
Chapter 11

Implementation

This chapter describes the implementation and the usage of the WIQA -
Information Quality Assessment Framework. The WIQA framework is im-
plemented in Java. The implementation consists of two parts: NG4J - Named
Graph API for Jena which is a general purpose extension to the Jena Se-
mantic Web framework [CDD+04] for handling Named Graphs. Second, the
WIQA Filtering and Explanation Engine which enables applications to filter
a set of named graphs using WIQA-PL policies and to retrieve explanations
about filtering decisions.

11.1 The NG4J - Named Graph API for Jena

NG4J - Named Graph API for Jena [BCW05][BC06] is a software toolkit for
creating, manipulating, persisting, and exchanging sets of named graphs.

The toolkit provides an API for manipulating a set of named graphs
using graph-centric and quad-centric methods. Graph sets can be stored in
memory or in a relational database. NG4J provides parsers and serializers
for the TriX and TriG syntaxes introduced in Section 5.3.

NG4J implements convenience methods for using the Semantic Web Pub-
lishing Vocabulary introduced in Chapter 6. The toolkit enables users to sign
graph sets and to verify signatures without the need for detailed knowledge
about signature methods and the SWP vocabulary.

NG4J builds on the Jena Semantic Web framework [CDD+04], a leading
Semantic Web programming environment which is maintained by the Hewlett
Packard Laboratories in Bristol. NG4J is available under the terms of the
Berkeley Software Distribution (BSD) license [Reg99] and can be downloaded
from the NG4J website1.

1http://www.wiwiss.fu-berlin.de/suhl/bizer/ng4j/ (retrieved 09/25/2006)

133

CHAPTER 11. IMPLEMENTATION 134

The followings sections give an overview of NG4J’s public interface and
illustrate the usage of the toolkit with a code example. The complete docu-
mentation of the toolkit is available on the NG4J website2.

11.1.1 Public Interface

The UML diagram shown in Figure 11.1 gives an overview of NG4J’s public
interface.

interface
NamedGraphSet

+ createGraph(graphName:Node):NamedGraph
+ addGraph(graph:NamedGraph):void
+ removeGraph(graph:NamedGraph):void
+ getGraph(name:Node):NamedGraph
+ containsGraph(graphName:Node):boolean
+ countGraphs():long
+ addQuad(quad:Quad):void
+ removeQuad(quad:Quad):void
+ findQuads(pattern:Quad):Iterator
+ containsQuad(quad:Quad):Boolean
+ countQuads():long
+ read(source:Reader, lang:String, baseURI:String):void
+ write(out:Writer, lang:String, baseURI:String):void

interface
NamedGraph

+ getGraphName():Node
+ add(triple:Triple):void
+ delete(triple:Triple):void
+ find(pattern:TripleMatch):Iterator
+ contains(triple:Triple):Boolean
+ size():int

contains

0..* 0..*

+ assertGraphs(listOfGraphNames:ArrayList,
 authority:SWPAuthority):boolean
+ quoteGraphs(listOfGraphNames:ArrayList,
 authority:SWPAuthority):boolean
+ assertGraphsWithSignature(listOfGraphNames
 :ArrayList, authority:SWPAuthority,
 signatureMethod:Node, digestMethod:Node)
 :boolean
+ verifyAllSignatures():boolean

interface
SWPNamedGraphSet

interface
SWPNamedGraph

+ swpAssert(authority:SWPAuthority):boolean
+ swpQuote(authority:SWPAuthority):boolean
+ assertWithSignature(authority:SWPAuthority,
 signatureMethod:Node):boolean
+ getAssertingAuthorities():Iterator
+ getAssertingAuthoritiesWithVerifyableSignature
 ():Iterator
+ getQuotingAuthorities():Iterator
+ getWarrants():Iterator
+ getWarrantsWithVerifyableSignature():Iterator

+ setID(id:Node):void
+ setLabel(email:String):void
+ setEmail(email:String):void
+ setPublicKey(key:PublicKey):void
+ setPrivateKey(key:PublicKey):void
+ setCertificate(certificate:X509Certificate):void

interface
SWPAuthority

+ getAssertedGraphs():Iterator
+ getQuotedGraphs():Iterator
+ getGraphs():Iterator
+ getAuthority():SWPAuthority
+ isSigned():Boolean
+ getSignature():Signature

interface
SWPWarrant

authorizes

1..*

0..*

has

0..* 1

Figure 11.1: Overview of NG4J’s public interfaces.

