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Abstract

Constraint-based approaches have proved successful ilyzisuga complex
metabolic networks. They restrict the range of all posdiigeaviors that a metabolic
system can display under governing constraints. The sdt pbssible flux distribu-
tions over a metabolic network at steady state defines a edighcone, thesteady-
state flux coneThis cone can be analyzed usingianer descriptionbased on sets of
generating vectors such atementary modesr extreme pathwaysNe present a new
constraint-based approach to metabolic network analgheracterizing a metabolic
network by itsminimal metabolic behaviorand thereversible metabolic spac®ur
method uses aouter descriptiorof the flux cone, based on sets of non-negativity
constraints. The resulting description is minimal and ueigWe then study the rela-
tionship between inner and outer descriptions of the cone.gWe a generic proce-
dure to show how inner descriptions can be computed fromuker one. We use this
procedure to explain why the size of the inner descriptioay ive several orders of
magnitude larger than that of the outer description.

Our approach suggests a refined classification of reacticcma@ing to their re-
versibility type (rreversible, pseudo-irreversible, and fully reversjblé&sing these
concepts, we improve an existing algorithm for identifyinigckedand coupledreac-
tions and devise a new algorithm flux coupling analysisWe extend this analysis
by introducingminimal direction cuts (MDCsyvhich prevent a target reaction from
being performed in an undesired direction. We develop aorélgn which allows not
only for computing MDCs in a metabolic network, but also fatieect calculation of
minimal cut sets (MCSsBased on our refined classification of reactions, we also pro
vide a constraint-based approach for analyzing the changee overall capabilities
of a metabolic network following a gene deletion.

Flux coupling and gene deletion analysis help for identifyimportant reactions
in metabolic networks. Alternatively, the essentialityre&ctions can be assessed us-
ing control-effective flux (CEF) analysisvhich is based on elementary modes. We
compare CEF analysis with the use of a minimal generatingfstte flux cone to
elucidate crucial reactions.



Zusammenfassung

In der Analyse metabolischer Netzwerke haben constrasmglia Ansétze erfolg-
reiche Anwendung gefunden. Hierbei wird der Bereich des licldgn Verhal-
tens eines metabolischen Systems durch zuséatzliche Aeriorden an das System
eingeschrankt. Die resultierende Menge aller Flussvertgen eines metabolischen
Netzwerks im stationaren Zustand hat die Gestalt einesedabchen Kegels, welcher
Flusskegefenannt wird. Einennere Beschreibundieses Kegels basierend auf Men-
gen erzeugender Vektoren, wie etwiementarmodbpder Extremalpfadeermoglicht
eine effiziente Analyse. Wir haben einen neuen constrasigktan Ansatz zur Anal-
yse metabolischer Netzwerke entwickelt, in dem das Systenhadninimale metaboli-
sche Verhaltensmustand denreversiblen metabolischen Ratgharakterisiert wird.
In unserer Methode kommt eiréuf3ere Beschreibunges Flusskegels zur Anwen-
dung, die wir durch Ausnutzung von Nicht-Negativitats-Begingen erhalten. Diese
Beschreibung ist minimal und eindeutig. Wir untersuchenBiziehung zwischen in-
nerer und aul3erer Beschreibung des Kegels und stellenigeamedines Verfahren zur
Herleitung der inneren aus der &ufl3eren Beschreibung vesebiVerfahren verdeut-
licht, warum die auf3ere im Vergleich zur inneren Beschmegpbeaine meist sehr viel
kompaktere, sogar bis zu mehreren Grolienordungen klddastellung liefert.

In unserem Ansatz verwenden wir eine verfeinerte Klasgibkavon Reaktionen
des metabolischen Netzwerks entsprechend ihres ReV#sihiTypus (irreversibel,
pseudo-irreversibel und vollstandig reversibel). Dieggddung ermoglicht uns eine
deutliche Verbesserung existierender Algorithmen zurtiBesung vonblockierten
und gekoppelterReaktionen und die Formulierung eines neuen, effizientgoith-
mus fur dieFlusskopplungsanalys®ie von uns eingefuhrteminimalen gerichteten
Schnitte (MDCs)die die Ausfuihrung einer Zielreaktion in eine ungewinsdRich-
tung verhindern, erweitern die klassische Flusskopplanglyse. Ein von uns ent-
wickelter Algorithmus ermdglicht nicht nur die Berechnuagn MDCs in einem
metabolischen Netzwerk, sondern auch die direkte Ermitininimaler Schnittmen-
gen (MCSs) Basierend auf unserer verfeinerten Klassifizierung voakigenen
stellen wir schlief3lich einen constraintbasierten Anzafz Analyse der durch Gen-
Ausfall ausgelosten Beeintrachtigungen globaler Faliigheeines metabolischen
Netzwerks vor.

Flusskopplungs- und Gen-Ausfall-Analyse helfen bei dentdikation essentieller
Reaktionen im metabolischen System. Altenativ kann dieeBathg von Reaktionen
fur die Netzwerkfunktionen mittels auf Elementarmodi leasndercontrol-effective
Fluss-Analyse (CEFpewertet werden. Wir vergleichen CEF-Analyse mit der Ver-
wendung eines minimalen Erzeugendensystems flr die Bestng von Schlissel-
reaktionen.






CHAPTER )
Introduction

The unprecedented progress in molecular biology fuelgifeedst in system-level un-
derstanding of living systems, complementing the redagicapproach that prevails
in molecular biology during the last century. System-lemehlysis has been a recur-
rent topic in biology since the days of Norbert Wiener [45hil defining the field
of cybernetics [122]. The ultimate aim of such an intege@pproach is to link the
behaviour of living matter to system’s structure and dyr@nhelping for the com-
prehension of biological systems and for engineering arsthdeng strains more ap-
propriate for metabolite production purposes [10]. Thedvar of a living system
depends on its ability to import materials from the envir@minand convert them to
the needed molecules. These conversions are carried outtiaypalism.

1.1 Metabolic Network Modeling

1.1.1 Basic Concepts

Broadly speaking, anetabolic reactiormefers to a chemical transformation that oc-
curs in living organisms, allowing them to feed, grow androelce [31]. Metabolic
reactions sustain several biological functions including degradation of chemical
substances for energy production or the assembly of celtolmponents. Acatabolic
reaction breaks down complex molecules into smaller coraptsnand yields energy.
For instance, the breakdown of proteins, carbohydratekljjgids in digestion are car-
ried out by catabolic reactions. Aanabolicreaction, on the other hand, uses energy
to build cellular constituents such as proteins and nueleids. Fig. 1.1 is a schematic
representation of anabolic and catabolic reactions.

The substances that will react in a metabolic reaction diedcaubstratesAs a
result of the reaction, the substrates will be converted different molecules named
products Metabolitesare the substances that are involved in metabolic reactidrey
carry out most of the metabolic functions in a living systefme stoichiometric co-
efficient of a metabolite in a reaction is the amount of that metabaiitelved in the
reaction in terms of molecules (or moles of molecules). Retance, thelecomposi-
tion of hydrogen peroxideonverts two molecules of hydrogen peroxidé ;) into
two molecules of waterH{>,O) and one molecule of oxygew¢). The stoichiometric
coefficient of water in this reaction is twice that of oxygen.
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Figure 1.1: An overview of catabolic and anabolic reactions

A reaction equatiofs a symbolic representation which defines the stoichiametr
conversion of substrates into products for some reactiansuth an equation, sub-
strates are given on the left hand side, products are wittethe right hand side, and
the numbers next to the metabolites are the absolute valties stoichiometric coeffi-
cients. For example, the reaction equation of the decortiposif hydrogen peroxide
is

2 HQOQ — 2 HQO + 02.

A reaction is said to be operating in thierward (resp.backward direction if that
reaction converts metabolites given on the left (resp.tyighnd side of its equation
into ones given on the right (resp. left) hand side of its éigna Reactions that can
proceed in either direction are callegl/ersibleand the remaining reactions are named
irreversible

The (net) flux of a metabolic reaction is the rate of consumption of any sates
divided by the corresponding stoichiometric coefficientisTis equal to the rate of
formation of any product divided by the corresponding stmmetric coefficient. A
reaction with a high flux operates at a faster speed than a@ioraeith a low flux.
In addition, a flux is positive (resp. negative) if the fordgresp. backward) reaction
is faster than the backward (resp. forward) reaction. Wihibees through reversible
reactions may be negative, the convention is to considefithas through irreversible
ones are always non-negative.

For the rest of the thesis, we shall use the simpler term igaébr metabolic
reaction.

1.1.2 Metabolic Networks

A metabolite is often transformed to another by a seriesasftrens, called anetabolic
pathway The products of one reaction serve as substrates for otlaetions. A
metabolic networkefers then to an interconnected set of reactions that cartrgtep
by step transformation of the initial metabolites to cohtkem into other products.
Each step is catalyzed by special proteins caltedymes These catalysts speed up
reactions without being used up and their concentratidestethe rates of reactions. A
living organism can then regulate the fluxes through itstreas by producing differ-



ent amounts of enzymes. This control allows biologicaleyst to adapt and respond
to their environments.

The significant advances in molecular biology have paveduée for a fast re-
construction of metabolic networks for an increasing nundfemicroorganisms, in-
cluding S. cereviseae, H. influenzae, E. caindH. pylori [32; 83; 86; 89]. Several
genome-scale (reconstructed) networks are available matabolic databases such
asKEGG [41], EcoCyc [43], MetaCyc [18hAndBioCyc [55] In general, a genome-
scale metabolic network consists of hundred to thousandsetdibolites linked by an
even larger set of highly interconnected reactions. Kndg#eand insight that may
be gained from an isolated study of a single component in aloét network are
then limited. Accordingly, it is becoming generally aceaapthat one has to move
from a component-based view to a systems-level understgnafi metabolic net-
works [36; 72]. This shiftin paradigm allows for reconsting the integrated behavior
of living organisms from the underlying metabolic compaiserSuch an integrative
approach helps not only to elucidate the intrinsic biolagproperties that emerge from
the whole metabolic system, but also to predict how thespeasties would change in
response to alterations in environment or system compsnérttese properties are
usually qualified as eitheyualitative(e.g., how robust is the network? how many al-
ternative ways are there to produce a particular meta@laequantitative(e.g., what
is the rate of glucose uptake or the concentration of oxyggh?Moreover, we often
divide information required to predict or calculate sucbp@rties into two categories:
structuraland kinetic. The former describe the set of components that are involved
in the network, and interactions or connections among thesgonents. The latter
contain differential equations that describe reactiohapges in metabolite concentra-
tions and numerical values for the parameters used in thepsiens. In general, the
choice of a particular method depends not only on whetheptbperties of interest
are quantitative or qualitative, but also on the type of tedlable biological data (ki-
netic or structural). Despite the advances in experiméngg-throughput techniques,
quantitative modeling is often still hampered by incomgliehowledge of kinetic in-
formation.

In the following we give a short introduction about stoiaimietry and reaction re-
versibility.

Stoichiometic Matrix

When modeling a metabolic system, we often distinguish betvinternal and ex-
ternal metabolites [38]. An internal metabolite should not acclateior decrease in
time, and so its rate of formation is equal to its rate of comgtion. In contrast, exter-
nal metabolites could be buffered as it can be assumed fa@rwatmany species from
the environment. In general, classifying a metabolite &sreal or internal depends on
the purpose of the model. It should be noted that this claasibin has also an impact
on the algorithmic complexity of analyzing the network [24]
It is also common to distinguish betweeémernal and boundaryreactions in a

metabolic network [98]. An internal reaction has the propénat its substrates and
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Figure 1.2: Network example ILLUSNET. Metabolites are ad&gil as nodes while reactions
are depicted as arrows. Reversible reactions are inditgteduble arrowheads.

Internal reactions Boundary reactions
Reactior2: 1A — 2B +1C Reactionl: . < 1A
Reactionr5: 2B < 1D Reaction3: . < 1B
Reaction6: 1C — 1FE Reactiod: . < 1C
Reactior8: 3 F — 1D Reaction7: 1E — .
Reactior: 1D <« 1@G Reactionl0: 1 G — .
Reactionll: 1D — 1F Reactionl2: 1 F — .

Table 1.1: List of reaction equations for the metabolic mekndepicted in Fig. 1.2. Internal
metabolites arel, . .., G and the external ones are replaced by dots.

products each contain at least one internal metaboliteh®other hand, all substrates
consumed or all products formed by a boundary reaction aexred. Accordingly,
a boundary reaction, which is also called exchange reactigrallows the transport
of materials across the system boundary, and somehow isreection between the
metabolic system and its environment.

Example 1.1. For illustration throughout this chapter, we consider tiypdthetical
network ILLUSNET depicted in Fig. 1.2. It consists of sevaternal metabolites
(A,...,G), and twelve reaction@l, . . ., 12), whereof four reactions are irreversible.
Reversible reactions are indicated by double arrowheadgeral metabolites are
not represented in this network. Tab. 1.1 shows the list aftren equations for this
metabolic network.

The stoichiometric matrix of a metabolic network is definedikar to the adja-
cency matrix of a directed graph. It enables to represenstitueture of a metabolic
network in terms of relationships between internal metiéd®mhnd reactions. For in-
stance, given a reactighthat converts: molecules of metabolitel andc molecules
of metaboliteC' into e molecules of metabolité’, the column in the stoichiometric
matrix that corresponds to reactigms given by



aA+cCLeFE
J
-a
0
-c
0
e

mSoOw>

The rows of the stoichiometric matrix correspond to therima metabolites and
its columns correspond to the reactions making up the mbtatetwork.

Definition 1.2 (Stoichiometric matrix) Given a metabolic network, let be the num-
ber of internal metabolites and betbe the number of all reactions in the network. The
corresponding stoichiometric matrix is anx n. matrix .S, such that for each internal
metabolite; and each reaction

+a, If j producesy molecules oi in its forward direction.
Sij = —a, if 7 consumes: molecules of in its forward direction.
0, if the reaction j neither produces nor consumes i.

Example 1.3. The stoichiometric matrix corresponding to the network USNET
depicted in Fig. 1.2 reads

1 -1 0 0 o0 o0 o0 0 0 0 0 O0
o 2 -1 0-2 0 0 0 0 0 0 O
o 1 0-1 O0-1 0O O O O 0 O
S=10 o0 O o0 1 o 0 1 -1 0 -1 0
o o0 o o o0 1 -1 -3 0 0 0 O
o o0 o o o0 o0 o o o0 0 1 -1
o o0 o o o o0 o o 1 -1 0 O

For instance, the second column of this stoichiometric atirresponds to reaction
2. This reaction consumes one molecule of metabdlited produces two molecules
of metaboliteB and one molecule of metabolite. In addition, we can deduce from
the stoichiometric matrix that reactioms3, 4, 7,10, 12 are boundary reactions, while
reaction2,5,6,8,9,11 are internal.

It should be noted that only internal metabolites are represl in the stoichio-
metric matrix, that is, each row in this matrix corresponasin internal metabolite.
In contrast, the columns in the stoichiometric matrix cep@nd to all reactions in the
network. A distinction between the columns correspondmmnternal reactions and
those corresponding to boundary reactions is possibleekhdhe former contain en-
tries of opposite signs, while the entries in the latter tagesame sign. Distinguishing
between these two categories of columns allows for idantfynternal cycleswhich
are metabolic pathways involving only internal reactions.

It is also worth mentioning that many stoichiometric magganay correspond to
the same metabolic network. For instance, det R™*" be a stoichiometric matrix



and letP € R™™ and@ € R™" be permutation matrices. Lé? € R"*" be a
diagonal matrix such thdP;;, = —1 for some reversible reactiorandD,; = 1 for all

j #i. Thus,S, PS, SQ andSD are stoichiometric matrices for the same metabolic
network. The problem of deciding whether two stoichiontetnatrices describe the
same metabolic network is non-trivial to solve [52]. Deglsuccessfully with this
problem is important for instance to find out whether two rheti& (sub-) networks
share the same structure.

Reaction Reversibility

Thermodynamically, all metabolic reactions are reveesjBR]. In fact, a reaction can
proceed in either direction depending on its Gibbs freegndifference. A positive
flux through a reaction implies a corresponding negativenghaof the Gibb’s free
reaction energy and vice versa [6; 53], i.e.,

sgn(v;) = —sgn(AG;) (1.1)

where 'sgn’ is the sign function and; (resp.AG;) is the flux (resp. Gibbs free energy
difference) of reactiori. Accordingly, a reaction operates in the forward, iwg.>> 0
(resp. backward, i.ey; < 0) direction if its Gibbs free energy difference is nega-
tive (resp. positive). Furthermore, a reaction reversegirection if the corresponding
Gibbs free energy difference changes its sign. ReactiatshdwveAG values closer
to zero may involve free energy ranges that span both negatid positive values.
These reactions are very likely reversible. However, umigsiological conditions,
a so-called irreversible reaction can only proceed in onection because the corre-
sponding Gibbs free energy difference is far from zero asdign is always constant.
This leads to classify reactions as irreversible or retsiepending on their Gibbs
free energy difference values. Nevertheless, this styataguires the computation of
the Gibbs free energy differences for all reactions. Sigaift efforts have been made
in doing this calculation which, however, is still a hard qmtational task. A re-
cent approach has been proposed to assign reaction direa@tionetabolic networks
on the basis of network topology considerations and theymawohics-based heuristic
rules [57]. Nonetheless, the reversibility of metaboliaatons is still largely a matter
of convention or perspective. For instance, some reacéiomsreversible because they
are assumed to be so or this is in keeping with the biologioadtion the system has to
accomplish, e.g., ATP production by glycolysis [95]. In trast, reactions shared by
catabolic and anabolic pathways are often consideredsiéNe(98]. This is justified
by the fact that these reactions are both anabolic and datalthe context of this
work, we assume that irreversible reactions are definedlasvi

Definition 1.4 (Irreversible reaction)A reaction: is irreversible if and only if its flux
is always non-negative.

For the purpose of this thesis, a formal description of thecsiire and stoichiom-
etry of a metabolic network will be given as follows:



— m: number of internal metabolites,

— n: number of reactions,

— §: stoichiometric matrix § € R™*"),

— Irr: set of irreversible reactiongi" C {1,...,n}),

— Rev: set of reversible reactiongév = {1,...,n} \ Irr).

1.2 Aims and Organization of the Thesis

The huge amount of genomic, transcriptomic and relatedrdegallowed for a fast re-
construction of an increasing number of genome-scale roktatetworks. The latter
have been recognized to be highly complex. In this respketneed for mathemat-
ical and computational methods that focus on the systenupegsties of metabolic
networks is increasingly pressing. Various approacheg l@en developed, rang-
ing from metabolic control, stochastic, cybernetic, kind6@onstraint-based analysis
[29; 35; 38; 77; 81]. In the absence of detailed kinetic infation, constraint-based
modeling has recently attracted ample interest due to itdyato analyze genome-
scale metabolic networks while using very few informati®his approach is based on
the application of a series of constraints that govern trexaipn of a metabolic net-
work at steady state, including the stoichiometric andrtioetynamic constraints. The
latter limit the range of allowable behaviors of the metaboktwork, each basically
representing a possible metabolic phenotype. Applyingdlwnstraints leads to the
formulation of the solution space, called thieady-state flux cori@0].

Several approaches have been proposed to describe the-statadflux cone using
an inner descriptionwhich is based on sets of generating vectors [20; 90; 98¢ Th
number of these generators may be very large even for sntalbries and their calcu-
lation may need many resources in terms of time and memoiy.liftits the practical
applicability of these methods. This thesis mainly aimséérek a constraint-based
approach that shrinks the size of the flux cone descripti@nmre manageable level.
A key idea is to use anuter descriptiorof the steady-state flux cone, based on sets of
non-negativity constraints.

Chap. 2 is dedicated to a general introduction to polyhetiedry. The concepts
introduced in this chapter constitute the basics for thdyareof the steady-state flux
cone of metabolic networks developed in this work. The cphoé steady-state flux
cone is formally defined in Chap. 3. This notion proceedsctliyérom the application
of the steady-state conditions governing the operation wiegabolic network. We
conclude this chapter by a detailed discussion of the mganoaghes for exploring
the flux cone.

In Chap. 4, we propose a new mathematical approach to metaiatvork analy-
sis, characterizing a metabolic network bymgiimal metabolic behaviorand there-
versible metabolic spac®ur method uses an outer description of the steady-state flu
cone, based on sets of irreversible reactions. This isrdiftdrom existing approaches,



such aselementary modg®9] or extreme pathwayf0], which use an inner descrip-
tion, based on sets of generating vectors. The resultingigésn of the flux cone is
minimal, unique, and satisfies a simplicity condition sanilo the one that holds for
elementary modes. Our approach suggests a refined classifioareactions accord-
ing to their reversibility type ifreversible pseudo-irreversibleand fully reversiblg.
While the irreversible and pseudo-irreversible reacticomspletely characterize mini-
mal metabolic behaviors, the fully reversible reactionsngethe reversible metabolic
space, which may contain useful biological informationislihformation is no longer
explicit if we replace each reversible reaction with twewersible ones.

Chap. 5 is devoted to the study of the relationship betwesariand outer de-
scriptions of the flux cone. By distinguishing pseudo-igmsible and fully reversible
reactions, we analyze the impact of reconfiguring the méitabetwork in terms of
the size of the description of the reconfigured flux cone atagehe reversibility type
of reactions. This leads to a generic procedure for comgutiner descriptions from
the outer one. This procedure makes clear why the size ohtiex descriptions may
be several orders of magnitude larger than that of the oetssrgption.

In Chap. 6, we show that the reversibility type also providdsey to elucidate
reaction dependencies. Indeed, coupling relationshipsily hold between reactions
of a certain reversibility type. In particular, (pseudareversible reactions cannot be
coupled with fully reversible reactions, and all reactionan enzyme subset [78] must
have the same reversibility type. The mathematical rethudiishave been obtained not
only allow for improving an existing algorithm, but also teto a new algorithm for
identifying blocked and coupled reactions in a metaboligvoek.

In Chap. 7, we introduce the concept mfnimal direction cutsthat allow pre-
venting a target reaction from being performed in an unddgiiirection. If the target
reaction is irreversible, MDCs are not different framnimal cut sets (MCSs)46].
However, if this reaction is reversible, MDCs allow it to ogte in the desired direc-
tion, while MCSs make it inactive in both directions. In batises, each MCS can be
seen as the union of two MDCs. Therefore, all the useful appbns of MCSs can
also be done with MDCs. However, the computation of MDCs du¢sequire that of
elementary modes. MDCs may be determined based on the Hankas for equality
and inequality constraints. The mathematical resultsisfahapter lead to an iterative
algorithm for computing MDCs in a metabolic network. Sinc€8k can be obtained
from MDCs, this algorithm also allows for a direct computatof MCSs, in the sense
that we need not calculate beforehand the elementary mddeally, our algorithm
gives the possibility of introducing additional consttaithat may reduce the search
space. This makes our approach applicable even for gencaheraetabolic networks.

In Chap. 8, we analyze the changes in the overall capabilitie@ metabolic net-
work caused by gene deletion. In particular, we show how tainbin a constraint-
based approach, a description of the altered steady-stxtedhe. The analysis is
again based on our refined classification of reactions.

The importance of single reactions for the overall metabaditwork performance
can by assessed using knockout mutations. An importartioeazan be identified us-
ing flux coupling analysis or gene deletion analysis disedss Chap. 6 and Chap. 8,



respectively. Alternatively, the essentiality of somectean could correlate with how
this reaction participates in flexible and efficient openasi of the metabolic network.
In Chap. 9, we discusontrol-effective flux (CEF) analysis/hich has proved promis-
ing in assessing the importance of reactions. We formalplaax why elementary
modes are useful for CEF analysis. We also consider the useniimal generating
set of the flux cone in such an analysis.
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CHAPTER ) — )
2 Mathematical Preliminaries

In this chapter we give a short overview of mathematical epte we are going to
use throughout the thesis. In particular, we recall badiaiiens from linear algebra
and polyhedral theory. Also, we present linear programnaing the Farkas lemma
which provides an efficient way to give a certificate for thieasibility of a linear pro-
gram. Finally, to conclude this chapter, we shall reviewdbable description method
which is considered as the most efficient algorithm for emativgg the extreme rays
of polyhedral cones. The reader familiar with the notiortsoduced here may skip
this chapter and refer to it when necessary.

2.1 Linear Algebra

We start with some notations and terminology. We denot®&byhe n-dimensional
vector space oveR. By convention, the vectors iR™ are column vectors. The super-
script “I™ denotestranspositionSo forz € R”, 2! is a row vector. Given two vectors
z,y € R", zTy stands for the inner product ofandy, i.e.,>"" | z;y;. Thesupportof
avectorz € R", denoted bySupp(x), is the index set of its non-zero components, i.e.,
Supp(x) ={ie{l,...,n} | z; #0}.

A vectorz € R" is alinear combinatiorof the vectors:t, . .., 2P € R if

p
T = Z)‘ixi> for some\;, ..., \, € R.

i=1

If in addition, A, ..., A\, > 0 (resp.>_Y_, \; = 1), z is aconic (resp.affine) combina-
tion of 2!, ... 2P.

For a setX C R", X # (), thelinear (resp.affine conic) hull of X, denoted by
lin(X) (resp.aff(X), cone(X)), is the set of all linear (resp. affine, conic) combina-
tions of finitely many vectors ok'.

AsetX C R" X # (), is calledlinearly (resp. affinely) independentf no
vectorr € X is expressible as a linear (resp. affine) combination of #etors in
X \ {z}, otherwiseX is calledlinearly (resp.affinely) dependent The cardinality
of X is denoted by X|. Therank of X (resp.affine rankof X), denotedrank(X)
(resp.arank(X)), is the cardinality of the largest linearly (resp. affijelydependent
subset(s) ofX. The dimensionof X, denoted bydim(X), is the cardinality of the
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largest affinely independent subset(s)ofminus one, i.e.dim(X) = arank(X) — 1.
It is well known that, if0 € aff(X) thenarank(X) = rank(X) + 1, otherwise
arank(X) = rank(X).

Let A € R™" be a real matrix. For any row indexe {1,...,m} and any
subsetl C {1,...,m}, we denote byA;, the row of A indexed by: and by A;.
the submatrix ofA formed by the rowsA;. with ¢ € I. Likewise, for any column
indexj € {1,...,n} and any subsef C {1,...,n}, A,; denotes the column of
A indexed byj, while A, ; denotes the submatrix of formed by the columnst,;,
with j € J. Thecolumn(resp.row) rank of A is the rank of its column (resp. row)
vectors. Itis shown in linear algebra that the column rarkthe row rank are always
equal. Accordingly, they are simply called thenk of A and denoted byank(A).
The matrix A hasfull rank if rank(A) = min(m,n). The kernel or null spaceof
A, denoted bykern(A), is the set of all vectors € R™ for which Az = 0, i.e,,
kern(A) = {z € R" | Az = 0}.

2.2 Polyhedral Theory

Throughout this thesis polyhedral theory plays a central. rohis section introduces
some basic facts about polyhedral cones. For a comprelegnsatment of this subject
the reader should refer to [8; 92; 125].

Definition 2.1 (Convex cone) A non-empty subseét’ C R" is called a(convex) cone
if \x + py € C, whenever:,y € C andX, i > 0.

Definition 2.2 (Linear homogeneous inequality} linear inequality is an expression
of the forma™z ¢ b witha,x € R", b € R and{) € {<,>}. A linear inequality is
homogeneous if = 0.

A systemof homogeneous linear inequalities is a finite conjunctibhamoge-
neous linear inequalities and can concisely be written itrim#orm as Ax > 0,
whereA € R™*", x € R™ andm is the number of inequalities in the system. The
set of vectors satisfying a finite system of homogeneoustimequalities is called a
polyhedral cone

Definition 2.3 (Polyhedral cone)A coneC' is polyhedra) if C'is the set of solutions
of a finite system of linear homogeneous inequalities, Ce= {x € R" | Ax > 0},
for some real matrixl € R™*",

For anya € R™\ {0}, the vector subspadd = {z € R" | 'z = 0} is called a
hyperplane H partitions the vector spad®” into two halfspaces Ht = {x € R" |
a’r > 0}andH~ = {r € R" | a’z < 0}. Accordingly, acon&' = {z € R" | Az >
0} can be seen as the intersection of finitely many halfspadgs.observation is used
in many algorithms on polyhedral cones (e.qg., the doublerge#gn method reviewed
in Sect. 2.4).
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a) Polyhedral cone b) Non-polyhedral cone

Figure 2.1: Polyhedral vs. non-polyhedral cone

Definition 2.4 (Lineality space) Let C' be a polyhedral cone defined by = {x €
R™ | Az > 0}. Thelineality spaceof C, denoted byin.space(C'), is defined by

lin.space(C) = {z € R" | Az = 0}.

A cone C is finitely generatedif there existg',...,¢° € R" such thatC' =
cone{g',...,g°} = { Mgt + ...+ Xg® | A\i,...,As > 0}. If this is the case, the
vectorsg® for i = 1,...,s are calledgenerating vectoref the coneC. The set
B = {g¢',...,¢°} is called aminimal set of generating vectoino proper subset
of B generates the cor.

A fundamental theorem of Farkas-Minkowski-Weyl (see %], p. 87) asserts
that a convex cone is polyhedral if and only if it is finitelyrgeated.

Theorem 2.5(Farkas-Minkowski-Weyl) A convex cone is polyhedral if and only if it
is finitely generated.

This theorem states that every cone admits two types of septations, either as
the solution set of a finite system of linear homogeneousualiies or as the conic
hull of a finite set of vectors. These are usually referredstexdernaland internal
representatigmespectively. For the rest of the thesis, we will considdy polyhedral
cones and simply use the term cone.

An inequalitya’z > 0,a € R™\ {0}, is valid for a coneC if C C {z € R" |
alz > 0},

Definition 2.6 (Face) A subsetF' of a coneC' is called afaceof C' if F = C or
F=Cn{zreR"|a'z =0}, wherea’z > 0,a € R™\ {0}, is a valid inequality
for C'. The dimensionof F' is defined as the dimension of the linear hulliofi.e.,
dim(F) = dim(lin(£)).

Definition 2.7 (Minimal face) A minimalface of a con€’ is a non-empty face which
does not contain any other non-empty fac€ of

In other words, a minimal face @f is a face of smallest dimension. Itis easy to see
that the only minimal face of a cor@is its lineality space. This leads to the following
definition of minimal proper facesf C'.
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Minimal proper faces

Extreme rays

2 Adjacent extreme rays

y

Lineality space Lineality space

a) Pointed Cone b) Non-pointed Cone

Figure 2.2: Pointed vs. non-pointed cone.

Definition 2.8 (Minimal proper face) Let C' be a cone and letbe the dimension of
its lineality space. A face af' of dimensiont + 1 is called aminimal properface.

Definition 2.9 (Adjacent minimal proper faces) et C' be a cone and let be the
dimension of its lineality space. Two minimal proper facés’'aare calledadjacentf
they are contained in some face of dimengian?2.

Any non-zero element € C'is called aray of C'. Two raysr andr’ are equivalent,
writtenr = ¢/, if r = A1/, for some\ > 0.

Definition 2.10 (Extreme ray) Let C' be a cone. A ray is extremeif there do not
existrays’.r" € C,r" % r", such that = r' + r".

Definition 2.11. A coneC is called pointedif lin.space(C') = {0} or equivalently
C ={x € R"| Az > 0} for someA € R™*" with rank(A) = n.

An example of a pointed cone is the intersection of the nwtspof a matrix with the
positive orthant. Note that the extreme rays of a pointececme identical with its
minimal proper faces. According to Definition 2.9, two extieerays are adjacent if
they are contained in one face of dimenskon

Any pointed con&’ has acanonicalrepresentation

C = cone{r',... r°}, (2.1)

wherer!, ... r® are the (distinct) extreme rays 6f. This representation, which is
often used in metabolic network analysis (see Chap. 3 foendetails), is minimal
and unique up to multiplication by positive scalars.

If C'is not pointed, there is no longer such a unique minimal epr&tion. Let
be the dimension of the lineality space®f Instead of the extreme rays, we consider
now theminimal proper faces', . .., G* of C, which are the faces @ of dimension
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t + 1. EachG® can be represented by a row vectgrand a submatrixd’ of A, with
/
rank < ;47’% ) =n —t, such that [92]

G'={reC|ar>0,Az=0} (2.2)

and
lin.space(C) = {x € C' | a] v = 0, A}z = 0}.

If we select for eachi = 1,...,s a vectorg’ € G"\ lin.space(C), and vectors
b0, ..., 0" € lin.space(C) such thalin.space(C') = cone{t’, ..., b'}, we get

C = cone{g*,..., g%, 0°,... . b'}. (2.3)
For each minimal proper fadg&,i = 1, ..., s, we get
G" = cone{g'} + lin.space(C) = {A\g' + w | A > 0,w € lin.space(C)}  (2.4)

For additional information, we refer to [92], p. 105-106.

(2.3) generalizes (2.1), but this representation is nodongique. We may choose
an arbitrary base dfn.space(C'), and arbitrary rayg’ in G* \ lin.space(C'). However,
it follows from (2.2) thatG'® can also be characterized using constraidts > 0,
wherea! is a row vector from the matrix that defines the cone. This observation
will lead us to a new way for describing and analyzing the florecassociated with a
metabolic network (see Chap. 4 for more details).

Let us now illustrate the concepts that have been introdabede using the fol-
lowing example.

Example 2.12. Consider the con€' defined by
C={(z,y,2)" € R*| —11x + 42 > 0 andx + 3z > 0}.
LetG' andG? be the faces defined by

Gt ={(z,y,2)7 € R*| —z +4z = 0 and2z + z > 0},
G? ={(x,y,2)T € R® | —w + 4z > 0and2z + z = 0}.

The linear hulls of:* andG? are respectively,

lin(G') = {(x,y,2)" € R®| —x + 42 = 0}, dim(lin(G")) = 2,
lin(G?) = {(x,y,2)" € R*| 22+ 2z = 0}, dim(lin(G?)) = 2.

Fig. 2.3 shows the polyhedral codé and the facesi' andG?. They-axis is the
lineality space of’, i.e.,lin.space(C) = {(x,y,2)T € R" | z = 2 = 0} = {\b' |
A € R}, withd' = (0,1,0)7, and sat = dim(lin.space(C)) = 1. Sincedim(G') =
dim(lin(G')) = t + 1 anddim(G?) = dim(lin(G?)) =t + 1, G* andG* are minimal
proper faces of' that could be represented by the vectgrs= (1,0,4)" andg® =
(—1,0,2)", respectively.
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X

Figure 2.3: An illustration of the polyhedral cori¢ corresponding to the constraint system
given in Example 2.12.

