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On the one hand, feature selection serves the statistical purpose of deriving classification

models that generalize well (Tibshirani et al., 2002). On the other hand, it allows for a cost

efficient microarray study design as I will show in this chapter. In this chapter, I propose a

novel setup for microarray based clinical trials that exploits feature selection. First, I use gene

expression data from whole genome studies for deriving a small set of diagnostically relevant

genes (Phase-1). Then, a diagnostic microarray holding these genes is designed. Next, ad-

ditional samples are screened with this diagnostic microarray (Phase-2). With this phase-2

data a classifier aiming for diagnosis is fine tuned. Furthermore, I assess the accuracy of

classification with diagnostic microarrays depending on the number of samples used for deter-

mining the diagnostic biomarkers, on the number of biomarkers used, and on the number of

samples provided for fine tuning the diagnostic microarray. A biomarker is a gene that is used

in a diagnostic signature. Screening more samples in phase-1 before deriving the diagnostic

microarray improves classification performance in general. However, the loss in performance

quickly converges. The results show that it is possible to switch to a small diagnostic microar-

ray after screening only a few samples in phase-1 without sacrificing substantial classification

accuracy.

In general, the classification accuracy improves as the number of training samples in-
creases. On the other hand, measuring more samples means also increased costs for the
production and evaluation of the microarrays needed. This cost increase is almost linear
but the improvement in classification accuracy levels down quickly following an inverse
power law (Mukherjee et al., 2003). Hence, there is a natural point when increasing the
training sample size does not improve accuracy significantly any more. In this thesis we
go one step further and analyze how the number of samples in phase-1 and the number
of probes measured by the microarray influence the classification accuracy.

Using miniaturized diagnostic microarray instead of whole genome microarrays helps to
lower costs. A whole microarray holds substantially more probes, which means increased
material costs. One benefit of switching from a whole genome microarray to a miniatur-
ized diagnostic microarray are substantial expenditure savings. An Affymetrix GeneChip
Human Genome U133 Plus 2.0 analyzing 47400 transcripts costs e.g. 975 US$, whereas
a custom express array from the same company costs 375 US$ (Affymetrix Price Sheet
2006, Retail). On the other hand, the hybridization itself is also more expensive because
larger microarrays also require more reagents. Furthermore, small custom microarrays
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2.1 A subsampling approach to evaluate the effect of EMPD

also allow a faster evaluation. First, there is less data to store in databases again re-
ducing disc costs. Second, the number of genes to derive a diagnostic signature is much
smaller speeding up the classification algorithms.

Therefore, we do not only consider how many samples should be screened but in parallel
how many features should be put on a diagnostic microarray chip in order to have an
acceptable classification accuracy. We suggest a novel two step approach which we refer
to as Early Marker Panel Determination (EMPD). In the first step (phase-1), genome-wide
microarrays are used to screen a small number of patients only and to derive a diagnostic
marker panel from this data. In the second step (phase-2), the expression values of these
marker genes only are measured in a large group of patients. The data derived from
this larger group is used for calibrating the final predictive model. Thus, EMPD is very
effective because expression analysis of a small set of genes can be done cost efficiently
using alternative methods like qRT-PCR. However, since less data is available for feature
selection we will loose predictive performance.

Several papers have been published for assessing sample size requirements for microarray
experiments (Pan et al., 2002; Müller et al., 2004; Tsai et al., 2005; Zien et al., 2003).
However, most sample size calculations treat genes independently and do not aim at
classification but at identifying a small number of truly differentially expressed genes.
For developing a classifier from gene expression data it is more appropriate to measure
the accuracy of the whole classifier on an independent test set or in cross validation.
Methods for assessing the accuracy of classification depending on the sample size have been
proposed (Mukherjee et al., 2003). However, we put this one step further by considering
additionally the switch from whole genome microarrays to small diagnostic microarray
during such a study (Jäger et al., 2005).

The chapter is organized as follows: In section 2.1, we describe the subsampling based
evaluation procedure to determine the expected performance loss caused by EMPD. In
section 2.2, we evaluate the loss of performance with EMPD by analyzing five publicly
available datasets. In section 2.3, we investigate the relation between sample size in
phase-1 and the number of markers used on the diagnostic microarray chip. Finally, in
section 2.4, we show the overlap in the selected marker genes depending on the number
of samples analyzed in phase-1. We conclude with a summary of our findings and discuss
their implications for the design of clinical microarray studies.

