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In cancer diagnosis one goal is to characterize the individual tumor as detailed as possi-

ble. Recently, not only immunohistological or pathological methods have been applied but

also molecular gene expression profiling. For this purpose many studies use whole genome

microarrays, which measure thousands of genes simultaneously. From these expression mea-

surements classifiers are trained and a diagnostic signature is derived. However, many of the

genes on the large, whole genome microarrays are not needed for cancer classification. For di-

agnostics, the use of a few dozen genes is sufficient (Li, 2005). These can be represented onto

a smaller, custom diagnostic microarray. In this thesis, I propose a computational framework

for the design and analysis of small diagnostic microarrays holding only few genes. A diag-

nostic microarray study is composed of the following steps: acquiring of the patient samples,

extracting of the mRNA, measuring of the mRNA quantities using microarrays, normalization

of the expression data, deriving of a diagnostic signature, and validation of the results. I start

with a chapter highlighting the necessary biological, statistical, and clinical background. In

the first section, I introduce basic characteristics of molecular genetics. Then, in section 1.2,

I describe techniques for measuring gene expression with special emphasis on microarrays. In

section 1.3, I review microarray based gene expression studies. I outline that gene expression

has already been successfully used for tumor classification. In section 1.4, I introduce machine

learning techniques for classification and clustering. For properly assessing the classification

performance, I review cross validation and stress its importance in classifier evaluation (sec-

tion 1.4.2). In order to select relevant genes for the diagnostic microarray and provide better

classification performance I describe gene selection and compare various techniques in section

1.4.3.

1.1 Molecular genetics

DNA – Human cells store the genetic information in deoxyribonucleic acid (DNA). DNA
is a long, double stranded molecule. Both strands are composed of a sugar phosphate
backbone and nucleic bases. These bases can either be adenine (A), thymine (T), guanine
(G), or cytosine (C). The two DNA strands are complementary and run in antiparallel
directions allowing for an easy way of replication. In eukaryotic cells the DNA is stored in
a special compartment of the cell, the nucleus. Here, the DNA molecule is tightly packed
into thread-like structures, the chromosomes.

Genes – A gene is an information coding region on the DNA with a certain structure.
It is composed of a promotor region that controls the transcription of the gene, and the
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1.1 Molecular genetics

actual protein coding region. Proteins are required for the structure, transport, function,
and regulation of the body’s tissues and organs. They are made up of hundreds to thou-
sands of amino acids, which are attached to one another in long chains. The sequence of
amino acids determines each protein’s unique three-dimensional structure and its specific
function.

The process from gene to protein is complex and tightly controlled within each cell.
It consists of two major steps: transcription and translation. First, a gene has to be
transcribed into ribonucleic acid (RNA), which then has to be processed and translated
into a sequence of amino acids by ribosomes.

Transcription – In eucaryotes, the transcription of genes happens in the cell nucleus.
Here, the part of the DNA coding for a gene is copied to RNA by a protein complex
called polymerase. Biochemically, RNA is similar to DNA but it is single stranded,
uses uracil instead of thymine and is less stable. The resulting RNA that encodes the
information for making a protein is called messenger RNA. However, RNA does not only
store information but it can be also biochemically active itself.

Figure 1.1: Central dogma of molecular biology showing the copying from DNA to RNA (transcription)
and the translation of the mRNA into an amino acid chain that is later folded into a protein. Image

from NHGRI

Translation – The second step from a gene to a protein in eucaryotes takes place in
the cytoplasm. The mRNA sequence is translated into a sequence of aminoacids by a
specialized complex called a ribosome. Each nucleotide sequence of three bases, called a
codon, codes for either one particular amino acid or for the start or the stop of the amino
acid sequence. In total there are 20 different types of amino acids. The assignment of
an aminoacid to a specific codon is deterministically done using a universal translation
table, the genetic code. The whole amino acid sequence is assembled at a ribosome. Here,
transfer RNAs (tRNA) that match to the codons of the mRNA are recognized. A tRNA
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carries a specific amino acids and at the ribosome these amino acids are connected one
by one to form an amino acid chain. This chain later folds into a protein.

Transcription and translation together are the steps from DNA to protein. This flow
of information from DNA to RNA to proteins is the fundamental principle of molecular
biology and for that called the central dogma (Fig. 1.1).

Gene regulation – The genomic DNA of each cell holds all information on which proteins
are synthesized in which cell under which condition. However, only a fraction of genes
are expressed at a certain time. The rest of the genes are repressed. The amount of
the expressed transcript of a given gene is called its gene expression. Expressed genes
include those that are transcribed into mRNA and then translated into protein as well
as those that are transcribed into RNA but not translated into protein (e.g. ribosomal
RNAs). Many genes are strongly regulated and only transcribed at certain times, in
certain environmental conditions, and in certain cell types. The cell controls if and how
strongly genes are expressed through cell signals. When the cell receives a signal it can
change the mRNA expression level of certain genes and thus react to changes in the
environmental conditions.

The process of controlling the mRNA expression level of each gene is known as gene reg-
ulation. Gene regulation is especially important in cell development and differentiation.
The regulation of genes can occur at any level: transcription, translation, or protein mod-
ification and degradation. Signals from the environment or from other cells are detected
by cell receptors and activate signal cascades in the cell. In the end this triggers pro-
teins called transcription factors. These proteins bind to regulatory regions of a gene and
increase or decrease the level of transcription. By controlling the level of transcription,
this process determines the amount of mRNA and therefore the amount of protein that is
made by a gene at any given time. In order to produce new protein, first the corresponding
gene has to be expressed. In general, the more transcript is expressed, the more protein
is produced. Thus, gene expression has a direct influence on protein production.

Certain biological processes go along with a change of the expression of many genes. In
cell division the whole genetic material has to be duplicated and systematically distributed
into two daughter cells. When the normal regulation of the cell cycle is disrupted cells
can divide without order. During this uncontrolled proliferation genetic defects can accu-
mulate. In the end, this can lead to cancer (Bissell and Radisky, 2001). The analysis of
gene expression changes of a tumor cell allows to characterize the tumor in detail leading
to more accurate tumor diagnosis.

Textbooks like Griffiths et al. (2002) and Alberts et al. (2002) give detailed descriptions
of the actual mechanisms of molecular genetics and gene regulation.
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Measuring the mRNA expression levels of genes enables us to gain insight into the cell’s
activity and regulation. However, in order to find diagnostically relevant genes it is
necessary to quantify and compare the mRNA levels of samples from different conditions.
In the following section, we describe methods for assessing mRNA expression levels of
genes often also called the gene expression level. The measured gene expression levels for
many genes in one tissue sample is called a gene expression profile.

