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Abstract

The experimental discovery of dilute ultracold quantum gases in 1995 has instigated a broad interest in

ultracold atoms and molecules, and paved the way for extensive studies of a wide range of both exper-

imental and theoretical topics. Various theories were developed to describe Bose-Einstein condensates

(BECs) for different ranges of temperature and interaction strengths. This thesis focuses on studying

the mean-field theory of the Gross-Pitaevskii (GP) equation which provides a good description for the

macroscopic wave function when both quantum and thermal fluctuations are negligible. This means

that the range of validity is restricted to small interaction strengths at zero temperature. Within the

GP theory we study analytically and numerically the nonlinear dynamics of BECs which are induced

by a harmonic modulation of either the interaction strength or the harmonic trapping potential. At

first a detailed numerical investigation reveals that solving the partial differential equation of Gross

and Pitaevskii can be reduced to solving ordinary differential equations for the condensate widths

within a Gaussian variational approach. Despite this tremendous simplification the prominent non-

linearity of the underlying GP equation is inherited by the variational equations, which thus allow to

describe a rich variety of nonlinear phenomena in different experimental setups. In order to describe

them analytically we transfer the Poincaré-Lindstedt method, which represents a well-established tool

in the field of nonlinear dynamics, to the Gaussian variational approach.

Modulation of some of the parameters of a BEC can give rise to prominent nonlinear features, such

as shifts in the frequencies of collective oscillation modes, higher harmonics generation, and resonant

mode coupling. As a first application we consider a recent Bose-Einstein condensate of 7Li, which has

been excited experimentally by a harmonic modulation of the atomic s-wave scattering length with the

help of a Feshbach resonance. Combining an analytical perturbative approach with extensive numer-

ical simulations, we analyze the emerging nonlinear dynamics. In particular, we present the resulting

shift of collective excitation spectra close to parametric resonances where the driving frequency coin-

cides with a collective mode frequency. Another application of experimental importance is to study

geometric resonances in BECs with two-body and three-body contact interactions, where changing

the geometry of the trapping potential leads to commensurate collective excitation frequencies with

emerging nonlinear effects such as frequency shifts and resonant mode coupling. In this context we

also show that a small repulsive three-body interaction is able to extend the stability region of the

condensate for an attractive two-body interaction as it increases the critical number of atoms in the

trap.

Apart from a periodic modulation of a system parameter the dipole mode frequency can be excited

by introducing an abrupt change in the potential, where the center of mass oscillates according to the

Kohn theorem back and forth in the trapping potential with the natural trap frequency irrespective

of both the strength and the type of the two-particle interaction. To this end, we study the collective

excitation modes of a Bose-Einstein condensate in a harmonic Ioffe-Pritchard in the vicinity of a

Feshbach resonance for experimentally realistic parameters of a 85Rb BEC, where the dipole mode is

excited in z-direction. A linearization of the underlying equations of motions shows that the dipole

mode frequency decreases when the bias magnetic field approaches the Feshbach resonance, so the

Kohn theorem is violated.

Finally within a variational approach we discuss the physical properties of a BEC in an axially-

symmetric harmonic trap with a single vortex in the center. At first we analyze the equilibrium

configuration and determine the vortex size as well as the Thomas-Fermi radii of the condensate in

the Thomas-Fermi limit. Then we calculate the critical rotation frequency for the emergence of the

vortex and compare our findings with the literature. Finally, we investigate how the presence of the

vortex changes the collective excitation frequencies and we discuss the free expansion of the BEC. All

these results indicate how nonlinear dynamics properties could be made clearly observable in future

experiments on the basis of our results.
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Zusammenfassung

Die experimentelle Entdeckung verdünnter ultrakalter Quantengase im Jahre 1995 hat ein breites In-

teresse an ultrakalten Atomen und Molekülen hervorgerufen und den Weg zu intensiven weitreichen-

den Untersuchungen sowohl experimenteller als auch theoretischer Themen bereitet. Verschiedene

Theorien wurden entwickelt, um Bose-Einstein-Kondensate (BECs) in verschiedenen Temperaturbe-

reichen und mit unterschiedlichen Wechselwirkungsstärken zu beschreiben. Die vorliegende Doktorar-

beit konzentriert sich auf die Gross-Pitaevskii (GP) Molekularfeldtheorie, die eine gute Beschreibung

der makroskopischen Wellenfunktion darstellt, wenn sowohl quantenmechanische als auch thermische

Fluktuationen vernachlässigbar sind. Das bedeutet, dass der Gültigkeitsbereich auf kleine Wech-

selwirkungsstärken am absoluten Temperaturnullpunkt beschränkt ist. Innerhalb der GP-Theorie

studieren wir analytisch und numerisch die nichtlineare Dynamik von BECs, die durch eine har-

monische Modulation von entweder der Wechselwirkungsstärke oder des harmonischen Fallenpoten-

tials hervorgerufen wird. Zunächst zeigt eine detaillierte numerische Untersuchung, dass das Lösen

der partiellen Differentialgleichung von Gross und Pitaevskii auf das Lösen von gewöhnlichen Differen-

tialgleichungen für die Kondensatbreiten innerhalb eines Gaußschen Variationsansatzes zurückgeführt

werden kann. Trotz der erheblichen Vereinfachung wird die Nichtlinearität der zugrundeliegenden

GP-Gleichung auf die Variationsgleichungen übertragen, so dass eine Beschreibung der reichhaltigen

nichtlinearen Phänomene in verschiedenen experimentellen Aufbauten möglich ist. Um diese ana-

lytisch zu beschreiben, übertragen wir die Poincaré-Lindstedt-Methode, die ein etabliertes Werkzeug

im Gebiet der nichtlinearen Dynamik darstellt, auf den Gaußschen Variationszugang.

Die Modulation eines Parameters im BEC kann zu bedeutenden nichtlinearen Eigenschaften führen,

wie z.B. Verschiebungen in den Frequenzen kollektiver Moden, Erzeugung höherer Harmonischer und

resonate Modenkopplung. Als eine erste Anwendung betrachten wir ein neues Experiment mit einem
7Li Bose-Einstein-Kondensat, das durch eine harmonische Modulation der s-Wellenstreulänge mit Hilfe

einer Feshbach Resonanz angeregt wurde. Durch Kombination eines analytischen störungstheoretischen

Zuganges mit aufwändigen numerische Simulationen analysieren wir die sich ausbildende nichtlin-

eare Dynamik. Insbesondere untersuchen wir die resultierende Verschiebung der kollektiven Anre-

gunsspektren in der Nähe einer parametrischen Resonanz, wo die antreibende Frequenz mit einer

kollektiven Modenfrequenz zusammenfällt. Eine andere Anwendung von experimenteller Bedeutung

besteht darin, geometrische Resonanzen in BECs mit Zwei- und Drei-Teilchen-Wechselwirkungen zu

studieren, wo eine Veränderung der Geometrie des Fallenpotentials zu kommensurablen kollektiven

Anregungsfrequenzen mit emergenten nichtlinearen Efekten wie Frequenzverschiedungen und reso-

nanter Modenkopplung führt. In diesem Zusammenhang zeigen wir auch, dass eine kleine repulsive

Drei-Teilchchen-Wechselwirkung die Stabilitätsregion eines Kondensates mit einer attraktiven Zwei-

Teilchen-Wechselwirkung vergrößern kann, da dies die kritische Atomzahl in der Falle erhöht.

Abgesehen von einer periodischen Modulation eines Systemparameters kann die Dipolmodenfre-

quenz auch dadurch angeregt werden, dass man eine plötzliche Änderung des Potential bewirkt, so

dass der Schwerpunkt gemäß des Kohn-Theorems im Fallenpotential unabhängig von der Stärke und

von dem Typ der Zwei-Teilchen-Wechselwirkung mit der natürlichen Fallenfrequenz hin- und heroszil-

liert. Hierzu studieren wir die kollektiven Anregungsmoden eines Bose-Einstein-Kondensates in einer

harmonischen Ioffe-Pritchard-Falle in der Umgebung einer Feshbach-Resonanz für experimentell real-

istische Parameter eines 85Rb BECs, wo die Dipolmode in z-Richtung angeregt ist. Eine Linearisierung

der zugrunde liegenden Bewegungsgleichungen zeigt, dass die Dipolmodenfrequenz kleiner wird, wenn

das Magnetfeld die Feshbach-Resonanz erreicht, so dass das Kohn-Theorem verletzt wird.

Schließlich diskutieren wir innerhalb eines Variationszuganges die physikalischen Eigenschaften eines

BECs in einer axialsymmetrischen harmonischen Falle mit einem einzelnen Vortex im Zentrum. Zu-

nächst untersuchen wir die Gleichgewichtskonfiguration und bestimmen sowohl die Vortex-Größe als
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auch die Thomas-Fermi-Radien des Kondensates im Thomas-Fermi-Limes. Dann berechnen wir die

kritische Rotationsfrequenz für die Emergenz eines Vortex und vergleichen unsere Ergebnisse mit der

Literatur. Schließlich untersuchen wir, wie die Anwesenheit eines Vortex die kollektiven Anregungsfre-

quenzen verändert und wir diskutieren die freie Expansion eines BECs. All diese Resultate zeigen, wie

nichtlineare dynamische Eigenschaften auf der Grundlage unserer Resultate in künftigen Experimenten

beobachtet werden können.
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1. Introduction

1.1. Bose-Einstein Condensates

A Bose-Einstein condensate (BEC) is a particular state of matter of a system of bosons confined in

an external potential. The atoms are cooled to temperatures very near to absolute zero. Under this

condition, a large fraction of the bosons occupy the lowest energy level, which is when the bosons are

reduced to a state of zero velocity.

This new state of matter was first predicted in 1924 by an Indian physicist and mathematician

called Satayendra N. Bose who rederived that the thermal distribution of photons is not a Maxwell-

Boltzmann but a Planck distribution [1]. Albert Einstein extended this work to a system of non-

interacting massive Bose particles and presented the basic idea of a BEC in 1925 [2]. He realized that

a large fraction of particles occupies the state of lowest energy at low temperature.

Immediately after the discovery of superfluidity in liquid helium in 1938 [3,4], F. London suggested

the first approaches for realizing a BEC by using superfluid liquid 4He [5,6]. However, interactions

between particles in superfluid 4He are stronger than an ideal gas system which was studied by A.

Einstein [2]. Therefore, the connection between the two concepts of BEC and superfluidity was not

straightforward. Theoretical and experimental results show that the fraction of condensed particles

in superfluid liquid 4He is less than about 7% at zero temperature [7–9]. The first microscopic theory

of interacting Bose gases in the realm of BEC was formulated in 1947 by N.N. Bogoliubov [10]. He

introduced quantum corrections on top of a mean-field theory in order to account for atom-atom

interactions in the trapped gas.

The phenomenological theory of superfluidity in terms of the excitation spectrum of 4He liquid was

developed by L.D. Landau [11], which was later supported by the experimental confirmation for the

postulated excitation spectrum [12]. The concept of the off-diagonal long-range order is one of the

interesting effects which connect BEC and superfluidity. The subject has been extensively studied

by many theorists, including Landau and Lifshitz [13], Penrose [14], and Penrose and Onsager [7].

Another important aspect of BEC and superfluidity is the occurrence of quantized vortices which

were predicted by Onsager [15] and Feynman [16], and which were first observed in superfluid 4He

[17,18] and more recently in atomic BEC [19].

The first Bose-Einstein condensate of dilute atomic 87Rb was produced by the JILA group led by

E. Cornell and C. Wieman [20,21]. Two experimental achievements were reported in the same year by

the Ketterle group in MIT for 23Na [22] and the Hulet group in Rice University for 7Li [23,24]. This

was made possible by advancements in atom cooling and trapping techniques [25–27], that allowed

experimentalists to cool dilute gases of neutral atoms down to extremely low temperatures. An atomic

Hydrogen condensate was finally produced in the year 1998 [28]. There are two cooling techniques

to create the dilute atomic BEC in laboratory by combining laser cooling and evaporative cooling

[20,22]. The first cooling technique relies on trapping the atoms due to a Zeeman shift [20] in a

magneto-optical trap and cooling them to about 10 µK. Afterwards, they are bombarded by photons

of counter-propagating laser beams in all three spatial directions. The second cooling technique is

performed by removing the high-energy tail of the thermal distribution from the trap, thus lowering

the temperature below 1 µK [22].

In these experimental realizations of BECs the atoms were confined in magnetic traps and cooled
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1. Introduction

Figure 1.1.: Velocity distribution taken from JILA BEC Homepage [29]. The respective temperature

is established by fitting two Gauss functions to the data, one for the thermal background

and one for the condensate.

down to extremely low temperatures which are of the order of fractions of 10−6 kelvins. The first

argument for condensation emerged from time-of-flight measurements, where the atoms were left to

expand by switching off the confining trap and then they were imaged with optical methods. To this

end a large peak in the velocity distribution was observed below a critical temperature, providing

a clear signature for BEC. For their achievements Cornell, Wieman, and Ketterle were awarded the

Nobel Prize in Physics in 2001. Figure 1.1 shows a velocity distribution at three different temperatures

within the formation of a Rb BEC atoms, where the critical temperature Tc is of the order 1 µK. The

colors in Fig. 1.1 show the number of atoms at various velocities, with red and white corresponding

to the fewest and the greatest number, respectively. The left-hand figure shows a classical Maxwell-

Boltzmann distribution at a temperature which is larger than the critical temperature, thus most of

the atoms still have a finite velocity. The middle image indicates the emergence of a peak which

describes that some of the atoms have reached a state of zero velocity and occupy the ground state.

However, this image also shows that some atoms remain with non-zero velocities. Finally, the right-

hand figure, taken at a temperature much below Tc, shows that a large fraction of the atoms now

occupy the ground state and have zero velocity.

To date, dilute BEC’s have been created with Rubidium [20], Sodium [22], Lithium [23], spin-

polarized Hydrogen [28], metastable Helium [30], Potassium [31], Cesium [32], Ytterbium [33], Calcium

[34], and Strontium [35,36]. In addition, other elements of special interest due to their large magnetic

dipole-dipole interaction have also been condensed, such as Chromium [37], Dysprosium [38], and

more recently Erbium [39].

Atomic systems present a high degree of control of both the external confinement and the strength

of interactions between the constituents. The latter has become possible as the interaction strength

between particles can be tuned by using Feshbach resonances [40–42] which allow control of the

strength of s-wave and even higher order scattering between atoms through external fields. Theoretical

predictions of the properties of a BEC such as the density profile [43], collective excitations [44] and the

formation of vortices [45] can now be compared with experimental data [19,20,46] by adjusting some

tunable external parameters, such as the trap frequencies. Needless to say, this dramatic progress on

the experimental front has stimulated a corresponding wave of activity on both the theoretical and

the numerical front.

From a theoretical point of view, and for a wide range of experimentally relevant conditions, the

dynamics of a BEC can be well described by means of an effective mean-field theory. This approach

is much simpler than dealing with the underlying full many-body theory and can describe quite

accurately the static and dynamical properties of BECs. The relevant model is a classical nonlinear

10



1.2. Collective Excitations

Figure 1.2.: An experimental measurement of the collective BEC modes, a figure taken from MIT BEC

Homepage [68]. The time evolution of a BEC cloud is presented by a series of density

profiles. Shape oscillations are coupled with the center of mass motion. The field of view

in the vertical direction is about 200 µm and the time step is 10 ms per frame.

evolution equation, the so-called Gross-Pitaevskii (GP) equation [47–50]. In fact, this is a variant of

the famous nonlinear Schrödinger (NLS) equation [51,52], which is a universal model describing the

evolution of complex field envelopes in nonlinear dispersive media. In case of BECs, the nonlinearity is

introduced by the interatomic interactions in the GP model and is accounted for through an effective

mean-field. The results obtained by solving the GP equation show excellent agreement with most of

the experiments. The GP equation is not generally applicable at finite temperatures; nonetheless, Ref.

[53] has demonstrated a procedure in which this form may be used to represent the effect of thermal

atoms within a mean-field approach [54–57]. GP also fails for quantum fluctuations [58–60].

1.2. Collective Excitations

Bose-Einstein condensation (BEC) in a dilute atomic vapor [20–24,61–63] has pathed the way for nu-

merous experimental and theoretical works to study and understand ultracold quantum gases which

can be regarded as a new state of matter. In particular, many experiments have focused on inves-

tigating collective excitations of harmonically trapped Bose-Einstein condensates BECs, as they can

be measured very accurately on the order of less than 1% and thus provide a reliable method for

extracting the respective system parameters of such ultracold quantum gas systems [64].

The experiments started with the condensate at very low temperature, where the thermal cloud

of the condensate is not present, and the collective oscillation modes were induced by a modulation

of the external trapping potential [46,64–67]. The collective modes were excited by applying a small

time-dependent perturbation of a given frequency to the transversal component of the trap potential

and the resulting real-time dynamics in terms of shape oscillations of the condensate was observed

in Ref. [46]. Based on these measurements, two low-lying eigenmodes of different symmetry were

identified. The same procedure was repeated at higher temperatures, when the condensate is not

present, and, as expected, the thermal cloud has produced only a response corresponding to the

excitations of a normal Bose gas. The condensate was also excited by a time-dependent modulation

of the trapping potential experimentally, which additionally included a spatial displacement of the

potential minimum [65]. In this case, shape oscillations coupled with the center of mass motion were

observed. A typical experimental observation is given in Fig. 1.2.