2http://www.wiwiss.fu-berlin.de/suhl/bizer/ng4j/javadoc/ (retrieved 09/25/2006)

CHAPTER 11. IMPLEMENTATION 135

NamedGraph and NamedGraphSet

The NamedGraph interface defines basic methods for manipulating a named
graph. The add() and delete() methods add and remove triples from the
graph. The find() method returns an iterator over all triples that match a
given triple pattern.

The basic information container in NG4J is the NamedGraphSet. The
NamedGraphSet interface defines methods for manipulating and serializing a
set of named graphs. A graph set can be manipulated by adding and re-
moving entire graphs, or by working with individual quads. Within NG4J,
quads are not understood as separate entities beside named graphs but as a
different view on a graph set. The first item in a quad is a graph name; the
other three constitute an RDF triple. If a quad, having a graph name that
does not exists in a graph set yet, is added to the set, then a new graph with
this name is created in the set. If a quad with a graph name that already
exists in a graph set is added to the set, then the triple of the quad is added
to the corresponding named graph.

The write() method serializes the graph set to a file. The lang argu-
ment defines the serialization syntax. NG4J supports the TRIX, TRIG,
RDF/XML, N-TRIPLE, and N3 syntaxes. If the specified serialization syn-
tax does not support graph naming, then the union graph is serialized, and
knowledge about the partitioning of triples into graphs is lost.

NG4J provides two implementations of the NamedGraphSet and NamedGraph

interfaces: The classes NamedGraphSetImpl and NamedGraphImpl store graph sets
in memory. The classes NamedGraphSetDB and NamedGraphDB persist graph sets
in a relational database. NamedGraphSetDB is instantiated for a given JDBC
Connection. Database tables for storing graph sets are automatically created
by NG4J if they do not exist in the database yet.

The Semantic Web Publishing API

NG4J provides a convenience API for asserting and quoting graphs using
Semantic Web Publishing Vocabulary introduced in Chapter 6. The API
consists of the SWPNamedGraphSet, SWPNamedGraph, SWPWarrant and SWPAuthority

interfaces.
SWPAuthority stores the URI reference, label, email address, public and

private key, and certificate of an information provider. Keys and certificates
are represented using the java.security package. NG4J supports RSA [KS98]
and DSA [FIP95b] keys, as well as X.509 certificates [HPFS02].

SWPWarrant represents a warrant which may assert or quote several graphs.
The methods getAssertedGraphs() and getQuotedGraphs() return an iterator

CHAPTER 11. IMPLEMENTATION 136

over all graphs that are asserted or quoted by the warrant. The method
getAuthority() returns the authority of the warrant. The method isSigned()

can be used to check whether a warrant is signed.
SWPNamedGraph extends the NamedGraph interface. SWPNamedGraph defines

convenience methods for asserting and signing named graphs and for verifying
graph signatures.

The method swpAssert(authority:SWPAuthority) turns the graph into a
self-asserting warrant graph by adding the triples <GraphName> swp:assertedBy

<GraphName> and <GraphName> swp:authority <Authority> to the graph.
<GraphName> stands for the URI reference identifying the current graph;
<Authority> stands for the URI reference identifying the authority that is
passed as argument to the method.

The method assertWithSignature() turns the graph into a self-asserting
warrant graph and signs the graph with the private key of the authority.
The argument signatureMethod specifies the combination of canonicalization,
digest, and signature algorithms that should be used to calculate the sig-
nature. Signature methods are identified by the URI references listed in
Table 6.3. NG4J supports the RSA [KS98] and DSA [FIP95b] signatures
algorithms, SHA1 [FIP95a] and MD5 [Riv92] digests, and the RDF canoni-
calization algorithm proposed by Carroll [Car03]. The assertWithSignature()

method adds a swp:assertedBy, a swp:authority, a swp:signatureMethod, and a
swp:signature triple to the graph.

The method getWarrantsWithVerifyableSignature() returns an iterator
over all warrant that assert or quote the graph and are signed with a ver-
ifiable signature. For verifying graph signatures, NG4J requires the public
keys or certificates of information providers and root certification authorities
that are trusted by the current user. NG4J expects trusted keys and cer-
tificated to be contained in the graph <http://localhost/trustedinformation>,
which has to be added to a graph set before calling any of NG4J’s signature
verification methods. NG4J traces certification chains up to a certificate in
this trusted graph. Certification chains are constructed using all certificates
that are contained in the graph set.