According to Theorem 2.5, each polyhedral cone can be sé®sr @is the solution
set of a finite system of linear homogeneous inequalitie®(ral representation) or as
the conic hull of a finite set of vectors (internal represeatg. The problem of con-
verting an external representation to an internal reptasien is known as thextreme
ray enumeration problerand the reverse is known as tfaeet enumeration problem
These problems have been well studied and have many equivaienulations [44].
Clearly, the number of extreme rays of the cane= {z € R" | Az > 0}, for some
real matrixA € R™*", can be (and typically is) exponential inor m (see Sect. 4.4
for an example). Therefore, when we consider the compuatmpmplexity of the ex-
treme ray enumeration problem, one can only sagput-sensitivalgorithms whose
running time depends not only on the size of the input but aisthe size of the out-
put. In general, no polynomial output-sensitive algoritterknown for the extreme
ray enumeration problem [44; 112]. Nonetheless,dbeble description methd@3],
which will be reviewed in Sect. 2.4, is one of the most effitigigorithms for solving
this problem.

2.3 Linear Programming

In this section we briefly describe the basic theory of lingagramming. Details can
be found e.g. in [19; 92].

Linear programming (LPjs the problem of maximizing or minimizing some linear
function, called theobjective function subject to a set of linear inequalities. In the
following, without loss of generality, we maximize the ottjge function.

More formally, given a matrix4d € R™*", a vectorb € R™ and a vector € R",
the corresponding LP problem, is denoted by

max ¢! x subject todz < b,

or shortly
max{c’z : Az < b}. (2.5)
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Each of the linear inequalities;,x < b, fori = 1,..., m is called alinear constraint
A vectorz* € R" is afeasible solutionf x* satisfies all the linear constraints, i.e.,
Ax* < b. Ifinaddition,cTz* > ¢!z for all feasible solutions, x* is called aroptimal
solution The set of all feasible solutions is called tleasible regionA linear program
is infeasibleif its feasible region is empty, otherwise it is calléghsible

LP problems, in which some variables are required to be antelgut others can be
real valued, are known amixed integer linear programming (MILP) problems

Linear programming can be solved using Simplex methodwhich enumerates
adjacent vertices of the feasible region such that at eastvagex the objective func-
tion improves or is unchanged. Another efficient polynontiade algorithm is the
interior point methodThe interested reader can refer to [92].

Every LP problem, referred to aspimal problem, can be converted intocaal
problem by swapping the constraints and variables. Foamtgt, the dual of the LP
problem (2.5) can be written as

min{b’y : ATy = ¢, y > 0}. (2.6)

For a more detailed treatment, the reader is again refead@2. The following
theorem is one of the main results in duality theory.

Theorem 2.13. The linear program (2.5) has an optimal solutionf and only if the
dual linear program (2.6) has an optimal solutiorsuch that™ z* = b"y*.

There are many practical applications of duality. For ins& it might be faster to
run the simplex method on the dual linear program. More intguuly, duality provides
an efficient way to give a certificate for the infeasibility @flinear program. The
following theorem, called th&arkas lemmgastates that the unsolvability of a system
of constraints can be established by finding a solution fareesponding dual system.

Theorem 2.14(Farkas lemma)Given a matrixA € R™*" and a vectob € R™, there
exists a vector: € R™ such thatAx < b if and only if there does not exist a vector
y € R™ such thaty™ A =0,y > 0, andy”b < 0.

In the context of our work, we instead use the following variaf the Farkas
lemma for equality and inequality constraints to charaoteminimal directions cuts
in metabolic networks (see Chap. 7 for more details).

Theorem 2.15(Farkas lemma for equality and inequality constraints [L2&iven
matricesA € R™*", B € RP*" andC € R?*™ and vectorsc € R™, y € R? and
z € RY, either there exists a solution vectorc R™ for

Av=x, Bv >y, Cv <z
or there exist row vectors € R™, b € RP andc € R? with

cC=aA+bB, b>0,¢c>0, —ax —by+cz <0.
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2.4 Double Description Method

Thedouble description method (DDMg a simple yet efficient algorithm for comput-
ing a minimal generating set of a polyhedral con®&ih To understand this algorithm,
we first recall the concept of @ouble description pair (DDHAB3].

Definition 2.16 (Double Description Pair (DDP))Given some matriced € R™*",
R € R, B e R andG = ( R B ), the pair(A,G) is said to be alouble
description paif{DDP) if the following relationship holds:

Ax > 0ifand only ifx = R\ + By for some\ € R%, andu € R’

The term “double description” means that such a pdirG) contains two different
descriptions of the same coié Namely,C' represented by iteepresentation matrix
Aas

C={xeR"| Az >0}

is also given by itgenerating matrix; = (R, B) as
C ={z € R" |z = R\ + By for someX € RS, andy € R'}.

By Theorem 2.5, each polyhedral cone admits a generatingxmaClearly, it is
more appropriate to construct a minimal generating mdtrizo that no proper sub-
matrix of G is generating the same cone. The strategy of the doubleiptésier
method is to iteratively build a minimal generating mat(ik’, B’) for the cone
C* = {z € R" | Az > Ofori = 1,...,k} from a minimal generating matrix
(R, B) of the coneC*! = {z € R" | A,z > Ofori = 1,...,k — 1}, such that
B = (by,..., by ), with t;,_; = dim(lin.space(C*~1)), is a basis of the lineality
space of*~tandR = (ry,...,r,,_,) is a set of representatives of the minimal proper
faces (faces of dimensiap_, + 1) of C*~!. The incremental step introduces a con-
straintA,.z > 0 that is not yet fulfilled by all the generators(R, B). The generators
in (R, B) that fulfill this constraint will be kept in the descriptioh 6*, the others will
be discarded and new ones are generated. The computatienredw generators relies
on the concept of adjacent rays. Two generating veetors € 12 are adjacent if they
are contained in some + 2)-dimensional face of’*~*. Fig. 2.4 gives an illustration
of the k-th iteration. The constraind,,.xz > 0 partitions the set of generatofsinto
three parts:

Rt ={r e R| Agr > 0},

RY={r € R| Ap.r =0},

R~ ={reR| Agr < 0}.

A minimal set of generator&?’, B’) for the coneC”* is determined by the following
rules [33]:

1. If A, L B, i.e,linspace(C* 1) C {x € R" | A,z = 0}, thenB’ = B and
R = R* U R U Adj, with

Adj = {(Apri) ri—(Apr)ri | 7 € RT, r; € R™, r; andr; are adjacent i€~}
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Original cone  C*-! Additional constraint Az >0

Figure 2.4: lllustration of thé:-th iteration of the double description method. In thisaten,
the constraintd,,.z > 0 partitions the generating vectors of the cafte! into
positive (red color), negative (green color) and zero (ar) generators. All
positive and zero generators of the cafi&! are kept in the description of the
coneC*. Other new generator of the co6¥ are obtained by combining a positive
and a negative generator 6F ! that are adjacent.

2. Else choosé = {b},...,b;  }suchthatd,.b; =0fori=1,...,¢ ;—1and
Apbi, > 0,and setB’ = {b},..., b, yandR = {ry,...,, v, 0, },

with 7% = (Ag.bj, ) 15 — (Apaery) - b3, fOrj=1,... s 1.

At each iterationk, the DDM algorithm needs to check for each pair of genera-
torsr andr’ of C* with A,.» > 0 and A" < 0 whether they are adjacent Gt-.
Actually, enumerating adjacent rays is the most time comsgipart of the DDM al-
gorithm. Performing this enumeration would improve the DRNgorithm. We should
also mention that this algorithm is sensitive to the ordgohrows of the representa-
tion matrix A. Many (fixed or dynamic) ordering strategies have been megpand
compared in [33].
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CHAPTER
Metabolic Network Analysis

In this chapter, we give an overview of the main approachemfideling and analyz-
ing metabolic networks. We will focus aronstraint-basedpproaches which, through
the help ofconstraintssuch asstoichiometricand thermodynamiaonstraints, define
the space of all attainable behaviors of a metabolic netwbsteady state. In the last
part of this chapter, we shall discuss the well-known cohoéglementary modes
While each elementary mode involves a minimal set of reasfithese modes span
the steady-state flux cone in the sense that, each steddyfatadistribution can be
expressed as a hon-negative linear combination of the el@myemodes.

3.1 Main Existing Approaches

The impressive biological data that is now available haswadd the reconstruction
of an increasing number of genome-scale metabolic netwddamvever, this infor-
mation is not sufficient to determine quantitatively the abetic phenotypes that are
expressed by biological systems under different envirotedeconditions. Intuitive
reasoning for predicting and analyzing metabolic phenegyqan be inadequate, often
giving incomplete or incorrect predictions. In this regpeigorous mathematical and
computational methods are strongly required to invesigya principles of metabolic
behaviors.

In an attempt to make quantitative predictions about thedyos of the metabolic
behaviorkinetic modeling{38] determines the reaction rate by means of kinetic func-
tions of metabolite concentrations and kinetic parametech as equilibrium con-
stants. A well-known kinetic function is thlichaelis-Menterrate equation, which
defines the flux through some reactiaas a function of the concentration of a substrate
A as follows:

maz___4]

V=0 e,
[A] + K.,

wherew; is the flux through reaction, [A] is the concentration of the substrate

v is the maximal possible flux through reactiband K, is a Michaelis-Menten

parameter, which is equal to the substrate concentrati@mwh
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Although kinetic modeling is most appropriate for fully cheterizing metabolic sys-
tems, this approach has been hampered by the lack of dekaetic information.
Indeed, it is difficult to determine kinetic parameters expentally. Consequently,
there is often not enough kinetic information in the literatto construct kinetic mod-
els. Moreover, the results that could be drawn from such isate strongly sensitive
to the definition of both kinetic functions and parameters.

In view of the limits of kinetic modeling, growing attentios being paid to other
approaches which require only topological and structuraperties rather than de-
tailed kinetic information. Indeed, using the language @pdp theory, a metabolic
network can be captured as a graph representation of thigoresataking place in that
network. In this representation, the metabolic networkeensas either @eaction
graph[40] or asubstrate grapfL18], allowing for the use of the tools of graph theory
to investigate topological properties of metabolic nekgorThese properties include
the clustering coefficien{85], as well as theaverage path-lengthetween metabo-
lites [1].

While graph-based methods have greatly contributed to tigenstanding of
metabolic network topology, they are limited by a crucidfetence between graphs
and metabolic networks. Indeed, ab@ats of reactions are bimolecular or more in
either substrates, products or both [31]. For instancefdh@wing is a reaction in-
volving two substrates and two products,

glucose+ ATP — glucose 6-phosphate ADP.

A graph-based representation does not explicitly consiaehypergraphical nature of
metabolic networks. Aypergraphs a generalized graph in which hyperedges (reac-
tions) may link more than two nodes (metabolites). Besidesph-based approaches
do not straightforwardly consider reaction stoichiome®ye topological approach to
coping with this situation is to ugetri Nettheory [124]. This approach has many par-
allels with pathway-based network analysis reviewed int.S24. In addition to be a
user-friendly means of visualization, Petri nets allowsdiearacterizing several prop-
erties of metabolic networkgrép deadlockand liveness to name but a few) [71].
However, determining these properties requires a traaslaf Petri nets into linear
constraint systems. This modeling can be obtained usinsti@nt-based approaches.
Rather than attempting to predict exactly what a metabolstesn does, one
could narrow the range of all possible behaviors this systamdisplay under cer-
tain physicochemical constraints [23; 72; 81]. In such aprepach, we assume that
these constraints define the space of all possible att&rm@diaviors of a metabolic
network. Constraint-based approaches are simple but pa&04]. Indeed, the few
parameters used in such approaches enable models to baraugtudied easily. Al-
though such approaches do not strive to find exact behavioretabolic networks,
the degree of freedom of the constrained system yields anaitidn of our level of
understanding of the metabolic system. If all the constsdimat govern a metabolic
network are known, the allowable domain shrinks to a singésible behavior. This
is often not the case, and so many further flux distributiaffdifthe governing con-
straints. Nonetheless, adding further constraints mayathe number of allowable
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flux distributions in the network. This is the strategy usgdnietabolic flux analy-
sis (MFA) [64; 107]. In this approach, fluxes through many boundargtieas are
measured to render a determined constraint system. Besaesstency tests of gov-
erning constraints make possible improving metabolic mstroictions. For instance,
some reaction could be unable of carrying a flux under congsreaken into account
in the model. This could indicate the presence of errors assioms during network
reconstruction processes.

In the context of the present work, we are specifically camegmwith deriving all
possible flux distributions subject to the two most importaonstraints that have to
hold in a metabolic network at steady state: #teichiometricand thermodynamic
constraints. As we will see in the next section, these caim# define the steady-state
flux cone that contains all possible flux distributions in gaelic network subsisting
at steady state.

3.2 Steady-State Flux Cone

According to kinetic theory, the difference between thee rat formation and con-
sumption of a particular internal metabolite is equal todhange in concentration of
that metabolite over time. Mathematically, the behavioa afetabolic network can be
captured as a system of ordinary differential equation§ [B&ompact expression of
this equation system is

dx

i 3.1
=5, (3.1)

where S is the stoichiometric matrixy stands for then—dimensional vector of in-
ternal metabolite concentrations amdenotes thélux distributionwith elements cor-
responding to the: fluxes through reactions. Actually, the flux vectoconsists of
nonlinear functions of metabolite concentratiangs well as of a set of kinetic pa-
rameters (e.g., Michaelis constarits,, maximal reaction rates,, and equilibrium
constantsk,,). For all except very simple cases, the constraint systefi) (&nnot
be solved analytically, but it can be investigated numdyicaith appropriate nonlin-
ear solvers. Nonetheless, if we consider only the fluxesutfitaeactions, then the
constraint system (3.1) is linear in them.

Identification of steady states plays a crucial role in thalysis of metabolic net-
works [98]. At steady state, the change in the concentraifom compound: over
timet across all reactions within the system becomes zero. Thig@sion is relevant
for most metabolic reactions since they are typically mwagtdr than environmental
changes [34; 115]. The steady-state assumption is exprbgsezero time derivative
of the concentration, leading to tiflex balance equation

Sv = 0. (3.2)

This equation defines th&toichiometric constraintg/hich state that the total rate of
formation for any internal metabolite must equal the toddéd rof consumption for that
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metabolite. Remember that the flux balance equation holysfoninternal metabo-
lites, since each internal metabolite must not accumulatorease in time. In con-
trast, external metabolites could be buffered, and so tmesabolites are not involved
in the flux balance equation.

Stoichiometric constraints are mandatory for understamdhe behaviour of
metabolic networks, but they are far from sufficient. Thesestraints allow a wide
range of possible steady-state flux distributions, namkiljux distributions that are
situated in the null space of the stoichiometric matrix (Seet. 2.1 for a definition of
the null space of a matrix). Additional constraints imposgdhermodynamic con-
siderations are often crucial to reduce the range of pasdibk distributions. In-
deed, since each irreversible reaction can proceed onheiforward direction, fluxes
through irreversible reactions must be greater than orléquaero. This is stated by
the following constraint system

v; >0, foralli € Irr. (3.3)

According to [78], a set of reactions forms fanctionally coherent setn
metabolism if the flux distributiom realizable by these reactions obeys both the sto-
ichiometric and thermodynamic constraints, i« fulfills the following linear con-
straint system

Sv=0, v; >0, foralli € Irr, (3.4)

wherein the number of constraints: (+ |Irr|) is often far less than the number
of unknown fluxes. Consequently, this set of linear constsais, in general, under-
determined. Hence, multiple steady-state solutions assiple, each representing a
possible flux distribution over the network at steady stdteaddition, owing to the
linear inequalities (3.3), the mathematical problem (&4)eyond the scope of stan-
dard linear algebra. In polyhedral theory, it is shown thatdolutions of the constraint
system (3.4) form a polyhedral cone in the flux space (see .Chiap a definition of a
polyhedral cone).

Definition 3.1 (Flux cone [20], p. 20-21) The set of all solutions of the constraint
system (3.4), which corresponds to the set of all possibledistributions over the
network at steady state, defines a polyhedral cone,

C={veR"|Sv=0, v; >0,forallie Irr}, (3.5)
which is called thesteady-state flux cone

For the rest of the thesis, we shall use the simpler term flure dor steady-state
flux cone.

Since the flux cone in general contains infinitely many pdessbeady-state flux
distributions, it is interesting to find out which of theseagéle flux distributions
are actually displayed by the metabolic network under awmrstion. Currently,
constraint-based approaches have attempted to analyabatietnetworks by use of
different mathematical and computational tools (linegehfa, polyhedral theory and
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Constraints Solution Space
Sv=0
Exploring solution space /
v >0
Constraint-based approaches /

v =y /
Seeking for particular

flux distributions

max v

Sv=0

0<z:<y

Figure 3.1: Constraint-based analysis of metabolic nétsvor he stoichiometric and thermo-
dynamic constraints that have to hold in a metabolic netwlefine the space of all
possible flux distributions over the network. Optimizatizesed approaches seek
to identify single behaviors that optimize a predefined cibje function. Alter-
natively, the whole capabilities of the metabolic netwodld be assessed using
pathway-based network analysis.

S @

linear programming, to name but a few). There are two magteggies to analyze a
metabolic network: searching for single optimal behavigsig optimization-based
approachesor assessing the whole capabilities of a metabolic netwgrkneans of
pathway-based network analysisg. 3.1 gives an overview of these two categories of
constraint-based approaches.

3.3 Optimization-based Approaches

Optimization-based approaches assume that metabolicorietvibehave optimally,

driven by an objective. For applying such methods, we firedre determine a most
likely physiologically meaningful objective of a living stem. This is interesting, as
it may allow us to identify rules that govern the operatioraghetabolic network un-

der different environmental conditions. These governirigs are important not only
for enhancing our understanding of the metabolic systetralbo for engineering and
designing strains more appropriate for metabolite pradogiurposes [10; 12].

In an attempt to determine an optimal flux distribution, ohewdd state an objec-
tive function and seek its maximal value within the feasidenain. This approach is
referred to adlux balance analysis (FBA)2; 63]. In addition to the stoichiometric
and thermodynamic constraints, the optimization strategployed by FBA uses flux
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capacity constraints that place bounds on the values ofemdiux, and possibly other
physicochemical constraints to further limit the space @dgible flux distributions.
These additional constraints are necessary because ysingzation techniques re-
quires that the feasible domain is bounded in the directiaihe objective function.

Assuming the objective function is linear, FBA constitutes following linear pro-

gramming problem (see Sect. 2.3 about linear programming)

maxc’v

subject to:

Sv =0,

U;ﬂin S v; S ’Ulm‘m: forall i {1, cee ,n},

(3.6)

wherec denotes the vector that defines the objective function bynsieécosts of or
benefits derived from the fluxes [84]. Note that also minimiaracan be performed
by simply finding the maximum of the negative of the objecfiwection. The bounds
v andv™* are the minimum and maximum flux capacities. In particul@f? =

for each irreversible reactian By changing the vectarin the linear problem (3.6), we
could test various objective functions, each capturinfedeht information on which
rules are governing metabolic networks. Many optimizatiased approaches assume
that a well-suitable objective function for an optimal ogtéyn of metabolic networks
is the maximization of biomass production (growth) [28; LTHey consider that mi-
croorganisms have evolved in such a way that their metahebworks guarantee the
most efficient conversion of resources to produce more.CHflis simple optimization
principle has been widely used for many studies, such asqpiregl the optimal per-
formance of a metabolic network under a range of growth dand, studying gene
essentiality and identifying targets for metabolic engiireg [10; 27; 82]. On the
other hand, some microorganisms may not necessarily haleeehsolely to optimize
biomass production. They instead may be driven by otherctisgefunctions includ-
ing [26]:

— Minimizing ATP productionto guarantee optimal metabolic energy efficiency.

— Minimizing nutrient uptakego minimize the amount of available nutrients that
are needed by the living system to perform its metabolictions.

— Minimizing the overall fluxused to efficiently channel the metabolites through
the metabolic network.

— Maximizing the productiorof a chosen metabolite to determine the production
capabilities of a given metabolic network.

No single objective function completely describes the ropti operation of
metabolic networks under all environmental conditionscéxdingly, it is still manda-
tory to verify whether a hypothesized objective functiorassistent with experimen-
tal flux data. Recent work systematically evaluates thevaglee of eleven objective
functions to predict fluxes i&. coli under six environmental conditions [93]. Another
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approach uses an optimization-based framewotind) for inferring the most plau-
sible objective function given observed experimental b3

A knocked-out organism may not be accurately described th@lobjectives used
for wild-type systems. A recent approach, calmcimization of metabolic adjust-
ment(MOMA), assumes that a knocked-out organism displays a iktxildution clos-
est to the optimal flux distribution prior to the gene deletjp03].

MOMA determines a flux distribution with the smallest euebah distance to the
optimal wild-type flux distribution obtained by FBA usingiollowing quadratic pro-
gram:

min (v — w)T (v — w)

subject to:

Sv =0,

vt < g <omerforalli € {1,...,n},
v; =0, forall j € A,

wherew is the wild-type flux distribution and A is the set of reacsororresponding
to the deleted genes. On the other harejulatory on-off minimization (ROOM)
identifies the metabolic flux state of mutants by minimizihg humber of significant
flux changes from the wild-type flux distribution [105]. Fdrig, ROOM assigns a
cost to each flux, defines a rangé, w*] around the wild-type flux distributiom and
determines a feasible flux distributiorwith a minimal number of componentssuch
thatv; ¢ [w!, w]. The resulting optimization problem involves a mixed-geelinear
problem that can be written as:

min > 7, ¢y

subject to:

Sv =0,

v; — Y (v —wd) <wfforalli € {1,...,n},
v; — yi(vmm —wl) > wlforalli € {1,...,n},
v; =0, forall j € A,

Yi € {O, 1},

wherec; denotes the cost for a change in the flux through readati@nd for each
reactioni € {1,...,n}, y; = 1 for a significant flux change in;, i.e.,v; ¢ [w!, w!],
andy; = 0 otherwise.

In analogy with FBA, both MOMA and ROOM require the definitioh an ob-
jective function to compute their minimal metabolic adjusnt. In addition, these
approaches require the solution of FBA for the wild-typeamigm. Many other
optimization-based methods have been developed to anadgiolic networks in-
cluding automated curation of metabolic reconstructids®,[recovering metabolic
pathways via optimization [7], analysis of gene essemyi§#i; 15; 82] and metabolic
engineering [10; 12].

While optimization-based approaches have proved suadéssinalyzing optimal
capabilities of several microorganisms, their resultsarssitive to the definition of the
objective function. Moreover, these methods assume th&dlbokc systems operate
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according to a single rule of optimization. A recent studg Baown, however, that a
microorganism could use different optimization criterepending on the environmen-
tal conditions [93]. The exploration of all suitable objgetfunctions is still a difficult
task.

Furthermore, an optimal solution with respect to a suitabjective function need
not be unique. Optimization-based techniques often reniarbitrary chosen flux dis-
tribution from the set of all optimal flux distributions. Imalogy with the flux cone,
the set of all optimal flux distributions is, in general, afinite convex set and requires
an adequate description. A recursive mixed-integer lipeagramming algorithm has
been developed to find all alternative optima [65]. This @t was, however, ap-
plied only on small networks. Finally, optimization-basgaproaches consider only
optimal states, which form a restricted subset of all pdediehaviors of the living
system. An interesting alternative to optimization-basemstleling is to describe all
possible steady-state flux distributions in the metabatiwvork using pathway-based
network analysis.

3.4 Pathway-based Network Analysis

Pathway-based network analysis [51; 75; 91] has been remamyas an important
approach in computational biology. This analysis is conedrwith describing the
infinite flux coneC' (defined in equation (3.5)) by means of a finite set of gensgati
vectors. A key distinction to be made is whether the flux caneadinted or not. By

definition, the flux cone is pointed if its lineality space

lin.space(C) ={v e C|v; =0,foralli € Irr} (3.7)

is reduced to the origin, i.e., no steady-state flux distidsuinvolves only reversible
reactions. In particular, if all reactions are irreversible., Irr = {1,...,n}, then
lin.space(C') = {0} and so the flux cone is pointed. In this case, the flux cone is
generated by a unique (up to multiplication by positive arsgland minimal set of flux
vectors that correspond to its extreme rays.

In the presence of reversible reactions, the situation isenmvolved. Indeed,
if some reactions are reversible, the flux cone may be nont@diand thus has no
longer a unique and minimal representation by its extrergs.rao deal with this
situation, some approaches propose to reconfigure the atietaletwork in order to
render the flux cone pointed [20; 90]. For this, they consalsubset SRC Rewv of
reversible reactions and split each reversible reactian SR into a forward and a
backward reaction, which both are constrained to be irethler. Lets = |SR and
SR= {j1,...,js}. For convenience, the stoichiometric matkc R™* () of the
reconfigured network can be written as follows:

Sij = S forallj € {1,...,n},

Siniry = —Sx, forallk e {l,... s}
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The set of irreversible reactions in the reconfigured netwsogiven by
Irr" = Irr USRU{n+1,...,n+ s}.

The reconfigured flux con€”, which contains all possible steady-state flux distribu-
tions in the reconfigured network, is defined by

C'={veR"™ | Sv=0, v; >0,foralli € Irr'}. (3.8)

As a result of this reconfiguration, for a well-chosen set $Rptit reactions, the
reconfigured flux coné” is pointed and can be described by a unique and minimal set
of extreme rays. This reconfiguration has, however, undel&rconsequences. On the
one hand, the number of variables and constraints incrégseand2s, respectively.
This renders more complex the constraint system that defireeseconfigured flux
cone. On the other hand, a significant number of rays in thenfegured cone are ex-
treme for the only reason that the split reversible reastltave been decomposed into
forward and backward reactions. In the initial cone, thedeeene rays are conically
dependent. Accordingly, the number of extreme rays ine®hy this reconfiguration,
which limits the practical applicability of this strategit more detailed study of the
network reconfiguration is given in Chap. 5.

Three main approaches have been proposed to analyze metadworks using
inner descriptions of the flux cone [20; 90; 98]. They all det@e flux distributions
corresponding to a convex basis of the flux cone, but useerdift set of reactions that
have to be split [120]. If the latter includes all reversibdactions, the reconfigured
flux cone is pointed and generated by its extreme rays cakeeémal currentf20]. If
only internal reversible reactions are split, the recomégulux cone is again pointed
and the extreme rays are termexifreme pathway§90]. Note that if all boundary
reactions are irreversible, both concepts are identicalsiould also mention that the
extremal current and the extreme pathway approach requieaafiguration of the
network even if the initial cone is pointed. Also in this catbee set of extreme rays of
the reconfigured cone is much larger than that of the inibakc

Schuster and Hilgetag [98; 99] have proposed a descripfithredlux cone without
any reconfiguration, usinglementary modes (EMsAn elementary mode corresponds
to a steady-state flux distribution involving a minimal seteactions. This concept is
related to that of aninimal T-invariantin Petri net theory [37; 100] and has also been
used for analyzing signaling and regulatory networks [49jom a biological view-
point, each EM converts a set of metabolites into each othendans of a minimal
set of reactions. Since reactions are catalyzed by enzyeael,EM corresponds to a
minimal set of enzymes that must be expressed by genes. mipdigty property of
EMs is of great interest because the effort provided by algiohl system to maintain
a metabolic pathway increases with the number of enzymeegsgd [74]. In addition
to the simplicity property, it has been shown that elemgntandes span the steady-
state flux cone. In other words, each steady-state flux bligion can be expressed as
a non-negative linear combination of elementary modesaknore detailed explana-
tion of the similarities and differences between the threeer descriptions, we refer
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Inner description | Split reactions Characteristics of the reconfigured flux cafié Characteristics of ID
ID SR Dimension Number of constraints | lin.space(C’) | Uniqueness| Minimality
Extreme pathways Revint n+ |Revint| | m+ |Irr| + 2| Revint| {0} Vv yes
Extremal currents Rev n + |Rev| m + |Irr| + 2| Rev| {0} Vv yes
Elementary modesg 0 n m+ |Irr| lin.space(C') Vv no

Table 3.1: Inner descriptions of the flux cone, with the setpiit reversible reactions SR, the
characteristics of the reconfigured flux cafieand of the three inner descriptions.
Contrary to elementary modes, the sets of extreme pathwal/exremal currents
correspond to the extreme rays of their corresponding fegoed flux cone and so
are minimal. However, possibly many of these generatingovecould be in the
interior of the original flux cone.

to [51; 73; 75; 76; 120]. Tab. 3.1 summarizes the charatiesisf the different inner
descriptions.

Elementary modes are defined in the origimalimensional flux space. In contrast,
to define extreme pathways (resp. extremal currents), therdBion of the flux space is
increased by (resp.q), the number of internal reversible reactions (resp. thalmer
of all reversible reactions). In the following, we formadligaracterize the relationships
between the three inner descriptions.

Let Rev;,, stand for the set of reversible internal reactions. Supgtse,; =
{j1,.--,Jp} andRev = {j1,...,j,}. Letm : C — R (resp.¢ : C — R"*9) be
the function that maps each flux vectorce C' to v’ = w(v) (resp.v’ = ¢(v)) such
thatv; = v; forall j € {1,...,n} \ Revy, (resp.j € {1,...,n}\ Rev), and for each
ke{l,...,p} (resp.k e {1,...,q})

A / — i
v =w;and v, =0 if v;,, >0,

[ / — i
v, =0 and v, =-v;, ifv;, <O0.

The functionr (resp.¢) formally defines the reconfiguration of a flux vectoe C'
by splitting each free variable;, with j, € Rev,, (resp.ji, € Rev) into two non-
negative variables; andv,,, with v; = v} — v ,,. This operation is similar to
standard form transformation in linear programming. Tordethe reverse operation,
let 7" : R"*? — (O (resp.¢” : R"*7 — () be the function that maps each vectoe
R™7 (resp.v’ € R*"9) tov = 7" (v') (resp.v = ¢"(v')) such that; = v forall j €
{1,...,n} \ Reviy (resp.j € {1,...,n} \ Rev) andv;, = vj — v, ., forall k €
{1,...,p} (resp.k € {1,...,q}).

Finally, letII C R"*? and® C R"" be the sets of 2-cycles corresponding to the
split reversible reactions, i.e.,

H={xeR"?|z;=0forallje{l,....n+p}\ {jk,n+k}
andz;, = x,., = 1, for somej, € Revy},

O ={zeR"|z;=0forallje{l,...,n+q}\ {jk,n + &}
andz;, = x,., = 1, for somej;, € Rev}.
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The following proposition reformulates the relationshgiween extreme pathways
and elementary modes given in [51]. Except fheycles corresponding to the split
reactions, each extreme pathway completely defines a urlgueentary mode.

Proposition 3.2([51]). If x ¢ 1I is an extreme pathway, then there exists a unique
elementary mode € C' such that: = w(e) ande = 7" (z).

According to the proposition above, the set of extreme payswcorresponds to
a subset of elementary modes. Next, we restate the equbeal®miween elementary
modes and extremal currents given in [34].

Proposition 3.3([34]). Lete € C be a steady-state flux distribution. The following
are equivalent:

— e Is an elementary mode.
— There exists a unique extremal current ¢ such that: = ¢(e) ande = ¢"(x).

It follows that up to the 2-cycles corresponding to the gplgctions, extremal cur-
rents and elementary modes are equivalent. Accordinglggorithm for computing
extremal currents could also be used to calculate elememades and vice versa.

Thus all three approaches are concerned with describingraeploreconfigured
flux coneC’ by means of its extreme rays. There may exist many generasicigrs
of the reconfigured flux con€’ lying in the interior of the original flux con€'. This
observation is important because the number of these gereraay be very large,
making a complete analysis of the whole metabolic netwonkassible and limiting
the practical applicability of these methods.

3.5 Elementary Flux Modes

In this section, we limit ourselves to further charactegkrementary modes. All the
properties we will discuss here hold also for the extreméways and extremal cur-
rents.

The notion of an elementary vector was first introduced irj [8@e also [88], p.
205) where it was defined as a vector having a minimal supperta minimal set of
non-zero components.

Definition 3.4 (Elementary vector [87])Let L C R"™ be a vector subspace. A vector
e € L\ {0} is an elementary vector if its supp&tipp(e) is minimal, i.e., there exists
no vectore’ € L\ {0} such thatSupp(e’) C Supp(e).

It has been shown that a subspdceC R™ can be considered as a linear hull
of a finite set of elementary vectors [87] (see Sect. 2.1 foefndion of a linear
hull). Building on earlier ideas [21; 30; 66], Schuster et mtroduced the concept
of elementary mode® provide a finite set of vectors that span the flux cone by non-
negative combination [97; 98; 99].
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Definition 3.5 (Elementary mode [98])A flux distributione € R™\ {0} represents an
elementary (flux) mode if, and only i, fulfils the two following conditions:

— Feasibility:e obeys the stoichiometric and thermodynamic constrairdseie
C.

— Simplicity (non-decomposability)e cannot be represented as a positive linear
combination
e = A\ + X" forsome\;, \y > 0 (3.9)

of two flux vectors’, " # 0 with the following properties:
1. ¢ ande” obey the stoichiometric and thermodynamic constrairgs, i.

e e C ande’ € C.

2. ¢ ande” contain zero elements wherevedoes and they include at least
one additional zero component each,

Supp(e’) & Supp(e) andSupp(e”) & Supp(e). (3.10)

In addition to the simplicity property, elementary modearsfhe steady-state flux
cone. Each steady-state flux distribution can be expressedrmn-negative linear
combination of elementary modes.

Proposition 3.6 ([99]). Lete!, ..., eP be the elementary modes of the flux cdrie
Each possible flux distributione C'is a non-negative linear combinationedf . . . , e?

p
v = Z \pe® for some\, > 0.
k=1

The next proposition restates an equivalent formulatiothefsimplicity property
characterizing elementary modes. An EM is a flux distributiaving a minimal sup-
port, i.e., a minimal set of active reactions (non-zero congmts).

Proposition 3.7([99]). For any pair of vectors, ¢’ € C, with e representing an ele-
mentary mode anel having zero components wherevenas zero components, i.e.,

Supp(e") C Supp(e), (3.11)

¢’ either represents the same elementary mode@she same elementary mode as
—e, which impliesSupp(e') = Supp(e).

