
Chapter 12

The WIQA Browser

The WIQA browser is an example application that uses the WIQA frame-
work. The browser demonstrates how information quality filtering capabil-
ities can be integrated into a standard web browser. The browser enables
users to extract structured information from web pages. Extracted infor-
mation from different web pages is stored in a local repository and can be
browsed, sorted, and searched together. The content of the local repository
can be filtered using quality-based information filtering policies. In order
to help users to understand the filtering decisions, the browser can display
explanations why a piece of information satisfies a selected policy.

The WIQA browser is based on the Piggy Bank extension for the Firefox
web browser developed by the SIMILE project at the Massachusetts Institute
of Technology [HMK05]. The WIQA browser uses Piggy Bank functionality
to extract structured information from web pages and to display and navigate
extracted information. The WIQA browser employs NG4J to store informa-
tion together with provenance meta-information as a set of named graphs.
The browser uses the WIQA - Filtering and Explanation Engine to filter
stored information and to generate explanations about filtering decisions.

The WIQA browser is available under the terms of the Berkeley Software
Distribution license [Reg99]. The browser is distributed as an XPI installa-
tion file which integrates the browser into Firefox. The installation file can
be downloaded from the WIQA browser website 1.

The following sections describe the capabilities of the WIQA browser to
collect, filter, and display information. The financial information integration
scenario outlined in Chapter 7 is used as a running example to explain how
an investor can use the browser to collect financial information from different
websites and explore collected information using different filtering policies.

1http://www.wiwiss.fu-berlin.de/suhl/bizer/wiqa/browser/ (retrieved 09/25/2006)

143



CHAPTER 12. THE WIQA BROWSER 144

12.1 Collecting Information

While a user browses the Web, the WIQA browser runs in the background
and analyzes the visited web pages. Whenever the browser can extract struc-
tured information items from a page, it shows a data coin icon in the status
bar of the browser, indicating that the user can switch to an information
item view of the web page. The information item view lists all information
items that have been extracted from the page. Next to each item is a save
button. Pressing the button stores the item in the local repository.

Let us assume that our investor is interested in several companies and
plans to buy stocks of one of these companies. For deciding on the right
company, he would visit several financial information portals and search for
news, analyst reports, and discussion forum postings about the companies.
Whenever he finds an interesting information item on one of the websites, he
will let the WIQA browser extract the information item and save it to his
local repository for future reference.

Figure 12.1 illustrates the investor’s information collection process. The
screenshot on the left shows a Yahoo Finance! page2 containing news about
Google Inc. The data coin icon in the status bar of the browser indicates
that the news can be extracted as structured information items. Clicking
on the icon switches to the information item view of the page shown on the
right in Figure 12.1. Each table on the left-hand side of the information item
view represents a news item which can be saved into the local repository.

The WIQA browser can extract information from web pages that
offer their content, beside of HTML, in an alternative structured for-
mat. The browser supports Really Simple Syndication (RSS) [RSS05],
RDF/XML [Bec04b], and RDF/N3 [BL98] as alternative content formats.

On websites which do not provide an alternative structured representa-
tion, the WIQA browser can invoke screen-scrapers to extract structured
information from within a web page’s content. The WIQA browser uses the
Piggy Bank screen-scraping framework [SIM06a] to transform webpages into
RDF. Each screen scraper defines a URL pattern and is invoked whenever a
page matching this URL pattern is visited. Screen-scrapers are implemented
as XSLT templates [Cla99] or in Javascript. Alternatively, screen-scrapers
can be visually defined using Solvent [SIM06b], a tool which enables users to
highlight parts of an XHTML page and automatically generates a Javascript
screen-scraper to extract these parts.

The WIQA browser uses the Named Graphs data model to represent in-
formation together with provenance meta-information. Whenever the user

2http://finance.yahoo.com/q?s=Goog (retrieved 09/25/2006)



CHAPTER 12. THE WIQA BROWSER 145

Figure 12.1: Extracting news about Google Inc. from the Yahoo Finance!
website.

saves information from a webpage into the local repository, the browser
creates a new named graph for this visit of the page and stores the cur-
rent timestamp, the URL of the page, and the authority (website URL)
together with the actual information. The new graph is named with an
UUID [LMS05]. Provenance meta-information is represented using the Se-
mantic Web Publishing and the Dublin Core [NPJN06] vocabularies.

Figure 12.2 shows the browser’s internal representation of two informa-
tion items, a person and a document, that have been saved from the FOAF
profile [BM04] http://www.wiwiss.fu-berlin.de/suhl/bizer/foaf.rdf.
Note that the WIQA browser uses the URL of the website from which infor-
mation is saved as object of the swp:authority triple. Screen-scrapers for web
pages that contain explicit authorship information can overwrite this URL
with a more specific identifier.

12.2 Importing and Exporting Information

In addition to collecting single information items from the Web, the user
can also import sets of named graphs into the local repository, and ex-
port the content of the local repository to a file. The browser’s import
and export features are found in the menu Extras/WIQA Browser shown in
Figure 12.3. The WIQA browser supports the TriX [CS04a], TriG [Biz05],



CHAPTER 12. THE WIQA BROWSER 146

1. @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
2. @prefix dc: <http://purl.org/dc/elements/1.1/> .
3. @prefix swp: <http://www.w3.org/2004/03/trix/swp-2/> .
4. @prefix : <http://www.bizer.de/> .
5.
6. <urn:uuid:8c845860-dce7-11d9-b9c0-00112ff60c7f> {
7.
8. :i rdf:type foaf:Person ;
9. foaf:name "Christian Bizer" ;
10. foaf:mbox <mailto:chris@bizer.de> .
11.
12. :p747-bizer.pdf rdf:type foaf:Document ;
13. dc:title "Using Context- and Content-Based ..." .
14.
15. <urn:uuid:8c845860-dce7-11d9-b9c0-00112ff60c7f>
16. swp:assertedBy
17. <urn:uuid:8c845860-dce7-11d9-b9c0-00112ff60c7f> ;
18. swp:authority <http://www.bizer.de> ;
19. dc:date "2006-05-14T17:18:10+02:00" ;
20. swp:savedFrom
21. <http://www.wiwiss.fu-berlin.de/suhl/bizer/foaf.rdf> .
22. }

Figure 12.2: Named Graph generated by the WIQA browser. The graph
contains two information items together with provenance meta-information.