The SWPNamedGraphSet interface extends the NamedGraphSet interface.
SWPNamedGraphSet defines convenience methods to assert and sign multiple
graphs at once and to verify all signatures that are contained in a graph set.

The method assertGraphsWithSignature() asserts and signs multiple
graphs. The resulting warrant is added as a new graph to the graph set. The
method takes a list of graph names, an SWPAuthority, a signature method,
and digest method as argument. The method adds a new warrant graph to
the graph set which asserts all graphs from the list. The new graph is named
with a Universally Unique IDentifier (UUID) [LMS05] that is created using

CHAPTER 11. IMPLEMENTATION 137

the Java package com.eaio.uuid.UUID [Bur06]. Then, the method digests all
graphs from the list and adds the digests to the new warrant graph. After-
wards, the signature for the warrant graph is calculated and is added to the
warrant graph.

The method verifyAllSignatures() verifies all signatures in the graph set.
The method expects trusted keys and certificates to be contained in the graph
<http://localhost/trustedinformation>. The verification result is added to the
graph set as a new graph called <http://localhost/verifiedSignatures> The
graph contains a <Warrant> swp:signatureVerification swp:sucessful triple for
each warrant with a verifiable signature. This graph can be used within
WIQA-PL filtering policies for checking whether content is digitally signed.

11.1.2 Usage Example

The example code shown in Figure 11.3 illustrates how NG4J is used to create
a graph set, add information to the graph set, retrieve information from the
graph set and finally serialize the graph set using the TriX syntax [CS04a].

11.2 The WIQA - Filtering and Explanation
Engine

The WIQA - Filtering and Explanation Engine enables applications to filter
a set of named graphs using WIQA-PL policies and to retrieve explanations
about the filtering decisions. WIQA implementation builds on NG4J and the
ARQ SPARQL query engine [Sea06].

The WIQA engine is available under the terms of the GNU General Pub-
lic License [Fre91] and can be downloaded from the WIQA website3. The
following sections give an overview of the public classes of the engine and
illustrate its usage with a code example. The complete documentation of the
engine is available on the WIQA website4.

11.2.1 Public Interface

The UML diagram shown in Figure 11.1 gives an overview of the public
interface of the WIQA - Filtering- and Explanation Engine.

3http://www.wiwiss.fu-berlin.de/suhl/bizer/wiqa/ (retrieved 09/25/2006)
4http://www.wiwiss.fu-berlin.de/suhl/bizer/wiqa/javadoc/ (retrieved 09/25/2006)

CHAPTER 11. IMPLEMENTATION 138

+ AcceptedGraph(graphset:NamedGraphSet, policy:
 Policy, contextVariables:Binding): AcceptedGraph
+ find(pattern:TripleMatch):Iterator
+ explain(triple:Triple):Explanation
+ explainAsGraph(triple:Triple):Graph
+ clearCachedExplanations():void

AcceptedGraph AcceptedGraphFactory

+ AcceptedGraphFactory(graphSet:NamedGraphSet):
 AcceptedGraphFactory
+ createAcceptedGraph(policy:Policy):AcceptedGraph
+ setContextVariable(name:String, value:Node):void

+ name():String
+ description():String

Policy

+ parts():Collection
+ getExplainedTriple():Triple
+ getPolicyName():String

Explanation

+ explanationNodes():List
+ parts():Collection
+ getDetails():ExplanationPart

ExplanationPart

+ parsePolicy(in:Reader):Policy
+ parseSuite(in:Reader):List

PolicyParser

<< creates >>

1 0..*

1
<< creates >>

0..*

0..*
1<< creates >>

1 1..*

1

1..*

Figure 11.2: Overview of the public interface of the WIQA Filtering- and
Explanation Engine.

Policy and PolicyParser

WIQA-PL policies are represented as instances of the class Policy. The class
PolicyParser provides static methods for parsing WIQA-PL policies from files
and strings into Policy objects. The method parsePolicy() creates a single
Policy object from a string or a Java Reader. The method parseSuite() parses
all policies in a policy suite and returns a list of Policy objects.

AcceptedGraph and AcceptedGraphFactory

The class AcceptedGraph is the main interface of the WIQA engine. An
AcceptedGraph represents a filtered view on a set of named graphs. Only state-
ments matching a WIQA-PL policy are in the graph. The method find() is
used to extract information from the graph. The method returns an iterator
over all accepted triples that match a given triple pattern.