2.1 A subsampling approach to evaluate the effect of EMPD

We exploited data from five large clinical whole genome studies to mimic our proposed
two phase design of EMPD. We simulated phase-1 by randomly choosing a subset of n0

patients for which we used the complete expression profiles determined on whole genome
microarrays. From this data we determined the marker panel. To simulate phase-2 we
ignored all non-marker-panel genes. With the expression values of marker panel genes
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2 Early marker panel determination (EMPD)

obtained from phase-1 and phase-2, we finally determined a classification model. More
formally, let N be the total number of samples in a dataset, with N/2 samples in each
group. Let P be the total number of genes on the microarray used during phase-1. After
having analyzed a subset of n0 < N patients with n0/2 samples in each group, a small
set of relevant genes p0 � P is selected. To account for sample variance effects, we drew
r subsets Si, i ∈ {1, .., r} of size n0. Each Si was randomly sampled without replacement
from all cases. For our experiments r = 30 was chosen. Analyzing only the patients in Si

we derived a virtual marker panel Mi containing p0 genes from all samples. Finally, we
trained a multivariate classification model using the complete set of samples but analyzing
only genes from the panel Mi. We evaluated the performance of the classifier denoting the
prediction accuracies by Ai(n0, p0) = (N −Ei(n0, p0))/N , where Ei(n0, p0) is the number
of misclassifications. In total, this gave us 30 classification accuracy values Ai(n0, p0) for
each combination of values n0 and p0. We denote A(n0, p0) as the median of these 30
values. To estimate the performance of EMPD, we compared A(n0, p0) to the leave-one-
out estimate A(N − 1, p0), which reflects the performance of an approach including all
patients in the analysis. Note, that it is not possible to evaluate the performance using
all N samples in the training set. At least one sample has to be left out as a test set.

2.1.1 Classifier evaluation

The evaluation of classifier performance is nontrivial. Several papers have pointed out
possible pitfalls leading to over optimistic estimators (Ambroise and McLachlan, 2002;
West et al., 2001; Chatfield, 1995). To avoid the feature selection bias described in Am-
broise and McLachlan (2002), we used external leave-one-out cross validation (LOOCV)
where in each cross validation fold feature selection was performed separately. Iteratively,
we set aside each sample as a test sample, then we randomly drew n0/2 samples for each
group from the remaining samples. On the n0 samples we determined the p0 marker panel
genes. Using these genes only on N − 1 samples, we trained a Support Vector Machine
(SVM). With the SVM we then classified the left-out sample. After each sample was left
out in turn we obtained N classification results and compared them to the known labels
to determine the error rates Ei (Fig. 2.1).

To estimate classification performance variability, Mukherjee et al. (2003) pointed out
that the observed variance of classifier performances is higher than the expected popula-
tion variance and therefore optimistic. Using quantiles of the leave-one-out estimator give
an accurate estimate of a classifier trained with all but one sample and tested on an in-
dependent sample. We therefore used boxplots showing quantiles in our following figures.
For simplicity, we only applied two standard feature selection procedures. The marker
panels Mi consisted of the p0 genes with the highest two-sample t-statistic or Wilcoxon
rank sum statistic, respectively, in Si. The related problem of how to select markers has
been addressed in the introductory chapter 1.4.3. Subsequent model fitting was done
using SVMs with radial basis function kernels. We used the SVM implementation Gist

(http://microarray.genomecenter.columbia.edu/gist) 1.3β with default parameters. To
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2.1 A subsampling approach to evaluate the effect of EMPD

Main Function:
foreach p0 = number of markers

foreach n0 = number of samples in phase-1
for i ∈ {1, .., r} repeats

calculate Ai(n0, p0)

Subroutine:
Ai(n0, p0) ← function(...)
let E = 0 # Errors made so far
foreach sample d ∈ D = {1, .., N} # LOOCV

put d as test sample aside
S ← draw n0 samples from D\{d} in a balanced fashion
M ← determine marker panel as top p0 markers of S

train SVM with D\{d} samples on the marker panel M

test d, restricted to marker panel M , with learned SVM classifier
if classification is wrong then increment E

return (N − E)/N

Figure 2.1: Pseudo code for EMPD evaluation procedure

evaluate EMPD for 10 different choices of p0 and n0, respectively, on one dataset with
128 samples, the procedure took 24 hours CPU time parallelized on 8 Athlon 1.8GHz
machines.

