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Abstract

Constraint-based approaches have proved successful in analyzing complex
metabolic networks. They restrict the range of all possiblebehaviors that a metabolic
system can display under governing constraints. The set of all possible flux distribu-
tions over a metabolic network at steady state defines a polyhedral cone, thesteady-
state flux cone. This cone can be analyzed using aninner description, based on sets of
generating vectors such aselementary modesor extreme pathways. We present a new
constraint-based approach to metabolic network analysis,characterizing a metabolic
network by itsminimal metabolic behaviorsand thereversible metabolic space. Our
method uses anouter descriptionof the flux cone, based on sets of non-negativity
constraints. The resulting description is minimal and unique. We then study the rela-
tionship between inner and outer descriptions of the cone. We give a generic proce-
dure to show how inner descriptions can be computed from the outer one. We use this
procedure to explain why the size of the inner descriptions may be several orders of
magnitude larger than that of the outer description.

Our approach suggests a refined classification of reactions according to their re-
versibility type (irreversible, pseudo-irreversible, and fully reversible). Using these
concepts, we improve an existing algorithm for identifyingblockedandcoupledreac-
tions and devise a new algorithm forflux coupling analysis. We extend this analysis
by introducingminimal direction cuts (MDCs)which prevent a target reaction from
being performed in an undesired direction. We develop an algorithm which allows not
only for computing MDCs in a metabolic network, but also for adirect calculation of
minimal cut sets (MCSs). Based on our refined classification of reactions, we also pro-
vide a constraint-based approach for analyzing the changesin the overall capabilities
of a metabolic network following a gene deletion.

Flux coupling and gene deletion analysis help for identifying important reactions
in metabolic networks. Alternatively, the essentiality ofreactions can be assessed us-
ing control-effective flux (CEF) analysis, which is based on elementary modes. We
compare CEF analysis with the use of a minimal generating setof the flux cone to
elucidate crucial reactions.
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Zusammenfassung

In der Analyse metabolischer Netzwerke haben constraintbasierte Ansätze erfolg-
reiche Anwendung gefunden. Hierbei wird der Bereich des möglichen Verhal-
tens eines metabolischen Systems durch zusätzliche Anforderungen an das System
eingeschränkt. Die resultierende Menge aller Flussverteilungen eines metabolischen
Netzwerks im stationären Zustand hat die Gestalt eines polyedrischen Kegels, welcher
Flusskegelgenannt wird. Eineinnere Beschreibungdieses Kegels basierend auf Men-
gen erzeugender Vektoren, wie etwaElementarmodioderExtremalpfade, ermöglicht
eine effiziente Analyse. Wir haben einen neuen constraintbasierten Ansatz zur Anal-
yse metabolischer Netzwerke entwickelt, in dem das System durchminimale metaboli-
sche Verhaltensmusterund denreversiblen metabolischen Raumcharakterisiert wird.
In unserer Methode kommt eineäußere Beschreibungdes Flusskegels zur Anwen-
dung, die wir durch Ausnutzung von Nicht-Negativitäts-Bedingungen erhalten. Diese
Beschreibung ist minimal und eindeutig. Wir untersuchen die Beziehung zwischen in-
nerer und äußerer Beschreibung des Kegels und stellen ein allgemeines Verfahren zur
Herleitung der inneren aus der äußeren Beschreibung vor. Dieses Verfahren verdeut-
licht, warum die äußere im Vergleich zur inneren Beschreibung eine meist sehr viel
kompaktere, sogar bis zu mehreren Größenordungen kleinereDarstellung liefert.

In unserem Ansatz verwenden wir eine verfeinerte Klassifikation von Reaktionen
des metabolischen Netzwerks entsprechend ihres Reversibilitäts-Typus (irreversibel,
pseudo-irreversibel und vollständig reversibel). Diese Einteilung ermöglicht uns eine
deutliche Verbesserung existierender Algorithmen zur Bestimmung vonblockierten
undgekoppeltenReaktionen und die Formulierung eines neuen, effizienten Algorith-
mus für dieFlusskopplungsanalyse. Die von uns eingeführtenminimalen gerichteten
Schnitte (MDCs), die die Ausführung einer Zielreaktion in eine ungewünschte Rich-
tung verhindern, erweitern die klassische Flusskopplungsanalyse. Ein von uns ent-
wickelter Algorithmus ermöglicht nicht nur die Berechnungvon MDCs in einem
metabolischen Netzwerk, sondern auch die direkte Ermittlungminimaler Schnittmen-
gen (MCSs). Basierend auf unserer verfeinerten Klassifizierung von Reaktionen
stellen wir schließlich einen constraintbasierten Ansatzzur Analyse der durch Gen-
Ausfall ausgelösten Beeinträchtigungen globaler Fähigkeiten eines metabolischen
Netzwerks vor.

Flusskopplungs- und Gen-Ausfall-Analyse helfen bei der Identifikation essentieller
Reaktionen im metabolischen System. Altenativ kann die Bedeutung von Reaktionen
für die Netzwerkfunktionen mittels auf Elementarmodi basierendercontrol-effective
Fluss-Analyse (CEF)bewertet werden. Wir vergleichen CEF-Analyse mit der Ver-
wendung eines minimalen Erzeugendensystems für die Bestimmung von Schlüssel-
reaktionen.
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CHAPTER

1 Introduction

The unprecedented progress in molecular biology fuels the interest in system-level un-
derstanding of living systems, complementing the reductionist approach that prevails
in molecular biology during the last century. System-levelanalysis has been a recur-
rent topic in biology since the days of Norbert Wiener [45], while defining the field
of cybernetics [122]. The ultimate aim of such an integrative approach is to link the
behaviour of living matter to system’s structure and dynamics, helping for the com-
prehension of biological systems and for engineering and designing strains more ap-
propriate for metabolite production purposes [10]. The behavior of a living system
depends on its ability to import materials from the environment and convert them to
the needed molecules. These conversions are carried out by metabolism.

1.1 Metabolic Network Modeling

1.1.1 Basic Concepts

Broadly speaking, ametabolic reactionrefers to a chemical transformation that oc-
curs in living organisms, allowing them to feed, grow and reproduce [31]. Metabolic
reactions sustain several biological functions includingthe degradation of chemical
substances for energy production or the assembly of cellular components. Acatabolic
reaction breaks down complex molecules into smaller components and yields energy.
For instance, the breakdown of proteins, carbohydrates, and lipids in digestion are car-
ried out by catabolic reactions. Ananabolicreaction, on the other hand, uses energy
to build cellular constituents such as proteins and nucleicacids. Fig. 1.1 is a schematic
representation of anabolic and catabolic reactions.

The substances that will react in a metabolic reaction are called substrates. As a
result of the reaction, the substrates will be converted into different molecules named
products. Metabolitesare the substances that are involved in metabolic reactions. They
carry out most of the metabolic functions in a living system.The stoichiometric co-
efficient of a metabolite in a reaction is the amount of that metaboliteinvolved in the
reaction in terms of molecules (or moles of molecules). For instance, thedecomposi-
tion of hydrogen peroxideconverts two molecules of hydrogen peroxide (H2O2) into
two molecules of water (H2O) and one molecule of oxygen (O2). The stoichiometric
coefficient of water in this reaction is twice that of oxygen.
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Figure 1.1: An overview of catabolic and anabolic reactions

A reaction equationis a symbolic representation which defines the stoichiometric
conversion of substrates into products for some reaction. In such an equation, sub-
strates are given on the left hand side, products are writtenon the right hand side, and
the numbers next to the metabolites are the absolute values of the stoichiometric coeffi-
cients. For example, the reaction equation of the decomposition of hydrogen peroxide
is

2 H2O2 → 2 H2O + O2.

A reaction is said to be operating in theforward (resp.backward) direction if that
reaction converts metabolites given on the left (resp. right) hand side of its equation
into ones given on the right (resp. left) hand side of its equation. Reactions that can
proceed in either direction are calledreversible, and the remaining reactions are named
irreversible.

The (net) flux of a metabolic reaction is the rate of consumption of any substrate
divided by the corresponding stoichiometric coefficient. This is equal to the rate of
formation of any product divided by the corresponding stoichiometric coefficient. A
reaction with a high flux operates at a faster speed than a reaction with a low flux.
In addition, a flux is positive (resp. negative) if the forward (resp. backward) reaction
is faster than the backward (resp. forward) reaction. Whilefluxes through reversible
reactions may be negative, the convention is to consider that fluxes through irreversible
ones are always non-negative.

For the rest of the thesis, we shall use the simpler term reaction for metabolic
reaction.

1.1.2 Metabolic Networks

A metabolite is often transformed to another by a series of reactions, called ametabolic
pathway. The products of one reaction serve as substrates for other reactions. A
metabolic networkrefers then to an interconnected set of reactions that carryout step
by step transformation of the initial metabolites to convert them into other products.
Each step is catalyzed by special proteins calledenzymes. These catalysts speed up
reactions without being used up and their concentrations affect the rates of reactions. A
living organism can then regulate the fluxes through its reactions by producing differ-
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ent amounts of enzymes. This control allows biological systems to adapt and respond
to their environments.

The significant advances in molecular biology have paved theway for a fast re-
construction of metabolic networks for an increasing number of microorganisms, in-
cludingS. cereviseae, H. influenzae, E. coli, andH. pylori [32; 83; 86; 89]. Several
genome-scale (reconstructed) networks are available frommetabolic databases such
asKEGG [41], EcoCyc [43], MetaCyc [18], andBioCyc [55]. In general, a genome-
scale metabolic network consists of hundred to thousands ofmetabolites linked by an
even larger set of highly interconnected reactions. Knowledge and insight that may
be gained from an isolated study of a single component in a metabolic network are
then limited. Accordingly, it is becoming generally accepted that one has to move
from a component-based view to a systems-level understanding of metabolic net-
works [36; 72]. This shift in paradigm allows for reconstructing the integrated behavior
of living organisms from the underlying metabolic components. Such an integrative
approach helps not only to elucidate the intrinsic biological properties that emerge from
the whole metabolic system, but also to predict how these properties would change in
response to alterations in environment or system components. These properties are
usually qualified as eitherqualitative(e.g., how robust is the network? how many al-
ternative ways are there to produce a particular metabolite?) orquantitative(e.g., what
is the rate of glucose uptake or the concentration of oxygen?) [4]. Moreover, we often
divide information required to predict or calculate such properties into two categories:
structuralandkinetic. The former describe the set of components that are involved
in the network, and interactions or connections among thesecomponents. The latter
contain differential equations that describe reactions, changes in metabolite concentra-
tions and numerical values for the parameters used in those equations. In general, the
choice of a particular method depends not only on whether theproperties of interest
are quantitative or qualitative, but also on the type of the available biological data (ki-
netic or structural). Despite the advances in experimentalhigh-throughput techniques,
quantitative modeling is often still hampered by incomplete knowledge of kinetic in-
formation.

In the following we give a short introduction about stoichiometry and reaction re-
versibility.

Stoichiometic Matrix

When modeling a metabolic system, we often distinguish between internal andex-
ternal metabolites [38]. An internal metabolite should not accumulate or decrease in
time, and so its rate of formation is equal to its rate of consumption. In contrast, exter-
nal metabolites could be buffered as it can be assumed for water or many species from
the environment. In general, classifying a metabolite as external or internal depends on
the purpose of the model. It should be noted that this classification has also an impact
on the algorithmic complexity of analyzing the network [24].

It is also common to distinguish betweeninternal and boundaryreactions in a
metabolic network [98]. An internal reaction has the property that its substrates and
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Figure 1.2: Network example ILLUSNET. Metabolites are depicted as nodes while reactions
are depicted as arrows. Reversible reactions are indicatedby double arrowheads.

Internal reactions Boundary reactions
Reaction2 : 1 A → 2 B + 1 C
Reaction5 : 2 B ↔ 1 D
Reaction6 : 1 C → 1 E
Reaction8 : 3 E → 1 D
Reaction9 : 1 D ↔ 1 G
Reaction11 : 1 D → 1 F

Reaction1 : . ↔ 1 A
Reaction3 : . ↔ 1 B
Reaction4 : . ↔ 1 C
Reaction7 : 1 E → .
Reaction10 : 1 G → .
Reaction12 : 1 F → .

Table 1.1: List of reaction equations for the metabolic network depicted in Fig. 1.2. Internal
metabolites areA, . . . , G and the external ones are replaced by dots.

products each contain at least one internal metabolite. On the other hand, all substrates
consumed or all products formed by a boundary reaction are external. Accordingly,
a boundary reaction, which is also called anexchange reaction, allows the transport
of materials across the system boundary, and somehow is a connection between the
metabolic system and its environment.

Example 1.1. For illustration throughout this chapter, we consider the hypothetical
network ILLUSNET depicted in Fig. 1.2. It consists of seven internal metabolites
(A, . . . , G), and twelve reactions(1, . . . , 12), whereof four reactions are irreversible.
Reversible reactions are indicated by double arrowheads. External metabolites are
not represented in this network. Tab. 1.1 shows the list of reaction equations for this
metabolic network.

The stoichiometric matrix of a metabolic network is defined similar to the adja-
cency matrix of a directed graph. It enables to represent thestructure of a metabolic
network in terms of relationships between internal metabolites and reactions. For in-
stance, given a reactionj that convertsa molecules of metaboliteA andc molecules
of metaboliteC into e molecules of metaboliteE, the column in the stoichiometric
matrix that corresponds to reactionj is given by
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a A + c C
j
→ e E

A
B
C
D
E

j












. . . . -a . . . .

. . . . 0 . . . .

. . . . -c . . . .

. . . . 0 . . . .

. . . . e . . . .













The rows of the stoichiometric matrix correspond to the internal metabolites and
its columns correspond to the reactions making up the metabolic network.

Definition 1.2 (Stoichiometric matrix). Given a metabolic network, letm be the num-
ber of internal metabolites and letn be the number of all reactions in the network. The
corresponding stoichiometric matrix is anm × n matrixS, such that for each internal
metabolitei and each reactionj

Sij =







+α, if j producesα molecules ofi in its forward direction.
−α, if j consumesα molecules ofi in its forward direction.

0, if the reaction j neither produces nor consumes i.

Example 1.3. The stoichiometric matrix corresponding to the network ILLUSNET
depicted in Fig. 1.2 reads

S =





















1 −1 0 0 0 0 0 0 0 0 0 0
0 2 −1 0 −2 0 0 0 0 0 0 0
0 1 0 −1 0 −1 0 0 0 0 0 0
0 0 0 0 1 0 0 1 −1 0 −1 0
0 0 0 0 0 1 −1 −3 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 0 1 −1 0 0





















.

For instance, the second column of this stoichiometric matrix corresponds to reaction
2. This reaction consumes one molecule of metaboliteA and produces two molecules
of metaboliteB and one molecule of metaboliteC. In addition, we can deduce from
the stoichiometric matrix that reactions1, 3, 4, 7, 10, 12 are boundary reactions, while
reactions2, 5, 6, 8, 9, 11 are internal.

It should be noted that only internal metabolites are represented in the stoichio-
metric matrix, that is, each row in this matrix corresponds to an internal metabolite.
In contrast, the columns in the stoichiometric matrix correspond to all reactions in the
network. A distinction between the columns corresponding to internal reactions and
those corresponding to boundary reactions is possible. Indeed, the former contain en-
tries of opposite signs, while the entries in the latter havethe same sign. Distinguishing
between these two categories of columns allows for identifying internal cycles, which
are metabolic pathways involving only internal reactions.

It is also worth mentioning that many stoichiometric matrices may correspond to
the same metabolic network. For instance, letS ∈ Rm×n be a stoichiometric matrix
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and letP ∈ Rm×m andQ ∈ Rn×n be permutation matrices. LetD ∈ Rn×n be a
diagonal matrix such thatDii = −1 for some reversible reactioni andDjj = 1 for all
j 6= i. Thus,S, PS, SQ andSD are stoichiometric matrices for the same metabolic
network. The problem of deciding whether two stoichiometric matrices describe the
same metabolic network is non-trivial to solve [52]. Dealing successfully with this
problem is important for instance to find out whether two metabolic (sub-) networks
share the same structure.

Reaction Reversibility

Thermodynamically, all metabolic reactions are reversible [22]. In fact, a reaction can
proceed in either direction depending on its Gibbs free energy difference. A positive
flux through a reaction implies a corresponding negative change of the Gibb’s free
reaction energy and vice versa [6; 53], i.e.,

sgn(vi) = −sgn(∆Gi) (1.1)

where ’sgn ’ is the sign function andvi (resp.∆Gi) is the flux (resp. Gibbs free energy
difference) of reactioni. Accordingly, a reaction operates in the forward, i.e.,vi > 0
(resp. backward, i.e.,vi < 0) direction if its Gibbs free energy difference is nega-
tive (resp. positive). Furthermore, a reaction reverses its direction if the corresponding
Gibbs free energy difference changes its sign. Reactions that have∆G values closer
to zero may involve free energy ranges that span both negative and positive values.
These reactions are very likely reversible. However, underphysiological conditions,
a so-called irreversible reaction can only proceed in one direction because the corre-
sponding Gibbs free energy difference is far from zero and its sign is always constant.
This leads to classify reactions as irreversible or reversible depending on their Gibbs
free energy difference values. Nevertheless, this strategy requires the computation of
the Gibbs free energy differences for all reactions. Significant efforts have been made
in doing this calculation which, however, is still a hard computational task. A re-
cent approach has been proposed to assign reaction directions in metabolic networks
on the basis of network topology considerations and thermodynamics-based heuristic
rules [57]. Nonetheless, the reversibility of metabolic reactions is still largely a matter
of convention or perspective. For instance, some reactionsare irreversible because they
are assumed to be so or this is in keeping with the biological function the system has to
accomplish, e.g., ATP production by glycolysis [95]. In contrast, reactions shared by
catabolic and anabolic pathways are often considered reversible [98]. This is justified
by the fact that these reactions are both anabolic and catabolic. In the context of this
work, we assume that irreversible reactions are defined as follows.

Definition 1.4 (Irreversible reaction). A reactioni is irreversible if and only if its flux
is always non-negative.

For the purpose of this thesis, a formal description of the structure and stoichiom-
etry of a metabolic network will be given as follows:
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– m: number of internal metabolites,

– n: number of reactions,

– S: stoichiometric matrix (S ∈ Rm×n),

– Irr : set of irreversible reactions (Irr ⊆ {1, . . . , n}),

– Rev : set of reversible reactions (Rev = {1, . . . , n} \ Irr ).

1.2 Aims and Organization of the Thesis

The huge amount of genomic, transcriptomic and related datahas allowed for a fast re-
construction of an increasing number of genome-scale metabolic networks. The latter
have been recognized to be highly complex. In this respect, the need for mathemat-
ical and computational methods that focus on the systemic properties of metabolic
networks is increasingly pressing. Various approaches have been developed, rang-
ing frommetabolic control, stochastic, cybernetic, kineticto constraint-based analysis
[29; 35; 38; 77; 81]. In the absence of detailed kinetic information, constraint-based
modeling has recently attracted ample interest due to its ability to analyze genome-
scale metabolic networks while using very few information.This approach is based on
the application of a series of constraints that govern the operation of a metabolic net-
work at steady state, including the stoichiometric and thermodynamic constraints. The
latter limit the range of allowable behaviors of the metabolic network, each basically
representing a possible metabolic phenotype. Applying these constraints leads to the
formulation of the solution space, called thesteady-state flux cone[20].

Several approaches have been proposed to describe the steady-state flux cone using
an inner description, which is based on sets of generating vectors [20; 90; 98]. The
number of these generators may be very large even for small networks and their calcu-
lation may need many resources in terms of time and memory. This limits the practical
applicability of these methods. This thesis mainly aims to define a constraint-based
approach that shrinks the size of the flux cone description toa more manageable level.
A key idea is to use anouter descriptionof the steady-state flux cone, based on sets of
non-negativity constraints.

Chap. 2 is dedicated to a general introduction to polyhedraltheory. The concepts
introduced in this chapter constitute the basics for the analysis of the steady-state flux
cone of metabolic networks developed in this work. The concept of steady-state flux
cone is formally defined in Chap. 3. This notion proceeds directly from the application
of the steady-state conditions governing the operation of ametabolic network. We
conclude this chapter by a detailed discussion of the main approaches for exploring
the flux cone.

In Chap. 4, we propose a new mathematical approach to metabolic network analy-
sis, characterizing a metabolic network by itsminimal metabolic behaviorsand there-
versible metabolic space. Our method uses an outer description of the steady-state flux
cone, based on sets of irreversible reactions. This is different from existing approaches,
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such aselementary modes[99] or extreme pathways[90], which use an inner descrip-
tion, based on sets of generating vectors. The resulting description of the flux cone is
minimal, unique, and satisfies a simplicity condition similar to the one that holds for
elementary modes. Our approach suggests a refined classification of reactions accord-
ing to their reversibility type (irreversible, pseudo-irreversible, andfully reversible).
While the irreversible and pseudo-irreversible reactionscompletely characterize mini-
mal metabolic behaviors, the fully reversible reactions define the reversible metabolic
space, which may contain useful biological information. This information is no longer
explicit if we replace each reversible reaction with two irreversible ones.

Chap. 5 is devoted to the study of the relationship between inner and outer de-
scriptions of the flux cone. By distinguishing pseudo-irreversible and fully reversible
reactions, we analyze the impact of reconfiguring the metabolic network in terms of
the size of the description of the reconfigured flux cone as well as the reversibility type
of reactions. This leads to a generic procedure for computing inner descriptions from
the outer one. This procedure makes clear why the size of the inner descriptions may
be several orders of magnitude larger than that of the outer description.

In Chap. 6, we show that the reversibility type also providesa key to elucidate
reaction dependencies. Indeed, coupling relationships can only hold between reactions
of a certain reversibility type. In particular, (pseudo-) irreversible reactions cannot be
coupled with fully reversible reactions, and all reactionsin an enzyme subset [78] must
have the same reversibility type. The mathematical resultsthat have been obtained not
only allow for improving an existing algorithm, but also lead to a new algorithm for
identifying blocked and coupled reactions in a metabolic network.

In Chap. 7, we introduce the concept ofminimal direction cutsthat allow pre-
venting a target reaction from being performed in an undesired direction. If the target
reaction is irreversible, MDCs are not different fromminimal cut sets (MCSs)[46].
However, if this reaction is reversible, MDCs allow it to operate in the desired direc-
tion, while MCSs make it inactive in both directions. In bothcases, each MCS can be
seen as the union of two MDCs. Therefore, all the useful applications of MCSs can
also be done with MDCs. However, the computation of MDCs doesnot require that of
elementary modes. MDCs may be determined based on the Farkaslemma for equality
and inequality constraints. The mathematical results of this chapter lead to an iterative
algorithm for computing MDCs in a metabolic network. Since MCSs can be obtained
from MDCs, this algorithm also allows for a direct computation of MCSs, in the sense
that we need not calculate beforehand the elementary modes.Finally, our algorithm
gives the possibility of introducing additional constraints that may reduce the search
space. This makes our approach applicable even for genome-scale metabolic networks.

In Chap. 8, we analyze the changes in the overall capabilities of a metabolic net-
work caused by gene deletion. In particular, we show how to obtain, in a constraint-
based approach, a description of the altered steady-state flux cone. The analysis is
again based on our refined classification of reactions.

The importance of single reactions for the overall metabolic network performance
can by assessed using knockout mutations. An important reaction can be identified us-
ing flux coupling analysis or gene deletion analysis discussed in Chap. 6 and Chap. 8,
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respectively. Alternatively, the essentiality of some reaction could correlate with how
this reaction participates in flexible and efficient operations of the metabolic network.
In Chap. 9, we discusscontrol-effective flux (CEF) analysis, which has proved promis-
ing in assessing the importance of reactions. We formally explain why elementary
modes are useful for CEF analysis. We also consider the use ofa minimal generating
set of the flux cone in such an analysis.
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CHAPTER

2 Mathematical Preliminaries

In this chapter we give a short overview of mathematical concepts we are going to
use throughout the thesis. In particular, we recall basic definitions from linear algebra
and polyhedral theory. Also, we present linear programmingand the Farkas lemma
which provides an efficient way to give a certificate for the infeasibility of a linear pro-
gram. Finally, to conclude this chapter, we shall review thedouble description method
which is considered as the most efficient algorithm for enumerating the extreme rays
of polyhedral cones. The reader familiar with the notions introduced here may skip
this chapter and refer to it when necessary.

2.1 Linear Algebra

We start with some notations and terminology. We denote byRn then-dimensional
vector space overR. By convention, the vectors inRn are column vectors. The super-
script “T ” denotestransposition. So forx ∈ Rn, xT is a row vector. Given two vectors
x, y ∈ Rn, xT y stands for the inner product ofx andy, i.e.,

∑n

i=1 xiyi. Thesupportof
a vectorx ∈ Rn, denoted bySupp(x), is the index set of its non-zero components, i.e.,
Supp(x) = {i ∈ {1, . . . , n} | xi 6= 0}.

A vectorx ∈ Rn is a linear combinationof the vectorsx1, . . . , xp ∈ Rn if

x =

p
∑

i=1

λix
i, for someλ1, . . . , λp ∈ R.

If in addition,λ1, . . . , λp ≥ 0 (resp.
∑p

i=1 λi = 1), x is aconic (resp.affine) combina-
tion of x1, . . . , xp.

For a setX ⊆ Rn, X 6= ∅, the linear (resp.affine, conic) hull of X, denoted by
lin(X) (resp.aff(X), cone(X)), is the set of all linear (resp. affine, conic) combina-
tions of finitely many vectors ofX.

A set X ⊆ Rn, X 6= ∅, is called linearly (resp.affinely) independentif no
vectorx ∈ X is expressible as a linear (resp. affine) combination of the vectors in
X \ {x}, otherwiseX is calledlinearly (resp.affinely) dependent. The cardinality
of X is denoted by|X|. The rank of X (resp.affine rankof X), denotedrank(X)
(resp.arank(X)), is the cardinality of the largest linearly (resp. affinely) independent
subset(s) ofX. The dimensionof X, denoted bydim(X), is the cardinality of the
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largest affinely independent subset(s) ofX minus one, i.e.,dim(X) = arank(X) − 1.
It is well known that, if 0 ∈ aff(X) then arank(X) = rank(X) + 1, otherwise
arank(X) = rank(X).

Let A ∈ Rm×n be a real matrix. For any row indexi ∈ {1, . . . , m} and any
subsetI ⊆ {1, . . . , m}, we denote byAi∗ the row of A indexed byi and byAI∗
the submatrix ofA formed by the rowsAi∗ with i ∈ I. Likewise, for any column
index j ∈ {1, . . . , n} and any subsetJ ⊆ {1, . . . , n}, A∗j denotes the column of
A indexed byj, while A∗J denotes the submatrix ofA formed by the columnsA∗j ,
with j ∈ J . Thecolumn (resp.row) rank of A is the rank of its column (resp. row)
vectors. It is shown in linear algebra that the column rank and the row rank are always
equal. Accordingly, they are simply called therank of A and denoted byrank(A).
The matrixA hasfull rank if rank(A) = min(m, n). The kernel or null spaceof
A, denoted bykern(A), is the set of all vectorsx ∈ Rn for which Ax = 0, i.e.,
kern(A) = {x ∈ Rn | Ax = 0}.

2.2 Polyhedral Theory

Throughout this thesis polyhedral theory plays a central role. This section introduces
some basic facts about polyhedral cones. For a comprehensive treatment of this subject
the reader should refer to [8; 92; 125].

Definition 2.1 (Convex cone). A non-empty subsetC ⊆ Rn is called a(convex) cone
if λx + µy ∈ C, wheneverx, y ∈ C andλ, µ ≥ 0.

Definition 2.2 (Linear homogeneous inequality). A linear inequality is an expression
of the formaT x ♦ b with a, x ∈ Rn, b ∈ R and♦ ∈ {≤,≥}. A linear inequality is
homogeneous ifb = 0.

A systemof homogeneous linear inequalities is a finite conjunction of homoge-
neous linear inequalities and can concisely be written in matrix form as Ax ≥ 0,
whereA ∈ Rm×n, x ∈ Rn andm is the number of inequalities in the system. The
set of vectors satisfying a finite system of homogeneous linear inequalities is called a
polyhedral cone.

Definition 2.3 (Polyhedral cone). A coneC is polyhedral, if C is the set of solutions
of a finite system of linear homogeneous inequalities, i.e.,C = {x ∈ Rn | Ax ≥ 0},
for some real matrixA ∈ Rm×n.

For anya ∈ Rn \ {0}, the vector subspaceH = {x ∈ Rn | aT x = 0} is called a
hyperplane. H partitions the vector spaceRn into two halfspaces: H+ = {x ∈ Rn |
aT x ≥ 0} andH− = {x ∈ Rn | aT x ≤ 0}. Accordingly, a coneC = {x ∈ Rn | Ax ≥
0} can be seen as the intersection of finitely many halfspaces. This observation is used
in many algorithms on polyhedral cones (e.g., the double description method reviewed
in Sect. 2.4).
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a) Polyhedral cone b) Non−polyhedral cone

Figure 2.1: Polyhedral vs. non-polyhedral cone

Definition 2.4 (Lineality space). Let C be a polyhedral cone defined byC = {x ∈
Rn | Ax ≥ 0}. The lineality spaceof C, denoted bylin.space(C), is defined by

lin.space(C) = {x ∈ Rn | Ax = 0}.

A cone C is finitely generatedif there existg1, . . . , gs ∈ Rn such thatC =
cone{g1, . . . , gs} = {λ1g

1 + . . . + λsg
s | λ1, . . . , λs ≥ 0}. If this is the case, the

vectorsgi for i = 1, . . . , s are calledgenerating vectorsof the coneC. The set
B = {g1, . . . , gs} is called aminimal set of generating vectorsif no proper subset
of B generates the coneC.

A fundamental theorem of Farkas-Minkowski-Weyl (see e.g.,[92], p. 87) asserts
that a convex cone is polyhedral if and only if it is finitely generated.

Theorem 2.5(Farkas-Minkowski-Weyl). A convex cone is polyhedral if and only if it
is finitely generated.

This theorem states that every cone admits two types of representations, either as
the solution set of a finite system of linear homogeneous inequalities or as the conic
hull of a finite set of vectors. These are usually referred to as externaland internal
representation, respectively. For the rest of the thesis, we will consider only polyhedral
cones and simply use the term cone.

An inequalityaT x ≥ 0, a ∈ Rn \ {0}, is valid for a coneC if C ⊆ {x ∈ Rn |
aT x ≥ 0}.

Definition 2.6 (Face). A subsetF of a coneC is called aface of C if F = C or
F = C ∩ {x ∈ Rn | aT x = 0}, whereaT x ≥ 0, a ∈ Rn \ {0}, is a valid inequality
for C. The dimensionof F is defined as the dimension of the linear hull ofF , i.e.,
dim(F ) = dim(lin(F )).

Definition 2.7 (Minimal face). A minimal face of a coneC is a non-empty face which
does not contain any other non-empty face ofC.

In other words, a minimal face ofC is a face of smallest dimension. It is easy to see
that the only minimal face of a coneC is its lineality space. This leads to the following
definition ofminimal proper facesof C.
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Pointed Cone Non−pointed Conea) b)

Lineality spaceLineality space

Extreme rays

2 Adjacent extreme rays

Minimal proper faces

Figure 2.2: Pointed vs. non-pointed cone.

Definition 2.8 (Minimal proper face). Let C be a cone and lett be the dimension of
its lineality space. A face ofC of dimensiont + 1 is called aminimal properface.

Definition 2.9 (Adjacent minimal proper faces). Let C be a cone and lett be the
dimension of its lineality space. Two minimal proper faces of C are calledadjacentif
they are contained in some face of dimensiont + 2.

Any non-zero elementr ∈ C is called aray of C. Two raysr andr′ are equivalent,
writtenr ∼= r′, if r = λr′, for someλ > 0.

Definition 2.10 (Extreme ray). Let C be a cone. A rayr is extremeif there do not
exist raysr′, r′′ ∈ C, r′ 6∼= r′′, such thatr = r′ + r′′.

Definition 2.11. A coneC is called pointedif lin.space(C) = {0} or equivalently
C = {x ∈ Rn | Ax ≥ 0} for someA ∈ Rm×n with rank(A) = n.

An example of a pointed cone is the intersection of the null space of a matrix with the
positive orthant. Note that the extreme rays of a pointed cone are identical with its
minimal proper faces. According to Definition 2.9, two extreme rays are adjacent if
they are contained in one face of dimension2.

Any pointed coneC has acanonicalrepresentation

C = cone{r1, . . . , rs}, (2.1)

wherer1, . . . , rs are the (distinct) extreme rays ofC. This representation, which is
often used in metabolic network analysis (see Chap. 3 for more details), is minimal
and unique up to multiplication by positive scalars.

If C is not pointed, there is no longer such a unique minimal representation. Lett
be the dimension of the lineality space ofC. Instead of the extreme rays, we consider
now theminimal proper facesG1, . . . , Gs of C, which are the faces ofC of dimension



15

t + 1. EachGi can be represented by a row vectoraT
i and a submatrixA′

i of A, with

rank

(

A′
i

aT
i

)

= n − t, such that [92]

Gi = {x ∈ C | aT
i x ≥ 0, A′

i x = 0}, (2.2)

and
lin.space(C) = {x ∈ C | aT

i x = 0, A′
i x = 0}.

If we select for eachi = 1, . . . , s a vectorgi ∈ Gi \ lin.space(C), and vectors
b0, . . . , bt ∈ lin.space(C) such thatlin.space(C) = cone{b0, . . . , bt}, we get

C = cone{g1, . . . , gs, b0, . . . , bt}. (2.3)

For each minimal proper faceGi, i = 1, . . . , s, we get

Gi = cone{gi} + lin.space(C) = {λgi + w | λ ≥ 0, w ∈ lin.space(C)} (2.4)

For additional information, we refer to [92], p. 105-106.
(2.3) generalizes (2.1), but this representation is no longer unique. We may choose

an arbitrary base oflin.space(C), and arbitrary raysgi in Gi \ lin.space(C). However,
it follows from (2.2) thatGi can also be characterized using constraintsaT

i x ≥ 0,
whereaT

i is a row vector from the matrixA that defines the cone. This observation
will lead us to a new way for describing and analyzing the flux cone associated with a
metabolic network (see Chap. 4 for more details).

Let us now illustrate the concepts that have been introducedabove using the fol-
lowing example.

Example 2.12.Consider the coneC defined by

C = {(x, y, z)T ∈ R3 | −11x + 4z ≥ 0 andx + 3z ≥ 0}.

Let G1 andG2 be the faces defined by

G1 = {(x, y, z)T ∈ R3 | −x + 4z = 0 and2x + z ≥ 0},
G2 = {(x, y, z)T ∈ R3 | −x + 4z ≥ 0 and2x + z = 0}.

The linear hulls ofG1 andG2 are respectively,

lin(G1) = {(x, y, z)T ∈ R3 | −x + 4z = 0}, dim(lin(G1)) = 2,
lin(G2) = {(x, y, z)T ∈ R3 | 2x + z = 0}, dim(lin(G2)) = 2.

Fig. 2.3 shows the polyhedral coneC and the facesG1 andG2. The y-axis is the
lineality space ofC, i.e., lin.space(C) = {(x, y, z)T ∈ Rn | x = z = 0} = {λb1 |
λ ∈ R}, with b1 = (0, 1, 0)T , and sot = dim(lin.space(C)) = 1. Sincedim(G1) =
dim(lin(G1)) = t + 1 anddim(G2) = dim(lin(G2)) = t + 1, G1 andG2 are minimal
proper faces ofC that could be represented by the vectorsg1 = (1, 0, 4)T andg2 =
(−1, 0, 2)T , respectively.
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Figure 2.3: An illustration of the polyhedral coneC corresponding to the constraint system
given in Example 2.12.

According to Theorem 2.5, each polyhedral cone can be seen either as the solution
set of a finite system of linear homogeneous inequalities (external representation) or as
the conic hull of a finite set of vectors (internal representation). The problem of con-
verting an external representation to an internal representation is known as theextreme
ray enumeration problemand the reverse is known as thefacet enumeration problem.
These problems have been well studied and have many equivalent formulations [44].
Clearly, the number of extreme rays of the coneC = {x ∈ Rn | Ax ≥ 0}, for some
real matrixA ∈ Rm×n, can be (and typically is) exponential inn or m (see Sect. 4.4
for an example). Therefore, when we consider the computational complexity of the ex-
treme ray enumeration problem, one can only seekoutput-sensitivealgorithms whose
running time depends not only on the size of the input but alsoon the size of the out-
put. In general, no polynomial output-sensitive algorithmis known for the extreme
ray enumeration problem [44; 112]. Nonetheless, thedouble description method[33],
which will be reviewed in Sect. 2.4, is one of the most efficient algorithms for solving
this problem.

2.3 Linear Programming

In this section we briefly describe the basic theory of linearprogramming. Details can
be found e.g. in [19; 92].

Linear programming (LP)is the problem of maximizing or minimizing some linear
function, called theobjective function, subject to a set of linear inequalities. In the
following, without loss of generality, we maximize the objective function.

More formally, given a matrixA ∈ Rm×n, a vectorb ∈ Rm and a vectorc ∈ Rn,
the corresponding LP problem, is denoted by

max cT x subject toAx ≤ b,

or shortly
max{cT x : Ax ≤ b}. (2.5)
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Each of the linear inequalitiesAi∗x ≤ bi for i = 1, . . . , m is called alinear constraint.
A vector x∗ ∈ Rn is a feasible solutionif x∗ satisfies all the linear constraints, i.e.,
Ax∗ ≤ b. If in addition,cT x∗ ≥ cT x for all feasible solutionsx, x∗ is called anoptimal
solution. The set of all feasible solutions is called thefeasible region. A linear program
is infeasibleif its feasible region is empty, otherwise it is calledfeasible.

LP problems, in which some variables are required to be integers but others can be
real valued, are known asmixed integer linear programming (MILP) problems.

Linear programming can be solved using thesimplex method, which enumerates
adjacent vertices of the feasible region such that at each new vertex the objective func-
tion improves or is unchanged. Another efficient polynomialtime algorithm is the
interior point method. The interested reader can refer to [92].

Every LP problem, referred to as aprimal problem, can be converted into adual
problem by swapping the constraints and variables. For instance, the dual of the LP
problem (2.5) can be written as

min{bT y : AT y = c, y ≥ 0}. (2.6)

For a more detailed treatment, the reader is again referred to [92]. The following
theorem is one of the main results in duality theory.