The agreement between measured frequencies [46,65,69] and theoretical predictions [44,70–73] is

one of the first important achievements in the investigation of these new systems. At the mean-

field level, they can be successfully described by the time-dependent Gross-Piteavskii equation for the

macroscopic wave function of a BEC at zero temperature [47–50].
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Figure 1.3.: (a) Basic two-channel model for a Feshbach resonance. The phenomenon occurs when

two atoms colliding at energy E in the entrance channel resonantly couple to a molecular

bound state with energy Ec supported by the closed channel potential. In the ultracold

domain, collisions take place near zero-energy, i.e. for E → 0. Resonant coupling is then

conveniently realized by magnetically tuning Ec near 0, if the magnetic moments of the

closed and open channel differ. (b) Feshbach resonance of a 7Li BEC: Dependence of the

scattering length on the external magnetic field. Results are taken from Ref. [87].

The Gross-Piteavskii equation can be solved numerically. There has been a series of studies which

deal with the numerical solution of the time-independent GP equation for the equilibrium shape of

the condensate and the time-dependent GP equation for finding the dynamics of a BEC. In order to

obtain a numerical solution of the time-dependent GP equation the Refs. [73–76] presented a time-

splitting spectral method. Refs. [77–80] used the Crank-Nicolson finite difference method to compute

the ground-state solution and the dynamics of the GP equation. For the ground-state solution of GP

equation Refs. [71,81,82] presented a Runge-Kutta type method and used it to solve in 1D and in 3D

with spherical symmetry, whereas Ref. [83] presented a general method to compute the ground-state

solution via directly minimizing the energy functional. In particular, it can be solved variationally by

assuming a Gaussian ansatz for the wave function [84,85]. The collective oscillation modes have been

studied extensively due to the perfect control of atomic interactions using a Feshbach resonance. The

Feshbach resonance is an important tool to experimentally investigate cold atomic gases. It allows

to tune the scattering length to values much larger than the mean interatomic distance and even

to change its sign by modifying the external magnetic field [86]. This resonance occurs when the

energy associated with an elastic scattering process comes close to the energy of a bound state, see

Fig. 1.3(a). This phenomenon was first investigated in the context of reactions forming compound

nuclei [88] and later on, independently, for a description of configuration interactions in multielectron

atoms [89]. In the context of cold atomic physics the Feshbach resonance was first used for bosonic

systems [40,41]. Due to non-elastic processes the tuning of interaction strength is limited to the case

of repulsive interactions [90]. In the case of fermions, due to the Pauli principle, three-body losses are

suppressed and this causes a greater stability of the gas [91].

R. Hulet’s group from the Rice University [87], demonstrated for a BEC of 7Li an extreme tunability

of interactions in the vicinity of a broad Feshbach resonance. In the mentioned experiment, atoms

were trapped by the optical trap, while the bias magnetic field was used for tuning the scattering

length via the Feshbach resonance. For the accessible range of values of magnetic field B, a ground-

state condensate was produced and the corresponding density profiles were observed. By measuring the

width of the condensate distribution and comparing these values with the corresponding numerical data

12



1.2. Collective Excitations
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Figure 1.4.: Quadrupole oscillations of the BEC cloud, presented by a series of density profiles taken

at equidistant time steps of 15 ms. Results are taken from Ref. [93].

based on the GP equation, information on the scattering length spanning seven orders of magnitude

was extracted, as can be seen in Fig. 1.3(b). The Feshbach resonance can be described by an effective

pseudopotential between atoms of the open channel with the scattering length:

as(B) = aBG

(

1− ∆

B −Bres

)

. (1.1)

In this way, the following values of the parameters of the Feshbach resonance were obtained precisely:

The background value amounts to aBG = −24.5a0, where a0 represents the Bohr radius the width is

given by ∆ = −192.3(3)G and the resonance occurs at Bres = 736.8(2)G.

In a recent experiment led by V. S. Bagnato and R. G. Hulet a quadrupole mode of a 7Li condensate

was excited by modulating the scattering length [92,93] through a broad Feschbach resonance [87]

according to

as(t) = aav + δa cos(Ωt). (1.2)

Here aav ≈ 3a0 represents the background s-wave scattering length, δa ≈ 2a0 the driving amplitude,

and Ω the driving frequency. In Fig. 1.4, a quadrupole oscillation of the cloud is clearly observable

[93]. The large oscillation amplitudes considered here extend over approximately 1 mm of the optical

trap. A harmonic approximation of the trapping potential about the trap center is less than 10 % in

error over this range. The cloud size in Fig. 1.4 as a function of time is modeled well by a variational

calculation, which is consistent with negligible anharmonic contributions. Furthermore, no damping of

the quadrupole mode was observed over many oscillation periods, which is consistent with a negligible

thermal fraction.

Several recent experiments [94,95] have studied creation and interaction of solitons in the atomic

BEC. Another subject of wide interest is the formation of Faraday patterns in a driven system [96–99].

An observation of this type of dynamics in a BEC was given in Ref. [100], where a density wave in the

axial direction was produced by a strong modulation of the strength of the radial trapping potential.

A further experimental research includes even a study of the quantum turbulent regime in a BEC [101]

by a combination of rotation, strong modulation of trap strength and trap displacement. In essence,

quantum turbulence is a superfluid turbulence characterized by the presence of tangled vortices. It

was initially studied in superfluid Helium, but now it can be studied in a more controlled way in a

BEC setup, as shown in Ref. [101].

In order to be able to keep up with the experimental advances, new theoretical approaches for the

description of collective modes of a trapped system were developed. In the mean-field framework,

a linearization of the GP equation around the ground-state was studied [102]. The collective oscil-

lation modes can be induced in a BEC by modulating the external potential trap [46,65,103–107].

Alternatively, this can also be allowed by a modulation of the s-wave scattering length [87,93,108–111]

or the strength of three-body interactions [108]. In the Thomas-Fermi (TF) limit, Stringari [70] has
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analytically calculated frequencies of the collective modes, while Edwards et al. [44] extended these

calculations via a numerical solution of the GP equation. Due to the inherent nonlinearity in this

equation of motion, a wide variety of interesting phenomena are observed in collective excitations of

BECs, including frequency shifts [105,109,112,113], mode coupling [105,112–115], damping [64,116] as

well as collapse and revival of oscillations [105,117,118].

BEC systems are highly nonlinear and, therefore, a resonant coupling between collective modes

is expected. It was experimentally observed [114,115] that, when the parity quadrupole mode is

excited by changing the trap anisotropy parameter above a certain value, it is possible to achieve an

energy transfer between modes at a rate which is comparable to the collective mode frequency. In

Ref. [105], the frequency shift of collective modes was analytically studied due to the change of the trap

anisotropy in a generic axially-symmetric geometry using the hydrodynamic equations in the Thomas-

Fermi approximation [70]. When the frequencies of two collective modes are tuned to be commensurate

by varying the trap anisotropy, which are called geometric resonances, strong nonlinear effects can

be observed even for oscillations of relatively small amplitude. In Ref. [119], the authors studied the

dynamics of large amplitude collective mode oscillations, frequency shifts and mode couplings for the

case of a superfluid Fermi gas in the transition from a BCS superfluid to a BEC based on a superfluid

hydrodynamic approach. The coupling rates between various modes were calculated analytically in

Ref. [115], and it was shown that the coupling can be well described by a simple Hamiltonian, enabling

quantitative studies of the squeezing effects which are related to harmonic-generation processes. The

excitations of quadrupole and scissor modes in two-component BECs with a particular emphasis on

the nonlinear dynamics due to the mode coupling between these modes were investigated in Ref. [120].

Recently, also a coupling of the dipole mode with the breathing and quadrupole mode was analyzed

in the immediate vicinity of a Feshbach resonance [121,122].

1.3. Three-Body Interaction

It is well known that the majority of theoretical studies of collective excitations of a BEC is mainly

focused on considering the two-body contact interaction due to the diluteness of the quantum gas

[69,93,105,109,114,115,123]. On the other hand, in view of the experimental progress with BECs in

atomic waveguides and on the surface of atomic chips, which involve a strong compression of the traps,

a significant increase of the density of BECs can be achieved, thus also three-body interactions may

play an important role [124–126]. Theoretical and experimental studies [124,127,128] for a BEC of
87Rb atoms indicated that the real part of the three-body interaction term can be 103−104 times larger

than the imaginary part. The imaginary part, which arises from three-body recombinations, limits the

lifetime of the condensate. However, even for a small strength of the three-body interaction, the region

of stability for the condensate can be extended considerably according to Ref. [129]. Due to the three-

body interaction, the density profile of the condensate changes [130] and, correspondingly, also the

excitation spectrum of the collective oscillations is modified [131,132]. The modulation instability of

a trapped BEC immersed in a highly elongated harmonic trap with two- and three-body interactions

was studied both analytically and numerically [133]. The effect of the three-body interaction was

furthermore studied in ultracold bosonic atoms in an optical lattice [126,134–141], in the BCS-BEC

crossover [142], for complex solitons in BECs [143,144] and for a vortex in a BEC [145]. The properties

of 2D Bose gases at large scattering lengths or near resonance are dictated by three-body effects in Ref.

[146]. Universality in the three-body parameter in heteronuclear atomic systems have been predicted

and analyzed in Ref. [147].

The collective excitations of a 1D BEC in a quadratic plus quartic trap are studied on the level

of the Gross-Pitaevskii equation, and the collective excitation spectra are calculated as functions of
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the two-body interaction as well as an anharmonic parameter in Ref. [148]. The collective excitations

of a one-dimensional Bose-Einstein condensate trapped in an anharmonic potential were also studied

in Ref. [149] by solving the time-dependent Tonks-Girardeau equation. In Ref. [150] the authors

investigated the collective excitations of a 1D BEC with two- and three-body interactions in a harmonic

trap with an anharmonic distortion up to a quintic term, by mainly focusing on the effect of the three-

body interaction on the excitations by a variational analysis of the GP equation. The transition

temperature, the depletion of the condensate atoms, and the collective excitations of a BEC with two-

and three-body interactions in an anharmonic trap at finite temperature are studied in Ref. [151].

Reference [152] shows that the frequency of the collective excitation is also significantly affected by

the strength of the three-body interaction and the anharmonicity of the potential. In Ref. [153]

the authors investigated the collective excitations and the stability of a BEC in a one-dimensional

trapping geometry for the case of a repulsive or attractive three-body interaction together with a

repulsive two-body interactions by a standard variational approach.

An attractive two-body interaction has a profound effect on the stability of a BEC, since a large

enough attractive interaction will cause the BEC to become unstable and collapse [63,154–157]. In

Refs. [85,158–160] it was shown within the Gross-Pitaevskii formalism, that the critical particle number

for a BEC in cylindrical traps can be obtained numerically. In Ref. [161] the GP equation for a system

composed of attractive bosons confined in a harmonic trap was analyzed via a controlled perturbation

theory. In this way it was shown that the critical particle number strongly depends on the anisotropy

of the trap. In Ref. [162], an analytical solution of the Gross-Pitaevskii equation for a BEC with

negative effective interaction strength was considered in a cylinder-symmetric trap. In particular,

an analytical formula was derived which analyzes the critical particle number as a function of the

anisotropy of the confining potential. Ref. [163] investigates how the critical particle number changes

due to small anharmonic terms added to the confining potential of an atomic condensed system with

negative two-body interaction. The dynamics of a recombination three-body Gross-Pitaevskii equation

for trapped atomic systems with attractive two-body interaction was investigated numerically [164].

In Refs. [130,159] the authors show that, in a dilute gas, a small repulsive three-body interaction

added to an attractive two-body interaction is able to stabilize the condensate such that the critical

number of atoms in traps increases [154]. The maximal critical number of atoms occurs in a spherical

trap according to various theoretical predictions [85,158,159,165,166], which agrees with experimental

measurements [63].

1.4. Vortices in Atomic Bose-Einstein Condensate

The study of vortices has a long and illustrious scientific history reaching back to Helmholtz and Lord

Kelvin in the nineteenth century [167]. The experimental achievement of Bose-Einstein condensation

in trapped alkali-metal gases at low temperature [20,22,24] has stimulated intense experimental and

theoretical activity. Vortices associated with quantized circulation are a central feature of superfluid-

ity [168]. Singly- [19,169] and multiply-quantized [170] vortices have been observed in Bose-Einstein

condensates (BECs) with repulsive atomic interactions. Complex vortex structures have been shown to

be stable in repulsive BEC’s, including vortex dipoles [171,172] and vortex rings [173]. In Ref. [174,175]

BECs were studied both experimentally and theoretically in view of the creation and dynamics of sin-

gle vortices as well as vortex lattices in ultracold atomic. These systems offer the possibility for a

direct observation of vortex lines and their dynamics. They are thus excellent systems for a com-

prehensive theoretical study of vortex lines in three dimensions. Two basic experimental methods

have been most effective in creating vortices in a BEC. The first approach [19] manipulates two hy-

perfine components of 87Rb, spinning up one component with an external coherent electromagnetic
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coupling beam [176]. The second nearly simultaneous approach [169] is similar to the rotating-bucket

method of conventional low-temperature physics [168]. The starting point for studying the behavior of

BECs is the theory of weakly interacting bosons which takes the form of the Gross-Pitaevskii theory.

This theory is well suited to describe most of the effects of two-body interactions in the dilute gas

at almost zero temperature and can be naturally generalized to explore thermal effects on the BEC

[24,49,50,177–179]. The effect of vortices in the condensate for both positive and negative scattering

lengths has been considered in Refs. [180,181]. For instance an analytical expression for the vortex

critical frequency was found in the limit of a large particle number for positive scattering length, by

approximately solving the time-independent GP equation. The vortex nucleation and the emergence

of quantum turbulence, induced by oscillating magnetic fields, was introduced by Refs. [182,183].

A rotating Bose condensate state with a single vortex along the z-axis is studied in Refs [43,184].

There the superfluid coherence length was estimated, which determines the distance over which the

condensate wave function can heal, by equating the kinetic energy term to the interaction energy and

the critical angular frequencies required to create a vortex along the z-axis. Furthermore, analytic

expressions for the monopole and the quadrupole excitation frequencies of a gravitationally self-bound

BEC state with a single vortex induced by the electromagnetic wave were derived for a wide range of

the dimensionless interaction, by considering two regimes, namely, the Thomas-Fermi-gravity (TF-G)

and the gravity (G) regimes [184]. In these regimes, the lower bound of the ground-state energy, the

sound velocity, and the monopole and quadrupole mode frequencies were calculated.

In Ref. [185] it was shown that a vortex appears in a BEC confined in a quadratic-plus-Gaussian

laser potential due to the spontaneous shape deformation of the system in a BEC confined by harmonic

trap only and the correct critical rotational frequency to create a single vortex was calculated. It was

found that, by increasing the magnitude of the laser trap, a vortex can nucleate in a slowly rotating

BEC. In the meantime, the quadratic-plus-quartic potential has been achieved experimentally by

superimposing a blue detuned laser beam to the magnetic trap holding the atoms [186]. References.

[187,188] showed that the shape deformation and consequently the formation of a quantized vortex in

a rotating attractive and repulsive BEC depends on the strengths of both the atom-atom interaction

and the anharmonical potential. The lowest energy surface mode excitation frequency and the critical

rotational frequency of a BEC with both two- and three-body interactions confined in a quadratic-

plus-quartic and harmonic-plus-Gaussian trap were discussed in Ref. [188]. It was found that the

critical rotational frequency for a vortex formation in the harmonic-plus-Gaussian potential is lower

than that in the quadratic-plus-quartic potential. The dynamics of vortex formation and the structure

of vortex lattices in a Bose-Einstein condensate confined within a rotating double-well potential are

numerically studied in Ref. [189]. In Ref. [190] the vortex-core structures according to the topology

of the order parameter space were studied for a spin-1 Bose-Einstein condensate and it was shown

that the vortex-core structures are classified by winding numbers that are locally defined in the core

region. There was also shown that a vortex-core structure with a nontrivial winding number can be

stabilized under a negative quadratic Zeeman effect.

A vortex in a rotating BEC with repulsive short-range interactions was extensively shown both

analytically [191–193] and experimentally [19,169,194,195]. The motion of vortex lines and rings in

BECs in harmonic traps are studied by a numerical solution of the GP equation in Ref. [196].

The effects of the dipole-dipole interaction on a condensate with a single vortex core were explored

in Ref. [197]. The conditions for the generation of such dipolar BECs vortex are presented in Ref.

[198]. The stability and excitations of harmonically trapped dipolar BECs with single and double

quantized vortices were discussed in Ref. [199]. The low-lying excitations were calculated by using

the Bogoliubov-de Gennes formalism and the dynamical stability was determined as a function of trap

aspect ratio and dipole-dipole interaction strength. A single quantized off-axis straight vortex in a

rotating dipolar BEC was studied in the Thomas-Fermi limit in Ref. [200]. In addition, the critical
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rotation frequency at which a vortex state becomes energetically favorable over the vortex-free ground

state in a harmonically trapped Bose-Einstein condensate, whose atoms have dipole-dipole interactions

as well as the usual s-wave contact interactions, were calculated in Ref. [201]. In Ref. [202] the role

of critical trap aspect ratios on both the critical angular velocity above which a vortex is energetically

favorable and the precession velocity of an off-axis vortex was discussed. The influence of dipole-

dipole interaction on the formation of vortices in a rotating dipolar BEC of 52Cr and 164Dy atoms in

quasi two-dimensional geometry have explored in Ref. [203]. In Ref. [204] the authors discussed the

properties of a vortex in a trapped dipolar BEC.