By the proposition above, each EM can be defined by its settofeaeactions,
which is minimal. From a biological viewpoint, each EM corgecertain metabolites
into each other by means of a minimal set of reactions. Se@etions are catalyzed by
enzymes, each EM corresponds to a minimal set of enzymestisdtbe expressed by
genes. The simplicity property of EMs is of great interestehese the effort provided
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Figure 3.2: A hypothetic network with the correspondingnedatary modes. This network
contains three elementary mode'se? ande®. The flux cone is pointed and is
spanned only by two extreme raysande?.

by a biological system to maintain a metabolic route incesasith the number of
enzymes expressed [74]. From a mathematical point of viesvsimplicity property
guarantees the uniqueness of the set of EMs. However, givé&Mee, we could find
two flux vectorse’ ande” in the flux cone that fulfill equation (3.9) but not condition
(3.10). Accordingly, if the flux cone is pointed, an EM is n@icessarily an extreme
ray. On the other hand, an extreme ray cannot be decompadsetivim other feasible
flux vectors, and so each extreme ray defines an EM. This isds®n why, in many
situations, more EMs exist than are needed to span the flux con

Example 3.8. For illustration, consider the network depicted in Fig..3lconsists
of four internal metabolite§4, . .., D) and six reaction$l, .. .,6), where reactions
3,4,5 and6 are irreversible. The flux cone corresponding to this neétvi®pointed,
i.e., no steady-state flux distribution involving only resiéle reactions is possible.
Two extreme rays generate the flux cone. They corresponcettelémentary modes
el = (-1,-1,0,1,1,0) ande? = (1,1,1,0,0, 1) depicted in Fig. 3.2. This network
contains another elementary made= (0,0, 1,1,1, 1), which can be writter?® =
el + 2. Althoughe? fulfills the simplicity condition, this mode does not coipesd to
an extreme ray of the flux cone.

Elementary modes are also useful for studying reactiortidels i.e., the removal
of one or more reactions from the metabolic network. Theofeihg proposition re-
states the conservation property characterizing EMs.

Proposition 3.9(Conservation property [51])If a set of reactions are removed from
the metabolic network, all elementary modes not involvingse reactions form the
complete set of elementary modes in the altered network.

Elementary-mode analysis has been used to investigataatefeatures of
metabolic networks. Tab. 3.2 shows the main applicationtbisfapproach.

Various algorithms have been developed for computing eiang modes. The
main algorithm [99], which is based on an earlier algorithytN@zicka [70], proceeds



34

Application Reference
Investigation of viable pathways [80]
Inference of mutant viability [16; 106]
Detection of pathways with maximal molar yields [54; 96; 202]
Control-effective flux analysis [16; 17; 106]
Identification of correlated reactions [78]
Detection of thermodynamically infeasible cycles [34]
Computation of minimal cut sets [46]
Analysis of dynamical capabilities of a metabolic system ogp

Table 3.2: Applications of elementary-mode analysis facelating network properties.

in an iterative way by computing the EMs for a series of cafigs .., C™ given by

C' = {veR"|v; >0 forallj € Irr},
C' = {veR"|S,v=0 v, >0 forall j € Irr},
with 7; = {1,...,i}, foralli =1,... ,m.

Obviously, the EMs of the con€® corresponds to the vectors of the canonical basis
of the euclidean spadR”. These initial EMs fulfill the thermodynamic but not the
stoichiometric constraints. At each iteratio {1,...,m}, the EMs of the con€"

are computed from those of the cofie™! in two steps:

1. The EMs ofC‘~! fulfilling the stoichiometric constrain;,v = 0 are also EMs
of the cone".

2. The remaining EMs of*~!, which do not fulfill S;u = 0, are combined with
each other to compute the EMs 6f that lie within the intersection between
C~! and the hyperplan&’ = {v € R" | S;,v = 0}. However, many of these
combinations do not lead to EMs 6f' and need to be discarded. There are
two methods that allow for discarding these combinatioree first is based on
the simplicity property of EMs. Indeed, a combination of & & two EMs of
C'~! does not lead to an EM " if the set of non-zero components involved in
that combination includes the set of non-zero componewutdvad in an already
computed EM ofC?. The second uses a simple criterion on the rank of some
submatrix of the stoichiometric matrix [114].

Since the con€™ and the flux con& are identical, after iteratiom, the algorithm
terminates having computed all the EMs of the flux c6hél'he most time consuming
part in this algorithm are the computations needed to chaelsimplicity property in
the second step of each iteration. Several variants of th@ithm have been devel-
oped to reduce the cost of these computations [34; 110],easethers have attempted
to reduce the number of iterations [114; 119]. While effitienanalyzing metabolic
networks of small sizes, these algorithms are hampereddayaimbinatorial explosion
of the number of EMs in genome-scale networks [50].
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A natural question is that of defining methods which shrink ¢ize of the flux
cone description to a more manageable level. In particoe might wish that the de-
scription of the flux cone is minimal. Finding a descriptiohiah fulfills this require-
ment essentially amounts to determining a minimal set oégeimg vectors [78; 120].
However, this strategy is not ideal in the context of metabaétworks. These gener-
ating vectors may not be unique, and so it is difficult to bttte a biological interpreta-
tion to such a non unique description. Alternatively, somars have suggested pro-
jecting the flux cone onto the subspace spanned by the bouredations. This allows
to consider instead of the flux cone a simpler cone, callecdtimersion con§l14].
Several elementary modes are then equivalent with respéicetboundary reactions.
They differ only in the active internal reactions. While thescription of the conver-
sion cone is much smaller than that of the flux cone, this apgir@bstracts away the
operation of internal reactions.



36




CHAPTER

4 Minimal Metabolic
Behaviors and the
Reversible Metabolic Space

This chapter is devoted to providing a deeper insight ingonttathematics underlying
our new constraint-based approach to metabolic network/sisgpublished in [58].
A key idea is to use an outer description of the steady-staxecthne, based on sets
of non-negativity constraints. These can be identified wittversible reactions and
therefore have a direct biochemical interpretation. Outhoe is thus different from
existing approaches, such as elementary modes or extretmegys, which use an
inner description. We characterize a metabolic networknawyriew conceptsminimal
metabolic behavior@MMBSs) and thereversible metabolic spa¢BMS). Like elemen-
tary modes or extreme pathways, these are uniquely detednliy the network. The
set of all MMBs together with the RMS yields a complete dgsewn of the flux cone,
which is minimal, unique, and satisfies a simplicity corafitsimilar to the one that
holds for elementary modes. Moreover, our approach leadsaw classification of
reactions (irreversible, pseudo-irreversible, fullyeesible), which may be used for a
refined analysis of the network. We demonstrate the retiglof our new approach by
studying the metabolic functions of the human red blood cell

4.1 Minimal Metabolic Behaviors

In the context of metabolic pathway analysis, the set of adigible flux distributions

over a metabolic network at steady state defines the steéatiy/fkix cone (see Defi-
nition 3.1 in Chap. 3). Already in [20], we can find the distina between inner and

outer descriptions of this cone, which are called therermateand external represen-
tations. The external representation gives a test for ohieng whether a given flux

vector belongs to the cone, while the internal represemtatllows one to construct
flux vectors from a set of generators.

If the metabolic network does not contain any irreversildaction, the steady-
state flux cone becomes a linear subspad®"efwhich can be analyzed by standard
methods from linear algebra. Therefore, we assume for #tefehis chapter that the
metabolic network contains at least one irreversible react
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4.1.1 Characterizing Minimal Proper Faces

We start by characterizing the minimal proper faces of the flane through irre-
versible reactions of the network.

Definition 4.1. Let G be a minimal proper face of the flux coeand letj € Irr be
an irreversible reaction. We say thaitis characterized by if there existsl; C Irr
such that? = {v e C |v; >0, v; =0, foralli € 1}, andlin.space(C) = {v € C |
v; =0, v, =0, foralli € I,}.

It follows from equation (2.2) in Chap. 2 that each minimadper faceG of C'is
characterized by at least one irreversible reaction. Hewekis reaction need not be
unique. In general, there will be several irreversible tieas satisfying the conditions
of Definition 4.1. The following proposition provides a sitagriterion to identify
the irreversible reactions that characterize a given mahpnoper face. In particular,
given a minimal proper facé&, if an irreversible reactior is involved in some flux
vectorv € G\ lin.space(C), i.e.,v; > 0, thenj is involved in all flux vectors) €
G \ lin.space(C') and soG is characterized by.

Proposition 4.2. LetG be a minimal proper face 6f and letj € Irr be an irreversible
reaction. Then the following statements are equivalent:

1. GG is characterized by.
2. v; >0, for somev € G \ lin.space(C).
3. v; >0, forallv € G\ lin.space(C).

Proof. (1) = (2): Sincedim(G) = 1+dim(lin.space(C')), we have7\lin.space(C') #
(. So there exists € G \ lin.space(C), with v; > 0.

(2) = (3): Supposg € G \ lin.space(C) with g; > 0. By equation (2.4), for any
v € G\ lin.space(C') there exists\ > 0 andw € lin.space(C') such that = \- g +w.
It follows thatv; = A - g; > 0.

(3) = (1): It follows from equation (2.2) that: is characterized by at least one
irreversible reaction. So there exigtss [rr andl, C Irr withG = {v € C | vy >
0, v; =0, forall i € I}, andlin.space(C) = {v € C | vy =0, v; =0, forall i €
I;.}. To prove (1), we set; = I, and claim that the same equations holdifoeplaced
with j. Considern € C'with v; = 0, foralli € I; = I;. Sincev € C, we havev; > 0
andv, > 0. If v, > 0, thenv € G\ lin.space(C') and by (3)v; > 0. If v, = 0, then
v € lin.space(C) and sov; = 0. Together this shows; = 0 if and only if v, = 0. It
followsG = {v e C | v, > 0,0, =0,i € I;} ={v e C|v;, >0,v;, =0,i € [;}
andlin.space(C) ={v e C |y, =0,v, =0,i € [} ={v e C|v;=0,v;, =0,1 €
I}, O

Now, we define thecharacteristic sevf a minimal proper facés as the set of all
irreversible reactions characterizigg As a consequence of Proposition 4.2, this set
is equal to the set of irreversible reactions involved in edlax vectors inG. Let us
state this fact in the following definition.
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Definition 4.3. Given a minimal proper fac@ of the flux cone”, the set
D ={j e Irr|v; >0, forsomev € G}
of all irreversible reactions characterizifygis called thecharacteristic sedf G5.

Note that the characteristic set is uniquely determinechbycbrresponding mini-
mal proper face.

As the next theorem shows, all flux vecters G'\lin.space(C') have the following
common property: the flux through all irreversible reacsibelonging taD is positive,
i.e.,v; > 0, forj € D, while the flux through all the other irreversible reactiesero,
i.e.,v; =0,forj e Irr\ D.

Sincelin.space(C) = {v € C | v; = 0Oforalli € Irr}, flux vectors in
lin.space(C') involve only reversible reactions and s@ € lin.space(C). For this
reason, a flux vectar € lin.space(C') will be called reversible. Note that information
about reversible pathways is lost if the network is recomédun order to obtain a
pointed cone.

Theorem 4.4. Let G be a minimal proper face of the flux co6eandD its character-
istic set. Then

G={velC|v;>0, forallje D, v; =0, foralli € Irr\ D} Ulin.space(C).

Proof. Supposej € D. ThenG = {v € C | v; > 0, v; = 0, for: € I;} and
lin.space(C) = {v e C | v; =0, v; =0, fori € I;}, for somel; C Irr. From
Proposition 4.2, we see that C I[rr \ D. It follows that{v € C' | v; > 0, forall j €
D, v; =0, foralli € Irr\ D} Ulin.space(C) C G. To show the reverse inclusion,
suppose € G\ lin.space(C). With Proposition 4.2y; > 0, for all j € D. Suppose
v; > 0, for some: € Irr\ D. From Definition 4.3, we would gete D, which is a
contradiction.

O
If GY,...,G* are the minimal proper faces of the flux cofie the correspond-
ing characteristic set®!, ..., D* together with the lineality spade.space(C') com-

pletely describe.
The next result shows that inside a minimal proper f&c¢he fluxes through the
irreversible reactions i are proportional to each other.

Corollary 4.5. Let D be the characteristic set of the minimal proper f&ceT hen for
all j,k € D, there existsy > 0 such that, = « - v;, for allv € G. In particular,
v; = 0 impliesv, = 0, andv; > 0 impliesv, > 0, forallv € G.

Proof. Considery € G\ lin.space(C). Sincej, k € D, Proposition 4.2 implieg; > 0
andg, > 0. By equation (2.4), for alb € G \ lin.space(C'), there exist\ > 0 and
w € lin.space(C') suchthat = X\-g+w. Itfollows thatv; = X-g; > 0, v, = A-g; > 0,

and thereforev; /v, = g,/ 9k > 0, independently fromv. This shows that
v; = a-v, > 0, forallv € G\ lin.space(C). For allv € lin.space(C'), we have
v; = vy = 0. Itfollows for all v € G thatv; = o - vy, O
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4.1.2 Minimal Metabolic Behaviors and the Reversible Metablic
Space

We are now ready to define the key notions of this chapter.

Definition 4.6. A metabolic behaviois a set of irreversible reactioms C Irr, D # (),
such that there exists a flux vectoe C with

D ={i€ Irr|v; #0}. (4.1)

A metabolic behavioP is minimal, if there is no metabolic behavidy strictly con-
tained inD. The set

{veC|v;=0, foralli € Irr} (4.2)

is called thereversible metabolic space

Remember that elementary modes correspond to flux vecters”' involving a
minimum set of reactions, i.e., the s&tpp(v) = {i € Rev U Irr | v; # 0} is
minimal [99]. Similarly, a minimal metabolic behavior cesponds to a minimal set
of irreversiblereactions involved in a flux vectar € C'\ {0}, i.e., the seD = {i €
Irr | v; # 0} is minimal.

One may ask whether a set of irreversible reactibns Irr is a metabolic behav-
ior (MB). This is the same as asking whether there existsaalgtstate flux distribution
v e Cwith D = {i e Irr | v; # 0}. The existence of such a flux distribution could be
verified using linear programming (LP). Indeed, considerftilowing LP problem

max o

subject to:

Sv =0, (4.3)
v; =0foralli € Irr \ D,

0<a<y <l1forallie D.

The setD is a metabolic behavior if and only if the optimal value of ttfé problem
above is strictly positive. If this is the case, one might denwhether this metabolic
behaviorD is minimal (MMB). To deal with this question, we use the feliog state-
ment, which is a straightforward consequence of the dedimiif a minimal metabolic
behavior.

Proposition 4.7. A setD C Irr, D # (), is a minimal metabolic behavior if and only
if the following two conditions hold:

1. There exists € C withv; > 0, for alli € D, andv; = 0, foralli € Irr \ D.

2. Foranyw € C withv; = 0 foralli € Irr \ D, if v; = 0 for somej € D, then
v; =0forallj € D.
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Proof. =" SupposeD C [rr is a minimal metabolic behavior. Sinde is a
metabolic behavior, there existse C such thatD = {i € Irr | v; # 0}. Since
v € C,we gety; > 0, foralli € D. By definition of D, v; = 0, forall i € Irr \ D.
This shows (1). Now let € C' withv; = 0 for all ¢ € Irr \ D. Suppose; = 0 for
somej € D anduv # 0, forsomek € D,k # j. ThenD' = {i € Irr | v; # 0} isa
metabolic behavior strictly contained in, contradicting the minimality oD.

"«<": Consider) # D C Irr such that (1) and (2) hold. By (1), there exists C
with v; > 0, foralli € D, andv; = 0, foralli € Irr\ D. ThenD = {i € Irr | v; # 0}
and soD is a metabolic behavior. Suppogeis not minimal. Then there exists a
metabolic behaviop # D’ C D strictly contained inD. Let D’ = {i € Irr | v} # 0},
for a suitablev” € C. Thenv, = 0, fori € Irr \ D’ 2 Irr \ D. SinceD’ C D,
there existg € D with v; = 0. From (2) we get; = 0, forall j € D. Thisis a
contradiction, sincé’ # () implies that there existse D’ C D with v # 0. O

Given a metabolic behavidd, the above proposition states thatis minimal if
and only if foranyj € D and anyv € CN{v € R" | v; = 0 andv;, = Oforalli €
Irr\ D}, we haveZieD\{j} v; = 0, or equivalently, the optimal value of the following
LP problem

MaX 3 ic p\ () Vi
subject to:

Sv =0,

v; =0foralli € Irr\ D, (4.4)
v; > 0foralli e D\ {j},

v = 0,

ZieD\{j} v < 1.

is equal to zero. Accordingly, we need to solve at ma@stLP problems to check the
minimality of a metabolic behaviab.

The following theorem shows that the MMBs are in a 1-1 coroesience with the
minimal proper faces of the flux cone. Indeed, each minimaabwic behavior is
identical to the characteristic set of a minimal proper face

Theorem 4.8. Let D C Irr be a set of irreversible reactions. Then, the following two
statements are equivalent:

— D is a minimal metabolic behavior.
— There exists a minimal proper facéwhose characteristic setis.

Proof. ”=": SupposeD is a minimal metabolic behavior and l6t= {v € C' | v; >
0, forallj € D, v; =0, foralli € Irr \ D}. SinceG ={ve C |v; =0, foralli e
Irr \ D}, G is a face ofC' (cf. [92], p. 101). Let" C G be a minimal proper face
of C'and D’ its characteristic set. Sina& C G, we getD’ C D. Suppose there
existsk € D\ D'. Theny, = 0forallv € G"andG' C GN{v € R" | v, = 0}.
SinceD is minimal,v € G andv;, = 0 impliesv; = 0, for all j € D, and therefore
GNn{v € R" | v, = 0} = lin.space(C). It follows thatG’ C lin.space(C), in
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contradiction to the assumption th@tis a minimal proper face. We conclude= D’.
Applying Theorem 4.4 ta+’, we getG = G’ andG is a minimal proper face af'.
"<": Let G be a minimal proper face with characteristic &t We use Proposi-
tion 4.7 to show thab is a minimal metabolic behavior. if € G'\ lin.space(C'), then
by Theorem 4.4, we get, > O foralli € D andv; = Oforalli € Irr\ D, i.e.,,v
satisfies condition (1) of Proposition 4.7. To check cowdit{2), letv € C such that
v; = 0foralli € Irr\ D. From Theorem 4.4, we getc G. If v; = 0 for some
j € D, Corollary 4.5 yields), = 0 forall k£ € D. O

The next proposition provides an algebraic charactedraif a minimal metabolic
behavior.

Proposition 4.9. Let D C Irr be a set of irreversible reactions. Then, the following
two statements are equivalent:

— D is a minimal metabolic behavior.
— |D| = rank(Sipurer) — rank(Sige,) + 1.
Proof. Let D C Irr be a set of irreversible reactions anddebe the face defined by
G={veC|vy;=0,forallie Irr\ D}.

According to Theorem 4.8D is a minimal metabolic behavior if and only  is a
minimal proper face, or equivalently,

dim(lin(G@)) = dim(lin.space(C)) + 1. (4.5)

Let I € R™™ be the identity matrix and leD = Irr \ D. Sincelin(G) and
lin.space(C') are the null spaces of the matrices

S S
( ]ﬁ* ) and < ]ITT* ) '

respectively, statement (4.5) is equivalent to the asserti

rank(< ?5* )) _ rank(< i )) Y (4.6)

Using row operations, we get the following two equations

rank(( o )) — D] + rank(S.pume). (4.7)

Dx*

rank(< ? )) = |Irr| + rank (S, gey ). (4.8)
Irrx

Combining equations (4.6), (4.7) and (4.8), we obtain
|D| = rank(S.pupres) — rank(Sigey) + 1. (4.9)
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Note that ift is the dimension of the lineality space of the flux canewve have

rank(( }9 )):n—t, n = |Rev| + |Irr|,
Irr*

and sarank(Sge,) = | Rev| —t. Accordingly, if a setD C Irr is a minimal metabolic
behavior, we have
|D| = rank(S.purey) — |Rev| +t + 1. (4.10)

In addition, we know that
rank(S.pures) < rank(S). (4.11)
Using statements (4.10) and (4.11), we obtain
|D| < rank(S) — |Rev| 4+t + 1. (4.12)

Corollary 4.10. Let D C Irr be a set of irreversible reactions and tet=
dim(lin.space(C)). D can be a minimal metabolic behavior only if

|D| < rank(S) — |Rev| +t + 1.

The corollary above defines an upper bound on the cardinafitgll minimal
metabolic behaviors. This upper bound is particularly ement for testing whether a
set of irreversible reaction® C Irris a candidate to be a minimal metabolic behavior.
More concisely, this test could be done in two steps. Firstcheck whethep satis-
fies inequality (4.12). If this is not the cask,is not an MMB. If D fulfils inequality
(4.12), we then use a second test based on equation (4.1@®) lnear programs (4.3)
and (4.4).

According to Theorem 4.8, each MMB completely defines itsesponding min-
imal proper face and vice versa. This important feature antaes the minimality
property of the set of irreversible reactions defining an M&4Bwell as the uniqueness
of the set of MMBs. Moreover, Theorem 4.8 states that the MMisin a 1-1 corre-
spondence with the minimal proper faces of the flux cone. 8fbeg, the set of MMBs
is minimal in the sense that no strict subset of MMBs could pletely describe the
flux cone. Hence, there are two minimality properties thdd iar minimal metabolic
behaviors: the minimality of each MMB and the minimality bétset of MMBs.

Example 4.11. In the network ILLUSNET from Fig. 4.1, the MMBs and the corre-
sponding minimal proper faces are as follows:

D! = {2}, D? = {6,7}, D3 = {6,8},
Gr={veC|v;>0,j€ D" v;=0,ielrr\D"}, k=123

Note that the irreversible reaction 6 is participating ie tlefinition of two minimal
proper faces;z? andG?®. Fig. 4.1 shows three pathways

g = (1,1,2, 1,0,0,0,0,0,0,0,0),
92 = (Oa Oa 07 _17 07 17 17 Oa 07 Oa Oa 0)7
93 = (Oa 0? 07 _37 07 37 Oa 17 17 17 Oa 0)7
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Figure 4.1: Representative pathways in ILLUSNET

representing the minimal proper fac@$, G*, andG?, respectively. The reversible
metabolic spactn.space(C) = {v € C | v; = 0,i € Irr} has dimension 2. As a
vector space, it can be generated by the pathways

B! = (0,0,-2,0,1,00,0,0, 0,1, 1),
B = (0,0, -2,0,1,00,0,1, 1,0, 0).

An arbitrary flux vectow € C' can be written as linear combination= 3" _ \.g* +
S22 b, with A, > 0 andy; € R.

In this example, the number of elementary modes is 18, whéenumber of ex-
treme pathways (after reconfiguration) is 14.

The irreversible reactions defining an MMB cannot necessarily operate on their
own. However, for each minimal metabolic behavior there exists at least one el-
ementary mode involving exactly the irreversible readifmom D. Forv € C, let
D(v) ={i € Irr | v; # 0}.

Proposition 4.12. Let D be a minimal metabolic behavior. Then there exists an ele-
mentary modg such thatD(f) = D.

Proof. Let D be a minimal metabolic behavior. According to Theorem h&e exists

a minimal proper facé&' whose characteristic seti3. Suppose € G\ lin.space(C).
According to Proposition 3.6 in Chap. 3= >, A\« f" is a linear combination of ele-
mentary modeg*, for some), > 0. Sinceg # 0, there exists at least one elementary
mode f* such that\, > 0. For eachi € D(f'), we haveg; = >, Mo fF > Nifl > 0
and soi € D(g). This showsD(f!) C D(g). Sinceg € G, it follows from The-
orem 4.4 thatD(g) = D. Finally, sinceD is a minimal metabolic behavior and
D(f") € D(g) = D, we getD(f') = D and the result follows. O

In general, there can be more than one elementary rfiedéh D(f) = D. If this
is the case, there are different elementary modes (possidhy) that all belong to the
same minimal proper face. In addition, there may exist eteéarg modes lying in the
interior of the flux cone”. We refer to Sect. 4.3 for computational results illustrgti
these remarks.
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4.2 Pseudo-irreversible and Fully Reversible
Reactions

In this section, we classify reactions according to theiersibility type. We obtain a
unigue sign pattern for each MMB. These sign patterns carsée to decompose the
network into minimal functional subnetworks.

4.2.1 Classification of Reactions
We start by distinguishing two classes of reversible reasti

Definition 4.13. Given the flux con&’, the set
Prevy = {i € Rev | v; =0, forallv € lin.space(C)}

is called the set opseudo-irreversible reactionReactions irfrev = Rev \ Prev, are
calledfully reversible

Example 4.14.In the ILLUSNET network from Fig. 4.1, there is no reversililiex
distribution involving reaction. We havev, = 0, for allv € lin.space(C'). Therefore,
reaction4 is pseudo-irreversible. On the other hand, reactas involved in the
reversible flux distributioh® which belongs to the lineality spatia.space(C). Thus,
reactiors is fully reversible.

The next proposition shows that pseudo-irreversible r@astecome irreversible
inside minimal proper faces. Within each minimal properefde, any pseudo-
irreversible reaction with non-zero flux will take a uniqueedtion, which is imposed
by the MMB D associated witlz. By taking the conical hull of the corresponding
faces, we can identify a subspace of the cone in which thengigeudo-irreversible
reaction takes only one direction.

Proposition 4.15. Let G be a minimal proper face 6f and leti € Prev, be a pseudo-
irreversible reaction. Then exactly one of the followinget conditions holds:

1. v; >0, forallv € G\ lin.space(C).
2. v; =0, forallv e G\ lin.space(C).
3. v; <0, forallv € G\ lin.space(C).

Proof. Supposey € G\ lin.space(C). For anyv € G\ lin.space(C') there exists
A > 0 andw € lin.space(C') such thaty = A - g + w. Sincei € Prev,, it follows that
sign(v;) = sign(\ - g;) = sign(g;), independently from. O

Let G be a minimal proper face whose characteristic sé.isNow, we define the
auxiliary setof D as the set of all pseudo-irreversible reactions that a@ved in all
flux vectors inG. As a consequence of Proposition 4.15, this set is equaktedhof
pseudo-irreversible reactions involved in some flux veciorz. Let us state this fact
in the following definition.
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Definition 4.16. Let G be a minimal proper face whose characteristic séx.i3 he set
Auz = {j € Rev | j is pseudo-irreversible and # 0, for somev € G}

of all pseudo-irreversible reactions involved in some fl@ctors inG is called the
auxiliary setof G (and ofD).

Example 4.17.In the ILLUSNET network, we havé’rev, = {1,4}, andFrev =
{3,5,9,10,11,12}. In the context of the MMBD*, the pseudo-irreversible reactién
becomes positive, i.eu, > 0, for allv € G*\ lin.space(C), while it becomes negative
in the context ofD? and D3. The flux through the pseudo-irreversible reactiois
positive inD*, and zero inD? andD3. The auxiliary sets oD', D? andD? are the
sets{1,4}, {4} and(), respectively.

The next result shows that inside a minimal proper féc¢he fluxes through the
pseudo-irreversible reactions involved in flux vectors G\ lin.space(C') are propor-
tional to each other.

Corollary 4.18. Let G be a minimal proper face antluz its auxiliary set. Lelj, k €
Prevy be two pseudo-irreversible reactions. jlk € Aux, then there exista # 0
withv, = o - v;, forallv € G.

Proof. Suppose there exigt ¢’ € G \ lin.space(C) such thaty; # 0 andg, # 0.
According to Proposition 4.15, we hayg # 0. By equation (2.4), for alb € G \
lin.space(C'), there exist\ > 0 andw € lin.space(C') such that = A - g + w. Since
J. k€ Prevy, we getv; = X-g; # 0,0, = A-gr # 0, and thereforey;, /v; =
91/ 9; ©a # 0, independently fromv. This shows that, = « - v; # 0, for all
v € G\ lin.space(C). For allv € lin.space(C), we havev; = v, = 0. It follows for
allv e G thatv, = a - v;. O

Traditionally, there are two classes of reactions in a n@ialbetwork: reversible
and irreversible ones. Following our analysis, we may refimg classification and
distinguish three types of reactions:

— Irreversible reactiong € Irr: for all minimal proper facess, we have either
v; > 0, forallv € G\ lin.space(C), orv; = 0, for all v € G. By definition,
w; = 0, for all w € lin.space(C).

— Pseudo-irreversible reactiorisc Prev,: inside each minimal proper face, the
flux v; throughj has a unique sign, —, or 0). For allw € lin.space(C), we
have againv; = 0.

— Fully reversible reactiong € Frev: by definition, there exists € lin.space(C')
such thatw; # 0. This implies that we can find in each minimal proper fate
flux vectorsv, v',v" € G'\ lin.space(C') with v; > 0, v < 0 andv} = 0.

Altogether, this means that each MMBcan be characterized by a unique sign pattern
Pp for the (pseudo-) irreversible reactions in the network, (+, or '0’), while the
flux through the fully reversible reactions may be arbitr@ry.
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Example 4.19. In the network ILLUSNET, wherérr U Prevy = {1,2,4,6,7,8}, the
sign patterns of the MMB®', D?, D? are the following:

Pl = (+? +, oty 07 07 LRI B ')a
P2 - (07 07 EEEEE _'_7 _'_7 07 Ty Dy ')7
P3 - (07 07 EEEEE _'_7 07 +7 R )

4.2.2 Decomposing the Network

Minimal metabolic behaviors can also be used to decomposeca gietabolic net-
work N into different subnetworks. Indeed, given the sign pattesnof an MMB
D, the set of fully reversible reactions together with thee(mo-) irreversible reac-
tions having a non-zero sign A, defines a subnetwork’, of A/ with the following
properties:

— The set of possible flux distributions i, includes the reversible metabolic
space RMS.

— All pseudo-irreversible reactions become irreversiblsida Np, i.e., each
pseudo-irreversible reaction operates only in one dwactvhich is dictated by
the MMB D and given in the sign patterf,.

— Np is minimal in the sense that it includes all fully reversible reactiansl a
non-empty minimal set of (pseudo-) irreversible reactitre are capable of
carrying flux under steady-state conditions.

— N is functionalin the sense that the set of possible flux distributions dvgr
includes at least one irreversible elementary mode. Therlakists because,
according to Proposition 4.12, there is at least one elesmgmhode involving
exactly the irreversible reactions from.

Using the sign patterns of all the different MMBSs, each cgpanding to one par-
ticular minimal proper face of the flux cone, the overall nbeiec network may be
understood as a combination of these minimal functionahstworks. Indeed, each
possible flux distribution over the full network is a non-a@ge combination of possi-
ble flux distributions over the corresponding minimal fuooal subnetworks.

4.3 Computational Results

In this section, we discuss how one can compute minimal noétabehaviors, and
present a number of computational results.
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4.3.1 Computing Minimal Metabolic Behaviors

A simple algorithm to determine the MMBs of a metabolic netinms as follows. First
we compute a set of generators of the flux céheusing existing software for poly-
hedral computations such edd [3; 33]. Note that we do not have to reconfigure the
cone by splitting reversible reactions as this is done irettteeme pathway approach.
If the coneC' is pointed, this will be detected automatically during cartgtion. The
number of MMBs ofC' (which is equal to the number of extreme rays(oif C' is
pointed) is typically much smaller than the number of exeeays of the reconfigured
cone. Second, for each minimal proper facef C', represented by some generator
g € G\ lin.space(C), we identify the setD of irreversible reactiong € Irr, with
g; > 0. Another possible approach is to apply the Fourier-Motakgorithm [92] to
eliminate the variables corresponding to the internaln®ike reactions. This results
in a constraint system where all internal reactions argenssble.

If we are interested in a minimal set of generators for the flomeC', we have
to choose for each minimal proper fac# a vectorg® € G* \ lin.space(C), to-
gether with a generating sét’,... b’} of lin.space(C). If we decompose/ =
(9502 Greny» 9iines) INtO cOMponents corresponding to irreversible, pseudivérsible,
and fully reversible reactions, then the component&i., ¢5,.,,) are uniquely de-
termined up to multiplication by positive scalars. Thenmatns some freedom in the
choice of the components if;,.,. Choosingg” € lin.space(C)*, i.e., g*b" = 0 for
all b € lin.space(C), yields theorthogonal representatiaf the flux coneC', which
is unique but often very dense. Alternatively, work in thentext of the software
cdd [3; 79] discusses how to obtain a sparser representatian ofhich is called a
lexico-smallestepresentation af’. In such a representation, the generators are with a
maximum number of zeroes and correspond to a subset of elermenodes.

4.3.2 Comparison with Existing Approaches

We now compare the different approaches on some exampleornetvaken from
the KEGG pathway databadet(t p: / / ww. genone. ad. j p/ kegg/ pat hway.

ht m ). We suppose for these models that there is an unconstrexadenge flux for
each metabolite that is not consumed or not produced by sa@®al reaction in the
network. The computation of the extreme pathways, the mahimetabolic behaviors
and the reversible metabolic space was done using the seftwd [33]. For comput-
ing the elementary modes, we usedTATOOL [117]. The results are givenin Tab. 4.1
and Tab. 4.2.

Tab. 4.1 shows the number of internal metabolites in the otvwwthe number of ir-
reversible/reversible internal reactions, the numbefevhentary modes/extreme path-
ways/MMBs, and the dimension of the RMS. We can see that #eeadiour represen-
tation, given as the sum of the number of MMBs atich(RMS), is typically much
smaller than the number of extreme pathways or elementadesdn various exam-
ples, the reduction is by several orders of magnitude.

Tab. 4.2 describes the distribution of the elementary madesthe extreme path-
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Metabolic network Met Irr Rev EM EP MMB RMS
Glycolysis / Gluconeogenesijs32 18 29 19464 1745 16 13
Citrate cycle (TCA cycle) 22 4 25 3870 1588 4 12
Pentose phosphate pathway 34 19 24 5155 1630 19 8

Pentose and glucuronate 50 13 46 2258 231 7 23

Fructose and mannose 46 37 31 2411 2102 30 6
Galactose 41 22 28 623 524 13 9
Starch and sucrose 47 35 30 2097 1718 30 5
Pyruvate 28 40 29 47708 27390 37 16
Propanoate 34 20 29 877 233 17 13
Butanoate 40 23 30 2138 541 18 11
Nitrogen 41 53 14 601 612 44 9
Sulfur 18 26 4 321 326 28 1

Table 4.1: Metabolic networks, with the number of internatatolites (Met), the number of
irreversible (Irr) and reversible (Rev) internal reacipthe number of elementary
modes (EM), extreme pathways (EP), minimal metabolic bensyMMB), and the
dimension of the reversible metabolic space (RMS). Copti@ithe calculation of
EMs, the calculation of EPs required a reconfiguration ofriéevork. Except for
the two-cycle extreme pathways made from a forward and avierckreaction, the
set of EPs is always a subset of the set of EMs [51].

ways inside the steady-state flux cone. We can see that a asgyy humber of el-
ementary modes and extreme pathways lie in the interior efctine. In addition,
the number of elementary modes/extreme pathways belongitige minimal proper
faces (see column MMB) is much larger than the number of MMB&ab. 4.1. This
means that many elementary modes/extreme pathways belaihg same minimal
proper face, which mathematically can be represented byglesvector, resp. one
MMB. Similarly, the number of elementary modes/extremédpatys belonging to the
reversible metabolic space is much larger than its dimensio that there are many
dependencies.

