Sekunden mit Acetonitril auf ein Volumen von 10 ml aufgefüllt. Anschließend wurde dreimal durch wiederholtes Zentrifugieren und Dekantieren mit jeweils 10 ml Acetonitril gewaschen. Das rote, gelartige Cab-O-Sil[®] III wurde in 0,5 ml milli-QTM-Wasser als Dispersion aufbewahrt.

9.4.4 Versuch der Darstellung von *meta*-n Türmen auf Alizarin S beschichteten Cab-O-Sil[®] III - Nanopartikel

Zu 0,5 ml einer wässrigen Cab-O-Sil[®] **III** - Nanopartikel - Dispersion wurden 0,5 ml einer 10⁻³ molaren *meta*-N-Acetonitril – Lösung gegeben und und nach 15 Sekunden mit Acetonitril auf ein Volumen von 10 ml aufgefüllt. Anschließend wurde dreimal durch wiederholtes Zentrifugieren und Dekantieren mit jeweils 10 ml Acetonitril gewaschen. Der Waschprozess wurde dann noch einmal mit Wasser wiederholt, wobei die über dem zentrifugierten Nanopartikel stehende Lösung auf eine porphyrinspezifische Fluoreszenz hin untersucht worden ist. Das rote, gelartige Cab-O-Sil[®] wurde in 0,5 ml milli-QTM-Wasser als Dispersion aufbewahrt.

Durch wiederholtes Alternieren der Zirkonierung (vgl. 9.4.2) und der eben beschriebenen Porphyrin-self-assembly wurden die entsprechenden *meta*-n Türme dargestellt.