AcceptedGraphs are created using an AcceptedGraphFactory. The method
createAcceptedGraph() of the factory class returns an AcceptedGraph for a given
Policy. The method setContextVariable() is used to set WIQA-PL context
variables (see Section 9.4) which may be used within policies afterwards.

CHAPTER 11. IMPLEMENTATION 139

Retrieving Explanations

AcceptedGraphs can generate textual explanations and RDF explanations why
a triple was accepted into the graph. A textual Explanation is created by
calling the method explain() of an AcceptedGraph. The method takes an
accepted triple as argument.

An Explanation consists of a collection of ExplanationParts. The method
parts() returns the collection of ExplanationParts. An ExplanationPart rep-
resents a text fragment and has zero or more children which are also
ExplanationParts. The text fragment is represented as list of RDF nodes.
Most of these are literals, but some may be URI references or blank nodes
which refer to some entity involved in the explanation. Applications may
want to choose to make URI references or blank nodes click-able or retrieve
an appropriate label for them. The method explanationNodes() returns the
list of RDF nodes. The method parts() returns a collection containing the
child explanation parts of the current part.

An explanation part can provide additional details about itself. These
details are represented as a further explanations part. As any explanation
part, this part may also have child parts. The method getDetails() returns
this explanations part, or null if none exists.

Beside of textual explanations, the WIQA engine can also generate RDF
explanations (see Section 10.3). These are simply RDF graphs that contain
information about the filtering process in a vocabulary chosen by the policy.
RDF explanations are retrieved by calling the explainAsGraph() method of an
AcceptedGraph.

Textual and RDF explanations are cached inside AcceptedGraphs. This
consumes memory over time. The clearCachedExplanations() method dis-
cards all cached explanations. The next call to the find() method
will start to fill the cache again. The WIQA framework provides an
ExplanationToHTMLRenderer which can be used to generate basic HTML repre-
sentations of explanations.

Implementing and Registering Extension Functions

The WIQA-PL policy language can be extended with domain-specific ex-
tension functions (see Section 9.6). Extension functions are implemented as
plug-ins for the WIQA - Filtering and Explanation Engine. At implementa-
tion level, two different types of extension functions are distinguished: Basic
functions and extensions. The input of a basic function is a single matching
solution and a number of arguments which are RDF nodes. The output is
a boolean value. The input of an extension is a stream of matching solu-

CHAPTER 11. IMPLEMENTATION 140

tions and a number of arguments which are RDF nodes. The output is a
modified version of the input stream. The wiqa:MorePositiveRatings and the
wiqa:TidalTrust extension functions are implemented as basic functions. The
wiqa:count extension function is implemented as an extension as it requires
access to the complete solution set in order to count solutions.

Basic functions have to extend the abstract class ExplainableFunction. A
basic function has to implement the following methods: exec() which does
the actual calculation, and returnExplanation() which may return a custom
explanation for the function.

Extensions have to extend the abstract class ExplainableExtension. An
extension has to implement the exec(), finish(), and the returnExplanation()

methods. The function exec() is called once for every solution in the solution
stream. finish() is called after the last solution of the stream. The expected
return values of both functions are iterators over matching solutions. An
extension can choose when it returns the matching solutions, it might return
some for each exec() call, or all for the finish() call.

Basic functions and extensions have access to the unfiltered graph set
and can use it to retrieve additional information like ratings or background
information about information providers. The graph set is accessed from
within a basic function or extension by calling the method getDataset().

Basic functions and extensions must be registered with the
FunctionRegistry and ExtensionRegistry respectively, before they can
be used in WIQA-PL policies. A function is registered by calling
FunctionRegistry.get().put("functionURI", Implementation.class), where
functionURI is the URI identifying the function and Implementation.class is
a Java class implementing the function. Extensions are registered by the
same call on ExtensionRegistry.

11.2.2 Usage Example

The example code shown in Figure 11.4 illustrates the usage of the WIQA
- Filtering and Explanation Engine. Lines 10-11 create a new NamedGraphSet

and load a TriX file into the graph set. Lines 14-17 load a policy suite and
select a policy from the suite. Line 19-22 create an AcceptedGraphFactory and
assign a value to the context variable ?USER. Line 25 creates an AcceptedGraph

by applying the selected policy against the graph set. Lines 28-30 create
an iterator over all triples in the accepted graph that have the subject
http://richard.cyganiak.de/foaf.rdf#RC. Line 37 creates an explanation why
an accepted triple satisfies the policy. This explanation is rendered to HTML
and written to System.Out in lines 40-42.