4.4 Onthe Complexity of the MMB&RMS Approach

While the dimension of the lineality space of a metaboliovoek is smaller than or
equal to the number of reversible reactions, the number ofB¥dN§, in the worst
case, exponential in the number of reactions. This is pasily the case when all
the reactions in the metabolic network are irreversible #wedhumber of elementary
modes (EMS) is very large. In such a case, MMBs are inrlacorrespondence with
EMs and so their number is very large as well.

Consider the hypothetic network depicted in Fig. 4.2. Tlesvork containsn =
2p + 1 metabolites anad. = 3p + 2 reactions for some > 1. Each metabolited;,
with i € {2,...,p + 1}, is obtained either by the conversion of metabolite; or
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Metabolic network MMB RMS Interior
EM/EP EM/EP EM/EP
Glycolysis/Gluconeogenes|s1226/529  48/46 18190/1095
Citrate cycle (TCA cycle) | 1608/568 502/258  1760/480
Pentose phosphate pathway 489/340 25/25 4641/1217
Pentose and glucuronate 1076/32  642/76 540/3
Fructose and mannose 154/148 14/14 2243/1895
Galactose 212/152 45/45 366/254
Starch and sucrose 108 /107 8/8 1981/1565
Pyruvate 2016/1776 146/146 45546/25293
Propanoate 449/93 133/32 295/50
Butanoate 357/244 35/34 1746/201
Nitrogen 183/171 22/22 396/384
Sulfur 44/44 1/1 276/276

Table 4.2: The distribution of the elementary modes (EM) #redextreme pathways (EP) in
the three parts of the steady-state flux cone: the minimagegyréaces (MMB), the
lineality space (RMS), and the interior of the cone. Each phopposite extreme
pathways is considered as one reversible pathway belongitige RMS. The two-
cycle extreme pathways made from a forward and a backwactioaare not taken
into account.

by the conversion of metabolit8;_;, which is in turn obtained by the conversion
of metaboliteA;_;. We assume that all the stoichiometric coefficients are leigua
one and all reactions are irreversible. et {1,...,p + 1} — R™ be the function
that maps each € {1,...,p + 1} to {(i) = 3(: — 1) + 2. Each steady-state flux
distributionv € R™ obeys, in addition to the thermodynamic constraints, tHewiang
stoichiometric constraints:

UL = V2 + U3, Vggp)  Vgp)2 = Ve(pr) (4.13)
For all: {2, ... ,p} Ve(i—1) T Ve(i—1)+2 = Ve(i) + Ve(i)+2; (4.14)
Foralli € {]_, S ,p} Ve(i)+1 = Veg(i)+2- (415)

The constraints (4.13) and (4.14) (resp. (4.15)) expresdltix balances around
metabolitesd,, A, ., andA,; (resp.B;) fori =1,...,p. Combining these constraints,
we obtain

Forall: {2, R ,p} V1 = Vg(i—1) + Ve(i—1)+1 = Vg(i) -+ Ve(i)+1 = Ve(p+1)- (4.16)

Accordingly, the following proposition states that the bgipetic network depicted in
Fig. 4.2 containg? elementary modes, and so the number of MMBSs is exponential in
the number of reactions. In general, metabolic networksainneversible reactions
and so the number of MMBs can be much smaller than the numigvief
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Figure 4.2: A hypothetic network for which the number of MMiB&xponential in the number
of reactions.

Proposition 4.20. There are? elementary modes in the hypothetic network depicted
in Fig. 4.2.

Proof. By induction onp. ]

4.5 Red Blood Cell Metabolism

In an attempt to illustrate the reliability and usefulnetsuar new approach, we pro-
pose to investigate the metabolic functions of the humarbtedd cell. Due to its
relative accessibility and medical relevance, the humgtheocyte has been investi-
gated not only by constraint-based approaches [16; 39;112H; but also by several
kinetic studies [68; 67; 94].

The main function of a red blood cell is the transport of oxygad carbon diox-
ide. In addition, the cell needs to produce cofactors (ATRDRH, and NADH) for
its own survival. The erythrocyte has to balance osmotisguree while maintaining
electroneutrality on both sides of the membrane [121].

The red blood cell metabolic network depicted in Fig. 4.3taors three major
parts:glycolysisincluding theRapoport-Leubering shumentose phosphate pathway
andadenosine nucleotide metaboli$b®]. It consists oft3 internal metabolites anig)
reactions, wheredf0 reactions are irreversible (Tab. 4.3). The main energycsoiar
the red blood cell is glucose (GLC). Like many cellular systeerythrocytes can also
exchange adenine (ADE) and hypoxanthine (HYPX) throughmibkenbrane. Lactate
(LAC), pyruvate (PYR)_2, 3-Diphosphoglycerate (D23PG) and carbon dioxide {LO
are excreted. The good correlation between in silico regyilten in [16; 109] and
experimental evidence for human erythrocytes shows thabikly of this in silico
model.

Table 4.3: The red blood cell metabolism adapted from [16].

Reaction abbreviation Reaction name Reaction equation
Glycolysis

HK hexokinase GLC + ATP- G6P + ADP
PGI glucose-6-phosphate isomerase G6fF6P

PFK phosphofructokinase F6P + AFR FDP + ADP
ALD aldolase FDP+« DHAP + GA3P
TPI triosephosphate isomerase DHAPGA3P

Continued on next page
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Table 4.3 — continued from previous page

Reaction abbreviation Reaction name

Reaction equation

DPGM
DPGase

Boundary reactions

Rapport-Luebering shunt

Nucleotide metabolism

GAPDH glyceraldehyde-3-phosphate dehydrogenase GA3PB NAD13PG + NADH
PGK phosphoglycerate kinase D13PG + ABPP3G + ATP
PGM phosphoglycerate mutase P36P2G

EN enolase P2G+ PEP

PK pyruvate kinase PEP + ADP PYR + ATP

LDH lactate dehydrogenase PYR + NADH LAC + NAD

diphosphoglycerate mutase
diphosphoglycerate phosphatase

Pentose phosphate pathway

G6PD glucose-6-phosphate dehydrogenase
PGLase phosphogluconolactonase

GL6PDH phosphogluconate dehydrogenase
R5PI ribose5-phosphate isomerase

Xu5PE ribulose phosphate epimerase

TKI transketolase

TKII transketolase

TA transaldolase

AMPase adenosine monophosphate phosphohydrolase -AMPO

ADA adenosine deaminase ADOS INO

AK adenosine kinase ATP + ADG> ADP + AMP

ApK adenylate kinase 2 ADP> ATP + AMP

AMPDA adenosine monophosphate deaminase AMPMP

AdPRT adenine phosphoribosyltransferase ADE + PRPRMP

PRM phosphoribomutase RK2 R5P

PRPPsyn phosphoribosylpyrophosphate synthetase R5P +APRPP + AMP
HGPRT hypoxanthine phosphoribosyltransferase HYPX + PRPIMP

IMPase inosine monophosphate phosphohydrolase +MIRO

PNPase purine-nucleoside phosphorylase INBIYPX + RIP

Cellular functions

MemPhos membrane phosphorylation AFPADP

GSSGR glutathione-disulfide reductase NADPH + GSS®IADP + 2 GSH
GSHox glutathione oxidase 2 GSH + G2 GSSG + H202
GSHpox glutathione peroxidase 2 GSH + H202GSSG
NaKATPase sodium-potassium cation pump ATP + 3 Na + 2 KexADP + 3 Naext + 2 |
D23PGdrain 2,3-diphosphoglyerate drain D23PG +HID23PGext
MetHbRed methemoglobin reductase MetHb + NABHHb + NAD

KLeak .—K
NaLeak .~ Na
HXtrans HYPX«— .
PYRex PYR— .
LACex LAC — .
CO2out CO2—.
GLCin .— GLC
ADEIn . — ADE
Hbout Hb— .
0O2in .— 02
MetHbin .— MetHb

X5P + R5P> GA3P + S7P
E4P + X5P> GA3P + F6P
S7P + GA3PR E4P + F6P

D13PED23PG
D23PR3G

G6P + NADPLG6P + NADPH
Gk6FGO6P
GOG6P + NADRUSP + NADPH + CO2
RUSP R5P
RWSX5P
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Figure 4.3: The red blood cell metabolism adapted from [IB&shed arrows correspond to
boundary reactions while reversible reactions are inditaty double arrowheads.
Reaction equations are listed in Tab. 4.3.



Table 4.4: Minimal metabolic behaviors (MMBSs) for human f®@dod cell. The irreversible reactions defining each MMB gixen in bold. The
underlined reactions define the specific purpose for whichesethe corresponding MMB. The numbers next to the reactames
denote related fluxes carried by the corresponding reaction

MMB number MMBs sorted with respect to their metabolic functions
Glycolysis Pathway
Pyruvate producing MMBs
1. 2MemPhos
1 GLCin 1 HK 2 PK, 1 PFK, 2 MetHbin 2 MetHbRed 2 Hbout 2 PYRex
1PGI2 GAPDH 2 PGM 2 EN 1 ALD 1 TPI 2 PGK
2. 2NaKATPase
1 GLCin 1 HK 2 PK, 1 PFK, 2 MetHbin 2 MetHbRed 2 Hbout 2 PYRex
1PGI2 GAPDH 2 PGM 2 EN 1 ALD 1 TPI 2 PGK, -4 KLeak 6 NaLeak
3. 1HGPRT1IMPase 1 PRPPsyn
1 GLCin 1 HK 2 PK, 1 PFK, 2 MetHbin 2 MetHbRed 2 Hbout 2 PYRex
1PGI2 GAPDH 2 PGM 2 EN 1 ALD 1 TPI 2 PGK, -1 ApK 1 PNPase 1 PRM
4. 2AMPase?2AK
1 GLCin 1 HK 2 PK, 1 PFK, 2 MetHbin 2 MetHbRed 2 Hbout 2 PYRex
1PGI2 GAPDH 2 PGM 2 EN 1 ALD 1 TPI 2 PGK
5. 1AdPRT 1 PRPPsyn 1 ADEin, 1 AMPase 1 ADA
1 GLCin 1 HK 2 PK, 1 PFK, 2 MetHbin 2 MetHbRed 2 Hbout 2 PYRex
1PGI 2 GAPDH 2 PGM 2 EN 1 ALD 1 TPI 2 PGK, 1 PRM 1 PNPase 1 HXtran&pK
6. 1AdPRT1PRPPsyn1ADEin, 1 IMPase 1 AMPDA
1 GLCin 1 HK 2 PK, 1 PFK, 2 MetHbin 2 MetHbRed 2 Hbout 2 PYRex
1PGI2 GAPDH 2 PGM 2 EN 1 ALD 1 TPI 2 PGK, 1 PRM 1 PNPase 1 HXtran4pK
Continued on next page
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Table 4.4— continued from previous page

MMB number MMBs sorted with respect to their metabolic functions

7. 2DPGM 2DPGase
1 GLCin 1 HK 2 PK, 1 PFK, 2 MetHbin 2 MetHbRed 2 Hbout 2 PYRex
1PGI2GAPDH2PGM2EN1ALD 1 TPI
8. 1DPGM 1 D23PGdrain
1 GLCin 1 HK 2 PK, 1 PFK, 2 MetHbin 2 MetHbRed 1 Hbout 1 PYRex
1PGI2GAPDH1PGM1EN1ALD 1 TPI1PGK
Lactate producing MMBs
9. 2MemPhos
1 GLCin 1 HK 2 PK, 1 PFK, 2 LDH 2 LACex
1PGI2 GAPDH 2 PGM 2 EN 1 ALD 1 TPI 2 PGK
10. 2NaKATPase
1 GLCin 1 HK 2 PK, 1 PFK, 2 LDH 2 LACex
1PGI 2 GAPDH 2 PGM 2 EN 1 ALD 1 TPI 2 PGK, -4 KLeak 6 NaLeak
11. 1HGPRT1IMPase 1 PRPPsyn
1 GLCin 1 HK 2 PK, 1 PFK, 2 LDH 2 LACex
1PGI2 GAPDH 2 PGM 2 EN 1 ALD 1 TPI 2 PGK, -1 ApK 1 PNPase 1 PRM
12. 2AMPase2 AK
1 GLCin 1 HK 2 PK, 1 PFK, 2 LDH 2 LACex
1PGI2GAPDH2PGM 2 EN1ALD 1 TPI 2 PGK
13. 1AdPRT 1PRPPsyn 1 ADEin, 1 AMPase 1 ADA
1 GLCin 1 HK 2 PK, 1 PFK, 2 LDH 2 LACex
1PGI2 GAPDH 2 PGM 2 EN 1 ALD 1 TPI 2 PGK, 1 PRM 1 PNPase 1 HXtranapK
14. 1 AdPRT 1 PRPPsyn 1 ADEin, 1 IMPase 1 AMPDA
1 GLCin 1 HK 2 PK, 1 PFK, 2 LDH 2 LACex
1PGI2GAPDH 2 PGM 2 EN 1 ALD 1 TPI 2 PGK, 1 PRM 1 PNPase 1 HXtrandpK

Continued on next page
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Table 4.4— continued from previous page

MMB number MMBs sorted with respect to their metabolic functions

15. 2DPGM2DPGase
1 GLCin 1 HK 2 PK, 1 PFK, 2 LDH 2 LACex
1PGI2GAPDH2PGM2EN1ALD 1 TPI
16. 1DPGM 1 D23PGdrain
1GLCin 1HK 1 PK, 1 PFK, 1 LDH 1 LACex
1PGI2GAPDH1PGM 1EN1ALD 1 TPI1PGK
Pentose Phosphate Pathway
Pyruvate producing MMBs
17. 2MemPhos
1 GLCin 1 HK 1 PK, 3 GSHox 3 GSHpox 3 G6PD 3 GL6PDH 3 CO2out 3 O2in1 MetHbin 1 MetHbRed 1 Hbout 1 PYRex
-2 PGl 1 GAPDH 1 PGM 1 EN 3 PGLase 6 GSSGR 1 R5PI 2 Xu5PE 1 TKI 1 TKIA 1 PGK
18. 2NaKATPase
1 GLCin 1 HK 1 PK, 3 GSHox 3 GSHpox 3 G6PD 3 GL6PDH 3 CO2out 3 O2in1 MetHbin 1 MetHbRed 1 Hbout 1 PYRex
-2 PGl 1 GAPDH 1 PGM 1 EN 3 PGLase 6 GSSGR 1 R5PI 2 Xu5PE 1 TKI 1 TKIA 1 PGK, -2 KLeak 3 NaLeak
19. 1HGPRT1IMPase 1 PRPPsyn
2 GLCin 2 HK 2 PK, 6 GSHox 6 GSHpox 6 G6PD 6 GL6PDH 6 CO20out 6 O2in2 MetHbin 2 MetHbRed 2 Hbout 2 PYRex
-4 PG| 2 GAPDH 2 PGM 2 EN 6 PGLase 12 GSSGR 2 R5PI 4 Xu5PE 2 TKI 2 ZKIA 2 PGK, -1 ApK 1 PNPase 1 PRM
20. 2AMPase 2 AK
1 GLCin 1 HK 1 PK, 3 GSHox 3 GSHpox 3 G6PD 3 GL6PDH 3 CO2out 3 O2in1 MetHbin 1 MetHbRed 1 Hbout 1 PYRex
-2 PGl 1 GAPDH 1 PGM 1 EN 3 PGLase 6 GSSGR 1 R5PI 2 Xu5PE 1 TKI 1 TKIA 1 PGK
21. 1AdPRT1PRPPsyn 1ADEin, 1 AMPase 1 ADA
2 GLCin 2 HK 2 PK, 6 GSHox 6 GSHpox 6 G6PD 6 GL6PDH 6 CO2out 6 O2in2 MetHbin 2 MetHbRed 2 Hbout 2 PYRex
-4 PG| 2 GAPDH 2 PGM 2 EN 6 PGLase 12 GSSGR 2 R5PI 4 Xu5PE 2 TKI 2 ZKIA 2 PGK, -1 ApK 1 PNPase 1 PRM 1 HXtrans

Continued on next page
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MMB number MMBs sorted with respect to their metabolic functions

22.

23.

24,

25.

26.

27.

28.

29.

1 AdPRT 1 PRPPsyn 1 ADEin, 1 IMPase 1 AMPDA

2 GLCin 2 HK 2 PK, 6 GSHox 6 GSHpox 6 G6PD 6 GL6PDH 6 CO2out 6 O2in2 MetHbin 2 MetHbRed 2 Hbout 2 PYRex
-4 PGl 2 GAPDH 2 PGM 2 EN 6 PGLase 12 GSSGR 2 R5PI1 4 Xu5PE 2 TKI 2 ZKIA 2 PGK, -1 ApK 1 PNPase 1 PRM 1 HXtrans

2 DPGM 2 DPGase

1 GLCin 1 HK 1 PK, 3 GSHox 3 GSHpox 3 G6PD 3 GL6PDH 3 CO2out 3 O2in1 MetHbin 1 MetHbRed 1 Hbout 1 PYRex
-2 PGl 1 GAPDH 1 PGM 1 EN 3 PGLase 6 GSSGR 1 R5PI 2 Xu5PE 1 TKI 1 TKIA

1 DPGM 1 D23PGdrain

2 GLCin 2 HK 1 PK, 6 GSHox 6 GSHpox 6 G6PD 6 GL6PDH 6 CO2out 6 O2in2 MetHbin 2 MetHbRed 1 Hbout 1 PYRex
-4 PGl 2 GAPDH 1 PGM 2 EN 6 PGLase 12 GSSGR 2 R5PI 4 Xu5PE 2 TKI 4 ZKIA 1 PGK

2 MemPhos

1 GLCin 1 HK 1 PK, 3 GSHox 3 GSHpox 3 G6PD 3 GL6PDH 3 CO20ut 3 O2inl LDH 1 LACex

-2 PGl 1 GAPDH 1 PGM 1 EN 3 PGLase 6 GSSGR 1 R5PI 2 Xu5PE 1 TKI 1 TKIA 1 PGK

2 NaKATPase

1 GLCin 1 HK 1 PK, 3 GSHox 3 GSHpox 3 G6PD 3 GL6PDH 3 CO20ut 3 O2inl LDH 1 LACex
-2 PGl 1 GAPDH 1 PGM 1 EN 3 PGLase 6 GSSGR 1 R5PI 2 Xu5PE 1 TKI 1 TKIA 1 PGK, -2 KLeak 3 NaLeak

1 HGPRT 1 IMPase 1 PRPPsyn

2 GLCin 2 HK 2 PK, 6 GSHox 6 GSHpox 6 G6PD 6 GL6PDH 6 CO2out 6 O2in2 LDH 2 LACex
-4 PGl 2 GAPDH 2 PGM 2 EN 6 PGLase 12 GSSGR 2 R5PI1 4 Xu5PE 2 TKI 2 ZKIA 2 PGK, -1 ApK 1 PNPase 1 PRM

2 AMPase 2 AK

1 GLCin 1 HK 1 PK, 3 GSHox 3 GSHpox 3 G6PD 3 GL6PDH 3 CO20ut 3 O2in1 LDH 1 LACex
-2 PGl 1 GAPDH 1 PGM 1 EN 3 PGLase 6 GSSGR 1 R5PI 2 Xu5PE 1 TKI 1 TKIA 1 PGK

1 AdPRT 1 PRPPsyn 1 ADEin, 1 AMPase 1 ADA

2 GLCin 2 HK 2 PK, 6 GSHox 6 GSHpox 6 G6PD 6 GL6PDH 6 CO2out 6 O2in2 LDH 2 LACex
-4 PGl 2 GAPDH 2 PGM 2 EN 6 PGLase 12 GSSGR 2 R5PI1 4 Xu5PE 2 TKI 2 ZKIA 2 PGK, -1 ApK 1 PNPase 1 PRM 1 HXtrans

Continued on next page
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Table 4.4— continued from previous page

MMB number MMBs sorted with respect to their metabolic functions

30. 1AdPRT 1 PRPPsyn 1 ADEin, 1 IMPase 1 AMPDA

2 GLCin 2 HK 2 PK, 6 GSHox 6 GSHpox 6 G6PD 6 GL6PDH 6 CO2out 6 O2in2 LDH 2 LACex

-4 PGI 2 GAPDH 2 PGM 2 EN 6 PGLase 12 GSSGR 2 R5PI 4 Xu5PE 2 TKI 2 ZRIA 2 PGK, -1 ApK 1 PNPase 1 PRM 1 HXtrans
31. 2DPGM2DPGase

1 GLCin 1 HK 1 PK, 3 GSHox 3 GSHpox 3 G6PD 3 GL6PDH 3 CO20out 3 O2inl LDH 1 LACex

-2 PGl 1 GAPDH 1 PGM 1 EN 3 PGLase 6 GSSGR 1 R5PI 2 Xu5PE 1 TKI 1 TKIA
32. 1DPGM 1 D23PGdrain

2 GLCin 2 HK 1 PK, 6 GSHox 6 GSHpox 6 G6PD 6 GL6PDH 6 CO2out 6 02in1 MetHbin 1 MetHbRed 1 LDH 1 LACex

-4 PGl 2 GAPDH 1 PGM 2 EN 6 PGLase 12 GSSGR 2 R5PI 4 Xu5PE 2 TKI 2 ZRIA 1 PGK
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Analyzing the red blood cell metabolic network results3ihminimal metabolic
behaviors (MMBS) listed in Tab. 4.4. The corresponding flore is pointed, and so
there is no steady-state flux distribution involving onlyeesible reactions. In general,
the irreversible reactions defining an MMB and their asdedipseudo-irreversible re-
actions cannot necessarily operate on their own. They mag seme fully reversible
reactions to define a complete metabolic pathway. Heree sireeflux cone is pointed,
each MMB and its auxiliary set define a metabolic pathway,cwhs in fact an ele-
mentary mode.

Although many MMBs partly overlap each other, each MMB se@specific pur-
pose carried out by a set of characteristic reactions. MN#Bcharacterized by the
use of reaction MemPhos which allows the cell to maintainglasticity of its mem-
brane [16]. MMR could be used by the cell to control its volume through thewsod
potassium cation pump NaKATPase [39]. In addition to thagpmrt of oxygen and
its delivery, the red blood cell is also responsible for tagiage of purine bases [123].
This function is performed by MMBand MMBG in which adenine (ADE) is taken up
into the cell and Hypoxanthine (HYPX) is excreted. Althougith MMBs have the
same overall stoichiometry and serve the transport of plrases, they slightly differ
in the usage of AMPASE and ADA versus IMPASE and AMPDA, shaywncertain
network redundancy in the red blood cell metabolism.

MMB 7 utilizes the @23PG shunt, namely reactions DPGM and DPGase, instead
of the ATP producing reaction PGK and backs into main glysisly The cell could
use this MMB to regulate its ATP production [121]. MMNBs responsible for the
formation of2, 3-diphosphoglycerate (D23PG) for use in the regulation ef diy-
gen affinity of hemoglobin [39; 121]. In MMB reactions AMPASE and AK form
a cycle that consumes ATP repeatedly. Accordingly, MiVigrves to dissipate ex-
cess ATP [16]. The same function is realized by M3A&s well. This MMB cycles
through the nucleotide metabolism, causing dissipatioXléf through reactions ApK
and PRPPsyn.

All the MMBs1-8 metabolize glucose through the glycolysis pathway withpttoe
duction of pyruvate as an end product. Each of these eight BIMEB a nearly identical
“twin” MMB among MMBSs9-16, the only difference being in the end product. Each
of the MMB-16 takes its corresponding MMB a step further and converts\atau
(PYR) into lactate (LAC). This conversion serves to balaatéNADH produced by
the cell [121]. Since there is no load on NADH in the red bloell,the MMB9-16
could be used to completely balance the NAD/NADH ratio.

There are two features which distinguish the MMB$ from the remaining
MMBs. First, all the MMB4-16 involve reaction TPI, which plays an important role
in several metabolic networks. In fact, this reaction prétee accumulation of di-
hydroxyacetone phosphate (DHAP), which is reported to ke timr cellular func-
tions and leads to hemolytic anemia with neurological dysfion [16]. Second, the
MMBs1-16 are merely made up of glycolysis and nucleotide reactiodso@annot in-
volve any reaction from the pentose phosphate pathway (PPP)

The main functions of PPP in the human red blood cell are tegea NADPH
and to provide the cell with ribosephosphate (R5P) for the synthesis of the nu-
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Figure 4.4: The red blood cell metabolism adapted from [T6E bold reactions HK, GAPDH,
PGM, EN and PK participate in all steady-state flux distiitog. Except reaction
PGI, each reversible reaction is operating only in one toac Glucose (GLC)
can be metabolized either by using reaction PGl in the faivdarection together
with reactions PFK, ALD and TPI (brown color) or by using réac PGI in the
backward direction together with reactions from PPP (bhklery. The end product
of each MMB is either pyruvate or lactate.

cleotides [16]. One of the uses of NADPH in the red blood cetbiprevent oxidative
stress by reducing GSSG to GSH through reaction GSSGR. Toeed glutathione
(GSH) is required to remove hydrogen peroxide@sl) through reaction GSHox [9].
The MMBsI16-32 are similar to the former MMBIs16. The only difference is that
instead of using reactions TPI, ALD and PFK to prevent thect@ccumulation of
DHAP, these MMBSs utilize reactions G6PDH, GSSGR and GSHaehtoove HO,
and protect the cell against oxidative stress. This taskires) oxygen (@) and
NADPH. While the former is taken up into the cell, the lattergenerated by only
PPP . Accordingly, all the MMBK5-32 involve reactions from PPP.

In addition to the32 elementary modes given in Tab. 4.4, which represent the
MMBs of the red blood cell metabolic network, there dfeadditional elementary
modes. These are obtained by combining MMBs that involveti@a PGl in opposite
directions. Interestingly, Fig. 4.5 shows that each oféteditional elementary modes
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is a combination of two MMBs that fulfill the following condns:
1. Both MMBs have the same metabolic function,
2. Both MMBs have the same end product,
3. Exactly one of these MMBs involves reactions from PPP.

We conclude that all metabolic functions of elementary nsaate carried out by min-
imal metabolic behaviors. Note that except reaction PGiheaversible reaction is
operating only in one direction shown in Fig. 4.4. According@xcept reaction PG,
all (pseudo-) irreversible reactions defining an MMB will participate in an addi-
tional EM e if the latter is obtained by combining! with another MMB D?. The
set of active reactions afis then the union of those ab! and D?. We should also
mention that although only reaction PGl is able to work inhaditections, the number
of elementary modes is larger than that of minimal metabimgitaviors.
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CHAPTER

5 On Inner and Outer
Descriptions of the
Steady-State Flux Cone

In this chapter, we study the relationship between innerauridr descriptions of the
flux cone. We first characterize the outcome of the networniguration in terms of
the outer description of the reconfigured cone. The recordtgn leads to an increase
in the size of the description and changes in the reversiliype of reactions. Then
we give a generic procedure to show how inner descriptiondbeaomputed from the
outer one. We use this procedure to explain why, for largéesmetabolic networks,
the size of the inner descriptions may be several orders ghinale larger than that
of the outer description. The main results of this chaptempablished in [62].

5.1 Outer Description of the Reconfigured Flux Cone

In this section, we analyze the impact of reconfiguring theataic network. The
effects include an increase in the size of the outer desanipff the reconfigured cone
and changes in the reversibility type of reactions. Heredefee thesize of an outer
description of a flux cone as the sum of the number of its mihpr@per faces and the
dimension of its lineality space.

Let SRC Rev be the set of split reactions. The network reconfigurationasaseen
as an iterative procedure that consist$IR iterations, each splitting some reversible
reaction. As will be shown, each iteration increases therg#son of the flux cone
depending on the reversibility type of the split reactiorheTincrease is significant
when the split reaction is pseudo-irreversible. Note thatd are at mostiterations
where the split reaction can be fully reversible, with dim(lin.space(C)).

In the following, we consider the case of splitting one raagtwhich is denoted
by j. The reconfigured flux coné€’, which contains all possible steady-state flux
distributions in the reconfigured network, is given by

C'={(v,w) e R"™ | Sv =w-S,;, v; >0, foralli € Irr, v; >0, w>0}. (5.1)
According to equation (5.1), splitting reactignncreases the number of variables and

constraints byl and2, respectively. Indeed, the reconfigured network contaimes o
more reaction denoted by+ 1. The set of irreversible reactions in the reconfigured
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network islrr’ = Irr U{j,n+ 1}. Accordingly, the lineality space of the reconfigured
flux coneC’ is given by

lin.space(C’) = {(v,0) € R"™ | Sv =0, v; =0, foralli € Irr, v; =0},
or equivalently,
lin.space(C’) = {(v,0) € R™™ | v € lin.space(C N {v € R" |v; =0})}. (5.2)

Sincelin.space(C' N {v € R" | v; = 0}) = lin.space(C) N {v € R" | v; = 0}, it
follows from equation (5.2) that

dim(lin.space(C")) = dim(lin.space(C) N {v € R" | v; = 0}).

Lemma 5.1. If j € Prevy is pseudo-irreversible, thedim(lin.space(C")) =
dim(lin.space(C)). If j € Frev is fully reversible, themdim(lin.space(C")) =
dim(lin.space(C)) — 1.

Proof. Supposej € Prev, is pseudo-irreversible. Them; = 0 for each vec-
tor b € lin.space(C). Hence,lin.space(C) € {v € R* | v; = 0} and so
dim(lin.space(C")) = dim(lin.space(C')). Now suppose € Frev is fully reversible.
There exists theh € lin.space(C') such thab; # 0 and sdin.space(C) € {v € R" |
v; = 0}. Thereforedim(lin.space(C”)) = dim(lin.space(C)) — 1. O

In the following, we will characterize the minimal propecés of the reconfigured
flux coneC’. We first consider the case of a minimal proper fa€vith v} = v;,; = 0
forall v € G'.

Lemma5.2. LetG’ C (" such that}; = v, ., = 0 forallv' € G'. Then, the following
are equivalent:

— G’ is a minimal proper face df’.

— There exists a minimal proper face of C N {v € R™ | v; = 0} such that
G ={(v,0) e R"" | v € G}.

If this is the case(Z andG’ have the same characteristic set.

Proof. ”=": SupposeG’ is a minimal proper face ot and D’ is its charac-
teristic set. Sincev; = v, = 0 for all v" € G', we getD" C Irr. Let
G={vel|v=0 v, =0, foralli € Irr\ D'}. We haveG' = {(v,0) €
R™™ | v € G} and sodim(G) = dim(G’). SinceG’ is a minimal proper face of
C" and dim(lin.space(C’)) = dim(lin.space(C' N {v € R™ | v; = 0})), we get
dim(G) = dim(lin.space(C' N {v € R" | v; = 0})) + 1 and so the claim follows.
"<" Immediate. O

We now will study the minimal proper faces of the reconfigufieck cone C’,
depending on the reversibility type of the split reaction.
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5.1.1 Splitting a Fully Reversible Reaction

If ; € Frev is fully reversible, there exists a flux distribution in treconfigured net-
work that involves either reactionor n + 1 and no other irreversible reactions. Ac-
cordingly, as will be stated in the following propositioeactionsj andn + 1 define
two trivial minimal proper faces of” given by

G ={(v,0) e R*"" | Sv =0, v; =0, foralli € Irr, v; > 0},
Gt ={(v,w) e R | Sv=w-S,;, v; =0, foralli € Irr, v; =0, w > 0}.

Proposition 5.3. If j € Frev is fully reversible, ther’ andG™** are two minimal
proper faces of’ whose characteristic sets abe = {j} andD"*' = {n + 1},
respectively.

Proof. Supposeg € Frev is fully reversible. Then there existsc lin.space(C') such
thatb; > 0. Letl; = Irr U {n + 1}. We haveG’ = {v' € C' | v, > 0, v] =
0, foralli € I;} andlin.space(C’) = {v" € C' | v; = 0, v; = 0, foralli € I;}. In
addition, we havéb, 0) € G7\ lin.space(C”) and salim(G?) = dim(lin.space(C")) +
1. Therefore,G7 is a minimal proper face characterized by reactjorSimilarly, let
L1 = Irr U {j}. We haveG"™ = {v/ € C" | v}, >0, v} =0, foralli € I,,.1}
andlin.space(C’) = {v" € C' | v, =0, v; = 0, foralli € I,,,}. Defineu €
R*™ by u; = 0, u,y1 = b; andu; = —b; foralli € {1,...,n} \ {j}. We have
u € G"\ lin.space(C”") and sodim(G™*1) = dim(lin.space(C”)) + 1. Accordingly,
G™*!is a minimal proper face characterized by reaction 1. Since for each’ ¢ G’
(resp.v’ € G, vl = 0foralli € Irr' \ {j} (resp.i € Irr' \ {n + 1}), the claim
follows. O

Next we are interested in non-trivial minimal proper facég'a Here, we get the
following result.

Proposition 5.4. Let G’ C C' such that?’ # G7 andG' # G™*L. If j € Frev is fully
reversible, then the following are equivalent:

— G’ is a minimal proper face df’.

— There exists a minimal proper faceof C' such that?’ = {(v,0) € R""! |v €
GNn{veR"|v;=0}}.

Proof. ”=": According to Lemma 5.2, there exists a minimal proper fé&eof C' N
{v € R* | v; = 0} such thatG’ = {(v,0) € R*™ | v € G"}. Let D be the
characteristic set of” and letG = {v € C' | v; = 0, foralli € Irr\ D}. We have
G"=Gn{veR"| v, =0}. LetG° C G be a minimal proper face af' and
D° C D its characteristic set. Singee Frev, there existy € G \ lin.space(C)
such thaty; = 0. Thereforeg € G° N {v € R | v; = 0} \ lin.space(C). Suppose
there existsc € D\ D°. Thenv, = O forallv € G° andG® C G N {v € R" |
v, = 0}. SinceG” is a minimal proper face of' N {v € R" | v; = 0}, we have
G"N{v € R" | v, = 0} = lin.space(C N {v € R" | v; = 0}). It follows that
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G'N{v e R" | v; = 0} C lin.space(C N {v € R" | v; = 0}), in contradiction to
g€ G N{veR"|v; =0} \ lin.space(C). We conclude thaD’ = D and soG is a
minimal proper face of’.

"<" Immediate. O

In summary, if reactiory € Frev is fully reversible, the minimal proper faces of
C" areG7, G"! and those which are in a 1-1 correspondence with the mininoglgp
faces ofC. The dimension of the lineality space @f decreases by one. Accordingly,
the size of the flux cone description increases by one aftétisg a fully reversible
reaction.