Theorem 2.13.The linear program (2.5) has an optimal solutionx∗ if and only if the
dual linear program (2.6) has an optimal solutiony∗ such thatcT x∗ = bT y∗.

There are many practical applications of duality. For instance, it might be faster to
run the simplex method on the dual linear program. More importantly, duality provides
an efficient way to give a certificate for the infeasibility ofa linear program. The
following theorem, called theFarkas lemma, states that the unsolvability of a system
of constraints can be established by finding a solution for a corresponding dual system.

Theorem 2.14(Farkas lemma). Given a matrixA ∈ Rm×n and a vectorb ∈ Rm, there
exists a vectorx ∈ Rn such thatAx ≤ b if and only if there does not exist a vector
y ∈ Rm such thatyT A = 0, y ≥ 0, andyT b < 0.

In the context of our work, we instead use the following variant of the Farkas
lemma for equality and inequality constraints to characterize minimal directions cuts
in metabolic networks (see Chap. 7 for more details).

Theorem 2.15(Farkas lemma for equality and inequality constraints [125]). Given
matricesA ∈ Rm×n, B ∈ Rp×n andC ∈ Rq×n and vectorsx ∈ Rm, y ∈ Rp and
z ∈ Rq, either there exists a solution vectorv ∈ Rn for

Av = x, Bv ≥ y, Cv ≤ z

or there exist row vectorsa ∈ Rm, b ∈ Rp andc ∈ Rq with

cC = aA + bB, b ≥ 0, c ≥ 0, −ax − by + cz < 0.
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2.4 Double Description Method

Thedouble description method (DDM)is a simple yet efficient algorithm for comput-
ing a minimal generating set of a polyhedral cone inRn. To understand this algorithm,
we first recall the concept of adouble description pair (DDP)[33].

Definition 2.16 (Double Description Pair (DDP)). Given some matricesA ∈ Rm×n,
R ∈ Rn×s, B ∈ Rn×t andG =

(

R B
)

, the pair(A, G) is said to be adouble
description pair(DDP) if the following relationship holds:

Ax ≥ 0 if and only if x = Rλ + Bµ for someλ ∈ Rs
≥0 andµ ∈ Rt.

The term “double description” means that such a pair(A, G) contains two different
descriptions of the same coneC. Namely,C represented by itsrepresentation matrix
A as

C = {x ∈ Rn | Ax ≥ 0}

is also given by itsgenerating matrixG = (R, B) as

C = {x ∈ Rn | x = Rλ + Bµ for someλ ∈ Rs
≥0 andµ ∈ Rt}.

By Theorem 2.5, each polyhedral cone admits a generating matrix. Clearly, it is
more appropriate to construct a minimal generating matrixG so that no proper sub-
matrix of G is generating the same cone. The strategy of the double description
method is to iteratively build a minimal generating matrix(R′, B′) for the cone
Ck = {x ∈ Rn | Ai∗x ≥ 0 for i = 1, . . . , k} from a minimal generating matrix
(R, B) of the coneCk−1 = {x ∈ Rn | Ai∗x ≥ 0 for i = 1, . . . , k − 1}, such that
B = (b1, . . . , btk−1

), with tk−1 = dim(lin.space(Ck−1)), is a basis of the lineality
space ofCk−1 andR = (r1, . . . , rsk−1

) is a set of representatives of the minimal proper
faces (faces of dimensiontk−1 + 1) of Ck−1. The incremental step introduces a con-
straintAk∗x ≥ 0 that is not yet fulfilled by all the generators in(R, B). The generators
in (R, B) that fulfill this constraint will be kept in the description of Ck, the others will
be discarded and new ones are generated. The computation of the new generators relies
on the concept of adjacent rays. Two generating vectorsri, rj ∈ R are adjacent if they
are contained in some(t + 2)-dimensional face ofCk−1. Fig. 2.4 gives an illustration
of thek-th iteration. The constraintAk∗x ≥ 0 partitions the set of generatorsR into
three parts:

R+ = {r ∈ R | Ak∗r > 0},
R0 = {r ∈ R | Ak∗r = 0},
R− = {r ∈ R | Ak∗r < 0}.

A minimal set of generators(R′, B′) for the coneCk is determined by the following
rules [33]:

1. If Ak∗ ⊥ B, i.e., lin.space(Ck−1) ⊆ {x ∈ Rn | Ak∗x = 0}, thenB′ = B and
R′ = R+ ∪ R0 ∪ Adj, with

Adj = {(Ak∗ri)·rj−(Ak∗rj)·ri | ri ∈ R+, rj ∈ R−, ri andrj are adjacent inCk−1}
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Additional constraint ConeOriginal cone

Ak∗x = 0

CkCk−1 Ak∗x ≥ 0

Figure 2.4: Illustration of thek-th iteration of the double description method. In this iteration,
the constraintAk∗x ≥ 0 partitions the generating vectors of the coneCk−1 into
positive (red color), negative (green color) and zero (bluecolor) generators. All
positive and zero generators of the coneCk−1 are kept in the description of the
coneCk. Other new generator of the coneCk are obtained by combining a positive
and a negative generator ofCk−1 that are adjacent.

2. Else chooseB = {b′1, . . . , b
′
tk−1

} such thatAk∗b′i = 0 for i = 1, . . . , tk−1 − 1 and
Ak∗b′tk−1

> 0, and setB′ = {b′1, . . . , b
′
tk−1−1} andR′ = {r′1, . . . , , r

′
sk−1

, b′tk−1
},

with r′j = (Ak∗b′tk−1
) · rj − (Ak∗rj) · b′tk−1

for j = 1, . . . , sk−1.

At each iterationk, the DDM algorithm needs to check for each pair of genera-
tors r andr′ of Ck with Ak∗r > 0 andAk∗r

′ < 0 whether they are adjacent inCk.
Actually, enumerating adjacent rays is the most time consuming part of the DDM al-
gorithm. Performing this enumeration would improve the DDMalgorithm. We should
also mention that this algorithm is sensitive to the ordering of rows of the representa-
tion matrixA. Many (fixed or dynamic) ordering strategies have been proposed and
compared in [33].
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CHAPTER

3 Metabolic Network Analysis

In this chapter, we give an overview of the main approaches for modeling and analyz-
ing metabolic networks. We will focus onconstraint-basedapproaches which, through
the help ofconstraintssuch asstoichiometricandthermodynamicconstraints, define
the space of all attainable behaviors of a metabolic networkat steady state. In the last
part of this chapter, we shall discuss the well-known concept of elementary modes.
While each elementary mode involves a minimal set of reactions, these modes span
the steady-state flux cone in the sense that, each steady-state flux distribution can be
expressed as a non-negative linear combination of the elementary modes.

3.1 Main Existing Approaches

The impressive biological data that is now available has allowed the reconstruction
of an increasing number of genome-scale metabolic networks. However, this infor-
mation is not sufficient to determine quantitatively the metabolic phenotypes that are
expressed by biological systems under different environmental conditions. Intuitive
reasoning for predicting and analyzing metabolic phenotypes can be inadequate, often
giving incomplete or incorrect predictions. In this respect, rigorous mathematical and
computational methods are strongly required to investigate the principles of metabolic
behaviors.

In an attempt to make quantitative predictions about the dynamics of the metabolic
behavior,kinetic modeling[38] determines the reaction rate by means of kinetic func-
tions of metabolite concentrations and kinetic parameterssuch as equilibrium con-
stants. A well-known kinetic function is theMichaelis-Mentenrate equation, which
defines the flux through some reactioni as a function of the concentration of a substrate
A as follows:

vi = vmax
i

[A]

[A] + Km

,

wherevi is the flux through reactioni, [A] is the concentration of the substrateA,
vmax

i is the maximal possible flux through reactioni andKm is a Michaelis-Menten
parameter, which is equal to the substrate concentration when

vi =
vmax

i

2
.
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Although kinetic modeling is most appropriate for fully characterizing metabolic sys-
tems, this approach has been hampered by the lack of detailedkinetic information.
Indeed, it is difficult to determine kinetic parameters experimentally. Consequently,
there is often not enough kinetic information in the literature to construct kinetic mod-
els. Moreover, the results that could be drawn from such models are strongly sensitive
to the definition of both kinetic functions and parameters.

In view of the limits of kinetic modeling, growing attentionis being paid to other
approaches which require only topological and structural properties rather than de-
tailed kinetic information. Indeed, using the language of graph theory, a metabolic
network can be captured as a graph representation of the reactions taking place in that
network. In this representation, the metabolic network is seen as either areaction
graph[40] or asubstrate graph[118], allowing for the use of the tools of graph theory
to investigate topological properties of metabolic networks. These properties include
the clustering coefficient[85], as well as theaverage path-lengthbetween metabo-
lites [1].

While graph-based methods have greatly contributed to the understanding of
metabolic network topology, they are limited by a crucial difference between graphs
and metabolic networks. Indeed, about85% of reactions are bimolecular or more in
either substrates, products or both [31]. For instance, thefollowing is a reaction in-
volving two substrates and two products,

glucose+ ATP → glucose 6-phosphate+ ADP.

A graph-based representation does not explicitly considerthe hypergraphical nature of
metabolic networks. Ahypergraphis a generalized graph in which hyperedges (reac-
tions) may link more than two nodes (metabolites). Besides,graph-based approaches
do not straightforwardly consider reaction stoichiometry. One topological approach to
coping with this situation is to usePetri Nettheory [124]. This approach has many par-
allels with pathway-based network analysis reviewed in Sect. 3.4. In addition to be a
user-friendly means of visualization, Petri nets allows for characterizing several prop-
erties of metabolic networks (trap, deadlockand liveness, to name but a few) [71].
However, determining these properties requires a translation of Petri nets into linear
constraint systems. This modeling can be obtained using constraint-based approaches.

Rather than attempting to predict exactly what a metabolic system does, one
could narrow the range of all possible behaviors this systemcan display under cer-
tain physicochemical constraints [23; 72; 81]. In such an approach, we assume that
these constraints define the space of all possible attainable behaviors of a metabolic
network. Constraint-based approaches are simple but powerful [104]. Indeed, the few
parameters used in such approaches enable models to be builtand studied easily. Al-
though such approaches do not strive to find exact behaviors of metabolic networks,
the degree of freedom of the constrained system yields an indication of our level of
understanding of the metabolic system. If all the constraints that govern a metabolic
network are known, the allowable domain shrinks to a single feasible behavior. This
is often not the case, and so many further flux distributions fulfill the governing con-
straints. Nonetheless, adding further constraints may reduce the number of allowable
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flux distributions in the network. This is the strategy used by metabolic flux analy-
sis (MFA) [64; 107]. In this approach, fluxes through many boundary reactions are
measured to render a determined constraint system. Besides, consistency tests of gov-
erning constraints make possible improving metabolic reconstructions. For instance,
some reaction could be unable of carrying a flux under constraints taken into account
in the model. This could indicate the presence of errors or omissions during network
reconstruction processes.

In the context of the present work, we are specifically concerned with deriving all
possible flux distributions subject to the two most important constraints that have to
hold in a metabolic network at steady state: thestoichiometricand thermodynamic
constraints. As we will see in the next section, these constraints define the steady-state
flux cone that contains all possible flux distributions in a metabolic network subsisting
at steady state.

3.2 Steady-State Flux Cone

According to kinetic theory, the difference between the rate of formation and con-
sumption of a particular internal metabolite is equal to thechange in concentration of
that metabolite over time. Mathematically, the behavior ofa metabolic network can be
captured as a system of ordinary differential equations [38]. A compact expression of
this equation system is

dx

dt
= Sv, (3.1)

whereS is the stoichiometric matrix,x stands for them−dimensional vector of in-
ternal metabolite concentrations andv denotes theflux distributionwith elements cor-
responding to then fluxes through reactions. Actually, the flux vectorv consists of
nonlinear functions of metabolite concentrationsx as well as of a set of kinetic pa-
rameters (e.g., Michaelis constantsKm, maximal reaction ratesvm and equilibrium
constantsKeq). For all except very simple cases, the constraint system (3.1) cannot
be solved analytically, but it can be investigated numerically with appropriate nonlin-
ear solvers. Nonetheless, if we consider only the fluxes through reactions, then the
constraint system (3.1) is linear in them.

Identification of steady states plays a crucial role in the analysis of metabolic net-
works [98]. At steady state, the change in the concentrationof a compoundx over
timet across all reactions within the system becomes zero. This assumption is relevant
for most metabolic reactions since they are typically much faster than environmental
changes [34; 115]. The steady-state assumption is expressed by a zero time derivative
of the concentration, leading to theflux balance equation

Sv = 0. (3.2)

This equation defines thestoichiometric constraintswhich state that the total rate of
formation for any internal metabolite must equal the total rate of consumption for that
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metabolite. Remember that the flux balance equation holds only for internal metabo-
lites, since each internal metabolite must not accumulate or decrease in time. In con-
trast, external metabolites could be buffered, and so thesemetabolites are not involved
in the flux balance equation.

Stoichiometric constraints are mandatory for understanding the behaviour of
metabolic networks, but they are far from sufficient. These constraints allow a wide
range of possible steady-state flux distributions, namely all flux distributions that are
situated in the null space of the stoichiometric matrix (seeSect. 2.1 for a definition of
the null space of a matrix). Additional constraints imposedby thermodynamic con-
siderations are often crucial to reduce the range of possible flux distributions. In-
deed, since each irreversible reaction can proceed only in the forward direction, fluxes
through irreversible reactions must be greater than or equal to zero. This is stated by
the following constraint system

vi ≥ 0, for all i ∈ Irr . (3.3)

According to [78], a set of reactions forms afunctionally coherent setin
metabolism if the flux distributionv realizable by these reactions obeys both the sto-
ichiometric and thermodynamic constraints, i.e.,v fulfills the following linear con-
straint system

Sv = 0, vi ≥ 0, for all i ∈ Irr , (3.4)

wherein the number of constraints (m + |Irr|) is often far less than the numbern
of unknown fluxes. Consequently, this set of linear constraints is, in general, under-
determined. Hence, multiple steady-state solutions are possible, each representing a
possible flux distribution over the network at steady state.In addition, owing to the
linear inequalities (3.3), the mathematical problem (3.4)is beyond the scope of stan-
dard linear algebra. In polyhedral theory, it is shown that the solutions of the constraint
system (3.4) form a polyhedral cone in the flux space (see Chap. 2 for a definition of a
polyhedral cone).

Definition 3.1 (Flux cone [20], p. 20-21). The set of all solutions of the constraint
system (3.4), which corresponds to the set of all possible flux distributions over the
network at steady state, defines a polyhedral cone,

C = {v ∈ Rn | Sv = 0, vi ≥ 0, for all i ∈ Irr}, (3.5)

which is called thesteady-state flux cone.

For the rest of the thesis, we shall use the simpler term flux cone for steady-state
flux cone.

Since the flux cone in general contains infinitely many possible steady-state flux
distributions, it is interesting to find out which of these feasible flux distributions
are actually displayed by the metabolic network under consideration. Currently,
constraint-based approaches have attempted to analyze metabolic networks by use of
different mathematical and computational tools (linear algebra, polyhedral theory and
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Figure 3.1: Constraint-based analysis of metabolic networks. The stoichiometric and thermo-
dynamic constraints that have to hold in a metabolic networkdefine the space of all
possible flux distributions over the network. Optimization-based approaches seek
to identify single behaviors that optimize a predefined objective function. Alter-
natively, the whole capabilities of the metabolic network could be assessed using
pathway-based network analysis.

linear programming, to name but a few). There are two main strategies to analyze a
metabolic network: searching for single optimal behaviorsusingoptimization-based
approaches, or assessing the whole capabilities of a metabolic networkby means of
pathway-based network analysis. Fig. 3.1 gives an overview of these two categories of
constraint-based approaches.

3.3 Optimization-based Approaches

Optimization-based approaches assume that metabolic networks behave optimally,
driven by an objective. For applying such methods, we first need to determine a most
likely physiologically meaningful objective of a living system. This is interesting, as
it may allow us to identify rules that govern the operation ofa metabolic network un-
der different environmental conditions. These governing rules are important not only
for enhancing our understanding of the metabolic system, but also for engineering and
designing strains more appropriate for metabolite production purposes [10; 12].

In an attempt to determine an optimal flux distribution, one should state an objec-
tive function and seek its maximal value within the feasibledomain. This approach is
referred to asflux balance analysis (FBA)[42; 63]. In addition to the stoichiometric
and thermodynamic constraints, the optimization strategyemployed by FBA uses flux



26

capacity constraints that place bounds on the values of a given flux, and possibly other
physicochemical constraints to further limit the space of possible flux distributions.
These additional constraints are necessary because using optimization techniques re-
quires that the feasible domain is bounded in the direction of the objective function.
Assuming the objective function is linear, FBA constitutesthe following linear pro-
gramming problem (see Sect. 2.3 about linear programming)

maxcT v
subject to:
Sv = 0,
vmin

i ≤ vi ≤ vmax
i for all i ∈ {1, . . . , n},

(3.6)

wherec denotes the vector that defines the objective function by means of costs of or
benefits derived from the fluxes [84]. Note that also minimization can be performed
by simply finding the maximum of the negative of the objectivefunction. The bounds
vmin

i andvmax
i are the minimum and maximum flux capacities. In particular,vmin

i = 0
for each irreversible reactioni. By changing the vectorc in the linear problem (3.6), we
could test various objective functions, each capturing different information on which
rules are governing metabolic networks. Many optimization-based approaches assume
that a well-suitable objective function for an optimal operation of metabolic networks
is the maximization of biomass production (growth) [28; 115]. They consider that mi-
croorganisms have evolved in such a way that their metabolicnetworks guarantee the
most efficient conversion of resources to produce more cells. This simple optimization
principle has been widely used for many studies, such as predicting the optimal per-
formance of a metabolic network under a range of growth conditions, studying gene
essentiality and identifying targets for metabolic engineering [10; 27; 82]. On the
other hand, some microorganisms may not necessarily have evolved solely to optimize
biomass production. They instead may be driven by other objective functions includ-
ing [26]:

– Minimizing ATP productionto guarantee optimal metabolic energy efficiency.

– Minimizing nutrient uptaketo minimize the amount of available nutrients that
are needed by the living system to perform its metabolic functions.

– Minimizing the overall fluxused to efficiently channel the metabolites through
the metabolic network.

– Maximizing the productionof a chosen metabolite to determine the production
capabilities of a given metabolic network.

No single objective function completely describes the optimal operation of
metabolic networks under all environmental conditions. Accordingly, it is still manda-
tory to verify whether a hypothesized objective function isconsistent with experimen-
tal flux data. Recent work systematically evaluates the relevance of eleven objective
functions to predict fluxes inE. coli under six environmental conditions [93]. Another
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approach uses an optimization-based framework (ObjFind) for inferring the most plau-
sible objective function given observed experimental data[13].

A knocked-out organism may not be accurately described withthe objectives used
for wild-type systems. A recent approach, calledminimization of metabolic adjust-
ment(MOMA), assumes that a knocked-out organism displays a flux distribution clos-
est to the optimal flux distribution prior to the gene deletion [103].

MOMA determines a flux distribution with the smallest euclidean distance to the
optimal wild-type flux distribution obtained by FBA using the following quadratic pro-
gram:

min (v − w)T (v − w)
subject to:
Sv = 0,
vmin

i ≤ vi ≤ vmax
i for all i ∈ {1, . . . , n},

vj = 0, for all j ∈ A,

wherew is the wild-type flux distribution and A is the set of reactions corresponding
to the deleted genes. On the other hand,regulatory on-off minimization (ROOM)
identifies the metabolic flux state of mutants by minimizing the number of significant
flux changes from the wild-type flux distribution [105]. For this, ROOM assigns a
cost to each flux, defines a range[wl, wu] around the wild-type flux distributionw and
determines a feasible flux distributionv with a minimal number of componentsvi such
thatvi /∈ [wl

i, w
u
i ]. The resulting optimization problem involves a mixed-integer linear

problem that can be written as:

min
∑n

i=1 ciyi

subject to:
Sv = 0,
vi − yi(v

max
i − wu

i ) ≤ wu
i for all i ∈ {1, . . . , n},

vi − yi(v
min
i − wl

i) ≥ wl
i for all i ∈ {1, . . . , n},

vj = 0, for all j ∈ A,
yi ∈ {0, 1},

whereci denotes the cost for a change in the flux through reactioni, and for each
reactioni ∈ {1, . . . , n}, yi = 1 for a significant flux change invi, i.e.,vi /∈ [wl

i, w
u
i ],

andyi = 0 otherwise.
In analogy with FBA, both MOMA and ROOM require the definitionof an ob-

jective function to compute their minimal metabolic adjustment. In addition, these
approaches require the solution of FBA for the wild-type organism. Many other
optimization-based methods have been developed to analyzemetabolic networks in-
cluding automated curation of metabolic reconstructions [56], recovering metabolic
pathways via optimization [7], analysis of gene essentiality [2; 15; 82] and metabolic
engineering [10; 12].

While optimization-based approaches have proved successful in analyzing optimal
capabilities of several microorganisms, their results aresensitive to the definition of the
objective function. Moreover, these methods assume that metabolic systems operate
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according to a single rule of optimization. A recent study has shown, however, that a
microorganism could use different optimization criteria depending on the environmen-
tal conditions [93]. The exploration of all suitable objective functions is still a difficult
task.

Furthermore, an optimal solution with respect to a suitableobjective function need
not be unique. Optimization-based techniques often returnan arbitrary chosen flux dis-
tribution from the set of all optimal flux distributions. In analogy with the flux cone,
the set of all optimal flux distributions is, in general, an infinite convex set and requires
an adequate description. A recursive mixed-integer linearprogramming algorithm has
been developed to find all alternative optima [65]. This algorithm was, however, ap-
plied only on small networks. Finally, optimization-basedapproaches consider only
optimal states, which form a restricted subset of all possible behaviors of the living
system. An interesting alternative to optimization-basedmodeling is to describe all
possible steady-state flux distributions in the metabolic network using pathway-based
network analysis.

3.4 Pathway-based Network Analysis

Pathway-based network analysis [51; 75; 91] has been recognized as an important
approach in computational biology. This analysis is concerned with describing the
infinite flux coneC (defined in equation (3.5)) by means of a finite set of generating
vectors. A key distinction to be made is whether the flux cone is pointed or not. By
definition, the flux cone is pointed if its lineality space

lin.space(C) = {v ∈ C | vi = 0, for all i ∈ Irr} (3.7)

is reduced to the origin, i.e., no steady-state flux distribution involves only reversible
reactions. In particular, if all reactions are irreversible, i.e.,Irr = {1, . . . , n}, then
lin.space(C) = {0} and so the flux cone is pointed. In this case, the flux cone is
generated by a unique (up to multiplication by positive scalars) and minimal set of flux
vectors that correspond to its extreme rays.

In the presence of reversible reactions, the situation is more involved. Indeed,
if some reactions are reversible, the flux cone may be non-pointed and thus has no
longer a unique and minimal representation by its extreme rays. To deal with this
situation, some approaches propose to reconfigure the metabolic network in order to
render the flux cone pointed [20; 90]. For this, they considera subset SR⊆ Rev of
reversible reactions and split each reversible reactionj ∈ SR into a forward and a
backward reaction, which both are constrained to be irreversible. Lets = |SR| and
SR = {j1, . . . , js}. For convenience, the stoichiometric matrixS ′ ∈ Rm×(n+s) of the
reconfigured network can be written as follows:

S ′
∗j = S∗j for all j ∈ {1, . . . , n},

S ′
∗(n+k) = −S∗jk

for all k ∈ {1, . . . , s}.
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The set of irreversible reactions in the reconfigured network is given by

Irr ′ = Irr ∪ SR∪ {n + 1, . . . , n + s}.

The reconfigured flux coneC ′, which contains all possible steady-state flux distribu-
tions in the reconfigured network, is defined by

C ′ = {v ∈ Rn+s | S ′v = 0, vi ≥ 0, for all i ∈ Irr ′}. (3.8)

As a result of this reconfiguration, for a well-chosen set SR of split reactions, the
reconfigured flux coneC ′ is pointed and can be described by a unique and minimal set
of extreme rays. This reconfiguration has, however, undesirable consequences. On the
one hand, the number of variables and constraints increasesby s and2s, respectively.
This renders more complex the constraint system that definesthe reconfigured flux
cone. On the other hand, a significant number of rays in the reconfigured cone are ex-
treme for the only reason that the split reversible reactions have been decomposed into
forward and backward reactions. In the initial cone, these extreme rays are conically
dependent. Accordingly, the number of extreme rays increases by this reconfiguration,
which limits the practical applicability of this strategy.A more detailed study of the
network reconfiguration is given in Chap. 5.

Three main approaches have been proposed to analyze metabolic networks using
inner descriptions of the flux cone [20; 90; 98]. They all determine flux distributions
corresponding to a convex basis of the flux cone, but use a different set of reactions that
have to be split [120]. If the latter includes all reversiblereactions, the reconfigured
flux cone is pointed and generated by its extreme rays calledextremal currents[20]. If
only internal reversible reactions are split, the reconfigured flux cone is again pointed
and the extreme rays are termedextreme pathways[90]. Note that if all boundary
reactions are irreversible, both concepts are identical. We should also mention that the
extremal current and the extreme pathway approach require areconfiguration of the
network even if the initial cone is pointed. Also in this case, the set of extreme rays of
the reconfigured cone is much larger than that of the initial cone.

Schuster and Hilgetag [98; 99] have proposed a description of the flux cone without
any reconfiguration, usingelementary modes (EMs). An elementary mode corresponds
to a steady-state flux distribution involving a minimal set of reactions. This concept is
related to that of aminimal T-invariantin Petri net theory [37; 100] and has also been
used for analyzing signaling and regulatory networks [49].From a biological view-
point, each EM converts a set of metabolites into each other by means of a minimal
set of reactions. Since reactions are catalyzed by enzymes,each EM corresponds to a
minimal set of enzymes that must be expressed by genes. The simplicity property of
EMs is of great interest because the effort provided by a biological system to maintain
a metabolic pathway increases with the number of enzymes expressed [74]. In addition
to the simplicity property, it has been shown that elementary modes span the steady-
state flux cone. In other words, each steady-state flux distribution can be expressed as
a non-negative linear combination of elementary modes. Fora more detailed explana-
tion of the similarities and differences between the three inner descriptions, we refer
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Inner description Split reactions Characteristics of the reconfigured flux coneC′ Characteristics of ID

ID SR Dimension Number of constraints lin.space(C′) Uniqueness Minimality

Extreme pathways Rev int n + |Rev int| m + |Irr | + 2|Rev int| {0} √
yes

Extremal currents Rev n + |Rev | m + |Irr | + 2|Rev | {0} √
yes

Elementary modes ∅ n m + |Irr | lin.space(C)
√

no

Table 3.1: Inner descriptions of the flux cone, with the set ofsplit reversible reactions SR, the
characteristics of the reconfigured flux coneC ′ and of the three inner descriptions.
Contrary to elementary modes, the sets of extreme pathways and extremal currents
correspond to the extreme rays of their corresponding reconfigured flux cone and so
are minimal. However, possibly many of these generating vectors could be in the
interior of the original flux cone.

to [51; 73; 75; 76; 120]. Tab. 3.1 summarizes the characteristics of the different inner
descriptions.

Elementary modes are defined in the originaln-dimensional flux space. In contrast,
to define extreme pathways (resp. extremal currents), the dimension of the flux space is
increased byp (resp.q), the number of internal reversible reactions (resp. the number
of all reversible reactions). In the following, we formallycharacterize the relationships
between the three inner descriptions.

Let Rev int stand for the set of reversible internal reactions. SupposeRev int =
{j1, . . . , jp} andRev = {j1, . . . , jq}. Let π : C → Rn+p (resp.φ : C → Rn+q) be
the function that maps each flux vectorv ∈ C to v′ = π(v) (resp.v′ = φ(v)) such
thatv′

j = vj for all j ∈ {1, . . . , n} \ Rev int (resp.j ∈ {1, . . . , n} \ Rev ), and for each
k ∈ {1, . . . , p} (resp.k ∈ {1, . . . , q})

v′
jk

= vjk
and v′

n+k = 0 if vjk
≥ 0,

v′
jk

= 0 and v′
n+k = −vjk

if vjk
< 0.

The functionπ (resp.φ) formally defines the reconfiguration of a flux vectorv ∈ C
by splitting each free variablevjk

with jk ∈ Rev int (resp.jk ∈ Rev ) into two non-
negative variablesv′

jk
andv′

n+k with vjk
= v′

jk
− v′

n+k. This operation is similar to
standard form transformation in linear programming. To define the reverse operation,
let πr : Rn+p → C (resp.φr : Rn+q → C) be the function that maps each vectorv′ ∈
Rn+p (resp.v′ ∈ Rn+q) to v = πr(v′) (resp.v = φr(v′)) such thatvj = v′

j for all j ∈
{1, . . . , n} \ Rev int (resp.j ∈ {1, . . . , n} \ Rev ) andvjk

= v′
jk

− v′
n+k for all k ∈

{1, . . . , p} (resp.k ∈ {1, . . . , q}).
Finally, letΠ ⊆ Rn+p andΦ ⊆ Rn+q be the sets of 2-cycles corresponding to the

split reversible reactions, i.e.,

Π = {x ∈ Rn+p | xj = 0 for all j ∈ {1, . . . , n + p} \ {jk, n + k}
andxjk

= xn+k = 1, for somejk ∈ Rev int},

Φ = {x ∈ Rn+q | xj = 0 for all j ∈ {1, . . . , n + q} \ {jk, n + k}
andxjk

= xn+k = 1, for somejk ∈ Rev}.
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The following proposition reformulates the relationship between extreme pathways
and elementary modes given in [51]. Except the2-cycles corresponding to the split
reactions, each extreme pathway completely defines a uniqueelementary mode.

Proposition 3.2 ([51]). If x /∈ Π is an extreme pathway, then there exists a unique
elementary modee ∈ C such thatx = π(e) ande = πr(x).

According to the proposition above, the set of extreme pathways corresponds to
a subset of elementary modes. Next, we restate the equivalence between elementary
modes and extremal currents given in [34].

Proposition 3.3 ([34]). Let e ∈ C be a steady-state flux distribution. The following
are equivalent:

– e is an elementary mode.

– There exists a unique extremal currentx /∈ Φ such thatx = φ(e) ande = φr(x).

It follows that up to the 2-cycles corresponding to the splitreactions, extremal cur-
rents and elementary modes are equivalent. Accordingly, analgorithm for computing
extremal currents could also be used to calculate elementary modes and vice versa.

Thus all three approaches are concerned with describing a pointed reconfigured
flux coneC ′ by means of its extreme rays. There may exist many generatingvectors
of the reconfigured flux coneC ′ lying in the interior of the original flux coneC. This
observation is important because the number of these generators may be very large,
making a complete analysis of the whole metabolic network impossible and limiting
the practical applicability of these methods.

3.5 Elementary Flux Modes

In this section, we limit ourselves to further characterizeelementary modes. All the
properties we will discuss here hold also for the extreme pathways and extremal cur-
rents.

The notion of an elementary vector was first introduced in [87] (see also [88], p.
205) where it was defined as a vector having a minimal support,i.e., a minimal set of
non-zero components.

Definition 3.4 (Elementary vector [87]). Let L ⊆ Rn be a vector subspace. A vector
e ∈ L \ {0} is an elementary vector if its supportSupp(e) is minimal, i.e., there exists
no vectore′ ∈ L \ {0} such thatSupp(e′) ( Supp(e).

It has been shown that a subspaceL ⊆ Rn can be considered as a linear hull
of a finite set of elementary vectors [87] (see Sect. 2.1 for a definition of a linear
hull). Building on earlier ideas [21; 30; 66], Schuster et al. introduced the concept
of elementary modesto provide a finite set of vectors that span the flux cone by non-
negative combination [97; 98; 99].
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Definition 3.5 (Elementary mode [98]). A flux distributione ∈ Rn \ {0} represents an
elementary (flux) mode if, and only if,e fulfils the two following conditions:

– Feasibility:e obeys the stoichiometric and thermodynamic constraints, i.e.,e ∈
C.

– Simplicity (non-decomposability):e cannot be represented as a positive linear
combination

e = λ1e
′ + λ2e

′′ for someλ1, λ2 > 0 (3.9)

of two flux vectorse′, e′′ 6= 0 with the following properties:

1. e′ ande′′ obey the stoichiometric and thermodynamic constraints, i.e.,

e′ ∈ C ande′′ ∈ C.

2. e′ ande′′ contain zero elements wherevere does and they include at least
one additional zero component each,

Supp(e′) ( Supp(e) andSupp(e′′) ( Supp(e). (3.10)

In addition to the simplicity property, elementary modes span the steady-state flux
cone. Each steady-state flux distribution can be expressed as a non-negative linear
combination of elementary modes.

Proposition 3.6 ([99]). Let e1, . . . , ep be the elementary modes of the flux coneC.
Each possible flux distributionv ∈ C is a non-negative linear combination ofe1, . . . , ep

v =

p
∑

k=1

λke
k for someλk ≥ 0.

The next proposition restates an equivalent formulation ofthe simplicity property
characterizing elementary modes. An EM is a flux distribution having a minimal sup-
port, i.e., a minimal set of active reactions (non-zero components).

Proposition 3.7([99]). For any pair of vectorse, e′ ∈ C, with e representing an ele-
mentary mode ande′ having zero components wherevere has zero components, i.e.,

Supp(e′) ⊆ Supp(e), (3.11)

e′ either represents the same elementary mode ase or the same elementary mode as
−e, which impliesSupp(e′) = Supp(e).

By the proposition above, each EM can be defined by its set of active reactions,
which is minimal. From a biological viewpoint, each EM converts certain metabolites
into each other by means of a minimal set of reactions. Since reactions are catalyzed by
enzymes, each EM corresponds to a minimal set of enzymes thatmust be expressed by
genes. The simplicity property of EMs is of great interest because the effort provided
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Figure 3.2: A hypothetic network with the corresponding elementary modes. This network
contains three elementary modese1, e2 and e3. The flux cone is pointed and is
spanned only by two extreme rayse1 ande2.

by a biological system to maintain a metabolic route increases with the number of
enzymes expressed [74]. From a mathematical point of view, the simplicity property
guarantees the uniqueness of the set of EMs. However, given an EM e, we could find
two flux vectorse′ ande′′ in the flux cone that fulfill equation (3.9) but not condition
(3.10). Accordingly, if the flux cone is pointed, an EM is not necessarily an extreme
ray. On the other hand, an extreme ray cannot be decomposed into two other feasible
flux vectors, and so each extreme ray defines an EM. This is the reason why, in many
situations, more EMs exist than are needed to span the flux cone.

Example 3.8. For illustration, consider the network depicted in Fig. 3.2. It consists
of four internal metabolites(A, . . . , D) and six reactions(1, . . . , 6), where reactions
3, 4, 5 and6 are irreversible. The flux cone corresponding to this network is pointed,
i.e., no steady-state flux distribution involving only reversible reactions is possible.
Two extreme rays generate the flux cone. They correspond to the elementary modes
e1 = (−1,−1, 0, 1, 1, 0) ande2 = (1, 1, 1, 0, 0, 1) depicted in Fig. 3.2. This network
contains another elementary modee3 = (0, 0, 1, 1, 1, 1), which can be writtene3 =
e1 + e2. Althoughe3 fulfills the simplicity condition, this mode does not correspond to
an extreme ray of the flux cone.

Elementary modes are also useful for studying reaction deletions, i.e., the removal
of one or more reactions from the metabolic network. The following proposition re-
states the conservation property characterizing EMs.

Proposition 3.9(Conservation property [51]). If a set of reactions are removed from
the metabolic network, all elementary modes not involving these reactions form the
complete set of elementary modes in the altered network.

Elementary-mode analysis has been used to investigate several features of
metabolic networks. Tab. 3.2 shows the main applications ofthis approach.

Various algorithms have been developed for computing elementary modes. The
main algorithm [99], which is based on an earlier algorithm by Nozicka [70], proceeds
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Application Reference
Investigation of viable pathways [80]
Inference of mutant viability [16; 106]
Detection of pathways with maximal molar yields [54; 96; 97;102]
Control-effective flux analysis [16; 17; 106]
Identification of correlated reactions [78]
Detection of thermodynamically infeasible cycles [34]
Computation of minimal cut sets [46]
Analysis of dynamical capabilities of a metabolic system [108]

Table 3.2: Applications of elementary-mode analysis for elucidating network properties.

in an iterative way by computing the EMs for a series of conesC0, . . . , Cm given by

C0 = {v ∈ Rn | vj ≥ 0 for all j ∈ Irr},
Ci = {v ∈ Rn | SIi∗v = 0; vj ≥ 0 for all j ∈ Irr},

with Ii = {1, . . . , i}, for all i = 1, . . . , m.

Obviously, the EMs of the coneC0 corresponds to the vectors of the canonical basis
of the euclidean spaceRn. These initial EMs fulfill the thermodynamic but not the
stoichiometric constraints. At each iterationi ∈ {1, . . . , m}, the EMs of the coneCi

are computed from those of the coneCi−1 in two steps:

1. The EMs ofCi−1 fulfilling the stoichiometric constraintSi∗v = 0 are also EMs
of the coneCi.

2. The remaining EMs ofCi−1, which do not fulfill Siv = 0, are combined with
each other to compute the EMs ofCi that lie within the intersection between
Ci−1 and the hyperplaneH i = {v ∈ Rn | Si∗v = 0}. However, many of these
combinations do not lead to EMs ofCi and need to be discarded. There are
two methods that allow for discarding these combinations. The first is based on
the simplicity property of EMs. Indeed, a combination of a pair of two EMs of
Ci−1 does not lead to an EM ofCi if the set of non-zero components involved in
that combination includes the set of non-zero components involved in an already
computed EM ofCi. The second uses a simple criterion on the rank of some
submatrix of the stoichiometric matrix [114].