All methods for gene expression measurement rely on the same principle. They make use
of the preferential binding of complementary nucleotide sequences to each other. When
screening for a target gene, a specifically labeled probe, which is complementary to the
target genes mRNA, is used. The probe preferentially binds to the target genes mRNA
and can be detected by its label.

Originally, Northern blotting (Alwine et al., 1977) was used to detect specific mRNA.
Here, the RNA is separated by size using an electrophoresis gel. Then the specific RNA
is detected using a hybridization probe. But Northern blots are not sensitive enough to
small mRNA quantities and time consuming (Dvorák et al., 2003).

1.2.1 PCR (Polymerase chain reaction)

In the 1980s the American biochemist Kary Mullis developed a technique for making an
unlimited number of copies of any piece of DNA, the polymerase chain reaction (PCR,
Saiki et al. (1985)). In a matter of hours, PCR produces millions of copied DNA molecules.
Since the amount of copies made depends on the number of initial templates, PCR can
be used to quantify gene expression.

The core of the PCR is a polymerase that replicates a piece of DNA flanked by primers.
Primers are small pieces of complementary DNA that bind to the DNA strands. The
polymerase extends from the primers and copies the region between a primer pair. In
each round of replication a cooling step is followed by a heating step. During the cooling
step the primers bind and the DNA is doubled by transcription. During the heating steps
the assembled strands are separated again. Thus, the specific DNA material enclosed by
the flanking primers is doubled every round, resulting in an exponential growth.

In order to measure the original amount of transcript relative to a normalization gene,
a dye is used. For both genes the number of replication rounds are counted that are
needed before the dye can be detected. PCR can also be used to measure gene expres-
sion. First, the RNA has to be reverse transcribed to DNA. Then, the complementary
DNA is multiplied with standard PCR. The whole process is called RT-PCR (reverse tran-
scription - polymerase chain reaction). Today, quantitative RT-PCR (qRT-PCR, Wang
et al. (1989)) is routinely applied to measure mRNA abundance. The assay is cheap,
versatile, and requires only small amounts of starting mRNA (Robison et al., 2004).
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1.2.2 Microarrays

Particularly for diagnostics it is beneficial to measure more than a single marker gene.
Looking at a panel of genes together helps to provide a more accurate and robust molecular
diagnosis (Taback et al., 2001; Chen et al., 2005; Schneider et al., 2005). However, PCR
experiments are tedious and time consuming for measuring a large number of genes. Here,
microarrays offer a solution. With microarrays one can monitor gene expression for tens
of thousands of transcripts simultaneously in a single experiment. This high-throughput
method was a breakthrough in experimental biology and is used extensively since then.
In the year 1996 only 10 articles using microarrays were published. But within 10 years
this has increased to more than 4000 articles published per year (Fig. 1.2).
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Figure 1.2: Number of articles published per year that
contain the keyword ”microarray” in the title or abstract.
Source: www.pubmed.org

Part of the success of microarrays is
their versatility. They can be used
for the detection of differentially ex-
pressed genes of different biological
entities (Chee et al., 1996), the detec-
tion of changes of correlation in gene
groups (Kostka and Spang, 2004), the
identification of a subset of genes that
provide discrimination between tis-
sue types for diagnosis or prognosis
(van ’t Veer et al., 2002), the detec-
tion of novel subgroups of lymphomas
(Alizadeh et al., 2000), time-course
analysis in yeast (Spellman et al.,
1998), and the analysis of dose response effects on gene expression in colon carcinoma
(Hu et al., 2005). Additionally, specially designed microarrays have been used for poly-
morphism analysis (Wang et al., 1998) and sequencing (Pease et al., 1994).

In the following, target genes are the genes of interest in the sample tissues for which the
expression levels are measured. Probes are pieces of DNA that are complementary to the
target genes. Each probe is brought onto the microarray at a certain position so that
it can be localized later on. When using cDNA clones as probes they are immobilized
on the array by spotting the clones mechanically onto their prespecified positions. When
using oligonucleotides the probes are immobilized by synthesizing them directly on the
microarray at their positions. Typically, between several thousand and several tens of
thousands of different probes are immobilized on one array. One probe location does not
only hold one single DNA oligonucleotide or cDNA but in the range of millions of copies
of the same molecule.

The basic idea behind all gene expression arrays is to extract the mRNA from a tis-
sue, reverse transcribe it to cDNA and amplify it in a way that conserves proportions
of molecular abundance. Following this, the cDNA is labeled and used as a target to
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bind to complementary DNA. The target is detected using single-stranded cDNA or
oligonucleotide probes, attached at fixed spots on a support surface. As DNA binds to
complementary DNA sequences, the probes bind to their complementary targets. As the
targets are physically bound at known positions the DNA is now also affixed there. Fi-
nally, the mRNA abundance can be indirectly measured by measuring the label intensity
of the spots lighting up. These are the probes that had complementary sequences to the
mRNA under examination.

I now distinguish two phases of the microarray analysis: First, the production of the
microarray itself, where the probes have to be produced and spotted onto the microarray.
Second, the hybridization of the microarray with the target sample (Fig. 1.3).

Microarray production – There exist several types of microarrays and different techniques
to produce them. They can be distinguished by the support system they use (nylon or
glass), the way the probes are spotted (mechanical griding, inkjet, or photolithography),
and the labeling system (fluorescent or radioactive).

Macroarrays are based on nylon or nitrocellulose filters and measure up to 22cm×22cm.
The most commonly used label is radioactivity. Microarrays typically use glass, which
allows further miniaturization and the use of fluorescent dyes. Often microscopic slides
are used as a support medium for microarrays. Affymetrix uses arrays with a coated
quartz surface of 1.5cm×1.5cm.

Macroarrays are spotted using mechanical griding, whereas microarrays can also be pro-
duced with inkjet or photolithography techniques. Due to higher standardization in man-
ufacturing and hybridization photo and inkjet technology produce more reproducible re-
sults (Li et al., 2002). However, compared to radioactively labeled targets fluorescently
labeled microarrays require larger RNA amounts and therefore often the use of mRNA
amplification techniques.