CHAPTER 11. IMPLEMENTATION 141

1. import java.util.Iterator;
2. import com.hp.hpl.jena.graph.Node;
3. import com.hp.hpl.jena.graph.Triple;
4. import de.fuberlin.wiwiss.ng4j.*
5.
6. // Create a new graphset
7. NamedGraphSet graphset = new NamedGraphSetImpl();
8.
9. // Create a new NamedGraph in the NamedGraphSet
10. NamedGraph graph =
11. graphset.createGraph("http://example.org/persons/123");
12.
13. // Add information to the NamedGraph
14. graph.add(new Triple(
15. Node.createURI("http://richard.cyganiak.de/foaf.rdf#RC"),
16. Node.createURI("http://xmlns.com/foaf/0.1/name") ,
17. Node.createLiteral("Richard Cyganiak", null, null)));
18.
19. // Create a quad
20. Quad quad = new Quad(
21. Node.createURI("http://www.bizer.de/InformationAboutRichard"),
22. Node.createURI("http://richard.cyganiak.de/foaf.rdf#RC"),
23. Node.createURI("http://xmlns.com/foaf/0.1/mbox") ,
24. Node.createURI("mailto:richard@cyganiak.de"));
25.
26. // Add the quad to the graphset. This will create a new NamedGraph
27. // in the graphset.
28. graphset.addQuad(quad);
29.
30. // Find information about Richard across all graphs in the graphset
31. Iterator it = graphset.findQuads(
32. Node.ANY,
33. Node.createURI("http://richard.cyganiak.de/foaf.rdf#RC"),
34. Node.ANY,
35. Node.ANY);
36.
37. // Output the results of findQuads()
38. while (it.hasNext()) {
39. Quad q = (Quad) it.next();
40. System.out.println("Source: " + q.getGraphName());
41. System.out.println("Statement: " + q.getTriple());
42. }
43.
44. // Serialize the graphset to System.out, using the TriX syntax
45. graphset.write(System.out, "TRIX", null);
46.

Figure 11.3: NG4J - Named Graph API for Jena usage example.

CHAPTER 11. IMPLEMENTATION 142

1. import java.util.Iterator;
2. import java.util.List;
3. import com.hp.hpl.jena.graph.Node;
4. import com.hp.hpl.jena.graph.Triple;
5. import de.fuberlin.wiwiss.ng4j.NamedGraphSet;
6. import de.fuberlin.wiwiss.ng4j.impl.NamedGraphSetImpl;
7. import de.fuberlin.wiwiss.wiqa.*;
8.
9. // Create a new graph set and read a TRIG file into the graph set
10. NamedGraphSet graphset = new NamedGraphSetImpl();
11. graphset.read("file:graphset.trig", "TRIG");
12.
13. // Read a WIQA policy suite and get a policy from the policy suite
14. List policysuite =
15. PolicyParser.parseSuiteFromFile("file:policies.wiqa");
16. Policy policy =
17. policysuite.get(Node.createURI("http://example.org/policy1");
18.
19. // Create a graph factory and set a context variable
20. AcceptedGraphFactory factory = new AcceptedGraphFactory(graphset);
21. factory.setContextVariable("USER",
22. Node.createURI("http://www.bizer.de/i"));
23.
24. // Filter the graph set using the policy
25. AcceptedGraph acceptedGraph = factory.createAcceptedGraph(policy);
26.
27. // Find information about Richard in the accepted graph
28. Iterator it = acceptedGraph.find(
29. Node.createURI("http://richard.cyganiak.de/foaf.rdf#RC"),
30. Node.ANY, Node.ANY);
31.
32. // Get the first triple from the result
33. if (it.hasNext()) {
34. Triple triple = (Triple) it.next();
35.
36. // Get an explanation why the triple fulfills the policy
37. Explanation explanation = acceptedGraph.explain(triple);
38.
39. //Output a HTML representation of the explanation
40. ExplanationToHTMLRenderer renderer =
41. new ExplanationToHTMLRenderer(explanation, graphset);
42. System.out.println(renderer.getExplanationAsHTML());
43. }

Figure 11.4: WIQA - Filtering and Explanation Engine usage example.