Since the coneCm and the flux coneC are identical, after iterationm, the algorithm
terminates having computed all the EMs of the flux coneC. The most time consuming
part in this algorithm are the computations needed to check the simplicity property in
the second step of each iteration. Several variants of this algorithm have been devel-
oped to reduce the cost of these computations [34; 110], whereas others have attempted
to reduce the number of iterations [114; 119]. While efficient in analyzing metabolic
networks of small sizes, these algorithms are hampered by the combinatorial explosion
of the number of EMs in genome-scale networks [50].
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A natural question is that of defining methods which shrink the size of the flux
cone description to a more manageable level. In particular,one might wish that the de-
scription of the flux cone is minimal. Finding a description which fulfills this require-
ment essentially amounts to determining a minimal set of generating vectors [78; 120].
However, this strategy is not ideal in the context of metabolic networks. These gener-
ating vectors may not be unique, and so it is difficult to attribute a biological interpreta-
tion to such a non unique description. Alternatively, some authors have suggested pro-
jecting the flux cone onto the subspace spanned by the boundary reactions. This allows
to consider instead of the flux cone a simpler cone, called theconversion cone[114].
Several elementary modes are then equivalent with respect to the boundary reactions.
They differ only in the active internal reactions. While thedescription of the conver-
sion cone is much smaller than that of the flux cone, this approach abstracts away the
operation of internal reactions.
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CHAPTER

4 Minimal Metabolic
Behaviors and the
Reversible Metabolic Space

This chapter is devoted to providing a deeper insight into the mathematics underlying
our new constraint-based approach to metabolic network analysis published in [58].
A key idea is to use an outer description of the steady-state flux cone, based on sets
of non-negativity constraints. These can be identified withirreversible reactions and
therefore have a direct biochemical interpretation. Our method is thus different from
existing approaches, such as elementary modes or extreme pathways, which use an
inner description. We characterize a metabolic network by two new concepts:minimal
metabolic behaviors(MMBs) and thereversible metabolic space(RMS). Like elemen-
tary modes or extreme pathways, these are uniquely determined by the network. The
set of all MMBs together with the RMS yields a complete description of the flux cone,
which is minimal, unique, and satisfies a simplicity condition similar to the one that
holds for elementary modes. Moreover, our approach leads toa new classification of
reactions (irreversible, pseudo-irreversible, fully reversible), which may be used for a
refined analysis of the network. We demonstrate the reliability of our new approach by
studying the metabolic functions of the human red blood cell.

4.1 Minimal Metabolic Behaviors

In the context of metabolic pathway analysis, the set of all possible flux distributions
over a metabolic network at steady state defines the steady-state flux cone (see Defi-
nition 3.1 in Chap. 3). Already in [20], we can find the distinction between inner and
outer descriptions of this cone, which are called there internal and external represen-
tations. The external representation gives a test for determining whether a given flux
vector belongs to the cone, while the internal representation allows one to construct
flux vectors from a set of generators.

If the metabolic network does not contain any irreversible reaction, the steady-
state flux cone becomes a linear subspace ofRn, which can be analyzed by standard
methods from linear algebra. Therefore, we assume for the rest of this chapter that the
metabolic network contains at least one irreversible reaction.
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4.1.1 Characterizing Minimal Proper Faces

We start by characterizing the minimal proper faces of the flux cone through irre-
versible reactions of the network.

Definition 4.1. Let G be a minimal proper face of the flux coneC and letj ∈ Irr be
an irreversible reaction. We say thatG is characterized byj if there existsIj ⊆ Irr

such thatG = {v ∈ C | vj ≥ 0, vi = 0, for all i ∈ Ij}, andlin.space(C) = {v ∈ C |
vj = 0, vi = 0, for all i ∈ Ij}.

It follows from equation (2.2) in Chap. 2 that each minimal proper faceG of C is
characterized by at least one irreversible reaction. However, this reaction need not be
unique. In general, there will be several irreversible reactions satisfying the conditions
of Definition 4.1. The following proposition provides a simple criterion to identify
the irreversible reactions that characterize a given minimal proper face. In particular,
given a minimal proper faceG, if an irreversible reactionj is involved in some flux
vectorv ∈ G \ lin.space(C), i.e., vj > 0, thenj is involved in all flux vectorsv ∈
G \ lin.space(C) and soG is characterized byj.

Proposition 4.2.LetG be a minimal proper face ofC and letj ∈ Irr be an irreversible
reaction. Then the following statements are equivalent:

1. G is characterized byj.

2. vj > 0, for somev ∈ G \ lin.space(C).

3. vj > 0, for all v ∈ G \ lin.space(C).

Proof. (1)⇒ (2): Sincedim(G) = 1+dim(lin.space(C)), we haveG\lin.space(C) 6=
∅. So there existsv ∈ G \ lin.space(C), with vj > 0.

(2) ⇒ (3): Supposeg ∈ G \ lin.space(C) with gj > 0. By equation (2.4), for any
v ∈ G\ lin.space(C) there existsλ > 0 andw ∈ lin.space(C) such thatv = λ · g +w.
It follows thatvj = λ · gj > 0.

(3) ⇒ (1): It follows from equation (2.2) thatG is characterized by at least one
irreversible reaction. So there existsk ∈ Irr andIk ⊂ Irr with G = {v ∈ C | vk ≥
0, vi = 0, for all i ∈ Ik}, andlin.space(C) = {v ∈ C | vk = 0, vi = 0, for all i ∈
Ik}. To prove (1), we setIj = Ik and claim that the same equations hold fork replaced
with j. Considerv ∈ C with vi = 0, for all i ∈ Ij = Ik. Sincev ∈ C, we havevj ≥ 0
andvk ≥ 0. If vk > 0, thenv ∈ G \ lin.space(C) and by (3)vj > 0. If vk = 0, then
v ∈ lin.space(C) and sovj = 0. Together this showsvj = 0 if and only if vk = 0. It
follows G = {v ∈ C | vk ≥ 0, vi = 0, i ∈ Ik} = {v ∈ C | vj ≥ 0, vi = 0, i ∈ Ij}
andlin.space(C) = {v ∈ C | vk = 0, vi = 0, i ∈ Ik} = {v ∈ C | vj = 0, vi = 0, i ∈
Ij}.

Now, we define thecharacteristic setof a minimal proper faceG as the set of all
irreversible reactions characterizingG. As a consequence of Proposition 4.2, this set
is equal to the set of irreversible reactions involved in some flux vectors inG. Let us
state this fact in the following definition.
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Definition 4.3. Given a minimal proper faceG of the flux coneC, the set

D = {j ∈ Irr | vj > 0, for somev ∈ G}

of all irreversible reactions characterizingG is called thecharacteristic setof G.

Note that the characteristic set is uniquely determined by the corresponding mini-
mal proper face.

As the next theorem shows, all flux vectorsv ∈ G\lin.space(C) have the following
common property: the flux through all irreversible reactions belonging toD is positive,
i.e.,vj > 0, for j ∈ D, while the flux through all the other irreversible reactionsis zero,
i.e.,vj = 0, for j ∈ Irr \ D.

Since lin.space(C) = {v ∈ C | vi = 0 for all i ∈ Irr}, flux vectors in
lin.space(C) involve only reversible reactions and so−v ∈ lin.space(C). For this
reason, a flux vectorv ∈ lin.space(C) will be called reversible. Note that information
about reversible pathways is lost if the network is reconfigured in order to obtain a
pointed cone.

Theorem 4.4.Let G be a minimal proper face of the flux coneC andD its character-
istic set. Then

G = {v ∈ C | vj > 0, for all j ∈ D, vi = 0, for all i ∈ Irr \ D} ∪ lin.space(C).

Proof. Supposej ∈ D. ThenG = {v ∈ C | vj ≥ 0, vi = 0, for i ∈ Ij} and
lin.space(C) = {v ∈ C | vj = 0, vi = 0, for i ∈ Ij}, for someIj ⊂ Irr . From
Proposition 4.2, we see thatIj ⊂ Irr \ D. It follows that{v ∈ C | vj > 0, for all j ∈
D, vi = 0, for all i ∈ Irr \ D} ∪ lin.space(C) ⊆ G. To show the reverse inclusion,
supposev ∈ G \ lin.space(C). With Proposition 4.2,vj > 0, for all j ∈ D. Suppose
vi > 0, for somei ∈ Irr \ D. From Definition 4.3, we would geti ∈ D, which is a
contradiction.

If G1, . . . , Gs are the minimal proper faces of the flux coneC, the correspond-
ing characteristic setsD1, . . . , Ds together with the lineality spacelin.space(C) com-
pletely describeC.

The next result shows that inside a minimal proper faceG, the fluxes through the
irreversible reactions inD are proportional to each other.

Corollary 4.5. Let D be the characteristic set of the minimal proper faceG. Then for
all j, k ∈ D, there existsα > 0 such thatvk = α · vj , for all v ∈ G. In particular,
vj = 0 impliesvk = 0, andvj > 0 impliesvk > 0, for all v ∈ G.

Proof. Considerg ∈ G \ lin.space(C). Sincej, k ∈ D, Proposition 4.2 impliesgj > 0
andgk > 0. By equation (2.4), for allv ∈ G \ lin.space(C), there existλ > 0 and
w ∈ lin.space(C) such thatv = λ·g+w. It follows thatvj = λ·gj > 0, vk = λ·gk > 0,

and thereforevj/vk = gj/gk
def
= α > 0, independently fromv. This shows that

vj = α · vk > 0, for all v ∈ G \ lin.space(C). For all v ∈ lin.space(C), we have
vj = vk = 0. It follows for all v ∈ G thatvj = α · vk.



40

4.1.2 Minimal Metabolic Behaviors and the Reversible Metabolic
Space

We are now ready to define the key notions of this chapter.

Definition 4.6. A metabolic behavioris a set of irreversible reactionsD ⊆ Irr , D 6= ∅,
such that there exists a flux vectorv ∈ C with

D = {i ∈ Irr | vi 6= 0}. (4.1)

A metabolic behaviorD is minimal, if there is no metabolic behaviorD′ strictly con-
tained inD. The set

{v ∈ C | vi = 0, for all i ∈ Irr} (4.2)

is called thereversible metabolic space.

Remember that elementary modes correspond to flux vectorsv ∈ C involving a
minimum set of reactions, i.e., the setSupp(v) = {i ∈ Rev ∪ Irr | vi 6= 0} is
minimal [99]. Similarly, a minimal metabolic behavior corresponds to a minimal set
of irreversiblereactions involved in a flux vectorv ∈ C \ {0}, i.e., the setD = {i ∈
Irr | vi 6= 0} is minimal.

One may ask whether a set of irreversible reactionsD ⊆ Irr is a metabolic behav-
ior (MB). This is the same as asking whether there exists a steady-state flux distribution
v ∈ C with D = {i ∈ Irr | vi 6= 0}. The existence of such a flux distribution could be
verified using linear programming (LP). Indeed, consider the following LP problem

maxα
subject to:
Sv = 0,
vi = 0 for all i ∈ Irr \ D,
0 ≤ α ≤ vi ≤ 1 for all i ∈ D.

(4.3)

The setD is a metabolic behavior if and only if the optimal value of theLP problem
above is strictly positive. If this is the case, one might wonder whether this metabolic
behaviorD is minimal (MMB). To deal with this question, we use the following state-
ment, which is a straightforward consequence of the definition of a minimal metabolic
behavior.

Proposition 4.7. A setD ⊆ Irr , D 6= ∅, is a minimal metabolic behavior if and only
if the following two conditions hold:

1. There existsv ∈ C with vi > 0, for all i ∈ D, andvi = 0, for all i ∈ Irr \ D.

2. For anyv ∈ C with vi = 0 for all i ∈ Irr \ D, if vj = 0 for somej ∈ D, then
vj = 0 for all j ∈ D.
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Proof. ”⇒”: SupposeD ⊆ Irr is a minimal metabolic behavior. SinceD is a
metabolic behavior, there existsv ∈ C such thatD = {i ∈ Irr | vi 6= 0}. Since
v ∈ C, we getvi > 0, for all i ∈ D. By definition ofD, vi = 0, for all i ∈ Irr \ D.
This shows (1). Now letv ∈ C with vi = 0 for all i ∈ Irr \ D. Supposevj = 0 for
somej ∈ D andvk 6= 0, for somek ∈ D, k 6= j. ThenD′ = {i ∈ Irr | vi 6= 0} is a
metabolic behavior strictly contained inD, contradicting the minimality ofD.

”⇐”: Consider∅ 6= D ⊆ Irr such that (1) and (2) hold. By (1), there existsv ∈ C
with vi > 0, for all i ∈ D, andvi = 0, for all i ∈ Irr \D. ThenD = {i ∈ Irr | vi 6= 0}
and soD is a metabolic behavior. SupposeD is not minimal. Then there exists a
metabolic behavior∅ 6= D′ ( D strictly contained inD. Let D′ = {i ∈ Irr | v′

i 6= 0},
for a suitablev′ ∈ C. Thenv′

i = 0, for i ∈ Irr \ D′ ) Irr \ D. SinceD′ ( D,
there existsj ∈ D with v′

j = 0. From (2) we getv′
j = 0, for all j ∈ D. This is a

contradiction, sinceD′ 6= ∅ implies that there existsi ∈ D′ ⊆ D with v′
i 6= 0.

Given a metabolic behaviorD, the above proposition states thatD is minimal if
and only if for anyj ∈ D and anyv ∈ C ∩ {v ∈ Rn | vj = 0 andvi = 0 for all i ∈
Irr \D}, we have

∑

i∈D\{j} vi = 0, or equivalently, the optimal value of the following
LP problem

max
∑

i∈D\{j} vi

subject to:
Sv = 0,
vi = 0 for all i ∈ Irr \ D,
vi ≥ 0 for all i ∈ D \ {j},
vj = 0,
∑

i∈D\{j} vi ≤ 1.

(4.4)

is equal to zero. Accordingly, we need to solve at most|D| LP problems to check the
minimality of a metabolic behaviorD.

The following theorem shows that the MMBs are in a 1-1 correspondence with the
minimal proper faces of the flux cone. Indeed, each minimal metabolic behavior is
identical to the characteristic set of a minimal proper face.

Theorem 4.8. Let D ⊆ Irr be a set of irreversible reactions. Then, the following two
statements are equivalent:

– D is a minimal metabolic behavior.

– There exists a minimal proper faceG whose characteristic set isD.

Proof. ”⇒”: SupposeD is a minimal metabolic behavior and letG = {v ∈ C | vj ≥
0, for all j ∈ D, vi = 0, for all i ∈ Irr \ D}. SinceG = {v ∈ C | vi = 0, for all i ∈
Irr \ D}, G is a face ofC (cf. [92], p. 101). LetG′ ⊆ G be a minimal proper face
of C andD′ its characteristic set. SinceG′ ⊆ G, we getD′ ⊆ D. Suppose there
existsk ∈ D \ D′. Thenvk = 0 for all v ∈ G′ andG′ ⊆ G ∩ {v ∈ Rn | vk = 0}.
SinceD is minimal,v ∈ G andvk = 0 impliesvj = 0, for all j ∈ D, and therefore
G ∩ {v ∈ Rn | vk = 0} = lin.space(C). It follows that G′ ⊆ lin.space(C), in
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contradiction to the assumption thatG′ is a minimal proper face. We concludeD = D′.
Applying Theorem 4.4 toG′, we getG = G′ andG is a minimal proper face ofC.

”⇐”: Let G be a minimal proper face with characteristic setD. We use Proposi-
tion 4.7 to show thatD is a minimal metabolic behavior. Ifv ∈ G \ lin.space(C), then
by Theorem 4.4, we getvi > 0 for all i ∈ D andvi = 0 for all i ∈ Irr \ D, i.e., v
satisfies condition (1) of Proposition 4.7. To check condition (2), letv ∈ C such that
vi = 0 for all i ∈ Irr \ D. From Theorem 4.4, we getv ∈ G. If vj = 0 for some
j ∈ D, Corollary 4.5 yieldsvk = 0 for all k ∈ D.

The next proposition provides an algebraic characterization of a minimal metabolic
behavior.

Proposition 4.9. Let D ⊆ Irr be a set of irreversible reactions. Then, the following
two statements are equivalent:

– D is a minimal metabolic behavior.

– |D| = rank(S∗D∪Rev) − rank(S∗Rev ) + 1.

Proof. Let D ⊆ Irr be a set of irreversible reactions and letG be the face defined by

G = {v ∈ C | vi = 0, for all i ∈ Irr \ D}.

According to Theorem 4.8,D is a minimal metabolic behavior if and only ifG is a
minimal proper face, or equivalently,

dim(lin(G)) = dim(lin.space(C)) + 1. (4.5)

Let I ∈ Rn×n be the identity matrix and letD = Irr \ D. Since lin(G) and
lin.space(C) are the null spaces of the matrices

(

S
ID∗

)

and

(

S
IIrr∗

)

,

respectively, statement (4.5) is equivalent to the assertion

rank(

(

S
ID∗

)

) = rank(

(

S
IIrr∗

)

) − 1. (4.6)

Using row operations, we get the following two equations

rank(

(

S
ID∗

)

) = |D| + rank(S∗D∪Rev ), (4.7)

rank(

(

S
IIrr∗

)

) = |Irr | + rank(S∗Rev ). (4.8)

Combining equations (4.6), (4.7) and (4.8), we obtain

|D| = rank(S∗D∪Rev ) − rank(S∗Rev) + 1. (4.9)
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Note that ift is the dimension of the lineality space of the flux coneC, we have

rank(

(

S
IIrr∗

)

) = n − t, n = |Rev | + |Irr |,

and sorank(S∗Rev) = |Rev | − t. Accordingly, if a setD ⊆ Irr is a minimal metabolic
behavior, we have

|D| = rank(S∗D∪Rev) − |Rev | + t + 1. (4.10)

In addition, we know that

rank(S∗D∪Rev ) ≤ rank(S). (4.11)

Using statements (4.10) and (4.11), we obtain

|D| ≤ rank(S) − |Rev | + t + 1. (4.12)

Corollary 4.10. Let D ⊆ Irr be a set of irreversible reactions and lett =
dim(lin.space(C)). D can be a minimal metabolic behavior only if

|D| ≤ rank(S) − |Rev | + t + 1.

The corollary above defines an upper bound on the cardinalityof all minimal
metabolic behaviors. This upper bound is particularly convenient for testing whether a
set of irreversible reactionsD ⊆ Irr is a candidate to be a minimal metabolic behavior.
More concisely, this test could be done in two steps. First, we check whetherD satis-
fies inequality (4.12). If this is not the case,D is not an MMB. IfD fulfils inequality
(4.12), we then use a second test based on equation (4.10) or the linear programs (4.3)
and (4.4).

According to Theorem 4.8, each MMB completely defines its corresponding min-
imal proper face and vice versa. This important feature guarantees the minimality
property of the set of irreversible reactions defining an MMBas well as the uniqueness
of the set of MMBs. Moreover, Theorem 4.8 states that the MMBsare in a 1-1 corre-
spondence with the minimal proper faces of the flux cone. Therefore, the set of MMBs
is minimal in the sense that no strict subset of MMBs could completely describe the
flux cone. Hence, there are two minimality properties that hold for minimal metabolic
behaviors: the minimality of each MMB and the minimality of the set of MMBs.

Example 4.11. In the network ILLUSNET from Fig. 4.1, the MMBs and the corre-
sponding minimal proper faces are as follows:

D1 = {2}, D2 = {6, 7}, D3 = {6, 8},
Gk = {v ∈ C | vj ≥ 0, j ∈ Dk, vi = 0, i ∈ Irr \ Dk}, k = 1, 2, 3.

Note that the irreversible reaction 6 is participating in the definition of two minimal
proper faces,G2 andG3. Fig. 4.1 shows three pathways

g1 = (1, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0),
g2 = (0, 0, 0, −1, 0, 1, 1, 0, 0, 0, 0, 0),
g3 = (0, 0, 0, −3, 0, 3, 0, 1, 1, 1, 0, 0),
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Figure 4.1: Representative pathways in ILLUSNET

representing the minimal proper facesG1, G2, andG3, respectively. The reversible
metabolic spacelin.space(C) = {v ∈ C | vi = 0, i ∈ Irr} has dimension 2. As a
vector space, it can be generated by the pathways

b1 = (0, 0, −2, 0, 1, 0, 0, 0, 0, 0, 1, 1),
b2 = (0, 0, −2, 0, 1, 0, 0, 0, 1, 1, 0, 0).

An arbitrary flux vectorv ∈ C can be written as linear combinationv =
∑3

k=1 λkg
k +

∑2
l=1 µlb

l, with λk ≥ 0 andµl ∈ R.
In this example, the number of elementary modes is 18, while the number of ex-

treme pathways (after reconfiguration) is 14.

The irreversible reactions defining an MMBD cannot necessarily operate on their
own. However, for each minimal metabolic behaviorD, there exists at least one el-
ementary mode involving exactly the irreversible reactions from D. For v ∈ C, let
D(v) = {i ∈ Irr | vi 6= 0}.

Proposition 4.12. Let D be a minimal metabolic behavior. Then there exists an ele-
mentary modef such thatD(f) = D.

Proof. LetD be a minimal metabolic behavior. According to Theorem 4.8, there exists
a minimal proper faceG whose characteristic set isD. Supposeg ∈ G \ lin.space(C).
According to Proposition 3.6 in Chap. 3,g =

∑

k λkf
k is a linear combination of ele-

mentary modesfk, for someλk ≥ 0. Sinceg 6= 0, there exists at least one elementary
modef l such thatλl > 0. For eachi ∈ D(f l), we havegi =

∑

k λkf
k
i ≥ λlf

l
i > 0

and soi ∈ D(g). This showsD(f l) ⊆ D(g). Sinceg ∈ G, it follows from The-
orem 4.4 thatD(g) = D. Finally, sinceD is a minimal metabolic behavior and
D(f l) ⊆ D(g) = D, we getD(f l) = D and the result follows.

In general, there can be more than one elementary modef with D(f) = D. If this
is the case, there are different elementary modes (possiblymany) that all belong to the
same minimal proper face. In addition, there may exist elementary modes lying in the
interior of the flux coneC. We refer to Sect. 4.3 for computational results illustrating
these remarks.
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4.2 Pseudo-irreversible and Fully Reversible
Reactions

In this section, we classify reactions according to their reversibility type. We obtain a
unique sign pattern for each MMB. These sign patterns can be used to decompose the
network into minimal functional subnetworks.

4.2.1 Classification of Reactions

We start by distinguishing two classes of reversible reactions.

Definition 4.13. Given the flux coneC, the set

Prev0 = {i ∈ Rev | vi = 0, for all v ∈ lin.space(C)}

is called the set ofpseudo-irreversible reactions. Reactions inFrev = Rev \Prev0 are
called fully reversible.

Example 4.14. In the ILLUSNET network from Fig. 4.1, there is no reversibleflux
distribution involving reaction4. We havev4 = 0, for all v ∈ lin.space(C). Therefore,
reaction4 is pseudo-irreversible. On the other hand, reaction3 is involved in the
reversible flux distributionb1 which belongs to the lineality spacelin.space(C). Thus,
reaction3 is fully reversible.

The next proposition shows that pseudo-irreversible reactions become irreversible
inside minimal proper faces. Within each minimal proper face G, any pseudo-
irreversible reaction with non-zero flux will take a unique direction, which is imposed
by the MMB D associated withG. By taking the conical hull of the corresponding
faces, we can identify a subspace of the cone in which the given pseudo-irreversible
reaction takes only one direction.

Proposition 4.15.Let G be a minimal proper face ofC and leti ∈ Prev 0 be a pseudo-
irreversible reaction. Then exactly one of the following three conditions holds:

1. vi > 0, for all v ∈ G \ lin.space(C).

2. vi = 0, for all v ∈ G \ lin.space(C).

3. vi < 0, for all v ∈ G \ lin.space(C).

Proof. Supposeg ∈ G \ lin.space(C). For anyv ∈ G \ lin.space(C) there exists
λ > 0 andw ∈ lin.space(C) such thatv = λ · g + w. Sincei ∈ Prev 0, it follows that
sign(vi) = sign(λ · gi) = sign(gi), independently fromv.

Let G be a minimal proper face whose characteristic set isD. Now, we define the
auxiliary setof D as the set of all pseudo-irreversible reactions that are involved in all
flux vectors inG. As a consequence of Proposition 4.15, this set is equal to the set of
pseudo-irreversible reactions involved in some flux vectors inG. Let us state this fact
in the following definition.
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Definition 4.16. Let G be a minimal proper face whose characteristic set isD. The set

Aux = {j ∈ Rev | j is pseudo-irreversible andvj 6= 0, for somev ∈ G}

of all pseudo-irreversible reactions involved in some flux vectors inG is called the
auxiliary setof G (and ofD).

Example 4.17. In the ILLUSNET network, we havePrev 0 = {1, 4}, andFrev =
{3, 5, 9, 10, 11, 12}. In the context of the MMBD1, the pseudo-irreversible reaction4
becomes positive, i.e.,v4 > 0, for all v ∈ G1 \ lin.space(C), while it becomes negative
in the context ofD2 andD3. The flux through the pseudo-irreversible reaction1 is
positive inD1, and zero inD2 andD3. The auxiliary sets ofD1, D2 andD3 are the
sets{1, 4}, {4} and∅, respectively.

The next result shows that inside a minimal proper faceG, the fluxes through the
pseudo-irreversible reactions involved in flux vectorsv ∈ G\ lin.space(C) are propor-
tional to each other.

Corollary 4.18. Let G be a minimal proper face andAux its auxiliary set. Letj, k ∈
Prev 0 be two pseudo-irreversible reactions. Ifj, k ∈ Aux , then there existsα 6= 0
with vk = α · vj , for all v ∈ G.

Proof. Suppose there existg, g′ ∈ G \ lin.space(C) such thatgj 6= 0 andg′
k 6= 0.

According to Proposition 4.15, we havegk 6= 0. By equation (2.4), for allv ∈ G \
lin.space(C), there existλ > 0 andw ∈ lin.space(C) such thatv = λ · g + w. Since
j, k ∈ Prev 0, we getvj = λ · gj 6= 0, vk = λ · gk 6= 0, and thereforevk/vj =

gk/gj
def
= α 6= 0, independently fromv. This shows thatvk = α · vj 6= 0, for all

v ∈ G \ lin.space(C). For allv ∈ lin.space(C), we havevj = vk = 0. It follows for
all v ∈ G thatvk = α · vj .

Traditionally, there are two classes of reactions in a metabolic network: reversible
and irreversible ones. Following our analysis, we may refinethis classification and
distinguish three types of reactions:

– Irreversible reactionsj ∈ Irr : for all minimal proper facesG, we have either
vj > 0, for all v ∈ G \ lin.space(C), or vj = 0, for all v ∈ G. By definition,
wj = 0, for all w ∈ lin.space(C).

– Pseudo-irreversible reactionsj ∈ Prev 0: inside each minimal proper face, the
flux vj throughj has a unique sign (+,−, or 0). For all w ∈ lin.space(C), we
have againwj = 0.

– Fully reversible reactionsj ∈ Frev : by definition, there existsw ∈ lin.space(C)
such thatwj 6= 0. This implies that we can find in each minimal proper faceG
flux vectorsv, v′, v′′ ∈ G \ lin.space(C) with vj > 0, v′

j < 0 andv′′
j = 0.

Altogether, this means that each MMBD can be characterized by a unique sign pattern
PD for the (pseudo-) irreversible reactions in the network (’+’, ’-’, or ’0’), while the
flux through the fully reversible reactions may be arbitrary(’ ·’).
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Example 4.19.In the network ILLUSNET, whereIrr ∪ Prev 0 = {1, 2, 4, 6, 7, 8}, the
sign patterns of the MMBsD1, D2, D3 are the following:

P 1 = (+, +, ·, +, ·, 0, 0, 0, ·, ·, ·, ·),
P 2 = (0, 0, ·, −, ·, +, +, 0, ·, ·, ·, ·),
P 3 = (0, 0, ·, −, ·, +, 0, +, ·, ·, ·, ·).

4.2.2 Decomposing the Network

Minimal metabolic behaviors can also be used to decompose a given metabolic net-
work N into different subnetworks. Indeed, given the sign patternPD of an MMB
D, the set of fully reversible reactions together with the (pseudo-) irreversible reac-
tions having a non-zero sign inPD defines a subnetworkND of N with the following
properties:

– The set of possible flux distributions inND includes the reversible metabolic
space RMS.

– All pseudo-irreversible reactions become irreversible inside ND, i.e., each
pseudo-irreversible reaction operates only in one direction, which is dictated by
the MMB D and given in the sign patternPD.

– ND is minimal in the sense that it includes all fully reversible reactionsand a
non-empty minimal set of (pseudo-) irreversible reactionsthat are capable of
carrying flux under steady-state conditions.

– ND is functional in the sense that the set of possible flux distributions overND

includes at least one irreversible elementary mode. The latter exists because,
according to Proposition 4.12, there is at least one elementary mode involving
exactly the irreversible reactions fromD.

Using the sign patterns of all the different MMBs, each corresponding to one par-
ticular minimal proper face of the flux cone, the overall metabolic network may be
understood as a combination of these minimal functional subnetworks. Indeed, each
possible flux distribution over the full network is a non-negative combination of possi-
ble flux distributions over the corresponding minimal functional subnetworks.

4.3 Computational Results

In this section, we discuss how one can compute minimal metabolic behaviors, and
present a number of computational results.
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4.3.1 Computing Minimal Metabolic Behaviors

A simple algorithm to determine the MMBs of a metabolic network is as follows. First
we compute a set of generators of the flux coneC, using existing software for poly-
hedral computations such ascdd [3; 33]. Note that we do not have to reconfigure the
cone by splitting reversible reactions as this is done in theextreme pathway approach.
If the coneC is pointed, this will be detected automatically during computation. The
number of MMBs ofC (which is equal to the number of extreme rays ofC if C is
pointed) is typically much smaller than the number of extreme rays of the reconfigured
cone. Second, for each minimal proper faceG of C, represented by some generator
g ∈ G \ lin.space(C), we identify the setD of irreversible reactionsj ∈ Irr , with
gj > 0. Another possible approach is to apply the Fourier-Motzkinalgorithm [92] to
eliminate the variables corresponding to the internal reversible reactions. This results
in a constraint system where all internal reactions are irreversible.

If we are interested in a minimal set of generators for the fluxconeC, we have
to choose for each minimal proper faceGk a vectorgk ∈ Gk \ lin.space(C), to-
gether with a generating set{b0, . . . , bt} of lin.space(C). If we decomposegk =
(gk

Irr , g
k
Prev0

, gk
Frev) into components corresponding to irreversible, pseudo-irreversible,

and fully reversible reactions, then the components in(gk
Irr , g

k
Prev0

) are uniquely de-
termined up to multiplication by positive scalars. There remains some freedom in the
choice of the components ingk

Frev . Choosinggk ∈ lin.space(C)⊥, i.e., gkbT = 0 for
all b ∈ lin.space(C), yields theorthogonal representationof the flux coneC, which
is unique but often very dense. Alternatively, work in the context of the software
cdd [3; 79] discusses how to obtain a sparser representation ofC, which is called a
lexico-smallestrepresentation ofC. In such a representation, the generators are with a
maximum number of zeroes and correspond to a subset of elementary modes.

4.3.2 Comparison with Existing Approaches

We now compare the different approaches on some example networks taken from
the KEGG pathway database (http://www.genome.ad.jp/kegg/pathway.
html). We suppose for these models that there is an unconstrainedexchange flux for
each metabolite that is not consumed or not produced by some internal reaction in the
network. The computation of the extreme pathways, the minimal metabolic behaviors
and the reversible metabolic space was done using the softwarecdd [33]. For comput-
ing the elementary modes, we usedMETATOOL [117]. The results are given in Tab. 4.1
and Tab. 4.2.

Tab. 4.1 shows the number of internal metabolites in the network, the number of ir-
reversible/reversible internal reactions, the number of elementary modes/extreme path-
ways/MMBs, and the dimension of the RMS. We can see that the size of our represen-
tation, given as the sum of the number of MMBs anddim(RMS), is typically much
smaller than the number of extreme pathways or elementary modes. In various exam-
ples, the reduction is by several orders of magnitude.

Tab. 4.2 describes the distribution of the elementary modesand the extreme path-
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Metabolic network Met Irr Rev EM EP MMB RMS
Glycolysis / Gluconeogenesis 32 18 29 19464 1745 16 13
Citrate cycle (TCA cycle) 22 4 25 3870 1588 4 12
Pentose phosphate pathway 34 19 24 5155 1630 19 8
Pentose and glucuronate 50 13 46 2258 231 7 23
Fructose and mannose 46 37 31 2411 2102 30 6
Galactose 41 22 28 623 524 13 9
Starch and sucrose 47 35 30 2097 1718 30 5
Pyruvate 28 40 29 47708 27390 37 16
Propanoate 34 20 29 877 233 17 13
Butanoate 40 23 30 2138 541 18 11
Nitrogen 41 53 14 601 612 44 9
Sulfur 18 26 4 321 326 28 1

Table 4.1: Metabolic networks, with the number of internal metabolites (Met), the number of
irreversible (Irr) and reversible (Rev) internal reactions, the number of elementary
modes (EM), extreme pathways (EP), minimal metabolic behaviors (MMB), and the
dimension of the reversible metabolic space (RMS). Contrary to the calculation of
EMs, the calculation of EPs required a reconfiguration of thenetwork. Except for
the two-cycle extreme pathways made from a forward and a backward reaction, the
set of EPs is always a subset of the set of EMs [51].

ways inside the steady-state flux cone. We can see that a very large number of el-
ementary modes and extreme pathways lie in the interior of the cone. In addition,
the number of elementary modes/extreme pathways belongingto the minimal proper
faces (see column MMB) is much larger than the number of MMBs in Tab. 4.1. This
means that many elementary modes/extreme pathways belong to the same minimal
proper face, which mathematically can be represented by a single vector, resp. one
MMB. Similarly, the number of elementary modes/extreme pathways belonging to the
reversible metabolic space is much larger than its dimension, so that there are many
dependencies.

4.4 On the Complexity of the MMB&RMS Approach

While the dimension of the lineality space of a metabolic network is smaller than or
equal to the number of reversible reactions, the number of MMBs is, in the worst
case, exponential in the number of reactions. This is particularly the case when all
the reactions in the metabolic network are irreversible andthe number of elementary
modes (EMs) is very large. In such a case, MMBs are in a1-1 correspondence with
EMs and so their number is very large as well.

Consider the hypothetic network depicted in Fig. 4.2. This network containsm =
2p + 1 metabolites andn = 3p + 2 reactions for somep ≥ 1. Each metaboliteAi,
with i ∈ {2, . . . , p + 1}, is obtained either by the conversion of metaboliteAi−1 or
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Metabolic network MMB RMS Interior
EM/EP EM/EP EM/EP

Glycolysis/Gluconeogenesis1226/529 48/46 18190/1095
Citrate cycle (TCA cycle) 1608/568 502/258 1760/480
Pentose phosphate pathway 489/340 25/25 4641/1217
Pentose and glucuronate 1076/32 642/76 540/3
Fructose and mannose 154/148 14/14 2243/1895
Galactose 212/152 45/45 366/254
Starch and sucrose 108 /107 8/8 1981/1565
Pyruvate 2016/1776 146/146 45546/25293
Propanoate 449/93 133/32 295/50
Butanoate 357/244 35/34 1746/201
Nitrogen 183/171 22/22 396/384
Sulfur 44/44 1/1 276/276

Table 4.2: The distribution of the elementary modes (EM) andthe extreme pathways (EP) in
the three parts of the steady-state flux cone: the minimal proper faces (MMB), the
lineality space (RMS), and the interior of the cone. Each pair of opposite extreme
pathways is considered as one reversible pathway belongingto the RMS. The two-
cycle extreme pathways made from a forward and a backward reaction are not taken
into account.

by the conversion of metaboliteBi−1, which is in turn obtained by the conversion
of metaboliteAi−1. We assume that all the stoichiometric coefficients are equal to
one and all reactions are irreversible. Letξ : {1, . . . , p + 1} → Rn be the function
that maps eachi ∈ {1, . . . , p + 1} to ξ(i) = 3(i − 1) + 2. Each steady-state flux
distributionv ∈ Rn obeys, in addition to the thermodynamic constraints, the following
stoichiometric constraints:

v1 = v2 + v3, vξ(p) + vξ(p)+2 = vξ(p+1), (4.13)

For all i ∈ {2, . . . , p} vξ(i−1) + vξ(i−1)+2 = vξ(i) + vξ(i)+2, (4.14)

For all i ∈ {1, . . . , p} vξ(i)+1 = vξ(i)+2. (4.15)

The constraints (4.13) and (4.14) (resp. (4.15)) express the flux balances around
metabolitesA1, Ap+1 andAi (resp.Bi) for i = 1, . . . , p. Combining these constraints,
we obtain

For all i ∈ {2, . . . , p} v1 = vξ(i−1) + vξ(i−1)+1 = vξ(i) + vξ(i)+1 = vξ(p+1). (4.16)

Accordingly, the following proposition states that the hypothetic network depicted in
Fig. 4.2 contains2p elementary modes, and so the number of MMBs is exponential in
the number of reactions. In general, metabolic networks contain reversible reactions
and so the number of MMBs can be much smaller than the number ofEMs.
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Figure 4.2: A hypothetic network for which the number of MMBsis exponential in the number
of reactions.

Proposition 4.20.There are2p elementary modes in the hypothetic network depicted
in Fig. 4.2.

Proof. By induction onp.

4.5 Red Blood Cell Metabolism

In an attempt to illustrate the reliability and usefulness of our new approach, we pro-
pose to investigate the metabolic functions of the human redblood cell. Due to its
relative accessibility and medical relevance, the human erythrocyte has been investi-
gated not only by constraint-based approaches [16; 39; 109;121], but also by several
kinetic studies [68; 67; 94].

The main function of a red blood cell is the transport of oxygen and carbon diox-
ide. In addition, the cell needs to produce cofactors (ATP, NADPH, and NADH) for
its own survival. The erythrocyte has to balance osmotic pressure while maintaining
electroneutrality on both sides of the membrane [121].

The red blood cell metabolic network depicted in Fig. 4.3 contains three major
parts:glycolysis including theRapoport-Leubering shunt, pentose phosphate pathway
andadenosine nucleotide metabolism[16]. It consists of43 internal metabolites and50
reactions, whereof30 reactions are irreversible (Tab. 4.3). The main energy source for
the red blood cell is glucose (GLC). Like many cellular systems, erythrocytes can also
exchange adenine (ADE) and hypoxanthine (HYPX) through themembrane. Lactate
(LAC), pyruvate (PYR),2, 3-Diphosphoglycerate (D23PG) and carbon dioxide (CO2)
are excreted. The good correlation between in silico results given in [16; 109] and
experimental evidence for human erythrocytes shows the reliability of this in silico
model.

Table 4.3: The red blood cell metabolism adapted from [16].