Applications of EMPD

We examined five published datasets (Tab. 2.1). All five datasets used Affymetrix
HGU95Av2 DNA chips containing 12625 probesets, corresponding to more than 9000
known, unique, human genes. For preprocessing, we performed background correction,
normalization on probe level, and probeset summarization. The background correction
was done similarly to MAS 5 (Affymetrix, 2001) but negative values were not truncated.
Probe level normalization was done using the variance stabilization method by Huber
et al. (2002). Finally, probeset summarization was performed using a median polish fit
of an additive model described in Irizarry et al. (2003b). For simplicity, we focused on
classification problems with only two possible outcomes and randomly omitted samples
to obtain balanced sample numbers in each group.

The first dataset analyzed was a study on acute lymphocytic leukemia (ALL) in children
(Yeoh et al., 2002). 327 leukemia samples fall into different clinical classes characterized
by immunophenotype, chromosomal translocations and aberrations. In the analysis we
focused on the diagnosis of hyper-diploid B-cell leukemias, a moderately complicated
diagnostic problem. Using a balanced subset of all 64 samples displaying hyper-diploidy
with more than 50 chromosomes and 64 samples randomly chosen from the rest of the
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2 Early marker panel determination (EMPD)

samples, we achieved a LOOCV performance of 96%. The second dataset consisted of
102 tumor and normal prostate tissues (Singh et al., 2002). We obtained 92% accuracy
for the classification of 50 tumor versus 50 normal tissues. Furthermore, we examined a
dataset of lung cancer samples (Bhattacharjee et al., 2001), where 98% accuracy for the
classification of 21 squamous carcinomas versus 21 adenocarcinomas was achieved. The
last dataset contributed by Huang et al. (2003) consisted of 89 breast cancer samples
which are divided into a study for recurrence (34 non-recurrent and 18 recurrent patients,
further denoted as breastR) and a study for lymph-node risk (18 high-risk and 19 low risk
samples, further denoted as breastL). In this prognosis setting we classified 92% of the
samples correctly using SVM on 18 recurrent versus 18 samples randomly chosen from
the non-recurrent pool. In the lymph-node risk study, 65% of the samples were classified
correctly. The later was a hard classification task, achieving a performance slightly above
random guessing.

2.2 EMPD results for four gene expression studies

We describe the results of the first dataset in detail and only summarize corresponding
results of the four other datasets.

Dataset Group 1: sample size Group 2: sample size

Leukemia (Yeoh et al., 2002) Hyper-diploid: 64 Other B-cells: 64 of 200

Prostate (Singh et al., 2002) Normal: 50 Tumor: 50 of 52

Lung (Bhattacharjee et al., 2001) Squamous: 21 Adenocarcinomas: 21 of 190

BreastR (Huang et al., 2003) Recurrent: 18 Non-recurrent: 18 of 34

BreastL (Huang et al., 2003) High risk: 18 Low Risk: 18 of 19

Table 2.1: Datasets used for the evaluation of EMPD. Groups 1 and 2 denote the groups used for the

evaluation with EMPD and their sample sizes.

First, we examined the loss of prediction accuracy for a fixed marker panel size. For
a marker panel of 10 genes, less than 20 samples in phase-1 were sufficient to reach
saturating performances (Fig. 2.2). Without EMPD, we observed a median accuracy of
A(N − 1, 10) = 93% for the leukemia dataset. As expected, EMPD reduced the median
accuracy and increases its variance. However, except for extremely small sample sizes
in phase-1, the loss in accuracy appeared to be marginal. In the prostate and the lung
dataset saturation happened very soon, whereas in the breastL and especially breastR
dataset it is not clear if saturation was already reached (Fig. 2.3).

Next, we evaluate the performance of EMPD by comparing relative accuracies, which
are defined as the accuracy in relation to classification that used all data for the feature
selection: relative accuracy = A(n0, p0)/A(N−1, p0). The use of relative accuracies allows
a comparison of the EMPD results of datasets with different final classification accuracy.
Even with only 12 patients per group in the leukemia dataset we got A(12 ∗ 2, 10) = 89%
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Figure 2.2: Accuracy of EMPD for a marker panel of 10 genes applied to the leukemia (Yeoh et al.,

2002) dataset. The boxplots refer to analysis using t-statistic and show the distribution of classification

accuracies (Ai(n0, 10), i = {1, .., 30}) for 30 subsamplings. The dotted line refers to the Wilcoxon

statistic and shows median accuracies only. The x-axis is in polynomial scale.
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Prostate EMPD accuracy during study progression
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BreastL EMPD accuracy during study progression
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Figure 2.3: Accuracy of EMPD for a marker panel of 10 genes applied to the prostate, lung, breastR

and breastL dataset. Legend see Fig. 2.2
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corresponding to 96% relative accuracy. Note, that the classification results did not differ
notably when using a Wilcoxon or t-statistic.