5.1.2 Splitting a Pseudo-irreversible Reaction

If j € Prevy is pseudo-irreversible, there is no flux distribution in teeonfigured
network that involves reactioj(resp.n + 1) and no other irreversible reactions. The
following proposition shows that both (and only) reactigrendn + 1 characterize a
trivial minimal proper face ot given by

G ={(v,w) eR"™ | Sv=w-S,;, v; =0, foralli € Irr, v; >0, w > 0}.

The minimal proper facé“ contains all the4-cycle) flux distributions in the re-
configured network that involve only the forward and bacldvaactionsi andn + 1.

Proposition 5.5. If j € Prev, Is pseudo-irreversible, thekf is a minimal proper face
of C" whose characteristic seti%* = {j,n + 1}.

Proof. We haveG® = {v € " | v; > 0, v; = 0, foralli € Irr} and
linspace(C') = {v' € C' | vj; =0, v; = 0, foralli € Irr}. Letu € R with
uj = upy1 = landu; = 0foralli € {1,....,n}\{j}. We haveu € G\ lin.space(C")
and sodim(G*¢) = dim(lin.space(C")) + 1. Therefore,G¢ is a minimal proper face
characterized by reaction Sinceu,,; # 0 andu; = 0 forall i € Irr' \ {j,n + 1},
D¢ = {j,n + 1} is the characteristic set 6f°. OJ

Let G, ..., G* be the minimal proper faces «f and D!, ..., D* their charac-
teristic sets, respectively. Starting from [33; 58] andhgsihat reactiory is pseudo-
irreversible, we partition the set = {G*, ..., G*} of minimal proper faces of' into
three parts:

J° = {GeJ|v;=0forallve G},
Jt = {GeJ|v;>0forallve G\ lin.space(C)},
J- = {GeJ]|v;<0forallv e G\ lin.space(C)}.

From each of the set&’, J*, J~ we will obtain different minimal proper faces of
C'. We start by characterizing minimal proper facgswith v; = v, ,, = 0 for all
v € G'. As will be stated in the next proposition, in addition to maal proper faces
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G € J° some minimal proper faces 6f are obtained by combining particular pairs
(G*,GY) € JT x J~. The setd of these pairs is given by

d={(G"GYeJ  xJ |D'¢ DFuD forallie {1,...,s}\ {k,1}}. (5.3)

Actually, (G*, G") € ® means that the minimal proper facé§ andG' are adjacent
in the flux coneC (see Definition 2.9 in Chap. 2 for a definition of adjacent mmiai
proper faces). Accordingly, each pa&*, G') € ® defines a minimal proper face of
Cl

C(GF, G ={veC|vj=0,v =0, foralli e Irr\ D*U D'}.
Finally, the setddj of minimal proper faces of” that are obtained by combining the
pairs(G*, G') € ® is given by

Adj = {C(G*,G) | (G",G") € ®}. (5.4)

Proposition 5.6. LetG' C " such that; = v, = 0 for allv' € G'. If j € Prev is
pseudo-irreversible, then the following are equivalent:

— G’ is a minimal proper face df’.
— There exists? € J' U Adj such that?’ = {(v,0) € R"*! | v € G}.

Proof. According to Lemma 5.2 is a minimal proper face af” if and only if there
is a minimal proper facé& of C' N {v € R™ | v; = 0} such that?’ = {(v,0) € R"™! |
v € G}. We show that is a minimal proper face of’ N {v € R™ | v; = 0} if and
only if G € J°U Adj. Sincej € Prevy, we havdin.space(C' N {v € R" | v; = 0}) =
lin.space(C).

=" Llet G ={ve Cn{veR |v, =0} v =0, foralli € Irr\
D}. There existyy € G \ lin.space(C) such thatD = {i € Irr | g; # 0}. Let
g € G"\ lin.space(C) fori = 1,...,s. Sinceg € C, g can be written in the form
g=>:_ g +b, for somea; > 0 andb € lin.space(C). Sinceg ¢ lin.space(C),
there exists: € {1,...,s} such thatn, # 0. Accordingly, D* C D. We have the
following cases:

1. G* € J% SinceDF C DandG* C C n{v € R" | v; = 0}, we getG* C G.
SinceG is a minimal proper face af' N {v € R" | v; = 0} andlin.space(C N
{veR"|v; =0}) € G*, we getG* = G andG € J°.

2. G* € J*: Supposey; # 0 impliesG' € J* foralli =1,...,s. We getg; =
arg; + D itk ;g5 > 0, contradictingg; = 0. Then there exists€ {1, ..., s}
such thaty; # 0 andG' € J~. It follows that D! C D andD* U D! C D.
Letg = ¢' — (g;/gf) cghandG = {v e C |v; =0, v; =0, foralli €
Irr \ (DF U D)}. We haveg’ € G’ \ lin.space(C N {v € R" | v; = 0}) and
G’ C @. SincedG is a minimal proper face of N {v € R | v; = 0}, we
getG’ = G andD = D* U D'. Suppose there existsc {1,...,s} such that
D! C D*u DL If G' € J* (resp.G* € J~), we prove in a similar way that
DiuD! = D*uD! (resp.D*UD! = D*UD') and saD! = D* (resp.D? = D).

It follows that(G*, G') € ®, G = ((G*,G") andG € Adj.



68

3. G* € J~: The proof is similar to that of the case above.

"<": We can easily see thatd¥ € J°, thenG is a minimal proper face af' N {v €
R™ | v; = 0}. Supposei = ((G*, G') for some(G*,G') € . LetG' C G be a
minimal proper face o€ N {v € R" | v; = 0} and D’ C D* U D! its characteristic
set. Accordingly’ € J° U Adj. Supposes’ € J°. It follows from D' C Dk u D!
and (G*,G") € ® thatD’' = D* or D' = D', contradictingv; = 0 forall v € G'.
We conclude that:’ = ¢(G*,G") for some(G¥,G") € ® andD’ = D¥ u D",
SinceD’ C DF U D!, we getD¥ C D¥ U D' and D" C D* U D'. Therefore,
D¥ = D¥ and D" = D'. We getG’ = G and soG is a minimal proper face of
CNn{veR"|v; =0} ]

Next, we characterize non-trivial minimal proper facésf C” with v; > 0 for all
v € G\ lin.space(C”).

Proposition 5.7. Let G’ C C’ such thaty’ # G°. If j € Prev, is pseudo-irreversible,
then the following are equivalent:

— G"is a minimal proper face @f' such that’; > 0 for allv" € G"\ lin.space(C").
— There exists? € J* such that?’ = {(v,0) € R"™! | v € G}.

Proof. Supposg € Prevy. Then,dim(lin.space(C’)) = dim(lin.space(C)).

"="1 SupposeG’ is a minimal proper face of” such that; > 0 for all v €
G" \ lin.space(C”) and letD’ be its characteristic set. Sin€& # G°andj € D', we
haven+1 ¢ D"andD’\{j} C Irr. Let(g,0) € G’ \ lin.space(C"), D = D'\ {j} and
G={velC|v,=0,foralliec Irr\ D}. We havey € G\ lin.space(C') andg; > 0.
Suppose there existse G\ lin.space(C) such thav; < 0 and letw = v—(v;/g;) - g.
We have(w,0) € G’ \ lin.space(C”) andw; = 0, in contradiction tov}; > 0 for all
v € G\ lin.space(C”). We conclude that; > 0 for all v € G \ lin.space(C) and
G = {(v,0) € R"™ | v € G}. Accordingly,dim(G) = dim(G’). SinceG’ is a
minimal proper face of’’, we havedim(G’) = dim(lin.space(C' N {v € R" | v; =
0})) + 1 = dim(lin.space(C)) + 1 and soG € J*.

"<" Let G € J' such thatG’ = {(v,0) € R"™! | v € G}. Sincedim(G’) =
dim(G) anddim(G) = dim(lin.space(C)) + 1 = dim(lin.space(C N {v € R™ | v; =
0})) + 1, we conclude tha€’ is a minimal proper face of’. Sincev; > 0 for all
v € G\ lin.space(C'), it follows thatv); > 0 for all v" € G \ lin.space(C"). W

Finally, we characterize non-trivial minimal proper facggs # G°¢ of C’ with
v,y > 0forallv’ € G"\ lin.space(C”). In such a casey; = 0 for all v' € &'
and the characteristic set6f is D U {n + 1} for someD C Irr.

Proposition 5.8. Let D C Irr be a set of irreversible reactions. jifc Prevg is
pseudo-irreversible, then the following are equivalent:

— There exists a minimal proper facé of C' whose characteristic setisU {n +

1.
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— There existg? € J~ whose characteristic setis.

Proof. Supposeg € Prevy. Then,dim(lin.space(C")) = dim(lin.space(C)).

"=": Suppos&=’ is a minimal proper face @’ whose characteristic seti%J{n+
1}. Letg’ € G'\lin.space(C") andg € R" suchthay; = ¢g;foralli € {1,...,n}\{j}
andg, = —g,.,. LetG = {v € C | v; = 0, foralli € Irr \ D}. We have
g € G\ lin.space(C) andg; < 0. Suppose there existse G \ lin.space(C') such
thatv; > 0 and letw = v — (v;/g;) - g. We have(w,0) € G’ \ lin.space(C’), in
contradiction tav],,, > 0 forallv" € G" \ lin.space(C’). We conclude that; < 0 for
all v € G\ lin.space(C). To showG € J—, let FF C G be a minimal proper face of
C andD' C D its characteristic set. Let € F'\ lin.space(C') and /' € R™ with
fi = fiforalli e {1,....,n}\ {j}, fj =0andf, , = —f; > 0. Sincef’ € C" and
{i e Irr'| fl >0} = DU{n+ 1}, we havef’ € G’ lin.space(C"). Suppose there
existsk € D\ D'. Thenv, = 0forallv € FandFF C GN{v € R" | v, = 0}.
Accordingly,f € GN{v € R" | v, = 0} \ lin.space(C) andf’ € G'N{v € R" | v, =
0} \ lin.space(C”). SinceG’ is a minimal proper face af” andk € D, G’ N {v € R™ |
v, = 0} = lin.space(C”), contradictingf’ € G'N{v € R" | vy = 0} \ lin.space(C").
We conclude thaD’ = D, F' = G and so the claim follows.

"<" Let G € J~ such thatD is its characteristic set. L&t’ = {(v, w) € R""! |
Sv=w-8, vy =0,foralli e Irr\ D, v, >0, foralli € D, v; =0, w > 0}.
Let F” C G’ be a minimal proper face @i’ andD’ C D U {n + 1} its characteristic
set. Suppose + 1 ¢ D'. Sincej ¢ D’, by Proposition 5.6, there exists € J° U Adj
such thatF” = {(v,0) € R"*! | v € F}. The characteristic set df is D’. Then
eitherD’ = D with G* € J° or D' = D* U D! with (G', G*) € ®. SinceD’ C D,
both cases are contradictidg € J—. We conclude that + 1 € D’. Sincej ¢ D',
F’ # G° and its characteristic set {9’ \ {n + 1}) U {n + 1}. There exists then
K € J~ whose characteristic setis' \ {n + 1}. SinceD’\ {n+ 1} C D and bothZ
and K are minimal proper faces df, it follows that K = G, D' = DU {n + 1} and
F' = G'. We conclude that’" is a minimal proper face af” whose characteristic set
isDU{n+1}. W

To summarize, a non-trivial minimal proper faGé of C” is given either by
G'={(v,0) € R"*"! | v € G}, for someG € J° U J+ U Adj,
or by
G'={v el |v,=0forallic (Irru{j})\ D}, for someG* € J~.

Sincedim(lin.space(C”)) = dim(lin.space(C')), it follows that the size of the flux
cone description increases pydj| + 1 after splitting a pseudo-irreversible reaction.
Note that the setldj can be quite large (cf. Sect. 5.2).

5.1.3 Changes in the Reversibility Type of Reactions

Another consequence of the network reconfiguration is tlaagé in the reversibil-
ity type of reactions. Indeed, possibly many fully revelsiteactions in the original



70

network may become pseudo-irreversible in the reconfigneddiork. LetFrev’” and
Prevy, be the sets of fully and pseudo-irreversible reversibletieas in the reconfig-
ured network, respectively, i.e.,

Frev' = {i € Rev \ {j} | b, # 0, for someb’ € lin.space(C")},
Prevy = Rev \ (Frevy U {j}).

Sincelin.space(C’) = {(v,0) € R | v € lin.space(C), v; = 0}, we haveFrev’ C
Frev \ {j} and Prevy \ {j} C Prev,. Let A be the set of fully reversible reactions of
the original network which become pseudo-irreversiblehia teconfigured network,
ie.,

A = Frev \ (Frev' U {j}).

We can easily see that = {i € Frev\ {j} | b; = 0 for eachb € lin.space(C) N {v €
R™ | v; = 0}}. The following proposition further characterizes the Aaising a basis
of the lineality space of'.

Proposition 5.9. Let B = (b',...,1") be a basis of the lineality spati@.space(C').
Then,

A = {i € Frev\ {j} | there exists\ # 0 such thabt! = \b} forallk = 1,...,t}.

Proof. LetQ = {i € Frev \ {j} | there exists\ # 0 such thab; = \b¥ for all k =
1,...,t}.. ThenQ C A. To show the reverse inclusion, suppase A. Since
i € Frev, there existd € B such that), # 0. Since: € A, we haveb; # 0. Let
V' € Bandletw =t — (V)/b;) - b. We havew € lin.space(C) N {v € R" | v; = 0}

andw; = b; — (b;i/b;)t;. Sincei € A, we getw; = 0 and sob; /b = b;/b; A £0,

independently frond’. O

Corollary 5.10. If j € Prev, is pseudo-irreversible, thefrev' = Frev and Prevy =
Prevg \ {j}.

Proof. Supposg € Prevo. Thenby = 0forallk =1,...,t. Consider € Frev\{;}.
There existd € B such that, # 0. Sinceb; = 0, it follows thati ¢ A. Therefore,
A = () and the claim follows. O

5.2 From Outer to Inner Descriptions

In this section, we give a generic procedure to show how imlescriptions can be
computed from the outer one. We use this procedure to explayn for large-scale
metabolic networks, the size of the inner descriptions neagdveral orders of magni-
tude larger than that of the outer description.

The results in Sect. 5.1 allow for obtaining an outer desiompof the reconfigured
flux cone after splitting one reversible reaction. Now we seeking for an inner
description of the reconfigured flux cone after splitting aSR = {j,,...,,} of
reversible reactions. We propose an iterative procedatestlits, in each iteratioh,
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areversible reaction, and obtains a minimal generatingf¢bé reconfigured flux cone
using the following scheme. LéRz°, B?) be a minimal generating set of the original
flux cone. The setR’, BY) can be computed using an existing software for polyhedral
computations such asdd [33]. Forl < k < p, let j, be the reversible reaction to
be split in iterationk and let/rr*~!, Prevy ™ and Frev" ! be the set of irreversible,
pseudo-irreversible and fully reversible reactions agfgitting reactiong, . .., jx_1,
respectively. Sefrr® := {1,...,n} \ Rev, Prev) := {i € Rev | b; = Oforallb €
B°} andFrev” := Rev )\ Prev). Iterationk comprises two basic steps. First, we deduce
a minimal generating sétB*, R¥) from (B*~! Rk~1) based on the results given in
Sect. 5.1. This step is straightforwardjif € Frev®'. In such a case, the inner
description of the reconfigured flux cone increases by oneveier, if j;, € Previ!,

in addition to the generators we can directly deduce fidi—*, '), the inner
description of the reconfigured flux cone includes a sulisel R*~!' x RF! that
contains possibly many generators. In this case, the isergathe inner description
is equal to|¥| + 1. In the second step, we update the reversibility type oftieas
using Proposition 5.9. The deduction procedure terminatgsrationp and an inner
description of the reconfigured flux cone(iB?, R?). For a more detailed description,
see Algorithm 1.

Algorithm 1 Procedure for deducing an inner description from an outscrilgtion of
the flux cone.
Input: e Set of reversible reactiongev C {1,...,n};
e Set of reversible reactions to be split SR{j1, ..., j,};
e Set of minimal proper faces of the flux code
e Lineality space of the flux cong.
Output: e Minimal generating set GenSet of the reconfigured flux cone
Initialization: R°:={ge G\L|G e J}, B"=(b',...,1") avector basis of,
Prevg == {i € Rev | b; = 0forall b € B°}, Frev” := Rev \ Prev)),
Irr® .= {1,...,n} \ Rev.

forall k € {1,...,p} do
if ji € Frev" ! then
/* Deduce a minimal generating set of minimal proper faces */
Chooseu € B*~! such thaty;, > 0,
add(u, 0), RF);
Definew € R"** by w) := —u; foralli € {1,...,n+k—1}\{ji}, w;, :=0
andw,, i = u;,,
add(, R*);
forall g € R*'do
add((g - (gjk/ujk) U, O)a Rk);
end for
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Continued from previous page

/* Deduce a minimal generating set of the lineality space */
forall b € B*1\ {u} do

add((b - (b]k/ujk) U, 0)7 Bk);
end for

[* Update the reversibility type of reactions */
A = {i € Frev" "\ {ji} | there exists\ # 0 such thab; = \b;, forall b €
Bk:fl}’
Frev® := Frev* '\ (AU {ji}), Prevh := Previ U A.
else
/* Deduce a minimal generating set of minimal proper faces */
Definew € R"™ byw! :=0foralli € {1,....,n+k — 1} \ {ji},
Wy, = Wpyp = 1,

add(u, k"),
P:={geR1]g, >0},N:={ge R |g;, <0},Z:={g€ R
Ijr = O}

forall g€ PU Z do
add(g,0), R%).
end for
forall ¢ € N do
Defineg’ € R*** by g/ :=g; foralli € {1,...,n+k—1}\ {4},

g, = 0andg, ., == —gj.,
addg’, R¥).
end for

U= {(g",¢>) € Px N |{icIrr" ]| g >0} 7 {ie Irr" 1| gl + g2
> 0} forallg € R*¥1\ {g', ¢°}},
forall (¢',¢?) € ¥ do
add(g® — (43, /9;,) - 9",0), R").
end for

/* Deduce a minimal generating set of the lineality space */
forall b € B¥!do

add(b,0), B).
end for

[* Update the reversibility type of reactions */
Frev® := Frev™™t, Prevk := Previ=\ {ji}.
end if
Irr® .= Irr" 1 U LG, n + k}.
end for
GenSet= (B?, RP).
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Note that, for the reconfigured flux cone to be pointed, we rhasep > t,
wheret is the dimension of the lineality space of the original fluxepi.e.,t =
dim(lin.space(C)). This is typically the case for the extreme pathway and exate
current approaches. In such a case, we have

def . —
n= {ke{l,...,p}|jr € Prevf '} =p —t.
Accordingly, the above procedure containgerations where the increase in the inner
description of the flux cone is significant. This explains wihy large-scale metabolic
networks, the size of the inner descriptions may be sevedalrs of magnitude larger
than that of the outer description.

Metabolic network Network size Outer description size Inner description size
Met | Irr Rev-Int | Rev-Ext | RMS MMB EM EP EC
Chloroplast stroma[so] | 19 | 9 12 3 11 15 27 30
Human red blood cell [121] 38 | 18 | 17 15 48 3557 | 127 | 3590
Saccharomyces cerevesiae 148 | 30| 17 657 8726 | 8743| 8743
Escherichia coli [48] 90 | 83 27 3560 507632 ? ?
Purple bacteria [48] 77 | 61 24 12 393524 ? ?

W o
N OOl O

Table 5.1: Metabolic networks, with the number of internatatolites (Met), the number of
irreversible (Irr) reactions, the number of reversibleeinal (Rev-Int) and external
(Rev-ext) reactions, the number of minimal metabolic bé&rav(MMB), the di-
mension of the reversible metabolic space (RMS), the numbelementary modes
(EM), extreme pathways (EP), and extremal currents (EC)nticates that the ex-
isting implementation of dd has failed in the computation of the inner description.
This is not the case for the computation of the outer desaripshowing that the
network reconfiguration renders more complex the congtsggtem that defines the
reconfigured flux cone. Except tBecycles corresponding to the split reactions, the
set of EPs corresponds to a subset of the set of EMs, whichuigaggnt to the set
of ECs.

Tab. 5.1 shows the sizes of the inner and outer descriptiidhe dlux cone of some
typical metabolic networks. The computation of the extrgratways, extremal cur-
rents, the minimal metabolic behaviors and the reversitg&abolic space was done
using the softwaredd [33]. For computing the elementary flux modes, we used
METATOOL [117]. We can see that the size of the outer description hgagethe sum
of the number of MMBs and dim(RMS), is typically much smallean the number
of elementary flux modes, extreme pathways and extremagmisir This observation
holds even if the flux cone is pointed. In such a case, the MMBBsespond to the set
of extreme rays of the flux cone. The extreme pathways andrexsircurrents are ex-
treme for the only reason that the split reversible reastltave been decomposed into
forward and backward reactions. In the initial cone, thedeeee rays are conically
dependent and their numbers are much larger than the nurhbiiBs.
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CHAPTER

A New Approach For Flux
Coupling Analysis

The stoichiometric and thermodynamic constraints not debgrmine all possible flux
distributions over a metabolic network at steady state.y&i®o induce different de-
pendencies between the reactions. For example, someoresatie incapable of carry-
ing flux under steady-state conditions. Furthermore, iriss\metabolic networks, a
zero flux through one reaction implies a zero flux through ioteactions. Since con-
straining the flux through some reaction to be equal to zen@sponds to the deletion
of the corresponding gene, such dependencies also link ¢tebmlic to the gene reg-
ulatory network. Accordingly, flux coupling analysis [114;169], which seeks for
the elucidation of blocked and coupled reactions, help®ttebunderstand metabolic
interactions within cellular networks.

In this chapter, we present a new approach for flux couplirajyars, based on
our constrained-based approach introduced in Chap. 4. gusin reaction classifi-
cation, we study mathematical dependencies between oguglationships and the
reversibility type of the reactions. We show that couplietationships can only hold
between certain reaction types. These results not onlwdtioimproving an existing
algorithm, but also lead to a new algorithm for flux couplintalysis. Parts of this
chapter have been published in [59].

6.1 Definitions

Under stoichiometric and thermodynamic constraints, sosaetions are unable of
carrying any flux, i.e., their fluxes are always equal to z&uwach reactions, which are
called blocked reaction$14] or strictly detailed balanced reactioffs01], are often
not relevant and may be caused by omission and/or errorgimtdel reconstruction
process. According to [14], for thE. coli metabolic network [28]14% of the 740
reactions are blocked, wherex, of the 1173 reactions in theéS. cerevisiaenetabolic
network [32] are unable of carrying any flux.

In the following, we formally define blocked reactions usthg steady-state flux
cone. Remember that, given a stoichiometric matriand a set of irreversible reac-
tions Irr, the steady-state flux cone is given by

C={veR"|Sv=0, v; >0,foralli € Irr}.



76

Definition 6.1 (Blocked reactions)Given the flux coné&’, the set
Blk={ie{l,...,n}|v,=0forallve C}
is called the set of blocked reactions. The remaining reastare called unblocked.

In our flux coupling analysis, we start by identifying blodkeeactions. After-
wards, we determine dependencies between unblockedaescising Definition 6.2.
But first, we check whether all reactions in the network aoekéd, or equivalently, we
check whether the flux cone is trivial. This is the case if the following statements
hold:

1. The flux cone”' is equal to its lineality space, i.&; = lin.space(C'), or equiv-
alently, all irreversible reactions are blocked.

2. The lineality spacéin.space(C) is trivial, i.e.,lin.space(C) = {0}.
To check condition (1), consider the following LP problem

max{» v;:Sv=0,0<v; < lforallje Irr}. (6.1)

Let v* be an optimal solution of the above LP problem. All irreveisireactions are
blocked ifand only ify ., v; = 0. If this is the case, the flux corté has no minimal
proper face, and so is equal to its lineality space, @/e= lin.space(C).

Now, to check condition (2), lef € R™™" be the identity matrix and. be the

matrix given by
S
L= ( -[Irr* ) ’

Sincelin.space(C) is the null space of the matrix, i.e., lin.space(C') = kern(L),
lin.space(C') = {0} if the matrix L has full rank, i.e.rank(L) = n.

In the rest of this chapter, we assume that the flux cone isnailf and so some
reactions are unblocked.

Definition 6.2. Let i, j be two unblocked reactions. The coupling relationsﬁfpsﬂ
, " are defined in the following way:

—i = jifforall ve C,v; =0 impliesv; = 0.
-1 i@)j ifforall v e C,v; =0 is equivalent ta; = 0.
— i j if there exists\ € R such that for alb € C,v; = \v;.

Reactions andj are coupled if at least one of the relations’ j, i P jori ~*j
holds. Otherwise, andj are uncoupled.
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Note thati ~* j (resp.i = j) is equivalent toj «* i (resp.j = i). Hence, when
looking for reaction pairsi, ;) fulfilling i «~* j ori 2 4, we should restrict ourselves
to reaction pairgi, j) with i < j. In addition,i ~* j implies: = 4, which in turn is
equivalent to(: = j andj = i). Therefore, we need to check whethier j holds
only if i ~* j does not hold. Similarly, we need to check whethef j holds only if
i ~* jandj = i do not hold.

Using the notations from Definitions 6.1 and 6.2, we formdkiyfine the problem
of flux coupling analysis (FCAgs follows:

Flux Coupling Analysis (FCA)

Given: S € R™*" stoichiometric matrix,

Irr C{1,...,n} setof irreversible reactions.

Find: Blk= {i | iis blocked,
A={(i,j)|i*j,1<i<j<n,i,j¢BIk},
B={(i,j)|i=j,1<i<j<mnijé¢Bk,(ij)¢A},
C'={(i,5) |1 = j,(i,j) ¢ BIK®, (i, j) € AU B, (j.i) ¢ AU B}.

6.2 The FCF Algorithm

The Flux Coupling Finder (FCFalgorithm [14] has been developed in an attempt to
identify blocked reactions as well as coupled reactions @tatmolic networks. This
algorithm requires the solution of a sequence of linear fnogning (LP) problems.
In contrast to the FCA formulation given in the precedingtise; the FCF algorithm
requires that each reversible reaction is split into a fodnand a backward reaction,
which both are constrained to be irreversible. Fig. 6.1 shaaimple hypothetical net-
work before and after reconfiguration. The reversible ieac is split into a forward
and a backward reactiatt and2~, which both are irreversible.

Let Rev = {i1,...,%rey}. FOr convenience, the stoichiometric mats <
R+ (ntIEev]) of the reconfigured network can be written as follows:

Sh; = S forall j € {1,...,n},
S = —8,, forallje{1,...,|Rev[}.

*(n+7)

All reactions in the reconfigured network are irreversitBven Irr’ = {1,...,n +
|Rev|}, the reconfigured flux con€”<, which contains all possible steady-state flux
distributions in the reconfigured network, is given by

Cree = {d e RMHIRe | g/ = 0, d; > 0,forall i € Irr'}. (6.2)

Actually, each reaction in the reconfigured network coroesis either to an ir-
reversible reaction or to a possible direction of a revéesibaction in the original
network. In both cases, a reaction in the reconfigured néte@mresponds to a direc-
tion of some reaction in the original network. Therefores guitable to call a reaction
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(a) Network example (b) Reconfigured network

Figure 6.1: The reversible reacti@ris split into a forward and backward reactidn and2~.
According to the FCF algorithm, a zero flux through directb(resp.4) implies
a zero flux through directioe™ (resp.27), i.e., a negative (resp. positive) flux
through the reversible reactiéh However, neither a zero flux through reacti®n
nor a zero flux through reactichimplies a zero flux through reactich

in the reconfigured network rmeaction directionor shortly adirection Accordingly,
the FCF algorithm allows for identifying blocked direct®oas well as dependencies
between directions.

The FCF algorithm decides whether a direction is blocked byimizing the flux
through that direction under the constraints defining tlvemégured cone”"“. In-
deed, for each directiohe {1,...,n + |Rev|}, the FCF algorithm uses the following
LP problem

max{d; : S'd =0, d; > 0,foralli € Irr', d; < d]"** forall i € BR}, (6.3)

where BR is the set of boundary reactions and for eaeh BR, d;"** is an upper
bound on the flux in direction. Because of these bounds, the above LP is finite. If
the maximum value of the LP is zero, then directjois blocked, i.e.d; = 0 for all
de e,

We can easily see that, for each irreversible reactianIrr, the following state-
ments are equivalent:

1. v;=0forallv e C,
2.d; =0foralld € C".

Accordingly, an irreversible reactiop € Irr is blocked if and only if directiory is
blocked. Therefore, the set of irreversible reactions énatblocked can be identified
by solving the LP problem (6.3) once for every irreversitdaation. Similarly, for
each reversible reactian € Rev, the following statements are equivalent:

1. v, =0forallv e C,
2. dj; = dny;=0foralld e C™.

Accordingly, a reversible reactian € Rev is blocked if and only if directions; and
n + j are blocked. Hence, reversible reactions that are bloc&ade identified by
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solving the LP problem (6.3) twice for every reversible teat We conclude that the
FCF algorithm requires the solution dir| + 2| Rev| LP problems to identify blocked
reactions.

To decide whether two directionisj € {1,...,n + |Rev|} are coupled amounts
to determining the upper and lower bounds,, andR,,;, such thal) < R,,;,d; <
di < Rpaed; foralld € Cmc N {d € R™El | q; < dma=foralli € BR}. The
authors of [14] showed thdt,,., andR,,;, are the optimal values for maximizing and
minimizing the following LP problems

max{d; : S'd =0, d; =1, d, > 0,forall k € Irr', d, < d"*tforalll € BR, t > 0},
min{d; : S'd =0, d; =1, d,, > 0,forall k € Irr', dy < d"™*tforalll € BR, t > 0},

respectively. Comparison @&t,,., and R,,,;,, allows the FCF algorithm to determine
whether directiong and; are coupled using the following rules:

— d; = 0impliesd; = 0 for all d € C" if and only if R, # 0,
— dj = 0impliesd; = 0 forall d € C"¢ if and only if R,,,,, # +00,
—dj = M, foralld e C™¢ifand only if R,,;, = Rpae = A # 0.

Accordingly, the FCF algorithm needs the solution of at niast| + 2| Rev|) - (| Irr| +
2|Rev| — 1) LP problems to find all directions that are coupled. Altogetlthis algo-
rithm requires the solution dff Irr| + 2|Rev|)? LP problems to identify blocked and
coupled directions.

While the FCF algorithm has proved successful in computilogked and cou-
pled reactions in some genome-scale metabolic networlstHig algorithm may be
hampered by the reconfiguration of the metabolic networkis Téconfiguration im-
plies that the number of variables (resp. constraintseemes byRev| (resp.2| Rev|).
Since the FCF algorithm uses linear programming (LP) totiflethe maximum and
minimum flux ratios for every pair of directions, a very bigmber of LP problems
has to be solved. In addition, as another consequence ottherk reconfiguration,
the FCF algorithm does not compute directly coupling relaghips between reactions.
For instance, if we consider again the hypothetical netvgarkn in Fig. 6.1, accord-
ing to the FCF algorithm, a zero flux through directidfresp.4) implies a zero flux
through directior2™ (resp.27), i.e., a negative (resp. positive) flux through the re-
versible reactior2. However, neither a zero flux through reactidmor a zero flux
through reactiod implies a zero flux through reactién Therefore, a post-processing
step is needed to deduce couplings between reactions (origieal network) from
those between directions (in the reconfigured network)dthiteon, the FCF algorithm
explores exhaustively all possible reaction pairs. Thesl$eto a very big number of
LP problems that have to be solved. This strategy may notsegall for genome-
scale models of complex microorganisms which involve adargmber of reactions.
In the next section, we show that coupling relationshipsedepon the reversibility
type of reactions. For instance, irreversible and pseugwearsible reactions cannot
be coupled with fully reversible reactions. Hence, wheirkiog for coupled reactions,
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we do not have to explore exhaustively all possible reagbains. \We can improve
the FCF procedure significantly by applying linear prograngronly in those cases
where coupling relationships can occur.

6.3 Flux Coupling Analysis Based on the Reversibility
Type of Reactions

For the rest of this chapter, we assume &tk = 1,..., s, are the minimal proper
faces of the steady-state flux cofierepresented by vectors € G* \ lin.space(C),
and that)',l = 1,...,t, is a vector basis din.space(C). Accordingly, for allv € C,
there existy,, 5, € R, oy, > 0 such that

S t
v=> agt+> /. (6.4)
k=1 =1

In the following, we show that the reversibility type is angortant key to elucidate
reaction couplings. Remember that a reversible reagtien Rev is called pseudo-
irreversible ifv; = 0, for all v € lin.space(C'). A reversible reaction that is not pseudo-
irreversible is called fully reversible. Moreover, givemanimal proper facé- of the
flux coneC and a reactiory € {1,...,n}, we have the following properties (see
Chap. 4 for more details):

— If j € Irrisirreversible, thew; > 0, for allv € G \ lin.space(C'), orv; = 0,
for all v € G. Furthermorey; = 0, for all v € lin.space(C').

— If 7 € Rev is pseudo-irreversible, then the fluxthrough; has a unique sign in
G \ lin.space(C), i.e., eitherv; > 0, for all v € G\ lin.space(C'), orv; = 0,
forall v € G\ lin.space(C'), orv; < 0, forallv € G \ lin.space(C). For all
v € lin.space(C'), we have agaim; = 0.

— If 7 € Rev is fully reversible, there exists € lin.space(C) such that; # 0.
We can then find pathways™, v~,v° € G \ lin.space(C) with v > 0, v; < 0
andv) = 0.

Based on the properties given above, we define the followeogehposition of the re-
action sef{1,...,n}, which reflects that pseudo-irreversible reactions takivegsame
direction in all minimal proper faces behave like irrevblsireactions.

— Irev = Irr U {i | iis pseudo-irreversible and > 0, forallv € C orv; <
0, forallv € C},

— Prev = {i | i is pseudo-irreversible and there exist v~ € C such that;” >
0,v; <0},

— Frev = {i | i is fully reversiblg.
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We should mention that the above sets are disjoint and tinéanus equal to the set
of all reactions, i.e.Jrev U Prev U Frev = {1, ..., n}. Furthermore, for the set BIk of
blocked reactions, we have Btk Frev = Blk N Prev = (), and so BIkC Irev.