The frequency shifts of the quadrupole oscillations of a harmonically trapped Bose gas due to the

presence of a quantized vortex were calculated by using a sum rule approach in Ref. [205] for posi-

tive scattering lengths and large particle number, where the shift relative to excitations of opposite

angular momentum is proportional to the quantum circulation of the vortex. The normal modes

of a two-dimensional rotating Bose-Einstein condensate confined in a quadratic plus quartic trap

were studied in Ref. [206]. The hydrodynamic theory and sum rules were used to derive analytical

predictions for the collective frequencies in the limit of high angular velocities where the vortex lat-

tice produced by the rotation exhibits an annular structure. The collective excitations of a neutral

atomic Bose-Einstein condensate with gravity-like interatomic attraction, which was induced by an

electromagnetic wave, were studied in ref. [184]. By using a time-dependent variational approach, an

analytical spectrum for monopole and quadrupole mode frequencies of a gravity-like self-bound BEC

state at zero temperature was derived. The eigenfrequency of the single vortex precession about the

centre of symmetry of the harmonic potential, as well as the eigenfrequencies of the oscillations of the

dipole and quadrupole vortex cofigurations were obtained both analytically and numerically in Ref.

[207] by using the Rayleigh-Ritz method.

In Ref. [208] it was shown that collective mode frequencies for both monopole and quadrupole

modes and the critical rotational frequency for a single vortex nucleation are changed significantly

when the system crosses from the BEC side to the BCS side. Furthermore, it was found that rotating

Fermi gases are dramatically influenced by both the anisotropy and the anharmonicity of the trap.

The vortex structures in the BCS-BEC evolution of p-wave resonant Fermi gases were investigated

in Ref. [209] by using a fully microscopic theory based on the Bogoliubov-de Gennes equation. The

properties of vortices at finite temperature, including decay rate, precession frequency and vortex

core brightness were investigated by using the formalism Zaremba, Nikuni, and Griffin (ZNG) based

on a dissipative Gross-Pitaevskii equation for the condensate coupled to a semi-classical Boltzmann

equation for the thermal cloud in Ref. [210].

1.5. This Thesis

In this thesis, we study both analytically and numerically the nonlinear dynamics of BECs, in par-

ticular its collective oscillation modes, which are induced either by a harmonic modulation of the

interaction strength or by changing by the geometry of the trapping potential. In addition we inves-

tigate how the dipole mode changes in the vicinity of a Feshbach resonance and how the collective

excitations of a BEC change due to the presence of a single vortex.

Chapter 2 reviews the most important concepts of the theory of ultracold bosons. We begin

with the second quantization Hamiltonian, and show how the GP equation can be obtained from

the Heisenberg equation. We discuss the Thomas-Fermi limit for the case in an axially-symmetric

trap. Then we review the variational description of low-lying modes in the linear regime for a system

with both two- and three-body interaction and we discuss in detail the stability of a Bose-Einstein

condensate in the presence of an attractive two-body and a repulsive three-body interaction strengths.
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Furthermore, we investigate the behavior of the condensate during the free expansion after the trapping

potential is turned off.

In Chapter 3 we analyze the condensate dynamics induced by the harmonic modulation of the

s-wave scattering length via a Feshbach resonance, yielding a time-dependent interaction strength. An

external driving frequency is used for the modulation and, depending on its closeness to some of the

condensate eigenfrequencies, either a resonant or a non-resonant behavior can be observed. This is a

new venue for studying the nonlinear dynamical regime, since the equations governing the condensate

dynamics on the mean-field level are nonlinear, and large amplitude oscillations are readily produced

in the resonant regime. By combining different analytical and numerical methods we analyze how

nonlinear effects influence the properties of the excited collective modes, which has important implica-

tions within parametric resonance for the interpretation of the actual experimental data. Prominent

nonlinear features, such as mode coupling, higher harmonics generation, and significant shifts in the

frequencies of collective modes are found and are quantitatively explained by using an analytic pertur-

bative approach. In the non-resonant case, we have small-amplitude oscillations of the condensate size

around the equilibrium widths, and we are in the regime of linear response. However, as the driving

frequency approaches an eigenmode, we expect a resonant behavior which is characterized by large

amplitude oscillations. In this case it is clear that a linear response analysis does no longer provide a

quantitatively good description of the system dynamics [109].

By changing the geometry of the trapping potential we study in Chapter 4 the dynamics of

the condensate in general and its collective oscillation modes. In particular, the asymmetry of the

confining potential leads to important nonlinear effects, including resonances in the frequencies of

collective oscillation modes of the condensate [105,109,112]. We discuss in detail the resulting stability

of the condensate. First, we consider the case of an attractive two-body interaction and a vanishing

three-body interaction. Then we consider the case when we have attractive two-body and repulsive

three-body interaction. We study in detail geometric resonances, when collective mode frequencies are

commensurate, and derive explicit analytic results for the frequency shifts in the case of an axially-

symmetric condensate with two- and three-body interactions based on a perturbative expansion within

the Poincaré-Lindstedt method. Such a frequency shift is calculated for quadrupole and breathing

modes, and the derived analytical results are then compared with numerical simulations. In addition,

we also compare results of numerical simulations for radial and longitudinal widths of the condensate

and the corresponding excitations spectra with the analytical results obtained using perturbation

theory. Then, we analyze the resonant mode coupling and the generation of second harmonics of

the collective modes, which are induced by nonlinear effects. To this end we consider a BEC in the

initial state corresponding to the stationary ground state with a small perturbation proportional to

the eigenvector of the quadrupole mode, which leads to quadrupole mode oscillations.

In Chapter 5 we study the collective excitation modes of a harmonically trapped Bose-Einstein

condensate in the vicinity of a Feshbach resonance [121]. To this end, we consider a Bose-Einstein

condensate held in a trap composed of a harmonic potential plus a bias, where the potential is generated

by the interaction of the atomic magnetic moment and an external magnetic field, yielding a spatially

varying interaction strength. In the configuration, the dipole mode is excited in the z-direction,

the center of mass oscillates periodically at the bottom of the trap. Within a variational ansatz we

investigate how the dipole mode frequency changes once the bias magnetic field is sweeping through

the Feshbach resonance, thus yielding a violation of the Kohn theorem.

In Chapter 6 we study the static and dynamic properties of a single vortex in a Bose-Einstein

condensate. Our starting point is the Gross-Pitaevski equation in the Thomas-Fermi limit where

we show that the circulation of a vortex in a BEC is quantized. Within a variational approach we

approximate the equations of motion for a condensate with a centered vortex and discuss equilibrium

points as well as the frequencies of collective modes. Furthermore, we calculate the energies for a
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condensate with and without a vortex and obtain the critical rotation frequency for a rotating trap

at which a vortex state becomes stable. We then investigate the behavior of the condensate in free

expansion after the trapping potential is turned off.

All these results indicate how nonlinear dynamics properties could be made clearly observable in

future experiments on the basis of our results.
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In this chapter, we describe the theoretical basis of the Gross-Pitaevskii mean-field theory for BECs

with two- and three-body interaction and present the notation that we will use throughout the re-

mainder of this thesis. The starting point for our study is the second quantized Hamiltonian for a gas

of interacting bosons from which we derive the mean-field Gross-Pitaevskii equation in Section 2.1. In

Section 2.2, we review the variational approach from Refs. [84,85] which reduces the partial differential

equation of Gross and Pitaevskii to a set of ordinary differential equations for the dynamics of the

widths of the condensate. After having discussed the equilibrium positions in Section 2.3, we calculate

in Section 2.4 the main results for the low-lying collective excitation modes of a BEC. On the basis

of this we determine in Section. 2.5 the resulting stability of the condensate for both an attractive

two-body and a repulsive three-body interaction strength. Furthermore, we discuss in Section 2.6 the

behavior of the condensate in free expansion after the trapping potential is turned off.

2.1. Second Quantization Hamiltonian

The second quantised Hamiltonian for a gas of bosons interacting by two- and three-body collisions

within an external trapping potential is given by [50,151,211–213]

Ĥ =

∫

drΨ̂†(r, t)h0(r)Ψ̂(r, t) +
1

2

∫

dr

∫

dr′Ψ̂†(r, t)Ψ̂†(r′, t)V2(r− r′)Ψ̂(r′, t)Ψ̂(r, t) (2.1)

+
1

3

∫

dr

∫

dr′′
∫

dr′Ψ̂†(r, t)Ψ̂†(r′, t)Ψ̂†(r′′, t)V3(r− r′, r′ − r′′)Ψ̂(r′′, t)Ψ̂(r′, t)Ψ̂(r, t),

where h0(r) = − ~2

2M∆+ Vext.(r) denotes the single-atom Hamiltonian, M is the particle mass, Vext. is

the external harmonic trap. Assuming homogeneity for the interactions, the tow-body interaction is

denoted by V2(r−r′) and the three-body interaction reads V3(r−r′, r′−r′′). Furthermore, Ψ̂†(r, t), and

Ψ̂(r, t) are bosonic creation and annihilation field operators, respectively, which satisfy the equal-time

Bose commutation relations [211]

[

Ψ̂(r, t), Ψ̂(r′, t)

]

=

[

Ψ̂†(r, t), Ψ̂†(r′, t)

]

= 0,

[

Ψ̂(r, t), Ψ̂†(r′, t)

]

= δ(r− r′). (2.2)

The next step is to simplify the interatomic interaction potential V2(r−r′). At low temperatures s-wave

scattering is the dominant collision process in dilute gases. If the s-wave scattering length as is small

compared to the de-Broglie wavelength λdB =
√

2π~2/MkBT , then the interatomic potential can be

replaced by an effective interaction which is well described by a delta-function potential [49,50,214],

V2(r− r′) = g2δ(r − r′), (2.3)

where the coupling two-body interaction g2 is given by

g2 = 4π~2as/M . (2.4)

Positive as corresponds to repulsive two-body interaction and negative as corresponds to attractive

two-body interaction.
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The three-body interaction becomes important for large values of the s-wave scattering length, but

also for small values of as close to the ideal gas regime [215]. It is well known that the stability against

the collapse of 85Rb cannot be described by using only the two-body scattering [216]. The three-body

scattering also plays an essential role in understanding the Efimov physics, where three bosons form

a bound state [217,218]. Braaten and Nieto [215,219] have used an effective field theory to calculate

the strength of the three-body interaction, which effectively arises from the two-body interaction, and

obtained the result

V3(r− r′, r′ − r′′) = g3δ(r− r′)δ(r′ − r′′) , (2.5)

with the strength

g3 = 32π(4π − 3
√
3)[ln(κas) +B]~2a4s/M , (2.6)

where κ denotes an arbitrary wave number within the renormalization procedure and B is a complex

constant which is calculated for as < 0 by Efimov [217] and for as > 0 in Ref. [215]. The effective three-

body coupling strength represents in general a complex number, where its imaginary part describes

recombination effects. However, its real part is much larger, and the fit to experimental data for 85Rb

and 87Rb gives typical values for Re(g3)/~ of the order of 10−27cm6s−1 to 10−26cm6s−1 [151,158,220].

Near an Efimov resonance the imaginary part of B vanishes, and the real part amounts approximately

to the value B ≈ 1 [215]. Furthermore, it turns out that the ln(κas) contribution is negligible for

ultracold BECs with a particle density of the order 1013 cm−3. Thus, the three-body interaction

strength Eq. (2.6) reduces approximately to

g3 = 39π(4π − 3
√
3)~2a4s/M . (2.7)

For instance, for 87Rb atoms with an s-wave scattering length of as = 100a0 we obtain the values

g2 = 5~× 10−11cm3s−1 and g3 = ~× 10−27cm6s−1 [126].

We now use this form of the Hamiltonian Eq. (2.2) to derive the resulting time evolution of Ψ̂(r, t).

The Heisenberg equation of motion of the field operator Ψ̂(r, t) is given by

i~
∂Ψ̂(r, t)

∂t
=

[

Ψ̂(r, t), Ĥ

]

, (2.8)

so obtain with Eqs. (2.2), (2.3), and (2.5)

i~
∂Ψ̂(r, t)

∂t
=

[

− ~
2

2M
∆+ Vext.(r) + g2Ψ̂

†(r, t)Ψ̂(r, t) + g3Ψ̂
†(r, t)Ψ̂†(r, t)Ψ̂(r, t)Ψ̂(r, t)

]

Ψ̂(r, t). (2.9)

In 1947, N. N. Bogoliubov [10] formed the basis of a mean-field theory for dilute gases by decomposing

the field operator Ψ̂(r, t) into a complex wave function ψ(r, t), which corresponds to the macroscopic

occupation of the ground state, and ψ̂(r, t), describing the non-condensed fraction, which corresponds

either to thermally-excited atoms or quantum-mechanical fluctuations, where atoms are promoted into

higher energy states due to interactions:

Ψ̂(r, t) = ψ(r, t) + ψ̂(r, t). (2.10)

The equation of motion for the condensate wave function is obtained by substituting Eq. (2.10) into

Eq. (2.9) and taking the expectation value of the field operator Ψ̂(r, t) in such a way that 〈ψ̂(r, t)〉 = 0,
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so we obtain

i~
∂ψ(r, t)

∂t
=

{

− ~
2

2M
∆+ Vext.(r) + g2

[

nc(r, t) + 2ñ(r, t) + m̃(r, t)

]

+ g3

[

n2c(r, t) + 3nc(r, t)m̃(r, t) + 6nc(r, t)ñ(r) + nc(r, t)〈ψ̂†(r, t)ψ̂†(r, t)〉

+ 〈ψ̂(r, t)ψ̂(r, t)ψ̂(r, t)〉ψ(r, t) + 6〈ψ̂†(r, t)ψ̂(r, t)ψ̂(r, t)〉ψ(r, t) + 2ñ(r, t)m̃(r, t)

+ 3〈ψ̂†(r, t)ψ̂†(r, t)ψ̂(r, t)〉ψ(r, t) + 3〈ψ̂†(r, t)ψ̂†(r, t)ψ̂(r, t)ψ̂(r, t)〉
]

}

ψ(r, t)

+ g2〈ψ̂†(r, t)ψ̂(r, t)ψ̂(r, t)〉+ g3〈ψ̂†(r, t)ψ̂†(r, t)ψ̂(r, t)ψ̂(r, t)ψ̂(r, t)〉 (2.11)

with the condensate density nc(r, t) = |ψ(r, t)|2, the non-condensate density ñ(r, t) = 〈ψ̂†(r, t)ψ̂(r, t)〉
which represents the depletion of the condensate by collisional interactions, as well as the off-diagonal

non-condensate density m̃(r, t) = 〈ψ̂(r, t)ψ̂(r, t)〉 which corresponds to the anomalous correlations

between the non-condensed atoms.

The three-, four-, and five-field correlation functions 〈ψ̂†(r, t)ψ̂(r, t)ψ̂(r, t)〉, 〈ψ̂(r, t)ψ̂(r, t)ψ̂(r, t)〉,
〈ψ̂†(r, t)ψ̂(r, t)ψ̂(r, t)〉, 〈ψ̂†(r, t)ψ̂†(r, t)ψ̂(r, t)〉, 〈ψ̂†(r, t)ψ̂†(r, t)ψ̂(r, t)ψ̂(r, t)〉, and 〈ψ̂†(r, t)ψ̂†(r, t)ψ̂(r, t)

ψ̂(r, t)ψ̂(r, t)〉, respectively, have non-zero expectation values due to the broken U(1) symmetry [55,56].

Eq. (2.11) reduces to the GP equation [214] if all the atoms are in the condensate i.e., the non-

condensate density, the off-diagonal non-condensate density, and the correlation functions are ignored.

This is a very good approximation at T = 0, for small enough interactions the non-condensate frac-

tion in trapped atomic gases is estimated to be less than 1% [212,221,222]. Several approximations

for the generalized Eq. (2.11) were discussed in case of a two-body interaction [55,56]: The Hartree-

Fock-Bogoliubov (HFB) approximation for ψ(r, t) corresponds to keeping the nc(r, t), ñ(r, t), and

m̃(r, t) fluctuations, which have to be calculated self-consistently and neglecting the three-field corre-

lation functions 〈ψ̂†(r, t)ψ̂(r, t)ψ̂(r, t)〉 [223–225]. The dynamic Popov approximation corresponds to

consider only the condensate and non-condensate densities nc(r, t), ñ(r, t), respectively and theories of

this approximation were discussed in Ref. [226]. Furthermore, the static Popov approximation amounts

to ignoring the fluctuations in the density ñ(r, t) of the thermal cloud so that the non-condensate is

always in static thermal equilibrium [212,214,222,223].

2.1.1. Time-Dependent Gross-Pitaevskii Equation

This thesis deals with the zero-temperature model for small enough interactions, in which the non-

condensate atoms are completely neglected, so that Eq. (2.11) reduces to

i~
∂ψ(r, t)

∂t
=

[

− ~
2

2M
∆+ Vext.(r) + g2nc(r, t) + g3n

2
c(r, t)

]

ψ(r, t). (2.12)

This is the time-dependent Gross-Pitaevskii equation, which has become the main tool for theoret-

ical studies of Bose-Einstein condensates. It was derived independently by E. P. Gross [47] and L.

P. Pitaevskii [48] in 1961 and was originally used to investigate the presence of vortices in weakly

interacting Bose gases. The wave function is normalized to the particle number N according to

N =

∫

dr |ψ(r, t)|2 . (2.13)

The GP equation has proven to be a very useful tool to describe the physics of weakly interacting

atomic Bose-Einstein condensates in the early ages of this field.