Affymetrix uses photolithography techniques with masking. Wherever ultraviolet light
can pass through tiny openings (few micrometers) in the mask it removes a protective cap
inducing oligonucleotide synthesis at this spot. Depending on the GeneChip generation
Affymetrix uses between 11 and 20 pairs of probes (HU6800: 20 probes, HG-U95: 16
probes, HG-U133: 11 probes) representing one gene (Lipshutz et al., 1995). Each probe
is 25 nucleotides long. The probes screening for one DNA sequence are included twice
at two different positions: once as a perfect matching oligonucleotide sequence (PM) and
once with a mismatch at the central 13th nucleotide (MM). The intention of the mismatch
is to measure unspecific binding. Other arrays usually only use one longer oligonucleotide
or a complete cDNA.

Hybridization – From the tissue of interest mRNA is extracted and copied into cDNA. The
cDNA is radioactively or fluorescently labeled. Then, the labeled cDNAs are hybridized
to the microarray where they bind to the complimentary probes on the array during an
annealing time. The rest of the probe mixture that did not bind to the targets is washed
away. Only the cDNA complimentary to the immobilized genes remains on the array. The
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Figure 1.3: Comparison of the production and hybridization steps in cDNA and high density oligo-

nucleotide arrays Reprinted by permission from Macmillan Publishers Ltd: Nature Cell Biology (Schulze and

Downward, 2001), copyright 2001

more mRNA is present in the original tissue, the more complimentary cDNA is produced
by the PCR, the more cDNA binds and the brighter is the spot. The microarray is then
put in a scanner or on a screen and a digital image of the microarray is taken. Image
analysis software imports the picture, identifies the spot locations and boundaries, and
outputs the intensities and colors for these spots. The intensity values still need to be
corrected for the surrounding background or spilled over spots (Yang et al., 2000). Finally,
in order to encounter systematic variation and to allow a comparison between different
microarrays, data normalization has to be performed (Yang et al., 2002).

cDNA microarrays usually use two channels, where simultaneously a tissue of interest is la-
beled with one dye (e.g. Cy3 or Cy5) and a control or universal reference (Novoradovskaya
et al., 2004) is labeled with another dye of different color. The measured intensity of each
dye after hybridization reflects the mRNA abundance in the corresponding tissue. Since
mechanically spotted probes can have different shapes and sizes it is hard to compare
intensities as absolute values directly. Bigger spots show stronger intensities than smaller
spots. When two dyes are used a ratio of the intensities can be calculated. This ratio is
independent of the spot geometry as both channels are affected equally. Thus, the two
dye color approach allows an easy way for a spot size independent normalization.

Affymetrix uses only single channel arrays, where one tissue is labeled with biotin and
then hybridized. More detailed information about microarrays can be found in Brown
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and Botstein (1999).

1.2.3 Data processing

After the image processing of the microarray we have an expression intensity measurement
for each probe or gene. The data is stored in a gene expression matrix X = (xij) ∈ IRp×n,
where p is the total number of probes or genes and n the total number of arrays.

Normalization – Microarray intensities do not directly reflect the absolute gene expres-
sion but are also influenced by experimental artifacts. These factors can stem from sam-
ple preparation and variability during the production or the processing of the arrays
(Hartemink et al., 2001). Therefore, in order to be able to compare results between
different microarrays the data has to be normalized.

One way of normalization is the use of housekeeping genes. Here, a predetermined set
of genes is selected that is assumed not to be biologically regulated and ubiquitously
expressed. A change in the expression of these genes reflects experimental variation and
should be compensated through normalization.

A simple normalization is to subtract the mean intensity of the housekeeping genes and
divide by the standard deviation of their intensities. A more robust normalization version
is to genewise subtract the median intensity of all housekeeping genes and divide by the
inter-quartile range of their intensities (Pan, 2002). In whole genome microarrays most
genes are not changed and the number of up- and down-regulated genes are similar. In
this case, it is possible to use the data of all genes in the normalization procedure instead
of restricting normalization to housekeeping.

Another method is quantile normalization (Bolstad et al., 2003). Here, the expression
matrix is sorted numerically for each column (microarray). Then, for each row (gene) the
mean is calculated and assigned to every element in this row. Finally, the columns are
arranged back to their original order. This makes the distribution of the gene expression
intensities for each array in a set of arrays the same.

VSN - Variance stabilizing normalization – Rocke and Durbin (2001) proposed a model
for gene expression incorporating additive and multiplicative noise. The gene intensity
is modeled by X = α + βeη + ν, with α being an offset, β the mRNA expression level
and η and ν independent, N(0, 1) distributed error terms. Based on this model the
variance of a probe intensity depends on its mean via a quadratic function, Var(X) =
Var(eη)β2 + Var(ν) (Rocke and Durbin, 2001). In order to make the variance of the gene
expression intensity approximately independent of the mean Huber et al. (2002) have
proposed to use a variance stabilizing transformation. Using this together with an affine-
linear normalization they obtained x̂ij = arsinh(aj + bj x̃ij). The parameters aj and bj are
derived using a robust variant of a maximum likelihood estimation calculated on a subset
of genes. This subset are those genes that show the least variation in the normalized
intensities and are determined by a least trimmed sum of squares regression. For large
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intensities the variance stabilizing transformations are equivalent to the logarithm but
they do not have the inherent problems with negative or zero valued intensities.

RMA - robust multi-array analysis – Here, preprocessing consists of three steps: back-
ground correction, normalization and probeset summarization. In Affymetrix arrays sev-
eral probes are measuring the same gene and have to be combined into a single gene
intensity value during the probeset summary step. For normalization, first, a robust
average of the differences was used: PMij −MMij = θi + εij , but this model is only
accurate for similar variances of the error term for all probes. Since probes with larger
mean intensities tend to have larger variances, a log transformation was used to reduce the
dependency between mean and variance. Furthermore, Irizarry et al. (2003b); Naef et al.
(2002) found that subtracting the mismatch probes MM to correct for unspecific binding
produces less reliable results compared to not using MM at all. Therefore, Irizarry et al.
(2003a) suggested a new model, called robust multi-array analysis (RMA). RMA uses a
log scale linear additive model, T (PMij) = ej + ai + εij , where ej is the log scale expres-
sion value, ai is the log scale probe affinity effect, and T takes the log of the background
corrected and quantile normalized intensities. In spike in and dilution experiments RMA
showed better precision and provided more consistent estimates of fold change compared
to other normalization methods like dChip (Li and Wong, 2001) and MAS5.0 (Irizarry
et al., 2003a).