Reaction abbreviation Reaction name Reaction equation
Glycolysis
HK hexokinase GLC + ATP→ G6P + ADP
PGI glucose-6-phosphate isomerase G6P↔ F6P
PFK phosphofructokinase F6P + ATP→ FDP + ADP
ALD aldolase FDP↔ DHAP + GA3P
TPI triosephosphate isomerase DHAP↔ GA3P
Continued on next page



52

Table 4.3 – continued from previous page
Reaction abbreviation Reaction name Reaction equation
GAPDH glyceraldehyde-3-phosphate dehydrogenase GA3P + NAD ↔ D13PG + NADH
PGK phosphoglycerate kinase D13PG + ADP↔ P3G + ATP
PGM phosphoglycerate mutase P3G↔ P2G
EN enolase P2G↔ PEP
PK pyruvate kinase PEP + ADP→ PYR + ATP
LDH lactate dehydrogenase PYR + NADH→ LAC + NAD

Rapport-Luebering shunt
DPGM diphosphoglycerate mutase D13PG→ D23PG
DPGase diphosphoglycerate phosphatase D23PG→ P3G

Pentose phosphate pathway
G6PD glucose-6-phosphate dehydrogenase G6P + NADP→ GL6P + NADPH
PGLase phosphogluconolactonase GL6P↔ GO6P
GL6PDH phosphogluconate dehydrogenase GO6P + NADP→ RU5P + NADPH + CO2
R5PI ribose-5-phosphate isomerase RU5P↔ R5P
Xu5PE ribulose phosphate epimerase RU5P↔ X5P
TKI transketolase X5P + R5P↔ GA3P + S7P
TKII transketolase E4P + X5P↔ GA3P + F6P
TA transaldolase S7P + GA3P↔ E4P + F6P

Nucleotide metabolism
AMPase adenosine monophosphate phosphohydrolase AMP→ ADO
ADA adenosine deaminase ADO→ INO
AK adenosine kinase ATP + ADO→ ADP + AMP
ApK adenylate kinase 2 ADP↔ ATP + AMP
AMPDA adenosine monophosphate deaminase AMP→ IMP
AdPRT adenine phosphoribosyltransferase ADE + PRPP→ AMP
PRM phosphoribomutase RIP↔ R5P
PRPPsyn phosphoribosylpyrophosphate synthetase R5P + ATP→ PRPP + AMP
HGPRT hypoxanthine phosphoribosyltransferase HYPX + PRPP→ IMP
IMPase inosine monophosphate phosphohydrolase IMP→ INO
PNPase purine-nucleoside phosphorylase INO↔ HYPX + RIP

Cellular functions
MemPhos membrane phosphorylation ATP→ ADP
GSSGR glutathione-disulfide reductase NADPH + GSSG↔ NADP + 2 GSH
GSHox glutathione oxidase 2 GSH + O2→ GSSG + H2O2
GSHpox glutathione peroxidase 2 GSH + H2O2→ GSSG
NaKATPase sodium-potassium cation pump ATP + 3 Na + 2 Kext→ ADP + 3 Naext + 2 K
D23PGdrain 2,3-diphosphoglyerate drain D23PG + Hb→ D23PGext
MetHbRed methemoglobin reductase MetHb + NADH→ Hb + NAD

Boundary reactions
KLeak .↔ K
NaLeak .↔ Na
HXtrans HYPX↔ .
PYRex PYR→ .
LACex LAC → .
CO2out CO2→ .
GLCin . → GLC
ADEin . → ADE
Hbout Hb→ .
O2in .→ O2
MetHbin .→ MetHb
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Figure 4.3: The red blood cell metabolism adapted from [16].Dashed arrows correspond to
boundary reactions while reversible reactions are indicated by double arrowheads.
Reaction equations are listed in Tab. 4.3.



54Table 4.4: Minimal metabolic behaviors (MMBs) for human redblood cell. The irreversible reactions defining each MMB aregiven in bold. The
underlined reactions define the specific purpose for which serves the corresponding MMB. The numbers next to the reactionnames
denote related fluxes carried by the corresponding reactions.

MMB number MMBs sorted with respect to their metabolic funct ions
Glycolysis Pathway

Pyruvate producing MMBs
1. 2 MemPhos

1 GLCin 1 HK 2 PK, 1 PFK, 2 MetHbin 2 MetHbRed 2 Hbout 2 PYRex

1 PGI 2 GAPDH 2 PGM 2 EN 1 ALD 1 TPI 2 PGK

2. 2 NaKATPase

1 GLCin 1 HK 2 PK, 1 PFK, 2 MetHbin 2 MetHbRed 2 Hbout 2 PYRex

1 PGI 2 GAPDH 2 PGM 2 EN 1 ALD 1 TPI 2 PGK, -4 KLeak 6 NaLeak

3. 1 HGPRT 1 IMPase 1 PRPPsyn

1 GLCin 1 HK 2 PK, 1 PFK, 2 MetHbin 2 MetHbRed 2 Hbout 2 PYRex

1 PGI 2 GAPDH 2 PGM 2 EN 1 ALD 1 TPI 2 PGK, -1 ApK 1 PNPase 1 PRM

4. 2 AMPase 2 AK

1 GLCin 1 HK 2 PK, 1 PFK, 2 MetHbin 2 MetHbRed 2 Hbout 2 PYRex

1 PGI 2 GAPDH 2 PGM 2 EN 1 ALD 1 TPI 2 PGK

5. 1 AdPRT 1 PRPPsyn 1 ADEin, 1 AMPase 1 ADA

1 GLCin 1 HK 2 PK, 1 PFK, 2 MetHbin 2 MetHbRed 2 Hbout 2 PYRex

1 PGI 2 GAPDH 2 PGM 2 EN 1 ALD 1 TPI 2 PGK, 1 PRM 1 PNPase 1 HXtrans -1ApK

6. 1 AdPRT 1 PRPPsyn 1 ADEin, 1 IMPase 1 AMPDA

1 GLCin 1 HK 2 PK, 1 PFK, 2 MetHbin 2 MetHbRed 2 Hbout 2 PYRex

1 PGI 2 GAPDH 2 PGM 2 EN 1 ALD 1 TPI 2 PGK, 1 PRM 1 PNPase 1 HXtrans -1ApK

Continued on next page
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Table 4.4– continued from previous page
MMB number MMBs sorted with respect to their metabolic funct ions
7. 2 DPGM 2 DPGase

1 GLCin 1 HK 2 PK, 1 PFK, 2 MetHbin 2 MetHbRed 2 Hbout 2 PYRex

1 PGI 2 GAPDH 2 PGM 2 EN 1 ALD 1 TPI

8. 1 DPGM 1 D23PGdrain

1 GLCin 1 HK 2 PK, 1 PFK, 2 MetHbin 2 MetHbRed 1 Hbout 1 PYRex

1 PGI 2 GAPDH 1 PGM 1 EN 1 ALD 1 TPI 1 PGK

Lactate producing MMBs
9. 2 MemPhos

1 GLCin 1 HK 2 PK, 1 PFK, 2 LDH 2 LACex

1 PGI 2 GAPDH 2 PGM 2 EN 1 ALD 1 TPI 2 PGK

10. 2 NaKATPase

1 GLCin 1 HK 2 PK, 1 PFK, 2 LDH 2 LACex

1 PGI 2 GAPDH 2 PGM 2 EN 1 ALD 1 TPI 2 PGK, -4 KLeak 6 NaLeak

11. 1 HGPRT 1 IMPase 1 PRPPsyn

1 GLCin 1 HK 2 PK, 1 PFK, 2 LDH 2 LACex

1 PGI 2 GAPDH 2 PGM 2 EN 1 ALD 1 TPI 2 PGK, -1 ApK 1 PNPase 1 PRM

12. 2 AMPase 2 AK

1 GLCin 1 HK 2 PK, 1 PFK, 2 LDH 2 LACex

1 PGI 2 GAPDH 2 PGM 2 EN 1 ALD 1 TPI 2 PGK

13. 1 AdPRT 1 PRPPsyn 1 ADEin, 1 AMPase 1 ADA

1 GLCin 1 HK 2 PK, 1 PFK, 2 LDH 2 LACex

1 PGI 2 GAPDH 2 PGM 2 EN 1 ALD 1 TPI 2 PGK, 1 PRM 1 PNPase 1 HXtrans -1ApK

14. 1 AdPRT 1 PRPPsyn 1 ADEin, 1 IMPase 1 AMPDA

1 GLCin 1 HK 2 PK, 1 PFK, 2 LDH 2 LACex

1 PGI 2 GAPDH 2 PGM 2 EN 1 ALD 1 TPI 2 PGK, 1 PRM 1 PNPase 1 HXtrans -1ApK

Continued on next page
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MMB number MMBs sorted with respect to their metabolic funct ions
15. 2 DPGM 2 DPGase

1 GLCin 1 HK 2 PK, 1 PFK, 2 LDH 2 LACex

1 PGI 2 GAPDH 2 PGM 2 EN 1 ALD 1 TPI

16. 1 DPGM 1 D23PGdrain

1 GLCin 1 HK 1 PK, 1 PFK, 1 LDH 1 LACex

1 PGI 2 GAPDH 1 PGM 1 EN 1 ALD 1 TPI 1 PGK

Pentose Phosphate Pathway
Pyruvate producing MMBs

17. 2 MemPhos

1 GLCin 1 HK 1 PK, 3 GSHox 3 GSHpox 3 G6PD 3 GL6PDH 3 CO2out 3 O2in,1 MetHbin 1 MetHbRed 1 Hbout 1 PYRex

-2 PGI 1 GAPDH 1 PGM 1 EN 3 PGLase 6 GSSGR 1 R5PI 2 Xu5PE 1 TKI 1 TKII1 TA 1 PGK

18. 2 NaKATPase

1 GLCin 1 HK 1 PK, 3 GSHox 3 GSHpox 3 G6PD 3 GL6PDH 3 CO2out 3 O2in,1 MetHbin 1 MetHbRed 1 Hbout 1 PYRex

-2 PGI 1 GAPDH 1 PGM 1 EN 3 PGLase 6 GSSGR 1 R5PI 2 Xu5PE 1 TKI 1 TKII1 TA 1 PGK, -2 KLeak 3 NaLeak

19. 1 HGPRT 1 IMPase 1 PRPPsyn

2 GLCin 2 HK 2 PK, 6 GSHox 6 GSHpox 6 G6PD 6 GL6PDH 6 CO2out 6 O2in,2 MetHbin 2 MetHbRed 2 Hbout 2 PYRex

-4 PGI 2 GAPDH 2 PGM 2 EN 6 PGLase 12 GSSGR 2 R5PI 4 Xu5PE 2 TKI 2 TKII 2 TA 2 PGK, -1 ApK 1 PNPase 1 PRM

20. 2 AMPase 2 AK

1 GLCin 1 HK 1 PK, 3 GSHox 3 GSHpox 3 G6PD 3 GL6PDH 3 CO2out 3 O2in,1 MetHbin 1 MetHbRed 1 Hbout 1 PYRex

-2 PGI 1 GAPDH 1 PGM 1 EN 3 PGLase 6 GSSGR 1 R5PI 2 Xu5PE 1 TKI 1 TKII1 TA 1 PGK

21. 1 AdPRT 1 PRPPsyn 1 ADEin, 1 AMPase 1 ADA

2 GLCin 2 HK 2 PK, 6 GSHox 6 GSHpox 6 G6PD 6 GL6PDH 6 CO2out 6 O2in,2 MetHbin 2 MetHbRed 2 Hbout 2 PYRex

-4 PGI 2 GAPDH 2 PGM 2 EN 6 PGLase 12 GSSGR 2 R5PI 4 Xu5PE 2 TKI 2 TKII 2 TA 2 PGK, -1 ApK 1 PNPase 1 PRM 1 HXtrans

Continued on next page
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Table 4.4– continued from previous page
MMB number MMBs sorted with respect to their metabolic funct ions
22. 1 AdPRT 1 PRPPsyn 1 ADEin, 1 IMPase 1 AMPDA

2 GLCin 2 HK 2 PK, 6 GSHox 6 GSHpox 6 G6PD 6 GL6PDH 6 CO2out 6 O2in,2 MetHbin 2 MetHbRed 2 Hbout 2 PYRex

-4 PGI 2 GAPDH 2 PGM 2 EN 6 PGLase 12 GSSGR 2 R5PI 4 Xu5PE 2 TKI 2 TKII 2 TA 2 PGK, -1 ApK 1 PNPase 1 PRM 1 HXtrans

23. 2 DPGM 2 DPGase

1 GLCin 1 HK 1 PK, 3 GSHox 3 GSHpox 3 G6PD 3 GL6PDH 3 CO2out 3 O2in,1 MetHbin 1 MetHbRed 1 Hbout 1 PYRex

-2 PGI 1 GAPDH 1 PGM 1 EN 3 PGLase 6 GSSGR 1 R5PI 2 Xu5PE 1 TKI 1 TKII1 TA

24. 1 DPGM 1 D23PGdrain

2 GLCin 2 HK 1 PK, 6 GSHox 6 GSHpox 6 G6PD 6 GL6PDH 6 CO2out 6 O2in,2 MetHbin 2 MetHbRed 1 Hbout 1 PYRex

-4 PGI 2 GAPDH 1 PGM 2 EN 6 PGLase 12 GSSGR 2 R5PI 4 Xu5PE 2 TKI 2 TKII 2 TA 1 PGK

25. 2 MemPhos

1 GLCin 1 HK 1 PK, 3 GSHox 3 GSHpox 3 G6PD 3 GL6PDH 3 CO2out 3 O2in,1 LDH 1 LACex

-2 PGI 1 GAPDH 1 PGM 1 EN 3 PGLase 6 GSSGR 1 R5PI 2 Xu5PE 1 TKI 1 TKII1 TA 1 PGK

26. 2 NaKATPase

1 GLCin 1 HK 1 PK, 3 GSHox 3 GSHpox 3 G6PD 3 GL6PDH 3 CO2out 3 O2in,1 LDH 1 LACex

-2 PGI 1 GAPDH 1 PGM 1 EN 3 PGLase 6 GSSGR 1 R5PI 2 Xu5PE 1 TKI 1 TKII1 TA 1 PGK, -2 KLeak 3 NaLeak

27. 1 HGPRT 1 IMPase 1 PRPPsyn

2 GLCin 2 HK 2 PK, 6 GSHox 6 GSHpox 6 G6PD 6 GL6PDH 6 CO2out 6 O2in,2 LDH 2 LACex

-4 PGI 2 GAPDH 2 PGM 2 EN 6 PGLase 12 GSSGR 2 R5PI 4 Xu5PE 2 TKI 2 TKII 2 TA 2 PGK, -1 ApK 1 PNPase 1 PRM

28. 2 AMPase 2 AK

1 GLCin 1 HK 1 PK, 3 GSHox 3 GSHpox 3 G6PD 3 GL6PDH 3 CO2out 3 O2in,1 LDH 1 LACex

-2 PGI 1 GAPDH 1 PGM 1 EN 3 PGLase 6 GSSGR 1 R5PI 2 Xu5PE 1 TKI 1 TKII1 TA 1 PGK

29. 1 AdPRT 1 PRPPsyn 1 ADEin, 1 AMPase 1 ADA

2 GLCin 2 HK 2 PK, 6 GSHox 6 GSHpox 6 G6PD 6 GL6PDH 6 CO2out 6 O2in,2 LDH 2 LACex

-4 PGI 2 GAPDH 2 PGM 2 EN 6 PGLase 12 GSSGR 2 R5PI 4 Xu5PE 2 TKI 2 TKII 2 TA 2 PGK, -1 ApK 1 PNPase 1 PRM 1 HXtrans

Continued on next page
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MMB number MMBs sorted with respect to their metabolic funct ions
30. 1 AdPRT 1 PRPPsyn 1 ADEin, 1 IMPase 1 AMPDA

2 GLCin 2 HK 2 PK, 6 GSHox 6 GSHpox 6 G6PD 6 GL6PDH 6 CO2out 6 O2in,2 LDH 2 LACex

-4 PGI 2 GAPDH 2 PGM 2 EN 6 PGLase 12 GSSGR 2 R5PI 4 Xu5PE 2 TKI 2 TKII 2 TA 2 PGK, -1 ApK 1 PNPase 1 PRM 1 HXtrans

31. 2 DPGM 2 DPGase

1 GLCin 1 HK 1 PK, 3 GSHox 3 GSHpox 3 G6PD 3 GL6PDH 3 CO2out 3 O2in,1 LDH 1 LACex

-2 PGI 1 GAPDH 1 PGM 1 EN 3 PGLase 6 GSSGR 1 R5PI 2 Xu5PE 1 TKI 1 TKII1 TA

32. 1 DPGM 1 D23PGdrain

2 GLCin 2 HK 1 PK, 6 GSHox 6 GSHpox 6 G6PD 6 GL6PDH 6 CO2out 6 O2in,1 MetHbin 1 MetHbRed 1 LDH 1 LACex

-4 PGI 2 GAPDH 1 PGM 2 EN 6 PGLase 12 GSSGR 2 R5PI 4 Xu5PE 2 TKI 2 TKII 2 TA 1 PGK
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Analyzing the red blood cell metabolic network results in32 minimal metabolic
behaviors (MMBs) listed in Tab. 4.4. The corresponding flux cone is pointed, and so
there is no steady-state flux distribution involving only reversible reactions. In general,
the irreversible reactions defining an MMB and their associated pseudo-irreversible re-
actions cannot necessarily operate on their own. They may need some fully reversible
reactions to define a complete metabolic pathway. Here, since the flux cone is pointed,
each MMB and its auxiliary set define a metabolic pathway, which is in fact an ele-
mentary mode.

Although many MMBs partly overlap each other, each MMB serves a specific pur-
pose carried out by a set of characteristic reactions. MMB1 is characterized by the
use of reaction MemPhos which allows the cell to maintain theplasticity of its mem-
brane [16]. MMB2 could be used by the cell to control its volume through the sodium-
potassium cation pump NaKATPase [39]. In addition to the transport of oxygen and
its delivery, the red blood cell is also responsible for the carriage of purine bases [123].
This function is performed by MMB5 and MMB6 in which adenine (ADE) is taken up
into the cell and Hypoxanthine (HYPX) is excreted. Althoughboth MMBs have the
same overall stoichiometry and serve the transport of purine bases, they slightly differ
in the usage of AMPASE and ADA versus IMPASE and AMPDA, showing a certain
network redundancy in the red blood cell metabolism.

MMB7 utilizes the D23PG shunt, namely reactions DPGM and DPGase, instead
of the ATP producing reaction PGK and backs into main glycolysis. The cell could
use this MMB to regulate its ATP production [121]. MMB8 is responsible for the
formation of2, 3-diphosphoglycerate (D23PG) for use in the regulation of the oxy-
gen affinity of hemoglobin [39; 121]. In MMB4, reactions AMPASE and AK form
a cycle that consumes ATP repeatedly. Accordingly, MMB4 serves to dissipate ex-
cess ATP [16]. The same function is realized by MMB3 as well. This MMB cycles
through the nucleotide metabolism, causing dissipation ofATP through reactions ApK
and PRPPsyn.

All the MMBs1-8 metabolize glucose through the glycolysis pathway with thepro-
duction of pyruvate as an end product. Each of these eight MMBs has a nearly identical
“twin” MMB among MMBs9-16, the only difference being in the end product. Each
of the MMBs9-16 takes its corresponding MMB a step further and converts pyruvate
(PYR) into lactate (LAC). This conversion serves to balanceall NADH produced by
the cell [121]. Since there is no load on NADH in the red blood cell, the MMBs9-16
could be used to completely balance the NAD/NADH ratio.

There are two features which distinguish the MMBs1-16 from the remaining
MMBs. First, all the MMBs1-16 involve reaction TPI, which plays an important role
in several metabolic networks. In fact, this reaction prevent the accumulation of di-
hydroxyacetone phosphate (DHAP), which is reported to be toxic for cellular func-
tions and leads to hemolytic anemia with neurological dysfunction [16]. Second, the
MMBs1-16 are merely made up of glycolysis and nucleotide reactions and do not in-
volve any reaction from the pentose phosphate pathway (PPP).

The main functions of PPP in the human red blood cell are to generate NADPH
and to provide the cell with ribose-5-phosphate (R5P) for the synthesis of the nu-
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Figure 4.4: The red blood cell metabolism adapted from [16].The bold reactions HK, GAPDH,
PGM, EN and PK participate in all steady-state flux distributions. Except reaction
PGI, each reversible reaction is operating only in one direction. Glucose (GLC)
can be metabolized either by using reaction PGI in the forward direction together
with reactions PFK, ALD and TPI (brown color) or by using reaction PGI in the
backward direction together with reactions from PPP (blue color). The end product
of each MMB is either pyruvate or lactate.

cleotides [16]. One of the uses of NADPH in the red blood cell is to prevent oxidative
stress by reducing GSSG to GSH through reaction GSSGR. The reduced glutathione
(GSH) is required to remove hydrogen peroxide (H2O2) through reaction GSHox [9].
The MMBs16-32 are similar to the former MMBs1-16. The only difference is that
instead of using reactions TPI, ALD and PFK to prevent the toxic accumulation of
DHAP, these MMBs utilize reactions G6PDH, GSSGR and GSHox toremove H2O2

and protect the cell against oxidative stress. This task requires oxygen (O2) and
NADPH. While the former is taken up into the cell, the latter is generated by only
PPP . Accordingly, all the MMBs16-32 involve reactions from PPP.

In addition to the32 elementary modes given in Tab. 4.4, which represent the
MMBs of the red blood cell metabolic network, there are16 additional elementary
modes. These are obtained by combining MMBs that involve reaction PGI in opposite
directions. Interestingly, Fig. 4.5 shows that each of these additional elementary modes
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is a combination of two MMBs that fulfill the following conditions:

1. Both MMBs have the same metabolic function,

2. Both MMBs have the same end product,

3. Exactly one of these MMBs involves reactions from PPP.

We conclude that all metabolic functions of elementary modes are carried out by min-
imal metabolic behaviors. Note that except reaction PGI, each reversible reaction is
operating only in one direction shown in Fig. 4.4. Accordingly, except reaction PGI,
all (pseudo-) irreversible reactions defining an MMBD1 will participate in an addi-
tional EM e if the latter is obtained by combiningD1 with another MMBD2. The
set of active reactions ofe is then the union of those ofD1 andD2. We should also
mention that although only reaction PGI is able to work in both directions, the number
of elementary modes is larger than that of minimal metabolicbehaviors.
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Figure 4.5: The main metabolic functions of the red blood cell metabolic network. Minimal metabolic behaviors (MMBs) are classified with respect
to three characteristics: their functions, their end products and whether they involve reactions from PPP. The additional 16 elementary
modes (EMs) are given as combinations of MMBs. EM(i, j) means that this mode is a non-negative combination of MMBi and MMBj.



CHAPTER

5 On Inner and Outer
Descriptions of the
Steady-State Flux Cone

In this chapter, we study the relationship between inner andouter descriptions of the
flux cone. We first characterize the outcome of the network reconfiguration in terms of
the outer description of the reconfigured cone. The reconfiguration leads to an increase
in the size of the description and changes in the reversibility type of reactions. Then
we give a generic procedure to show how inner descriptions can be computed from the
outer one. We use this procedure to explain why, for large-scale metabolic networks,
the size of the inner descriptions may be several orders of magnitude larger than that
of the outer description. The main results of this chapter are published in [62].

5.1 Outer Description of the Reconfigured Flux Cone

In this section, we analyze the impact of reconfiguring the metabolic network. The
effects include an increase in the size of the outer description of the reconfigured cone
and changes in the reversibility type of reactions. Here, wedefine thesizeof an outer
description of a flux cone as the sum of the number of its minimal proper faces and the
dimension of its lineality space.

Let SR⊆ Rev be the set of split reactions. The network reconfiguration can be seen
as an iterative procedure that consists of|SR| iterations, each splitting some reversible
reaction. As will be shown, each iteration increases the description of the flux cone
depending on the reversibility type of the split reaction. The increase is significant
when the split reaction is pseudo-irreversible. Note that there are at mostt iterations
where the split reaction can be fully reversible, witht = dim(lin.space(C)).

In the following, we consider the case of splitting one reaction, which is denoted
by j. The reconfigured flux coneC ′, which contains all possible steady-state flux
distributions in the reconfigured network, is given by

C ′ = {(v, w) ∈ Rn+1 | Sv = w ·S∗j , vi ≥ 0, for all i ∈ Irr , vj ≥ 0, w ≥ 0}. (5.1)

According to equation (5.1), splitting reactionj increases the number of variables and
constraints by1 and2, respectively. Indeed, the reconfigured network contains one
more reaction denoted byn + 1. The set of irreversible reactions in the reconfigured
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network isIrr ′ = Irr ∪{j, n+1}. Accordingly, the lineality space of the reconfigured
flux coneC ′ is given by

lin.space(C ′) = {(v, 0) ∈ Rn+1 | Sv = 0, vi = 0, for all i ∈ Irr , vj = 0},

or equivalently,

lin.space(C ′) = {(v, 0) ∈ Rn+1 | v ∈ lin.space(C ∩ {v ∈ Rn | vj = 0})}. (5.2)

Sincelin.space(C ∩ {v ∈ Rn | vj = 0}) = lin.space(C) ∩ {v ∈ Rn | vj = 0}, it
follows from equation (5.2) that

dim(lin.space(C ′)) = dim(lin.space(C) ∩ {v ∈ Rn | vj = 0}).

Lemma 5.1. If j ∈ Prev 0 is pseudo-irreversible, thendim(lin.space(C ′)) =
dim(lin.space(C)). If j ∈ Frev is fully reversible, thendim(lin.space(C ′)) =
dim(lin.space(C)) − 1.

Proof. Supposej ∈ Prev0 is pseudo-irreversible. Then,bj = 0 for each vec-
tor b ∈ lin.space(C). Hence, lin.space(C) ⊆ {v ∈ Rn | vj = 0} and so
dim(lin.space(C ′)) = dim(lin.space(C)). Now supposej ∈ Frev is fully reversible.
There exists thenb ∈ lin.space(C) such thatbj 6= 0 and solin.space(C) * {v ∈ Rn |
vj = 0}. Therefore,dim(lin.space(C ′)) = dim(lin.space(C)) − 1.

In the following, we will characterize the minimal proper faces of the reconfigured
flux coneC ′. We first consider the case of a minimal proper faceG′ with v′

j = v′
n+1 = 0

for all v′ ∈ G′.

Lemma 5.2. Let G′ ⊆ C ′ such thatv′
j = v′

n+1 = 0 for all v′ ∈ G′. Then, the following
are equivalent:

– G′ is a minimal proper face ofC ′.

– There exists a minimal proper faceG of C ∩ {v ∈ Rn | vj = 0} such that
G′ = {(v, 0) ∈ Rn+1 | v ∈ G}.

If this is the case,G andG′ have the same characteristic set.

Proof. ”⇒”: SupposeG′ is a minimal proper face ofC ′ and D′ is its charac-
teristic set. Sincev′

j = v′
n+1 = 0 for all v′ ∈ G′, we get D′ ⊆ Irr . Let

G = {v ∈ C | vj = 0, vi = 0, for all i ∈ Irr \ D′}. We haveG′ = {(v, 0) ∈
Rn+1 | v ∈ G} and sodim(G) = dim(G′). SinceG′ is a minimal proper face of
C ′ and dim(lin.space(C ′)) = dim(lin.space(C ∩ {v ∈ Rn | vj = 0})), we get
dim(G) = dim(lin.space(C ∩ {v ∈ Rn | vj = 0})) + 1 and so the claim follows.

”⇐”: Immediate.

We now will study the minimal proper faces of the reconfiguredflux coneC ′,
depending on the reversibility type of the split reaction.



65

5.1.1 Splitting a Fully Reversible Reaction

If j ∈ Frev is fully reversible, there exists a flux distribution in the reconfigured net-
work that involves either reactionj or n + 1 and no other irreversible reactions. Ac-
cordingly, as will be stated in the following proposition, reactionsj andn + 1 define
two trivial minimal proper faces ofC ′ given by

Gj = {(v, 0) ∈ Rn+1 | Sv = 0, vi = 0, for all i ∈ Irr , vj ≥ 0},
Gn+1 = {(v, w) ∈ Rn+1 | Sv = w · S∗j, vi = 0, for all i ∈ Irr , vj = 0, w ≥ 0}.

Proposition 5.3. If j ∈ Frev is fully reversible, thenGj andGn+1 are two minimal
proper faces ofC ′ whose characteristic sets areDj = {j} andDn+1 = {n + 1},
respectively.

Proof. Supposej ∈ Frev is fully reversible. Then there existsb ∈ lin.space(C) such
that bj > 0. Let Ij = Irr ∪ {n + 1}. We haveGj = {v′ ∈ C ′ | v′

j ≥ 0, v′
i =

0, for all i ∈ Ij} andlin.space(C ′) = {v′ ∈ C ′ | v′
j = 0, v′

i = 0, for all i ∈ Ij}. In
addition, we have(b, 0) ∈ Gj \ lin.space(C ′) and sodim(Gj) = dim(lin.space(C ′))+
1. Therefore,Gj is a minimal proper face characterized by reactionj. Similarly, let
In+1 = Irr ∪ {j}. We haveGn+1 = {v′ ∈ C ′ | v′

n+1 ≥ 0, v′
i = 0, for all i ∈ In+1}

and lin.space(C ′) = {v′ ∈ C ′ | v′
n+1 = 0, v′

i = 0, for all i ∈ In+1}. Defineu ∈
Rn+1 by uj = 0, un+1 = bj andui = −bi for all i ∈ {1, . . . , n} \ {j}. We have
u ∈ Gn+1 \ lin.space(C ′) and sodim(Gn+1) = dim(lin.space(C ′)) + 1. Accordingly,
Gn+1 is a minimal proper face characterized by reactionn + 1. Since for eachv′ ∈ Gj

(resp.v′ ∈ Gn+1), v′
i = 0 for all i ∈ Irr ′ \ {j} (resp.i ∈ Irr ′ \ {n + 1}), the claim

follows.

Next we are interested in non-trivial minimal proper faces of C ′. Here, we get the
following result.

Proposition 5.4. Let G′ ⊆ C ′ such thatG′ 6= Gj andG′ 6= Gn+1. If j ∈ Frev is fully
reversible, then the following are equivalent:

– G′ is a minimal proper face ofC ′.

– There exists a minimal proper faceG of C such thatG′ = {(v, 0) ∈ Rn+1 | v ∈
G ∩ {v ∈ Rn | vj = 0}}.

Proof. ”⇒”: According to Lemma 5.2, there exists a minimal proper faceG′′ of C ∩
{v ∈ Rn | vj = 0} such thatG′ = {(v, 0) ∈ Rn+1 | v ∈ G′′}. Let D be the
characteristic set ofG′′ and letG = {v ∈ C | vi = 0, for all i ∈ Irr \ D}. We have
G′′ = G ∩ {v ∈ Rn | vj = 0}. Let G0 ⊆ G be a minimal proper face ofC and
D0 ⊆ D its characteristic set. Sincej ∈ Frev , there existsg ∈ G0 \ lin.space(C)
such thatgj = 0. Therefore,g ∈ G0 ∩ {v ∈ Rn | vj = 0} \ lin.space(C). Suppose
there existsk ∈ D \ D0. Thenvk = 0 for all v ∈ G0 andG0 ⊆ G ∩ {v ∈ Rn |
vk = 0}. SinceG′′ is a minimal proper face ofC ∩ {v ∈ Rn | vj = 0}, we have
G′′ ∩ {v ∈ Rn | vk = 0} = lin.space(C ∩ {v ∈ Rn | vj = 0}). It follows that
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G0 ∩ {v ∈ Rn | vj = 0} ⊆ lin.space(C ∩ {v ∈ Rn | vj = 0}), in contradiction to
g ∈ G0 ∩ {v ∈ Rn | vj = 0} \ lin.space(C). We conclude thatD0 = D and soG is a
minimal proper face ofC.

”⇐”: Immediate.

In summary, if reactionj ∈ Frev is fully reversible, the minimal proper faces of
C ′ areGj , Gn+1 and those which are in a 1-1 correspondence with the minimal proper
faces ofC. The dimension of the lineality space ofC ′ decreases by one. Accordingly,
the size of the flux cone description increases by one after splitting a fully reversible
reaction.

5.1.2 Splitting a Pseudo-irreversible Reaction

If j ∈ Prev0 is pseudo-irreversible, there is no flux distribution in thereconfigured
network that involves reactionj (resp.n + 1) and no other irreversible reactions. The
following proposition shows that both (and only) reactionsj andn + 1 characterize a
trivial minimal proper face ofC ′ given by

Gc = {(v, w) ∈ Rn+1 | Sv = w · S∗j , vi = 0, for all i ∈ Irr , vj ≥ 0, w ≥ 0}.

The minimal proper faceGc contains all the (2-cycle) flux distributions in the re-
configured network that involve only the forward and backward reactionsj andn + 1.

Proposition 5.5. If j ∈ Prev 0 is pseudo-irreversible, thenGc is a minimal proper face
of C ′ whose characteristic set isDc = {j, n + 1}.

Proof. We haveGc = {v′ ∈ C ′ | v′
j ≥ 0, v′

i = 0, for all i ∈ Irr} and
lin.space(C ′) = {v′ ∈ C ′ | v′

j = 0, v′
i = 0, for all i ∈ Irr}. Let u ∈ Rn+1 with

uj = un+1 = 1 andui = 0 for all i ∈ {1, . . . , n}\{j}. We haveu ∈ Gc\ lin.space(C ′)
and sodim(Gc) = dim(lin.space(C ′)) + 1. Therefore,Gc is a minimal proper face
characterized by reactionj. Sinceun+1 6= 0 andui = 0 for all i ∈ Irr ′ \ {j, n + 1},
Dc = {j, n + 1} is the characteristic set ofGc.

Let G1, . . . , Gs be the minimal proper faces ofC andD1, . . . , Ds their charac-
teristic sets, respectively. Starting from [33; 58] and using that reactionj is pseudo-
irreversible, we partition the setJ = {G1, . . . , Gs} of minimal proper faces ofC into
three parts:

J0 = {G ∈ J | vj = 0 for all v ∈ G},
J+ = {G ∈ J | vj > 0 for all v ∈ G \ lin.space(C)},
J− = {G ∈ J | vj < 0 for all v ∈ G \ lin.space(C)}.

From each of the setsJ0, J+, J− we will obtain different minimal proper faces of
C ′. We start by characterizing minimal proper facesG′ with v′

j = v′
n+1 = 0 for all

v′ ∈ G′. As will be stated in the next proposition, in addition to minimal proper faces
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G ∈ J0, some minimal proper faces ofC ′ are obtained by combining particular pairs
(Gk, Gl) ∈ J+ × J−. The setΦ of these pairs is given by

Φ = {(Gk, Gl) ∈ J+ × J− | Di * Dk ∪ Dl for all i ∈ {1, . . . , s} \ {k, l}}. (5.3)

Actually, (Gk, Gl) ∈ Φ means that the minimal proper facesGk andGl are adjacent
in the flux coneC (see Definition 2.9 in Chap. 2 for a definition of adjacent minimal
proper faces). Accordingly, each pair(Gk, Gl) ∈ Φ defines a minimal proper face of
C ′

ζ(Gk, Gl) = {v ∈ C | vj = 0, vi = 0, for all i ∈ Irr \ Dk ∪ Dl}.

Finally, the setAdj of minimal proper faces ofC ′ that are obtained by combining the
pairs(Gk, Gl) ∈ Φ is given by

Adj = {ζ(Gk, Gl) | (Gk, Gl) ∈ Φ}. (5.4)

Proposition 5.6. Let G′ ⊆ C ′ such thatv′
j = v′

n+1 = 0 for all v′ ∈ G′. If j ∈ Prev0 is
pseudo-irreversible, then the following are equivalent:

– G′ is a minimal proper face ofC ′.

– There existsG ∈ J0 ∪ Adj such thatG′ = {(v, 0) ∈ Rn+1 | v ∈ G}.

Proof. According to Lemma 5.2,G′ is a minimal proper face ofC ′ if and only if there
is a minimal proper faceG of C ∩ {v ∈ Rn | vj = 0} such thatG′ = {(v, 0) ∈ Rn+1 |
v ∈ G}. We show thatG is a minimal proper face ofC ∩ {v ∈ Rn | vj = 0} if and
only if G ∈ J0 ∪Adj . Sincej ∈ Prev0, we havelin.space(C ∩ {v ∈ Rn | vj = 0}) =
lin.space(C).

”⇒”: Let G = {v ∈ C ∩ {v ∈ Rn | vj = 0} | vi = 0, for all i ∈ Irr \
D}. There existsg ∈ G \ lin.space(C) such thatD = {i ∈ Irr | gi 6= 0}. Let
gi ∈ Gi \ lin.space(C) for i = 1, . . . , s. Sinceg ∈ C, g can be written in the form
g =

∑s

i=1 αig
i + b, for someαi ≥ 0 andb ∈ lin.space(C). Sinceg /∈ lin.space(C),

there existsk ∈ {1, . . . , s} such thatαk 6= 0. Accordingly,Dk ⊆ D. We have the
following cases:

1. Gk ∈ J0: SinceDk ⊆ D andGk ⊆ C ∩ {v ∈ Rn | vj = 0}, we getGk ⊆ G.
SinceG is a minimal proper face ofC ∩ {v ∈ Rn | vj = 0} andlin.space(C ∩
{v ∈ Rn | vj = 0}) ( Gk, we getGk = G andG ∈ J0.

2. Gk ∈ J+: Supposeαi 6= 0 impliesGi ∈ J+ for all i = 1, . . . , s. We getgj =
αkg

k
j +

∑

i6=k αig
i
j > 0, contradictinggj = 0. Then there existsl ∈ {1, . . . , s}

such thatαl 6= 0 andGl ∈ J−. It follows thatDl ⊆ D andDk ∪ Dl ⊆ D.
Let g′ = gl − (gl

j/g
k
j ) · gk andG′ = {v ∈ C | vj = 0, vi = 0, for all i ∈

Irr \ (Dk ∪ Dl)}. We haveg′ ∈ G′ \ lin.space(C ∩ {v ∈ Rn | vj = 0}) and
G′ ⊆ G. SinceG is a minimal proper face ofC ∩ {v ∈ Rn | vj = 0}, we
getG′ = G andD = Dk ∪ Dl. Suppose there existsi ∈ {1, . . . , s} such that
Di ⊆ Dk ∪ Dl. If Gi ∈ J+ (resp.Gi ∈ J−), we prove in a similar way that
Di∪Dl = Dk∪Dl (resp.Dk∪Di = Dk∪Dl ) and soDi = Dk (resp.Di = Dl).
It follows that(Gk, Gl) ∈ Φ, G = ζ(Gk, Gl) andG ∈ Adj .
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3. Gk ∈ J−: The proof is similar to that of the case above.