2.3 Relation between sample size and number of screened

genes

There is a trade-off between the number of patients used in phase-1 and the size of the
marker panel. Larger marker panels can achieve state of the art performance with only a
few patients in phase-1. For a fixed phase-1 sample size of n0 = 10∗2 and varying marker
panel sizes p0, satisfying results could not be achieved with panel sizes of 2 and 3 markers
(Fig. 2.4). However, already 10 genes lead to a relative accuracy of 93%. With 30 genes
the relative accuracy reached 97%. Using more genes (p0 = 100) increased the accuracy
to a relative accuracy of 99%.
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Figure 2.4: Accuracy of EMPD for the leukemia dataset (Yeoh et al., 2002) when different marker

panel sizes p0 are evaluated. The number of samples in phase-1 is fixed to 10 patients in each group

(n0 = 10 ∗ 2). The boxplots refer to analysis using t-statistic and show the distribution of SVM leave-

one-out cross validation accuracies across 30 runs of random patient subsampling. The dotted line refers

to the Wilcoxon statistic and shows median accuracies only.

The results suggest that there is a direct sample size - panel size trade-off. Using more
marker genes facilitates a phase-1 with less samples, whereas more samples in phase-1
permit a smaller marker panel. We have determined the number of genes required to
reach a relative accuracy of ≥ 95% for a phase-1 with a given number of n0 samples (Fig.
2.6). The corresponding plots for the lung, prostate, breastL and breastR study are shown
in Fig. 2.3, Fig. 2.5, and Fig. 2.7.

EMPD can therefore be used to determine the number of necessary marker genes for a
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Figure 2.5: Accuracy of EMPD for the the prostate, lung, breastL and breastR data when different

marker panel sizes p0 are evaluated. Legend and further description see Fig. 2.4.
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Figure 2.6: Relationship between the number of genes in the marker panel and the number of samples

examined in phase-1 to achieve a relative accuracy of at least 95% (A(n0, p0)/A(N − 1, p0) ≥ 95%) in

the leukemia dataset (Yeoh et al., 2002). The dotted line depicts the curve when using a Wilcoxon test

statistic, the solid line when using a two sample t-statistic.
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Figure 2.7: Relationship between the number of genes in the marker panel and the number of samples

examined in phase-1 to achieve a relative accuracy of at least 95% (A(n0, p0)/A(N − 1, p0) ≥ 95%) for

the the prostate, lung, breastL and breastR data. Legend see Fig. 2.6.

given phase-1 size. Vice versa, it can be used to determine the number of samples needed
in phase-1 for a given marker panel size.

We determined the relative accuracy of EMPD with a marker panel size of p0 = 10 genes
and p0 = 100 genes. For the small marker panel with p0 = 10 genes, a small phase-1
with 5 patients was enough to achieve ≥ 92% relative performance for the lung and the
leukemia dataset. When doubling phase-1 to 10 patients per group, already four datasets
achieved ≥ 95% relative accuracy. Only the breastR dataset needed more samples in
phase-1 and achieves ≥ 94% relative accuracy with 15 patients in phase-1 (Table 2.2).
When using p0 = 100 all datasets but the lung dataset achieved relative accuracies ≥ 99%
with only 10 patients per group. The advantage of EMPD is that it can successfully
accommodate both, a limited number of genes in the marker panel as well as a limited
number of samples to be screened in phase-1.

We found that the leukemia and the lung data allowed good predictive performance with
a very small phase-1 even for a marker panel with just 10 genes. For the leukemia dataset,
12 patients, for the breastL dataset 9 patients and for the lung dataset 3 patients were
sufficient to achieve ≥ 95% relative accuracy. For the prostate and breastR cancer dataset,
a larger phase-1 (15 and 16 patients) was needed (Table 2.3).
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2.3 Relation between sample size and number of screened genes

Panel with p0 = 10 Panel with p0 = 100

n0/2 5 10 15 5 10 15

leukemia 92% 95% 98% 98% 99% 100%

prostate 76% 95% 97% 93% 99% 100%

lung 95% 99% 100% 93% 95% 98%

breastL 85% 100% 100% 100% 100% 100%

breastR 73% 86% 94% 90% 100% 100%

Table 2.2: Relative classification accuracy of EMPD (A(n0, p0)/A(N − 1, p0)). Accuracies were calcu-

lated using SVM leave-one-out cross-validation.