A more detailed review and comparison of Affymetrix preprocessing methods can be found
in Irizarry et al. (2006).

1.3 Gene expression analysis in clinical studies

Transcriptional profiling has emerged as a powerful tool to identify new cancer classes
(class discovery (Jones et al., 2005)), assigning tumors to known classes (class prediction
(Golub et al., 1999; Alizadeh et al., 2000)), and predicting clinical outcome solely based
on gene expression (van de Vijver et al., 2002). The authors state that it has the potential
to affect diagnosis, tumor staging, prognosis, and treatment.

Until now, cancer classification is based on the morphology of tumor samples, the presence
of metastases, or the degree of differentiation (Ciro et al., 2003). However, morphologically
similar tumors can have different clinical outcome or response to treatment (Ciro et al.,
2003). Even with immunophenotyping, cytogenetics, or mutation analysis it is not possible
to predict tumor outcome. For example, up to 30% of patients with high-risk cancer show
long-term disease-free survival even without chemotherapy and regional therapy only but
it is not yet possible to predict this a priori (Olson, 2004).

Gene expression profiling can complement traditional diagnostics. It helps to further
refine diagnosis by improved prediction of treatment benefits (Chang et al., 2003; Cheok
et al., 2003; Holleman et al., 2004). We now review that gene expression profiling has
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been successfully applied for a wide variety of diseases. Mostly tumors have been studied,
with by far the most studied being breast cancer (Fig. 1.4).

Breast cancer –Breast cancer is the most prevalent non-skin cancer in the world and
the second leading cause of all cancer deaths in western women (Hoyert et al., 2005).
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Figure 1.4: Number of published articles using gene expres-

sion for disease profiling. Generated on 2006-05-04 querying

PubMED with the MeSH (Clarke et al., 1997) term “Microar-

ray analysis” and the corresponding disease term.

Despite an overall similarity in
tumor morphology breast can-
cer patients vary in the respon-
siveness to treatment and have
different clinical outcomes (Loi
et al., 2005). Treatment can
have severe side effects includ-
ing cardiotoxicity, neurotoxic-
ity, and secondary cancers (Loi
et al., 2005). Therefore, a bet-
ter understanding of breast can-
cer biology is needed. For this,
gene-expression profiling offers a
promising tool (Robison et al.,
2004).

Perou et al. (2000) showed that gene expression profiling is capable to distinguish breast
tumor subtypes. They clustered gene expression data of 65 tumor samples from 42 dif-
ferent patients and derived a 496 gene signature capable of distinguishing ER+ (estrogen
receptor positive) from ER- (estrogen receptor negative) breast cancers. When extending
the study to more samples they found that the ER+ group further split into five clinically
relevant subgroups with different survival (Sørlie et al., 2001). West et al. (2001) provided
a breast cancer classification by ER status and lymph node status.

Currently, the detection of lymph node metastases at the time of surgery is used to deter-
mine whether the cancer has spread and if the patient should receive adjuvant treatment
following the removal of the primary tumor (Ciro et al., 2003). This adjuvant treatment
can reduce the risk of distant metastases by one third, but for 70-80% of the patients
chemo- or hormonal therapy would not have been necessary (Wadlow and Ramaswamy,
2005). van ’t Veer et al. (2002) found a gene expression profile that predicts the for-
mation of metastases more accurately than standard methods. Examining 117 primary
breast tumors from lymph-node negative patients who had not received adjuvant therapy
they derived a diagnostic signature containing 231 differentially expressed genes. These
gene signatures were significantly stronger disease outcome predictors than other currently
used diagnostic methods. Especially, non-relapse patients were identified more accurately
by a classifier based on the 231 genes than by using standard methods. Non-relapse pa-
tients are those where the cancer did not reoccur within five years. By further refining
the gene signature aiming for higher specificity van ’t Veer et al. (2002) found a subset
of 70 genes for prognosis of distant metastases that outperformed standard clinical pre-
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dictors like histological grade or lymph node status. The prognostic relevance of the 231
gene signature was verified by Sotiriou et al. (2003). They proposed a 93 genes signa-
ture that could separate the population into two subgroups with significantly different
survival. Glinsky et al. (2004) showed that they achieved even better accuracy with a
smaller gene set when using gene expression in conjunction with prognostic factors ER
status and lymph node status. Huang et al. (2003) screened 89 breast cancer samples.
They predicted nodal metastatic states as well as relapse for breast cancer with about
90% accuracy. Their classifier may make surgical axillary gland staging unnecessary for
the predicted candidates (Sandvik et al., 2005). van de Vijver et al. (2002) extended the
study by van ’t Veer et al. (2002) and examined a cohort of 295 lymph-node-negative as
well as lymph-node-positive breast cancer patients. Using the original 70-gene signature
to predict survival they achieved better accuracy than using standard criteria based on
histological or clinical characteristics. On the other hand, Edén et al. (2004) compared
the 70 gene signature to the traditional NPI (Nottingham Prognostic Index) and found
similar performance. They suggested to use both in a combined predictor. A more de-
tailed review of gene expression studies related to breast cancer can be found in Loi et al.
(2005) and Robison et al. (2004).

Response to treatment or external stimulus – For a long time it is postulated that
tumor stroma generation and wound healing show a similar histological behavior (Dvorak,
1986). In several common epithelial tumors such as breast, lung, and gastric cancers the
expression of a wound-response signature predicted poor overall survival and increased risk
of metastasis (Chang et al., 2004). Chang et al. (2005) used an independent data set of 295
early breast cancer patients to confirm that a wound response gene expression signature
(response of normal fibroblasts to serum) is a powerful predictor of clinical outcome in
patients with early stage breast cancers. Chang et al. (2003) identified transcriptional
patterns associated with sensitivity and resistance to the drug docetaxel.

Lung cancer – Bhattacharjee et al. (2001) conducted a gene expression study of human
lung carcinomas. They screened 186 lung tumor samples (including 139 adenocarcinomas)
and found that gene expression profiling allowed to discriminate primary lung adenocar-
cinomas from metastases of extra-pulmonary origin. They also found distinct subclasses
of adenocarcinomas with different patients’ survival. Therefore they suggested that inte-
gration of expression profiles with clinical parameters has a strong potential in diagnosis
of lung cancer patients. Beer et al. (2002) predicted patient survival in early-stage lung
adenocarcinomas using a 50 gene signature. Additionally, in pulmonary adenocarcinomas
a set of eight genes was found that provided independent prognosis and can become a
clinical tool soon (Endoh et al., 2004).