”⇐”: We can easily see that ifG ∈ J0, thenG is a minimal proper face ofC∩{v ∈
Rn | vj = 0}. SupposeG = ζ(Gk, Gl) for some(Gk, Gl) ∈ Φ. Let G′ ⊆ G be a
minimal proper face ofC ∩ {v ∈ Rn | vj = 0} andD′ ⊆ Dk ∪ Dl its characteristic
set. Accordingly,G′ ∈ J0 ∪ Adj . SupposeG′ ∈ J0. It follows from D′ ⊆ Dk ∪ Dl

and(Gk, Gl) ∈ Φ that D′ = Dk or D′ = Dl, contradictingvj = 0 for all v ∈ G′.
We conclude thatG′ = ζ(Gk′

, Gl′) for some(Gk′

, Gl′) ∈ Φ andD′ = Dk′

∪ Dl′ .
SinceD′ ⊆ Dk ∪ Dl, we getDk′

⊆ Dk ∪ Dl and Dl′ ⊆ Dk ∪ Dl. Therefore,
Dk′

= Dk andDl′ = Dl. We getG′ = G and soG is a minimal proper face of
C ∩ {v ∈ Rn | vj = 0}.

Next, we characterize non-trivial minimal proper facesG′ of C ′ with v′
j > 0 for all

v′ ∈ G′ \ lin.space(C ′).

Proposition 5.7. Let G′ ⊆ C ′ such thatG′ 6= Gc. If j ∈ Prev0 is pseudo-irreversible,
then the following are equivalent:

– G′ is a minimal proper face ofC ′ such thatv′
j > 0 for all v′ ∈ G′ \ lin.space(C ′).

– There existsG ∈ J+ such thatG′ = {(v, 0) ∈ Rn+1 | v ∈ G}.

Proof. Supposej ∈ Prev0. Then,dim(lin.space(C ′)) = dim(lin.space(C)).
”⇒”: SupposeG′ is a minimal proper face ofC ′ such thatv′

j > 0 for all v′ ∈
G′ \ lin.space(C ′) and letD′ be its characteristic set. SinceG′ 6= Gc andj ∈ D′, we
haven+1 /∈ D′ andD′\{j} ⊆ Irr . Let (g, 0) ∈ G′\ lin.space(C ′), D = D′\{j} and
G = {v ∈ C | vi = 0, for all i ∈ Irr \D}. We haveg ∈ G \ lin.space(C) andgj > 0.
Suppose there existsv ∈ G\ lin.space(C) such thatvj ≤ 0 and letw = v− (vj/gj) ·g.
We have(w, 0) ∈ G′ \ lin.space(C ′) andwj = 0, in contradiction tov′

j > 0 for all
v′ ∈ G′ \ lin.space(C ′). We conclude thatvj > 0 for all v ∈ G \ lin.space(C) and
G′ = {(v, 0) ∈ Rn+1 | v ∈ G}. Accordingly,dim(G) = dim(G′). SinceG′ is a
minimal proper face ofC ′, we havedim(G′) = dim(lin.space(C ∩ {v ∈ Rn | vj =
0})) + 1 = dim(lin.space(C)) + 1 and soG ∈ J+.

”⇐”: Let G ∈ J+ such thatG′ = {(v, 0) ∈ Rn+1 | v ∈ G}. Sincedim(G′) =
dim(G) anddim(G) = dim(lin.space(C)) + 1 = dim(lin.space(C ∩ {v ∈ Rn | vj =
0})) + 1, we conclude thatG′ is a minimal proper face ofC ′. Sincevj > 0 for all
v ∈ G \ lin.space(C), it follows thatv′

j > 0 for all v′ ∈ G′ \ lin.space(C ′).

Finally, we characterize non-trivial minimal proper facesG′ 6= Gc of C ′ with
v′

n+1 > 0 for all v′ ∈ G′ \ lin.space(C ′). In such a case,v′
j = 0 for all v′ ∈ G′

and the characteristic set ofG′ is D ∪ {n + 1} for someD ⊆ Irr .

Proposition 5.8. Let D ⊆ Irr be a set of irreversible reactions. Ifj ∈ Prev 0 is
pseudo-irreversible, then the following are equivalent:

– There exists a minimal proper faceG′ of C ′ whose characteristic set isD∪{n+
1}.
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– There existsG ∈ J− whose characteristic set isD.

Proof. Supposej ∈ Prev0. Then,dim(lin.space(C ′)) = dim(lin.space(C)).
”⇒”: SupposeG′ is a minimal proper face ofC ′ whose characteristic set isD∪{n+

1}. Letg′ ∈ G′\lin.space(C ′) andg ∈ Rn such thatgi = g′
i for all i ∈ {1, . . . , n}\{j}

and gj = −g′
n+1. Let G = {v ∈ C | vi = 0, for all i ∈ Irr \ D}. We have

g ∈ G \ lin.space(C) andgj < 0. Suppose there existsv ∈ G \ lin.space(C) such
that vj ≥ 0 and letw = v − (vj/gj) · g. We have(w, 0) ∈ G′ \ lin.space(C ′), in
contradiction tov′

n+1 > 0 for all v′ ∈ G′ \ lin.space(C ′). We conclude thatvj < 0 for
all v ∈ G \ lin.space(C). To showG ∈ J−, let F ⊆ G be a minimal proper face of
C andD′ ⊆ D its characteristic set. Letf ∈ F \ lin.space(C) andf ′ ∈ Rn+1 with
f ′

i = fi for all i ∈ {1, . . . , n} \ {j}, f ′
j = 0 andf ′

n+1 = −fj > 0. Sincef ′ ∈ C ′ and
{i ∈ Irr ′ | f ′

i > 0} = D ∪ {n + 1}, we havef ′ ∈ G′ \ lin.space(C ′). Suppose there
existsk ∈ D \ D′. Thenvk = 0 for all v ∈ F andF ⊆ G ∩ {v ∈ Rn | vk = 0}.
Accordingly,f ∈ G∩{v ∈ Rn | vk = 0}\ lin.space(C) andf ′ ∈ G′∩{v ∈ Rn | vk =
0} \ lin.space(C ′). SinceG′ is a minimal proper face ofC ′ andk ∈ D, G′∩{v ∈ Rn |
vk = 0} = lin.space(C ′), contradictingf ′ ∈ G′ ∩ {v ∈ Rn | vk = 0} \ lin.space(C ′).
We conclude thatD′ = D, F = G and so the claim follows.

”⇐”: Let G ∈ J− such thatD is its characteristic set. LetG′ = {(v, w) ∈ Rn+1 |
Sv = w · S∗j , vi = 0, for all i ∈ Irr \ D, vi ≥ 0, for all i ∈ D, vj = 0, w ≥ 0}.
Let F ′ ⊆ G′ be a minimal proper face ofC ′ andD′ ⊆ D ∪ {n + 1} its characteristic
set. Supposen + 1 /∈ D′. Sincej /∈ D′, by Proposition 5.6, there existsF ∈ J0 ∪Adj

such thatF ′ = {(v, 0) ∈ Rn+1 | v ∈ F}. The characteristic set ofF is D′. Then
eitherD′ = Di with Gi ∈ J0 or D′ = Dk ∪ Dl with (Gl, Gk) ∈ Φ. SinceD′ ⊆ D,
both cases are contradictingG ∈ J−. We conclude thatn + 1 ∈ D′. Sincej /∈ D′,
F ′ 6= Gc and its characteristic set is(D′ \ {n + 1}) ∪ {n + 1}. There exists then
K ∈ J− whose characteristic set isD′ \ {n + 1}. SinceD′ \ {n + 1} ⊆ D and bothG
andK are minimal proper faces ofC, it follows thatK = G, D′ = D ∪ {n + 1} and
F ′ = G′. We conclude thatG′ is a minimal proper face ofC ′ whose characteristic set
is D ∪ {n + 1}.

To summarize, a non-trivial minimal proper faceG′ of C ′ is given either by

G′ = {(v, 0) ∈ Rn+1 | v ∈ G}, for someG ∈ J0 ∪ J+ ∪ Adj ,

or by

G′ = {v′ ∈ C ′ | v′
i = 0 for all i ∈ (Irr ∪ {j}) \ Dk}, for someGk ∈ J−.

Sincedim(lin.space(C ′)) = dim(lin.space(C)), it follows that the size of the flux
cone description increases by|Adj | + 1 after splitting a pseudo-irreversible reaction.
Note that the setAdj can be quite large (cf. Sect. 5.2).

5.1.3 Changes in the Reversibility Type of Reactions

Another consequence of the network reconfiguration is the change in the reversibil-
ity type of reactions. Indeed, possibly many fully reversible reactions in the original
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network may become pseudo-irreversible in the reconfigurednetwork. LetFrev ′ and
Prev ′

0 be the sets of fully and pseudo-irreversible reversible reactions in the reconfig-
ured network, respectively, i.e.,

Frev ′ = {i ∈ Rev \ {j} | b′i 6= 0, for someb′ ∈ lin.space(C ′)},
Prev ′

0 = Rev \ (Frev ′
0 ∪ {j}).

Sincelin.space(C ′) = {(v, 0) ∈ Rn+1 | v ∈ lin.space(C), vj = 0}, we haveFrev ′ ⊆
Frev \ {j} andPrev 0 \ {j} ⊆ Prev ′

0. Let ∆ be the set of fully reversible reactions of
the original network which become pseudo-irreversible in the reconfigured network,
i.e.,

∆ = Frev \ (Frev ′ ∪ {j}).

We can easily see that∆ = {i ∈ Frev \ {j} | bi = 0 for eachb ∈ lin.space(C)∩ {v ∈
Rn | vj = 0}}. The following proposition further characterizes the set∆ using a basis
of the lineality space ofC.

Proposition 5.9. Let B = (b1, . . . , bt) be a basis of the lineality spacelin.space(C).
Then,

∆ = {i ∈ Frev \ {j} | there existsλ 6= 0 such thatbk
i = λbk

j for all k = 1, . . . , t}.

Proof. Let Ω = {i ∈ Frev \ {j} | there existsλ 6= 0 such thatbk
i = λbk

j for all k =
1, . . . , t}.. ThenΩ ⊆ ∆. To show the reverse inclusion, supposei ∈ ∆. Since
i ∈ Frev , there existsb ∈ B such thatbi 6= 0. Sincei ∈ ∆, we havebj 6= 0. Let
b′ ∈ B and letw = b′ − (b′j/bj) · b. We havew ∈ lin.space(C) ∩ {v ∈ Rn | vj = 0}

andwi = b′i − (bi/bj)b
′
j . Sincei ∈ ∆, we getwi = 0 and sob′i/b

′
j = bi/bj

def
= λ 6= 0,

independently fromb′.

Corollary 5.10. If j ∈ Prev 0 is pseudo-irreversible, thenFrev ′ = Frev andPrev ′
0 =

Prev 0 \ {j}.

Proof. Supposej ∈ Prev 0. Then,bk
j = 0 for all k = 1, . . . , t. Consideri ∈ Frev \{j}.

There existsb ∈ B such thatbi 6= 0. Sincebj = 0, it follows thati /∈ ∆. Therefore,
∆ = ∅ and the claim follows.

5.2 From Outer to Inner Descriptions

In this section, we give a generic procedure to show how innerdescriptions can be
computed from the outer one. We use this procedure to explainwhy, for large-scale
metabolic networks, the size of the inner descriptions may be several orders of magni-
tude larger than that of the outer description.

The results in Sect. 5.1 allow for obtaining an outer description of the reconfigured
flux cone after splitting one reversible reaction. Now we areseeking for an inner
description of the reconfigured flux cone after splitting a set SR = {j1, . . . , jp} of
reversible reactions. We propose an iterative procedure that splits, in each iterationk,



71

a reversible reaction, and obtains a minimal generating setof the reconfigured flux cone
using the following scheme. Let(R0, B0) be a minimal generating set of the original
flux cone. The set(R0, B0) can be computed using an existing software for polyhedral
computations such ascdd [33]. For 1 ≤ k ≤ p, let jk be the reversible reaction to
be split in iterationk and letIrrk−1, Prevk−1

0 andFrevk−1 be the set of irreversible,
pseudo-irreversible and fully reversible reactions aftersplitting reactionsj1, . . . , jk−1,
respectively. SetIrr0 := {1, . . . , n} \ Rev , Prev 0

0 := {i ∈ Rev | bi = 0 for all b ∈
B0} andFrev0 := Rev \Prev0

0. Iterationk comprises two basic steps. First, we deduce
a minimal generating set(Bk, Rk) from (Bk−1, Rk−1) based on the results given in
Sect. 5.1. This step is straightforward ifjk ∈ Frevk−1. In such a case, the inner
description of the reconfigured flux cone increases by one. However, ifjk ∈ Prev k−1

0 ,
in addition to the generators we can directly deduce from(Bk−1, Rk−1), the inner
description of the reconfigured flux cone includes a subsetΨ ⊆ Rk−1 × Rk−1 that
contains possibly many generators. In this case, the increase in the inner description
is equal to|Ψ| + 1. In the second step, we update the reversibility type of reactions
using Proposition 5.9. The deduction procedure terminatesin iterationp and an inner
description of the reconfigured flux cone is(Bp, Rp). For a more detailed description,
see Algorithm 1.

Algorithm 1 Procedure for deducing an inner description from an outer description of
the flux cone.

Input: • Set of reversible reactionsRev ⊆ {1, . . . , n};
• Set of reversible reactions to be split SR= {j1, . . . , jp};
• Set of minimal proper faces of the flux coneJ ;
• Lineality space of the flux coneL.

Output: • Minimal generating set GenSet of the reconfigured flux cone.
Initialization: R0 := {g ∈ G \ L | G ∈ J}, B0 = (b1, . . . , bt) a vector basis ofL,

Prev0
0 := {i ∈ Rev | bi = 0 for all b ∈ B0}, Frev0 := Rev \ Prev 0

0,
Irr0 := {1, . . . , n} \ Rev .

for all k ∈ {1, . . . , p} do
if jk ∈ Frevk−1 then

/* Deduce a minimal generating set of minimal proper faces */
Chooseu ∈ Bk−1 such thatujk

> 0,
add((u, 0), Rk);
Definew ∈ Rn+k byw′

i := −ui for all i ∈ {1, . . . , n+k−1}\{jk}, wjk
:= 0

andwn+k := ujk
,

add(w, Rk);
for all g ∈ Rk−1 do

add((g − (gjk
/ujk

) · u, 0), Rk);
end for
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Continued from previous page
/* Deduce a minimal generating set of the lineality space */
for all b ∈ Bk−1 \ {u} do

add((b − (bjk
/ujk

) · u, 0), Bk);
end for

/* Update the reversibility type of reactions */
∆ := {i ∈ Frevk−1 \{jk} | there existsλ 6= 0 such thatbi = λbjk

for all b ∈
Bk−1},
Frevk := Frevk−1 \ (∆ ∪ {jk}), Prev k

0 := Prevk−1
0 ∪ ∆.

else
/* Deduce a minimal generating set of minimal proper faces */
Definew ∈ Rn+k by w′

i := 0 for all i ∈ {1, . . . , n + k − 1} \ {jk},
wjk

:= wn+k := 1,
add(w, Rk),
P := {g ∈ Rk−1 | gjk

> 0}, N := {g ∈ Rk−1 | gjk
< 0}, Z := {g ∈ Rk−1 |

gjk
= 0}.

for all g ∈ P ∪ Z do
add((g, 0), Rk).

end for
for all g ∈ N do

Defineg′ ∈ Rn+k by g′
i := gi for all i ∈ {1, . . . , n + k − 1} \ {jk},

g′
jk

:= 0 andg′
n+k := −gjk

,
add(g′, Rk).

end for
Ψ := {(g1, g2) ∈ P × N | {i ∈ Irrk−1 | gi > 0} * {i ∈ Irrk−1 | g1

i + g2
i

> 0} for all g ∈ Rk−1 \ {g1, g2}},
for all (g1, g2) ∈ Ψ do

add((g2 − (g2
jk

/g1
jk

) · g1, 0), Rk).
end for

/* Deduce a minimal generating set of the lineality space */
for all b ∈ Bk−1 do

add((b, 0), Bk).
end for

/* Update the reversibility type of reactions */
Frevk := Frevk−1, Prevk

0 := Prev k−1
0 \ {jk}.

end if
Irrk := Irrk−1 ∪ {jk, n + k}.

end for
GenSet:= (Bp, Rp).
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Note that, for the reconfigured flux cone to be pointed, we musthavep ≥ t,
where t is the dimension of the lineality space of the original flux cone, i.e.,t =
dim(lin.space(C)). This is typically the case for the extreme pathway and extremal
current approaches. In such a case, we have

η
def
= |{k ∈ {1, . . . , p} | jk ∈ Prev k−1

0 }| = p − t.

Accordingly, the above procedure containsη iterations where the increase in the inner
description of the flux cone is significant. This explains why, for large-scale metabolic
networks, the size of the inner descriptions may be several orders of magnitude larger
than that of the outer description.

Metabolic network Network size Outer description size Inner description size

Met Irr Rev-Int Rev-Ext RMS MMB EM EP EC

Chloroplast stroma [80] 19 9 12 3 0 11 15 27 30
Human red blood cell [121] 38 18 17 15 1 48 3557 127 3590

Saccharomyces cerevesiae [17]48 30 17 0 0 657 8726 8743 8743
Escherichia coli [48] 90 83 27 1 0 3560 507632 ? ?
Purple bacteria [48] 77 61 24 3 2 12 393524 ? ?

Table 5.1: Metabolic networks, with the number of internal metabolites (Met), the number of
irreversible (Irr) reactions, the number of reversible internal (Rev-Int) and external
(Rev-ext) reactions, the number of minimal metabolic behaviors (MMB), the di-
mension of the reversible metabolic space (RMS), the numberof elementary modes
(EM), extreme pathways (EP), and extremal currents (EC). "?" indicates that the ex-
isting implementation ofcdd has failed in the computation of the inner description.
This is not the case for the computation of the outer description, showing that the
network reconfiguration renders more complex the constraint system that defines the
reconfigured flux cone. Except the2-cycles corresponding to the split reactions, the
set of EPs corresponds to a subset of the set of EMs, which is equivalent to the set
of ECs.

Tab. 5.1 shows the sizes of the inner and outer descriptions of the flux cone of some
typical metabolic networks. The computation of the extremepathways, extremal cur-
rents, the minimal metabolic behaviors and the reversible metabolic space was done
using the softwarecdd [33]. For computing the elementary flux modes, we used
METATOOL [117]. We can see that the size of the outer description, given as the sum
of the number of MMBs and dim(RMS), is typically much smallerthan the number
of elementary flux modes, extreme pathways and extremal currents. This observation
holds even if the flux cone is pointed. In such a case, the MMBs correspond to the set
of extreme rays of the flux cone. The extreme pathways and extremal currents are ex-
treme for the only reason that the split reversible reactions have been decomposed into
forward and backward reactions. In the initial cone, these extreme rays are conically
dependent and their numbers are much larger than the number of MMBs.
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CHAPTER

6 A New Approach For Flux
Coupling Analysis

The stoichiometric and thermodynamic constraints not onlydetermine all possible flux
distributions over a metabolic network at steady state. They also induce different de-
pendencies between the reactions. For example, some reactions are incapable of carry-
ing flux under steady-state conditions. Furthermore, in several metabolic networks, a
zero flux through one reaction implies a zero flux through other reactions. Since con-
straining the flux through some reaction to be equal to zero corresponds to the deletion
of the corresponding gene, such dependencies also link the metabolic to the gene reg-
ulatory network. Accordingly, flux coupling analysis [11; 14; 69], which seeks for
the elucidation of blocked and coupled reactions, helps to better understand metabolic
interactions within cellular networks.

In this chapter, we present a new approach for flux coupling analysis, based on
our constrained-based approach introduced in Chap. 4. Using our reaction classifi-
cation, we study mathematical dependencies between coupling relationships and the
reversibility type of the reactions. We show that coupling relationships can only hold
between certain reaction types. These results not only allow for improving an existing
algorithm, but also lead to a new algorithm for flux coupling analysis. Parts of this
chapter have been published in [59].

6.1 Definitions

Under stoichiometric and thermodynamic constraints, somereactions are unable of
carrying any flux, i.e., their fluxes are always equal to zero.Such reactions, which are
calledblocked reactions[14] or strictly detailed balanced reactions[101], are often
not relevant and may be caused by omission and/or errors in the model reconstruction
process. According to [14], for theE. coli metabolic network [28],14% of the 740
reactions are blocked, whereas29% of the1173 reactions in theS. cerevisiaemetabolic
network [32] are unable of carrying any flux.

In the following, we formally define blocked reactions usingthe steady-state flux
cone. Remember that, given a stoichiometric matrixS and a set of irreversible reac-
tionsIrr , the steady-state flux cone is given by

C = {v ∈ Rn | Sv = 0, vi ≥ 0, for all i ∈ Irr}.
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Definition 6.1 (Blocked reactions). Given the flux coneC, the set

Blk = {i ∈ {1, . . . , n} | vi = 0 for all v ∈ C}

is called the set of blocked reactions. The remaining reactions are called unblocked.

In our flux coupling analysis, we start by identifying blocked reactions. After-
wards, we determine dependencies between unblocked reactions using Definition 6.2.
But first, we check whether all reactions in the network are blocked, or equivalently, we
check whether the flux cone is trivial. This is the case if the two following statements
hold:

1. The flux coneC is equal to its lineality space, i.e.,C = lin.space(C), or equiv-
alently, all irreversible reactions are blocked.

2. The lineality spacelin.space(C) is trivial, i.e.,lin.space(C) = {0}.

To check condition (1), consider the following LP problem

max{
∑

j∈Irr

vj : Sv = 0, 0 ≤ vj ≤ 1 for all j ∈ Irr}. (6.1)

Let v∗ be an optimal solution of the above LP problem. All irreversible reactions are
blocked if and only if

∑

j∈Irr v∗
j = 0. If this is the case, the flux coneC has no minimal

proper face, and so is equal to its lineality space, i.e.,C = lin.space(C).
Now, to check condition (2), letI ∈ Rn×n be the identity matrix andL be the

matrix given by

L =

(

S
IIrr∗

)

.

Sincelin.space(C) is the null space of the matrixL, i.e., lin.space(C) = kern(L),
lin.space(C) = {0} if the matrixL has full rank, i.e.,rank(L) = n.

In the rest of this chapter, we assume that the flux cone is not trivial, and so some
reactions are unblocked.

Definition 6.2. Let i, j be two unblocked reactions. The coupling relationships=0
→,

=0
↔

, ∽λ are defined in the following way:

– i
=0
→ j if for all v ∈ C, vi = 0 impliesvj = 0.

– i
=0
↔ j if for all v ∈ C, vi = 0 is equivalent tovj = 0.

– i ∽λ j if there existsλ ∈ R such that for allv ∈ C, vj = λvi.

Reactionsi andj are coupled if at least one of the relationsi
=0
→ j, i

=0
↔ j or i ∽λ j

holds. Otherwise,i andj are uncoupled.
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Note thati ∽λ j (resp.i
=0
↔ j) is equivalent toj ∽λ i (resp.j

=0
↔ i). Hence, when

looking for reaction pairs(i, j) fulfilling i ∽λ j or i
=0
↔ j, we should restrict ourselves

to reaction pairs(i, j) with i < j. In addition,i ∽λ j impliesi
=0
↔ j, which in turn is

equivalent to(i
=0
→ j andj

=0
→ i). Therefore, we need to check whetheri

=0
↔ j holds

only if i ∽λ j does not hold. Similarly, we need to check whetheri
=0
→ j holds only if

i ∽λ j andj
=0
↔ i do not hold.

Using the notations from Definitions 6.1 and 6.2, we formallydefine the problem
of flux coupling analysis (FCA)as follows:

Flux Coupling Analysis (FCA)

Given: S ∈ Rm×n stoichiometric matrix,
Irr ⊆ {1, . . . , n} set of irreversible reactions.

Find: Blk = {i | i is blocked},
A = {(i, j) | i ∽λ j, 1 ≤ i < j ≤ n, i, j /∈ Blk},

B = {(i, j) | i
=0
↔ j, 1 ≤ i < j ≤ n, i, j /∈ Blk, (i, j) 6∈ A},

C = {(i, j) | i
=0
→ j, (i, j) /∈ Blk2, (i, j) 6∈ A ∪ B, (j, i) 6∈ A ∪ B}.

6.2 The FCF Algorithm

TheFlux Coupling Finder (FCF)algorithm [14] has been developed in an attempt to
identify blocked reactions as well as coupled reactions in metabolic networks. This
algorithm requires the solution of a sequence of linear programming (LP) problems.
In contrast to the FCA formulation given in the preceding section, the FCF algorithm
requires that each reversible reaction is split into a forward and a backward reaction,
which both are constrained to be irreversible. Fig. 6.1 shows a simple hypothetical net-
work before and after reconfiguration. The reversible reaction 2 is split into a forward
and a backward reaction2+ and2−, which both are irreversible.

Let Rev = {i1, . . . , i|Rev |}. For convenience, the stoichiometric matrixS ′ ∈
Rm∗(n+|Rev |) of the reconfigured network can be written as follows:

S ′
∗j = S∗j for all j ∈ {1, . . . , n},

S ′
∗(n+j) = −S∗ij for all j ∈ {1, . . . , |Rev |}.

All reactions in the reconfigured network are irreversible.Given Irr ′ = {1, . . . , n +
|Rev |}, the reconfigured flux coneCrec, which contains all possible steady-state flux
distributions in the reconfigured network, is given by

Crec = {d ∈ Rn+|Rev | | S ′d = 0, di ≥ 0, for all i ∈ Irr ′}. (6.2)

Actually, each reaction in the reconfigured network corresponds either to an ir-
reversible reaction or to a possible direction of a reversible reaction in the original
network. In both cases, a reaction in the reconfigured network corresponds to a direc-
tion of some reaction in the original network. Therefore, itis suitable to call a reaction
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Figure 6.1: The reversible reaction2 is split into a forward and backward reaction2+ and2−.
According to the FCF algorithm, a zero flux through direction3 (resp.4) implies
a zero flux through direction2+ (resp.2−), i.e., a negative (resp. positive) flux
through the reversible reaction2. However, neither a zero flux through reaction3
nor a zero flux through reaction4 implies a zero flux through reaction2.

in the reconfigured network areaction direction, or shortly adirection. Accordingly,
the FCF algorithm allows for identifying blocked directions as well as dependencies
between directions.

The FCF algorithm decides whether a direction is blocked by maximizing the flux
through that direction under the constraints defining the reconfigured coneCrec. In-
deed, for each directionj ∈ {1, . . . , n + |Rev |}, the FCF algorithm uses the following
LP problem

max{dj : S ′d = 0, di ≥ 0, for all i ∈ Irr ′, di ≤ dmax
i for all i ∈ BR}, (6.3)

where BR is the set of boundary reactions and for eachi ∈ BR, dmax
i is an upper

bound on the flux in directioni. Because of these bounds, the above LP is finite. If
the maximum value of the LP is zero, then directionj is blocked, i.e.,dj = 0 for all
d ∈ Crec.

We can easily see that, for each irreversible reactionj ∈ Irr , the following state-
ments are equivalent:

1. vj = 0 for all v ∈ C,

2. dj = 0 for all d ∈ Crec.

Accordingly, an irreversible reactionj ∈ Irr is blocked if and only if directionj is
blocked. Therefore, the set of irreversible reactions thatare blocked can be identified
by solving the LP problem (6.3) once for every irreversible reaction. Similarly, for
each reversible reactionij ∈ Rev , the following statements are equivalent:

1. vij = 0 for all v ∈ C,

2. dij = dn+j = 0 for all d ∈ Crec.

Accordingly, a reversible reactionij ∈ Rev is blocked if and only if directionsij and
n + j are blocked. Hence, reversible reactions that are blocked can be identified by
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solving the LP problem (6.3) twice for every reversible reaction. We conclude that the
FCF algorithm requires the solution of|Irr |+ 2|Rev | LP problems to identify blocked
reactions.

To decide whether two directionsi, j ∈ {1, . . . , n + |Rev |} are coupled amounts
to determining the upper and lower boundsRmax andRmin such that0 ≤ Rmindj ≤
di ≤ Rmaxdj for all d ∈ Crec ∩ {d ∈ Rn+|Rev | | di ≤ dmax

i for all i ∈ BR}. The
authors of [14] showed thatRmax andRmin are the optimal values for maximizing and
minimizing the following LP problems

max{di : S ′d = 0, dj = 1, dk ≥ 0, for all k ∈ Irr ′, dl ≤ dmax
i t for all l ∈ BR, t ≥ 0},

min {di : S ′d = 0, dj = 1, dk ≥ 0, for all k ∈ Irr ′, dl ≤ dmax
i t for all l ∈ BR, t ≥ 0},

respectively. Comparison ofRmax andRmin allows the FCF algorithm to determine
whether directionsi andj are coupled using the following rules:

– di = 0 impliesdj = 0 for all d ∈ Crec if and only if Rmin 6= 0,

– dj = 0 impliesdi = 0 for all d ∈ Crec if and only if Rmax 6= +∞,

– dj = λdi for all d ∈ Crec if and only if Rmin = Rmax = λ 6= 0.

Accordingly, the FCF algorithm needs the solution of at most(|Irr |+2|Rev |) ·(|Irr |+
2|Rev | − 1) LP problems to find all directions that are coupled. Altogether, this algo-
rithm requires the solution of(|Irr | + 2|Rev |)2 LP problems to identify blocked and
coupled directions.

While the FCF algorithm has proved successful in computing blocked and cou-
pled reactions in some genome-scale metabolic networks [14], this algorithm may be
hampered by the reconfiguration of the metabolic network. This reconfiguration im-
plies that the number of variables (resp. constraints) increases by|Rev | (resp.2|Rev |).
Since the FCF algorithm uses linear programming (LP) to identify the maximum and
minimum flux ratios for every pair of directions, a very big number of LP problems
has to be solved. In addition, as another consequence of the network reconfiguration,
the FCF algorithm does not compute directly coupling relationships between reactions.
For instance, if we consider again the hypothetical networkgiven in Fig. 6.1, accord-
ing to the FCF algorithm, a zero flux through direction3 (resp.4) implies a zero flux
through direction2+ (resp.2−), i.e., a negative (resp. positive) flux through the re-
versible reaction2. However, neither a zero flux through reaction3 nor a zero flux
through reaction4 implies a zero flux through reaction2. Therefore, a post-processing
step is needed to deduce couplings between reactions (in theoriginal network) from
those between directions (in the reconfigured network). In addition, the FCF algorithm
explores exhaustively all possible reaction pairs. This leads to a very big number of
LP problems that have to be solved. This strategy may not scale well for genome-
scale models of complex microorganisms which involve a large number of reactions.
In the next section, we show that coupling relationships depend on the reversibility
type of reactions. For instance, irreversible and pseudo-irreversible reactions cannot
be coupled with fully reversible reactions. Hence, when looking for coupled reactions,
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we do not have to explore exhaustively all possible reactionpairs. We can improve
the FCF procedure significantly by applying linear programming only in those cases
where coupling relationships can occur.

6.3 Flux Coupling Analysis Based on the Reversibility
Type of Reactions

For the rest of this chapter, we assume thatGk, k = 1, . . . , s, are the minimal proper
faces of the steady-state flux coneC, represented by vectorsgk ∈ Gk \ lin.space(C),
and thatbl, l = 1, . . . , t, is a vector basis oflin.space(C). Accordingly, for allv ∈ C,
there existαk, βl ∈ R, αk ≥ 0 such that

v =

s
∑

k=1

αkg
k +

t
∑

l=1

βlb
l. (6.4)

In the following, we show that the reversibility type is an important key to elucidate
reaction couplings. Remember that a reversible reactionj ∈ Rev is called pseudo-
irreversible ifvj = 0, for all v ∈ lin.space(C). A reversible reaction that is not pseudo-
irreversible is called fully reversible. Moreover, given aminimal proper faceG of the
flux coneC and a reactionj ∈ {1, . . . , n}, we have the following properties (see
Chap. 4 for more details):

– If j ∈ Irr is irreversible, thenvj > 0, for all v ∈ G \ lin.space(C), or vj = 0,
for all v ∈ G. Furthermore,vj = 0, for all v ∈ lin.space(C).

– If j ∈ Rev is pseudo-irreversible, then the fluxvj throughj has a unique sign in
G \ lin.space(C), i.e., eithervj > 0, for all v ∈ G \ lin.space(C), or vj = 0,
for all v ∈ G \ lin.space(C), or vj < 0, for all v ∈ G \ lin.space(C). For all
v ∈ lin.space(C), we have againvj = 0.

– If j ∈ Rev is fully reversible, there existsv ∈ lin.space(C) such thatvj 6= 0.
We can then find pathwaysv+, v−, v0 ∈ G \ lin.space(C) with v+

j > 0, v−
j < 0

andv0
j = 0.

Based on the properties given above, we define the following decomposition of the re-
action set{1, . . . , n}, which reflects that pseudo-irreversible reactions takingthe same
direction in all minimal proper faces behave like irreversible reactions.

– Irev = Irr ∪ {i | i is pseudo-irreversible andvi ≥ 0, for all v ∈ C or vi ≤
0, for all v ∈ C},

– Prev = {i | i is pseudo-irreversible and there existv+, v− ∈ C such thatv+
i >

0, v−
i < 0},

– Frev = {i | i is fully reversible}.
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We should mention that the above sets are disjoint and their union is equal to the set
of all reactions, i.e.,Irev ∪ Prev ∪ Frev = {1, . . . , n}. Furthermore, for the set Blk of
blocked reactions, we have Blk∩ Frev = Blk ∩ Prev = ∅, and so Blk⊆ Irev .

Example 6.3. Consider the hypothetical network depicted in Fig. 6.2. It consists of
thirteen metabolites(A, . . . , O), and nineteen reactions(1, . . . , 19). The steady-state
flux cone is defined byC = {v ∈ R19 | Sv = 0, vi ≥ 0 for all i ∈ Irr}, with the
stoichiometric matrixS and the set of irreversible reactionsIrr = {2, 3, 4, 5, 6, 7, 8}.
Fig. 6.2 shows four flux vectors

g1 = (2, 2, 1, 0, 0, 0, 0, 0, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0),
g2 = (0, 0, 1, 2, 0, 0, 0, 0, 0, 0, −1, −1, 2, 0, 0, 0, 0, 0, 0),
g3 = (0, 0, 0, 0, 1, 1, 1, 0, −1, −1, 0, 0, 0, 0, 0, 0, 0, 0, 0),
g4 = (0, 0, 0, 0, 1, 1, 0, 1, −1, −1, 0, 0, 0, 0, 1, 1, 0, 0, 0),

representing the four minimal proper facesGk, k = 1, 2, 3, 4 of the network. The
lineality spacelin.space(C) = {v ∈ C | vi = 0, i ∈ Irr} has dimension 2. It can be
generated by the pathways

b1 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, −1, 1, 1, 1, 0, 0, 0),
b2 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, −1, 1, 0, 0, 1, 1, 0).

An arbitrary flux vectorv ∈ C can be written in the form combinationv =
∑4

k=1 αkg
k +

∑2
l=1 βlb

l, for someαk ≥ 0 andβ1, β2 ∈ R.
Reaction1 is pseudo-irreversible and operates in the forward direction in all mini-

mal proper faces, and so1 ∈ Prev . For this network, we have the following decompo-
sition of the reaction set:

Irev = {1, 2, 3, 4, 5, 6, 7, 8, 19},
Prev = {9, 10, 11, 12},
Frev = {13, 14, 15, 16, 17, 18}.

First, we characterize blocked reactions using generatorsof the cone. The follow-
ing proposition follows directly from equation (6.4).

Proposition 6.4. For any reactioni ∈ {1, . . . , n}, the following are equivalent:

1. The reactioni is blocked.

2. gk
i = 0, for all k = 1, . . . , s, andbl

i = 0, for all l = 1, . . . , t.

Example 6.5. Reaction19 is blocked since flux balance around metaboliteO implies
thatv19 = 0 for all v ∈ C.

The next results shows that the relationsi
=0
→ j, i

=0
↔ j, i ∽λ j cannot hold for

arbitrary pairs of reactions.

Theorem 6.6.Let i, j be two unblocked reactions such that at least one of the relations
i

=0
→ j, i

=0
↔ j or i ∽λ j is satisfied. Then either(a) or (b) holds:
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Figure 6.2: Network example with representative pathways

(a) i andj are both (pseudo-) irreversible:i, j ∈ Irev ∪ Prev .

(b) i andj are both fully reversible:i, j ∈ Frev .

Proof. First supposei ∈ Irev ∪ Prev and j ∈ Frev . Sincej ∈ Frev , there exists

v ∈ lin.space(C) such thatvj 6= 0. Sincei ∈ Irev ∪ Prev , we havevi = 0, soi
=0
9 j.

Now suppose thati ∈ Frev andj ∈ Irev ∪Prev . Sincej is unblocked, there exists
w ∈ C such thatwj 6= 0. Sincei is fully reversible, there existsb ∈ lin.space(C) such
thatbi 6= 0. Definev = w − (wi/bi) · b. It follows v ∈ C, vi = 0 andvj = wj 6= 0,

which impliesi
=0
9 j.

In the following, we study the coupling relationships for the different types of
reactions. We first consider the casei ∈ Prev .

Proposition 6.7. Supposei, j are unblocked,i ∈ Prev andj ∈ Irev ∪Prev . Then the
following are equivalent:

1. i
=0
→ j.

2. i
=0
↔ j.

3. i ∽λ j.

4. gk
j = λgk

i , for all k = 1, . . . , s.

In each of these cases,j ∈ Prev .

Proof. (3)⇒ (2)⇒ (1) is immediate.
(1)⇒ (4): LetK+ = {k | gk

i > 0} andK− = {k | gk
i < 0}. Sincei ∈ Prev , there

existv+, v− ∈ C with v+
i > 0 andv−

i < 0. If K+ = ∅ (resp.K− = ∅), we would have
vi ≤ 0 (resp.vi ≥ 0), for all v ∈ C, which is a contradiction. So bothK+ andK−

must be non-empty. Letp ∈ K+ andq ∈ K−. Definew = gp
i ·g

q−gq
i ·g

p. Thenw ∈ C
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andwi = 0. Sincei
=0
→ j, we getwj = gp

i g
q
j − gq

i g
p
j = 0, or gp

j /g
p
i = gq

j/g
q
i

def
= λ,

independently of the choice ofp andq. We concludegk
j = λgk

i , for all k ∈ K+ ∪ K−.