Samples needed for 95% relative performance

Dataset N/2 Panel with p0 = 10 Panel with p0 = 100

leukemia 64 12 2

prostate 50 15 6

lung 21 3 2

breastL 18 9 4

breastR 18 16 10

Table 2.3: Comparison of sample requirements for EMPD, with a small (p0 = 10) or a medium size

(p0 = 100) marker panel, to achieve at least 95% relative accuracy. Accuracies were calculated using

SVM leave-one-out cross-validation. N/2 denotes the total number of samples per group in the datasets.
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2.4 Marker panel variability

We also investigated the overlap of marker panels across 30 runs of random subsampling.
The good performance of EMPD suggested that there are many informative genes and
that prediction can be based on different combinations of them. Especially for small n0

the marker panels hardly overlap at all (Fig. 2.8).
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Figure 2.8: Mean pairwise overlap of the marker panels in the 30 subsamplings for each n0 and

p0 = {10, 100}

2.5 Discussion

In this chapter, I proposed a novel, two step study design for clinical gene expression
profiling studies. For a small number of patients whole genome microarray data is collected
(phase-1). Then, a marker panel is determined from the phase-1 data. From now on, this
marker panel is used to screen a large patient pool (phase-2). Furthermore, I introduced
a novel evaluation procedure to determine the loss in classification accuracy depending
on the number of patients in phase-1 and the size of the marker panel.

Analyzing five published clinical microarray datasets I found that in phase-1 as little as
16 patients per group were sufficient to identify a panel of 10 marker genes. For a marker
panel of 100 genes, not more than 10 patients per group were needed. The early decision
on the marker panel compromised the final performance of the diagnostic classification
only marginally. I showed that there was an inverse relationship between the number
of samples in phase-1 and the size of the marker panel. Using more samples in phase-1
facilitated the identification of a more reliable set of markers. Therefore, fewer markers
were sufficient to achieve the same relative performance. On the other hand, if it is
possible to use many markers, only few samples need to be screened in phase-1.
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2.5 Discussion

I demonstrated that EMPD is a feasible design for cost efficient clinical studies based on
gene expression levels. Material, production, and handling costs are saved. Since only
few genes in phase-2 need to be examined, it is possible to utilize small custom diagnostic
mRNA arrays or other technologies like qRT-PCR, in-situ hybridization or protein panels
(Büssow et al., 2001). These technologies may also be closer to the clinical phenotype
(protein panel) or more precise (qRT-PCR).

It is important to note that I obtained different marker panels using different subsets of
patients for EMPD without a noticeable loss of classification accuracy. Notably, a small
sample size of only 10-20 patients may not be enough to determine the most comprehensive
set of discriminating genes. However, for a good classification performance it is not
necessary to identify those genes. It is not even necessary that all genes in the panel are
informative marker genes. In many cases, a few informative genes in the panel are enough
to obtain a strong signature at the end of phase-2. The observation that finding marker
genes for classification is easy and does not require many patients, suggests that there are
probably up to thousands of informative genes in all five studies. In fact, estimating the
number of differentially expressed genes using the method by Scheid and Spang (2004)
indicated several thousand differentially expressed genes in all four studies, too. On the
other hand, classification does not need to identify causes. Genes involved in secondary
and tertiary effects are valuable molecular markers as well. While these marker genes
may serve well for diagnostic purposes, they may not be useful to elucidate the molecular
basis of a disease and many of them can be replaced by equally well performing marker
genes.

While the results show that the relative accuracy after EMPD is only slightly compromised
even for problems with a poor overall performance, it is clear that EMPD can not improve
absolute performance. If the absolute performance without EMPD is insufficient for
practical use, EMPD is of no use, too.

This chapter is purely descriptive, and the findings only apply to the five datasets shown.
However, since the results in all five studies were consistent, I believe that EMPD is
appropriate for other clinical studies as well and even ongoing studies may benefit. But
for a study that has no fixed sample size target N , it is not clear how to determine the
optimal length of phase-1 or the optimal number of marker genes. From this perspective,
it would be helpful to have a computational tool to guide EMPD during a running genome-
wide study. The evaluation procedure does not allow to do this. In an ongoing study,
performance at the end of phase-2 cannot be evaluated, but needs to be extrapolated from
the available phase-1 data. Mukherjee et al. (2003) introduced a method for sample size
estimation using power-law extrapolation that can be extended to EMPD as well.
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