23



2. Gross-Pitaevskii Mean-Field Theory

2.1.2. Time-Independent Gross-Pitaevskii Equation

In order to study static properties of Bose-Einstein condensates, such as the equilibrium density for

example, one uses the time-independent version of the Gross-Pitaevskii Eq. (2.12). To this end, we

insert the factorization ansatz

ψ(r, t) = ψ(r)e−
i
~
µt , (2.14)

where µ is called the chemical potential into Eq. (2.12), so ψ(r) obeys the time-independent GP

equation

µψ(r) =

[

− ~
2

2M
∆+ Vext.(r) + g2nc(r) + g3n

2
c(r)

]

ψ(r). (2.15)

2.1.3. Thomas-Fermi Approximation

The functional forms of quantities such as the condensate size are difficult to find analytically, so one

has to use numerical method to solve the time-independent GP equation (2.15). The Thomas-Fermi

(TF) solution represents an approximation for the density profile. In the case of comparatively strong

interaction it is justified to neglect the kinetic energy term in the Eq. (2.15). In that situation, the

density profile is approximated by the Thomas-Fermi solution, which corresponds to

nc(r) = |ψ(r)|2 =











− g2
2g3

+

√

(

g2
2g3

)2
+ µ−Vext.(r)

g3
, for µ− Vext.(r) ≥ 0

0, otherwise.

(2.16)

In the following we specialize the external potential to a tri-axial harmonic trap:

Vext.(r) =
M

2

∑

r=x,y,z

ω2
rr

2 . (2.17)

We emphasize that the Thomas-Fermi solution of the harmonically trapped condensate given in

Eq. (2.16), differs in many aspects from the non-interacting case. In particular, the boundaries of

the cloud are determined by the condition Vext.(r) = µ, which leads to the so-called Thomas-Fermi

radii describing the extension of the cloud in the respective directions. In case of an axially-symmetric

harmonic trap, when ωx = ωy = ωρ 6= ωz = ωρλ with the trap aspect ratio λ, the extension in radial

and axial direction are given by

Rρ =

√

2µ

Mω2
ρ

, Rz =

√

2µ

M(ωρλ)2
. (2.18)

The corresponding chemical potential µ has to be calculated by using the normalization condition

Eq. (2.13), which leads to

N =

∫

dr



− g2
2g3

+

√

(

g2
2g3

)2

+
µ− Vext.(r)

g3



 , (2.19)

where the integration is performed within the ellipsoid where the integrand is positive. This yields

the following explicit result for the equation of state

N =
πA2

6

[

−
√

A1 (3A1 + 5) + 3 (A1 + 1)2 ArcSin

(
√

1

A1 + 1

)]

, (2.20)

with the dimensionless parameters A1 = g22/4µg3 and A2 = µ/g3
(

2µ/Mω̃2
)3/2

, where ω̃ = λ1/3ωρ

denotes the geometric mean of the trap frequencies.
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Figure 2.1.: Equation of state (2.20) for 87Rb gases with ωρ = 2π× 112 Hz, with a repulsive two- and

three-body interaction strength versus the chemical potential for different trap anisotropies

(a) λ = 0.5 and (b) λ = 2. Blue curve represents equation of state for vanishing three-

body interaction strength g3 and the red curve corresponds to Eq. (2.20) with three-body

interaction strength from Eq. (2.7).

Figure 2.1 shows the equation of state of systems of repulsive two-body interaction strength as a

function of chemical potential, where the red curve correspond to the exact result of Eq. (2.20) with

the three-body interaction strength from Eq. (2.7), and the blue curve represents the case of vanishing

three-body interaction strength. We read off from Fig. 2.1 that a non-vanishing three-body interaction

strength g3 yields for a pancake-like BEC lower particle numbers than a cigar-like BEC. Furthermore,

it is clear that an additional three-body interaction for fixed particle number leads to an increase of

the chemical potential and, thus according to Eq. (2.18) to an increase of the respective TF radii. The

chemical potential µ and the Thomas-Fermi radius Rρ and Rz up to first order of g3 are defined by

µ/~ωρ =
1

2

(

15Nλas
l

)2/5 [

1 +
4g3
35g22

(

15Nλas
l

)2/5

+ ...

]

, (2.21)

Rρ/l =

(

15Nλas
l

)1/5 [

1 +
2g3
35g22

(

15Nλas
l

)2/5

+ ...

]

, (2.22)

Rz/l =
1

λ

(

15Nλas
l

)1/5 [

1 +
2g3

35g22λ
2

(

15Nλas
l

)2/5

+ ...

]

, (2.23)

where l denotes the radial oscillating length

l =
√

~/Mωρ . (2.24)

From Eq. (2.7) and Eqs. (2.22) and (2.23) we conclude that the TF radii depend more significantly

on the three-body interaction near a Feshbach resonance, i.e. for large s-wave scattering length.

2.2. Variational Approach

In this section we use a variational approach to obtain approximate equations of motions for the param-

eters of a suitable trial function. This technique is well-established and has been successfully applied

in several previous studies [70,85]. Our analytical method for studying nonlinear BEC dynamics is

the variational approach introduced in Refs. [84,85].

The dynamics of a condensed Bose gas in a trap at zero temperature is described by the time-

dependent GP Equation (2.12) with a harmonic trap potential defined in Eq. (2.17) and the parameters
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2. Gross-Pitaevskii Mean-Field Theory

g2 and g3 are defined in Eq. (2.4) and (2.7), respectively. There are two essential points where

Eq. (2.12) differs from the Schrödinger equation. The first one is the nonlinear interaction terms

g2 |ψ(r, t)|2 ψ(r, t) and g3 |ψ(r, t)|4 ψ(r, t). Additionally the wave function ψ(r, t) is not normalized to

1 but to the total particle number as defined in Eq. (2.13).

The time-dependent Gross-Pitaevskii equation follows from the action

A[ψ∗(r, t), ψ(r, t)] =

∫

dt

∫

drL
[

ψ∗(r, t),▽ψ∗(r, t),
∂ψ∗(r, t)

∂t
;ψ(r, t),▽ψ(r, t),

∂ψ(r, t)

∂t

]

(2.25)

with the Lagrange density

L(r, t) =
i~

2

(

ψ∗(r, t)
∂ψ(r, t)

∂t
− ψ(r, t)

∂ψ∗(r, t)

∂t

)

− ~
2

2M
|∇ψ(r, t)|2

−Vext.(r)|ψ(r, t)|2 −
g2
2
|ψ(r, t)|4 − g3

3
|ψ(r, t)|6. (2.26)

This, indeed, yields the Gross-Pitaevskii equation Eq. (2.12) if the Hamilton principle is applied

δA[ψ∗(r, t), ψ(r, t)] = 0. (2.27)

Inserting a suitable trial function with time-dependent parameters into equation Eq. (2.26) and inte-

grating over space, leads to the Lagrange function of the system

L(t) =

∫

drL(r, t) . (2.28)

We follow Refs. [84,85] and use now the Gaussian variational ansatz

ψ(x, y, z, t) = N (t) exp

{

∑

r=x,y,z

[(

− 1

2u2r
− iφr

)

r2
]

}

, (2.29)

with the normalization factor N (t) =
√
N/

√

π
3
2uxuyuz, while ur and φr are variational parameters.

The introduced parameters have a straightforward interpretation: ur corresponds to the respective

condensate width, while φr represents the corresponding phase. Therefore, Eq. (2.29) describes the

dynamics of the condensate in terms of time-dependent condensate widths and phases, while no center

of mass motion is considered here.

We start from the Lagrangian Eq. (2.28). For the Gaussian variational ansatz Eq. (2.29), the

Lagrange function can be calculated

L = N
∑

r=x,y,z

[

− ~

2
u2rφ̇r −

~
2

M

(

1

4u2r
+ u2rφ

2
r

)

− M

4
ω2
ru

2
r

]

− g2N
2

2(2π)3/2uxuyuz
− g3N

3

9
√
3π3u2xu

2
yu

2
z

. (2.30)

The first part contains a time derivative, the second and the third part correspond to the kinetic and

external potential trap, whereas the last two parts correspond to the two- and three-body interactions.

From the Euler-Lagrange equations, we obtain the evolution equations for all variational parameters

q ∈ {φr, ur}:
d

dt

∂L

∂q̇
− ∂L

∂q
= 0 . (2.31)

The equations for the phases φr(t) can be solved explicitly in terms of the widths,

φr =
Mu̇r
2~ur

, (2.32)
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2.2. Variational Approach

whereas the dynamics of the widths is given by

~φ̇rur −
~
2

2M

1

u3r
+

2~2

M
φ2rur +

Mω2
r

2
ur −

g2N

(2π)3/2uruxuyuz
− 2g3N

2

9
√
3πuru2xu

2
yu

2
z

= 0. (2.33)

By inserting Eq. (2.32) into Eq. (2.33) and introducing dimensionless parameters

ω̃i = ωi/ωρ , ũi = ui/l , t̃ = t/ωρ , l =

√

~

Mωρ
, (2.34)

we obtain variational equations written in dimensionless form:

üx + λ2xux −
1

u3x
− P
u2xuyuz

− K
u3xu

2
yu

2
z

= 0 , (2.35)

üy + λ2yuy −
1

u3y
− P
u2yuxuz

− K
u2xu

3
yu

2
z

= 0 , (2.36)

üz + λ2zuz −
1

u3z
− P
uxuyu2z

− K
u2xu

2
yu

3
z

= 0 . (2.37)

Here, we have dropped for simplicity the tilde sign in the dimensionless widths and we have introduced

the dimensionless two-body interaction strength

P = g2N/(2π)
3/2

~ωρl
3 =

√

2/πNas/l , (2.38)

and the dimensionless three-body interaction strength

K =
4g3N

2

9
√
3π3ωρ~l6

, (2.39)

where l denotes the radial oscillating length defined in Eq. (2.24). Both parameters Eqs. (2.38) and

(2.39) are related to each other via

K =
32g3~ωρ

9
√
3g22

P2 . (2.40)

Those equations of motion Eqs. (2.35)–(2.37) correspond to harmonic oscillators, which are modified

by a kinetic term and an additional term that depends on the dimensionless parameter P, which

describes two-body interaction Eq. (2.38) and depends on the s-wave scattering length as, as well as

on the dimensionless three-body interaction K defined in Eq. (2.39). From experimental data in Refs.

[126,227], we read off that the two- and three-body interaction strengths are given by

P = 426, K = 1050 . (2.41)

Note that the s-wave scattering length can be tuned to any value, large or small, positive or negative by

applying an external magnetic field using the Feshbach resonance technique [126,130,131,152,153,228].

Therefore, in this thesis we will consider various of experimentally realistic values for dimensionless

interaction strengths P and K.

The dynamics of the width Eqs. (2.35)–(2.37) can be rewritten as

ür = −∂Veff(ux, uy, uz)
∂ ur

, (2.42)

and can therefore be regarded as the motion of a fictitious point particle in the effective potential

Veff(ux, uy, uz) =
1

2

[

u2xλ
2
x + u2yλ

2
y + u2zλ

2
z +

1

u2x
+

1

u2y
+

1

u2z

]

+
P

uxuyuz
+

K
2u2xu

2
yu

2
z

. (2.43)
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Figure 2.2.: Effective potential Eq. (2.44) for systems with two-and three-body interaction strengths

versus the width of the condensate u. Black curve corresponds to repulsive two- and

three-body interactions, (a) P = 0.48 and K = 0.005 and (b) P = 0.6 and K = 0.005, red

curve corresponds to attractive two-body interaction, (a) P = −0.48 and K = 0 and (b)

P = −0.6 and K = 0, blue curve corresponds to attractive two-body and repulsive three-

body interactions, (a) P = −0.48 and K = 0.005 and (b) P = −0.6 and K = 0.005, and

green curve corresponds to attractive two- and three-body interactions, (a) P = −0.48

and K = −0.005 and (b) P = −0.6 and K = −0.005.

Small oscillations around a stable configuration are possible when there is a minimum in the effective

potential. A detailed study of the effective potential Eq. (2.43) for systems of two- and three-body

interaction strengths reveals, for instance, that an atomic condensate with attractive two-body inter-

action can be stabilized with a very small respective three-body interaction strength. In this way the

stability region of the condensate can be extended considerably [129,160].

For the isotropic case the effective potential Eq. (2.43) has the following form

Veff(u) =
3

2

(

u+
1

u2

)

+
P
u3

+
K
2u6

. (2.44)

The first and the second part correspond to the external potential trap and the kinetic energy, respec-

tively, whereas the last two parts correspond to the two- and three-body interactions. It is clear that

this functional form implies the asymptotics

Veff(u) =

{

3
2u

2 → ∞ , for u≫ 1
3
2

1
u2 + P

u3 + K
2u6 → s∞ , for u≪ 1

(2.45)

with the parameter

s =

{

+1 if K > 0
∨K = 0

∧P > 0
∨P = 0 = K

−1 if K < 0
∨K = 0

∧P < 0 .
(2.46)

Figure 2.2 shows the effective potential Eq. (2.44) for systems of two- and three-body interaction

strengths as a function of the condensate width u. For repulsive two- and three-body interactions

(black curves) in Fig. 2.2 the effective potential has one local minimum, which means that the system

is always stable. For the case of an attractive two-body interaction (red curves) and attractive two- and

three-body interactions (green curves) as well as an attractive two-body interaction and a repulsive

three-body interaction (blue curves) the situation in Fig. 2.2 is quite different. The system can either

have none, one, or three equilibrium positions and we will discuss later on in detail the resulting

stability diagram.
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Figure 2.3.: (a) Equilibrium positions uρ0 (blue curves) and uz0 (red curves) from Eqs. (2.50) and

(2.51) and (b) aspect ratio uρ0/uz0 (black curves) of systems with two- and three-body

interaction strengths versus trap aspect ratio λ for non-interacting case P = K = 0 (dotted

lines), while P = 1, K = 0 (solid lines) and P = 10, K = 0.1 (dashed lines).

2.3. Equilibrium Positions

The equilibrium positions can be calculated by setting the gradient of the potential Eq. (2.43) to zero,

which yields

λ2xux0 −
1

u3x0
− P
u2x0uy0uz0

− K
u3x0u

2
y0u

2
z0

= 0 , (2.47)

λ2yuy0 −
1

u3y0
− P
u2y0ux0uz0

− K
u2x0u

3
y0u

2
z0

= 0 , (2.48)

λ2zuz0 −
1

u3z0
− P
ux0uy0u2z0

− K
u2x0u

2
y0u

3
z0

= 0 . (2.49)

We will consider the experimentally relevant case of an axially-symmetric trap, such that λx = λy = 1,

λz = λ, ux0 = uy0 = uρ0. This leads to the two algebraic equations

uρ0 =
1

u3ρ0
+

P
u3ρ0uz0

+
K

u5ρ0u
2
z0

, (2.50)

λ2uz0 =
1

u3z0
+

P
u2ρ0u

2
z0

+
K

u4ρ0u
3
z0

. (2.51)

Note that for given parameters P, K, and λ only positive real solutions uρ0 and uz0 from Eqs. (2.50),

(2.51) represent physically realized equilibrium widths. Although in Eq. (2.41) the value of K is larger

than that of P, the corresponding terms in Eqs. (2.50), (2.51), i.e. K/u5ρu2z and K/u4ρu3z, are suppressed
by the factor u2ρuz compared to the respective P-terms. This factor can be estimated by taking into

account the equilibrium positions uρ0 and uz0, which are obtained by solving the stationary equations

(2.50) and (2.51). For the anisotropy λ = 3/2, one numerically obtains uρ0 ≈ 3.69 and uz0 ≈ 2.47,

yielding the value u2ρ0uz0 ≈ 33.6. This shows that the terms proportional to K have the effective

coupling K/33 ≈ 31.2, which makes them small corrections of the order of 7% to the leading two-body

interaction terms. However, if the system exhibits resonances, this may no longer be true anymore,

and three-body interactions can play a significant role for the system dynamics.

Figure 2.3 shows the equilibrium positions Eqs. (2.50) and (2.51) as well as the aspect ratio uρ0/uz0
versus trap anisotropy λ for systems of repulsive two- and three-body interactions. We plot in

Fig. 2.3(a) the equilibrium positions uρ0 and uz0 as a function of trap anisotropy λ. A cigar-like
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Figure 2.4.: Two-body interaction strength P as a function of the variational width parameter u0
Eq. (2.53). Red curve corresponds to the systems of an attractive pure two-body and

vanishing three-body interaction strength, while the blue curve corresponds to systems of

attractive two-body and repulsive three-body K = 0.005 interaction strengths.

shape occurs for λ < 1 because the axial size is larger than the radial size, while we have an isotropic

shape for λ = 1 when uρ0 = uz0, and we have a pancake-like shape for λ > 1. In Fig. 2.3(b) we plot

the aspect ratio of uρ0/uz0 as a function of trap anisotropy λ and we see that repulsive interactions

decrease (increase) the aspect ratio for cigar- (pancake-) condensates.

Furthermore, for the sake of simplicity, we also determine the isotropic equilibrium position deter-

mined from Eq. (2.44) via

− d

du
Veff(u)

∣

∣

∣

∣

u=u0

= 0 , (2.52)

which leads to the condition

P = u0
(

u40 − 1
)

− K
u30
. (2.53)

For the case of a pure repulsive two-body interaction, we can immediately see in Fig. 2.4 always

one equilibrium solution exist. For the case of an attractive two-body and a repulsive three-body

interaction, the problem is different: Eq. (2.53) can have up to three equilibrium solutions. Particular

interesting is the stability of all these solutions. In order to determine their stability, the oscillation

frequencies of the condensate around these equilibrium points have to be calculated.