Example 6.3. Consider the hypothetical network depicted in Fig. 6.2.oltgists of
thirteen metaboliteg, . .., O), and nineteen reactionts, . .., 19). The steady-state
flux cone is defined by’ = {v € RY | Sv = 0,v; > 0foralli € Irr}, with the
stoichiometric matrixS and the set of irreversible reactions = {2,3,4,5,6,7,8}.
Fig. 6.2 shows four flux vectors

gt = (2,2,1,0,0,0,0,0, 2, 2, 1, 1,0,0,0,0,0,0,0),
g* (0,0,1,2,0,0,0,0, 0, 0,-1,-1,2, 0,0,0,0,0,0),
g (0,0,0,0,1,1, 10, -1, =1, 0, 0,0,0,0,0,0,0,0),
g* = (0,0,0,0,1,1,0,1, =1, =1, 0, 0,0,0,1,1,0,0,0),

representing the four minimal proper fac8s,k = 1,2,3,4 of the network. The
lineality spacéin.space(C) = {v € C' | v; = 0,i € Irr} has dimension 2. It can be
generated by the pathways

b = (0,0,0,0,0,0,0,0,0,0,0,0, — 1,1

v = (0,0,0,0,0,0,0,0,0,0,0,0, =1, 1,0, 0, 1, 1, 0).

) Y Y )

An arbitrary flux vectorv € C can be written in the form combination =
S argt 4+ 307, b, for someny, > 0 andj3y, 3, € R.

Reactionl is pseudo-irreversible and operates in the forward dwaadt all mini-
mal proper faces, and o= Prev. For this network, we have the following decompo-
sition of the reaction set:

Irev = {1,2,3.4,5,6,7,8,19},
Prev = {9,10,11, 12},
Frev = {13,14,15,16,17,18}.

First, we characterize blocked reactions using generafdire cone. The follow-
ing proposition follows directly from equation (6.4).

Proposition 6.4. For any reaction € {1, ...,n}, the following are equivalent:
1. The reactiori is blocked.
2. gF=0,forallk =1,...,s,andbl =0, foralll = 1,...,t.

Example 6.5. Reactionl9 is blocked since flux balance around metabdlitenplies
thatv,g = 0 for allv € C.

The next results shows that the relatianss j, i P 4, i «~* j cannot hold for
arbitrary pairs of reactions.

Theorem 6.6. Leti, j be two unblocked reactions such that at least one of theaefat
i =2 j,i 23 jori ~* j is satisfied. Then eithén) or (b) holds:
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Figure 6.2: Network example with representative pathways

(a) i andj are both (pseudo-) irreversible;; € Irev U Prev.
(b) i andj are both fully reversiblei, j € Frev.

Proof. First suppose € Irev U Prev andj € Frev. Sincej € Frev, there exists

v € lin.space(C) such thaw; # 0. Sincei € Irev U Prev, we havey; = 0, S0i =25
Now suppose thate Frev andj € Irev U Prev. Sincej is unblocked, there exists

w € C such thatw; # 0. Since;i is fully reversible, there existse lin.space(C') such

thatb, # 0. Definev = w — (w;/b;) - b. It follows v € C, v; = 0 andv; = w; # 0,

which impliesi = ;. O

In the following, we study the coupling relationships foetHifferent types of
reactions. We first consider the case Prev.

Proposition 6.7. Supposeé, j are unblocked, € Prev andj € Irev U Prev. Then the
following are equivalent:

1.i33%;,
2.1 5.
3.0
4. gk = AgF, forallk = 1,.
In each of these casese Prev.

Proof. (3) = (2) = (1) is immediate.

()= (4): LetKT ={k | gF¥ >0} andK~ = {k | g¥ < 0}. Sincei € Prev, there
existv™, v~ € C'withv;" > 0andv; < 0. If KT = () (resp.K~ = )), we would have
v; < 0 (resp.v; > 0), for all v € C, which is a contradiction. So bothi ™ and K~
must be non-empty. Lete K andg € K. Definew = ¢7-¢g?7—g!-¢*. Thenw € C



83

andw, = 0. Sincei = j, we getw; = ¢”¢" — g'g" = 0, 0rg"/g? = ¢7/g! = A,

independently of the choice pfandq. We concludegf = \gF, forallk e K" UK™.

Sincei = j, this holds forallk = 1, .. ., s.

(4) = (3): Forallv € C, there existd € lin.space(C') anday > 0 such that
v=>_, arg" +b. Sincei € Prev andj € Irev U Prev, we haveb; = b; = 0. It
follows thatv; = 377, argh = >0 ardgy = v, O

Next, we characterize the case Frev.
Proposition 6.8. Supposeé, j are unblocked ande Frev is fully reversible. Then the
following are equivalent:
1.3,
2.9 5.
3.0
4. gy = N\gf, forallk =1,...,s, andb, = \b, foralll = 1,...t.
In each of these casesge Frev.
Proof. (3) = (2) = (1) and (3)< (4) are immediate.

To prove (1)= (3), we suppose = j. Sincei is fully reversible, there exists
b € lin.space(C'), with b; # 0. Givenv € C, definew = v — (v;/b;) - b. Thenw € C

andw; = 0. Sincei = j, we getw; = v; — (v;/b;)b; = v; — (b;/b;)v; = 0. Defining
A = b;/b;, this showsy; = \v;, forallv € C. O
Finally, we have to considére Irev.

Proposition 6.9. Supposé, j are unblocked;, € Irev andj € Irev U Prev. Then the
following are equivalent:

1. i =3 j holds in the flux con€’.
2.i3% 4 holds in all minimal proper faces* k =1,...,s.
3. gf = 0 impliesgh = 0, forallk = 1,.. ., s.

Ifalsoj <5 i ori ~* j, thenj € Irev.

Proof. (1) = (2) = (3) is obvious, so we have to prove only ) (1). For allv € C,
there exisb € lin.space(C) anday, > 0 such that = >";_, aig® + b. Sincei € Irev
and;j € Irev U Prev, we geth; = b; = 0. By the definition offrev, eitherg? > 0, for
allk =1,...,s,0rgk <0, forallk =1,...,s. Suppose; = > ;_, axgl = 0. It
follows gf = 0, fork = 1,...,s. Using (3), we obtaig} = 0fork = 1,...,s, and so
V=0 akgf =0.

Under the hypotheses of Prop. 6.9, supp@§8 j. Clearly, j = If j € Prev,
then by Prop. 6.7, € Prev, which is a contradiction. Spe Irev. Similarly, ifi ~* 5,

theni = j, and agairy € Irev. O
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Irev Prev Frev
R R
Irev Prop.6.9| Cor.6.10 | Cor.6.10| Prop.6.9
Prev Prop.6.7 | Prop.6.7| Prop.6.7
Frev Prop.6.8 | Prop.6.8| Prop.6.8

Table 6.1: Reaction coupling cases

Frev (15+16) (17418)

Prev [9.1.10] [11.1.12]
A
e | (12 )3 (s 1,

Figure 6.3: Coupled reactions in the network depicted in €ig

Corollary 6.10. Supposeé, j are unblocked and j € Irev. Then we have:
a) i< jiff gk =0is equivalenttg; =0, forallk =1,...,s.
b) i~ jiff gf = AgF, forallk =1,...s.

Proof. a) Suppose; = 0 is equivalent tgy; = 0, forall k = 1,...,s. Theng} = 0
implieng’ = 0, and vice versa, forak = 1,...,s. Sincei,j € Irev, we may apply
Prop. 6.9 and ge’tiq jandj =04. S0i = Jj.

b) Suppose; = Ag;, forallk =1,...,s. Forallv € C, there exisb ¢ lin.space(C)
anday > 0 such thab = >";_, axg® + b. Sincei, j € Irev, we haveh; = b; = 0. It
follows thatv; = Y77 | gl = D5, arAgl = Au;. O

Tab. 6.1 summarizes the different possible coupling rstiips. Note that =3 ;,
i &3 j andi ~* j are equivalent fo, j € Prev ori, j € Frev.

Example 6.11.Fig. 6.3 shows all coupled reactions in the network from Big. We
see that many reactions depend on reaciioA zero flux for this reaction implies a
zero flux for the reactions, 2, 4, 11 and12. Thus, reactiol plays a crucial role in the
network. Reaction9 is blocked, because it is involved neither in the definitiothe
minimal proper faces nor in the definition of the linealityasp.

6.4 An Improvementin the FCF Algorithm

It follows from the preceding section that coupling relasbips can only hold between
certain reaction types. According to Tab. 6.1, to detecpting relationships, we do
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not have to explore exhaustively all possible reactionspdir the following, we show
that we can improve the FCF procedure significantly by apglyinear programming
only in those cases where coupling relationships can oédlthe possible cases are
given in Tab. 6.1, where an empty entry indicates that theesponding coupling re-
lationship is not possible. Accordingly, the number of LBlgems that have to be
solved in this improved version of the FCF algorithm is muctaber than that of the
original FCF algorithm. Moreover, this improved versioredaot require a reconfig-
uration of the metabolic network. Hence, no increase in tiralver of variables and
constraints occurs and no post-processing procedure éedee

Before looking for blocked and coupled reactions, we needdssify reactions
according to their reversibility types. This task can gabi done if we are given
a minimal set of generating vectors of the flux cone. Altauedy, we can classify
reactions using linear programming.

6.4.1 Reaction Classification

In the following, we use the same linear programs for idgmtg the reversibility
type of reactions, i.e., the sefgev, Prev and Frev as well as the set Blk of blocked
reactions.

As we did in Sect. 6.1, we first check whether the linealitycepss trivial, i.e.,
lin.space(C') = {0}. If this is the caseFrev = (). Otherwise, given a reversible
reactionj € Rev, consider the following LP problem

max{v; : Sv =0, vy =0forall k € Irr, v; <1}. (6.5)

Since the above LP problem is feasible and bounded in thetatireof the objective
function, this LP problem has an optimal solution, sy Let F = {i € Rev | v} #

0}. Reactiony is fully reversible if and only ifi € F.. Moreover, for each € F, there
exists a vectob € lin.space(C) such that); # 0, namelyb = v*. Accordingly, all
reactions inF’ are fully reversible, i.e " C Frev.

Here, we are interested in finding all fully reversible reats. We propose an
iterative procedure that obtains, in each iteratipa subset of fully reversible reactions
using the following scheme. Far > 1, let R* be the set of reversible reactions that
are candidate to be chosen in iteratioto perform the LP problem (6.5), and [Ef !
be the set of all fully reversible reactions identified irrdtgons: for: = 1,..., k — 1.
SetR! = Rev andF° = (). The basic steps of iteratidnare as follows:

1. Choose a reactiohe R*,
2. Solve the LP problem (6.5) and ket its optimal solution,
3. LetF = {i € Rev | v} # 0}. SetF* = F*~1UF and setRFt1 = R*\ ({j}UF).

The above procedure terminates in iteratidhno reversible reaction € RP*! exists
to perform the LP problem (6.5), i.e2P™ = (. If this is the case, we gdtrev = FP.
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Once we have identified all fully reversible reactions, wedéo determine the
set of pseudo-irreversible reactions that take the sansettin for all steady-state
flux distributions. We first check whether the flux cone is eéqaats lineality space,
i.e., C = lin.space(C), or equivalently, if all irreversible reactions are blodké/Ne
proposed an LP problem in Sect. 6.1 to check whether thigisdke. If all irreversible
reactions are blocked, Bl Irev = {1,...,n}\ Frev andPrev = (). Otherwise, given
a pseudo-irreversible reactigre Rev\ Frev, consider the following two LP problems

max{v, : Sv =0, v, > 0forall k € Irr, v; <1}, (6.6)

min{v; : Sv =0, v, > 0forall k € Irr, v; > —1}. (6.7)

Let v andv~ be optimal solutions of the LP problems (6.6) and (6.6), eetpely,
and letP and N be the sets given by

P =1{i€ Rev\ Frev | v >00rv; >0},
N ={i € Rev \ Frev| v <0orv; <0}
Then either (1), (2) or (3) holds:
1. j ¢ PU N and soy is a blocked reaction, i.ej,€ BIk,

2. j € PUN\ (PN N), thenj takes the same direction for all steady-state flux
distributions, and s¢ € Irev,

3. j€ PN N,and soj € Prev.

Moreover, we havéP U N) N Blk = ) andP N N C Prev.

In analogy with our procedure for identifying fully revelote reactions, we propose
an iterative procedure that obtains the gétsy and/rev, and determines the BtkRev
of all reversible reactions that are blocked. Fop 1, let R* be the set of reversible
reactions that are candidate to be chosen in iterdtiom perform the LP problems
(6.6) and (6.7), and leP*~! (resp.N*~1!) be the set of all reversible reactionsfor
which a vectorv € C, with v; > 0 (resp.v; < 0), has been found in the previous
iterationsi fori = 1,...,k — 1. SetR' = Rev \ Frev and P’ = N° = (). The basic
steps of iteratiork are as follows:

1. Choose a reactione R*,

2. If j ¢ P*1 then solve the LP problem (6.6) and let its optimal solution,
otherwise set* = 0.

3. If j ¢ N*7! then solve the LP problem (6.7) and tet its optimal solution,
otherwise set~ = 0.

4. LetP = {i € Rev \ Frev | v > 0orv; > 0} andN = {i € Rev \ Frev |
vt < Oorv; < 0}. SetP* = P1u P, setNF = N*1 U N, and set

7

R =RE\ ({j} U (PON)).
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The above procedure terminates in iteratjdgfino reversible reaction € R?*! exists
to perform the LP problems (6.6) and (6.7), i.B%" = (. If this is the case, we have
the following results:

— Prev = PYN N4,
— Irev = Irr U ((PTU N9) \ (P?N N1)),
— BIk N Rev = Rev \ (P?U NY).

Together, the above procedures allow for identifying thersibility type of the reac-
tions (Irev, Prev and Frev) as well as the set of reversible reactions that are blocked
(Blk N Rev). In the following, we determine the set Bik/rr of irreversible reactions
which are blocked.

Given an irreversible reactione Irr, consider the following LP problem

max{v, : Sv =0, v, > 0forall k € Irr, v; <1}. (6.8)

Let v* be an optimal solution of the above LP problem andlet {i € Irr | v} > 0}.
Reaction; is blocked if and only if; ¢ . Moreover, for eachi € I, there exists a
vectorc € C such that; > 0, namelyc = v*. Accordingly, we havd C Irr\ BIk.
Here again, we seek to find all irreversible reactions whrehtdocked. To do so, we
propose the following iterative procedure. For each iterat > 1, let R* be the set
of irreversible reactions that are candidate to be choseearationk to perform the LP
problem (6.8), and let*~! be the set of all irreversible reactions identified in itenas
ifori=1,...,k— 1. SetR! = Irr andI’ = (). The basic steps of iteratidnare as
follows:

1. Choose a reactiohe R*,
2. Solve the LP problem (6.8) and letits optimal solution,
3. Letl = {i e Irr|v; > 0}. Set/* = [*1U I and setRF™! = R*\ ({j} UI).

The above procedure terminates, say in iteratiowhen no irreversible reactione
R"+! exists to perform the LP problem (6.8), i.& "1 = (). If this is the case, we get
Blk N Irr = Irr \ I".

Altogether, for identifying blocked reactions and clagsif reactions according to
their reversibility types, we need to solve at mdigtev| + | Irev| + | Prev| — | Frev| LP
problems.

6.4.2 Reaction Couplings

In the following, we are interested in finding coupled reaesi. Since coupling rela-
tionships are defined only for unblocked reactions, we assiinat blocked reactions
have been identified beforehand using the iterative praesdgiven in the preceding
subsection, and that all their respective columns in thetstametric matrix have been
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removed. In addition, since each reactjoa Irev is operating in the same direction,
in what follows we assume that all reactiongiav are operating in the forward direc-
tion without loss of generality. Hence, by abuse of notgtadhreactions in/rev will
be called irreversible in the current subsection.

According to Tab. 6.1, when looking for coupled reactiong @o not have to
explore exhaustively all possible reaction pairs.

Couplings between reversible reactions

Given two reversible reactions; with i, j € Prev ori,j € Frev, i = j,i P j and
i «~* j are equivalent. In the following, we propose an LP problerohteck whether

i i?j holds. First, we need the following lemma.

Lemma 6.12. Leti,j € Rev be two reversible reactions, withj € Prev ori,j €

Frev. If i = j, then for each vectar € kern(S), withv; = 0, there exists a vector
u € kern(S) withu; = 0, u; = v; and

{kelrm|u, <0} C{kelrr|uv <0}.

Proof. Letv € kern(S), withv; = 0, and letl € {k € Irr | vy < 0}. Sincel € Irev
andi € Prev U Frev, i — [ does not hold and there exists a veatbe C' such that
vi = 0 andv; > 0. Moreover, since = andv; = 0, we getv; = 0. Consider
uw=v— (y/v)-v. We haveSu = 0, u; = 0, u; = v; and for eacht € Irr, we
haveu, = v, — (v /v])v), > vg. Therefore, for eack € Irr, u;, < 0 impliesv, < 0,
and so{k € Irr | ux < 0} C {k € Irr | vy < 0}. Sincey; = 0 andy; < 0,
{k € Irr|u, <0} C {k € Irr | v, < 0}, and the claim follows. ]

The following proposition states that, given two reversildactions, j € Rev,
with i, 7 € Prev ori,j € Frev, only the stoichiometric constraints determine whether

i =3 j holds, independently of the thermodynamic constraints.

Proposition 6.13. Leti,7 € Rev be two reversible reactions, withj € Prev or
i,j € Frev. The following are equivalent:

1.6
2. Foreach € kern(S), v; = 0 impliesv; = 0.
3. Foreach € kern(S)N{v € R" | v; > 0}, v; = 0 impliesv; = 0.

Proof. (2) = (1), (2)= (3) and (3)= (2) are immediate. So we have to prove only
(1) = (2). Letv € kern(S), with v; = 0. According to Lemma 6.12, there exist
u®, ... uP € kern(S) such thatu® = v and for alll = 1,...,p, we haveu! = 0,
ub =7 {k € Irr | uf <0} C {k € Irr | uj ' <0}, and{k € Irr | uj, <0} = 0.
Since{k € Irr | v} < 0} = 0, we haveu] > 0 forall & € Irr, and sou? € C. In
addition, since =° j, u? € C andu? = 0, we getu! = 0. Therefore, we have) = 0
forl =1,...,p. Hence, we have; = 0, and the claim follows. ]
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Given two reversible reactions;j with i, 5 € Prev ori,j € Frev, letC% = {v €
R" | Sv = 0, v; = 0, v; > 0}. According to Proposition 6.13,= ;j holds if and
only if reaction; is blocked in the con€', i.e.,v; = 0 for all v € C”. To check
whether this is the case, consider the following LP problem

max{v,; : Sv =0, v; =0, 0 <v; <1}, (6.9)

and letv* be its optimal solution. Therefor*e,:—o>j if and only if v} = 0.

Couplings between reversible and irreversible reactions

Given two reactiong € Irev andj € Prev, we only have to check whether= Jj.
The other coupling relationships cannot occur. Cét = {v € R" | Sv = 0, v >

0, forallk € Irr, v; = 0}. We havei = j if and only if reaction; is blocked in the
coneC, i.e.,v; = 0 forallv € C*. Accordingly, if v* andv? are optimal solutions
of the following LP problems

max{v, : Sv =0, v, > 0forall k € Irr, v; =0, v; <1},

min{v; : Sv =0, v, > 0forallk € Irr, v; =0, v; > —1}, (6.10)

theni = j if and only if v} = v? = 0.

Couplings between irreversible reactions

In analogy with the FCF algorithm, given two reactiang € Irev, we determine the
upper and lower boundg,,,, and R,,;,, such that) < R,,;,v; < v; < R,,4,v; for
allv e C. R,,.., andR,,;, are the optimal values for maximizing and minimizing the
following LP problems

max{v; : Sv =0, v; =1, v, > 0,forall k € Irr},
min{v; : Sv =0, v; =1, v, > 0,forall k € Irr},

respectively. Comparison @&t,,., and R,,,;,, allows the FCF algorithm to determine
whether reactionsand; are coupled using the following rules:

— i =% jifand only if R, # 0,
— 5 2 iifand only if Ryua, # +00,
— jNiifand only if Ryip = Riee = A # 0.
Altogether, the number of LP problems that have to be solgedientifying coupled
reactions is at most
| Prev]| (| Prev| — 1) N | Frev| (| Frev| — 1)

2 2

The next proposition compares the total number of the LPIpros that have to be
solved in the original version of the FCF algorithm with tledbur improved version
of the FCF algorithm.

+ 2|Irev|| Prev| + |Irev|(|Irev| — 1).
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Proposition 6.14. Let .4 °"9Mal (resp N'MPoved) the number of the LP problems that
have to be solved in the original (resp. improved) versiothefFCF algorithm. Then,

yorgnal . _yrimproved - — | Rey|? + 2| Frev|(| Irev| + | Prev| + 1)+
—|P’;”‘ (|Prev] — 1) + —‘FT;U‘ (|Frev| — 1)+
2|Rev|(n — 1) > 0.

Proof. We have 4 °9nal — (| [rr| + 2|Rev|)?. Sincen = |Irr| + |Rev| = |Irev| +
| Prev| + | Frev|, we get4°"9 — (| Irev| + | Prev| + | Frev| + | Rev|)?. Moreover, we
have_ympProved — 9| Rey| + | Irev| + | Prev| — | Frev| + ‘PT@UWQDT@”'_I) + ‘Fre”m;%”'_l) +
2|Irev|| Prev| + | Irev|(|Irev| — 1). Then, the claim is straightforward. ]

The proposition above states that the number of the LP probteat have to be
solved in the original version of the FCF algorithm is bigtean that of our improved
version. Note that both numbers are equal if no reactionvisrsible, i.e.|Rev| = 0.

In such a case, the reconfigured network is identical to tiggnal one. However, in
the presence of reversible reactions, we haw@'9na - _gmproved \oreover, since
our version does not require a reconfiguration of the metalnettwork, the number
of variables and constraints in our LP problems is smallanttinat of variables and
constraints in the original FCF algorithm. In addition, respprocessing procedure is
needed in our improved version.

6.5 A New Algorithm For Flux Coupling Analysis

The results in Sect. 6.3 also suggest a new algorithm to ifgidsibcked and cou-
pled reactions. This method does not require any recontiguraf the metabolic
network. It is only based on the reversibility type of theatsans and a minimum
set of generators of the flux cone. The basic steps of this netliod are shown in
Algorithm 2. First, we compute a set of generators of the flomex”' using existing
software for polyhedral computations. Second, we clagbi#yreactions according to
their reversibility type. This classification allows us tetérmine whether a coupling
between two reactions is possible.

Both our new algorithm and the FCF algorithm have been impleed in the Java
language. The FCF procedure was realized using CPLEX 9.6lardor linear and
integer programming problems) accessed via Java. To cenayset of generating vec-
tors of the steady-state flux cone, our algorithm uses thevacécdd [33], which is
a C++ implementation of the Double Description method of kot et al. for general
convex polyhedra ifR"™.

To compare the two approaches, we computed blocked andezbrgdctions for
some genome-scale networks. The computations were pexfbam a Linux server
with an AMD Athlon Processor 1.6 GHz and 2 GB RAM. We presemntpatation
times for models of the human red blood cell [121], the humardiac mitochon-
dria [116], the central carbon metabolismifcoli [50; 106], theE. coli K-12 (IJR904
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Metabolic network | Blk | Irev | Prev| Frev| MMB FCMMB FCF

Red Blood Cell 0 31| 14 6 2.32 0.26 110.65
Central metabolism of. coli | O 92 18 0 214.49 2.55 477.14
Human cardiac mitochondria| 121 | 83 3 9 1262.65 0.34 13426.91
Helicobacter pylori 346 | 128 | 15 39 13551.44 0.43 318374.15
E. coli K-12 435| 480| 49 | 110 | 261306.15 5.32 > 1 week

Table 6.2: Metabolic systems, with the number of blockedtieas Blk), the size of the sets
Irev, Prev, Frev, the running time (in seconds) of computing a set of genegato
(MMB), reaction coupling using this seECMMB), and reaction coupling using
the FCF procedureHCF).

GSM/GPR) [86], and thed. pylori (11IT341 GSM/GPR) [111]. We refer to [14] for a
discussion of the biological aspects of flux coupling analys

Tab. 6.2 summarizes our computational results. It shovislthacoupling analysis
can be done extremely fast if a set of generators of the flug toavailable. Comput-
ing such a set is the most time-consuming part in our algorithlowever, it should
be noted that this step has an interest in its own. We obtaiiasiinformation as by
computing the elementary flux modes or extreme pathwayseofi¢twork. The over-
all running time of the new algorithm is still significantlgdter than the original FCF
method.

Algorithm 2 Procedure for identifying blocked and coupled reactions.
Input: e Setslrev, Prev, Frev C {1,...,n},
e For each minimal proper fadg*. k = 1, ..., s, a generating vector
g* € G*\ lin.space(C),
e Avector basid', ..., b of lin.space(C).
Output: e Blocked reactions: Blk= {i | i is blocked,
e Coupled reactionsd = {(i,7) | i «~* j,1 <i < j < n},
B={(i,j) i j1<i<j<n(ij)¢A},
C={(i.§)|i=j.(i,j) € AUB, (j.i) ¢ AUB}.
Initialization: Blk :=0, A:=0, B:=0, C := 0.

/ * Blocked reactions */

forall i € {1,...,n} do > Proposition 6.4
if (0!=0,Vi=1,...,t)and(gf =0,Vk =1,...,s) then
addg¢, BIK);
end if

end for
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Continued from previous page

/ * Coupled reactions */
Irev := Irev \ BIK;
forall 7,5 € Prev withi < j do
if 3\ € R such thay} = A\gf,Vk =1,..., s then
add(i, 7), A);
end if
end for
forall 7,7 € Frev withi < 5 do
if 3\ € R suchthat!, = \bl,Vi=1,...,t, andg] =
add(i, 7), A);
end if
end for
forall i € Irev,j € Irev U Prev do
if gf #00rgi =0,Yk =1,...,sthen
add(i, ), C);
end if
end for
forall (i,7) € C withi,j € Irev andi < j do
if (4,7) € Cthen
remove(s, j), C), remove(y, i), C));
if I\ € R such thay® = A\gF,Vk =1,... s then
add(i, ), A);
else
add(i, j), B);
end if
end if
end for

> Proposition 6.7

> Proposition 6.8

AgF Vk=1,...,sthen

> Proposition 6.9

> Corollary 6.10




CHAPTER . _ _ _
Minimal Direction Cuts In

Metabolic Networks

7.1 Introduction

In the previous chapter, we introduced flux coupling analygiich allows for identi-
fying dependencies between reactions. This analysis rigtoam help us to enhance
our understanding of biological systems, but also can be tesdetermine a reaction
that is critical for the survival of a certain pathogen. Sacdfeaction could be a suit-
able target to be repressed by network perturbations. Ategeproach [46; 47] has
introduced minimal cut sets to identify such perturbatidhsninimal cut se(MCS) is
a minimal set of reactions whose removal represses a givgettaeaction. However,
this approach suffers from two major drawbacks that aretiligiin practice. First,
using MCSs becomes inadequate when we are interested bitingionly one direc-
tion of a reversible target reaction. Second, and more itapdy, the computation of
MCSs is currently based on the conservation property of eteany modes (EMs) and
the principle that each MCS is a minimal hitting set for all EMvolving the target
reaction. This computation is hampered by the combindtexialosion of the number
of EMs and hence becomes impractical for genome-scale nietwo

To overcome these limitations, we introduce the conceptiaimal direction cuts
in metabolic networks [61]. Aninimal forward(resp.backward direction cut (MFC)
(resp.MBC) is a minimal set of reactions whose removal prevents tlgetaeaction
from carrying a flux in the forward (resp. backward) direntidf the target reaction
is irreversible, MFCs are identical to MCSs and the emptyiséthe unique MBC.
If, however, the target reaction is reversible, each MC®ésunion of an MFC and
an MBC. More importantly, the computation of MFCs and MBCsslmot require
that of EMs. Instead it can be based on the Farkas lemma faliggand inequality
constraints. Finally, MCSs can be directly calculated fidiFCs and MBCs.

This chapter highlights the key results presented in [6d]iaorganized as follows.
In Sect. 7.2, we give a first presentation of our approach. elet.&.3, we formally
characterize MFCs and MBCs using an extended Farkas lemm&edt. 7.4, we
propose an iterative algorithm to identify MFCs and MBCs imatabolic network.
Finally, some computational results are given in Sect. 7.5.
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Figure 7.1: Hypothetical network from [46]

7.2 Minimal Forward and Backward Direction Cuts

For the rest of the chapter, lete {1,...,n} be the target reaction. forward (resp.
backwarq direction cutfor reactionr is a set of reactions whose removal from the
network implies that all possible steady-state flux disttitms over the network do
not involve reactionr in the forward (resp. backward) direction. Here, the rerhofa
a set of reactions is mathematically expressed by constgathe fluxes through all
these reactions to zero.

Definition 7.1. Let C' be the flux cone defined in equation (3.5).

— A forward direction cut (FC) for reactionis a set of reactions! C {1,...,n},
such that for any € C withv; = 0 foralli € M, v, <0.

— A backward direction cut (BC) for reaction is a set of reactions/l C
{1,...,n}, such that for any € C withv; =0 foralli € M, v, > 0.

A forward (resp. backward) direction cif is minimal, denoted MFC (resp. MBC), if
there is no forward (resp. backward) direction it C M strictly contained in\l .

Example 7.2. Consider the hypothetical network [46] depicted in Fig.. 7ld con-
sists of five internal metabolitdsl, . .., E), and eight reactionél, . . ., 8), whereof
reactions! andb are reversible. Let reactidnbe the target reaction. Fig. 7.2 (resp.
Fig. 7.3) displays MFCs and MBCs (resp. MCSs) for reactioRor instance, the for-
ward direction cut MFC2 does not inhibit the backward di@tbf reactiorb. MCS2
={2,3} is a minimal cut set to repress reactianHowever, this set is not minimal to
repress the production of metabolRResince this is possible by removing only reaction
2. Indeed, MCS2 is the union of the minimal direction cuts MF@2l MBC2.

The meaningful direction cuts are those which are minimatesthe trivial solu-
tion, which consists of removing all reactions, always igraation cut forr. Obvi-
ously, if there is no flux vectar € C with v, < 0 (resp.v, > 0), then the empty set is
the unique MBC (resp. MFC) for. In particular, ifr is an irreversible reaction, then
the empty set is the unique MBC ferand MFCs forr are identical to minimal cut
sets. On the other hand,sfis reversible, then the computation of MFCs is equivalent
to that of MBCs in the sense that an algorithm for computingddEould also be used



" 1 A 6/ A 6/ \‘ 1 A 6/ ‘ 1 A 5/ 1 A 6/
F2.B-3.C 7 o ¥eB—3+C L opi2,.B %0c L oFi2.8-3.C L op-2,8-%oC L
\ 1 < o \ 1 \
| « h |
Xp 8 ‘4\*0 8l ! 4 8l ! 4 | ™ p 8
MFC1 A MFC2 F MFC3 }5 ! MBCt >;g, | MBC2 }5
I
777 _”At:’::éf:%;;:‘\fﬂ;i,&’”””é’”””" ! "T;7}\7”””57”””" N T S S V- B
e n | I
/ Vo v

: ; ¥ ‘ ¥ ¥ 1
12 3 T e EIL2 3 7 %, 3 7 Fl2 3 T LE 2 3 7 !
i B\—»C I 514»3 B C -LomEl 3$< B C - B C-tx E:—>3 B c7.151
ot el ! X ! EN

MBc7 F 1MBC6 F ! | MBCS F | MBC4 F ! | MBC3 F y
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Bl LS It SO RN D L

Lz 8_3,.c 2 f%,B»é»c 7 7§<+B 3.c 2 .=7 +B_—2+~cC 1 '= %—3(»'3 o l-E
| o vl ¥ ~ |
3 \ 7‘51‘ ‘4\\D7E33 ‘\\ >‘<33 \X\\D 33 ‘\\Ij/ 1

8 D 8! 8 g
MCSl MFC1=MBC1 4 Mcsz MFC2+MBC2 A5 Mcss MFC2+MBC3 A5 I MCSA MBCS5 s MCSS:MFC2+MBCG Is !
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Dibosevecs  bs | idosswrcowecs by |
¥ ; i ; f
6 EE 6 i 6

A S !
. X N/
*p’ 8 >$‘D 8 ! \>4<‘D 8 4Xp’ 8
MCS9=MBC4 s Mcss MFC3+MBC3 bs ! Mcs7 MFC3+MBC2 A5 Mcss MFC2+MBC7 b5
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, AN S R B
' v v v

Figure 7.3: Minimal cut sets for the target reaction

to calculate MBCs. To show this, I8t be them x n matrix whose columns are defined
by
S, = Syforallje{1,...,n}\{r}andS, = —5S.,,
and let
C'={veR"|Sv=0, v, >0, forallie Irr}.

Lemma 7.3. Let M C {1,...,n} \ {7} be a set of reactions. f is reversible, i.e.,
T € Rev, then the following are equivalent:

1. Foranyw € C withv; =0 foralli € M, v, > 0.
2. Forany' € C" withv, =0 foralli e M, v. <0.

Proof. Let v,v" € R" such that, = —v, andv] = v; foralli € {1,...,n} \ {7}.
Sincer € Rev,v € C'andv, > 0 ifand only ifv" € C" andv.. < 0.

GivenasetM C {1,...,n}\ {7} of reactions, it follows from Lemma 7.3 thaf
is an MBC if and only if M is an MFC with respect to the stoichiometric matfik
This is why we focus in the following on characterizing MFQ&e same results hold
also for MBCs. Note thafr} is a trivial MFC forr. Therefore, each MFG@/ # {7},
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callednon-trivial MFC for 7, does not include, i.e.,7 ¢ M. In the following, we are
interested in finding these non-trivial MFCs.

In analogy with minimal cut sets, MFCs could be computedgitiie conservation
property of elementary modes (EMs) (see Lemma 3.9 in ChapR&member that
according to this property, whenever the flux through somaetren is constrained to
zero, the EMs that remain are those which do not contain #attion. Accordingly,
each MFC is a minimal hitting set of all EMs involving the tatgeaction in the for-
ward direction. A set\/ C {1,...,n} is ahitting setof a collectionC' of EMs if M
meets every EM in the collectiafi, i.e., M N{i | e; # 0} # () for eache € C. In view
of the combinatorial explosion of EMs, computing MFCs udiinig strategy does not
scale well for genome-scale metabolic networks. In the¥alhg, we instead use the
Farkas lemma for equality and inequality constraints tthier characterize MFCs.

7.3 Characterizing MFCs Using the Farkas Lemma

In this section we give a formal characterization of minirfaward direction cuts
in a metabolic network. We use mainly the Farkas lemma, wkiates that the un-
solvability of a system of constraints can be establishedirming a solution for a
corresponding dual system (see Sect. 2.3 in Chap. 2 for neted $).

