Apoptotic Regulation by the Huntingtin Protein

Doctoral Thesis by Johannes H. Bauer

Submitted to the Department of Biology, Chemistry and Pharmacy at Free University Berlin (2001) Under supervision by

Peter A. Ward, M.D. (University of Michigan, Dept. of Pathology), Prof. Dr. Ferdinand Hucho (Free University Berlin, Dept. of Biochemistry)

Performed in the laboratory of Claudius Vincenz at the University of Michigan, Department of Pathology

Disputation: Dec. 17th, 2001

Abstract

Huntington's Disease is a neurodegenerative disease that leads to progressive cell death of a select set of neurons. It is caused by the expansion of a stretch of glutamines in the N-terminus of the Huntingtin (Htt) protein. This gain-of-function event results in increased apoptosis of striatal neurons. Wild-type (wt) Htt is an ubiquitously expressed protein whose function remains largely unknown. Mice with a targeted disruption of the Htt gene die early in utero.

In this work, the question of the function of wtHtt and the apoptotic pathways engaged by the poly-Q expanded mutant (mu) Htt is addressed. Results show that wtHtt is an anti-apoptotic protein that protects striatal cell lines from various apoptotic stimuli. Htt acts downstream of mitochondrial Cytochrome c release and interacts with the catalytic domain of Caspase-9. This interaction leads to decreased Cytochrome c-dependent cleavage of pro-Caspase-9 and decreased catalytic activity, probably through inhibition of proper apoptosome formation. The results also show that muHtt does retain some of the function of the wt protein, most markedly interaction with Caspase-9. In addition, muHtt induces apoptosis in striatal cell lines by a mechanism that involves Caspase-3 activation. Most importantly, pro-apoptotic activity of muHtt is also observed in C. elegans.

Zusammenfassung

Chorea Huntington (HD) ist eine autosomal-dominante, neurodegenerative Krankheit, die zu selektivem, progressivem neuronalen Zellverlust führt. Ursache ist eine Mutation im Gen IT15, das das Huntingtin (Htt) Protein kodiert. Die Folge ist eine pathogene Expansion einer Reihe von Glutaminen im N-terminus von Huntingtin, was in Apoptose von Neuronen im Striatum resultiert. Wildtyp Htt ist ein ubiquitär exprimiertes Protein unbekannter Funktion. Mäuse, in denen Htt Expression durch homologe Rekombination ausgeschaltet wurde, sterben früh während der Schwangerschaft in utero.

Die Funktion wtHtts und die pro-apoptotischen Signalwege poly-Q mutierten (mu) Htts werden in dieser Arbeit untersucht. Die Ergebnisse zeigen, daß wtHtt anti-apoptotisch in einem neuronalem Zellkulturmodel wirkt. Diese anti-apoptotische Funktion entfaltet sich nach Cytochrom c-Efflux aus den Mitochondrien durch Interaktion mit der katalytischen Domäne von Caspase-9. Dies führt zu reduzierter katalytischer Aktivität von Caspase-9. MuHtt zeigt einige Funktionalitäten wtHtts, einschließlich Interaktion mit Caspase-9. Darüberhinaus aktiviert muHtt pro-apoptotische Signalwege. Diese pro-apototische Wirkung ist reproduzierbar in C. elegans.

Table of Contents

Chapter I - Introduction

1 A Matter of Death	1
1.1 Necrosis	1
1.1.1 Morphological Features of Necrosis	2
1.2 Apoptosis	2
1.2.1 Morphological Features of Apoptosis	3
1.3 Apoptosis and Necrosis: A Continuum?	4
2 The Molecular Components of Apoptosis	
2.1 Death Receptors	5
2.2 Bcl-2 Family	6
2.3 Apaf-1 Family	7
2.4 Caspases	7
2.5 DNases	8
2.6 Cytochrome c	9
2.7 Inhibitors of Apoptosis	9
2.8 Other molecules	10
3 Apoptotic Signaling Pathways	
3.1 Mitochondria-dependent Death	12
3.2 Death Receptor Pathway	15
3.3 The C. elegans death machinery	17
4 Huntingtons Disease	
4.1 Disease Phenotype	19
4.2 Molecular Basis of HD	19
4.3 The Function of wtHtt	23
4.4 Other triplet expansion diseases	24

5 The goals of this study	26
6 Figures and Legends	28
7 References	44
Chapter II – The Function	
1 Introduction	57
2 Preliminary Results	
2.1 Effects of Htt on viability at the	
non-permissive temperature	59
2.2 WtHtt prevents the appearance of apoptotic markers	60
3 Results	
3.1 The anti-apoptotic function of wtHtt	61
3.2 WtHtt acts downstream of Cytochrome c-release	63
3.3 WtHtt inhibits Cytochrome c-dependent Caspase-9 activity	65
3.4 WtHtt prevents Cytochrome c-dependent cleavage	
of pro-Caspase-9	66
4 Discussion	68
5 Materials and Methods	73
6 Figures and Legends	76
7 References	96
Chapter III – The Mechanism	
1 Introduction	97
2 Results	
2.1 No upregulation of heat shock proteins by Htt	99
2.2 Htt is part of a large protein complex	99
2.3 Caspase-9 interacts with both wtHtt and muHtt	103