2.4. Collective Modes

Frequencies of the low-lying collective modes are determined by linearizing Eq. (2.43) around the

equilibrium positions Eqs. (2.47)–(2.49). If we insert the decompositions ux0 = ux0 + δux, uy0 =

uy0 + δuy and uz = uz0 + δuz into Eq. (2.43) and expand the effective potential into a Taylor series,

we get

Veff(ux0 + δux, uy0 + δuy , uz0 + δuz) = Veff(ux0, uy0, uz0) (2.54)

+
∑

i=x,y,z

[

λ2i
2

+
3

2u4i0
+

P
u2i0ux0uy0uz0

+
3K

2u2i0u
2
x0u

2
y0u

2
z0

]

δu2i +
P

ux0uy0uz0

×
[

δuxδuy
ux0uy0

+
δuzδux
ux0uz0

+
δuyδuz
uy0uz0

]

+
2K

u2x0u
2
y0u

2
z0

[

δuxδuy
ux0uy0

+
δuzδux
ux0uz0

+
δuyδuz
uy0uz0

]

+ ... ,
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Figure 2.5.: Frequencies of collective oscillation modes (in units of ωρ) for (a) breathing and quadrupole

mode and (b) radial quadrupole mode versus trap aspect ratio λ for P = 1, K = 0.001

(solid red lines), P = 10, K = 0.1 (dashed blue lines), and P = 0, K = 0 (dotted black

lines).

which can be written in case of an axially-symmetric harmonic trap as

Veff(ux0 + δux, uy0 + δuy, uz0 + δuz) = Veff(uρ0, uz0) +
1

2
δuTMδu+ ... . (2.55)

Thus the dynamics for small defections around the equilibrium positions is described by oscillations

with the respective amplitudes δui. In the following it has to be analysed if the oscillation frequencies

are real, complex or even pure imaginary, which would lead to non-stable equilibrium points. Addi-

tionally it is possible to determine the oscillation modes once the frequencies are known. Introducing

the abbreviations

M =





m1 m2 m3

m2 m1 m3

m3 m3 m4



 , δu =





δux
δuy
δuz



 , (2.56)

m1 = 1 +
3

u4ρ0
+

2P
u4ρ0uz0

+
3K

u6ρ0u
2
z0

, (2.57)

m2 =
P

u4ρ0uz0
+

2K
u6ρ0u

2
z0

, (2.58)

m3 =
P

u3ρ0u
2
z0

+
2K

u5ρ0u
3
z0

, (2.59)

m4 = λ2 +
3

u4z0
+

2P
u2ρ0u

3
z0

+
3K

u4ρ0u
4
z0

, (2.60)

the coupled set of differential equation Eq. (2.42) can be rewritten in matrix form:

δü(t) +Mδu(t) = 0 . (2.61)

If we insert the solution ansatz

δu(t) = δueiωt , (2.62)

the frequencies of the collective modes are related to the eigenvalues of the matrix M . The eigenvalue

problem reads
(

M − ω2I
)

δu = 0 , (2.63)
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Figure 2.6.: Frequencies of collective oscillation modes (in units of ωρ) for (a) breathing and quadrupole

mode and (b) radial quadrupole mode versus trap aspect ratio λ for P = −0.55, K = 0.012

(solid red lines), P = −0.55, K = 0.02 (dashed blue lines), and P = 0, K = 0 (dotted

black lines).

and non-trivial solutions of Eq. (2.63) exist provided

det(M − ω2I) = 0 . (2.64)

To this end, the frequencies of collective modes are given by

ω2
Q =

m1 +m2 +m4 −
√

(m1 +m2 −m4)2 + 8m2
3

2
, (2.65)

ω2
B =

m1 +m2 +m4 +
√

(m1 +m2 −m4)2 + 8m2
3

2
, (2.66)

ω2
RQ = m1 −m2. (2.67)

Note that in the non-interacting limit, the frequencies of the low-lying collective modes are given by

ωB =

{

2 λ ≤ 1

2λ λ ≥ 1
, ωQ =

{

2λ λ ≤ 1

2 λ ≥ 1
, ωRQ = 2 . (2.68)

Figures 2.5 and 2.6 show the frequencies of all low-lying collective oscillation modes as functions of

the trap aspect ratio λ for both a repulsive and an attractive two-body interaction, respectively. We

see that the collective mode frequencies depend relative strongly on the trap anisotropy λ. However,

for a repulsive two-body interaction variations of P and K yield only marginal changes, see Fig. 2.5,

whereas for an attractive two-body interaction the frequencies in Fig. 2.6 depend strongly for varying

parameters P and K.

Inserting those collective frequencies in Eq. (2.63) yields the corresponding eigenvectors. Due to the

linear dependence of Eq. (2.63), we use the first two lines in order to calculate the eigenvectors of the

respective modes. With this we obtain

δuRQ =
1√
2





1

−1

0



 , (2.69)

i.e. the frequency ωRQ is characterised by out-of-phase oscillations in the x and y directions, while

in the z direction there are no oscillations, which is called 2D-quadrupole mode, see Fig. 2.7(a).
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2.4. Collective Modes

(a) (b) (c)

Figure 2.7.: Low-lying collective mode oscillations of the condensate in a cylindrical harmonic trap.

(a) Radial quadrupole mode oscillates in x-y plane with frequency Eq. (2.67). (b)

Quadrupole mode oscillates out-phase between ρ- and z-components with frequency

Eq. (2.65). (c) Breathing mode oscillates in-phase between ρ- and z-components with

frequency Eq. (2.66).

Furthermore, we get

δuB,Q =
m3

√

2m2
3 +

(

m1 +m2 − ω2
B,Q

)2







1

1
m1+m2−ω2

Q,B

m3






, (2.70)

where the quadrupole mode eigenvector δuQ has the lower frequency and is characterized by out-

of phase radial and axial oscillations, see Fig. 2.7(b), while the breathing mode eigenvector δuB

corresponds to in-phase radial and axial oscillations, see Fig. 2.7(c).

The TF limit corresponds to the limit P → ∞, so that Eqs. (2.50) and (2.51) for the equilibrium

positions reduce to

uρ0 = λuz0, P =
−K+ u6ρ0u

2
z0

u2ρ0uz0
. (2.71)

By using Eqs. (2.71) together with Eqs. (2.57)–(2.60) into Eqs. (2.65)–(2.67), we obtain

ω2
B,Q =2 +

3λ2

2
− Kλ2

u8ρ0
+

Kλ4
2u8ρ0

± 1

2

√

16− 16λ2 + 9λ4 − 16Kλ2
u8ρ0

+
4K2λ4

u16ρ0
+

4Kλ4
u8ρ0

+
4K2λ6

u16ρ0
+

6Kλ6
u8ρ0

+
K2λ8

u16ρ0
, (2.72)

ω2
RQ =2 (2.73)

The main result obtained by using the Gaussian approximation is an analytical estimate for the

frequencies of the low-lying collective modes in the TF approximation, expressed by Eqs. (2.65)–(2.67)

[84,85]. We emphasize that, although based on the Gaussian ansatz, the variational approximation

reproduces the frequencies of collective modes not only for weakly interacting BEC, but also for

the strongly interacting BEC in the Thomas-Fermi regime [70,84]. Therefore, it represents a solid
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2. Gross-Pitaevskii Mean-Field Theory

analytical description of the BEC dynamics. Most importantly, a reasonable quantitative agreement

was obtained between the linear response theoretical results Eqs. (2.65)–(2.67) and experimental results

for a BEC excited by using the trap modulation [65]. In general, a detailed experimental information

on collective modes allows to test our theoretical understanding of the properties of an atomic BEC.

The essential merit of testing theoretical predictions using collective oscillation modes stems from the

possibility to measure frequencies of collective modes with a high accuracy on the order of less than

1% [64,66,67].

2.5. Stability Diagram

In this section we discuss the stability of a Bose-Einstein condensate in the mean-field framework for

systems with two- and three-body contact interaction in an axially-symmetric harmonic trap. It is well

known that BEC systems with an attractive two-body interaction are unstable against collapse above

a critical number of atoms i.e. for sufficiently large negative value of P in the condensate [49,50]. For

smaller numbers of atoms, the zero-point kinetic energy is able to counter the attractive inter-atomic

interactions, however, when the number of atoms sufficiently increases, this is no longer possible, and

the system collapses to the centre of the trapping potential.

We find that, for a pure two-body interaction, the condensate is stable only above a critical stability

line Pc(λ), while the presence of even a small repulsive three-body interaction leads to a stabilisation

of the condensate. On the other hand, we find that an attractive three-body interaction further

destabilises the condensate.

To study in detail effects of three-body interaction on the stability of BEC systems, we consider

several cases of interest: repulsive and attractive pure two-body interactions, attractive two-body and

repulsive three-body interactions, and attractive two- and three-body interactions. If the correspond-

ing system of equations does (not) have positive and bounded solutions of equations (2.35)–(2.37) in

the vicinity of positive equilibrium widths determined by equations (2.50) and (2.51), then the con-

densate is considered stable (unstable). This is equivalent to performing a linear stability analysis and

determining the stability of positive equilibrium widths by examining the frequencies of the low-lying

collective oscillation modes (2.65)–(2.67). The solution is only stable if the frequencies of all low-lying

collective modes are found to be real, otherwise the solution is unstable.

For the case of a pure repulsive two-body interaction, we will immediately see that the condensate is

always stable. For the case of an attractive two-body interaction, the situation is quite different: the

above system of equations can have no equilibrium, or it could have up to three equilibrium solutions.

The results of a detailed numerical analysis are summarised in Fig. 2.8.

The dashed red line in Fig. 2.8(a) represents the critical stability line as a function of the trap

aspect ratio λ for a pure two-body interaction (K = 0). Below the critical stability line there are

no stable solutions, and the system is unstable. Above the critical stability line, the system has one

stable and one unstable solution for an attractive two-body interaction (P < 0), and only one stable

solution for a repulsive two-body interaction (P ≥ 0). For λ = 0, which corresponds to the limit of

a cigar-shaped condensate, we have the critical value of two-body interactions Pc = −0.6204, which

coincides precisely with the value from Ref. [85]. For the isotropic case, when λ = 1, the critical value

is Pc = −0.535, which again coincides with the value from the literature [85,63,158,159]. Fig. 2.9(a)

shows solutions for the isotropic condensate as a function of P.

Now, if we consider the case of an attractive two-body interaction and a small repulsive three-body

interaction, the results of the stability analysis are quite different. The system can either have one or

three solutions, as shown in Fig. 2.8(b). The presence of a positive three-body interaction K, however

small, leads to the existence of at least one stable solution in the whole range of values of λ and P. In
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Figure 2.8.: Stability diagram of a BEC as a function of trap aspect ratio λ for different values of

dimensionless two-body and three-body contact interaction strengths P and K. (a) λ-P
stability diagram for K = 0, where the dashed red line represents the critical stability line,

below which there are no solutions (N). Above this line, for P < 0, there is one stable and

one unstable solution (1S+1U), while for P ≥ 0 there is only one stable solution (1S). (b)

λ-P stability diagram for K = 0.005, where two cases exist: the small region with two

stable and one unstable solution (2S+1U), while otherwise only one stable solution exists

(1S). For comparison, in the inset we combine the critical stability line for K = 0 with

the stability diagram for K = 0.005. (c) λ-K stability diagram for P = −0.5. For K ≤ 0,

there are two regions: the one without solutions (N), and the one with one stable and

one unstable solution (1S+1U). For K > 0, there are also two regions: the small region

with two stable and one unstable solution (2S+1U), while otherwise there is only one

stable solution (1S). As we can see, a non-vanishing value of the three-body interaction

K substantially enhances the stability of a condensate.

the small area designated by 2S+1U in Fig. 2.8(b), two stable and one unstable solution exist. Out of

these two stable solutions, only the one with the minimal energy is physically relevant and could be

realised in an experiment. Figure 2.9(b) shows solutions for λ = 1, K = 0.005 as a function of P. As we

can see, a minimal-energy stable solution exists for any value of P. However, for large negative values of

P this solution tends to zero, which practically represents a collapsed condensate. Therefore, although

within the given mathematical model the condensate is always stable, physically this is valid only up

to a critical number of atoms, which has to be determined by considering in detail the corresponding

condensate density. However, as we can see from Fig. 2.9(b), the dependence u0(P) for large negative

values of P is quite flat, which means that the stability region can be significantly extended in the

presence of a small positive value of K compared to the case of pure two-body interaction.

We also analyse the stability of a BEC system as a function of three-body interaction K. Figure

35



2. Gross-Pitaevskii Mean-Field Theory

0.20-0.2-0.4-0.6
0

0.2

0.4

0.6

0.8

1

1.2

P

u
0

(a)

-0.6 -0.4 -0.2
0

0.2
0.4
0.6
0.8

1
1.2

P

u
0

(b)

0.020.010-0.01-0.02
0

0.2

0.4

0.6

0.8

1

K

u
0

(c)

Figure 2.9.: Condensate width uρ0 = uz0 = u0 for λ = 1 and (a) K = 0, as a function of P; (b) K =

0.005, as a function of P; (c) P = −0.5, as a function of K. Solid red lines represent the

stable solution with minimal energy, dotted black lines represent another stable solution,

dashed blue lines represent unstable solution.
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Figure 2.10.: Frequencies (in units of ωρ) of low-lying collective excitation modes: breathing (B), radial

quadrupole (RQ), and quadrupole (Q) mode frequency, as functions of an attractive two-

body interaction P for the trap anisotropy λ = 117/163 and (a) K = 0, (b) K = 0.005.

2.8(c) shows the corresponding stability diagram for an attractive two-body interaction P = −0.5. For

a repulsive three-body interaction (K > 0), as expected, we see a small region with two stable and one

unstable solution (2S+1U), as well as a region with only one stable solution (1S), similar to Fig. 2.8(b).

For an attractive three-body interaction (K < 0), the stability region with one stable and one unstable

solution (1S+1U), which corresponds to the 1S+1U region in Fig. 2.8(a), gradually shrinks until

it disappears as K becomes sufficiently negative. Therefore, we see that an attractive three-body
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Figure 2.11.: Evolution in time of (a) the spatial extensions uρ, uz and (b) the aspect ratio uρ/uz for

the systems of two- and three-body interactions strength after turning off the trapping

potential for trap anisotropy λ = 0.2. Solid curves correspond to the case of a no

interaction P = 0 and K = 0, while dashed curves correspond to a system of repulsive

two-body P = 1 and three-body K = 0.001 interaction strengths, and dotted curves

correspond to the systems of repulsive two- and three-boy interaction strengths, P = 10

and K = 0.1, respectively.

interaction has the same destabilising effect on a BEC as an attractive two-body interaction. This

can be also seen in Fig. 2.9(c), where the stable minimal-energy solution for P = −0.5 exists only for

a limited range of negative values of K.

To further illustrate the findings of the above stability analysis, we plot in Fig. 2.10 the frequencies

of the low-lying collective excitation modes as functions of an attractive two-body interaction for the

trap anisotropy λ = 117/163 [24]. Fig. 2.10(a) corresponds to the case when three-body interactions

are neglected, i.e. K = 0, and we can see that the condensate collapses for Pc = −0.561, when the

expression for ω2
Q from equation (2.65) becomes negative. For a small repulsive three-body interaction

K = 0.005, Fig. 2.10(b) shows the frequencies corresponding to stable minimum-energy solutions.

From Fig. 2.9(b) we see that for Pc = −0.486 there is a jump from one to another solution branch

due to the minimal energy condition, which is reflected in Fig. 2.10(b) by a corresponding jump in

the frequencies of the collective modes.

2.6. Time-of-Flight Expansion

A time-of-flight experiment is one of the most interesting features in the realm of ultracold quantum

gases. This technique was first demonstrated in 1995 for detecting Bose-Einstein condensation, where

the atoms were allowed to expand after switching off the trap and imaged by absorption methods

showing a characteristic peak in the momentum distribution [20,22,23].

We study in this section the free expansion of a BEC in case of an axially-symmetric harmonic trap

by solving Eqs. (2.35)–(2.37) without the term, which represents the harmonic trap:

üρ −
1

u3ρ
− P
u3ρuz

− K
u5ρu

2
z

= 0 , (2.74)

üz −
1

u3z
− P
u2ρu

2
z

− K
u4ρu

3
z

= 0 . (2.75)

The initial condition needed for solving Eqs. (2.74) and (2.75) are obtained from the equilibrium
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positions Eq. (2.50) and (2.51) and their vanishing derivatives at t = 0, i.e.

u̇ρ(t = 0) = u̇z(t = 0) = 0, (2.76)

For the non-interacting case, one expects from Eqs. (2.74) and (2.75), that both radii will expand with

a time scale which is given by respective inverse trap frequency. For systems of two- and three-body

interaction strengths the expansions rate of the radii increases.

In Fig. 2.11 we show the resulting time-of-flight dynamics for systems of two- and three-body

interaction strengths for the trap anisotropy λ = 0.2. We plot the radial and axial extensions as a

function of time ωρt, where the solid curves are corresponding to the non-interacting case P = K = 0,

while the dashed curves correspond to systems of two-body interaction strength P = 1 and three-body

interaction strength K = 0.001 and the dotted dashed curves are corresponding to a system of two- and

three-body interaction strengths P = 10 and K = 0.1. It becomes clear that a cigar-like condensate

expands much faster in the radial than in the axial direction and that the condensate aspect ratio is

inverted due to the Heisenberg principle.

38



3. Parametric Resonances

Parametric resonance is an interesting phenomenon in the realm of ultracold quantum gases. It

occurs during a harmonic modulation of either the trapping potential [21,46,104] or the interaction

[63,93,109,229,230], when the external driving frequency equals to the frequency of one collective

oscillation mode of a Bose-Einstein condensate.