Let M C {1,...,n} be an FC and lete, ..., e,) be the canonical basis &".
In the following, ), (resp./;.) denotes the matrix whose rows are the vectomsith
j € M (resp.j € Irr). From Definition 7.1, we get that

there is naw € R" such thatSv = 0, ;v =0, Ip,v < 0andv, < —1. (7.2)

Let A, B andC be the matrices defined by

—1Iy

A:< S ),B:—ImandC:eT,

and letx = y = 0 andz = —1. By (7.1), there exists no solution vectorc R"

for Av = x, Bv > y, Cv < z. According to the Farkas lemma 2.15 in Chap. 2,
there exist row vectors € R™, i € RMI 53 € Rl andv € R, such thatyC' =
(,m)A+ BB, B >0, v > 0andyz < 0. This leads to the following proposition
which characterizes FCs using the Farkas lemma.

Proposition 7.4. Let M C {1,...,n} be a set of reactions. Then, the following are
equivalent:

1. M is an FC forr.
2. There existy;, 3;, ui, v € R with 3; > 0 andy > 1, such that

Z HECE + Yer = Z OéZ‘SZ‘* - Z ﬁjej. (72)
=1

keM JjEIrr
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Let D be the cone defined by

D = {Z ;S — Z ﬁjej | ﬁj >0 for a”] S ]7"7‘}. (73)
=1

JjEIrr
The following corollary describes FCs by means of the supplorectors inD.

Corollary 7.5. Let D be the cone (7.3) and létf C {1,...,n} \ {7} be a set of
reactions. Then, the following are equivalent:

1. M is an FC forr.
2. There exists a vectar € D, such thatv, > 1 andSupp(w) \ {7} C M.

Proof. (1) = (2): By Proposition 7.4, there exist, 3;, 1z, v € R with 3; > 0, and

v > 1 fulfilling equation (7.2). Letw = ), _,, pxex + ve-. On the one hand, since

T ¢ M, we getw, =~ > 1andSupp(w) \ {7} ={k € M | up # 0} C M. On the

other hand, we have = 3" a;Si. — >}, Bjej, w € D and so the claim follows.
(1) <= (2): Sincew € D, there existn;, 3; € R with 3; > 0, such thatw =

> imy @iSi = D i€ Moreover, since ¢ M andSupp(w) \ {7} € M, we can

write w = Y, wiep + wee; With wy, = 0 for eachk € M\ Supp(w). We then get

m
E we + wre, = E «; Sis — E Bje;.
i=1

keM Jj€lrr

By Proposition 7.4)M is an FC forr.
O

Note that the minimality of MFCs is quite similar to that oeslentary modes
(EMs). An EM corresponds to a flux vecterc C' involving a minimum set of reac-
tions [99], i.e.,Supp(e) is minimal. In the same way, an MFC corresponds to a vector
w € D such thatv, > 1 and Supp(w) is minimal. We will call such a vectasimple
in D with respect ta- andSupp. More generally, we define:

Definition 7.6. ForQ C R" lety : () — 2{1"} pe the function that maps each vector
s € Qtoasubsep(s) C{1,...,n}. Avectors € Q is simple inQQ with respect ta
andy if the following conditions hold:

1. s.>1,
2. There is no vectad € @) such that’. > 1 andy(s') C ¢(s).
If this is the case, we also say thatnp g ) (s) holds.

The following theorem shows that MFCs are in a 1-1 correspood with the
support of vectors simple i with respect ta- and Supp.

Theorem 7.7. Let D be the cone (7.3) and letf C {1,...,n} \ {7} be a set of
reactions. Then, the following are equivalent:
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1. M is an MFC forr.

2. There exists a vectar simple in D with respect tor and Supp, such that
Supp(w) \ {7} = M.

Proof. (1) = (2): By Corollary 7.5, there existss € D such thatw, > 1 and
Supp(w) \ {t} C M. Let N = Supp(w) \ {7}. By Corollary 7.5,N is an FC forr.
SinceN is contained inV/ and )/ is minimal, we getV/ = N = Supp(w) \ {7}. Sup-
pose thakimpp - supp) (w) does not hold. Since. > 1, there exists a vectar’ € D
such thatw! > 1 and Supp(w') C Supp(w). Let N' = Supp(w’) \ {r}. By Corol-
lary 7.5,N" is an FC forr. Moreover,N' = Supp(w’) \ {7} € Supp(w) \ {7} = M,
which is a contradiction.

(1) <= (2): By Corollary 7.5,M is an FC forr. Suppose that/ is not minimal.
Then there exists a séf such thatV is an FC forr and N C M. By Corollary 7.5,
there existav’ € D such thatw!, > 1, Supp(w’) \ {r} € N and soSupp(w') C
Supp(w), which is a contradiction. ]

Supposev = > ", @;Si. — > e, Bj¢5 1S simple inD with respect ta- and Supp,
and lets = >~ | ;S;.. By Theorem 7.7, the sét/ = Supp(w) \ {7} is an MFC for
7. The following proposition shows that’ is completely defined by the vecter

Proposition 7.8. Let D be the cone defined in equation (7.3). ket " ;S —
> e Biej be a simple vector i with respect te- andSupp and lets = 3" | a;Si..
Then,

Supp(w)\ {7} ={i € Irr \ {7} | s; <0} U{i € Rev \ {7} | s; # 0}.

Proof. We have{i € Irr\{7} | s; < 0}U{i € Rev\ {7} | s; # 0} C Supp(w)\{7}.
To show the reverse inclusion, suppose that (Supp(w)\{7})NIrr, > " @;Si > 0

and let
m m
w' = Z OZZ‘SZ‘* - Z 6]'6]' - (Z aisik)ek-
i=1 jelrr\{k} i=1
We then have’ € D. Sincew’ = w — wgeg, wy, # 0 andw;, = 0, we getSupp(w') C
Supp(w). Moreover, sincé: # 7, we getw. = w, > 1. Thus, there exists a vector
w' € D such thaty, > 1 andSupp(w’) C Supp(w), which is a contradiction. [

The proposition above leads to an alternative characteizaf the MFCM using
the vectors lying in the vector subspace

E={> a;S.|a; eRforalli=1,...,m}. (7.4)

i=1

Supp'(u) = {i € Irr \ {7} | u; <0} U {i € Rev \ {7} | u; # 0}. (7.5)

According to Proposition 7.8, we havwé = Supp’(s). Furthermore, as will be shown
in the next lemmas is simple inE with respect ta- and Supp'.
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Lemma 7.9. Let D be the cone (7.3). Let = " | ;Si. — 1, Bje; be a vector
inD andlets =" «;S;.. Then, the following hold:

1. Supp'(s) C Supp(w) \ {7}
2. If simp(p r,supp) (w) holds, thersimp g, ;. s,y () holds.

Proof. 1. Letk € Supp'(s). We have therk # 7. If & € Irr, thens, < 0,
wg = s, — B < 0and sok € Supp(w) \ {r}. Otherwise, we gei;, = s, # 0
and sok € Supp(w) \ {7}. Thus,Supp’(s) C Supp(w) \ {7}.

2. Suppose thatimpg - suy,p) (s) does not hold. Since. > w, > 1, there exists a
vectors’ € E such that! > 1 andSupp’(s') C Supp'(s). Let

I 2: I
w =S sjej.

. /
JEIrr\{r},s7>0

We havew’ € D, w. = s > 1 andSupp(w') \ {7} = Supp’(s’) T Supp'(s).
Moreover, sincesimp(p - supp)(w) holds, it follows from Proposition 7.8 that
Supp'(s) = Supp(w) \ {7}. Thus, there exists a vectof € D with v’ > 1 and
Supp(w’) € Supp(w), which is a contradiction.

(]

The next theorem shows that each MFC corresponds to a siraptenin £/ with
respect ofr and Supp’. MFCs can then be identified using simple vector&inThis
reduces the complexity of the MFC computation siites generated by only: gen-
erators, whileD is spanned byn + |Irr| generators and defined birr| additional
constraints.

Theorem 7.10. Let £ be the cone (7.4) and léd C {1,...,n} \ {7} be a set of
reactions. Then, the following are equivalent:

1. M is an MFC forr.

2. There exists a vector simple in & with respect tor and Supp’ such that
Supp'(s) = M.

Proof. (1) = (2): By Theorem 7.7, there exists a vector= ) " | a;S;. —Zjem Bje;
simple in D with respect tor and Supp, such thatV/ = Supp(w) \ {7}. Lets =
Yo, @S By Lemma 7.9 is simple inE with respect tor and Supp’. Moreover,
by Corollary 7.8,Supp’(s) = Supp(w) \ {7} = M.

(2) = (1): Let
w=Ss8— Z Sjej.

jeIrr\{7},5;>0

We havew € D, w, = s, > 1 and Supp(w) \ {r} = Supp’(s) = M. Suppose
that simpp -.supp) (w) does not hold. Then, sinae, > 1, there exists a vectar’ =
Doy WiSie = D ey B¢ In D, such thatw, > 1 and Supp(w') C Supp(w). Since
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Supp(w) \ {r} = Supp'(s) and Supp(w') & Supp(w), we getSupp(w’) \ {7} <
Supp'(s). Lets’ =" alS;.. We have ther”. > w” > 1. Moreover, by Lemma 7.9,
Supp'(s') C Supp(w') \ {7} and soSupp’(s’) < Supp’(s), which is a contradiction.
Thus,w is simple inD with respect tor and Supp and so, following Theorem 7.2/
is an MFC forr. ]

The results above show that MFCs can be identified using kestmple inE with
respect ofr and Supp’. These results can also be used to determine MCSs. Indeed, an
MCS can be seen as the union of an MFC and an MBC depending oeviesibility
type of the target reaction. If the latter is irreversiblee eEmpty set is the unique MBC
and MFCs are identical to MCSs.

Corollary 7.11. Let M C {1,...,n} \ {7} be a set of reactions. If reactianis
irreversible, i.e.; € Irr, then the following are equivalent:

1. M is an MCS forr.
2. M is an MFC forr.

The following corollary shows that, if the target reactisréversible, each MCS
is the union of an MFC and an MBC.

Corollary 7.12. Let M C {1,...,n} \ {7} be a set of reactions. If reactianis
reversible, i.e.; € Rev, andM is an MCS forr, then there exist an MF@®[, and an
MBC M, for r, such that\l = M; U M.

Proof. SupposeV! is an MCS. Then)/ is also an FC and an BC for. Thus, there
exist two sets of reaction®/; and M, such that\/; is an MFC forr, M, is an MBC
for 7, M, C M andM, C M. Then, we havéd/, U M, C M. SinceM; U M, is also
a cut set forr and M is minimal, we getM = M; U M.

O

The mathematical results above suggest an algorithm taifg&f-Cs by means of
vectors simple inE with respect ofr and Supp’. One possible approach to determine
these simple vectors is the use of mixed-integer linearmaragiing (MILP).

7.4 Algorithm for Finding MFCs

We have shown that each MFC corresponds to a simple vectgnith respect tor
andSupp’. To identify such a simple vector, we first introduce for eesdiction; #

a binary variable\;. By L andU we denote resp. some lower and upper bound for
vectorss € E,i.e.,L <s; < Uforallj € {1,...,n} \ {7}. A simple vector inE
with respect ta- and Supp’ corresponds to an optimal solution of the following MILP:
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min 3., A

subject to: sy > 1,
L)\j < S < U)\j, VJ € Rew, (a)
L\; <sj, Vjelrr\{r}, (b)
(S$1,...,5,) € E,

N e{0,1}, Vie{l,....n}\{r}

Conditions (a) and (b) ensure for ale {1,...,n}\ {7} thatj € Supp’(s) implies
A\; = 1. Although a solutior(s, \) may exist with\, = 1 andk ¢ Supp’(s) for some
k e {1,...,n} \ {7}, this solution is not optimal. Indeeds, \') with \;, = 0 and
N; = A; for all j # k would be another solution with a smaller value of the objecti
function. For an optimal solutiofs*, \*), we have

A; = lifandonlyif j € Supp’(s"). (7.6)

Therefore, s* is a simple vector inE with respect tor and Supp’, and M =
Supp'(s*) = {j | A} = 1} isan MFC.

Here, we are interested in finding all MFCs. We propose aatitexr MILP that
obtains, in each iteratio an optimal solution(s*, \*) and so an MFCV/* = {j |
A; = 1}. We ensure the selection of a new MRZ’ by imposing the following
constraint on the binary variables:

o< M -, (7.7)

jeMi—1

whereM~! is the MFC obtained in the previous iterationl. This condition signifies
that at least one reactighe M*! is not included inA/?, otherwiseM*~! would be
contained inM?*, and since the latter is minimal, we would get’ = M*!. The
algorithm stops when no other optimal solution can be found.

Flux coupling analysis introduced in the previous chaptarid be used to opti-
mize our algorithm. This analysis allows identifying ditiecal couplings between

reactions. A reaction is directionally coupled with some reactionwritten i = 7,
if a zero flux throughi implies a zero flux through. In this case, at mostor j is
contained in an MFC. This is expressed by the following c@mnst

N+XA <1 Vi je{l,... n}\{r}suchthat = j. (7.8)

In addition, a reactiori such that = 7 is itself a trivial MFC. Therefore, the
following constraint holds for non-trivial MFCs:

A\ =0 Vie{l,...,n}\{r}suchthat =3 7. (7.9)

A typical example of coupled reactions aezyme subse{3 8]. Indeed, the fluxes
through reactions in an enzyme subset are proportionaldio ether. Given the en-
zyme subsets of a metabolic network, we can obtain, in a mreegsing step of our
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Algorithm 3 Procedure for computing minimal direction cuts.

Input: e Target reaction,
e Stoichiometric matrixs,
e Set of irreversible reaction8r C {1,...,n},
e Maximal size of MFCsM ax Size.

Optional: e Coupled reactions

®={(i,4) i jVjFil<i<j<mi#rjA7}

U={i|idr1<i<ni#Tt}

e SetA C {1,...,n} of reactions that must not occur in MFCs
Output: e Setf of minimal forward direction cuts (MFCs)
Initialization: M := ().

[* Trivial MFCs */

add{r}, F);

forall i € ¥ do
if i ¢ A thenadd{i}, F));
end if

end for

repeat
/* Find a vector simple int’ with respect ta- and Supp’ */
Solve the MILP problem

min >, A

subjectto: >, ;Sir > 1,
L)\j S ZZZI OéiSZ'j S U)\J VJ S RGU,
LN, <37 S Vi e Irr\ {7},
XN+A <1 V(ij)ed,
N=0 VieU,
AN=0 VieA,
>4 A < MaxSize
A €{0,1} Vie{l,...,n}\ {7},
a, e R Vie{l,...,m},

and let(a*, \*) be its optimal solution.

/* Retrieve the corresponding MFC */
M =1j A =1k
add(M, r);

/* Force the selection of a new MFC in the next iteration */
add to the constraint systefh:;_,, A\; < [M] — 1.
until No other solution is found




103

algorithm, a compressed network with the enzyme subse&ntak combined reac-
tions. This compression, which is identical to that preseim [34], results in a smaller
network, and so computing the MFCs for the compressed nktiw@asier than com-
puting those of the original network.

Our approach may be hampered by the huge number of possibimatidirec-
tion cuts. However, with our method, we can easily add nevsttamts to reduce the
search space. For instance, from the practical viewpomtauld require that minimal
direction cuts contain only external reactions. Theseti@ag reflect the experimental
conditions the biological system is placed on and so coudyele controlled exper-
imentally. On the other hand, while looking for minimal diten cuts for a target
reaction, we should be careful not to perturb involuntaoilyer reactions that are im-
portant. As an example, consider again the network depictddg. 7.1. Assume
we wish to repress the consumption of metabaliteand maintain the production of
metabolite,. Removing reactior3 inhibits the consumption of;. However, this
perturbation forbids also the production Bf. Therefore, reactiol should be ex-
cluded from minimal direction cuts. In general, we could defa set of reactions
A C {1,...,n} that should not occur in minimal direction cuts, and thenas®the
following additional condition on the binary variables responding to these reactions:

N=0 VieA. (7.10)

Finally, we often are interested in removing a small numblereactions from a
metabolic network. Enumerating all the MFCs is not alwaysessary. Our algo-
rithm allows for defining the maximal size (MaxSize) of the ®8-to be computed by
imposing the following constraint:

) )\ < MaxSize (7.11)
J#T

7.5 Computational Results for the Central
Metabolism of E. coli

Our iterative algorithm, whose main steps are shown in Algor 3, has been im-
plemented in the Java language. We used CPLEX 9.0 as our dolvknear and
integer programming problems, accessed via Java. In oodeneck the capabilities
of our algorithm, we computed the MFCs in the central metabwtwork of E. coli
with ‘biomass reaction’ as a target reaction. We considéadvariants of theE. coli
central metabolism corresponding to the growth on foureddht substrates (acetate,
succinate, glycerol and glucose). In order to work on nekwavith different com-
plexities, the authors of [106] have inserted in these wésiaeveral pseudo reactions.
This results in an increase in the number of elementary moesall that the diffi-
culty of computing MCSs using the traditional algorithm wsowith the number of
elementary modes. On the other hand, the target reactioreigerisible, and so the
MFCs and MCSs are identical. Therefore, working on these fatiants also allows
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Substrate Acetate Succinate Glycerol Glucose
freactions () 104 104 106 105
fmetabolites+f) 88 88 89 88

fEMs (network complexity) 599 4250 11333 27100
tMFCs 206 340 624 1249
Computation time 1min 28s 22m 20s 1h 14min 12h 10min

Table 7.1: Computation of MFCs for variants of the centratahelism of E. coli, with the
number of reactionsn), the number of metabolitesn(), the number of elementary
modes fEMs) and the number of MFC8NIFCs). Contrary to MCSs, the computa-
tion of MFCs does not require that of elementary modes. Rawoahputations, we
defined six as the maximal size of the MFCs.

for comparing a direct computation of MCSs using our aldgwnitvith a computation
using elementary modes. Experiments for computing MCSisaridur variants of the
E. coli metabolism using the traditional algorithm are descrilveld 7].

Table 7.1 summarizes our computational results. The coatipus were per-
formed on a Solaris server with a Sparc Ill Processor 900 Mitz32 GB RAM. We
did not use additional constraints (7.8), (7.9) and (7.0} tvould allow for reduc-
ing the search space. The computation times of our curremdfype implementation
may be compared with those given in [47]. Note that the lattenot include the time
needed for computing the elementary modes, which is knovoe @ complex combi-
natorial problem. In addition, our results show that théifty of computing MFCs
grows with the number of elementary modes. This observatubich holds also for
MCSs, reflects that the number of elementary modes is a meeaktire complexity of
the network analysis. Note however that, contrary to MCl&scomputation of MFCs
does not require that of elementary modes.



CHAPTER

8 Constraint-Based Analysis
of Gene Deletion Iin
Metabolic Networks

The range of all possible behaviors, which is mathematicdkcribed by the steady-
state flux cone, can be altered by gene deletion. In this ehapé analyze the changes
in the overall capabilities of a metabolic network causeddye deletion. In particular,
we show how to obtain in a constraint-based approach a @éscriof the altered
steady-state flux cone. The analysis is based on our refiasdifitation of reactions
(irreversible, pseudo-irreversible and fully reversitdactions). The work we present
in this chapter has been partially published in [60].

8.1 Constraint-based Modeling of Gene Deletion

Recall that, in the context of metabolic network analysigtabolic systems are as-
sumed to operate at steady state such that for all interntaboktes the flux is bal-
anced. In addition, the flux through each irreversible ieaainust be non-negative.
Fluxes through reversible reactions are not restricted meispect to their sign. The set
of all possible flux distributions over the network at steatite defines the steady-state
flux cone

C={veR"|Sv=0, v, >0, foralli € Irr}. (8.1)

Let 7 € {1,...,n} be the target reaction associated with the deleted gene. To
simulate gene deletion, we constrain the flux through reactito zero. This leads to
the altered flux cone

Co={veR"|Sv=0, v, =0, v; >0, foralli € Irr}. (8.2)

The altered flux cone contains the full range of achievableabers of the altered
metabolic network at steady state. Hence, it is of greatestdo describe this cone in
a mathematically and biologically meaningful way. This b&@done using an existing
description of the flux con€’. In what follows, we provide a minimal and unique
description of the altered cone using minimal metabolicavedrs and the reversibility
space of the original flux cone.
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8.2 Characterizing Minimal Proper Faces of the
Altered Flux Cone

In this section we mainly characterize the minimal propee$aof the altered flux cone
C,o defined in equation (8.2). Mathematically, this cone is gisen by

Cro=CnN{veR|v, =0}

Therefore, we may deduce an outer description of the alissadC’ .o from an outer
description of the original con€'. First, we can easily see that the lineality space of
the altered flux coné’.. is given by

lin.space(C,o) = lin.space(C) N {v € R" | v, = 0}.

Obviously, if reactionr is not fully reversible, i.e.s ¢ Frev, we havein.space(C') C
{v € R" | v, = 0} and sdlin.space(C,0) = lin.space(C).

In the following, we use the double description method @exsd in Chap. 2) to de-
termine the minimal proper faces of the altered c6he For this, we should mention
that the altered flux con€,. is also given by

Co=Cn{velR"|v, <0}N{veR"| —v, >0}

Let C,+ be the cone defined by,+ = C' N {v € R" | v, > 0}. The altered cone
Croisalso given byC o = C+ N{v € R" | —v, > 0}. Accordingly, using the double
description method, we can deduce a descriptiot’effrom that of C.+, which in
turn can be computed from the descriptiorCof

Let J = {G',...,G*} be the set of minimal proper faces 6f andt =
dim(lin.space(C')). Select for eachh = 1,...,s a vectorg’' € G* \ lin.space(C'), and
let R = (¢',...,¢°). Let B = (b',...,0") be a basis ofin.space(C'). Accordingly,
(R, B) is a double description pair (DDP) of the flux cofiei.e.,

C ={z € R" |z = R\ + By for someX € RS, andy € R'}.

Moreover, (R, B) is minimal, i.e., no proper submatrix ¢z, B) can generate the
coneC. In the following, we show how the description of the altefleck coneC' .o
depends on the reversibility type of the target reactioiRemember that we defined
the following decomposition of the reversible reactionBet = {1,...,n} \ Irr:

— Prevy: set of pseudo-irreversible reactions, i.Brevy = {i € Rev | v; =
0, for all v € lin.space(C)},

— Frev: set of fully reversible reactions, i.&rev = Rev \ Prevy.

We now will study the minimal proper faces of the altered floreC'.o, depending
on the reversibility type of the target reaction
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8.2.1 Removing a Fully Reversible Reaction

If 7 € Frev is fully reversible, there exists a flux vectdr € B such that* +# 0, and
solin.space(C') € {v € R" | v, = 0}. Assume thak” > 0. Otherwise we can take the
vector—b* since we also haveb* € lin.space(C). Moreover, for eachi = 1,.. ., s,
there exists a vectay’ € G* \ lin.space(C) such thaty’ = 0. Accordingly, assume
that we choose the s&such thay’ = 0 for all ¢' € R.

SinceC,+ = CN{v € R" | v, > 0} andlin.space(C) € {v € R" | v, = 0},
according to the double description method, a minimal DR+, B,+) of C,+ is
given by

— By = (b, ..., 6" Y) with b" = b — (bL/0F) - b forall b € B\ {b*},

— R+ = RU{b}

SinceCro = C;+ N{v € R" | —v, > 0}, lin.space(C,+) C {v € R" | v, = 0},
gt = 0forall ¢' € Randb* > 0, following the double description method, a minimal
DDP (R0, B,o) of C.o is given by

— B,o = B+,

— Ro=R

Based on the results above, the following proposition dtar&zes the minimal
proper faces of the altered flux co6g..

Proposition 8.1. If T € Frev is fully reversible, the set.. of minimal proper faces of
the altered con€'. is given by

Jo={G'N{veR" |v, =0} | G" € J}.

Proof. Let G0 be a minimal proper face @f, - generated by a vectgre R... Since
R.o = R, we getg = ¢ for someg’ € R. Accordingly,C,o andG* are given by

Go={d-g"+V |a >0andt € lin.space(Cr)},

G'={a-g"+b|a>0andb € lin.space(C)}.

Sincelin.space(Cyo) C lin.space(C), we haveG,o C G'N{v € R" | v, = 0}. To
show the reverse inclusion, suppase G' N {v € R" | v, = 0}. There existx > 0
andb € lin.space(C)} such that = « - ¢* + b andv, = ag' + b, = 0. Sinceg’ = 0,
we geth, = 0 and sab € lin.space(C,0). Thereforep € G,o. We conclude that

Go=GnN{veR"|v, =0}
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8.2.2 Removing a (Pseudo-) Irreversible Reaction

If 7 € Irr U Prev, is (pseudo-) irreversible, we halia.space(C) C {v € R" | v, =
0} and so
lin.space(C,o) = lin.space(C).

Consider the hyperplané = {v € R" | v, = 0} andletH ™ = {v € R" | v, > 0}
(resp.H~ = {v € R" | v, < 0}) be the positive (resp. negative) half-space supported
by the hyperplané/. We partition the sek into three parts:

R ={g'€ R|g; >0},
R'={g' € R|g, =0},
R™={¢'€ R|g; <0}.

We should mention that, sineec Irr U Prev, for eachi = 1,...,s, g© > 0 (resp.
gt <0, gL =0)ifand only if G*\ lin.space(C) C H™ (resp.G"\ lin.space(C') C H~,
G' \ lin.space(C) C H). Accordingly, H partitions the sef’ of minimal proper faces
of C' into three parts:

JT={G" € J| G\ lin.space(C) C H},
J*={G" € J | G"\ lin.space(C) C H},
J- ={G"e€ J|G"\ lin.space(C) C H }.

SinceC.+ = CnN{v € R* | v, > 0} andlin.space(C) C {v € R" | v, = 0},
following the double description method, a minimal DDR. -+, B,+) of C.+ is given
by

— B+ = B,

— R+ = RTURYU Adj with Adj = {g* - ¢' — ¢ - ¢* | G* € J", G' €
J~, G* andG' are adjacent it}

Recall that two minimal proper faces 6f are adjacent if they are contained in one
face ofC' of dimensiont + 2.

SinceC,o = C,+N{v € R" | —v, > 0} andlin.space(C;+) C {v € R" | v, = 0},
according to the double description method, a minimal BBR, B.o) of C,. is given
by

— Bo=DB,+ =D,
— R,0 = R°U Adj.

In the following, we characterize the minimal proper facéthe altered flux cone
Cro.

Definition 8.2. For each pair of minimal proper facés < J*+ andG' € J—, let

comb(G*,G') = {gF - g' — g, - g" | ¢" € G" andy’ € G'}.
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Note that, given two minimal proper facés® € J© andG' € J—, we have
comb(G*,G") C C N {v € R" | v, = 0} and socomb(G*,G') C C.o.

Proposition 8.3. If 7 € Irr U Prevy is (pseudo-) irreversible, the sét, of minimal
proper faces of the altered cofie is given by

Jo = JOU{comb(G*, G | GF € J*, G' € J~, G* andG' are adjacentin &

Proof. Let G0 be a minimal proper face @f, - generated by a vectgre R... Since
R.o = R° U Adj, eitherg € R or g € Adj.

— If g € R°, we havey = ¢' for someg’ € R". Accordingly,C,o andG® are given

by
Go={d-g"+V|a >0andt € lin.space(Cr)},

G'={a-g +b|a>0andb € lin.space(C)}.
It follows from lin.space(Co) = lin.space(C') thatG,o = G' and soG 0 € J°.

—If ¢ € Adj, there existG* € J* andG' € J~ that are adjacent ang =
g* - g' — gL - ¢g*. Accordingly,C.. is given by

Go={a- (g’j N — ng . gk) +b | a>0andb € lin.space(C)}.

We can easily see thavmb(G*, G') C G,.. To show the reverse inclusion,
suppose € G,o \ lin.space(C'). There existv > 0 andb € lin.space(C') such
thatv = a - (g% g' — gL - %) + b. Letg' = ¢* — (1/a) - bandg® = a - g'. We
haveg! € G*, g> € G' andv = ¢! - g> — ¢? - g*. Thereforep € comb(G*, G),
and soG,0 C comb(G*, G'). We conclude tha&,0 = comb(G*,G') and the
claim follows.

O

If J* =0 orJ- = 0, which is particularly the case if € Irr is irreversible, we
get.Jo = J°. Accordingly, the set of minimal proper faces@f is the set of minimal
proper faces- of C' for which there exists no vectere G such thaw, # 0.

In the following, we assume thatt # () andJ~ # (). In addition to minimal
proper facesi € J° J,o contains the minimal proper facesmb(G*, G') where
G* € J* andG! € J~ are adjacent. In the following, we further characterizes¢he
adjacent faces.

Lemma 8.4. Let G* € J* andG! € J~ be two minimal proper faces @f and let
D* and D! their characteristic sets, respectively. Let= {v € C | v; = 0 foralli €
Irr \ (D* U D')}. The following are equivalent:

1. G* andG' are adjacent.

2. (G is of dimensiort + 2.
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Proof. (1) = (2): SinceG is a face ofC' that contains two different faces* andG',
G is not a minimal proper face @f, and sodim(G) > ¢ + 2. On the other hand7*
andG' are adjacent and so are contained in a felagf C' such thatlim(F) = ¢ + 2.
Let ' = {v € C | v; = Oforalli € Irr\ D} for someD C Irr. SinceG* C F
andG! C F, we getD* C D andD! C D and soD* U D! C D. ThereforeG C F,
dim(G) <t + 2 and so the claim follows.
(2) = (1): G* andG' are contained in a fac€ of dimensiont + 2 and so are

adjacent. O

As we pointed out before, given two minimal proper fac8sc J*+ andG! € J-
which are adjacent;omb(G*, G') is a minimal proper face of’... While this face
is defined by flux vectors fron&’* and G! (see Definition 8.2), it is also interesting
to determine the irreversible reactions which charaatetius face. The following
proposition states that the characteristic setafb(G*, G') is the setD* U D',

Proposition 8.5. Let G* € J* andG' € J~ be two minimal proper faces 6f and let
D* and D! their characteristic sets, respectively. Let= {v € C | v; = 0 foralli €
Irr \ (D* U DY}. If 7 € Prev, is pseudo-irreversible and the faags andG' are
adjacent, then

comb(G*,G" = G N {v € R" | v, =0},

and so the characteristic setwfnb(G*, G') is the setD* U D'.

Proof. LetG' = GN{v € R" | v, = 0}. Considely € comb(G*, G'). We havey, = 0
andg; = 0foralli € Irr\ (D* U D). Thereforeg € G’ and socomb(G*, G') C G'.
We now will show the reverse inclusion. Sineec Prevy, dim(lin.space(Cro)) =
dim(lin.space(C)) = t. SinceG* andG' are adjacentcomb(G*, G') is a minimal
proper face of,o. Thereforedim(comb(G*, G')) = t+1 and sadim(G’) > t+1. In
addition, according to Lemma 8.4, is a face ofC of dimensiort + 2. SinceG* C ¢
andG' € J*, we getG ¢ {v € R" | v, = 0}. It follows thatdim(G’) < dim(G) — 1
and sadim(G’) < ¢t + 1. We can now conclude that’ is a face ofC,. of dimension
t + 1 and so is a minimal proper face 6f... Sincecomb(G*,G') C G’ and both
comb(G*, G') andG" are minimal proper faces .., the claim follows. O

The following proposition states that the pa&*, G') € J* x J~ defining a
minimal proper faceomb(G*, G') of C.. is unique.

Proposition 8.6. LetG* € J* andG' € J~ be two minimal proper faces 6f and let
D* and D! their characteristic sets, respectively. Let= {v € C | v; = 0 foralli €

Irr \ (D* U DY}. If T € Prev, is pseudo-irreversible and the fagg$ andG' are
adjacent, the’ contains exactly two minimal proper faces@fi.e.,G* andG'.

Proof. Suppose there exists € J such thaiG? C (. By Lemma 8.4, sincé&”* and
G' are adjacent, we havBm (G) = t +2. Moreover, it follows fromdim(G*) = ¢+ 1,
Gk C G andg! ¢ G* that(b',..., 1", g%, ¢') is a basis ofin(G). Accordingly, since
g? € lin(G), there existy,, oy € R andb € lin.space(C) such thay? = ay, - ¢* + «; -
g' +0b. SinceD* ¢ D"andD' ¢ D¥, there exist € D*\ D' andj € D'\ D*. We
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haveg] = aig) > 0 andg] = a,g’ > 0. Thereforey, > 0 anda; > 0. Moreover,
sinceg? ¢ lin.space(C), ap # 0 0r a; # 0, or equivalently,D¥ C D or D! C D»,
SinceG*, G', G? € J, we conclude that? = G* or G» = G'. O

8.3 Minimal Metabolic Behaviors of the Altered Flux
Cone

Minimal metabolic behaviors of the altered flux cafie are in a 1-1 correspondence
with minimal proper faces of.o. Using the results from the preceding section, this
observation leads to the following results.

8.3.1 Removing a Fully Reversible Reaction

If 7 € Frev is fully reversible, the unique effect of removing reactiois the reduction
of the dimension of the reversible metabolic sp&déS o, i.e.,

dim(RMS ;o) = dim(RMS) — 1.

The MMBs of Co are the same as those©f

8.3.2 Removing an Irreversible Reaction

If 7 € Irrisirreversible, the reversible metabolic space does remg#, i.e.,
RMS ;0 = RMS.

In analogy with elementary modes, we can state the followimgservation property
for minimal metabolic behaviors: if the flux through an ireesible reaction is con-
strained to zero, the set of MMBs of the altered flux céhe is the set of all MMBs
of the flux coneC' which do not involve this reaction. Accordingly,ife Irris irre-
versible, the conservation property of minimal metaboébdviors guarantees that the
MMBs of C'.o are exactly the MMBZD of C' for whichj ¢ D.

8.3.3 Removing a Pseudo-irreversible Reaction

If 7 € Prev, is pseudo-irreversible, the reversible metabolic spa@s ¢t change,
i.e.,
RMS .0 = RMS.

Let MY (resp.M ™, M~) be the set of characteristic sets of a minimal proper face
G € J° (resp.G € J*,G € J7), and letM..o be the set of MMBs of 0. If M+ = ()

or M~ = (), thenM.o = M°. Accordingly, the set of MMBs of”, is the set of
MMBs of C' whose auxiliary sets do not contain Remember that itz a is minimal
proper face ofC' characterized by an MMBD, the auxiliary set ofD is the set of
pseudo-irreversible reactioris= Prev, for which there exists € G such that; # 0.
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In the following, we assume that’* # () and M~ # (). In addition to the MMBs
D € M°, M, contains those which are combinations of the MMB< bf The next
proposition defines an algebraic characterization of thlgi&s.