Skin cancer – Bittner et al. (2000) used gene expression profiling on 31 melanoma samples
dividing them into two groups with different metastatic potential. The genes in their
signature were mainly involved in cell motility and invasion. Haqq et al. (2005) found gene
expression signatures differentiating between normal skin, nevi, and primary melanomas.
They also detected two novel types of metastatic melanoma.
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Prognostic and predictive gene expression signatures were also derived for many other
solid tumors, like gliomas (Nutt et al., 2003; Freije et al., 2004; Fuller et al., 2002), colon
(Alon et al., 1999; Hu et al., 2005), prostate (Lapointe et al., 2004; Singh et al., 2002;
Dhanasekaran et al., 2001), head and neck carcinomas (Roepman et al., 2005), and non
solid tumors like hematological tumors, which we describe in the next paragraph.

Non-Hodgkin lymphomas – are a heterogeneous group of lymphoproliferative diseases
with different prognosis and treatment responses (Sandvik et al., 2005). In diffuse large
B-cell lymphoma (DLBCL), the most common subtype of non-Hodgkin lymphomas, long
lasting remission after cytostatic drug treatment can only be achieved in 40-50% of the
patients (Sandvik et al., 2005). Alizadeh et al. (2000) showed that it is possible to subclas-
sify DLBCL in three distinct types with different therapy response and prognosis based on
gene expression profiling of 96 patients. Two novel subclasses are GCB (germinal center
B-cell like DLBCL) and ABC (activated peripheral blood B-cell like DLBCL). The au-
thors showed that GCB has a better survival than ABC. This was verified by Rosenwald
et al. (2002). However, Shipp et al. (2002) could not verify the GCB signature on their
own data. They suggested another gene expression signature for DLBCL outcome pre-
diction that is independent of previously published signatures. Their signature consists
of a 13 gene predictor that proved to be superior to traditional risk assessment using the
International Prognostic Index. Lossos et al. (2004) combined the previous two datasets
and derived a six-gene set for predicting survival. Poulsen et al. (2005) used a cross plat-
form validation and could also subgroup DLBCL into GCB and ABC. For another group
of lymphomas, the follicular lymphoma, Dave et al. (2004) established an expression sig-
nature that divided 191 specimen of untreated follicular lymphoma into four groups with
different survival. These groups could not be detected by standard clinical prognostic
parameters.

Leukemia – Golub et al. (1999) showed that their class predictor using gene expression
distinguished between AML (acute myeloid leukemia) and ALL (acute lymphoblastic
leukemia) with an accuracy of more than 85%. Armstrong et al. (2002) were further able
to separate MLL (mixed-lineage leukemia), which have a particularly poor prognosis,
from ALL and AML. Ross et al. (2003) identified all prognostically relevant subtypes of
ALL with 97% accuracy using gene expression patterns. Ross et al. (2004) showed that
they could identify and predict all major prognostic subtypes of AML with 93% accuracy.
Yeoh et al. (2002) conducted a large study where they discovered new subtypes, classified
known types, and predicted outcome in pediatric acute lymphoblastic leukemia by gene
expression profiling. With unsupervised methods they identified several known biological
subgroups of pediatric ALL, namely: E2A-PBX1, MLL, T-ALL, hyperdiploid, BCR-ABL,
TEL-AML1, and one novel group. They classified the groups with almost 100% accuracy.
Recently, Haferlach et al. (2005) published a leukemia study, where they screened 937
individuals including 45 non-leukemic controls and achieved an overall prediction accuracy
for the subgroups of 95.1% in cross validation.

Survival prognosis and response to treatment – Bullinger et al. (2004) screened 116
adults with AML and found two prognostically relevant subgroups in AML that could
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be distinguished using a 133-gene signature for clinical-outcome prediction of survival.
Chiaretti et al. (2004) and Willenbrock et al. (2004) identified distinct subgroups in ALL
with different immunophenotype, response to therapy, and survival. Cheok et al. (2003)
found a gene expression pattern of drug response in human leukemia cells. Holleman
et al. (2004) showed that drug resistance and treatment outcome could be predicted using
a signature with 124 genes. Cario et al. (2005) found a 54 gene-signature that distinguishes
treatment resistant from treatment sensitive ALL samples with an accuracy of 84%.

Besides cancer research, gene expression profiling has been applied to studies of nonalco-
holic steatohepatitis, serious autoimmune diseases, transplant rejection, and heart diseases
(Sandvik et al., 2005). Hwang et al. (2002), Grzeskowiak et al. (2003) and Jiang et al.
(2002) have reported differential expression of cardiomyopathy and normal tissue as well
as differences in dilated and hypertrophic cardiomyopathy.

More detailed reviews of clinical studies using gene expression can be found in (Sandvik
et al., 2005; Burczynski et al., 2005; Ciro et al., 2003; Raetz and Moos, 2004; Olson, 2004;
Wadlow and Ramaswamy, 2005).

Validation – Simon (2003) found that most prognostic markers are either not medically
relevant or not validated on independent test sets. However, only when a prognostic
model can be validated on an independent group it can work satisfactory for future pa-
tients (Altman and Royston, 2000). Reid et al. (2005) was for example not able to validate
a predictive model for antiestrogen response after tamoxifen treatment based on the ex-
pression ratio of two genes on an independent cohort of 58 patients. However, besides
validation on independent samples sound statistical evaluation is indispensable. Ntzani
and Ioannidis (2003) analyzed 84 clinical studies of which 30 addressed major clinical
outcomes. Only nine of the studies used cross-validation and of these only two used com-
plete cross validation. They conclude that larger studies applying proper clinical design,
adjustment for known predictors, and sound validation are essential.