Such a resonance phenomenon in the oscillation of a BEC governed by the GP equation Eq. (2.12)

can also be studied experimentally so that one can compare theoretical predictions with experimental

measurements. In the experimental of Ref. [93], a new way of a condensate excitation has been

demonstrated. The broad Feshbach resonance of 7Li, see Ref. [87], allows a modulation of the atomic

s-wave scattering length according to Eq. (1.2), with N = 3 × 105 atoms, ωρ = 2π × 4.85 Hz, and

ωz = 2π × 235 Hz. The authors fit the axial time evolution of the cloud size after such a modulation

to the function [93]

uz(t) = uz0 + uz,Ω sin(Ωt+Φ) + uz,Q sin(ωQt+ φ), (3.1)

where uz0 is the equilibrium size, uz,Ω and uz,Q denote the respective amplitude of the driving and

the quadrupole mode, respectively, and Φ and φ are corresponding phases. The main experimental

result is the resonance curve shown in Fig. 3.1. The axial excitation amplitude as a function of

the external driving frequency Ω reveals a double peak structure. The larger peak appears at the

quadrupole mode frequency, i.e. at 9 Hz, and thus represents the main resonance, whereas a smaller

peak occurs at twice the quadrupole mode, frequency i.e. at 18 Hz, and can, therefore, be identified

with a parametric resonance in Fig. 3.1 [93].

Motivated by the experimental study, described in Ref. [93], we follow Ref. [109] and consider in

this chapter dynamical features induced by a harmonic modulation of the s-wave scattering length.

Our study is a step beyond the linear regime, toward the resonant behavior, and it is suited for the

parametric region where low-lying collective modes can still be defined as in the linear regime, but

their properties are modified by nonlinear effects. The obtained results are relevant for the proper

interpretation of experimental data, and for an understanding of near-resonant properties of nonlinear

systems. In the following, we study the nonlinear dynamical regime induced by a harmonic modulation

of the s-wave scattering length, first for a spherically symmetric BEC in Sec. 3.1, afterwards, for an

axially-symmetric BEC in Sec. 3.2. In both cases, we obtain excitation spectra as Fourier transforms

of the time-dependent condensate sizes and from there we identify nonlinear features. In addition, we

develop a perturbation theory based on the Poincaré-Lindstedt method which successfully explains the

observed nonlinear effects. In particular, we discuss the relevance of our results for future experimental

setups in the spirit of Ref. [93].

In order to study nonlinear BEC dynamics, we use an approach that is complementary to the recent

theoretical considerations [231–234] of a BEC with harmonically modulated interaction. In Ref. [233]

the real-time dynamics of a spherically symmetric BEC was numerically studied and analytically ex-

plained using the resonant Bogoliubov-Mitropolsky method [235]. On the other hand, in our approach

in order to discern induced dynamical features, we look directly at the excitation spectrum obtained

from a Fourier transform of the time-dependent condensate width. From this type of numerical analy-

sis we find characteristic nonlinear properties: higher harmonic generation, nonlinear mode coupling,

and significant shifts in the frequencies of collective modes with respect to their linear response coun-
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Figure 3.1.: Experimental resonance curve for the axial excitation amplitude of the driving uz,Ω/uz0
(red circles) and the quadrupole mode uzQ/uz0 (blue squares) as a function of the external

driving frequency Ω [93].

terparts. In addition, we work out an analytic perturbative theory with respect to the modulation

amplitude which is capable of capturing many of the mentioned nonlinear effects obtained numerically.

Nonlinearity-induced frequency shifts were considered previously in Ref. [105] for the case of bosonic

collective modes excited by modulation of the trapping potential, and also in Ref. [119] for the case of

a superfluid Fermi gas in the BCS-BEC crossover. Our analytical approach is based on the Poincaré-

Lindstedt method [235–238], in the same spirit as presented in Refs. [105,119,238]. However, the

harmonic modulation of the interaction strength introduces additional features that require a separate

treatment. In Ref. [231] it was predicted that a harmonic modulation of the scattering length leads to

the creation of Faraday patterns in BEC, i.e. density waves. Up to now, Faraday patterns have been

experimentally induced by harmonic modulation of the transverse confinement strength [100], which

is studied analytically and numerically in Ref. [239]. Here we focus only on the nonlinear properties

of low-lying collective modes and do not consider possible excitations of Faraday patterns.

In order to obtain analytical insight into the condensate dynamics induced by the harmonic mod-

ulation of the s-wave scattering length described by Eq. (1.2), we use the Gaussian variational ap-

proximation by considering an axially-symmetric BEC, i.e. λx = λy = 1, ux = uy = uρ, excited by

a modulation of the two-interaction strength, which preserves the axial symmetry of the condensate

during its time evolution. As we do not take into the account the three-body interaction, i.e. we put

K = 0, the equations of the condensate widths Eqs. (2.35)–(2.37) can be written as

üρ + uρ −
1

u3ρ
− P(t)

u3ρuz
= 0 , (3.2)

üz + λ2uz −
1

u3z
− P(t)

u2ρu
2
z

= 0 . (3.3)

In the previous set of equations and in all equations that follow, we have expressed all lengths in the

units of the characteristic radial oscillator length l =
√

~/mωρ and the time in units of ω−1
ρ . The

dimensionless interaction parameter P(t) is defined in Eq. (2.38). Taking into account Eq. (1.2), we

have

P(t) = P +Q cos Ωt, (3.4)

where P =
√

2/πNaav/l denotes the average interaction strength, Q =
√

2/πNδa/l stands for a

modulation amplitude, and Ω represents the driving frequency measured now in units of ωρ.
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Figure 3.2.: Time-dependent axial and radial condensate widths calculated as root mean square av-

erages. Comparison of the numerical solution of time-dependent GP equation with a

solution obtained by using the Gaussian approximation for the actual experimental pa-

rameters λ = 0.021, P = 15, Q = 10, and Ω = 0.05 [93].

To estimate the accuracy of the Gaussian approximation for describing the dynamics induced by

the harmonic modulation of the interaction strength, we compare the solution of Eqs. (3.2), (3.3)

with an exact numerical solution of the underlying GP equation. In Fig. 3.2, we plot the resulting

time-dependent axial and radial condensate widths ρrms(t) and zrms(t), calculated as root mean square

values

ρrms(t) =

√

2π

∫ ∞

−∞

dz

∫ ∞

0
ρ dρ |ψ(ρ, z, t)|2 ρ2 , (3.5)

zrms(t) =

√

2π

∫ ∞

−∞

dz

∫ ∞

0
ρ dρ |ψ(ρ, z, t)|2 z2 , (3.6)

of the solution of the GP equation, as well as the numerical solutions of Eqs. (3.2) and (3.3). We assume

that, initially, the condensate is in the ground state. In the variational description, this translates

into the initial conditions uρ(0) = uρ0, u̇ρ(0) = 0, uz(0) = uz0, u̇z(0) = 0, where uρ0 and uz0 are the

time-independent solutions.

We plot in Fig. 3.2 the real-time dynamics where we observe the excitation of the slow quadrupole

mode as an out-of phase oscillation in the axial and in the radial direction. In addition, in the radial

direction we observe fast breathing mode oscillations. This is typical for highly elongated condensates

[240] and our analysis for the experimental parameters shows a strong excitation of the quadrupole

mode, but also a significant excitation of the breathing mode in the radial direction. Good agreement

of real-time dynamics obtained from the variational approximation with the exact solution of the

time-dependent GP simulation occurs even for long propagation times according to Fig. 3.2. This

implies a good accuracy of the Gaussian approximation for calculating the frequencies of the excited

modes.

3.1. Spherical-Symmetry Trap

Using a simple symmetry-based reasoning, we conclude that a harmonic modulation of interaction

strength in the case of a spherically symmetric BEC, i.e. λ = 1, leads to the excitation of the breathing

mode only, so that uρ(t) = uz(t) ≡ u(t) [109]. This fact simplifies numerical and analytical calculations

and this is why we first consider this case before we embark on the study of a more complex axially

symmetric BEC. Thus, the system of ordinary differential Eqs. (3.2) and (3.3) reduces to a single
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Figure 3.3.: Oscillation amplitude (umax−umin)/2 versus driving frequency Ω for P = 0.4. In the inset,

we zoom to the first peak to emphasize that the shape and value of a resonance occur at

a driving frequency Ω which differs from ω0 and depends on the modulation amplitude

Q. The solid vertical lines correspond to ω0 and 2ω0.

equation:

ü+ u(t)− 1

u3
− P(t)

u4
= 0 . (3.7)

The equilibrium condensate width u0 satisfies

u0 −
1

u30
− P
u40

= 0 , (3.8)

and a linear stability analysis yields the breathing mode frequency

ω0 =

√

1 +
3

u40
+

4P
u50

. (3.9)

Note that the above result for the breathing mode can be also obtained from Eq. (2.66) if we set λ = 1,

uρ0 = uz0 ≡ u0, and take into account Eq. (3.8).

3.1.1. Numerical Simulations

The main feature of the modulation induced dynamics is that it strongly depends on the value of the

driving frequency Ω. To illustrate this, we set P = 0.4, Q = 0.1 and solve Eq. (3.7) for different values

of Ω. From the linear response theory, we have u0 = 1.08183, ω0 = 2.06638 and we assume that the

condensate is initially in equilibrium, i.e. u(0) = u0, u̇(0) = 0.

The phenomenology based on Eq. (3.7) is more systematically shown in Fig. 3.3 where we plot the

oscillation amplitude defined as (umax − umin)/2 versus the driving frequency Ω. A resonant behavior

becomes apparent for both Ω ≈ ω0 and Ω ≈ 2ω0 in qualitative agreement with the experimental

resonance curve of Fig. 3.1. In the same figure we also show the expected positions of resonances

calculated using the linear stability analysis. Clearly, the prominent peaks exhibit shifts with respect

to the solid vertical lines representing ω0 and 2ω0. As expected, a stronger modulation amplitude

leads to a larger frequency shift, as can be seen from the inset. The curves presented in Fig. 3.3

are obtained by an equidistant sampling of the external driving frequency Ω. In addition to the

expected resonances close to ω0 and 2ω0, a more thorough exploration of solutions of the variational

equation Eq. (3.7) shows that also other “resonances” are present such as, e. g. at Ω ≈ ω0/2 and

Ω ≈ 2ω0/3. This is further demonstrated in Fig. 3.4. These “resonances” are harder to observe
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Figure 3.4.: Exact numerical solution of Eq. (3.7) for the condensate width u(t) versus t for P = 0.4,

Q = 0.3, corresponding to ω0 = 2.06638. We observe large amplitude oscillations for

Ω ≈ ω0/2 in the top panel, while in the bottom panel a “resonant” behavior is also

detected for Ω ≈ 2ω0/3.

numerically, since it is necessary to perform a fine tuning of the external frequency. However, their

presence clearly demonstrates nonlinear BEC properties and an experimental observation of these

phenomena is certainly of high interest. We note that the observed resonance pattern of the form

Ω ≈ 2ω0/n (where n is an integer) arises also in the case of a parametrically driven system described

by the Mathieu equation, for instance, in the context of the Paul trap [241]. To examine such excited

modes directly, we look at the Fourier transform of the condensate width u(t).

To this end, we numerically solve Eq. (3.7) and find the Fourier transform of its solution using the

Mathematica software package [242]. An example of such an excitation spectrum for P = 0.4, Q = 0.1,

and Ω = 2 is given in Fig. 3.5. The spectrum contains two prominent modes - a breathing mode of

frequency ω (close, but not equal to ω0) and a mode that corresponds to the driving frequency Ω,

along with many higher-order harmonics which are of the general form mΩ+ nω, where m and n are

integers. In Fig. 3.6 we juxtapose two zoomed Fourier spectra for two different driving frequencies for

P = 0.4 and Q = 0.2. On the left plot, we show the zoomed spectrum for Ω = 1. The vertical solid

line corresponds to ω0 and we find the peak in the spectrum that lies almost precisely at this position.

On the contrary, from the right plot of Fig. 3.6, that corresponds almost to the resonant excitation

Ω = 2, we see that the prominent peak is displaced from the vertical line. This is the most clear-cut

illustration of the shifted eigenfrequency arising due to the nonlinearity of the underlying dynamical

equations. Our objective is now to develop an analytical approach, which is capable of taking into

account these nonlinear effects.

3.1.2. Poincaré-Lindstedt Method

In its essence, our analytical approach represents the standard Poincaré-Lindstedt method [235,238,237,236].

Linearizing the variational equation (3.7) around the time-independent solution u0 for vanishing driv-

ing Q = 0, we obtain the zeroth-order approximation for the collective mode ω = ω0 expressed by

Eq. (3.9). To calculate the collective mode to higher orders, we explicitely introduce the sought-after

eigenfrequency ω into the calculation by rescaling the time from t to t = ωt, yielding the equation:

ω2 ü(t) + u(t)− 1

u(t)3
− P
u(t)4

− Q
u(t)4

cos
Ωt

ω
= 0 . (3.10)

In the next step, we assume the following perturbative expansions in the modulation amplitude Q:

u(t) = u0 +Qu1(t) +Q2 u2(t) +Q3 u3(t) + . . . , (3.11)

ω = ω0 +Qω1 +Q2 ω2 +Q3 ω3 + . . . , (3.12)
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Figure 3.5.: Fourier transform of u(t) for P = 0.4, Q = 0.1, and Ω = 2. First plot presents the

complete spectrum on a semi-log scale, while the subsequent plots focus on particular

regions of interest in the spectrum.

where we expand ω around ω0 and introduce frequency shifts ω1, ω2, . . . for each order in the expansion

in Q. By inserting the above expansions into the Eq. (3.10) and by collecting terms of the same order

in Q, we obtain a hierarchical system of linear differential equations. Up to the third order, we find:

ω2
0ü1(t) + ω2

0u1(t) =
1

u40
cos

Ωt

ω
, (3.13)

ω2
0ü2(t) + ω2

0u2(t) = −2ω0ω1ü1(t)−
4

u50
u1(t) cos

Ωt

ω
+ αu1(t)

2, (3.14)

ω2
0ü3(t) + ω2

0u3(t) = −2ω0ω2ü1(t)− 2βu1(t)
3 + 2αu1(t)u2(t)− ω2

1ü1(t)

+
10

u60
u1(t)

2 cos
Ωt

ω
− 4

u50
u2(t) cos

Ωt

ω
− 2ω0 ω1 ü2(t), (3.15)

where we have introduced α = 10P/u60 + 6/u50 and β = 10P/u70 + 5/u60.

These equations disentangle in a natural way: we solve the first one for u1(t) and use that solution

to solve the second one for u2(t) and so on. At the n-th level of the perturbative expansion with n ≥ 1

we use the initial conditions un(0) = 0, u̇n(0) = 0. As is well known, the presence of the term cos t on

44



3.1. Spherical-Symmetry Trap

10-2

10-1

100

101

 1.98  2.02  2.06  2.1

Frequency

ω0

Ω = 1

10-2
10-1
100
101
102

 1.98  2.02  2.06  2.1  2.14

Frequency

ω0Ω = 2

Figure 3.6.: Parts of the Fourier spectra for P = 0.4, Q = 0.2, and two different driving frequencies:

Ω = 1 (left) and Ω = 2 (right). Position of a linear response result ω0 is given by a vertical

solid line.

u
(t
)

u
(t
)

 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 0  5  10  15  20  25  30  35  40

t

Ω = 2, analytics
Ω = 2, numerics

 1.08

 1.09

 0  5  10  15  20

t

Ω = 5, analytics
Ω = 5, numerics

u
(t
)

u
(t
)

 0

 1

 2

 3

 4

 5

 6

 0  50  100  150  200  250  300  350  400

t

Ω = 2.04, numerics

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0  50  100  150  200  250  300  350

t

Ω = 4.1, numerics

Figure 3.7.: Condensate dynamics u(t) versus t within the Gaussian approximation for P = 0.4, Q =

0.1 and several different driving frequencies Ω. We plot the exact numerical solution of

Eq. (3.7). For off-resonant driving frequencies Ω, we also show our analytical third-order

perturbative result, as explained in Section 3.1.2.

the right-hand side of some of the previous equations would yield a solution that contains the secular

term t sin t. Such a secular term grows linearly in time, which makes it in the long-time limit the

dominant term in the expansion (3.11) that otherwise contains only periodic functions in t. In order

to ensure a regular behavior of the perturbative expansion, the respective frequency shifts ω1, ω2, . . .

are determined by imposing the cancellation of secular terms at the respective perturbative order.

This analytical procedure is implemented up to the third order in the modulation amplitude Q by

using the software package Mathematica [242]. Although the calculation is straightforward, it easily

becomes tedious for higher orders of perturbation theory. Note that it is necessary to perform the

calculation to at least the third order since it turns out to be the lowest-order solution where secular

terms appear and where a nontrivial frequency shift is obtained. We solve explicitely for u1(t), u2(t),

and u3(t) and show an excellent agreement of our analytical solutions with a respective numerical

solution of Eq. (3.7) in Fig. 3.7. Large amplitude oscillations and beating phenomena are present for
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Figure 3.8.: Frequency of the breathing mode versus the driving frequency Ω for P = 0.4 and Q = 0.1

(left plot), and P = 1 and Q = 0.8 (right plot). The dashed line represents Ω/2 and is

given to guide the eye.

both Ω ≈ ω0 and for Ω ≈ 2ω0 which are close to the resonance. From the first-order solution u1(t) we

read off only the two basic modes ω0 and Ω, while the second-order harmonics 2ω0, ω0−Ω, ω0+Ω and

2Ω appear in u2(t). In the third order of perturbation theory, higher-order harmonics ω− 2Ω, 2ω−Ω,

2ω + Ω, ω + 2Ω, 3ω, and 3Ω are also present. Concerning the cancellation of secular terms, it turns

out that the first-order correction ω1 vanishes, yielding a leading frequency shift which is quadratic in

Q:

ω = ω0 +
Q2

12u200 ω
3
0

P(Ω)

(Ω2 − ω2
0)

2 (Ω2 − 4ω2
0)

+ . . . , (3.16)

where the polynomial P(Ω) is given by

P(Ω) = Ω4
[

−240Pu50 + 36u60(−4 + 3u40ω
2
0)
]

+Ω2
[

−1100P2 − 30Pu0(44− 65u40ω
2
0)

+ 9u20(−44 + 127u40ω
2
0 − 44u80ω

4
0)
]

+ 5600P2ω2
0 − 840Pu0ω2

0(−8 + 3u40ω
2
0)

+36u20ω
2
0(56 − 39u40ω

2
0 + 8u80ω

4
0). (3.17)

A Mathematica notebook, which implements this analytical calculation is available at Ref. [243].