RDF/XML [Bec04b], and RDF/N3 [BL98] syntaxes.
Our investor could use the import function to load graph sets that he has

received from an information syndicator, like the example graph set from
Section 7.2, into the repository. Some filtering policies require specific back-
ground information, like the affiliation of information providers, benchmark
scores of analysts, or ratings of information providers. The import function
can be used to load such background information into the repository. The
following examples will assume that the investor has loaded an extended
version of the example graph set3 from Section 7.2 into the repository.

12.3 Browsing Information

Figure 12.4 shows the browser’s user interface for exploring information in
the local repository. Information items from the local repository are dis-
played on the left-hand side. Each item is rendered as a table, containing

3http://www.wiwiss.fu-berlin.de/suhl/bizer/wiqa/finUseCase/finData.trig
(retrieved 09/25/2006)



CHAPTER 12. THE WIQA BROWSER 147

Figure 12.3: The WIQA browser menu.

the item’s properties and their values. The user can refine the collection of
items down to a desired subset, by defining filters. Filters are specified using
the navigation panel on the right-hand side. There are two types of filters:

Property Filters restrict displayed items to the subset of all items that
have a specific property value. For instance, a property filter could
restrict items to having the rdf:type fin:Analyst, or the fin:country

iso:DE. Property filters are defined by selecting a property from the
property selection panel, shown in Figure 12.4, and by selecting the
desired property value from the value selection panel afterwards.

Text Filters restrict displayed items to the subset of all items that have a
property value containing a certain string. A text filter is defined by
entering search terms into the search panel.

The filter criteria that are currently used are shown above the resulting
sub-collection of items. In Figure 12.4, the collection of all items has been
zoomed in to the sub-collection of all organizations by applying the property
filter “is an Organization”. Clicking remove next to a filter criterion would
undo the corresponding browsing action and zoom out to the collection of
all items.

12.4 Applying Policies and Retrieving Explana-
tions

Back in 1997, Tim Berners-Lee, the inventor of the World Wide Web, envi-
sioned that Web browsers could explain the quality and trustworthiness of
displayed information. He proposed that the user interface of each browser
should contain an “Oh, yeah?”-button [BL97]. Whenever a surfer does not



CHAPTER 12. THE WIQA BROWSER 148

Figure 12.4: Browsing information in the local repository.

feel confident about displayed information, he should press this button and
the browser would display an explanation why information should be consid-
ered trustworthy.

The WIQA browser realizes the “Oh, yeah?”-button. The user can load
a WIQA policy suite into the browser. A policy suite is chosen in the menu
Extras/WIQA-Browser/Load Policy Suite. The policy suite that is currently
loaded is displayed in the policy selection panel shown in Figure 12.5. After
selecting a policy from the panel, the content of the local repository is filtered
using the policy and the left-hand view is updated to show only information
matching the policy.

When a policy is applied, an “Oh, yeah?”-button labeled with a question
mark appears next to each piece of information. Pressing those buttons opens
a new window with an explanation why a piece of information satisfies the
selected policy. Figure 12.6 shows an example explanation. The explanation
establishes why an analyst report fulfills the policy “Use only information
that has been asserted by German analysts”.

The names of resources, such as persons and organizations, are displayed
as links in the explanations. Clicking on a link opens up a new browser win-
dow containing information about the resource. The user can browse along



CHAPTER 12. THE WIQA BROWSER 149

Figure 12.5: When the user selects a policy from the policy selection panel
on the right-hand side, the left-hand view updates to show only matching
information. The “Oh, yeah?”-buttons open new windows with explanations
why a piece of information satisfies the selected policy.

these links to further explore background information. Figure 12.7 shows
the browser displaying an explanation together with background informa-
tion about the analyst Peter Smith.

While browsing, the investor might change filtering policies and select
the policies that he feels are appropriate for different tasks. For instance,
instead of requiring analyst reports to originate from German analysts, the
investor could decide to accept only reports that have been published after
a certain date by analysts with a high benchmark score. Figure 12.8 shows
an explanation why a report matches this policy.

While browsing discussion forum postings, where the investor does not
know information providers directly, he could select a rating-based policy
which relies on the Tidal Trust metric. Figure 12.9 shows an explanation
why a discussion forum posting satisfies the policy “Accept only information
from information providers who have a Tidal Trust score above 5”. The ex-
planation contains the calculation result and details the calculation process.



CHAPTER 12. THE WIQA BROWSER 150

Figure 12.6: The explanation window. This explanation establishes why
an analyst report matches the policy “Use only information that has been
asserted by German analysts”.



CHAPTER 12. THE WIQA BROWSER 151

Figure 12.7: Exploring background information: Clicking on the links in
the explanation opens a new browser window with background information
about a resource.

Figure 12.8: This explanation establishes why an analyst report fulfills the
policy “Accept only information that has been asserted after January 1st,
2006 by analysts who achieved a StarMine score above 80”.



CHAPTER 12. THE WIQA BROWSER 152

Figure 12.9: This explanation establishes why a discussion forum posting
fulfills the policy “Accept only information from information providers who
have a Tidal Trust score above 5”.