1.4 Machine learning

In this thesis I aim for a diagnosis using gene expression data. This can be seen as a
classification problem where gene expression data are features or covariates and disease
types are labels. Therefore I review machine learning methods for supervised classifi-
cation in section 1.4.1. For estimating the prediction error achieved with the classifier I
discuss cross validation strategies in section 1.4.2. For further optimizing the classification
performance gene selection methods are used and reviewed in section 1.4.3. In chapter
3 I propose a novel gene selection method for classification and show that it improves
classification accuracy. I first structure the genes using unsupervised clustering methods
and therefore review them in section 1.4.4.
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1.4 Machine learning

1.4.1 Supervised methods

In supervised methods the class label information of each object is given. The task is
to build a classifier that can predict the class label of so far unseen objects with high
accuracy. Supervised methods are often also called classification, discriminant methods,
or class prediction. More formally, n objects are given with feature measurements xi ∈
IRp, i ∈ {1, ..n} and labels yi ∈ {1, .., k}, where p is the number of features and k is
the number of class labels. The data (x, y) can be seen as realizations of the random
variables X and Y . Let the learning set S = {(xi, yi)},∀i ∈ {1, .., n} be n instantiations
of the pair of random variables (X, Y ). Given the learning set S the task is to find
a classification function c(x;α, S) that predicts the label from the features of a so far
unseen object x ∈ IRp using the learning set S and the parameters of the classifier α. α

is a regularization parameter constraining the classifiers model complexity, e.g. number
of genes used or kernel parameters used for SVMs. In our setting x is microarray data
measuring p genes, yi are disease type labels, and n is the number of microarrays.

There have been many classifiers for microarray analysis described in the literature. Near-
est neighbor classification assigns the label of the new sample to the label of the closest
sample with known label. This can be extended to kNN (k-nearest neighbor) where the
labels from the k closest samples are averaged.
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Figure 1.5: SVMs find a separating hyperplane with

maximal margin. The objects on the margin (marked

by dotted circles) are called support vectors.

Tan et al. (2005) reviews several clas-
sification methods and concludes that
simple decision rules in gene expres-
sion analysis are as effective as more
complicated classifiers but easier to in-
terpret, and therefore favorable. In
the next paragraph we describe sup-
port vector machines (SVMs), a ro-
bust and fast classification method, in
more detail as they are used through-
out the following chapters of this the-
sis. SVMs have been shown by Brown
et al. (2000) to provide on average the
best prediction accuracy when com-
paring various learning methods. This
was verified in a bigger study by Lee
et al. (2005) who compared classi-
fiers in combination with gene selec-
tion methods.

Support Vector Machines (Boser et al., 1992) are binary classifiers, that construct an
optimal separating hyperplane wTx + b = 0 with maximal margin. Here, the distance
from the boundary to the closest data points, the support vectors, is maximized (Fig. 1.5).
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||w|| is minimized under the constraints: yi(wTxi+b) ≥ 1 ∀i, yi ∈ {−1, 1} being the class
label. The size of the margin separating the two classes is then given by 2

||w|| . As long as
the data is linearly separable the construction of the hyperplane is possible. An extension
of SVMs, that can also deal with the non-separable case (where no solution for the above
optimization problem exists), are soft-margin SVMs (Cortes and Vapnik, 1995). In soft
margin SVMs slack variables ξi ≥ 0 are introduced that penalize misclassified examples.
The optimization problem then changes to a minimization of ||w|| with the constraints:
yi(wTxi + b) ≥ 1 − ξi,∀i, ξi ≥ 0 and

∑
ξi ≤ c. If ξi > 1 misclassification occurs. Thus,

the last constraint bounds the total number of training misclassifications to c.

Usually the optimization problem is formulated in its dual form using Lagrange multipliers
λi and can be solved using standard numerical optimization packages or specially suited
quadratic optimization packages. As typically only a small number of Lagrange multipliers
are non-zero the hyper-plane is supported only by a few support-vectors. The final decision
function c(x) that classifies a new sample x is the sign of the distance vector from the
hyperplane, c(x) = sign[wTx + b]. SVMs can be extended to non-linear classification
strategies when replacing the inner products with a kernel function K(u, v) that fulfills
Mercer theorem (Vapnik, 1998). The kernel maps the data into a high dimensional feature
space where the hyper-plane classification takes place. Typical kernels include, linear:
K(u, v) = uT v, polynomial: K(u, v) = (1 + utv)θ, and RBF (radial basis function):
K(u, v) = exp

(
− ||u−v||2

θ

)
. Supervised learning methods are reviewed in more detail in

Hastie et al. (2001).

In the next section we review general strategies for assessing the prediction error of a
classifier (performance assessment) and how to choose the regularization parameters α

for such a classifier (model selection).

1.4.2 Cross Validation

Let P be the underlying, but unknown, population distribution of (X, Y ). Let P̂ be the
empirical distribution in the learning set S. The loss function L(y, c) measures deviations
between the predicted label and the true class label. The expected loss, or risk, is defined
as:

R(c, P ) = EP [L(Y, c)] =
∫

L(y, c(x))dP (x, y)

However, the expected loss is a theoretical measure as the population distribution P is
needed for the classifier construction and the assessment. Usually P is unknown and the
rule is based upon the observations in S. This defines the conditional risk (also known as
generalization error ):

R(c(·;α, S), P ) =
∫

L(y, c(x;α, S))dP (x, y)

Ideally, an independent dataset can be used to assess the conditional risk. However,
typically, one must use the learning set S for model building, selection, and performance
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assessment. This leads to the resubstitution or apparent error, which is a simple method
for estimating the conditional risk:

R(c(·;α, S), P̂ ) =
∫

L(y, c(x;α, S))dP̂ (x, y)

The evaluation of the conditional risk is important for two purposes. First, for finding
the appropriate model complexity of the classifier, and second, for estimating the gener-
alization error (the performance on future samples).

The goal in model selection is to find a model that minimizes the conditional risk over
a collection of potential models. In general, more complex models fit the learned data
better. However, S is only a sample of the underlying population and characteristics
learned from one set may not generalize well to the whole population. This leads to
less accurate predictions on future samples and is known as overfitting or overtraining
(Geman et al., 1992). When the whole learning set S is used for constructing, selecting,
and evaluating the prediction error of c the generalization error is underestimated (Efron,
1983).

One way to obtain less biased estimates is the hold-out procedure. Here, the dataset S is
split into a training and a test set. The training set is used for model fitting and the test
set is used for estimating the generalization error.