2.4 WtHtt does not interact with Apaf-1	104
2.5 WtHtt does not interact with Bcl-2 family members	104
2.6 WtHtt preferentially interacts with the zymogen form	
of Caspase-9	105
2.7 WtHtt interacts with long pro-domain caspases	105
2.8 Htt binds the catalytic domain of Caspase-9	106
2.9 Interaction between endogenous proteins	106
2.10 Htt is upregulated in some cancer cell lines	107
3 Discussion	108
4 Materials and Methods	114
5 Figures and Legends	116
6 References	137
Chapter IV – The Recombinant Trap	
1 Introduction	138
2 Results	
2.1 Production of recombinant wtHtt and recombinant	
Caspase-9	139
2.2 Binding experiments	140
2.3 Htt phosphorylation by Akt	140
2.4 The final straw	141
3 Discussion	143
4 Materials and Methods	145
5 Figures and Legends	147
6 References	151

Chapter V – WORMS!

1 Introduction	
2 Results	
2.1 Htt interacts with components	
of the C. elegans death machinery	157
2.2 Introduction of Htt constructs into wildtype C. elegans	157
2.3 Breeding of the Htt extrachromosomal arrays into	
different genetic backgrounds	159
2.4 Phenotypes	161
3 Discussion	164
4 Materials and Methods	268
5 Figures and Legends	271
6 References	187
Chapter VI – Conclusion	
1 Discussion	189
2 References	198
Appendix	
Acknowledgements	200
Thanks	201
Special Thanks	202
Abbreviations	203
Curriculum Vitae of the Author	205

Table of Figures

Chapter I

Figure I – 1 – The Death Receptor family	29
Figure I – 2 – The Bcl-2 Family	31
Figure I – 3 – The Caspase Family	33
Figure I –4 – The Two Fundamental Apoptotic Pathways	35
Figure I – 5 – The Mitochondrial Death Pathway	37
Figure I – 6 – The Death Receptor Pathway	39
Figure I – 7 – The C. elegans Apoptotic Machinery	41
Figure I $- 8 -$ The Structure of the Huntingtin Protein	43

Chapter II

Figure II – 1 – Htt Constructs Used in this Study	77
Figure II – 2 – ST14A Cells Loose Viability at the	
non-permissive Temperature	79
Figure II – 3 – ST14A Cells Undergo Apoptosis at the	
non-permissive Temperature	81
Figure II – 4 – TUNEL Setup for ST14A Cells	83
Figure II – 5A – WtHtt Protects from Various	
Apoptotic Stimuli	85
Figure II – 5B – MuHtt Sensitizes ST14A Cells to	
Different Apoptotic Stimuli	86
Figure II – 6A – Cytochrome C Release in ST14A Cells	88
Figure II – 6B – Quantification of Cytochrome C Release	
in ST14A Cells	90

Figure II – 7AB – Cytochrome C-dependent Caspase-9	
Activity in parental ST14A	
and wtHtt expressing Cells	92
Figure II – 7C – Cytochrome C-dependent Caspase-9	
Activity in muHtt expressing Cells	93
Figure II – 8 – Caspase-9 Processing	95

Chapter III

Figure III – 1 – Heat Shock Protein Expression in ST14A Cells	
Figure III – 2 – FPLC of ST14A Cell extratcs	
Figure III – $2A$ – parental, $33^{\circ}C$	119
Figure III $-2B$ $-$ parental, 39°C	120
Figure III $-2C - wtHtt$, 33°C	121
Figure III $-2D - wtHtt$, 39°C	122
Figure III – $2E$ – muHtt, $33^{\circ}C$	123
Figure III – 2F – muHtt, 39°C	124
Figure III – 3 – Caspase-9 Interacts with Htt	126
Figure III – 4 – Apaf-1 and Bcl-2 Proteins do not	
Interact with Htt	128
Figure III – 5 – Interaction of Caspases with Htt	130
Figure III – 6 – Domain Mapping of	
Caspase Interaction with Htt	132
Figure III – 7 – Interaction Between Endogenous Proteins	134
Figure III – 8 – Expression of Htt in Cancer Cells	136

Chapter IV

Figure IV – 1 – Purification and Interaction Profile	
of Recombinant Htt	148
Figure IV –2 – Phosphorylation of Recombinant Htt by Akt	150

Chapter V

Figure $V - 1$ – Lifecycle of <i>C. elegans</i>	172
Table V – 1 – Apoptotic Cell Fates in <i>C. elegans</i>	174
Figure $V - 2 - Htt$ Interacts with Apoptotic Regulators	
of C. elegans	176
Figure V –3 – Htt Expression in <i>C. elegans</i>	178
Figure V – 4 – Phenotypic Markers	180
Figure V – 5 – Breeding Scheme	182
Figure V – 6 – The Phenotype of Htt Expression	
in CED-1 (n1995)	184
Figure V – 7 – The Phenotype of Htt Expression	
in CED-3 (n2877)	186

Chapter VI

Figure VI – 1 –	Htt Regulates Apoptotic Pathways	197
0		

'There is a theory which states that if ever anyone discovers exactly what the Universe is for and why it is here, it will instantly disappear and be replaced by something even more bizarre and inexplicable.

There is another, which states that this has already happened.'

(Adams, 1980)

'I'll make you feel something anon if my art fail me not!'

(Marlowe, 1616)