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Preface

Motivation

A reliable and precise diagnosis of a disease is essential to make suitable therapy deci-
sions. This holds especially for cancer, which is the second frequent cause of death in the
western world (Hoyert et al., 2005). However, established diagnosis strategies are lim-
ited in distinguishing between morphologically similar but molecularly different tumors
(Schmidt and Begley, 2003). On the other hand, these molecular differences are crucial in
predicting the response to therapy and ultimately the outcome for the patient (Schmidt
and Begley, 2003).

One way to analyze molecular differences is gene expression profiling. Here, the expression
level of genes in different cells are measured and compared. Currently, it is possible to
measure thousands of genes in parallel with a high-throughput method called microarrays.
Looking at gene expression levels allows a detailed insight into so far invisible changes of
the metabolism. This leads to a more complete understanding of the underlying mech-
anisms of the disease and a more reliable diagnosis (Roepman et al., 2005; Ciro et al.,
2003). Therefore, Barrett (2005) predicts considerable implications for medicine. In the
end, gene expression profiling might even revise the definition of diseases (Alizadeh et al.,
2000).

So far, mostly whole genome microarrays, measuring all genes of the genome, are used.
Synthesizing the necessary PCR primers for such a large number of genes increases produc-
tion costs drastically (Fernandes and Skiena, 2002). However, usually the measurements
of 5-100 genes are adequate to build a classifier that distinguishes one disease subtype from
another (Li and Yang, 2002). Therefore, for diagnosis it is not necessary to screen gene
expression on a whole genome basis but instead customized microarrays with considerably
less genes can be used. This eases handling, production, and data analysis.

Throughout this thesis, I refer to diagnostic microarrays as small custom microarrays,
holding only few genes. Whole genome microarrays are referred to as genomewide gene
expression microarrays, holding tens of thousands of genes.
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Thesis Structure

In this thesis, I discuss several problems related to the design of small diagnostic mi-
croarrays. Currently, whole genome microarrays are frequently used in clinical trials that
aim for diagnostics. Instead of using whole genome microarrays for all patients I propose
to screen only a small fraction of the patients with them. This serves the purpose of
finding disease relevant genes for diagnosis. Then, I suggest to switch to small diagnostic
microarrays carrying these genes. The diagnostic microarrays are now used to screen a
larger patient pool. Here, the goal is to fine tune a gene signature that provides accu-
rate diagnosis. In detail, I address the following three questions that arise during the
development of a diagnostic microarray:

1. Accuracy loss of a diagnostic microarray – What is the loss in classification
accuracy when a diagnostic microarray is determined in the early onset of a clinical
whole genome microarray study?
In chapter 2, I present a novel, two-phase design for predictive clinical gene expres-
sion studies: early marker panel determination (EMPD). In phase-1, genome-wide
microarrays are only used for a small number of individual patient samples. From
this phase-1 data a panel of marker genes is derived. The marker genes are used for
the design of a custom, diagnostic microarray. In phase-2, whole genome microarray
are exchanged by this diagnostic microarray. Then, only the expression of the genes
on this diagnostic microarray are measured for a large group of patients. From this
data a predictive classification model is learned. Phase-2 does not require the use of
whole genome microarrays, thus making EMPD a cost efficient alternative for cur-
rent trials. Currently, a whole genome Affymetrix array (HGU 133 Plus 2.0) retails
for US$975, whereas a custom express array from the same company costs 375 US$
(Affymetrix retail price sheet Jan 2006). The expected performance loss of EMPD
is compared to designs that use genome-wide microarrays for all patients. I also
examine the trade-off between the number of patients included in phase-1 and the
number of marker genes required in phase-2. By analysis of five published datasets,
I find that in these studies already 16 patients per group would have been suffi-
cient to determine a suitable marker panel of 10 genes, and that this early decision
compromises the final performance only marginally.

2. Gene selection – Which genes should be included in a diagnostic signature?
In chapter 3, I derive a method for improving univariate gene selection techniques for
diagnosis of diseases using microarray data. Genes of interest are typically selected
by ranking genes according to a test score and then choosing the top genes. I show
that using highly discriminative genes that are less correlated amongst each other
instead of just choosing the top ranking genes achieves better classification accuracy.
I propose three different pre-filter methods to retrieve groups of genes that have a
similar gene expression profile. Two are based on clustering and one is based on
correlation. For these groups, I apply a score to finally select genes of interest.

xii
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I show that the filtered set of genes can be used to significantly improve existing
classifiers.

3. Normalization – How can a diagnostic microarray be normalized?
In chapter 4, I show that applying standard microarray normalization strategies to
diagnostic microarrays results in decreased classification accuracy. The reason for
this is that normalization of gene expression microarrays carrying thousands of genes
has strong assumptions: either that some genes are constantly expressed or that the
average of all genes is not altered by the disease conditions. This does not hold
for diagnostic microarrays carrying exclusively discriminative genes. I point out the
differences of normalization between whole genome and diagnostic microarrays and
suggest two normalization strategies especially designed for diagnostic microarrays.
The first is a data driven selection of additional normalization genes. The second
does not need additional genes. Instead it is based on finding a balanced diagnostic
signature. I compare both methods to standard normalization protocols known
from whole genome microarrays. The use of the latter leads to a loss of diagnostic
prediction accuracy, while the two normalization strategies designed for diagnostic
microarrays achieve better results.

In the introductory chapter 1, I highlight the potential use of microarray profiling for
diagnostics. First, I review the underlying principles of gene expression profiling by pro-
viding a basic introduction into molecular genetics and technologies for measuring gene
expression. Then, current results of clinical gene expression studies from various diseases
are reported. Since I derive diagnostic disease classifiers from microarray data, I shortly
outline machine learning approaches, especially classification and clustering. Finally, I
introduce evaluation strategies for assessing the performance on future samples. The the-
sis closes with a summary and an outlook. In the appendix, I briefly report on five gene
expression studies I analyzed during the last 4 years. Two of the studies, namely the
cardiomyopathy and the melanoma project, are discussed in more detail.
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