Lachenbruch and Mickey (1968) and Stone (1974) proposed a method called cross-validation
when one is forced to use the same data for model building and its assessment. Cross-
validation is a resampling method for estimating the prediction error of a classifier and
can provide more accurate estimates than hold-out procedures without reducing the num-
ber of training examples. The basic idea is to divide the whole dataset into chunks and
repeatedly use all but one chunk to train the model and the held-out chunk to assess the
generalization performance.

k-fold CV – In k-fold cross-validation, the data is split into k subsets (or folds) and the
classifier is only trained on k−1 of the subsets but tested on the left out. This is repeated
k times so that every sample was exactly one time in the test-set. The observed errors
are averaged. Blum et al. (1999) showed that the k-fold estimate is strictly more accurate
than a hold-out estimate on 1/k of the data based on its variance and all higher moments.
A special case of k-fold cross validation is the leave-one-out cross validation. Here, k is
equal to the number of samples n. Exactly one sample is left out, the classifier is trained
on all others and tested on the left out sample. As the parameters of the classifier strictly
depend on the training data set LOOCV needs to learn the classifier n times, once for each
left out sample. Therefore, LOOCV tends to be variable, especially when data are noisy.
Bengio and Grandvalet (2004) proofed that there exists no universal unbiased estimator
of the variance of k-fold cross-validation. In general, cross validations with a small k have
a larger bias but offer the advantage of smaller variance (Hastie et al., 2001). Therefore,
Geisser (1975) and Zhang (1993) suggested to use k-fold cross validation instead of hold-
out procedures and Hastie et al. (2001) recommended to use k around 5-10.
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While cross-validation error estimation is less biased than resubstitution, it displays exces-
sive variance, which makes individual estimates unreliable for small samples. Bootstrap
methods (Efron, 1979) provide less variable error estimates. However, bootstrapping has
high computational cost and often an increased bias (Braga-Neto and Dougherty, 2004).
Kohavi (1995) compared cross validation and bootstrap and concludes that for large
enough real world datasets 10-fold cross validation should be used for model selection.
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Figure 1.6: Nested cross validation scheme with 3-fold outer

cross validation for estimating the misclassification error and

4-fold inner cross validation for tuning the parameters of the

classifier. In each outer cross validation round the training

set of this fold is further cross validated in an inner round to

unbiasedly estimate the best classification parameters.

In this thesis we use the evaluation
method proposed by Ruschhaupt
et al. (2004). They suggested
a nested cross validation strategy
with an outer and an inner cross
validation. In the outer cross vali-
dation the held-out test set is used
for evaluating the generalization
performance. The training set is
used to assess the model parame-
ters for the classifier. Therefore,
in an inner cross validation, this
set is further split up into a train-
ing set on which the classifier’s
parameters are tuned and a val-
idation set on which the perfor-
mance with this parameter set is
assessed. For every possible clas-
sifier parameter combination the inner cross validation has to be run. The predictive
performance for the best parameter set achieved in the inner loop is evaluated on the
outer loop test set. Thus, the nested cross validation serves two purposes. First, finding
the optimal model parameters and second, assessing the generalization performance with
this parameter set.

Overfitting – Applying some form of predictive performance assessment in gene expression
analysis is crucial for diagnostics. West et al. (2001) stressed the need for cross-validation
in order to provide honest assessment of the outcome of future samples. Ambroise and
McLachlan (2002) showed that in the past many microarray dataset used gene selection
on all available microarrays and thus ran into the problem of overfitting. They underline
that feature selection has to be done for every fold separately in the cross validation.
Ntzani and Ioannidis (2003) analyzed clinical gene expression studies and found that only
9 applied any form of cross-validation, and only 2 of these avoided the selection bias.

1.4.3 Gene Selection

One strength of microarrays is that they can measure thousands of genes simultaneously.
On the other hand many of the genes are noisy, irrelevant, or redundant. Noise in the
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measurements stems from experimental variation but can also reflect sampling effects. As
we cannot learn population characteristics from noisy genes they should be filtered out.
Irrelevant genes are those that are not related to the disease and e.g., constantly expressed
or not regulated disease specific. Redundant genes are those that are highly correlated
to other genes. This can reflect the fact that the genes are involved in the same pathway
or even directly connected. Gene selection strategies aim to identify a relevant subset of
the genes. The set of relevant genes can then directly be used for a diagnostic microarray
design.

Gene selection not only serves to identify biologically relevant genes, it also improves the
classifier’s predictive performance. Training the classifier with many more genes than
samples makes it hard to learn underlying patterns. The classifier tends to use character-
istics specific to the training data and cannot generalize well to future samples (Hughes,
1968). In a setting with more variables than objects a linear separation of any bipartition
of the objects is always possible when the vectors associated with the objects are linearly
independent. This separation, however, does not necessarily reflect population character-
istics but potentially uses features that just by chance allow a good separation. When
new examples are classified this can lead to misclassifications. Therefore, sparse models,
which restrict the model complexity, are needed to provide better generalization. One
way to restrict the model complexity is reducing the number of features through feature
selection.

Feature selection is the problem of finding a feature subset with the smallest expected
generalization error. Here, the classifier only uses the measurements of these features and
disregards all others. The number of features in a classifier can be seen as a classifier
parameter controlling model complexity. The classifier then only uses the projection of x
onto the given features and omits all other data.

Feature selection is composed of two steps (Liu and Motoda, 1998): the generation of
a suitable feature subset (feature subset generation) and the evaluation of the subset
according to some quality criteria (feature subset evaluation).

Feature subset generation – If there are only few features it is possible to completely
enumerate and score all potential feature subsets. However, the number of feature subsets
grows exponentially with the increase of dimensionality d. Finding a strictly optimal
subset is intractable (Kohavi and John, 1997). It has been shown that using brute force
approaches are not tractable even for simple classifiers (Blum and Rivest, 1992; Evgeniou
and Poggio, 1997). Therefore, many algorithms have been described to find reasonable,
suboptimal feature sets. Usually non-deterministic or heuristic strategies are used. Here,
the feature generation can either follow a forward strategy (where beneficial features are
added to the subset), backward strategy (where noninformative features are removed from
the subset), a combination of forward and backward, or a random selection strategy. This
can be done one feature at a time or in chunks of several features. Extensions where the
size of the chunks is dynamically adapted are called floating forward/backward selection
(Pudil et al., 1994).
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A heuristic forward strategy is to rank features according to some quality criteria and se-
lect the top features. This can be done by looking at each feature separately (univariate)
or evaluating the potential of several features together (multivariate). Univariate methods
considering each gene separately potentially miss sets of genes that together allow a good
separation between the classes. Multivariate methods measure the relative contribution of
a gene to the classification by taking other genes into consideration. In general, multivari-
ate methods select fewer genes (Xu and Setiono, 2003). However, the computational cost
of multivariate methods is high and the selection may be sensitive to noise or irrelevant
features (Lai et al., 2005, 2006). Guyon and Elisseeff (2003) provides a comprehensive
review of feature selection methods. A comparison of feature subset selection algorithm
can be found in Kudo et al. (2000) and Jain and Zongker (1997). Broberg (2003) reviews
feature selection in the context of microarrays.