3.1.3. Discussion

The result given by Eq. (3.16) is the main achievement of our analytical analysis. It is obtained within

a perturbative approach up to the second order in Q and it describes the breathing mode frequency

dependence on Ω and Q as a result of nonlinear effects. Due to the underlying perturbative expansion,

we do not expect Eq. (3.16) to be meaningful at the precise position of the resonances. However, by

comparison with numerical results based on the variational equation, we find that Eq. (3.16) represents

a reasonable approximation even close to the resonant region.

To illustrate this, we show in Fig. 3.8 two such comparisons. In the left figure we consider the

parameter set P = 0.4 and Q = 0.1 and observe significant frequency shifts only in the narrow

resonant regions. We notice an excellent agreement of numerical values with the analytical result

given by Eq. (3.16). In the right figure we consider the parameter set P = 1 and Q = 0.8 with a much

stronger modulation amplitude. In this case we observe significant frequency shifts for the broader

range of modulation frequencies Ω. In spite of a strong modulation, we still see a qualitatively good

agreement of numerical results with the analytical prediction given by Eq. (3.16). In principle, better

agreement can be achieved using higher-order perturbative approximations. The dashed line on both
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Figure 3.9.: Part of the Fourier spectrum of the time-dependent condensate width for P = 0.4, Q = 0.2,

Ω = 2. For numerical solution of GP equation we used several discretization schemes: GP

numerics 1 (time step ε = 10−3, spacing h = 4 × 10−2), GP numerics 2 (ε = 5 × 10−4,

h = 2× 10−2), GP numerics 3 (ε = 5× 10−5, h = 5× 10−3). For comparison we also show

the corresponding spectrum obtained from the Gaussian approximation (dotted-dashed

line) and analytical result (3.16) for the position of breathing mode (solid vertical line).

figures represents Ω/2, given as a guide to the eye. It also serves as a crude description of what we

observe numerically in the range Ω ≈ 2ω0.

The presence of two poles at Ω = ω0 and Ω = 2ω0 in Eq. (3.16) implies the possible existence of

real resonances in the BEC with a harmonically modulated interaction. A perturbative expansion

to higher orders would probably introduce additional poles, which are responsible for higher-order

“resonant” behavior observed at Ω ≈ 2ω0/n, with n ≥ 3. Still, the poles seem to be only an artefact

of our approximative perturbative scheme, and thus may not be present in the exact description.

For example, a simple resummation performed by using the second-order perturbative result removes

these effects, although this is only an ad-hoc approximation. We stress that this issue concerning the

true resonant behavior can not be settled either by relying on a numerical calculation due to inherent

numerical artefacts related to finite numerical precision and finite computational time. To resolve it,

one should rely on an analytical consideration along the lines of Ref. [104] or use some analytical tool

applicable at resonances, such as the resonant Bogoliubov-Mitropolsky method [235]. However, this

is out of the scope of the present thesis.

In addition to comparing our analytical results with numerical solutions based on the Gaussian vari-

ational approximation, we present a comparison with the full numerical solution of the GP equation.

In order to be able to perform a Fourier analysis with a sufficiently good resolution, it is necessary

to obtain an accurate solution for long evolution times. We do this by using the split-step method in

combination with the semi-implicit Crank-Nicolson method [244]. As we refine the GP numerics by

using finer space and time discretization parameters, our numerical results become stable as shown

in Fig. 3.9. From the same figure, we observe quantitatively good agreement between GP numerics

and Gaussian approximation, which is reflected in close values obtained for the breathing mode fre-

quency. In addition, numerical values for the breathing mode approach closely the analytical result of

Eq. (3.16), which is shown by a solid vertical line in Fig. 3.9.
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Figure 3.10.: Condensate dynamics within the Gaussian approximation for P = 1, Q = 0.2, λ = 0.3

and two different driving frequencies Ω = 0.4 (left plot) and Ω = 1 (right plot). We

compare the exact numerical solution of Eqs. (3.2) and (3.3) with the analytical second-

order perturbative result, as explained in Section 3.2.1

3.2. Axially-Symmetric BEC

To obtain experimentally more relevant results, we now study an axially symmetric BEC [109]. An

illustration of the condensate dynamics is shown in Fig. 3.10 for P = 1, Q = 0.2, and λ = 0.3. We plot

numerical solutions of Eqs. (3.2) and (3.3) obtained for the equilibrium initial conditions uρ(0) = uρ0,

u̇ρ(0) = 0, uz(0) = uz0, and u̇z(0) = 0. For the specified parameters, the equilibrium widths are found

to be uρ0 = 1.09073, uz0 = 2.40754 and from the linear stability analysis we find both the quadrupole

mode frequency ωQ0 = 0.538735 and the breathing mode frequency ωB0 = 2.00238. For a driving

frequency Ω close to ωQ0, we observe large amplitude oscillations in the axial direction. An example

of excitation spectra is shown in Fig. 3.11. Here, we have the three basic modes ωQ, ωB, Ω, and many

higher-order harmonics.

3.2.1. Poincaré-Lindstedt Method

In order to extract information on the frequencies of the collective modes beyond the linear stability

analysis, we apply the perturbative expansion in the modulation amplitude Q:

uρ(t) = uρ0 +Quρ1(t) +Q2 uρ2(t) +Q3 uρ3(t) + . . . , (3.18)

uz(t) = uz0 +Quz1(t) +Q2 uz2(t) +Q3 uz3(t) + . . . , (3.19)

By inserting these expansions in Eqs. (3.2) and (3.3) and by performing expansions in Q, we obtain

a system of linear differential equations of the general form:

üρn(t) +m11uρn(t) +m12uzn(t) + fρn(t) = 0, (3.20)

m21uρn(t) + üzn(t) +m22uzn(t) + fzn(t) = 0, (3.21)
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where n = 1, 2, 3, . . .,m11 = 4,m12 = P/u3ρ0u2z0,m21 = 2P/u3ρ0u2z0, andm22 = λ2+3/u4z0+2P/u2ρ0u3z0.
The functions fρn(t) and fzn(t) depend only on the solutions uρi(t) and uzi(t) of lower order, i. e. i < n.

For n = 1 we have

fρ1(t) = − cos Ωt

u3ρ0uz0
, fz1(t) = − cos Ωt

u2ρ0u
2
z0

,

and for n = 2 we get correspondingly

fρ2(t) =
3

u4ρ0uz0
cos Ωt uρ1(t)−

6

u5ρ0
uρ1(t)

2 − 6P
u5ρ0uz0

uρ1(t)
2 +

1

u3ρ0u
2
z0

cos Ωt uz1(t)

− 3P
u4ρ0u

2
z0

uρ1(t)uz1(t)−
P

u3ρ0u
3
z0

uz1(t)
2, (3.22)

fz2(t) =
2

u3ρ0u
2
z0

cos Ωtuρ1(t)−
3P

u4ρ0u
2
z0

uρ1(t)
2 − 3P

u2ρ0u
4
z0

uz1(t)
2 +

2

u2ρ0u
3
z0

cos Ωt uz1(t)

− 6

u5z0
uz1(t)

2 − 4P
u3ρ0u

3
z0

uρ1(t)uz1(t). (3.23)

The linear transformation

uρn(t) = xn(t) + yn(t), (3.24)

uzn(t) = c1 xn(t) + c2 yn(t), (3.25)

with the coefficients

c1 =
m22 −m11 −

√

(m22 −m11)2 + 4m12m21

2m12
, (3.26)

c2 =
m22 −m11 +

√

(m22 −m11)2 + 4m12m21

2m12
(3.27)

decouples the system at the n-th level and leads to:

ẍn(t) + ω2
Q0xn(t) +

c2 fρn(t)− fzn(t)

c2 − c1
= 0, (3.28)

ÿn(t) + ω2
B0yn(t) +

c1 fρn(t)− fzn(t)

c1 − c2
= 0. (3.29)
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Figure 3.12.: Frequency of the quadrupole mode ωQ (a) and the breathing mode (b) versus driving

frequency Ω for P = 1, Q = 0.2, and λ = 0.3. We plot linear response result ωQ0, ωB0,

second-order analytical result ωQ,(a), ωB,(a) and numerical values ωQ,(n), ωB,(n).

Now it is clear how to proceed: we first solve Eqs. (3.28) and (3.29) for x1(t) and y1(t) and then using

Eqs. (3.24) and (3.25) we obtain uρ1(t) and uz1(t). In the next step we use these solutions and solve

for x2(t) and y2(t) and so on. At each level we impose the initial conditions uρn(0) = 0, u̇ρn(0) = 0,

uzn(0) = 0, and u̇zn(0) = 0. At the first level of perturbation theory, the equations for x and y are

decoupled, i.e. x1(t) and y1(t) are normal modes: x1(t) describes quadrupole oscillations, while y1(t)

describes breathing oscillations. However, at the second order of perturbation theory y1(t) enters the

equation for x2(t) and also x1(t) appears in equation for y2(t), i.e. we have a nonlinear mode coupling.

The explicit calculation is performed up to the second order by using the software package Math-

ematica [242]. We obtain a good agreement of analytical results obtained in the second order of

our perturbation theory and numerical results, as can be seen in Fig. 3.10 for a moderate value of

a modulation amplitude Q. The first secular terms appear at the level n = 3. The expressions are

cumbersome, but the relevant behavior is obtained from the terms

ẍ3(t) + ω2
Q0x3(t) + CQ cos(ωQ0t) + . . . = 0, (3.30)

that leads to

x3(t) = − CQ

2ωQ0
t sin(ωQ0t) + . . . . (3.31)

The last term can be absorbed into the first-order solution

uρ(t) = AQ cos(ωQ0t)−
CQQ2

2ωQ0
t sin(ωQ0t) + . . .

≈ AQ cos[t(ωQ0 +∆ωQ0)], (3.32)

and can be interpreted as a frequency shift of the quadrupole mode to the order Q2:

ωQ = ωQ0 +∆ωQ0 = ωQ0 +Q2 CQ

2ωQ0AQ
+ . . . . (3.33)

The coefficients AQ and CQ are calculated using the Mathematica code avaliable at the homepage

[243], but their explicit form is too long to be presented here. Along the same lines we also calculate

the frequency shift of the breathing mode.
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Figure 3.13.: Frequency of the quadrupole mode ωQ versus driving frequency Ω for the experimental

parameters λ = 0.021, P = 15, Q = 10 [93]. We plot linear response result ωQ0, second-

order analytical result ωQ,(a), and numerical values ωQ,(n).

3.2.2. Discussion

The main results of our calculation are shown in Fig 3.12. In Fig. 3.12(a) we plot the analytically

obtained frequency of the quadrupole mode versus the driving Ω, using the second-order perturbation

theory together with the corresponding numerical result based on the Fourier analysis of solutions of

Eqs. (3.2) and (3.3). An analogous plot for the frequency of the breathing mode is given in Fig. 3.12(b).

Our analytical perturbative result for the shifted quadrupole mode frequency contains poles at ωQ0,

2ωQ0, ωB0−ωQ0, ωQ0+ωB0 and ωB0. Similarly, for the shifted frequency of the breathing mode poles

in the perturbative solution are found at ωQ0, ωB0, 2ωB0, ωB0 − ωQ0 and ωQ0 + ωB0. In both figures

we see excellent agreement of the perturbatively obtained results with the exact numerics.

In the experiment of Ref. [93], excitations of a highly elongated and strongly repulsive BEC were

considered for the system parameters λ = 0.021, P = 15, and Q = 10. For that case, according to

ωQ0 = 0.035375, ωB0 = 2.00002, we have ωQ0 ≪ ωB0, and the driving frequency Ω was chosen in the

range (0, 3ωQ0). Due to the large modulation amplitude Q, many higher order harmonics are excited,

and, most importantly, we find frequency shifts of the quadrupole mode of about 10% in Fig 3.13.

From the same figure we notice that, due to the chosen frequency range for Ω, only resonances located

at ωQ and 2ωQ are observed in accordance with Fig. 3.1. The presence of nonlinear effects is already

mentioned in Ref. [93]. However, we suggest that the frequency shifts calculated here have to be taken

into account for extracting the resonance curves from the underlying experimental data.

To achieve a more clear-cut experimental observation of the nonlinearity-induced frequency shifts

calculated in this chapter, we suggest a different trap geometry from the one used in Ref. [93]. Mea-

surements of stable BEC modes can be performed for about 1 s and in order to extract precise values

of the excited frequencies in the Fourier analysis, several oscillation periods should be captured within

this time interval. A higher frequency of the quadrupole mode, that can be realized by using a larger

trap aspect ratio λ, in combination with a higher modulation frequency would fulfill this condition.

According to the results presented in Ref. [93], resonant driving may lead to condensate fragmenta-

tion. However, our numerical results indicate frequency shifts of about 10% even outside the resonant

regions according to Figs. 3.8 and 3.13, and this is where experimental measurements should be per-
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3. Parametric Resonances

formed. Although an increase in λ leads to a more pronounced nonlinear mixing of quadrupole and

breathing mode and may complicate the condensate dynamics further, it may be possible to perform

a Fourier analysis of experimental data, analogous to Ref. [67], and to compare it with the excitation

spectra presented here. To achieve a complete matching of experimental data and our calculations,

it may turn out that higher-order corrections to Eq. (1.2), that arise due to nonlinear dependence of

scattering length on the external magnetic field, have to be taken into account.
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4. Geometric Resonances

Theoretical studies of collective excitations are usually focused on two-body contact interactions due

to the diluteness of quantum gases [69,93,105,109,114,115,123]. However, the experimental progress

with BECs in atomic waveguides and on the surface of atomic chips, which involve a strong increase

in the density of BECs, necessitates also the study of three-body interactions [124–126]. As reported

in Ref. [129] and discussed in Section 2.5, even for a small strength of the three-body interaction, the

region of stability for the condensate can be extended considerably.

Due to the nonlinearity of the underlying Gross-Pitaevskii equation, frequencies of collective oscil-

lation modes of Bose-Einstein condensates exhibit resonances when their interaction is harmonically

modulated [109]. Whereas such parametric resonances were analyzed in the previous chapter, here in

this chapter we study the dynamics of the condensate in general and its collective oscillation modes

in particular by changing the geometry of the trapping potential. The asymmetry of the confining

potential leads to important nonlinear effects, including resonances in the frequencies of collective

oscillation modes of the condensate [105,109,112,113].

The BEC dynamics at zero temperature is described by the nonlinear GP equation for the conden-

sate wavefunction with two- and three-body interactions. Within a variational approach the partial

differential equation of Gross and Pitaevskii Eq. (2.12) is transformed in Sec. 2.2 into a set of ordinary

differential equations for the widths of the condensate in an axially-symmetric harmonic trap with

both two- and three-body interactions:

üρ + uρ −
1

u3ρ
− P
u3ρuz

− K
u5ρu

2
z

= 0 , (4.1)

üz + λ2uz −
1

u3z
− P
u2ρu

2
z

− K
u4ρu

3
z

= 0 . (4.2)

Although this represents a significant simplification in the description of a BEC, Ref. [109] demon-

strates explicitly that these ordinary differential equations yield approximatively even for long evolu-

tion times the correct dynamics of the widths. In Sec. 4.1 we study in detail geometric resonances,

which occur for commensurate frequencies of collective modes. To this end we derive an explicit an-

alytic results for the frequency shifts for the case of an axially-symmetric condensate with two- and

three-body interactions based on a perturbative expansion of the Poincaré-Lindstedt method. This

frequency shift is calculated for a quadrupole mode in Sec. 4.1.1, for a breathing mode in Sec. 4.1.2, and

the derived analytical results are then compared with the results of numerical simulations in Sec. 4.2.

In that section we also compare results of numerical simulations for radial and longitudinal widths of

the condensate and the corresponding excitations spectra with the analytical results obtained using

perturbation theory. Then, in Sec. 4.3, we analyze the resonant mode coupling and the generation of

second harmonics of the collective modes, which are induced by nonlinear effects. At first we consider

a BEC in the initial state corresponding to the stationary ground state with a small perturbation

proportional to the eigenvector of the quadrupole mode, which leads to quadrupole mode oscillations.

In the linear case, we have small-amplitude oscillations of the condensate size around the equilibrium

widths, and we are in the regime of linear stability analysis. However, when the frequencies of collec-

tive modes are approached, we obtain in the nonlinear case a resonant behavior, which is characterized
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4. Geometric Resonances

by large amplitude oscillations. In this case it is clear that a linear response analysis does no longer

provide a qualitatively good description of the system dynamics [109].

4.1. Shifts in Frequencies of Collective Modes

Close to resonances, the nonlinear structure of the GP equation leads to shifts in the frequencies

of collective oscillation modes compared to the respective values in Eqs. (2.65) and (2.66), which

are calculated using the linear stability analysis. The resonances can be generated by two different

mechanisms: they could be induced by an external, parametric driving of the system [109] as discussed

in the previous chapter, or thus could emerge due to the geometry of the system [105]. The latter

case of geometric resonances is further investigated in this section. In Sec. 4.3 we show that geometric

resonances also induce a coupling of the collective modes, which is only possible due to the nonlinear

nature of the system dynamics which is due to the interaction.