Sincei
=0
→ j, this holds for allk = 1, . . . , s.

(4) ⇒ (3): For all v ∈ C, there existsb ∈ lin.space(C) andαk ≥ 0 such that
v =

∑s

k=1 αkg
k + b. Sincei ∈ Prev andj ∈ Irev ∪ Prev , we havebi = bj = 0. It

follows thatvj =
∑s

k=1 αkg
k
j =

∑s

k=1 αkλgk
i = λvi.

Next, we characterize the casei ∈ Frev.

Proposition 6.8. Supposei, j are unblocked andi ∈ Frev is fully reversible. Then the
following are equivalent:

1. i
=0
→ j.

2. i
=0
↔ j.

3. i ∽λ j.

4. gk
j = λgk

i , for all k = 1, . . . , s, andbl
j = λbl

i, for all l = 1, . . . , t.

In each of these cases,j ∈ Frev .

Proof. (3)⇒ (2)⇒ (1) and (3)⇔ (4) are immediate.
To prove (1)⇒ (3), we supposei

=0
→ j. Sincei is fully reversible, there exists

b ∈ lin.space(C), with bi 6= 0. Givenv ∈ C, definew = v − (vi/bi) · b. Thenw ∈ C

andwi = 0. Sincei
=0
→ j, we getwj = vj − (vi/bi)bj = vj − (bj/bi)vi = 0. Defining

λ = bj/bi, this showsvj = λvi, for all v ∈ C.

Finally, we have to consideri ∈ Irev .

Proposition 6.9. Supposei, j are unblocked,i ∈ Irev andj ∈ Irev ∪ Prev . Then the
following are equivalent:

1. i
=0
→ j holds in the flux coneC.

2. i
=0
→ j holds in all minimal proper facesGk, k = 1, . . . , s.

3. gk
i = 0 impliesgk

j = 0, for all k = 1, . . . , s.

If also j
=0
↔ i or i ∽λ j, thenj ∈ Irev .

Proof. (1)⇒ (2)⇒ (3) is obvious, so we have to prove only (3)⇒ (1). For allv ∈ C,
there existb ∈ lin.space(C) andαk ≥ 0 such thatv =

∑s

k=1 αkg
k + b. Sincei ∈ Irev

andj ∈ Irev ∪ Prev , we getbi = bj = 0. By the definition ofIrev , eithergk
i ≥ 0, for

all k = 1, . . . , s, or gk
i ≤ 0, for all k = 1, . . . , s. Supposevi =

∑s

k=1 αkg
k
i = 0. It

follows gk
i = 0, for k = 1, . . . , s. Using (3), we obtaingk

j = 0 for k = 1, . . . , s, and so
vj =

∑s

k=1 αkg
k
j = 0.

Under the hypotheses of Prop. 6.9, supposei
=0
↔ j. Clearly,j

=0
→ i. If j ∈ Prev ,

then by Prop. 6.7,i ∈ Prev , which is a contradiction. Soj ∈ Irev . Similarly, if i ∽λ j,

theni
=0
↔ j, and againj ∈ Irev .
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Irev Prev Frev

i/j
=0
→

=0
↔ ∽λ =0

→
=0
↔ ∽λ =0

→
=0
↔ ∽λ

Irev Prop.6.9 Cor.6.10 Cor.6.10 Prop.6.9

Prev Prop.6.7 Prop.6.7 Prop.6.7

Frev Prop.6.8 Prop.6.8 Prop.6.8

Table 6.1: Reaction coupling cases

11~121

15~1 16 18~17

10~19

3 4
7

5~1 6
8

= 0 = 0
= 0

Irev = 0

Frev

Prev

= 0

1~1 2

1

Figure 6.3: Coupled reactions in the network depicted in Fig. 6.2

Corollary 6.10. Supposei, j are unblocked andi, j ∈ Irev . Then we have:

a) i
=0
↔ j iff gk

i = 0 is equivalent togk
j = 0, for all k = 1, . . . , s.

b) i ∽λ j iff gk
j = λgk

i , for all k = 1, . . . , s.

Proof. a) Supposegk
j = 0 is equivalent togk

i = 0, for all k = 1, . . . , s. Thengk
i = 0

impliesgk
j = 0, and vice versa, for allk = 1, . . . , s. Sincei, j ∈ Irev , we may apply

Prop. 6.9 and geti
=0
→ j andj

=0
→ i. Soi

=0
↔ j.

b) Supposegk
j = λgk

i , for all k = 1, . . . , s. For allv ∈ C, there existb ∈ lin.space(C)
andαk ≥ 0 such thatv =

∑s

k=1 αkg
k + b. Sincei, j ∈ Irev , we havebi = bj = 0. It

follows thatvj =
∑s

k=1 αkg
k
j =

∑s

k=1 αkλgk
i = λvi.

Tab. 6.1 summarizes the different possible coupling relationships. Note thati
=0
→ j,

i
=0
↔ j andi ∽λ j are equivalent fori, j ∈ Prev or i, j ∈ Frev .

Example 6.11.Fig. 6.3 shows all coupled reactions in the network from Fig.6.2. We
see that many reactions depend on reaction3. A zero flux for this reaction implies a
zero flux for the reactions1, 2, 4, 11 and12. Thus, reaction3 plays a crucial role in the
network. Reaction19 is blocked, because it is involved neither in the definition of the
minimal proper faces nor in the definition of the lineality space.

6.4 An Improvement in the FCF Algorithm

It follows from the preceding section that coupling relationships can only hold between
certain reaction types. According to Tab. 6.1, to detect coupling relationships, we do
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not have to explore exhaustively all possible reaction pairs. In the following, we show
that we can improve the FCF procedure significantly by applying linear programming
only in those cases where coupling relationships can occur.All the possible cases are
given in Tab. 6.1, where an empty entry indicates that the corresponding coupling re-
lationship is not possible. Accordingly, the number of LP problems that have to be
solved in this improved version of the FCF algorithm is much smaller than that of the
original FCF algorithm. Moreover, this improved version does not require a reconfig-
uration of the metabolic network. Hence, no increase in the number of variables and
constraints occurs and no post-processing procedure is needed.

Before looking for blocked and coupled reactions, we need toclassify reactions
according to their reversibility types. This task can easily be done if we are given
a minimal set of generating vectors of the flux cone. Alternatively, we can classify
reactions using linear programming.

6.4.1 Reaction Classification

In the following, we use the same linear programs for identifying the reversibility
type of reactions, i.e., the setsIrev ,Prev andFrev as well as the set Blk of blocked
reactions.

As we did in Sect. 6.1, we first check whether the lineality space is trivial, i.e.,
lin.space(C) = {0}. If this is the case,Frev = ∅. Otherwise, given a reversible
reactionj ∈ Rev , consider the following LP problem

max{vj : Sv = 0, vk = 0 for all k ∈ Irr , vj ≤ 1}. (6.5)

Since the above LP problem is feasible and bounded in the direction of the objective
function, this LP problem has an optimal solution, sayv∗. Let F = {i ∈ Rev | v∗

i 6=
0}. Reactionj is fully reversible if and only ifj ∈ F . Moreover, for eachi ∈ F , there
exists a vectorb ∈ lin.space(C) such thatbi 6= 0, namelyb = v∗. Accordingly, all
reactions inF are fully reversible, i.e.,F ⊆ Frev .

Here, we are interested in finding all fully reversible reactions. We propose an
iterative procedure that obtains, in each iterationk, a subset of fully reversible reactions
using the following scheme. Fork ≥ 1, let Rk be the set of reversible reactions that
are candidate to be chosen in iterationk to perform the LP problem (6.5), and letF k−1

be the set of all fully reversible reactions identified in iterationsi for i = 1, . . . , k − 1.
SetR1 = Rev andF 0 = ∅. The basic steps of iterationk are as follows:

1. Choose a reactionj ∈ Rk,

2. Solve the LP problem (6.5) and letv∗ its optimal solution,

3. LetF = {i ∈ Rev | v∗
i 6= 0}. SetF k = F k−1∪F and setRk+1 = Rk\({j}∪F ).

The above procedure terminates in iterationp if no reversible reactionj ∈ Rp+1 exists
to perform the LP problem (6.5), i.e.,Rp+1 = ∅. If this is the case, we getFrev = F p.
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Once we have identified all fully reversible reactions, we need to determine the
set of pseudo-irreversible reactions that take the same direction for all steady-state
flux distributions. We first check whether the flux cone is equal to its lineality space,
i.e., C = lin.space(C), or equivalently, if all irreversible reactions are blocked. We
proposed an LP problem in Sect. 6.1 to check whether this is the case. If all irreversible
reactions are blocked, Blk= Irev = {1, . . . , n}\Frev andPrev = ∅. Otherwise, given
a pseudo-irreversible reactionj ∈ Rev \Frev , consider the following two LP problems

max{vj : Sv = 0, vk ≥ 0 for all k ∈ Irr , vj ≤ 1}, (6.6)

min {vj : Sv = 0, vk ≥ 0 for all k ∈ Irr , vj ≥ −1}. (6.7)

Let v+ andv− be optimal solutions of the LP problems (6.6) and (6.6), respectively,
and letP andN be the sets given by

P = {i ∈ Rev \ Frev | v+
i > 0 or v−

i > 0},

N = {i ∈ Rev \ Frev | v+
i < 0 or v−

i < 0}.

Then either (1), (2) or (3) holds:

1. j /∈ P ∪ N and so,j is a blocked reaction, i.e.,j ∈ Blk,

2. j ∈ P ∪ N \ (P ∩ N), thenj takes the same direction for all steady-state flux
distributions, and soj ∈ Irev ,

3. j ∈ P ∩ N , and soj ∈ Prev.

Moreover, we have(P ∪ N) ∩ Blk = ∅ andP ∩ N ⊆ Prev .
In analogy with our procedure for identifying fully reversible reactions, we propose

an iterative procedure that obtains the setsPrev andIrev , and determines the Blk∩Rev

of all reversible reactions that are blocked. Fork ≥ 1, let Rk be the set of reversible
reactions that are candidate to be chosen in iterationk to perform the LP problems
(6.6) and (6.7), and letP k−1 (resp.Nk−1) be the set of all reversible reactionsi, for
which a vectorv ∈ C, with vi > 0 (resp.vi < 0), has been found in the previous
iterationsi for i = 1, . . . , k − 1. SetR1 = Rev \ Frev andP 0 = N0 = ∅. The basic
steps of iterationk are as follows:

1. Choose a reactionj ∈ Rk,

2. If j /∈ P k−1, then solve the LP problem (6.6) and letv+ its optimal solution,
otherwise setv+ = 0.

3. If j /∈ Nk−1, then solve the LP problem (6.7) and letv− its optimal solution,
otherwise setv− = 0.

4. Let P = {i ∈ Rev \ Frev | v+
i > 0 or v−

i > 0} andN = {i ∈ Rev \ Frev |
v+

i < 0 or v−
i < 0}. Set P k = P k−1 ∪ P , setNk = Nk−1 ∪ N , and set

Rk+1 = Rk \ ({j} ∪ (P ∩ N)).
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The above procedure terminates in iterationq if no reversible reactionj ∈ Rq+1 exists
to perform the LP problems (6.6) and (6.7), i.e.,Rq+1 = ∅. If this is the case, we have
the following results:

– Prev = P q ∩ N q,

– Irev = Irr ∪ ((P q ∪ N q) \ (P q ∩ N q)),

– Blk ∩ Rev = Rev \ (P q ∪ N q).

Together, the above procedures allow for identifying the reversibility type of the reac-
tions (Irev , Prev andFrev) as well as the set of reversible reactions that are blocked
(Blk ∩Rev ). In the following, we determine the set Blk∩ Irr of irreversible reactions
which are blocked.

Given an irreversible reactionj ∈ Irr , consider the following LP problem

max{vj : Sv = 0, vk ≥ 0 for all k ∈ Irr , vj ≤ 1}. (6.8)

Let v∗ be an optimal solution of the above LP problem and letI = {i ∈ Irr | v∗
i > 0}.

Reactionj is blocked if and only ifj /∈ I. Moreover, for eachi ∈ I, there exists a
vectorc ∈ C such thatci > 0, namelyc = v∗. Accordingly, we haveI ⊆ Irr \ Blk.
Here again, we seek to find all irreversible reactions which are blocked. To do so, we
propose the following iterative procedure. For each iteration k ≥ 1, let Rk be the set
of irreversible reactions that are candidate to be chosen initerationk to perform the LP
problem (6.8), and letIk−1 be the set of all irreversible reactions identified in iterations
i for i = 1, . . . , k − 1. SetR1 = Irr andI0 = ∅. The basic steps of iterationk are as
follows:

1. Choose a reactionj ∈ Rk,

2. Solve the LP problem (6.8) and letv∗ its optimal solution,

3. LetI = {i ∈ Irr | v∗
i > 0}. SetIk = Ik−1 ∪ I and setRk+1 = Rk \ ({j} ∪ I).

The above procedure terminates, say in iterationr, when no irreversible reactionj ∈
Rr+1 exists to perform the LP problem (6.8), i.e.,Rr+1 = ∅. If this is the case, we get
Blk ∩ Irr = Irr \ Ir.

Altogether, for identifying blocked reactions and classifying reactions according to
their reversibility types, we need to solve at most2|Rev |+ |Irev |+ |Prev |− |Frev | LP
problems.

6.4.2 Reaction Couplings

In the following, we are interested in finding coupled reactions. Since coupling rela-
tionships are defined only for unblocked reactions, we assume that blocked reactions
have been identified beforehand using the iterative procedures given in the preceding
subsection, and that all their respective columns in the stoichiometric matrix have been
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removed. In addition, since each reactionj ∈ Irev is operating in the same direction,
in what follows we assume that all reactions inIrev are operating in the forward direc-
tion without loss of generality. Hence, by abuse of notation, all reactions inIrev will
be called irreversible in the current subsection.

According to Tab. 6.1, when looking for coupled reactions, we do not have to
explore exhaustively all possible reaction pairs.

Couplings between reversible reactions

Given two reversible reactionsi, j with i, j ∈ Prev or i, j ∈ Frev , i
=0
→ j, i

=0
↔ j and

i ∽λ j are equivalent. In the following, we propose an LP problem tocheck whether

i
=0
→ j holds. First, we need the following lemma.

Lemma 6.12. Let i, j ∈ Rev be two reversible reactions, withi, j ∈ Prev or i, j ∈

Frev . If i
=0
→ j, then for each vectorv ∈ kern(S), with vi = 0, there exists a vector

u ∈ kern(S) with ui = 0, uj = vj and

{k ∈ Irr | uk < 0} ( {k ∈ Irr | vk < 0}.

Proof. Let v ∈ kern(S), with vi = 0, and letl ∈ {k ∈ Irr | vk < 0}. Sincel ∈ Irev

andi ∈ Prev ∪ Frev , i
=0
→ l does not hold and there exists a vectorv′ ∈ C such that

v′
i = 0 andv′

l > 0. Moreover, sincei
=0
→ j andv′

i = 0, we getv′
j = 0. Consider

u = v − (vl/v
′
l) · v′. We haveSu = 0, ui = 0, uj = vj and for eachk ∈ Irr , we

haveuk = vk − (vl/v
′
l)v

′
k ≥ vk. Therefore, for eachk ∈ Irr , uk < 0 impliesvk < 0,

and so{k ∈ Irr | uk < 0} ⊆ {k ∈ Irr | vk < 0}. Sinceul = 0 andvl < 0,
{k ∈ Irr | uk < 0} ( {k ∈ Irr | vk < 0}, and the claim follows.

The following proposition states that, given two reversible reactionsi, j ∈ Rev ,
with i, j ∈ Prev or i, j ∈ Frev , only the stoichiometric constraints determine whether

i
=0
→ j holds, independently of the thermodynamic constraints.

Proposition 6.13. Let i, j ∈ Rev be two reversible reactions, withi, j ∈ Prev or
i, j ∈ Frev . The following are equivalent:

1. i
=0
→ j.

2. For eachv ∈ kern(S), vi = 0 impliesvj = 0.

3. For eachv ∈ kern(S) ∩ {v ∈ Rn | vj ≥ 0}, vi = 0 impliesvj = 0.

Proof. (2) ⇒ (1), (2)⇒ (3) and (3)⇒ (2) are immediate. So we have to prove only
(1) ⇒ (2). Let v ∈ kern(S), with vi = 0. According to Lemma 6.12, there exist
u0, . . . , up ∈ kern(S) such thatu0 = v and for all l = 1, . . . , p, we haveul

i = 0,
ul

j = ul−1
j , {k ∈ Irr | ul

k < 0} ( {k ∈ Irr | ul−1
k < 0}, and{k ∈ Irr | up

k < 0} = ∅.
Since{k ∈ Irr | up

k < 0} = ∅, we haveup
k ≥ 0 for all k ∈ Irr , and soup ∈ C. In

addition, sincei
=0
→ j, up ∈ C andup

i = 0, we getup
j = 0. Therefore, we haveul

j = 0
for l = 1, . . . , p. Hence, we havevj = 0, and the claim follows.
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Given two reversible reactionsi, j with i, j ∈ Prev or i, j ∈ Frev , let Cij = {v ∈

Rn | Sv = 0, vi = 0, vj ≥ 0}. According to Proposition 6.13,i
=0
→ j holds if and

only if reactionj is blocked in the coneCij , i.e., vj = 0 for all v ∈ Cij. To check
whether this is the case, consider the following LP problem

max{vj : Sv = 0, vi = 0, 0 ≤ vj ≤ 1}, (6.9)

and letv∗ be its optimal solution. Therefore,i
=0
→ j if and only if v∗

j = 0.

Couplings between reversible and irreversible reactions

Given two reactionsi ∈ Irev andj ∈ Prev , we only have to check whetheri
=0
→ j.

The other coupling relationships cannot occur. LetCij = {v ∈ Rn | Sv = 0, vk ≥

0, for all k ∈ Irr , vi = 0}. We havei
=0
→ j if and only if reactionj is blocked in the

coneCij , i.e.,vj = 0 for all v ∈ Cij. Accordingly, if v1 andv2 are optimal solutions
of the following LP problems

max{vj : Sv = 0, vk ≥ 0 for all k ∈ Irr , vi = 0, vj ≤ 1},
min {vj : Sv = 0, vk ≥ 0 for all k ∈ Irr , vi = 0, vj ≥ −1},

(6.10)

theni
=0
→ j if and only if v1

j = v2
j = 0.

Couplings between irreversible reactions

In analogy with the FCF algorithm, given two reactionsi, j ∈ Irev , we determine the
upper and lower boundsRmax andRmin such that0 ≤ Rminvj ≤ vi ≤ Rmaxvj for
all v ∈ C. Rmax andRmin are the optimal values for maximizing and minimizing the
following LP problems

max{vi : Sv = 0, vj = 1, vk ≥ 0, for all k ∈ Irr},
min {vi : Sv = 0, vj = 1, vk ≥ 0, for all k ∈ Irr},

respectively. Comparison ofRmax andRmin allows the FCF algorithm to determine
whether reactionsi andj are coupled using the following rules:

– i
=0
→ j if and only if Rmin 6= 0,

– j
=0
→ i if and only if Rmax 6= +∞,

– j ∽λ i if and only if Rmin = Rmax = λ 6= 0.

Altogether, the number of LP problems that have to be solved for identifying coupled
reactions is at most

|Prev |(|Prev | − 1)

2
+

|Frev |(|Frev | − 1)

2
+ 2|Irev ||Prev | + |Irev |(|Irev | − 1).

The next proposition compares the total number of the LP problems that have to be
solved in the original version of the FCF algorithm with thatof our improved version
of the FCF algorithm.



90

Proposition 6.14. Let N original (resp.N improved) the number of the LP problems that
have to be solved in the original (resp. improved) version ofthe FCF algorithm. Then,

N
original − N

improved = |Rev |2 + 2|Frev |(|Irev | + |Prev | + 1)+
|Prev |

2
(|Prev | − 1) + |Frev |

2
(|Frev | − 1)+

2|Rev |(n − 1) ≥ 0.

Proof. We haveN original = (|Irr | + 2|Rev |)2. Sincen = |Irr | + |Rev | = |Irev | +
|Prev |+ |Frev |, we getN original = (|Irev |+ |Prev |+ |Frev |+ |Rev |)2. Moreover, we
haveN improved = 2|Rev |+ |Irev |+ |Prev | − |Frev |+ |Prev |(|Prev |−1)

2
+ |Frev |(|Frev |−1)

2
+

2|Irev ||Prev | + |Irev |(|Irev | − 1). Then, the claim is straightforward.

The proposition above states that the number of the LP problems that have to be
solved in the original version of the FCF algorithm is biggerthan that of our improved
version. Note that both numbers are equal if no reaction is reversible, i.e.,|Rev | = 0.
In such a case, the reconfigured network is identical to the original one. However, in
the presence of reversible reactions, we haveN

original > N
improved. Moreover, since

our version does not require a reconfiguration of the metabolic network, the number
of variables and constraints in our LP problems is smaller than that of variables and
constraints in the original FCF algorithm. In addition, no post-processing procedure is
needed in our improved version.

6.5 A New Algorithm For Flux Coupling Analysis

The results in Sect. 6.3 also suggest a new algorithm to identify blocked and cou-
pled reactions. This method does not require any reconfiguration of the metabolic
network. It is only based on the reversibility type of the reactions and a minimum
set of generators of the flux cone. The basic steps of this new method are shown in
Algorithm 2. First, we compute a set of generators of the flux coneC using existing
software for polyhedral computations. Second, we classifythe reactions according to
their reversibility type. This classification allows us to determine whether a coupling
between two reactions is possible.

Both our new algorithm and the FCF algorithm have been implemented in the Java
language. The FCF procedure was realized using CPLEX 9.0 (a solver for linear and
integer programming problems) accessed via Java. To compute a set of generating vec-
tors of the steady-state flux cone, our algorithm uses the softwarecdd [33], which is
a C++ implementation of the Double Description method of Motzkin et al. for general
convex polyhedra inRn.

To compare the two approaches, we computed blocked and coupled reactions for
some genome-scale networks. The computations were performed on a Linux server
with an AMD Athlon Processor 1.6 GHz and 2 GB RAM. We present computation
times for models of the human red blood cell [121], the human cardiac mitochon-
dria [116], the central carbon metabolism ofE. coli [50; 106], theE. coli K-12 (iJR904
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Metabolic network Blk Irev Prev Frev MMB FCMMB FCF
Red Blood Cell 0 31 14 6 2.32 0.26 110.65
Central metabolism ofE. coli 0 92 18 0 214.49 2.55 477.14
Human cardiac mitochondria 121 83 3 9 1262.65 0.34 13426.91
Helicobacter pylori 346 128 15 39 13551.44 0.43 318374.15
E. coli K-12 435 480 49 110 261306.15 5.32 ≥ 1 week

Table 6.2: Metabolic systems, with the number of blocked reactions (Blk ), the size of the sets
Irev ,Prev ,Frev , the running time (in seconds) of computing a set of generators
(MMB ), reaction coupling using this set (FCMMB ), and reaction coupling using
the FCF procedure (FCF).

GSM/GPR) [86], and theH. pylori (iIT341 GSM/GPR) [111]. We refer to [14] for a
discussion of the biological aspects of flux coupling analysis.

Tab. 6.2 summarizes our computational results. It shows that flux coupling analysis
can be done extremely fast if a set of generators of the flux cone is available. Comput-
ing such a set is the most time-consuming part in our algorithm. However, it should
be noted that this step has an interest in its own. We obtain similar information as by
computing the elementary flux modes or extreme pathways of the network. The over-
all running time of the new algorithm is still significantly faster than the original FCF
method.

Algorithm 2 Procedure for identifying blocked and coupled reactions.

Input: • SetsIrev ,Prev ,Frev ⊆ {1, . . . , n},
• For each minimal proper faceGk, k = 1, . . . , s, a generating vector
gk ∈ Gk \ lin.space(C),
• A vector basisb1, . . . , bt of lin.space(C).

Output: • Blocked reactions: Blk= {i | i is blocked},
• Coupled reactions:A = {(i, j) | i ∽λ j, 1 ≤ i < j ≤ n},

B = {(i, j) | i
=0
↔ j, 1 ≤ i < j ≤ n, (i, j) 6∈ A},

C = {(i, j) | i
=0
→ j, (i, j) 6∈ A ∪ B, (j, i) 6∈ A ∪ B}.

Initialization: Blk := ∅, A := ∅, B := ∅, C := ∅.

/* Blocked reactions */
for all i ∈ {1, . . . , n} do ⊲ Proposition 6.4

if (bl
i = 0, ∀l = 1, . . . , t) and(gk

i = 0, ∀k = 1, . . . , s) then
add(i, Blk);

end if
end for
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/* Coupled reactions */
Irev := Irev \ Blk;
for all i, j ∈ Prev with i < j do ⊲ Proposition 6.7

if ∃λ ∈ R such thatgk
j = λgk

i , ∀k = 1, . . . , s then
add((i, j), A);

end if
end for
for all i, j ∈ Frev with i < j do ⊲ Proposition 6.8

if ∃λ ∈ R such thatbl
j = λbl

i, ∀l = 1, . . . , t, andgk
j = λgk

i , ∀k = 1, . . . , s then
add((i, j), A);

end if
end for
for all i ∈ Irev , j ∈ Irev ∪ Prev do ⊲ Proposition 6.9

if gk
i 6= 0 or gk

j = 0, ∀k = 1, . . . , s then
add((i, j), C);

end if
end for
for all (i, j) ∈ C with i, j ∈ Irev andi < j do ⊲ Corollary 6.10

if (j, i) ∈ C then
remove((i, j), C), remove((j, i), C));
if ∃λ ∈ R such thatgk

j = λgk
i , ∀k = 1, . . . , s then

add((i, j), A);
else

add((i, j), B);
end if

end if
end for



CHAPTER

7 Minimal Direction Cuts in
Metabolic Networks

7.1 Introduction

In the previous chapter, we introduced flux coupling analysis which allows for identi-
fying dependencies between reactions. This analysis not only can help us to enhance
our understanding of biological systems, but also can be used to determine a reaction
that is critical for the survival of a certain pathogen. Sucha reaction could be a suit-
able target to be repressed by network perturbations. A recent approach [46; 47] has
introduced minimal cut sets to identify such perturbations. A minimal cut set(MCS) is
a minimal set of reactions whose removal represses a given target reaction. However,
this approach suffers from two major drawbacks that are limiting in practice. First,
using MCSs becomes inadequate when we are interested in inhibiting only one direc-
tion of a reversible target reaction. Second, and more importantly, the computation of
MCSs is currently based on the conservation property of elementary modes (EMs) and
the principle that each MCS is a minimal hitting set for all EMs involving the target
reaction. This computation is hampered by the combinatorial explosion of the number
of EMs and hence becomes impractical for genome-scale networks.

To overcome these limitations, we introduce the concept ofminimal direction cuts
in metabolic networks [61]. Aminimal forward(resp.backward) direction cut (MFC)
(resp.MBC ) is a minimal set of reactions whose removal prevents the target reaction
from carrying a flux in the forward (resp. backward) direction. If the target reaction
is irreversible, MFCs are identical to MCSs and the empty setis the unique MBC.
If, however, the target reaction is reversible, each MCS is the union of an MFC and
an MBC. More importantly, the computation of MFCs and MBCs does not require
that of EMs. Instead it can be based on the Farkas lemma for equality and inequality
constraints. Finally, MCSs can be directly calculated fromMFCs and MBCs.

This chapter highlights the key results presented in [61] and is organized as follows.
In Sect. 7.2, we give a first presentation of our approach. In Sect. 7.3, we formally
characterize MFCs and MBCs using an extended Farkas lemma. In Sect. 7.4, we
propose an iterative algorithm to identify MFCs and MBCs in ametabolic network.
Finally, some computational results are given in Sect. 7.5.



94

C

A

B E

D
4

2

1 6

3 7

8
5

P P1

S

S

1

2

2

Figure 7.1: Hypothetical network from [46]

7.2 Minimal Forward and Backward Direction Cuts

For the rest of the chapter, letτ ∈ {1, . . . , n} be the target reaction. Aforward (resp.
backward) direction cut for reactionτ is a set of reactions whose removal from the
network implies that all possible steady-state flux distributions over the network do
not involve reactionτ in the forward (resp. backward) direction. Here, the removal of
a set of reactions is mathematically expressed by constraining the fluxes through all
these reactions to zero.

Definition 7.1. Let C be the flux cone defined in equation (3.5).

– A forward direction cut (FC) for reactionτ is a set of reactionsM ⊆ {1, . . . , n},
such that for anyv ∈ C with vi = 0 for all i ∈ M, vτ ≤ 0.

– A backward direction cut (BC) for reactionτ is a set of reactionsM ⊆
{1, . . . , n}, such that for anyv ∈ C with vi = 0 for all i ∈ M, vτ ≥ 0.

A forward (resp. backward) direction cutM is minimal, denoted MFC (resp. MBC), if
there is no forward (resp. backward) direction cutM ′ ( M strictly contained inM .

Example 7.2. Consider the hypothetical network [46] depicted in Fig. 7.1. It con-
sists of five internal metabolites(A, . . . , E), and eight reactions(1, . . . , 8), whereof
reactions4 and5 are reversible. Let reaction5 be the target reaction. Fig. 7.2 (resp.
Fig. 7.3) displays MFCs and MBCs (resp. MCSs) for reaction5. For instance, the for-
ward direction cut MFC2 does not inhibit the backward direction of reaction5. MCS2
= {2, 3} is a minimal cut set to repress reaction5. However, this set is not minimal to
repress the production of metaboliteP1 since this is possible by removing only reaction
2. Indeed, MCS2 is the union of the minimal direction cuts MFC2and MBC2.

The meaningful direction cuts are those which are minimal, since the trivial solu-
tion, which consists of removing all reactions, always is a direction cut forτ . Obvi-
ously, if there is no flux vectorv ∈ C with vτ < 0 (resp.vτ > 0), then the empty set is
the unique MBC (resp. MFC) forτ . In particular, ifτ is an irreversible reaction, then
the empty set is the unique MBC forτ and MFCs forτ are identical to minimal cut
sets. On the other hand, ifτ is reversible, then the computation of MFCs is equivalent
to that of MBCs in the sense that an algorithm for computing MFCs could also be used
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Figure 7.2: Minimal forward and backward direction cuts forthe target reaction5.
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Figure 7.3: Minimal cut sets for the target reaction5.

to calculate MBCs. To show this, letS ′ be them×n matrix whose columns are defined
by

S ′
∗j = S∗j for all j ∈ {1, . . . , n} \ {τ} andS ′

∗τ = −S∗τ ,

and let
C ′ = {v ∈ Rn | S ′v = 0, vi ≥ 0, for all i ∈ Irr}.

Lemma 7.3. Let M ⊆ {1, . . . , n} \ {τ} be a set of reactions. Ifτ is reversible, i.e.,
τ ∈ Rev , then the following are equivalent:

1. For anyv ∈ C with vi = 0 for all i ∈ M, vτ ≥ 0.

2. For anyv′ ∈ C ′ with v′
i = 0 for all i ∈ M, v′

τ ≤ 0.

Proof. Let v, v′ ∈ Rn such thatv′
τ = −vτ andv′

i = vi for all i ∈ {1, . . . , n} \ {τ}.
Sinceτ ∈ Rev , v ∈ C andvτ ≥ 0 if and only if v′ ∈ C ′ andv′

τ ≤ 0.

Given a setM ⊆ {1, . . . , n} \ {τ} of reactions, it follows from Lemma 7.3 thatM
is an MBC if and only ifM is an MFC with respect to the stoichiometric matrixS ′.
This is why we focus in the following on characterizing MFCs.The same results hold
also for MBCs. Note that{τ} is a trivial MFC forτ . Therefore, each MFCM 6= {τ},



96

callednon-trivial MFC for τ , does not includeτ , i.e.,τ /∈ M . In the following, we are
interested in finding these non-trivial MFCs.

In analogy with minimal cut sets, MFCs could be computed using the conservation
property of elementary modes (EMs) (see Lemma 3.9 in Chap. 3). Remember that
according to this property, whenever the flux through some reaction is constrained to
zero, the EMs that remain are those which do not contain that reaction. Accordingly,
each MFC is a minimal hitting set of all EMs involving the target reaction in the for-
ward direction. A setM ⊆ {1, . . . , n} is ahitting setof a collectionC of EMs if M
meets every EM in the collectionC, i.e.,M ∩{i | ei 6= 0} 6= ∅ for eache ∈ C. In view
of the combinatorial explosion of EMs, computing MFCs usingthis strategy does not
scale well for genome-scale metabolic networks. In the following, we instead use the
Farkas lemma for equality and inequality constraints to further characterize MFCs.

7.3 Characterizing MFCs Using the Farkas Lemma

In this section we give a formal characterization of minimalforward direction cuts
in a metabolic network. We use mainly the Farkas lemma, whichstates that the un-
solvability of a system of constraints can be established byfinding a solution for a
corresponding dual system (see Sect. 2.3 in Chap. 2 for more details).

Let M ⊆ {1, . . . , n} be an FC and let(e1, . . . , en) be the canonical basis ofRn.
In the following,IM (resp.IIrr ) denotes the matrix whose rows are the vectorsej with
j ∈ M (resp.j ∈ Irr ). From Definition 7.1, we get that

there is nov ∈ Rn such thatSv = 0, IMv = 0, IIrrv ≤ 0 andvτ ≤ −1. (7.1)

Let A, B andC be the matrices defined by

A =

(

S
−IM

)

, B = −IIrr andC = eτ ,

and letx = y = 0 andz = −1. By (7.1), there exists no solution vectorv ∈ Rn

for Av = x, Bv ≥ y, Cv ≤ z. According to the Farkas lemma 2.15 in Chap. 2,
there exist row vectorsα ∈ Rm, µ ∈ R|M |, β ∈ R|Irr | andγ ∈ R, such thatγC =
(α, µ)A + βB, β ≥ 0, γ ≥ 0 andγz < 0. This leads to the following proposition
which characterizes FCs using the Farkas lemma.

Proposition 7.4. Let M ⊆ {1, . . . , n} be a set of reactions. Then, the following are
equivalent:

1. M is an FC forτ .

2. There existαi, βj, µk, γ ∈ R with βj ≥ 0 andγ ≥ 1, such that

∑

k∈M

µkek + γeτ =

m
∑

i=1

αiSi∗ −
∑

j∈Irr

βjej . (7.2)
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Let D be the cone defined by

D = {
m

∑

i=1

αiSi∗ −
∑

j∈Irr

βjej | βj ≥ 0 for all j ∈ Irr}. (7.3)

The following corollary describes FCs by means of the support of vectors inD .

Corollary 7.5. Let D be the cone (7.3) and letM ⊆ {1, . . . , n} \ {τ} be a set of
reactions. Then, the following are equivalent:

1. M is an FC forτ .

2. There exists a vectorw ∈ D , such thatwτ ≥ 1 andSupp(w) \ {τ} ⊆ M .

Proof. (1) ⇒ (2): By Proposition 7.4, there existαi, βj , µk, γ ∈ R with βj ≥ 0, and
γ ≥ 1 fulfilling equation (7.2). Letw =

∑

k∈M µkek + γeτ . On the one hand, since
τ /∈ M , we getwτ = γ ≥ 1 andSupp(w) \ {τ} = {k ∈ M | µk 6= 0} ⊆ M . On the
other hand, we havew =

∑m

i=1 αiSi∗ −
∑

j∈Irr βjej, w ∈ D and so the claim follows.
(1) ⇐ (2): Sincew ∈ D , there existαi, βj ∈ R with βj ≥ 0, such thatw =

∑m

i=1 αiSi∗ −
∑

j∈Irr βjej . Moreover, sinceτ /∈ M andSupp(w) \ {τ} ⊆ M , we can
write w =

∑

k∈M wkek + wτeτ with wk = 0 for eachk ∈ M \ Supp(w). We then get

∑

k∈M

wkek + wτeτ =

m
∑

i=1

αiSi∗ −
∑

j∈Irr

βjej .

By Proposition 7.4,M is an FC forτ .

Note that the minimality of MFCs is quite similar to that of elementary modes
(EMs). An EM corresponds to a flux vectore ∈ C involving a minimum set of reac-
tions [99], i.e.,Supp(e) is minimal. In the same way, an MFC corresponds to a vector
w ∈ D such thatwτ ≥ 1 andSupp(w) is minimal. We will call such a vectorsimple
in D with respect toτ andSupp. More generally, we define:

Definition 7.6. ForQ ⊆ Rn let ϕ : Q → 2{1,...,n} be the function that maps each vector
s ∈ Q to a subsetϕ(s) ⊆ {1, . . . , n}. A vectors ∈ Q is simple inQ with respect toτ
andϕ if the following conditions hold:

1. sτ ≥ 1,

2. There is no vectors′ ∈ Q such thats′τ ≥ 1 andϕ(s′) ( ϕ(s).

If this is the case, we also say thatsimp(Q,τ,ϕ)(s) holds.

The following theorem shows that MFCs are in a 1-1 correspondence with the
support of vectors simple inD with respect toτ andSupp.

Theorem 7.7. Let D be the cone (7.3) and letM ⊆ {1, . . . , n} \ {τ} be a set of
reactions. Then, the following are equivalent:
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1. M is an MFC forτ .

2. There exists a vectorw simple in D with respect toτ and Supp, such that
Supp(w) \ {τ} = M .

Proof. (1) ⇒ (2): By Corollary 7.5, there existsw ∈ D such thatwτ ≥ 1 and
Supp(w) \ {τ} ⊆ M . Let N = Supp(w) \ {τ}. By Corollary 7.5,N is an FC forτ .
SinceN is contained inM andM is minimal, we getM = N = Supp(w) \ {τ}. Sup-
pose thatsimp(D ,τ,Supp)(w) does not hold. Sincewτ ≥ 1, there exists a vectorw′ ∈ D

such thatw′
τ ≥ 1 andSupp(w′) ( Supp(w). Let N ′ = Supp(w′) \ {τ}. By Corol-

lary 7.5,N ′ is an FC forτ . Moreover,N ′ = Supp(w′) \ {τ} ( Supp(w) \ {τ} = M ,
which is a contradiction.

(1) ⇐ (2): By Corollary 7.5,M is an FC forτ . Suppose thatM is not minimal.
Then there exists a setN such thatN is an FC forτ andN ( M . By Corollary 7.5,
there existsw′ ∈ D such thatw′

τ ≥ 1, Supp(w′) \ {τ} ⊆ N and soSupp(w′) (
Supp(w), which is a contradiction.