Feature subset evaluation – The evaluation of the feature subset can be on the basis
of accuracy, consistency, information, distance, or dependence. If the evaluation of the
feature subset uses the predictive accuracy of the classifier itself the method is called a
wrapper (Kohavi and John, 1997). If the feature selection is done separately from the
classifier based on other criteria, it is called a filter.

In this thesis we propose an improvement to filter based univariate forward feature selec-
tion and therefore review now several methods used for feature ranking.

Feature ranking for classification seeks to rank features according to their ability for class
separation. A standard method is to use the unequal variance t-score,

t =
µ1 − µ2√

σ2
1/n1 + σ2

2/n2

of the t-test (Student, 1908). Variants of t-like scores such as Fisher µ1−µ2

σ2
1+σ2

2
(Bishop, 1995)

and Golub µ1−µ2

σ1+σ2
(Golub et al., 1999) put different weights on the variance and number

of samples. When thousands of genes are screened some of them will have low sample
variance just by chance. To counterfeit a selection of low variance genes that might show
only marginal differential expression, Tusher et al. (2001) suggested a modification of the
t-score, called SAM, that inflates the variance estimate. The SAM score is defined as

z =
µ1 − µ2

σ12 ∗ (1/n1 + 1/n2) + s0
,

where
σ12 =

√
((n1 − 1)σ2

1 + (n2 − 1)σ2
2)/(n1 + n2 − 2)

is the pooled variance estimate and s0 is a small positive constant that minimizes the
coefficient of variation. Also approaches from entropy and information theory, like the
information gain (Xing et al., 2001), were used to identify differential genes. However, in
t-like scores outliers or scale transformations (e.g. log) strongly influence results. Rank
based scores that do not use the numerical values directly but just the rank are more
robust. Rank based scores include TNoM (Threshold number of misclassifications, Ben-
Dor et al. (2000)) and Wilcoxon rank-sum (Wilcoxon, 1945). Both first sort the numerical
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gene expression vector. Then, they only look at the class labels of the sorted vector. They
assess for every position in the vector how well a split at this position would separate the
two class labels. The TNoM score reports the minimal number of misclassification done
over all possible split positions. The Wilcoxon score sums up the distance from the
misclassified labels to the split boundary and reports the minimal sum of distances. The
Wilcoxon score has been successfully used as a scoring function for genes (Park et al.,
2001). Pepe et al. (2003) proposed a feature selection based on receiver operator curves
(ROC) closely related to the Wilcoxon score, which takes sensitivity and specificity into
account. A more detailed review of variable selection methods can be found in Dudoit
et al. (2002), Guyon and Elisseeff (2003) and Liu and Motoda (1998).

In chapter 3 we introduce a novel method for improving gene selection by grouping genes
using unsupervised methods an review these methods in the following section.

1.4.4 Unsupervised methods

In unsupervised methods, often also called class discovery methods, the classes are a priori
unknown and the task is to automatically group the data. Typically, clustering methods
are used to partition the dataset into several groups or clusters, where similar objects are
assigned to the same cluster whereas dissimilar objects are assigned to different clusters.
One distinguishes hierarchical clustering methods (Eisen et al., 1998) and partitioning
clustering methods (Hartigan and Wong, 1979). Hierarchical methods iteratively examine
one object at a time and join it to the closest cluster, such producing a tree like structuring
of the data. Partitioning clustering methods partition the objects into a prespecified
number of clusters, so that the within-cluster distance is minimized and the without-
cluster distance is maximized.

Nottermans carcinoma data (18 normal, 18 tumor), 5 fuzzy clusters

tumor
normal

Figure 1.7: Notterman carcinoma data was fuzzy clus-

tered and is visualized on a regular pentagon. Each corner

represents a cluster center and the probability of an ob-

ject’s membership to each cluster defines the distance from

each corner.

Fuzzy clustering (Dunn, 1973; Bezdek,
1973) is a partitioning clustering
method. It deals with the problem
that there is often no sharp bound-
ary between clusters in real applica-
tions. Instead of assigning an object
to a specific cluster there is a mem-
bership probability for each cluster.
The fuzziness of the membership of
an object to a cluster can be tuned
with a softness parameter. In the
extreme case where the softness pa-
rameter is close to 1 a hard assign-
ment to the clusters is achieved (i.e.,
each item belongs exactly to one
cluster with probability 1). Viewing
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it that way fuzzy clustering is a generalization of k-means clustering. Fuzzy clustering
partitions a finite collection of elements X = {x1,x2, ...,xn} into c fuzzy clusters V ,
with V = (vi), i = {1, .., c} being the cluster centers, vi,xi ∈ IRp. A partition matrix
U = (uij), i = {1, .., c}, j = {1, .., n} specifies the probability to which the element xj be-
longs to the i-th cluster, uij ∈ [0, 1]. The fuzzy c-means algorithm minimizes the objective
function

J(X,w;U,V) =
c∑

i=1

n∑
j=1

um
ij wjd

2(vi,xj).

d is the distance function between a data vector and a cluster center, wj is the weight of
xj , and m ∈ [1,∞] is the fuzzy softness parameter. After specifying the number of clusters
c, the weights w, and the softness parameter m, the following steps are processed during
fuzzy clustering: the positions of the cluster centers are randomly set or initialized by a
previous hierarchical clustering. Then, the partition matrix U is calculated by minimizing
the objective function with the given cluster centers V . With the new U the cluster center
positions V are recalculated. These steps are repeated until convergence.

In gene expression analysis, often, the task is to group similar samples together. The
Notterman Adenoma (Notterman et al., 2001) dataset contains mRNA expression of ap-
proximately 6600 cDNAs and ESTs. These were measured in 4 colon adenomas and
4 paired normal colon samples. When using the FCMeans Clustering MATLAB Tool-
box V2-0 for clustering the gene expression vectors of all samples in this dataset, tumor
samples can be separated from normal tissue samples (Fig. 1.7).

We now propose a framework for deriving a biomarker panel from clinical microarray
studies.

21



1.4 Machine learning

22