Proposition 8.7. Let = € Prevy be a pseudo-irreversible reaction and et=
dim(lin.space(C)). Given two MMBsD* € M*, D' € M~ of the flux coneC,
the following are equivalent

1. D* U D! is an MMB of the altered con€...
2. rank(S*DkuDzuRw) = |Dk U Dl‘ + |R€U‘ —t—2.

Proof. According to Propositions 8.3 and 8.5 and Lemma 84 D! is an MMB of
the altered con€' o ifand only if G = {v € C | v; = 0foralli € Irr\ (D* U DY)}
is a face ofC' such that

dim(lin(G)) =t + 2. (8.3)

Let I € R™*" be the identity matrix and leD = Irr \ {D* U D'}. Sincelin(G) is the
null space of the matrix
S
< 5. ) ’

rank(( ?D )):n—t—2. (8.4)

Using some row operations, we get the following equation

(8.3) is equivalent to

rank(( fD )) == ‘E| + rank(S*DkuDzuRw). (85)
We also know that
n = |Rev| + |Irr|. (8.6)
Combining equations (8.4), (8.5) and (8.6), we obtain
rank (S, prupiuges) = | D U D'| 4+ |Rev| —t — 2. (8.7)
(]

We can use statement (8.7) to define an upper bound on theakirdof all pairs
of MMBs D* € M+ andD! € M~ for which D = D* U D! can be an MMB of, ..
Indeed, we know that

rank (S, prupiurey) < rank(.S) (8.8)

holds for all MMBsD* € M* andD' € M~ of C. Accordingly, (8.7) and (8.8) lead
to the following corollary.

Corollary 8.8. Let D* ¢ M™*, D' € M~ two MMBs of the flux coneC'. The set
D* U D' can be an MMB of the altered flux cotgonly if

|D¥ U D' < rank(S) — |Rev| +t + 2. (8.9)
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In the following proposition, we provide a combinatorialacacterization of the
MMBs of C' that can be combined to generate the MMBspf. First we need the
following lemma.

Lemma 8.9. For each MMBSD* € M, D' € M~ of the flux cone”, the setD* U D!
is a metabolic behavior (MB) of the altered caris .

Proof. Let D¥ € M™*, D' € M~ be two MMBs ofC. We haveD* = {i € Irr | gF #
0}, D' ={i e Irr|gl#0}, ¢g*>0andg. <0. Letg = g*-g¢' — ¢g' - g*. We have
g€ C, g =0andsog € C,o. Moreover,D* U D' = {i € Irr | g; # 0}. Therefore,
the setD* U D' is an MB of the altered con€.. O

Proposition 8.10. Given two MMBsD* € M+, D' € M~ of the flux coneC, the
following are equivalent

1. D* U D! is an MMB of the altered con€...
2. Foreach MMBD' of C, D' C D* U D! implies thatD’ = D* or D' = D',

Proof. (1) = (2): Let D’ be an MMB ofC such thatD! C D*UD!. LetG?, G*,G! € J
the minimal proper faces af' whose characteristic sets at¥, D*, D!, respectively,
andletG = {v e C | v, =0foralli € Irr\ (D*UD")}. It follows from D? C D*uD!
thatG’ C G. SinceD*U D' is an MMB of the altered con€., G* andG'! are adjacent
in C. By Proposition 8.6, we gef’ = G* or G = G, or equivalently,D’ = D* or
D' = D'

(2) = (1): According to Lemma 8.9D* U D' is an MB of C... Suppose there
exists an MMBD of C.o such thatD C D* U D! If D € M°, thenD is an MMB
of C and soD = D*¥ or D = D! This is a contradiction sinc®* ¢ M° and
D' ¢ M°. Therefore,D ¢ M° and so there exisb? € M andD? € M~ such that
D = DP U D4, Accordingly, D> C D andDY C D. SinceD C D* U D!, we get
D C DFuU D!, D? C D*U D!, and saD? = D! andD? = D'. Hence,D C D* U D!
implies D = D* U D' and soD* U D! is an MMB of C..o. O

Example 8.11.In the metabolic network from Fig. 8.djm(RMS) = 2. The MMBs
and the corresponding minimal proper faces of the flux coraee as follows:

D' ={2}, D*={6,7}, D®={6,8},
Gt={veCl|v=0,iclmr\D}, k=123

Consider the following cases:

1. 7 =3:7 € Frevand salim(RMS o) = dim(RMS) — 1 = 1. The MMBs and
the corresponding minimal proper faces of the altered ¢oneare as follows:

Dk, =D*  k=1,23,
Gry=G"n{veR" v, =0}, k=123
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Figure 8.1: Representative pathways in ILLUSNET

2. 7 =8:71 € Irr and SORMS .o = RMS. Moreover,J° = {D', D*}. Therefore,
the MMBs and the corresponding minimal proper faces of ttered cone’ o
are as follows:

Df, =DF, k=12,
Gr =GF, k=1,2.

3.7 =1: 7 € Prevy and soRMS.. = RMS. Moreover,J° = {D? D3} and
J~ = (. Therefore, the MMBs and the corresponding minimal propee$ of
the altered con€'.o are as follows:

D' =D k=23,
Gil=GF k=23

4. 7 = 4: 7 € Prevy and SoRMS.o = RMS. Moreover,J' = 0, J* = {D'}
andJ- = {D?* D*}. SinceD' € J*, D*,D* ¢ J-, D> ¢ D'U D? and
D?* ¢ D''U D3, the MMBs and the corresponding minimal proper faces of the
altered con&’'.o are as follows:
DY, =D'uD? D% =D'UD?
Gry={veC|vu=0,ielr\Ds}Nn{veR" v, =0}, k=12

The results above can be extended to predict the effect ofittkecone when
constraining the reversibility of some reaction. If a resilele reaction is constrained
to operate in the forward (resp. backward) direction orig, d&ltered flux cone will be
Cr=Cn{veR"|v >0} (resp.C- = CnN{veR"| v <0}). Again, the
description ofC,+ andC,- can be deduced from that of the flux coffedepending
on the reversibility type of reaction Indeed, if. € Prev, is pseudo-irreversible, the
MMBs of C,+ (resp.C,-) are the MMBs of the altered cor@o = C' N {v € R™ |
v, = 0}, together with the MMBS € M (resp.D € M~) of the flux coneC'. The
reversible metabolic space does not change, R&[S,+ = RMS,- = RMS. On the
other hand, it € Frev is fully reversible, the MMBs of’,+ andC,- are the MMBs
of C, together with a new MMBD = {.} anddim(RMS,+) = dim(RMS,-) =
dim(RMS) — 1.
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8.4 Reaction Reversibility in the Altered Network

We conclude this chapter by studying the changes in thesibilgy type of reactions
following a gene deletion. The set of irreversible (respersible) reactionsgrr’ (resp.
Rev') inthe altered network is the same as those of the origirtalov, i.e., Irr’ = Irr
(resp.Rev’ = Rev). Accordingly, we restrict ourselves to study the changethe
reversibility type of reversible reactions.

Possibly many fully reversible reactions in the originatwak may become
pseudo-irreversible in the altered network. [Retv;, and Frev’ be the sets of pseudo-
irreversible and fully reversible reactions in the altenetwork, respectively, i.e.,

Frev' = {i € Rev | b, # 0, for somel/ € lin.space(C,o)},
Prevy = Rev \ Frev'.

Sincelin.space(Cro) C lin.space(C'), we haveFrev' C Frev \ {r} and Prevy C
Prevy. In the following, based on the description of the alterea flone given in
Sect. 8.2, we further characterize the relationship batwéev’ (resp. Prevy) and
Frev (resp.Prevg).

Let A be the set of fully reversible reactions of the original natkewvhich become
pseudo-irreversible in the altered network, i.e.,

A = Frev \ Frev' = Prevy \ Prevy.

We can easily see thak = {j € Frev | b, = Oimpliesb; = 0, forallb €
lin.space(C)}. The following proposition further characterizes the Aaising a basis
of the lineality space of .

Proposition 8.12. Let B = (b',...,b") be a basis of the lineality spatia.space(C).
Then,

A = {j € Frev | there exists\ # 0 such that! = \b. foralli =1,... t}.

Proof. Let Q = {j € Frev | thereexists\ # 0suchthab, = \b. foralli =
1,...,t}. ThenQ C A. To show the reverse inclusion, suppgses A. Since
J € Frev, there existd € B such that; # 0. Sincej € A, we haveb, # 0. Let
b € Bandletw =V — (b, /b.) - b. We havew € lin.space(C) N {v € R" | v, = 0}
andw; = b}, — (b;/b.)b.. Sincej € A, we getw; = 0 and sav; /b, = b; /b, -\ # 0,
independently frond'. O

Corollary 8.13. If 7 € Irr U Prev, is (pseudo-) irreversible, thefrev' = Frev and
Prevy = Preuvy.

Proof. Supposer € Irr U Prevy. Then,b® = Oforallk = 1,...,t. Considerj €
Frev. There existd € B such thath; # 0. Sinceb, = 0, it follows that;j ¢ A.
Therefore A = () and so the claim follows. O
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Example 8.14. Consider again the metabolic network from Fig. 8.1. The Bets
and Frrev of pseudo-irreversible and fully reversible reactionshis hetwork are re-
spectively:

Prevy = {1, 4},

Frev = {3,5,9,10,11,12}.

If - =2, we haveA = () and so

Prevy = Preuy,
Frev' = Frev.

If - =3, we haveA = {3,5} and so

Prevy = {1,3,4,5},
Frev' = {9,10, 11, 12}.



CHAPTER )
Control-effective Flux

Analysis

The importance of single reactions for the overall metabaditwork performance can
be assessed using knockout mutations. It has been sugtestadeaction is crucial if
its removal from the network prevents certain critical nbelec functions [2; 15; 82].
Such an important reaction can be identified using flux coginalysis or gene dele-
tion analysis discussed in Chap. 6 and Chap. 8, respectik#tbrnatively, the essen-
tiality of some reaction could correlate with how this reactparticipates in flexible
and efficient operations of the metabolic network. TFlexibility of the latter can be
defined as its capability to adapt to different environmiesgaditions. Anefficientop-
eration corresponds to a flux distribution which carriesasubptimal outcome, such as
maximal growth rate, while using a minimum investment, itlee sum of all absolute
fluxes. In this chapter, we discusentrol-effective flux (CEF) analysjd.06], which
has proved promising in assessing a metabolism. The CERshale directly com-
puted from elementary modes, indicate the importance df esaction for the overall
metabolic network. After discussing the main advantagassofg elementary modes
in CEF analysis, we consider the use of a minimal generagh@fsthe flux cone in
such an analysis. To compare both approaches, we comp@&tefor thered blood
cell andS. cerevesiaametabolisms.

9.1 Definitions

In the following, we generalize the conceptafficiencywhich has initially been de-
fined for elementary modes [106]. In a first step, we define afsieteversible reac-
tions, Mfun C Irr, as the basis for the main metabolic functions (e.g., gro#tir
maintenance). In addition, we assume that the operatioadf eeactionr € Mfun
requires a non-zero flux through a certain irreversibletreac € Irr. For instance,
reaction. may correspond to the total substrate uptake.

Afterwards, for each reaction € Mfun, the efficiencyw.r.t. reactionr of a flux
vectorv € C'\ {0}, denoted byEff (v, 7), is defined as the flux through reaction
divided by the sum of all absolute fluxes through reactiomi@pating inv,

(9.1)

where||v||, is the L; norm of the flux vectow, i.e.,||v|; = .., |v:|. The efficiency
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of v, denoted byE[ff (v), is defined as the sum of the efficiencies w.r.t. reactions in
Mfun,

Eff (v) = Z Eff (v, 7).
TE Mfun

According to equation (9.1), the efficiendjf (v, 7) measures the flux through re-
actionr in the flux distributiorv while taking into consideration the investment needed
to establish that flux distribution. Among flux vectors cang/the same fluxes through
reactionr, those with smaller investment are more efficient than therst This is in
agreement with the suggested optimization-based appif8a¢hwhich assumes that
the optimal flux distribution is the one which has the miniimakestment. In general,
given two flux vectors'', v? € C, if Eff (v') > Eff (v?), then we say! is at least as
efficient asv®.

For the remaining of this chapter, we need to definemalized flux vectors

Definition 9.1. A flux vectorv € C'is callednormalized(by the flux through reaction
v) if v, € {0,1}.

Now, let?) be the function that maps each finite ¢etC C' of normalized flux
vectors to theeffectiveness vectar = J(F) given by

wi= Y iz Eff (e, 7) e| foralli=1,...,n, (9.2)

7€ Mfun Or ecE ZE’EE Eﬁ(€,7 7—)

with o, = max{e, : e € E} forall 7 € Mfun. Foralli € {1,...,n}, w; can be seen
as the average of absolute fluxes through reactiomll flux vectorse € E. The latter
are weighted by their relative efficiencies.HAfis the set of elementary modes, for all
i € {1,...,n}, the component/(E); is identical to thecontrol-effective flux (CEF)
of reaction; [106]. It has been suggested in [106] that a reaction withga IBEF is
crucial for the overall metabolic network performance. émgral, given a subsét C

C' of normalized flux vectors, the effectiveness veetoF') measures the importance
of reactions for the flux vectors iff while taking into account the efficiencies of these
flux vectors. Below we consider the extent to which the caosiolus drawn from the
effectiveness vecta?(F) about reaction essentiality can be generalized to the whole
flux cone.

9.2 Effectiveness Sensitivity

Given afinite sety C C'\{0}, flux vectors: € E such thattff (e) = 0, or equivalently,
e, = 0forall 7 € Mfun, do not influence the componentsitify). This is particularly
the case of flux vectors i N lin.space(C).

Proposition 9.2. Let E C C \ {0} be a subset of normalized flux vectors and let
E={ee FE|Eff(e) #0}. Thend(E) = 9J(E).
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Proof. Immediate. O

In general, the effectiveness vectats§E) and J(E’) of two different subsets
E,E" C C\ {0} of normalized flux vectors can be different. The questiosesi
on how to choose the sét such that)(£) can be used to identify crucial reactions.
One interesting possibility is to choogeas a generating set of the flux cofie This
strategy is analogous to using a generating sét tuf elucidate the intrinsic properties
that emerge from the whole metabolic network. For instarice coupling relation-
ship between two reactions holds for the generators of tkecfine, the same property
holds for the whole flux cone (see Chap. 6 for more details)nil&ily, a reaction
which is important for the generators of the flux cone can Ipeeted to be crucial for
the whole metabolic network. But again the question aridest\generating set of the
flux cone should be used to grasp the essentiality of reactidhis question is par-
ticularly interesting since there are infinitely many pbssigenerating sets of the flux
cone. In addition, as will be stated in Proposition 9.10ngswo different generating
sets ofC' can lead to different results.

In an attempt to choose a generating &etwhose effectiveness vectal( E)
helps to evaluate the importance of reactions, one might wiat £ covers all the
most efficient operations of the metabolic network, i.er,dach non-zero flux vector
v € C\ {0}, there exists a generaterc E which is at least as efficient as i.e.,
Eff (v) < Eff (e). There may exist two flux vectors, v* € C with equal efficiencies,
i.e., Eff (v') = Eff(v?), such that! contains zero elements wherevérdoes, and
it includes at least one additional zero component, Kepp(v') € Supp(v?) (see
Fig. 9.1 for an illustration). In such a caseé,could be more interesting to be included
in the generating sef thanv?. Accordingly, one may requires that each generator
e € F should be a simple flux vector, i.e., its set of active reastis minimal.

Figure 9.1: A hypothetic network contains two elementarydesz!' ande?. We assume that
formation of productP, carried by reactio®, is the main function of this network,
i.e., Mfun = {6}. In addition, the operation of reacti@requires consumption of
substrateS by reactionl. Tab. 9.1 shows that the flux vectet = L (e! + ¢?) is as
efficient as both elementary modes, iBff (¢?) = Eff (e!) = Eff(e?). However,
e3 is not a simple flux vector.

In the following, we show that finding a generating getvhich fulfills both re-
guirements above essentially amounts to assuming#hsa particular subset of ele-
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Flux vectore? | |el|fori=1,...,6 | [le/]]; | Eff (¢’)
112131456
: 111170011 4 1/4
¢ 1{ojo|1|1]1] 4 1/4
e 13]3]3]35|1] 4 1/4

Table 9.1: The three flux vectors, e ande?® depicted in Fig. 9.1. and their respective effi-
ciencies.

mentary modes. We first need to find out the connection betgsiegplicity character-
izing elementary modes and efficiency in metabolic netwoR® this, we define the
following relationship which takes account of these twoganies.

Definition 9.3. Given two non-zero flux vectors,u € C \ {0}, we writev < u if
Supp(u) C Supp(v) andEff (v) < Eff (u).

For all flux vectorsv, u € C'\ {0}, v <u means that is at least as efficient as
even if the set of active reactionsinincludes that of.. The next proposition shows
that the efficiencies of andu have the same sign.

Proposition 9.4. Letv,u € C \ {0} be two non-zero flux vectors such that w.
Then, Eff (v) # 0 if and only if Eff (u) # 0.

Proof. It follows from v < u that Supp(u) C Supp(v) and Eff (v) < Eff (u). Ac-
cordingly, Eff (v) # 0 implies Eff (u) # 0. Now, supposetff(u) # 0. Then,
> rempun Ur # 0. There existg € Mfun such thatu; # 0 and soj € Supp(u).
Since Supp(u) C Supp(v), it follows thatj € Supp(v). SinceMfun C Irr, we get

> rempun Ur 7 0 @nd SOEf (v) # 0. O

By definition, each elementary mode is a simple steady-fitatevector, i.e., its
support is minimal. This definition is equivalent to the éoling statement given
in [113].

Proposition 9.5([113]). A non-zero flux vector € C' is an elementary mode if and
only if e lies on an extreme ray of some pointed cone obtained by etteng) the flux
coneC' with one of th&™ orthants ofR™.

The next theorem states that elementary modes are the riosrefflux vectors
in the steady-state flux cone.

Theorem 9.6. Letv € C'\ {0} be a non-zero flux vector. There exists an elementary
modee* such that) < e*.

Proof. Let O be an orthant oR" such that € O. LetC’ = C'N O and letE be the
set of elementary modes 6f that belong ta”’. According to Proposition 9.5, is a
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pointed cone and’ is the set of its extreme rays. Sinces (', there exist&’ C E
such that
v=> Ae, with ), > 0foralle € E'.

ecE’

Let e = A - ”Zni foralle € E'. Then,Eff (v) = > . p tte - Eff (€). SinceE’ C O,
it follows that Supp(e) C Supp(v) for all e € E’. In addition, we have|v||; =
Yoeer Ae - llelliand soy_ e = 1. Lete* € E' such thatEff (e) < Eff (e*) for
alle € E'. We haveLff(v) < (3 .cpte) - Eff(e*) = Eff(e*) and so the claim

follows. O

From a biological point of view, the theorem above statesghv&n a non-zero flux
distributionv € C'\ {0}, the set of active reactions inincludes that of an elementary
mode that has the same outcome through reactiang/fun and an investment which
is smaller than that of. Note that this result relies on the use of thenorm in the
definition of efficiency. The restriction of this norm on anlh@nt ofR” is linear.

Let F be the set of elementary modes andfet {e¢ € E | Eff(e) # 0}. Accord-
ing to Proposition 9.2, only elementary mode<firare relevant for the computation
of CEFs. In the following, we show thdt is the unique minimal set of simple flux
vectors that covers all the most efficient operations of tkee&atolic network.

Definition 9.7. An efficient coverof the flux cone”' is a subset/ C C'\ {0} such that
for each non-zero flux vectarc C'\ {0} with Eff (v) # 0, there exists a flux vector
u € U such that < u. An efficient covelU is minimal, if there is no efficient cover
U’ C U strictly contained irU.

Obviously, a trivial efficient cover is the flux coreitself. In general, each subset
U’ C C containing an efficient cover of the flux coneC is itself an efficient cover.
Here, we are interested in finding a minimal efficient cove€'oivhose effectiveness
vector can be used to evaluate the importance of reactidresfollowing theorem not
only states that the subsebf elementary modes fulfills this requirement, but also that
£ is the unique minimal efficient cover of.

Theorem 9.8. £ is the unique minimal efficient cover of the flux cofie

Proof. Letv € C \ {0} be a flux vector such thdiff (v) # 0. According to Theo-
rem 9.6, there exists an elementary metsuch that < e*. With Proposition 9.4, it
follows from Eff (v) # 0 that Eff (e*) # 0 and soe* € £. Therefore£ is an efficient
cover ofC. Now, let F be an efficient cover of’. Considere € £. There exists
a flux vectore* € F such thate < e*. Therefore,Supp(e*) C Supp(e). Sincee is

an elementary mode, we get= e¢* or e = —e*. SinceEff(e) # 0, it follows that
e ¢ lin.space(C') and sce # —e*. We conclude that = e*,e € Fandscf C F. O

The seff can be determined by computing the set of all elementary sadeé then
selecting those whose efficiencies are not equal to zero.eMenvthe computation of
elementary modes is in general a hard computational taskhvillampers the practical
applicability of control-effective flux analysis. In theaw of this limit, one might wish
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to use another generating set of the flux cohfer the analysis of reaction importance.
An interesting alternative is the use of a minimal set of gatwes of the flux cone, or
equivalently minimal metabolic behaviors. An issue thayrha encountered in this
approach is that a minimal generating set need not be unigae the flux cone can
be non-pointed. This limitation is not problematic for tleldwing reasons. First,
according to Proposition 9.2, generators of the linealggicelin.space(C') do not
influence the components of the effectiveness vector shaie ¢fficiencies are equal
to zero. These generators can be neglected in controltigfdtux analysis. Second,
given two normalized flux vectorg' and ¢* representing a minimal proper facg
both ¢! andg? carry the same fluxes through all (pseudo-) irreversibletieas. The
only difference between' andg? can be in theiZ; norm. We could choose the most
efficient flux vectorg € G \ lin.space(C') to represent the minimal proper faGe The
following proposition shows that the most efficient flux \&an a minimal proper face
is the one with the smallegt, norm.

Proposition 9.9. Let G be a minimal proper face of the flux cofeand letg', > ¢
G \ lin.space(C) be two normalized flux vectors. Then,

Eff(¢") - llg'll = Eff (9%) - 1l6°]]

Proof. Either we have;! = ¢g> = 0 and sog! = g2 = 0, 0rg! = g> = 1 and so
g = g2. In both cases;! = g2 and so the claim follows. O

There could be other interesting criterions to choose argéing sett such that
its effectiveness vectat(E) helps to grasp the importance of reactions. In any case,
one should be able to compare results obtained by usingefiffgenerating sets. The
following proposition allows for such a comparison.

Proposition 9.10. Let E be a set of normalized generators of the flux céhand
let E' C C be a set of normalized flux vectors such thatC E’. Then, for each

ied{l,...,n}
V(E"); — = > ) Ziﬁ EeﬁT(e T)-<|§i‘ —79(E>i), (9.3)

TEMfun ec E'\E

with o, = maxXe, : e € E} for all € Mfun.
Proof. Foreachi € {1,...,n}

1 Eff (e, 1)
WE); = — <€l
( ) TE%M Or eeZE ZE/EE Eﬁ(e/’T) |€ ‘

Eff (e, 1) 4
= 2 ZzeeE,Eﬁ 7y lak

7€ Mfun T ecE’

with o, = max{e, : e € £} ando. = max{e.. : ¢’ € E'} for all 7 € Mfun. In what
follows, we show that”. = o.. Let R = {e € E' | ¢, # 0}. We havee, = e, = 0 for
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alle € E'\ R. Moreover, since € Irr, we haveF Nlin.space(C') C E'\ R. Consider
¢/ € E' andt € Mfun. SinceE is a generating set of the flux cong we have

¢, = Ae)e, ande, = " A(e)e, for somer(e) > 0.

ecER e€ER

Sincee, = 1 ande, <o, foralle € R,wegete, =) _,Ae), e, <o.-> . .pA(e)
and soe!. < o.¢/. Sincee, € {0,1}, ¢. < o,.. Thereforeg. = o, and so the claim
follows. [

Given two generating sets, £/ C C such thate C F’, the differences in the
effectiveness vectorg(E) andd(E’) is given in equation (9.3). In some cases, we
haved(E’) = Y(F). This is particularly the case wheyf(e¢) = 0 forall e € E" \

E. However,J(E’) andd(E) can be different. For instance, if some reactiois
participating in no flux vectot € E'\ E,i.e.,e; = 0foralle € £E'\ E, thend(£'); <
Y(E);. In general, given two reactionsand j, ¥(E'); — ¥(E); andd(E’); — V(E);
can be different in sign and magnitude. If this is the cas@guthe effectiveness
vectorsy(E) and¥(E") to evaluate the importance of reactiohand j would lead
to conflicting conclusions. This shows that the results dréom control-effective
analysis are sensitive to the choice of the generating saedfux cone.

9.3 Computational Results

In this section, control-effective fluxes obtained by meaihslementary modes (resp.
minimal metabolic behaviors) are call&M-based(resp. MMB-based CEFs. We
computed EM-based and MMB-based CEFs for the red blood cthhloolic network
introduced in Sect. 4.5. For these computations, we congdetions GSSGR, GSH-
pox, MemPhos, NaKATPase, MetHbRed and 23DPGdrain as the toaghe main
functions of the metabolic network, i.eMfun = {GSSGR, GSHpox, MemPhos,
NaKATPase, MetHbRed, 23DPGdraifil6]. Reaction. corresponds to glucose up-
take (GLK).

The flux cone of the red blood cell metabolic network contai$1MBs and48
elementary modes (see Sect. 4.5). TBeelementary modes that lie in the interior
of the flux cone are obtained by combining two MMBs that ineoheaction PGI in
opposite directions. All these elementary modes have afzerthrough reaction PGI.
As aresult, the EM-based CEF of reaction PGl is lower thaklB-based CEF. For
the other reactions, the results of both approaches aré@ajivaly similar. Fig. 9.2,
showing MMB-based and EM-based CEFs of all reactions, tevieat GSSGR has the
highest control-effective flux, which can be explained by timportance of NADPH
formation in the red blood metabolism [5].

As further demonstration we have applied control-effectwnalysis to determine
critical reactions in the central carbon metabolismSofcerevesiagl7]. Although
this metabolism is relatively small (witd internal metabolites angB reactions), it
contains8726 (resp.1309) elementary modes for growth on glucose (resp. ethanol).
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Figure 9.2: Comparison of MMB-based and EM-based confifekgve fluxes for the red
blood cell.

The corresponding flux cone is pointed and Kag (resp.224) minimal metabolic
behaviors for growth on glucose (resp. ethanol). Fig. 9@ faig. 9.4 show MMB-
based and EM-based CEFs in different growth media (glucndesthanol). Again,
predictions of both approaches are qualitatively simitarthe most of reactions. As
expected, by using elementary modes, control-effectiveeiof reactionsVIDH1,
TPI, RPE TKL2, and MDH?2 are underestimated for growth on glucose. All these
reactions are reversible and are involved in forward andkward directions. Many
elementary modes in the interior of the flux cone are comlmnatof other ones and
decrease the EM-based CEF of these reactions. IntergstaggitionTP/ is involved
only in backward direction for growth on ethanol. In such avgh media, the EM-
based CEF of reactionP!/ is identical to its MMB-based CEF, while those of reactions
MDH1, RPE TKL2, andMDH?2 are still different.
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Figure 9.3: Comparison of MMB-based and EM-based confifectve fluxes for the yeast
cells in glucose media.

Since the control-effective fluxes should correlate witanscript levels of
metabolic genes [106], theoretical transcript ratios fimwgh on ethanol versus glu-
cose were computed as ratios of EM-based CEFs and compatiecxperimental
data from [25]. A good correlation? = 0.60) between theoretical and experimental
transcript ratios has been found 8% genes [17]. Similarly, we investigated the corre-
lation between the same experimental data with ratios of MddBed CEFs. Fig. 9.5
shows the same correlation strengitt (= 0.60), but for41 genes.
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Figure 9.5: Comparison of theoretical and experimenta-thaised logarithmic ratios of gene
expression levels for shift from glucose to ethanol. Theeexpental data are
from [25]. Both X-axis and Y-axis are on logarithmic scale-¢Xis: experimental
data, Y-axis: MMB-based CEF ratios for shift from glucosestbanol).
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CHAPTER

10 Conclusions and
Discussion

To conclude this dissertation on constraint-based argbfsmetabolic networks, we
summarize our main results, and we mention some interesktensions of the pre-
sented work.

In order to achieve a system-level understanding of liviyggjems, it is necessary
to develop mathematical and computational methods guigeithido concern of sim-
plicity. For this reason, constraint-based modeling shawdde applicability in the
study of metabolic networks. In the scope of the presentedk,vaonew constraint-
based approach has been developed to describe the stasalfitst cone. The main
difference with other recent constraint-based methodsHi¢he fact that our approach
uses an outer description of the flux cone, based on setwéisible reactions. This
is different from elementary mode and extreme pathway amglyhich both use an
inner description, based on sets of generating vectors.

We have given several reasons to justify our new approaaist, iiguarantees a
certain compactness of the resulting description of thedane. Indeed, our descrip-
tion is not only unique, but also is minimal and satisfies godicity condition similar
to the one that holds for inner description. The study of #iationship between inner
and outer descriptions of the flux cone has allowed for erpigiwhy, for large-scale
metabolic networks, the size of the outer description isroftignificantly smaller than
that of the inner descriptions. Nevertheless, since weusid a sparse matrix repre-
sentation to store the resulting flux cone description, aenafficient representation of
both types of descriptions is yet a challenging and intergsbpic. A promising idea
could be to transform the flux cone description into a logiection and then to rep-
resent this function in the form of lainary decision diagram (BDDJY his may reduce
the space needed to store the large description of the flug. cAnother advantage
of such a strategy is that BDD expressions can efficientlyoper Boolean queries,
allowing for identifying intrinsic properties of metabolnetworks such as reaction
dependencies.

Second, our approach suggests a refined classification ciaes according to
their reversibility type (irreversible, pseudo-irrevieis, and fully reversible). While
the irreversible and pseudo-irreversible reactions cetept characterize minimal
metabolic behaviors, the fully reversible reactions detime reversible metabolic
space, which may contain useful biological informationislihformation is no longer
explicit if we replace each reversible reaction with twewersible ones. Moreover, we
have shown that the reversibility type provides a key toidhte reaction dependen-
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cies. Coupling relationships can only hold between reastiaf a certain reversibil-
ity type. In particular, (pseudo-) irreversible reactiar@inot be coupled with fully
reversible reactions, and all reactions in an enzyme subsst have the same re-
versibility type. Using these concepts, we have improveedsting algorithm for
identifying blocked and coupled reactions, and even devéseew algorithm for flux
coupling analysis.

In many cases, a zero flux through one reaction implies a aexdtftough several
reactions. In other cases, many reactions must be coredramhave a zero flux
for blocking a target reaction. A possible extension of flaugling analysis is to
study dependencies between subsets of reactions. Moralfgymiven two subsets
M,N C {1,...,n} of reactions, we say is dependenbf M, written M = N,
if the removal of all reactions i/ implies that all reactions in the séf cannot
operate under steady-state conditions. More formMy,iq N if the following three
conditions hold:

1. Forallv e C,v; =0forall: € M impliesv; =0foralli € N,

2. ForallM’ C M, there exist® € C such that; = 0 for all i« € M’ and there
existsj € N such thab; # 0.

3. ForallN’ 2 N, there exist® € C such that; = 0 for all i € M and there
existsj € N’ such that; # 0.

The second (resp. third) condition guarantees the miniypn@esp. maximality) prop-
erty of M (resp.N). If N = {i} is a singleton set}/ is identical to a minimal cut set
for reaction:. In general, the identification of dependent reaction setsare difficult
than that of minimal cut sets, which is already known to berd samputational task.
The computation of minimal direction cuts is not trivial asliv Improving all these
computations is another attractive perspective.

Our refined classification of reactions helps also for olirgiyin a constraint-based
approach, a description of the altered steady-state flug.cdie latter contains the
full range of achievable behaviors of the metabolic systéer she removal of some
reactions in the network. Certainly, the outer descriptibthe flux cone may change
considerably upon deletion of reactions. Nevertheless,atcurs only in case of the
removal of pseudo-irreversible reactions which can opeirakeither direction under
steady-state conditions. For the other reactions, thedfiesuof an outer description
of the altered flux cone is straightforward.

Finally, we discussed control-effective flux (CEF) anadysivhich has proved
promising in assessing the importance of reactions. Wedbhlynjustified why ele-
mentary modes are useful for CEF analysis. We also considieecuse of a minimal
generating set of the flux cone in such an analysis. It has bleewn that the pre-
dictions about reaction importance using both strategesiailar for two metabolic
systems, namely theed blood cellandS. cerevesiaéOverall, we anticipate that using
a minimal generating set would enable a control-effectiug #inalysis of genome-
scale metabolic networks. This, of course, still has to loegm.
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Several challenges still remain in constraint-based amabf metabolic networks.
From a computational point of view, computing a descriptbthe flux cone amounts
to calculating a convex basis. This computation, which mayntpractical for large-
scale metabolic networks, is still a challenging task far titure. Further advance-
ments in metabolic network modeling (e.qg., dividing thewak into modules, taking
into account reaction dependencies) and in algorithm implgation (e.g., improving
adjacency tests, parallelizing the double descriptiorhodtmay improve the existing
tools.

In addition to the computational challenges, the biololgicierpretation of mini-
mal metabolic behaviors and the reversible metabolic sgaserves further attention.
Our work suggests a modular approach to the study of metabelworks. Each
MMB could be seen as a module or a family of metabolic pathvedysing specific
properties. The overall metabolic network can be undedsésa combination of these
different modules. We expect that more investigations efdiological implications of
MMBs and RMS will further justify our approach.

Constraint-based metabolic network analysis is based omtain simplifying as-
sumptions. First, metabolic networks are assumed to besatigtstate. This can be
considered as a limitation to this approach since no priedisiabout the dynamic be-
havior of the system can be made. However, the insight gabedt the structure of
metabolism may serve as a foundation for future studies eterthe understanding
of the structure is of great interest. The second assumgptincerns the reversibility of
reactions. As we already mentioned in the beginning of tiesi, all metabolic reac-
tions are thermodynamically reversible and can proceedheredirection depending
on their Gibbs free energy differences. Since the compmurtatf the latter is pro-
hibitively expensive for large networks, reaction revieilgy is still largely a matter of
convention. In future studies, it is worth considering teeearsibility of reactions as a
parameter in the definition of the flux cone. A promising idetoistudy the sensitivity
of the flux cone definition to the reversibility of reaction&nother line of research
could be to find out how reactions influence each other’s svidity using polyhedral
theory.

The incorporation of regulatory constraints and kinetfoimation would expand
the scope of our approach. Clearly the topic is not closedcamdtraint-based ap-
proaches will continue to provide useful modeling and cotaponal tools for systems
biology.
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