Supposew =
∑m

i=1 αiSi∗−
∑

j∈Irr βjej is simple inD with respect toτ andSupp,
and lets =

∑m

i=1 αiSi∗. By Theorem 7.7, the setM = Supp(w) \ {τ} is an MFC for
τ . The following proposition shows thatM is completely defined by the vectors.

Proposition 7.8. Let D be the cone defined in equation (7.3). Letw =
∑m

i=1 αiSi∗ −
∑

j∈Irr βjej be a simple vector inD with respect toτ andSupp and lets =
∑m

i=1 αiSi∗.
Then,

Supp(w) \ {τ} = {i ∈ Irr \ {τ} | si < 0} ∪ {i ∈ Rev \ {τ} | si 6= 0}.

Proof. We have{i ∈ Irr \{τ} | si < 0}∪{i ∈ Rev\{τ} | si 6= 0} ⊆ Supp(w)\{τ}.
To show the reverse inclusion, suppose thatk ∈ (Supp(w)\{τ})∩Irr ,

∑m

i=1 αiSik ≥ 0
and let

w′ =

m
∑

i=1

αiSi∗ −
∑

j∈Irr\{k}
βjej − (

m
∑

i=1

αiSik)ek.

We then havew′ ∈ D . Sincew′ = w −wkek, wk 6= 0 andw′
k = 0, we getSupp(w′) (

Supp(w). Moreover, sincek 6= τ , we getw′
τ = wτ ≥ 1. Thus, there exists a vector

w′ ∈ D such thatw′
τ ≥ 1 andSupp(w′) ( Supp(w), which is a contradiction.

The proposition above leads to an alternative characterization of the MFCM using
the vectors lying in the vector subspace

E = {
m

∑

i=1

αiSi∗ | αi ∈ R for all i = 1, . . . , m}. (7.4)

Let Supp ′ : E → 2{1,...,n} be the function that maps each vectoru ∈ E to

Supp ′(u) = {i ∈ Irr \ {τ} | ui < 0} ∪ {i ∈ Rev \ {τ} | ui 6= 0}. (7.5)

According to Proposition 7.8, we haveM = Supp ′(s). Furthermore, as will be shown
in the next lemma,s is simple inE with respect toτ andSupp ′.
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Lemma 7.9. Let D be the cone (7.3). Letw =
∑m

i=1 αiSi∗ −
∑

j∈Irr βjej be a vector
in D and lets =

∑m

i=1 αiSi∗. Then, the following hold:

1. Supp ′(s) ⊆ Supp(w) \ {τ}.

2. If simp(D ,τ,Supp)(w) holds, thensimp(E,τ,Supp′)(s) holds.

Proof. 1. Let k ∈ Supp′(s). We have thenk 6= τ . If k ∈ Irr , thensk < 0,
wk = sk − βk < 0 and sok ∈ Supp(w) \ {τ}. Otherwise, we getwk = sk 6= 0
and sok ∈ Supp(w) \ {τ}. Thus,Supp ′(s) ⊆ Supp(w) \ {τ}.

2. Suppose thatsimp(E,τ,Supp′)(s) does not hold. Sincesτ ≥ wτ ≥ 1, there exists a
vectors′ ∈ E such thats′τ ≥ 1 andSupp′(s′) ( Supp ′(s). Let

w′ = s′ −
∑

j∈Irr\{τ},s′j>0

s′jej .

We havew′ ∈ D , w′
τ = s′τ ≥ 1 andSupp(w′) \ {τ} = Supp ′(s′) ( Supp′(s).

Moreover, sincesimp(D ,τ,Supp)(w) holds, it follows from Proposition 7.8 that
Supp ′(s) = Supp(w) \ {τ}. Thus, there exists a vectorw′ ∈ D with w′

τ ≥ 1 and
Supp(w′) ( Supp(w), which is a contradiction.

The next theorem shows that each MFC corresponds to a simple vector inE with
respect ofτ andSupp ′. MFCs can then be identified using simple vectors inE. This
reduces the complexity of the MFC computation sinceE is generated by onlym gen-
erators, whileD is spanned bym + |Irr| generators and defined by|Irr| additional
constraints.

Theorem 7.10.Let E be the cone (7.4) and letM ⊆ {1, . . . , n} \ {τ} be a set of
reactions. Then, the following are equivalent:

1. M is an MFC forτ .

2. There exists a vectors simple in E with respect toτ and Supp ′ such that
Supp ′(s) = M .

Proof. (1)⇒ (2): By Theorem 7.7, there exists a vectorw =
∑m

i=1 αiSi∗−
∑

j∈Irr βjej

simple inD with respect toτ andSupp, such thatM = Supp(w) \ {τ}. Let s =
∑m

i=1 αiSi∗. By Lemma 7.9,s is simple inE with respect toτ andSupp ′. Moreover,
by Corollary 7.8,Supp ′(s) = Supp(w) \ {τ} = M .

(2)⇒ (1): Let
w = s −

∑

j∈Irr\{τ},sj>0

sjej.

We havew ∈ D , wτ = sτ ≥ 1 andSupp(w) \ {τ} = Supp ′(s) = M . Suppose
thatsimp(D ,τ,Supp)(w) does not hold. Then, sincewτ ≥ 1, there exists a vectorw′ =
∑m

i=1 α′
iSi∗ −

∑

j∈Irr β ′
jej in D , such thatw′

τ ≥ 1 andSupp(w′) ( Supp(w). Since
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Supp(w) \ {τ} = Supp′(s) andSupp(w′) ( Supp(w), we getSupp(w′) \ {τ} (
Supp ′(s). Lets′ =

∑m

i=1 α′
iSi∗. We have thens′τ ≥ w′

τ ≥ 1. Moreover, by Lemma 7.9,
Supp ′(s′) ⊆ Supp(w′) \ {τ} and soSupp ′(s′) ( Supp ′(s), which is a contradiction.
Thus,w is simple inD with respect toτ andSupp and so, following Theorem 7.7,M
is an MFC forτ .

The results above show that MFCs can be identified using vectors simple inE with
respect ofτ andSupp ′. These results can also be used to determine MCSs. Indeed, an
MCS can be seen as the union of an MFC and an MBC depending on thereversibility
type of the target reaction. If the latter is irreversible, the empty set is the unique MBC
and MFCs are identical to MCSs.

Corollary 7.11. Let M ⊆ {1, . . . , n} \ {τ} be a set of reactions. If reactionτ is
irreversible, i.e.,τ ∈ Irr , then the following are equivalent:

1. M is an MCS forτ .

2. M is an MFC forτ .

The following corollary shows that, if the target reaction is reversible, each MCS
is the union of an MFC and an MBC.

Corollary 7.12. Let M ⊆ {1, . . . , n} \ {τ} be a set of reactions. If reactionτ is
reversible, i.e.,τ ∈ Rev , andM is an MCS forτ , then there exist an MFCM1 and an
MBC M2 for τ , such thatM = M1 ∪ M2.

Proof. SupposeM is an MCS. Then,M is also an FC and an BC forτ . Thus, there
exist two sets of reactionsM1 andM2 such thatM1 is an MFC forτ , M2 is an MBC
for τ , M1 ⊆ M andM2 ⊆ M . Then, we haveM1 ∪ M2 ⊆ M . SinceM1 ∪ M2 is also
a cut set forτ andM is minimal, we getM = M1 ∪ M2.

The mathematical results above suggest an algorithm to identify MFCs by means of
vectors simple inE with respect ofτ andSupp ′. One possible approach to determine
these simple vectors is the use of mixed-integer linear programming (MILP).

7.4 Algorithm for Finding MFCs

We have shown that each MFC corresponds to a simple vector inE with respect toτ
andSupp′. To identify such a simple vector, we first introduce for eachreactionj 6= τ
a binary variableλj . By L andU we denote resp. some lower and upper bound for
vectorss ∈ E, i.e.,L ≤ sj ≤ U for all j ∈ {1, . . . , n} \ {τ}. A simple vector inE
with respect toτ andSupp ′ corresponds to an optimal solution of the following MILP:
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min
∑

j 6=τ λj

subject to: sτ ≥ 1,
Lλj ≤ sj ≤ Uλj , ∀j ∈ Rev , (a)
Lλj ≤ sj, ∀j ∈ Irr \ {τ}, (b)
(s1, . . . , sn) ∈ E,
λj ∈ {0, 1}, ∀j ∈ {1, . . . , n} \ {τ}.

Conditions (a) and (b) ensure for allj ∈ {1, . . . , n}\{τ} thatj ∈ Supp ′(s) implies
λj = 1. Although a solution(s, λ) may exist withλk = 1 andk /∈ Supp ′(s) for some
k ∈ {1, . . . , n} \ {τ}, this solution is not optimal. Indeed,(s, λ′) with λ′

k = 0 and
λ′

j = λj for all j 6= k would be another solution with a smaller value of the objective
function. For an optimal solution(s∗, λ∗), we have

λ∗
j = 1 if and only if j ∈ Supp ′(s∗). (7.6)

Therefore, s∗ is a simple vector inE with respect toτ and Supp ′, and M =
Supp ′(s∗) = {j | λ∗

j = 1} is an MFC.
Here, we are interested in finding all MFCs. We propose an iterative MILP that

obtains, in each iterationi, an optimal solution(s∗, λ∗) and so an MFCM i = {j |
λ∗

j = 1}. We ensure the selection of a new MFCM i by imposing the following
constraint on the binary variables:

∑

j∈M i−1

λj ≤ |M i−1| − 1, (7.7)

whereM i−1 is the MFC obtained in the previous iterationi−1. This condition signifies
that at least one reactionj ∈ M i−1 is not included inM i, otherwiseM i−1 would be
contained inM i, and since the latter is minimal, we would getM i = M i−1. The
algorithm stops when no other optimal solution can be found.

Flux coupling analysis introduced in the previous chapter could be used to opti-
mize our algorithm. This analysis allows identifying directional couplings between

reactions. A reactionj is directionally coupled with some reactioni, written i
=0
→ j,

if a zero flux throughi implies a zero flux throughj. In this case, at mosti or j is
contained in an MFC. This is expressed by the following constraint:

λi + λj ≤ 1 ∀i, j ∈ {1, . . . , n} \ {τ} such thati
=0
→ j. (7.8)

In addition, a reactioni such thati
=0
→ τ is itself a trivial MFC. Therefore, the

following constraint holds for non-trivial MFCs:

λi = 0 ∀i ∈ {1, . . . , n} \ {τ} such thati
=0
→ τ. (7.9)

A typical example of coupled reactions areenzyme subsets[78]. Indeed, the fluxes
through reactions in an enzyme subset are proportional to each other. Given the en-
zyme subsets of a metabolic network, we can obtain, in a pre-processing step of our
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Algorithm 3 Procedure for computing minimal direction cuts.

Input: • Target reactionτ,
• Stoichiometric matrixS,
• Set of irreversible reactionsIrr ⊆ {1, . . . , n},
• Maximal size of MFCsMaxSize.

Optional: • Coupled reactions

Φ = {(i, j) | i
=0
→ j ∨ j

=0
→ i, 1 ≤ i < j ≤ n, i 6= τ, j 6= τ},

Ψ = {i | i
=0
→ τ, 1 ≤ i ≤ n, i 6= τ},

• Set∆ ⊆ {1, . . . , n} of reactions that must not occur in MFCs,
Output: • Set̥ of minimal forward direction cuts (MFCs).
Initialization: M := ∅.

/* Trivial MFCs */
add({τ}, ̥);
for all i ∈ Ψ do

if i /∈ ∆ then add({i}, ̥));
end if

end for

repeat
/* Find a vector simple inE with respect toτ andSupp ′ */
Solve the MILP problem

min
∑

j 6=τ λj

subject to:
∑m

i=1 αiSiτ ≥ 1,
Lλj ≤

∑m

i=1 αiSij ≤ Uλj ∀j ∈ Rev ,
Lλj ≤

∑m

i=1 αiSij ∀j ∈ Irr \ {τ},
λi + λj ≤ 1 ∀(i, j) ∈ Φ,
λi = 0 ∀i ∈ Ψ,
λi = 0 ∀i ∈ ∆,
∑

j 6=τ λj ≤ MaxSize
λj ∈ {0, 1} ∀j ∈ {1, . . . , n} \ {τ},
αi ∈ R ∀i ∈ {1, . . . , m},

and let(α∗, λ∗) be its optimal solution.

/* Retrieve the corresponding MFC */
M = {j | λ∗

j = 1};
add(M , ̥);

/* Force the selection of a new MFC in the next iteration */
add to the constraint system:

∑

j∈M λj ≤ |M | − 1.
until No other solution is found
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algorithm, a compressed network with the enzyme subsets taken as combined reac-
tions. This compression, which is identical to that presented in [34], results in a smaller
network, and so computing the MFCs for the compressed network is easier than com-
puting those of the original network.

Our approach may be hampered by the huge number of possible minimal direc-
tion cuts. However, with our method, we can easily add new constraints to reduce the
search space. For instance, from the practical viewpoint, we could require that minimal
direction cuts contain only external reactions. These reactions reflect the experimental
conditions the biological system is placed on and so could easily be controlled exper-
imentally. On the other hand, while looking for minimal direction cuts for a target
reaction, we should be careful not to perturb involuntarilyother reactions that are im-
portant. As an example, consider again the network depictedin Fig. 7.1. Assume
we wish to repress the consumption of metaboliteP1 and maintain the production of
metaboliteP2. Removing reaction3 inhibits the consumption ofP1. However, this
perturbation forbids also the production ofP2. Therefore, reaction3 should be ex-
cluded from minimal direction cuts. In general, we could define a set of reactions
∆ ⊆ {1, . . . , n} that should not occur in minimal direction cuts, and then impose the
following additional condition on the binary variables corresponding to these reactions:

λi = 0 ∀i ∈ ∆. (7.10)

Finally, we often are interested in removing a small number of reactions from a
metabolic network. Enumerating all the MFCs is not always necessary. Our algo-
rithm allows for defining the maximal size (MaxSize) of the MFCs to be computed by
imposing the following constraint:

∑

j 6=τ

λj ≤ MaxSize (7.11)

7.5 Computational Results for the Central
Metabolism of E. coli

Our iterative algorithm, whose main steps are shown in Algorithm 3, has been im-
plemented in the Java language. We used CPLEX 9.0 as our solver for linear and
integer programming problems, accessed via Java. In order to check the capabilities
of our algorithm, we computed the MFCs in the central metabolic network ofE. coli
with ‘biomass reaction’ as a target reaction. We consideredfour variants of theE. coli
central metabolism corresponding to the growth on four different substrates (acetate,
succinate, glycerol and glucose). In order to work on networks with different com-
plexities, the authors of [106] have inserted in these variants several pseudo reactions.
This results in an increase in the number of elementary modes. Recall that the diffi-
culty of computing MCSs using the traditional algorithm grows with the number of
elementary modes. On the other hand, the target reaction is irreversible, and so the
MFCs and MCSs are identical. Therefore, working on these four variants also allows
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Substrate Acetate Succinate Glycerol Glucose
♯reactions (n) 104 104 106 105
♯metabolites (m) 88 88 89 88
♯EMs (network complexity) 599 4250 11333 27100
♯MFCs 206 340 624 1249
Computation time 1min 28s 22m 20s 1h 14min 12h 10min

Table 7.1: Computation of MFCs for variants of the central metabolism ofE. coli, with the
number of reactions (n), the number of metabolites (m), the number of elementary
modes (♯EMs) and the number of MFCs (♯MFCs). Contrary to MCSs, the computa-
tion of MFCs does not require that of elementary modes. For all computations, we
defined six as the maximal size of the MFCs.

for comparing a direct computation of MCSs using our algorithm with a computation
using elementary modes. Experiments for computing MCSs in the four variants of the
E. coli metabolism using the traditional algorithm are described in [47].

Table 7.1 summarizes our computational results. The computations were per-
formed on a Solaris server with a Sparc III Processor 900 MHz and 32 GB RAM. We
did not use additional constraints (7.8), (7.9) and (7.10) that would allow for reduc-
ing the search space. The computation times of our current prototype implementation
may be compared with those given in [47]. Note that the latterdo not include the time
needed for computing the elementary modes, which is known tobe a complex combi-
natorial problem. In addition, our results show that the difficulty of computing MFCs
grows with the number of elementary modes. This observation, which holds also for
MCSs, reflects that the number of elementary modes is a measure of the complexity of
the network analysis. Note however that, contrary to MCSs, the computation of MFCs
does not require that of elementary modes.



CHAPTER

8 Constraint-Based Analysis
of Gene Deletion in
Metabolic Networks

The range of all possible behaviors, which is mathematically described by the steady-
state flux cone, can be altered by gene deletion. In this chapter, we analyze the changes
in the overall capabilities of a metabolic network caused bygene deletion. In particular,
we show how to obtain in a constraint-based approach a description of the altered
steady-state flux cone. The analysis is based on our refined classification of reactions
(irreversible, pseudo-irreversible and fully reversiblereactions). The work we present
in this chapter has been partially published in [60].

8.1 Constraint-based Modeling of Gene Deletion

Recall that, in the context of metabolic network analysis, metabolic systems are as-
sumed to operate at steady state such that for all internal metabolites the flux is bal-
anced. In addition, the flux through each irreversible reaction must be non-negative.
Fluxes through reversible reactions are not restricted with respect to their sign. The set
of all possible flux distributions over the network at steadystate defines the steady-state
flux cone

C = {v ∈ Rn | Sv = 0, vi ≥ 0, for all i ∈ Irr}. (8.1)

Let τ ∈ {1, . . . , n} be the target reaction associated with the deleted gene. To
simulate gene deletion, we constrain the flux through reaction τ to zero. This leads to
thealtered flux cone

Cτ0 = {v ∈ Rn | Sv = 0, vτ = 0, vi ≥ 0, for all i ∈ Irr}. (8.2)

The altered flux cone contains the full range of achievable behaviors of the altered
metabolic network at steady state. Hence, it is of great interest to describe this cone in
a mathematically and biologically meaningful way. This canbe done using an existing
description of the flux coneC. In what follows, we provide a minimal and unique
description of the altered cone using minimal metabolic behaviors and the reversibility
space of the original flux cone.
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8.2 Characterizing Minimal Proper Faces of the
Altered Flux Cone

In this section we mainly characterize the minimal proper faces of the altered flux cone
Cτ0 defined in equation (8.2). Mathematically, this cone is alsogiven by

Cτ0 = C ∩ {v ∈ Rn | vτ = 0}.

Therefore, we may deduce an outer description of the alteredconeCτ0 from an outer
description of the original coneC. First, we can easily see that the lineality space of
the altered flux coneCτ0 is given by

lin.space(Cτ0) = lin.space(C) ∩ {v ∈ Rn | vτ = 0}.

Obviously, if reactionτ is not fully reversible, i.e.,τ /∈ Frev , we havelin.space(C) ⊆
{v ∈ Rn | vτ = 0} and solin.space(Cτ0) = lin.space(C).

In the following, we use the double description method (reviewed in Chap. 2) to de-
termine the minimal proper faces of the altered coneCτ0. For this, we should mention
that the altered flux coneCτ0 is also given by

Cτ0 = C ∩ {v ∈ Rn | vτ ≤ 0} ∩ {v ∈ Rn | −vτ ≥ 0}.

Let Cτ+ be the cone defined byCτ+ = C ∩ {v ∈ Rn | vτ ≥ 0}. The altered cone
Cτ0 is also given byCτ0 = Cτ+ ∩ {v ∈ Rn | −vτ ≥ 0}. Accordingly, using the double
description method, we can deduce a description ofCτ0 from that ofCτ+ , which in
turn can be computed from the description ofC.

Let J = {G1, . . . , Gs} be the set of minimal proper faces ofC and t =
dim(lin.space(C)). Select for eachi = 1, . . . , s a vectorgi ∈ Gi \ lin.space(C), and
let R = (g1, . . . , gs). Let B = (b1, . . . , bt) be a basis oflin.space(C). Accordingly,
(R, B) is a double description pair (DDP) of the flux coneC, i.e.,

C = {x ∈ Rn | x = Rλ + Bµ for someλ ∈ Rs
≥0 andµ ∈ Rt}.

Moreover,(R, B) is minimal, i.e., no proper submatrix of(R, B) can generate the
coneC. In the following, we show how the description of the alteredflux coneCτ0

depends on the reversibility type of the target reactionτ . Remember that we defined
the following decomposition of the reversible reaction setRev = {1, . . . , n} \ Irr :

– Prev 0: set of pseudo-irreversible reactions, i.e.,Prev 0 = {i ∈ Rev | vi =
0, for all v ∈ lin.space(C)},

– Frev : set of fully reversible reactions, i.e.,Frev = Rev \ Prev 0.

We now will study the minimal proper faces of the altered flux coneCτ0, depending
on the reversibility type of the target reactionτ .
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8.2.1 Removing a Fully Reversible Reaction

If τ ∈ Frev is fully reversible, there exists a flux vectorbk ∈ B such thatbk
τ 6= 0, and

solin.space(C) * {v ∈ Rn | vτ = 0}. Assume thatbk
τ > 0. Otherwise we can take the

vector−bk since we also have−bk ∈ lin.space(C). Moreover, for eachi = 1, . . . , s,
there exists a vectorgi ∈ Gi \ lin.space(C) such thatgi

τ = 0. Accordingly, assume
that we choose the setR such thatgi

τ = 0 for all gi ∈ R.
SinceCτ+ = C ∩ {v ∈ Rn | vτ ≥ 0} and lin.space(C) * {v ∈ Rn | vτ = 0},

according to the double description method, a minimal DDP(Rτ+ , Bτ+) of Cτ+ is
given by

– Bτ+ = (b1, . . . , bt−1) with b
i = bi − (bi

τ/b
k
τ ) · b

k for all bi ∈ B \ {bk},

– Rτ+ = R ∪ {bk}.

SinceCτ0 = Cτ+ ∩ {v ∈ Rn | −vτ ≥ 0}, lin.space(Cτ+) ⊆ {v ∈ Rn | vτ = 0},
gi

τ = 0 for all gi ∈ R andbk
τ > 0, following the double description method, a minimal

DDP (Rτ0 , Bτ0) of Cτ0 is given by

– Bτ0 = Bτ+ ,

– Rτ0 = R.

Based on the results above, the following proposition characterizes the minimal
proper faces of the altered flux coneCτ0 .

Proposition 8.1. If τ ∈ Frev is fully reversible, the setJτ0 of minimal proper faces of
the altered coneCτ0 is given by

Jτ0 = {Gi ∩ {v ∈ Rn | vτ = 0} | Gi ∈ J}.

Proof. Let Gτ0 be a minimal proper face ofCτ0 generated by a vectorg ∈ Rτ0 . Since
Rτ0 = R, we getg = gi for somegi ∈ R. Accordingly,Cτ0 andGi are given by

Gτ0 = {α′ · gi + b′ | α′ ≥ 0 andb′ ∈ lin.space(Cτ0)},

Gi = {α · gi + b | α ≥ 0 andb ∈ lin.space(C)}.

Sincelin.space(Cτ0) ⊆ lin.space(C), we haveGτ0 ⊆ Gi ∩ {v ∈ Rn | vτ = 0}. To
show the reverse inclusion, supposev ∈ Gi ∩ {v ∈ Rn | vτ = 0}. There existα ≥ 0
andb ∈ lin.space(C)} such thatv = α · gi + b andvτ = αgi

τ + bτ = 0. Sincegi
τ = 0,

we getbτ = 0 and sob ∈ lin.space(Cτ0). Therefore,v ∈ Gτ0. We conclude that

Gτ0 = Gi ∩ {v ∈ Rn | vτ = 0}.
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8.2.2 Removing a (Pseudo-) Irreversible Reaction

If τ ∈ Irr ∪ Prev 0 is (pseudo-) irreversible, we havelin.space(C) ⊆ {v ∈ Rn | vτ =
0} and so

lin.space(Cτ0) = lin.space(C).

Consider the hyperplaneH = {v ∈ Rn | vτ = 0} and letH+ = {v ∈ Rn | vτ > 0}
(resp.H− = {v ∈ Rn | vτ < 0}) be the positive (resp. negative) half-space supported
by the hyperplaneH. We partition the setR into three parts:

R+ = {gi ∈ R | gi
τ > 0},

R0 = {gi ∈ R | gi
τ = 0},

R− = {gi ∈ R | gi
τ < 0}.

We should mention that, sinceτ ∈ Irr ∪ Prev0, for eachi = 1, . . . , s, gi
τ > 0 (resp.

gi
τ < 0, gi

τ = 0) if and only if Gi \ lin.space(C) ⊆ H+ (resp.Gi \ lin.space(C) ⊆ H−,
Gi \ lin.space(C) ⊆ H). Accordingly,H partitions the setJ of minimal proper faces
of C into three parts:

J+ = {Gi ∈ J | Gi \ lin.space(C) ⊆ H+},
J0 = {Gi ∈ J | Gi \ lin.space(C) ⊆ H},
J− = {Gi ∈ J | Gi \ lin.space(C) ⊆ H−}.

SinceCτ+ = C ∩ {v ∈ Rn | vτ ≥ 0} and lin.space(C) ⊆ {v ∈ Rn | vτ = 0},
following the double description method, a minimal DDP(Rτ+ , Bτ+) of Cτ+ is given
by

– Bτ+ = B,

– Rτ+ = R+ ∪ R0 ∪ Adj with Adj = {gk
τ · gl − gl

τ · gk | Gk ∈ J+, Gl ∈
J−, Gk andGl are adjacent inC}.

Recall that two minimal proper faces ofC are adjacent if they are contained in one
face ofC of dimensiont + 2.

SinceCτ0 = Cτ+∩{v ∈ Rn | −vτ ≥ 0} andlin.space(Cτ+) ⊆ {v ∈ Rn | vτ = 0},
according to the double description method, a minimal DDP(Rτ0 , Bτ0) of Cτ0 is given
by

– Bτ0 = Bτ+ = B,

– Rτ0 = R0 ∪ Adj.

In the following, we characterize the minimal proper faces of the altered flux cone
Cτ0 .

Definition 8.2. For each pair of minimal proper facesGk ∈ J+ andGl ∈ J−, let

comb(Gk, Gl) = {gk
τ · gl − gl

τ · g
k | gk ∈ Gk andgl ∈ Gl}.
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Note that, given two minimal proper facesGk ∈ J+ and Gl ∈ J−, we have
comb(Gk, Gl) ⊆ C ∩ {v ∈ Rn | vτ = 0} and socomb(Gk, Gl) ⊆ Cτ0.

Proposition 8.3. If τ ∈ Irr ∪ Prev 0 is (pseudo-) irreversible, the setJτ0 of minimal
proper faces of the altered coneCτ0 is given by

Jτ0 = J0 ∪ {comb(Gk, Gl) | Gk ∈ J+, Gl ∈ J−, Gk andGl are adjacent in C}.

Proof. Let Gτ0 be a minimal proper face ofCτ0 generated by a vectorg ∈ Rτ0 . Since
Rτ0 = R0 ∪ Adj, eitherg ∈ R0 or g ∈ Adj.

– If g ∈ R0, we haveg = gi for somegi ∈ R0. Accordingly,Cτ0 andGi are given
by

Gτ0 = {α′ · gi + b′ | α′ ≥ 0 andb′ ∈ lin.space(Cτ0)},

Gi = {α · gi + b | α ≥ 0 andb ∈ lin.space(C)}.

It follows from lin.space(Cτ0) = lin.space(C) thatGτ0 = Gi and soGτ0 ∈ J0.

– If g ∈ Adj, there existGk ∈ J+ and Gl ∈ J− that are adjacent andg =
gk

τ · gl − gl
τ · g

k. Accordingly,Cτ0 is given by

Gτ0 = {α · (gk
τ · gl − gl

τ · g
k) + b | α ≥ 0 andb ∈ lin.space(C)}.

We can easily see thatcomb(Gk, Gl) ⊆ Gτ0 . To show the reverse inclusion,
supposev ∈ Gτ0 \ lin.space(C). There existα > 0 andb ∈ lin.space(C) such
thatv = α · (gk

τ · gl − gl
τ · g

k) + b. Let g1 = gk − (1/α) · b andg2 = α · gl. We
haveg1 ∈ Gk, g2 ∈ Gl andv = g1

τ · g
2 − g2

τ · g
1. Therefore,v ∈ comb(Gk, Gl),

and soGτ0 ⊆ comb(Gk, Gl). We conclude thatGτ0 = comb(Gk, Gl) and the
claim follows.

If J+ = ∅ or J− = ∅, which is particularly the case ifτ ∈ Irr is irreversible, we
getJτ0 = J0. Accordingly, the set of minimal proper faces ofCτ0 is the set of minimal
proper facesG of C for which there exists no vectorv ∈ G such thatvτ 6= 0.

In the following, we assume thatJ+ 6= ∅ andJ− 6= ∅. In addition to minimal
proper facesG ∈ J0, Jτ0 contains the minimal proper facescomb(Gk, Gl) where
Gk ∈ J+ andGl ∈ J− are adjacent. In the following, we further characterize these
adjacent faces.

Lemma 8.4. Let Gk ∈ J+ andGl ∈ J− be two minimal proper faces ofC and let
Dk andDl their characteristic sets, respectively. LetG = {v ∈ C | vi = 0 for all i ∈
Irr \ (Dk ∪ Dl)}. The following are equivalent:

1. Gk andGl are adjacent.

2. G is of dimensiont + 2.



110

Proof. (1) ⇒ (2): SinceG is a face ofC that contains two different facesGk andGl,
G is not a minimal proper face ofC, and sodim(G) ≥ t + 2. On the other hand,Gk

andGl are adjacent and so are contained in a faceF of C such thatdim(F ) = t + 2.
Let F = {v ∈ C | vi = 0 for all i ∈ Irr \ D} for someD ⊆ Irr . SinceGk ⊆ F
andGl ⊆ F , we getDk ⊆ D andDl ⊆ D and soDk ∪ Dl ⊆ D. Therefore,G ⊆ F ,
dim(G) ≤ t + 2 and so the claim follows.

(2) ⇒ (1): Gk andGl are contained in a faceG of dimensiont + 2 and so are
adjacent.

As we pointed out before, given two minimal proper facesGk ∈ J+ andGl ∈ J−

which are adjacent,comb(Gk, Gl) is a minimal proper face ofCτ0. While this face
is defined by flux vectors fromGk andGl (see Definition 8.2), it is also interesting
to determine the irreversible reactions which characterize this face. The following
proposition states that the characteristic set ofcomb(Gk, Gl) is the setDk ∪ Dl.

Proposition 8.5. Let Gk ∈ J+ andGl ∈ J− be two minimal proper faces ofC and let
Dk andDl their characteristic sets, respectively. LetG = {v ∈ C | vi = 0 for all i ∈
Irr \ (Dk ∪ Dl)}. If τ ∈ Prev 0 is pseudo-irreversible and the facesGk andGl are
adjacent, then

comb(Gk, Gl) = G ∩ {v ∈ Rn | vτ = 0},

and so the characteristic set ofcomb(Gk, Gl) is the setDk ∪ Dl.

Proof. LetG′ = G∩{v ∈ Rn | vτ = 0}. Considerg ∈ comb(Gk, Gl). We havegτ = 0
andgi = 0 for all i ∈ Irr \ (Dk ∪ Dl). Therefore,g ∈ G′ and socomb(Gk, Gl) ⊆ G′.
We now will show the reverse inclusion. Sinceτ ∈ Prev0, dim(lin.space(Cτ0)) =
dim(lin.space(C)) = t. SinceGk andGl are adjacent,comb(Gk, Gl) is a minimal
proper face ofCτ0. Therefore,dim(comb(Gk, Gl)) = t+1 and sodim(G′) ≥ t+1. In
addition, according to Lemma 8.4,G is a face ofC of dimensiont + 2. SinceGk ⊆ G
andGl ∈ J+, we getG * {v ∈ Rn | vτ = 0}. It follows thatdim(G′) ≤ dim(G) − 1
and sodim(G′) ≤ t + 1. We can now conclude thatG′ is a face ofCτ0 of dimension
t + 1 and so is a minimal proper face ofCτ0 . Sincecomb(Gk, Gl) ⊆ G′ and both
comb(Gk, Gl) andG′ are minimal proper faces ofCτ0 , the claim follows.

The following proposition states that the pair(Gk, Gl) ∈ J+ × J− defining a
minimal proper facecomb(Gk, Gl) of Cτ0 is unique.

Proposition 8.6. Let Gk ∈ J+ andGl ∈ J− be two minimal proper faces ofC and let
Dk andDl their characteristic sets, respectively. LetG = {v ∈ C | vi = 0 for all i ∈
Irr \ (Dk ∪ Dl)}. If τ ∈ Prev 0 is pseudo-irreversible and the facesGk andGl are
adjacent, thenG contains exactly two minimal proper faces ofC, i.e.,Gk andGl.

Proof. Suppose there existsGp ∈ J such thatGp ⊆ G. By Lemma 8.4, sinceGk and
Gl are adjacent, we havedim(G) = t+2. Moreover, it follows fromdim(Gk) = t+1,
Gk ⊆ G andgl /∈ Gk that (b1, . . . , bt, gk, gl) is a basis oflin(G). Accordingly, since
gp ∈ lin(G), there existαk, αl ∈ R andb ∈ lin.space(C) such thatgp = αk · gk + αl ·
gl + b. SinceDk * Dl andDl * Dk, there existi ∈ Dk \ Dl andj ∈ Dl \ Dk. We
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havegp
i = αkg

k
i ≥ 0 andgp

j = αlg
l
j ≥ 0. Therefore,αk ≥ 0 andαl ≥ 0. Moreover,

sincegp /∈ lin.space(C), αk 6= 0 or αl 6= 0, or equivalently,Dk ⊆ Dp or Dl ⊆ Dp.
SinceGk, Gl, Gp ∈ J , we conclude thatGp = Gk or Gp = Gl.

8.3 Minimal Metabolic Behaviors of the Altered Flux
Cone

Minimal metabolic behaviors of the altered flux coneCτ0 are in a 1-1 correspondence
with minimal proper faces ofCτ0 . Using the results from the preceding section, this
observation leads to the following results.

8.3.1 Removing a Fully Reversible Reaction

If τ ∈ Frev is fully reversible, the unique effect of removing reactionτ is the reduction
of the dimension of the reversible metabolic spaceRMS τ0 , i.e.,

dim(RMS τ0) = dim(RMS ) − 1.

The MMBs ofCτ0 are the same as those ofC.

8.3.2 Removing an Irreversible Reaction

If τ ∈ Irr is irreversible, the reversible metabolic space does not change, i.e.,

RMS τ0 = RMS .

In analogy with elementary modes, we can state the followingconservation property
for minimal metabolic behaviors: if the flux through an irreversible reaction is con-
strained to zero, the set of MMBs of the altered flux coneCτ0 is the set of all MMBs
of the flux coneC which do not involve this reaction. Accordingly, ifτ ∈ Irr is irre-
versible, the conservation property of minimal metabolic behaviors guarantees that the
MMBs of Cτ0 are exactly the MMBsD of C for which j 6∈ D.

8.3.3 Removing a Pseudo-irreversible Reaction

If τ ∈ Prev0 is pseudo-irreversible, the reversible metabolic space does not change,
i.e.,

RMS τ0 = RMS .

Let M0 (resp.M+, M−) be the set of characteristic sets of a minimal proper face
G ∈ J0 (resp.G ∈ J+, G ∈ J−), and letMτ0 be the set of MMBs ofCτ0 . If M+ = ∅
or M− = ∅, thenMτ0 = M0. Accordingly, the set of MMBs ofCτ0 is the set of
MMBs of C whose auxiliary sets do not containτ . Remember that ifG a is minimal
proper face ofC characterized by an MMBD, the auxiliary set ofD is the set of
pseudo-irreversible reactionsj ∈ Prev 0 for which there existsv ∈ G such thatvj 6= 0.
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In the following, we assume thatM+ 6= ∅ andM− 6= ∅. In addition to the MMBs
D ∈ M0, Mτ0 contains those which are combinations of the MMBs ofC. The next
proposition defines an algebraic characterization of theseMMBs.

Proposition 8.7. Let τ ∈ Prev 0 be a pseudo-irreversible reaction and lett =
dim(lin.space(C)). Given two MMBsDk ∈ M+, Dl ∈ M− of the flux coneC,
the following are equivalent

1. Dk ∪ Dl is an MMB of the altered coneCτ0 .

2. rank(S∗Dk∪Dl∪Rev) = |Dk ∪ Dl| + |Rev | − t − 2.

Proof. According to Propositions 8.3 and 8.5 and Lemma 8.4,Dk ∪Dl is an MMB of
the altered coneCτ0 if and only if G = {v ∈ C | vi = 0 for all i ∈ Irr \ (Dk ∪ Dl)}
is a face ofC such that

dim(lin(G)) = t + 2. (8.3)

Let I ∈ Rn×n be the identity matrix and letD = Irr \ {Dk ∪ Dl}. Sincelin(G) is the
null space of the matrix

(

S
ID∗

)

,

(8.3) is equivalent to

rank(

(

S
ID∗

)

) = n − t − 2. (8.4)

Using some row operations, we get the following equation

rank(

(

S
ID∗

)

) = |D| + rank(S∗Dk∪Dl∪Rev). (8.5)

We also know that
n = |Rev | + |Irr |. (8.6)

Combining equations (8.4), (8.5) and (8.6), we obtain

rank(S∗Dk∪Dl∪Rev) = |Dk ∪ Dl| + |Rev | − t − 2. (8.7)

We can use statement (8.7) to define an upper bound on the cardinality of all pairs
of MMBs Dk ∈ M+ andDl ∈ M− for whichD = Dk ∪ Dl can be an MMB ofCτ0 .
Indeed, we know that

rank(S∗Dk∪Dl∪Rev) ≤ rank(S) (8.8)

holds for all MMBsDk ∈ M+ andDl ∈ M− of C. Accordingly, (8.7) and (8.8) lead
to the following corollary.

Corollary 8.8. Let Dk ∈ M+, Dl ∈ M− two MMBs of the flux coneC. The set
Dk ∪ Dl can be an MMB of the altered flux coneC only if

|Dk ∪ Dl| ≤ rank(S) − |Rev | + t + 2. (8.9)
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In the following proposition, we provide a combinatorial characterization of the
MMBs of C that can be combined to generate the MMBs ofCτ0 . First we need the
following lemma.

Lemma 8.9.For each MMBsDk ∈ M+, Dl ∈ M− of the flux coneC, the setDk∪Dl

is a metabolic behavior (MB) of the altered coneCτ0.

Proof. Let Dk ∈ M+, Dl ∈ M− be two MMBs ofC. We haveDk = {i ∈ Irr | gk
i 6=

0}, Dl = {i ∈ Irr | gl
i 6= 0}, gk

τ > 0 andgl
τ < 0. Let g = gk

τ · gl − gl
τ · g

k. We have
g ∈ C, gτ = 0 and sog ∈ Cτ0. Moreover,Dk ∪ Dl = {i ∈ Irr | gi 6= 0}. Therefore,
the setDk ∪ Dl is an MB of the altered coneCτ0.

Proposition 8.10. Given two MMBsDk ∈ M+, Dl ∈ M− of the flux coneC, the
following are equivalent

1. Dk ∪ Dl is an MMB of the altered coneCτ0 .

2. For each MMBDi of C, Di ⊆ Dk ∪ Dl implies thatDi = Dk or Di = Dl.

Proof. (1)⇒ (2): LetDi be an MMB ofC such thatDi ⊆ Dk∪Dl. LetGi, Gk, Gl ∈ J
the minimal proper faces ofC whose characteristic sets areDi, Dk, Dl, respectively,
and letG = {v ∈ C | vi = 0 for all i ∈ Irr \(Dk∪Dl)}. It follows fromDi ⊆ Dk∪Dl

thatGi ⊆ G. SinceDk∪Dl is an MMB of the altered coneCτ0 , Gk andGl are adjacent
in C. By Proposition 8.6, we getGi = Gk or Gi = Gl, or equivalently,Di = Dk or
Di = Dl.

(2) ⇒ (1): According to Lemma 8.9,Dk ∪ Dl is an MB of Cτ0. Suppose there
exists an MMBD of Cτ0 such thatD ⊆ Dk ∪ Dl. If D ∈ M0, thenD is an MMB
of C and soD = Dk or D = Dl. This is a contradiction sinceDk /∈ M0 and
Dl /∈ M0. Therefore,D /∈ M0 and so there existDp ∈ M+ andDq ∈ M− such that
D = Dp ∪ Dq. Accordingly,Dp ⊆ D andDq ⊆ D. SinceD ⊆ Dk ∪ Dl, we get
Dp ⊆ Dk ∪Dl, Dq ⊆ Dk ∪Dl, and soDp = Dl andDq = Dl. Hence,D ⊆ Dk ∪Dl

impliesD = Dk ∪ Dl and soDk ∪ Dl is an MMB ofCτ0.

Example 8.11.In the metabolic network from Fig. 8.1,dim(RMS ) = 2. The MMBs
and the corresponding minimal proper faces of the flux coneC are as follows:

D1 = {2}, D2 = {6, 7}, D3 = {6, 8},
Gk = {v ∈ C | vi = 0, i ∈ Irr \ Dk}, k = 1, 2, 3.

Consider the following cases:

1. τ = 3: τ ∈ Frev and sodim(RMS τ0) = dim(RMS ) − 1 = 1. The MMBs and
the corresponding minimal proper faces of the altered coneCτ0 are as follows:

Dk
τ0 = Dk, k = 1, 2, 3,

Gk
τ0 = Gk ∩ {v ∈ Rn | vτ = 0}, k = 1, 2, 3.
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2. τ = 8: τ ∈ Irr and soRMS τ0 = RMS . Moreover,J0 = {D1, D2}. Therefore,
the MMBs and the corresponding minimal proper faces of the altered coneCτ0

are as follows:
Dk

τ0 = Dk, k = 1, 2,
Gk

τ0 = Gk, k = 1, 2.

3. τ = 1: τ ∈ Prev0 and soRMS τ0 = RMS . Moreover,J0 = {D2, D3} and
J− = ∅. Therefore, the MMBs and the corresponding minimal proper faces of
the altered coneCτ0 are as follows:

Dk−1
τ0 = Dk, k = 2, 3,

Gk−1
τ0 = Gk, k = 2, 3.

4. τ = 4: τ ∈ Prev0 and soRMS τ0 = RMS . Moreover,J0 = ∅ , J+ = {D1}
andJ− = {D2, D3}. SinceD1 ∈ J+, D2, D3 ∈ J−, D3 * D1 ∪ D2 and
D2 * D1 ∪ D3, the MMBs and the corresponding minimal proper faces of the
altered coneCτ0 are as follows:

D1
τ0 = D1 ∪ D2, D2

τ0 = D1 ∪ D3,
Gk

τ0 = {v ∈ C | vi = 0, i ∈ Irr \ Dk
τ0} ∩ {v ∈ Rn | vτ = 0}, k = 1, 2.

The results above can be extended to predict the effect on theflux cone when
constraining the reversibility of some reaction. If a reversible reactionι is constrained
to operate in the forward (resp. backward) direction only, the altered flux cone will be
Cι+ = C ∩ {v ∈ Rn | vι ≥ 0} (resp.Cι− = C ∩ {v ∈ Rn | vι ≤ 0}). Again, the
description ofCι+ andCι− can be deduced from that of the flux coneC depending
on the reversibility type of reactionι. Indeed, ifι ∈ Prev 0 is pseudo-irreversible, the
MMBs of Cι+ (resp.Cι−) are the MMBs of the altered coneCι0 = C ∩ {v ∈ Rn |
vι = 0}, together with the MMBsD ∈ M+ (resp.D ∈ M−) of the flux coneC. The
reversible metabolic space does not change, i.e.,RMS ι+ = RMS ι− = RMS . On the
other hand, ifι ∈ Frev is fully reversible, the MMBs ofCι+ andCι− are the MMBs
of C, together with a new MMBD = {ι} and dim(RMS ι+) = dim(RMS ι−) =
dim(RMS ) − 1.
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8.4 Reaction Reversibility in the Altered Network

We conclude this chapter by studying the changes in the reversibility type of reactions
following a gene deletion. The set of irreversible (resp. reversible) reactionsIrr ′ (resp.
Rev ′) in the altered network is the same as those of the original network, i.e.,Irr ′ = Irr

(resp.Rev ′ = Rev ). Accordingly, we restrict ourselves to study the changes in the
reversibility type of reversible reactions.

Possibly many fully reversible reactions in the original network may become
pseudo-irreversible in the altered network. LetPrev ′

0 andFrev ′ be the sets of pseudo-
irreversible and fully reversible reactions in the alterednetwork, respectively, i.e.,

Frev ′ = {i ∈ Rev | b′i 6= 0, for someb′ ∈ lin.space(Cτ0)},
Prev ′

0 = Rev \ Frev ′.

Since lin.space(Cτ0) ⊆ lin.space(C), we haveFrev ′ ⊆ Frev \ {τ} andPrev 0 ⊆
Prev ′

0. In the following, based on the description of the altered flux cone given in
Sect. 8.2, we further characterize the relationship between Frev ′ (resp.Prev ′

0) and
Frev (resp.Prev0).

Let ∆ be the set of fully reversible reactions of the original network which become
pseudo-irreversible in the altered network, i.e.,

∆ = Frev \ Frev ′ = Prev ′
0 \ Prev0.

We can easily see that∆ = {j ∈ Frev | bτ = 0 impliesbj = 0, for all b ∈
lin.space(C)}. The following proposition further characterizes the set∆ using a basis
of the lineality space ofC.

Proposition 8.12.Let B = (b1, . . . , bt) be a basis of the lineality spacelin.space(C).
Then,

∆ = {j ∈ Frev | there existsλ 6= 0 such thatbi
j = λbi

τ for all i = 1, . . . , t}.

Proof. Let Ω = {j ∈ Frev | there existsλ 6= 0 such thatbi
j = λbi

τ for all i =
1, . . . , t}. ThenΩ ⊆ ∆. To show the reverse inclusion, supposej ∈ ∆. Since
j ∈ Frev , there existsb ∈ B such thatbj 6= 0. Sincej ∈ ∆, we havebτ 6= 0. Let
b′ ∈ B and letw = b′ − (b′τ/bτ ) · b. We havew ∈ lin.space(C) ∩ {v ∈ Rn | vτ = 0}

andwj = b′j − (bj/bτ )b
′
τ . Sincej ∈ ∆, we getwj = 0 and sob′j/b

′
τ = bj/bτ

def
= λ 6= 0,

independently fromb′.

Corollary 8.13. If τ ∈ Irr ∪ Prev 0 is (pseudo-) irreversible, thenFrev ′ = Frev and
Prev ′

0 = Prev 0.

Proof. Supposeτ ∈ Irr ∪ Prev 0. Then,bk
τ = 0 for all k = 1, . . . , t. Considerj ∈

Frev . There existsb ∈ B such thatbj 6= 0. Sincebτ = 0, it follows that j /∈ ∆.
Therefore,∆ = ∅ and so the claim follows.
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Example 8.14.Consider again the metabolic network from Fig. 8.1. The setsPrev 0

andFrev of pseudo-irreversible and fully reversible reactions in this network are re-
spectively:

Prev0 = {1, 4},
Frev = {3, 5, 9, 10, 11, 12}.

If τ = 2, we have∆ = ∅ and so

Prev ′
0 = Prev0,

Frev ′ = Frev .

If τ = 3, we have∆ = {3, 5} and so

Prev ′
0 = {1, 3, 4, 5},

Frev ′ = {9, 10, 11, 12}.



CHAPTER

9 Control-effective Flux
Analysis

The importance of single reactions for the overall metabolic network performance can
be assessed using knockout mutations. It has been suggestedthat a reaction is crucial if
its removal from the network prevents certain critical metabolic functions [2; 15; 82].
Such an important reaction can be identified using flux coupling analysis or gene dele-
tion analysis discussed in Chap. 6 and Chap. 8, respectively. Alternatively, the essen-
tiality of some reaction could correlate with how this reaction participates in flexible
and efficient operations of the metabolic network. Theflexibility of the latter can be
defined as its capability to adapt to different environmental conditions. Anefficientop-
eration corresponds to a flux distribution which carries outan optimal outcome, such as
maximal growth rate, while using a minimum investment, i.e., the sum of all absolute
fluxes. In this chapter, we discusscontrol-effective flux (CEF) analysis[106], which
has proved promising in assessing a metabolism. The CEFs, which are directly com-
puted from elementary modes, indicate the importance of each reaction for the overall
metabolic network. After discussing the main advantages ofusing elementary modes
in CEF analysis, we consider the use of a minimal generating set of the flux cone in
such an analysis. To compare both approaches, we compute theCEFs for thered blood
cell andS. cerevesiaemetabolisms.

9.1 Definitions

In the following, we generalize the concept ofefficiencywhich has initially been de-
fined for elementary modes [106]. In a first step, we define a setof irreversible reac-
tions,Mfun ⊆ Irr , as the basis for the main metabolic functions (e.g., growth, ATP
maintenance). In addition, we assume that the operation of each reactionτ ∈ Mfun

requires a non-zero flux through a certain irreversible reaction ι ∈ Irr . For instance,
reactionι may correspond to the total substrate uptake.

Afterwards, for each reactionτ ∈ Mfun, theefficiency w.r.t. reactionτ of a flux
vectorv ∈ C \ {0}, denoted byEff (v, τ), is defined as the flux through reactionτ
divided by the sum of all absolute fluxes through reactions participating inv,

Eff (v, τ) =
vτ

‖v‖1

, (9.1)

where‖v‖1 is theL1 norm of the flux vectorv, i.e.,‖v‖1 =
∑n

i=1 |vi|. The efficiency
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of v, denoted byEff (v), is defined as the sum of the efficiencies w.r.t. reactions in
Mfun,

Eff (v) =
∑

τ∈Mfun

Eff (v, τ).

According to equation (9.1), the efficiencyEff (v, τ) measures the flux through re-
actionτ in the flux distributionv while taking into consideration the investment needed
to establish that flux distribution. Among flux vectors carrying the same fluxes through
reactionτ , those with smaller investment are more efficient than the others. This is in
agreement with the suggested optimization-based approach[39], which assumes that
the optimal flux distribution is the one which has the minimalinvestment. In general,
given two flux vectorsv1, v2 ∈ C, if Eff (v1) ≥ Eff (v2), then we sayv1 is at least as
efficient asv2.

For the remaining of this chapter, we need to definenormalized flux vectors.

Definition 9.1. A flux vectorv ∈ C is callednormalized(by the flux through reaction
ι) if vι ∈ {0, 1}.

Now, let ϑ be the function that maps each finite setE ⊆ C of normalized flux
vectors to theeffectiveness vectorw = ϑ(E) given by

wi =
∑

τ∈Mfun

1

στ

∑

e∈E

Eff (e, τ)
∑

e′∈E Eff (e′, τ)
· |ei| for all i = 1, . . . , n, (9.2)

with στ = max{eτ : e ∈ E} for all τ ∈ Mfun. For all i ∈ {1, . . . , n}, wi can be seen
as the average of absolute fluxes through reactioni in all flux vectorse ∈ E. The latter
are weighted by their relative efficiencies. IfE is the set of elementary modes, for all
i ∈ {1, . . . , n}, the componentϑ(E)i is identical to thecontrol-effective flux (CEF)
of reactioni [106]. It has been suggested in [106] that a reaction with a high CEF is
crucial for the overall metabolic network performance. In general, given a subsetE ⊆
C of normalized flux vectors, the effectiveness vectorϑ(E) measures the importance
of reactions for the flux vectors inE while taking into account the efficiencies of these
flux vectors. Below we consider the extent to which the conclusions drawn from the
effectiveness vectorϑ(E) about reaction essentiality can be generalized to the whole
flux cone.

9.2 Effectiveness Sensitivity

Given a finite setE ⊆ C\{0}, flux vectorse ∈ E such thatEff (e) = 0, or equivalently,
eτ = 0 for all τ ∈ Mfun, do not influence the components ofϑ(E). This is particularly
the case of flux vectors inE ∩ lin.space(C).

Proposition 9.2. Let E ⊆ C \ {0} be a subset of normalized flux vectors and let
E = {e ∈ E | Eff (e) 6= 0}. Then,ϑ(E) = ϑ(E).
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Proof. Immediate.

In general, the effectiveness vectorsϑ(E) and ϑ(E ′) of two different subsets
E, E ′ ⊆ C \ {0} of normalized flux vectors can be different. The question arises
on how to choose the setE such thatϑ(E) can be used to identify crucial reactions.
One interesting possibility is to chooseE as a generating set of the flux coneC. This
strategy is analogous to using a generating set ofC to elucidate the intrinsic properties
that emerge from the whole metabolic network. For instance,if a coupling relation-
ship between two reactions holds for the generators of the flux cone, the same property
holds for the whole flux cone (see Chap. 6 for more details). Similarly, a reaction
which is important for the generators of the flux cone can be expected to be crucial for
the whole metabolic network. But again the question arises what generating set of the
flux cone should be used to grasp the essentiality of reactions. This question is par-
ticularly interesting since there are infinitely many possible generating sets of the flux
cone. In addition, as will be stated in Proposition 9.10, using two different generating
sets ofC can lead to different results.

In an attempt to choose a generating setE whose effectiveness vectorϑ(E)
helps to evaluate the importance of reactions, one might wish thatE covers all the
most efficient operations of the metabolic network, i.e., for each non-zero flux vector
v ∈ C \ {0}, there exists a generatore ∈ E which is at least as efficient asv, i.e.,
Eff (v) ≤ Eff (e). There may exist two flux vectorsv1, v2 ∈ C with equal efficiencies,
i.e., Eff (v1) = Eff (v2), such thatv1 contains zero elements whereverv2 does, and
it includes at least one additional zero component, i.e.,Supp(v1) ( Supp(v2) (see
Fig. 9.1 for an illustration). In such a case,v1 could be more interesting to be included
in the generating setE thanv2. Accordingly, one may requires that each generator
e ∈ E should be a simple flux vector, i.e., its set of active reactions is minimal.
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Figure 9.1: A hypothetic network contains two elementary modese1 ande2. We assume that
formation of productP , carried by reaction6, is the main function of this network,
i.e.,Mfun = {6}. In addition, the operation of reaction6 requires consumption of
substrateS by reaction1. Tab. 9.1 shows that the flux vectore3 = 1

2(e1 + e2) is as
efficient as both elementary modes, i.e.,Eff (e3) = Eff (e1) = Eff (e2). However,
e3 is not a simple flux vector.

In the following, we show that finding a generating setE which fulfills both re-
quirements above essentially amounts to assuming thatE is a particular subset of ele-
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Flux vectorej |ej
i | for i = 1, . . . , 6 ‖ej‖1 Eff (ej)

1 2 3 4 5 6
e1 1 1 1 0 0 1 4 1/4
e2 1 0 0 1 1 1 4 1/4
e3 1 1

2
1
2

1
2

1
2

1 4 1/4

Table 9.1: The three flux vectorse1, e2 ande3 depicted in Fig. 9.1. and their respective effi-
ciencies.

mentary modes. We first need to find out the connection betweensimplicity character-
izing elementary modes and efficiency in metabolic networks. For this, we define the
following relationship which takes account of these two properties.

Definition 9.3. Given two non-zero flux vectorsv, u ∈ C \ {0}, we write v E u if
Supp(u) ⊆ Supp(v) andEff (v) ≤ Eff (u).

For all flux vectorsv, u ∈ C \ {0}, v E u means thatu is at least as efficient asv
even if the set of active reactions inv includes that ofu. The next proposition shows
that the efficiencies ofv andu have the same sign.

Proposition 9.4. Let v, u ∈ C \ {0} be two non-zero flux vectors such thatv E u.
Then,Eff (v) 6= 0 if and only if Eff (u) 6= 0.

Proof. It follows from v E u that Supp(u) ⊆ Supp(v) andEff (v) ≤ Eff (u). Ac-
cordingly, Eff (v) 6= 0 implies Eff (u) 6= 0. Now, supposeEff (u) 6= 0. Then,
∑

τ∈Mfun uτ 6= 0. There existsj ∈ Mfun such thatuj 6= 0 and soj ∈ Supp(u).
SinceSupp(u) ⊆ Supp(v), it follows thatj ∈ Supp(v). SinceMfun ⊆ Irr , we get
∑

τ∈Mfun vτ 6= 0 and soEff (v) 6= 0.

By definition, each elementary mode is a simple steady-stateflux vector, i.e., its
support is minimal. This definition is equivalent to the following statement given
in [113].

Proposition 9.5([113]). A non-zero flux vectore ∈ C is an elementary mode if and
only if e lies on an extreme ray of some pointed cone obtained by intersecting the flux
coneC with one of the2n orthants ofRn.

The next theorem states that elementary modes are the most efficient flux vectors
in the steady-state flux cone.

Theorem 9.6. Let v ∈ C \ {0} be a non-zero flux vector. There exists an elementary
modee∗ such thatv E e∗.

Proof. Let O be an orthant ofRn such thatv ∈ O. Let C ′ = C ∩ O and letE be the
set of elementary modes ofC that belong toC ′. According to Proposition 9.5,C ′ is a
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pointed cone andE is the set of its extreme rays. Sincev ∈ C ′, there existsE ′ ⊆ E
such that

v =
∑

e∈E′

λee, with λe > 0 for all e ∈ E ′.

Let µe = λe ·
‖e‖1

‖v‖1
for all e ∈ E ′. Then,Eff (v) =

∑

e∈E′ µe · Eff (e). SinceE ′ ⊆ O,
it follows that Supp(e) ⊆ Supp(v) for all e ∈ E ′. In addition, we have‖v‖1 =
∑

e∈E′ λe · ‖e‖1 and so
∑

e∈E′ µe = 1. Let e∗ ∈ E ′ such thatEff (e) ≤ Eff (e∗) for
all e ∈ E ′. We haveEff (v) ≤ (

∑

e∈E µe) · Eff (e∗) = Eff (e∗) and so the claim
follows.

From a biological point of view, the theorem above states that given a non-zero flux
distributionv ∈ C \ {0}, the set of active reactions inv includes that of an elementary
mode that has the same outcome through reactionsτ ∈ Mfun and an investment which
is smaller than that ofv. Note that this result relies on the use of theL1 norm in the
definition of efficiency. The restriction of this norm on an orthant ofRn is linear.

Let E be the set of elementary modes and letE = {e ∈ E | Eff (e) 6= 0}. Accord-
ing to Proposition 9.2, only elementary modes inE are relevant for the computation
of CEFs. In the following, we show thatE is the unique minimal set of simple flux
vectors that covers all the most efficient operations of the metabolic network.

Definition 9.7. An efficient coverof the flux coneC is a subsetU ⊆ C \{0} such that
for each non-zero flux vectorv ∈ C \ {0} with Eff (v) 6= 0, there exists a flux vector
u ∈ U such thatv E u. An efficient coverU is minimal, if there is no efficient cover
U ′ ( U strictly contained inU .

Obviously, a trivial efficient cover is the flux coneC itself. In general, each subset
U ′ ⊆ C containing an efficient coverU of the flux coneC is itself an efficient cover.
Here, we are interested in finding a minimal efficient cover ofC whose effectiveness
vector can be used to evaluate the importance of reactions. The following theorem not
only states that the subsetE of elementary modes fulfills this requirement, but also that
E is the unique minimal efficient cover ofC.

Theorem 9.8.E is the unique minimal efficient cover of the flux coneC.

Proof. Let v ∈ C \ {0} be a flux vector such thatEff (v) 6= 0. According to Theo-
rem 9.6, there exists an elementary modee∗ such thatv E e∗. With Proposition 9.4, it
follows fromEff (v) 6= 0 thatEff (e∗) 6= 0 and soe∗ ∈ E . Therefore,E is an efficient
cover ofC. Now, letF be an efficient cover ofC. Considere ∈ E . There exists
a flux vectore∗ ∈ F such thate E e∗. Therefore,Supp(e∗) ⊆ Supp(e). Sincee is
an elementary mode, we gete = e∗ or e = −e∗. SinceEff (e) 6= 0, it follows that
e /∈ lin.space(C) and soe 6= −e∗. We conclude thate = e∗, e ∈ F and soE ⊆ F .

The setE can be determined by computing the set of all elementary modes and then
selecting those whose efficiencies are not equal to zero. However, the computation of
elementary modes is in general a hard computational task, which hampers the practical
applicability of control-effective flux analysis. In the view of this limit, one might wish
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to use another generating set of the flux coneC for the analysis of reaction importance.
An interesting alternative is the use of a minimal set of generators of the flux cone, or
equivalently minimal metabolic behaviors. An issue that may be encountered in this
approach is that a minimal generating set need not be unique since the flux cone can
be non-pointed. This limitation is not problematic for the following reasons. First,
according to Proposition 9.2, generators of the lineality spacelin.space(C) do not
influence the components of the effectiveness vector since their efficiencies are equal
to zero. These generators can be neglected in control-effective flux analysis. Second,
given two normalized flux vectorsg1 andg2 representing a minimal proper faceG,
bothg1 andg2 carry the same fluxes through all (pseudo-) irreversible reactions. The
only difference betweeng1 andg2 can be in theirL1 norm. We could choose the most
efficient flux vectorg ∈ G \ lin.space(C) to represent the minimal proper faceG. The
following proposition shows that the most efficient flux vector in a minimal proper face
is the one with the smallestL1 norm.

Proposition 9.9. Let G be a minimal proper face of the flux coneC and letg1, g2 ∈
G \ lin.space(C) be two normalized flux vectors. Then,

Eff (g1) · ‖g1‖ = Eff (g2) · ‖g2‖

Proof. Either we haveg1
ι = g2

ι = 0 and sog1
τ = g2

τ = 0, or g1
ι = g2

ι = 1 and so
g1

τ = g2
τ . In both cases,g1

τ = g2
τ and so the claim follows.

There could be other interesting criterions to choose a generating setE such that
its effectiveness vectorϑ(E) helps to grasp the importance of reactions. In any case,
one should be able to compare results obtained by using different generating sets. The
following proposition allows for such a comparison.

Proposition 9.10. Let E be a set of normalized generators of the flux coneC and
let E ′ ⊆ C be a set of normalized flux vectors such thatE ⊆ E ′. Then, for each
i ∈ {1, . . . , n}

ϑ(E ′)i − ϑ(E)i =
∑

τ∈Mfun

∑

e∈E′\E

Eff (e, τ)
∑

e′∈E′ Eff (e′, τ)
·

(

|ei|

στ

− ϑ(E)i

)

, (9.3)

with στ = max{eτ : e ∈ E} for all τ ∈ Mfun.

Proof. For eachi ∈ {1, . . . , n}

ϑ(E)i =
∑

τ∈Mfun

1

στ

∑

e∈E

Eff (e, τ)
∑

e′∈E Eff (e′, τ)
· |ei|,

ϑ(E ′)i =
∑

τ∈Mfun

1

σ′
τ

∑

e∈E′

Eff (e, τ)
∑

e′∈E′ Eff (e′, τ)
· |ei|,

with στ = max{eτ : e ∈ E} andσ′
τ = max{e′τ : e′ ∈ E ′} for all τ ∈ Mfun. In what

follows, we show thatσ′
τ = στ . Let R = {e ∈ E | eι 6= 0}. We haveeι = eτ = 0 for
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all e ∈ E \R. Moreover, sinceι ∈ Irr , we haveE ∩ lin.space(C) ⊆ E \R. Consider
e′ ∈ E ′ andτ ∈ Mfun. SinceE is a generating set of the flux coneC, we have

e′ι =
∑

e∈R

λ(e)eι ande′τ =
∑

e∈R

λ(e)eτ for someλ(e) ≥ 0.

Sinceeι = 1 andeτ ≤ στ for all e ∈ R, we gete′ι =
∑

e∈R λ(e), e′τ ≤ στ ·
∑

e∈R λ(e)
and soe′τ ≤ στe

′
ι. Sincee′ι ∈ {0, 1}, e′τ ≤ στ . Therefore,σ′

τ = στ and so the claim
follows.

Given two generating setsE, E ′ ⊆ C such thatE ⊆ E ′, the differences in the
effectiveness vectorsϑ(E) andϑ(E ′) is given in equation (9.3). In some cases, we
haveϑ(E ′) = ϑ(E). This is particularly the case whenEff (e) = 0 for all e ∈ E ′ \
E. However,ϑ(E ′) andϑ(E) can be different. For instance, if some reactioni is
participating in no flux vectore ∈ E ′ \E, i.e.,ei = 0 for all e ∈ E ′ \E, thenϑ(E ′)i <
ϑ(E)i. In general, given two reactionsi andj, ϑ(E ′)i − ϑ(E)i andϑ(E ′)j − ϑ(E)j

can be different in sign and magnitude. If this is the case, using the effectiveness
vectorsϑ(E) andϑ(E ′) to evaluate the importance of reactionsi and j would lead
to conflicting conclusions. This shows that the results drawn from control-effective
analysis are sensitive to the choice of the generating set ofthe flux cone.

9.3 Computational Results

In this section, control-effective fluxes obtained by meansof elementary modes (resp.
minimal metabolic behaviors) are calledEM-based(resp.MMB-based) CEFs. We
computed EM-based and MMB-based CEFs for the red blood cell metabolic network
introduced in Sect. 4.5. For these computations, we consider reactions GSSGR, GSH-
pox, MemPhos, NaKATPase, MetHbRed and 23DPGdrain as the basis for the main
functions of the metabolic network, i.e.,Mfun = {GSSGR, GSHpox, MemPhos,
NaKATPase, MetHbRed, 23DPGdrain} [16]. Reactionι corresponds to glucose up-
take (GLK).

The flux cone of the red blood cell metabolic network contains32 MMBs and48
elementary modes (see Sect. 4.5). The12 elementary modes that lie in the interior
of the flux cone are obtained by combining two MMBs that involve reaction PGI in
opposite directions. All these elementary modes have a zeroflux through reaction PGI.
As a result, the EM-based CEF of reaction PGI is lower than itsMMB-based CEF. For
the other reactions, the results of both approaches are qualitatively similar. Fig. 9.2,
showing MMB-based and EM-based CEFs of all reactions, reveals that GSSGR has the
highest control-effective flux, which can be explained by the importance of NADPH
formation in the red blood metabolism [5].

As further demonstration we have applied control-effective analysis to determine
critical reactions in the central carbon metabolism ofS. cerevesiae[17]. Although
this metabolism is relatively small (with44 internal metabolites and53 reactions), it
contains8726 (resp.1309) elementary modes for growth on glucose (resp. ethanol).
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Figure 9.2: Comparison of MMB-based and EM-based control-effective fluxes for the red
blood cell.

The corresponding flux cone is pointed and has657 (resp.224) minimal metabolic
behaviors for growth on glucose (resp. ethanol). Fig. 9.3 and Fig. 9.4 show MMB-
based and EM-based CEFs in different growth media (glucose and ethanol). Again,
predictions of both approaches are qualitatively similar for the most of reactions. As
expected, by using elementary modes, control-effective fluxes of reactionsMDH1,
TPI, RPE, TKL2, andMDH2 are underestimated for growth on glucose. All these
reactions are reversible and are involved in forward and backward directions. Many
elementary modes in the interior of the flux cone are combinations of other ones and
decrease the EM-based CEF of these reactions. Interestingly reactionTPI is involved
only in backward direction for growth on ethanol. In such a growth media, the EM-
based CEF of reactionTPI is identical to its MMB-based CEF, while those of reactions
MDH1, RPE, TKL2, andMDH2 are still different.



125

A
L

D
6

A
C

S
C

A
T

2 C
IT

13
ID

P
1

K
G

D
S

D
H

M
A

E P
Y

C
P

C
K

1
P

Y
K

F
B

P
1

Z
W

F
1

S
O

L
G

N
D

P
F

K
A

L
D

4
ID

P
2

ID
H

IC
L

1
M

L
S

1
C

IT
2

A
C

O
L

S
C

F
U

M
1

M
D

H
1

E
N

O
G

P
M P
G

K
1

T
P

I F
B

A
1

P
G

I1
R

K
I1

R
P

E
T

K
L

T
A

L
1

T
K

L
2

T
D

H
M

D
H

2
P

D
A

P
D

C

0

20

40

60

80

100

120

140

160

Reactions

C
o

n
tr

o
l-

ef
fe

ct
iv

e 
fl

u
xe

s

MMB-based CEFs
EM-based CEFs

Figure 9.3: Comparison of MMB-based and EM-based control-effective fluxes for the yeast
cells in glucose media.

Since the control-effective fluxes should correlate with transcript levels of
metabolic genes [106], theoretical transcript ratios for growth on ethanol versus glu-
cose were computed as ratios of EM-based CEFs and compared with experimental
data from [25]. A good correlation (R2 = 0.60) between theoretical and experimental
transcript ratios has been found for38 genes [17]. Similarly, we investigated the corre-
lation between the same experimental data with ratios of MMB-based CEFs. Fig. 9.5
shows the same correlation strength (R2 = 0.60), but for41 genes.



126

ALD6
ACS

CAT2
CIT13

IDP1
KGD

SDH
MAE
PYC

PCK1
PYK

FBP1
ZWF1
SOL
GND

PFK
ALD4

IDP2
IDH

ICL1
MLS1

CIT2
ACO

LSC
FUM1

MDH1
ENO
GPM

PGK1
TPI
FBA1
PGI1

RKI1
RPE

TKL
TAL1
TKL2

TDH
MDH2

PDA
PDC

0 50

100

150

200

250

300

350

400

450

500

R
eactio

n
s

Control-effective fluxes

M
M

B
-b

ased
 C

E
F

s
E

M
-b

ased
 C

E
F

s

F
igure

9.4:
C

om
parison

of
M

M
B

-based
and

E
M

-based
control-e

ffective
fluxes

for
the

yeast
cells

in
ethanolm

edia.



127

y = 0,6358x

R2 = 0,6026

0,01

0,1

1

10

100

0,01 0,1 1 10 100

Figure 9.5: Comparison of theoretical and experimental data-based logarithmic ratios of gene
expression levels for shift from glucose to ethanol. The experimental data are
from [25]. Both X-axis and Y-axis are on logarithmic scale (X-axis: experimental
data, Y-axis: MMB-based CEF ratios for shift from glucose toethanol).
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CHAPTER

10 Conclusions and
Discussion

To conclude this dissertation on constraint-based analysis of metabolic networks, we
summarize our main results, and we mention some interestingextensions of the pre-
sented work.

In order to achieve a system-level understanding of living systems, it is necessary
to develop mathematical and computational methods guided by the concern of sim-
plicity. For this reason, constraint-based modeling showsa wide applicability in the
study of metabolic networks. In the scope of the presented work, a new constraint-
based approach has been developed to describe the steady-state flux cone. The main
difference with other recent constraint-based methods lies in the fact that our approach
uses an outer description of the flux cone, based on sets of irreversible reactions. This
is different from elementary mode and extreme pathway analysis, which both use an
inner description, based on sets of generating vectors.

We have given several reasons to justify our new approach. First, it guarantees a
certain compactness of the resulting description of the fluxcone. Indeed, our descrip-
tion is not only unique, but also is minimal and satisfies a simplicity condition similar
to the one that holds for inner description. The study of the relationship between inner
and outer descriptions of the flux cone has allowed for explaining why, for large-scale
metabolic networks, the size of the outer description is often significantly smaller than
that of the inner descriptions. Nevertheless, since we still use a sparse matrix repre-
sentation to store the resulting flux cone description, a more efficient representation of
both types of descriptions is yet a challenging and interesting topic. A promising idea
could be to transform the flux cone description into a logic function and then to rep-
resent this function in the form of abinary decision diagram (BDD). This may reduce
the space needed to store the large description of the flux cone. Another advantage
of such a strategy is that BDD expressions can efficiently perform Boolean queries,
allowing for identifying intrinsic properties of metabolic networks such as reaction
dependencies.

Second, our approach suggests a refined classification of reactions according to
their reversibility type (irreversible, pseudo-irreversible, and fully reversible). While
the irreversible and pseudo-irreversible reactions completely characterize minimal
metabolic behaviors, the fully reversible reactions definethe reversible metabolic
space, which may contain useful biological information. This information is no longer
explicit if we replace each reversible reaction with two irreversible ones. Moreover, we
have shown that the reversibility type provides a key to elucidate reaction dependen-
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cies. Coupling relationships can only hold between reactions of a certain reversibil-
ity type. In particular, (pseudo-) irreversible reactionscannot be coupled with fully
reversible reactions, and all reactions in an enzyme subsetmust have the same re-
versibility type. Using these concepts, we have improved anexisting algorithm for
identifying blocked and coupled reactions, and even devised a new algorithm for flux
coupling analysis.

In many cases, a zero flux through one reaction implies a zero flux through several
reactions. In other cases, many reactions must be constrained to have a zero flux
for blocking a target reaction. A possible extension of flux coupling analysis is to
study dependencies between subsets of reactions. More formally, given two subsets

M, N ⊆ {1, . . . , n} of reactions, we sayN is dependentof M , written M
=0
→ N ,

if the removal of all reactions inM implies that all reactions in the setN cannot

operate under steady-state conditions. More formally,M
=0
→ N if the following three

conditions hold:

1. For allv ∈ C, vi = 0 for all i ∈ M impliesvi = 0 for all i ∈ N ,

2. For allM ′ ( M , there existsv ∈ C such thatvi = 0 for all i ∈ M ′ and there
existsj ∈ N such thatvj 6= 0.

3. For allN ′ ) N , there existsv ∈ C such thatvi = 0 for all i ∈ M and there
existsj ∈ N ′ such thatvj 6= 0.

The second (resp. third) condition guarantees the minimality (resp. maximality) prop-
erty ofM (resp.N). If N = {i} is a singleton set,M is identical to a minimal cut set
for reactioni. In general, the identification of dependent reaction sets is more difficult
than that of minimal cut sets, which is already known to be a hard computational task.
The computation of minimal direction cuts is not trivial as well. Improving all these
computations is another attractive perspective.

Our refined classification of reactions helps also for obtaining, in a constraint-based
approach, a description of the altered steady-state flux cone. The latter contains the
full range of achievable behaviors of the metabolic system after the removal of some
reactions in the network. Certainly, the outer descriptionof the flux cone may change
considerably upon deletion of reactions. Nevertheless, this occurs only in case of the
removal of pseudo-irreversible reactions which can operate in either direction under
steady-state conditions. For the other reactions, the deduction of an outer description
of the altered flux cone is straightforward.

Finally, we discussed control-effective flux (CEF) analysis, which has proved
promising in assessing the importance of reactions. We formally justified why ele-
mentary modes are useful for CEF analysis. We also considered the use of a minimal
generating set of the flux cone in such an analysis. It has beenshown that the pre-
dictions about reaction importance using both strategies are similar for two metabolic
systems, namely thered blood cellandS. cerevesiae. Overall, we anticipate that using
a minimal generating set would enable a control-effective flux analysis of genome-
scale metabolic networks. This, of course, still has to be proven.
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Several challenges still remain in constraint-based analysis of metabolic networks.
From a computational point of view, computing a descriptionof the flux cone amounts
to calculating a convex basis. This computation, which may be impractical for large-
scale metabolic networks, is still a challenging task for the future. Further advance-
ments in metabolic network modeling (e.g., dividing the network into modules, taking
into account reaction dependencies) and in algorithm implementation (e.g., improving
adjacency tests, parallelizing the double description method) may improve the existing
tools.

In addition to the computational challenges, the biological interpretation of mini-
mal metabolic behaviors and the reversible metabolic spacedeserves further attention.
Our work suggests a modular approach to the study of metabolic networks. Each
MMB could be seen as a module or a family of metabolic pathwayssharing specific
properties. The overall metabolic network can be understood as a combination of these
different modules. We expect that more investigations of the biological implications of
MMBs and RMS will further justify our approach.

Constraint-based metabolic network analysis is based on two main simplifying as-
sumptions. First, metabolic networks are assumed to be at steady state. This can be
considered as a limitation to this approach since no predictions about the dynamic be-
havior of the system can be made. However, the insight gainedabout the structure of
metabolism may serve as a foundation for future studies whenever the understanding
of the structure is of great interest. The second assumptionconcerns the reversibility of
reactions. As we already mentioned in the beginning of this thesis, all metabolic reac-
tions are thermodynamically reversible and can proceed in either direction depending
on their Gibbs free energy differences. Since the computation of the latter is pro-
hibitively expensive for large networks, reaction reversibility is still largely a matter of
convention. In future studies, it is worth considering the reversibility of reactions as a
parameter in the definition of the flux cone. A promising idea is to study the sensitivity
of the flux cone definition to the reversibility of reactions.Another line of research
could be to find out how reactions influence each other’s reversibility using polyhedral
theory.

The incorporation of regulatory constraints and kinetic information would expand
the scope of our approach. Clearly the topic is not closed andconstraint-based ap-
proaches will continue to provide useful modeling and computational tools for systems
biology.
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