In order to analytically study both of these nonlinearity-induced effects, we apply the standard

Poincaré-Lindstedt method [109,235,238,237,236] in order to develop a perturbation theory that de-

scribes the dynamics of a BEC with two- and three-body interactions.

4.1.1. Quadrupole Mode

We start with working out a perturbation theory for the BEC dynamic, which is based on a set of

ordinary differential equations (4.1) and (4.2), by expanding the condensate widths in the series

uρ(t) = uρ0 + εuρ1(t) + ε2uρ2(t) + ε3uρ3(t) + . . . , (4.3)

uz(t) = uz0 + εuz1(t) + ε2uz2(t) + ε3uz3(t) + . . . , (4.4)

where the smallness parameter ε stems from the respective initial conditions. Here we study the

system dynamics with the initial condition in the form

u(0) = u0 + εuQ , (4.5)

u̇(0) = 0 , (4.6)

when the system is close to the equilibrium position u0, and is perturbed in the direction of the

quadrupole oscillation mode eigenvector uQ determined by Eq. (2.70). By inserting the expansions

(4.3) and (4.4) into Eqs. (4.1)–(4.2), we obtain the following system of linear differential equations:

üρn(t) +m1uρn(t) +m2uzn(t) = χρn(t) , (4.7)

üzn(t) + 2m2uρn(t) +m3uzn(t) = χzn(t) , (4.8)

where the index n takes integer values n = 1, 2, 3, .., and the quantities m1, m2, and m3 are already

defined by the expressions (2.56). The functions χρn(t) and χzn(t) depend only on the solutions

uρi(t) and uzi(t) of lower orders i, i.e. those corresponding to i < n. At first, for n = 1, we have

χρ1(t) = χz1(t) = 0 and solve the above system of equations for u1(t) =

(

uρ1(t)

uz1(t)

)

. Then, for n = 2,

we use the previous solution, and solve the system for u2(t), where the functions χρ2(t) and χz2(t) are

given by

χρ2(t) = αuρ1(t)uz1(t) + βu2z1(t) + γρu
2
ρ1(t) , (4.9)

χz2(t) = 4βuρ1(t)uz1(t) + +γzu
2
z1(t) + αu2ρ1(t) , (4.10)
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Figure 4.1.: A comparison of analytic (solid blue lines) and numeric (red dots) results for a BEC

dynamics with a pure repulsive two-body interaction P = 1, K = 0, and ε = 0.1. Top

panels show dynamics of (a) radial and (b) longitudinal condensate widths for the trap

aspect ratio λ = 2.3 as a function of the dimensionless time ωρt; bottom panels show

dynamics of (c) radial and (d) longitudinal BEC widths for λ = 0.55.

with the abbreviations

α =
3P

u4ρ0u
2
z0

+
10K
u6ρ0u

3
z0

, (4.11)

β =
P

u3ρ0u
3
z0

+
3K

u5ρ0u
4
z0

, (4.12)

γρ =
6

u5ρ0
+

6P
u5ρ0uz0

+
15K
u7ρ0u

2
z0

, (4.13)

γz =
6

u5z0
+

3P
u2ρ0u

4
z0

+
6K

u4ρ0u
5
z0

. (4.14)

At each level n of this procedure we use the initial conditions from Eqs. (4.5) and (4.6).

In order to decouple the system of equations (4.7)–(4.8), we use the linear transformation Eqs. (3.25)

with the coefficients Eq. (3.27). It decouples the system at level n and leads to two independent linear

second-order differential equations:

ẍn(t) + ω2
Qxn(t) +

c2χρn(t)− χzn(t)

c1 − c2
= 0 , (4.15)

ÿn(t) + ω2
Byn(t) +

χzn(t)− c1χρn(t)

c1 − c2
= 0 . (4.16)

From this we conclude that xn(t) and yn(t) correspond to quadrupole and breathing mode oscilla-

tions, respectively. Although the system is only perturbed in the direction of the quadrupole mode

eigenvector, due to the nonlinearity of the system, the breathing mode is excited as well.

The solutions of the above equations depend essentially on the nature of the inhomogeneous terms,

which are given by polynomials of harmonic functions of ωQt, ωBt and their linear combinations
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Figure 4.2.: A comparison of analytic (solid blue lines) and numeric (red dots) results for BEC dy-

namics for a repulsive two-body interaction P = 1 and a repulsive three-body interaction

K = 0.001, with ε = 0.1. Top panels show dynamics of (a) radial and (b) longitudinal

condensate widths for the trap aspect ratio λ = 0.7 as a function of the dimensionless

time ωρt; bottom panels show dynamics of (c) radial and (d) longitudinal BEC widths for

λ = 2.05.

(kωQ +mωB)t with integers k and m. If the inhomogeneous part of the equation for xn (yn) does not

contain a linear term proportional to the harmonic function in ωQt (ωBt), the particular as well as the

homogeneous solutions will be again polynomials in harmonic functions of ωQt, ωBt and their linear

combinations. In that case, the system exhibits usually small oscillations, which are characterized

by the frequencies ωQ and ωB from the linear stability analysis. Compared to linear systems, the

exception here is that higher harmonics and linear combinations of the modes emerge due to the

inherent nonlinearity.

However, if the inhomogeneous part of the equation for xn (yn) contains a linear term proportional

to the harmonic function in ωQt (ωBt), then the corresponding particular solution will contain a

secular term, i.e. one proportional to t times a harmonic function of ωQt (ωBt), which turns out to

be responsible for the frequency shift of the collective mode [109]. This happens for the first time at

level n = 3, when Eqs. (4.7)–(4.8) can be written in vector form as

ü3(t) +Mu3(t) + IQ,3 cosωQt+ . . . = 0 , (4.17)

with the matrix

M =

(

m1 m2

2m2 m3

)

, (4.18)

and the dots represent the inhomogeneous part of the equation, which does not contain linear terms

proportional to harmonic functions in ωQt. The expression for IQ,n can be calculated systematically

for any given level n with the help of the Mathematica software package [242]. The particular solution

of Eq. (4.17) has the form

u3,P (t) = −ε2
(uL

Q)
T IQ,3

2ωQ
uQt sinωQt+ . . . , (4.19)
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Figure 4.3.: Fourier spectra of the BEC dynamics obtained by numerically solving the system of equa-

tions (4.1) and (4.2) with the initial condition Eqs. (4.5) and (4.6) for a repulsive two-body

interaction P = 1, a repulsive three-body interaction K = 0.001, and ε = 0.1. Each graph

shows spectra of both longitudinal and radial condensate widths. The locations of all

peaks are identified as linear combinations of the quadrupole and the breathing mode fre-

quency, in correspondence with the analysis based on the developed perturbation theory.

with the left-hand eigenvector corresponding to the quadrupole mode

uL
Q =

1
√

4m2
2 +

(

ω2
Q −m1

)2

(

2m2

ω2
Q −m1

)

, (4.20)

and, again, dots represent the part of the particular solution which is due to other inhomogeneous

terms. The complete solution of Eq. (4.17) is given by the sum of the homogeneous solution uQ cosωQt

and the particular solution u3,P (t). The secular term can be now absorbed by a shift in the quadrupole

mode frequency according to

u3(t) = uQ cosωQt− ε2
(uL

Q)
T IQ,3

2ωQ
uQt sinωQt+ . . .

≈ uQ cos(ωQ +∆ωQ)t+ . . . , (4.21)

which is quadratic in the smallness parameter ε:

ωQ(ε) = ωQ +∆ωQ = ωQ − ε2
(uL

Q)
T IQ,3

2ωQ
+ ... . (4.22)

The expression for (uL
Q)

T IQ,3 is most easily calculated with the Mathematica software package [242],

and reads

u
T,L
Q IQ,3 =

fQ,3(ωQ, ωB , uρ0, uz0,P,K, λ)
(ωB − 2ωQ)(ωB + 2ωQ)

, (4.23)

where fQ,3 is a regular function without poles for real values of its arguments. Therefore, the frequency

shift of a quadrupole mode to lowest order in ε is given by

∆ωQ = −ε2 fQ,3(ωQ, ωB, uρ0, uz0,P,K, λ)
2ωQ(ωB − 2ωQ)(ωB + 2ωQ)

+ ... , (4.24)

and depends explicitly on the trap aspect ratio λ, as well as implicitly through the λ-dependence

of the frequencies ωQ and ωB according to Eqs. (2.65) and (2.66). The expression (4.24) for the
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frequency shift has a pole for ωB = 2ωQ. Taking into account the fact that ωQ < ωB, as we can

see from Eq. (2.65) and Fig. 2.5, this condition can, in principle, be satisfied. This is designated

to be a geometric resonance, since it can be obtained just by tuning the geometry of the harmonic

confining potential, i.e. the value of the trap aspect ratio λ. Higher-order corrections to ∆ωQ in ε can,

in principle, be obtained systematically by using the developed perturbation theory. In Sec. 4.2 we

compare the analytical result for the frequency shift of a quadrupole mode (4.24) with corresponding

results of numerical simulations.

4.1.2. Breathing Mode

In a similar manner, we study the dynamics of a cylindrically-symmetric BEC system when initially

only the breathing mode is excited, thus the initial condition reads now

u(0) = u0 + εuB , (4.25)

u̇(0) = 0 . (4.26)

Applying again the Poincaré-Lindstedt perturbation theory, we calculate the breathing mode frequency

shift,

ωB(ε) = ωB +∆ωB = ωB − ε2
(uL

B)
T IB,3

2ωB
+ ... , (4.27)

where again the expression (uL
B)

T IB,3 is calculated in Mathematica software package [242]. In this

way we finally yield the following analytic formula for the frequency shift of the breathing mode

∆ωB = −ε2 fB,3(ωQ, ωB, uρ0, uz0,P,K, λ)
2ωB(2ωB − ωQ)(2ωB + ωQ)

+ ... , (4.28)

where the function fB,3 is a regular function of its arguments. Naively looking at this expression,

one would say that it exhibits a pole for 2ωB = ωQ. However, from Eq. (2.66) and Fig. 2.5 we see

that ωQ < ωB, and, therefore, the condition 2ωB = ωQ is never satisfied. In the next section we

numerically demonstrate, that a geometric resonance does not occur, and verify the analytical result

for the frequency shift of the breathing mode.

4.2. Comparison with Numerical Results

In order to verify our analytical results, we perform high-precision numerical simulations [245–248]. At

first we focus on a description of the BEC dynamics, and compare our analytical results for the radial

and longitudinal widths of the condensate obtained perturbatively to the direct numerical solutions

of equations (4.1)–(4.2). To this end we consider a BEC in the initial state corresponding to the

perturbed equilibrium position, where the small perturbation is proportional to the eigenvector of the

quadrupole mode according to equations (4.5) and (4.6). Examples of the condensate dynamics are

shown in Fig. 4.1 for a pure two-body interaction P = 1, K = 0 with ε = 0.1, and in Fig. 4.2 for

P = 1, K = 0.001, with ε = 0.1. In both figures we plot analytical and numerical solutions for uρ
and uz as functions of the dimensionless time parameter ωρt for different values of the trap aspect

ratio λ. Analytical solutions are calculated using the third-order perturbation theory developed in

Subsection 4.1.1. We can see in Fig. 4.1 that the agreement is excellent, not only for the non-resonant

value of the trap aspect ratio λ = 2.3 (top panels), but also for λ = 0.55 (bottom panels), which is

close to a geometric resonance, as we will see later in Fig. 4.4(a). For these values of parameters, the

relative shift in the quadrupole mode frequency is of the order of 0.3%, and therefore the third-order

perturbation theory yields a quite accurate description of the system dynamics. The same applies to
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Figure 4.4.: Relative frequency shift of the quadrupole mode as a function of the trap aspect ratio λ

for ε = 0.1 and different values of two-body and three-body interaction strengths. Solid

lines represent the analytical result obtained from Eq. (4.24), while dots are obtained

by a numerical analysis of the corresponding excitation spectrum for each value of λ, as

described in Fig. 4.3.

the top panels of Fig. 4.2, where λ = 0.7 is far from any resonance. However, for λ = 2.05 (bottom

panels) we observe some disagreement, which increases with propagation time. This is due to the fact

that for P = 1, K = 0.001, the trap aspect ratio λ = 2.05 is close to a geometric resonance, as we will

see in Fig. 4.4(b). In this case the perturbatively calculated shift in the quadrupole mode frequency

is much larger than for the bottom panels of Fig. 4.1. For this reason, after a long enough time, the

third-order perturbation theory is no longer sufficiently accurate. Although it gives a qualitatively

correct description of the behavior of the system, one would have to go to higher orders in perturbation

theory to get a more accurate agreement with the numerical results. Such a behavior in the bottom

panels of Fig. 4.2 is just a tell-tale of the occurrence of a geometric resonance, and a subsequent

analysis of frequency shifts is the only proper way to identify these resonances in a more quantitative

way.

However, before we present this analysis, we show in Fig. 4.3 excitation spectra of the BEC dynamics
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Figure 4.5.: Relative frequency shift of the breathing mode as a function of the trap aspect ratio λ

for ε = 0.1 and different values of two-body and three-body interaction strengths. Solid

lines represent the analytical result obtained from Eq. (4.28), while dots are obtained

by a numerical analysis of the corresponding excitation spectrum for each value of λ, as

described in Fig. 4.3.

which corresponds to the initial conditions Eqs. (4.5), (4.6) for P = 1, K = 0.001, and two values of

the trap aspect ratio, λ = 1.9 and λ = 0.5. For the parameter values in Fig. 4.3(a), the linear stability

analysis yields breathing and quadrupole mode frequencies Eqs. (2.65) and (2.66) with ωB = 3.65

and ωQ = 1.96, while for the parameters in Fig. 4.3(b) we obtain ωB = 2.01 and ωQ = 0.905, all

expressed in units of ωρ. In both graphs we can see that the Fourier spectra contain two basic modes,

ωQ and ωB , whose values agree well with those obtained from the linear stability analysis in equation

Eqs. (2.65) and (2.66), and a multitude of higher-order harmonics, which are linear combinations of

the two modes, as pointed out in Subsection 4.1.1.

Now we compare the derived analytical results for the frequency shifts of the quadrupole and the

breathing mode with the results of numerical simulations for the BEC systems with two- and three-

body contact interactions in a cylindrical trap. In particular, we note that the calculated frequency

shifts close to geometric resonances reveal poles, which are an artefact of the perturbative approach.

Indeed, our detailed numerical calculations show that the observed frequencies remain finite through

the whole geometric resonance. In Figs 4.4 and 4.5 we present the comparison of analytic (solid lines)

and numeric (dots) values of relative frequency shifts as functions of the trap aspect ratio λ. The

analytical results are calculated from equation (4.24) and (4.28), respectively, while the numerical

data are obtained from a Fourier analysis of the excitation spectrum, i.e. for each value of λ we have

calculated the corresponding Fourier spectra, as in Fig. 4.3, and then extracted the frequency values

of the quadrupole and the breathing mode.

In Fig. 4.4(a) we show a special case of a pure two-body interaction, when K = 0. The condition

for a geometric resonance ωB = 2ωQ yields the trap aspect ratios λ1 = 0.55 and λ2 = 2.056, in
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4.3. Resonant Mode Coupling

good agreement with the numerical data, as we can see from the graph. The existence of a geometric

resonance at λ1 = 0.55 is responsible for the violent dynamics seen in the bottom panels of Fig. 4.1,

as we have pointed out earlier. However, by analyzing the frequency shifts we can conclusively show

that, indeed, the geometric resonance is present. In further graphs we see that the excellent agreement

between analytical and numerical results holds also for other values of P and K, including the case

of an attractive two-body interaction P = −0.2, which is still within the BEC stability region. It is

interesting to note the observation that the asymptotic approach to geometric resonances for the case of

an attractive two-body interaction is reversed compared to the case of a repulsive two-body interaction.

For instance, we can see in Fig. 4.4(d) that ∆ωQ/ωQ → ∞ when λ→ λ−2 , and ∆ωQ/ωQ → −∞ when

λ→ λ+2 , while for an attractive P = −0.2 in Fig. 4.4(f) we see that the situation is reversed. However,

our numerical results indicate frequency shifts of only about 1%.

In Fig. 4.5 we compare analytic and numeric results for a frequency shift of the breathing mode.

As for the quadrupole mode, the agreement is excellent for both repulsive and attractive two-body

interaction. As pointed out in Section. 4.1.2, there are no geometric resonances for the breathing mode

frequency, since the corresponding condition ωQ = 2ωB cannot be satisfied.

Finally, we compare our derived analytic results with those from Ref. [105], where frequency shifts

of collective modes were calculated in the Thomas-Fermi (TF) limit using a hydrodynamic approach.

In terms of our variational approach, the TF limit corresponds to the limit P → ∞ for vanishing K,

so that Eqs. (2.72) for the frequencies of the breathing and the quadrupole mode reduces to

ω2
B,Q = 2 +

3

2
λ2 ± 1

2

√

16− 16λ2 + 9λ4 , (4.29)

in agreement with Ref. [105]. The condition for a geometric resonance ωB = 2ωQ yields trap aspect

ratios λ1,2 = (
√
125 ±

√
29)/

√
72, i.e. λ1 ≈ 0.683 and λ2 ≈ 1.952.

Figure 4.6 gives a comparison of the relative frequency shifts in the TF limit calculated in Ref. [105]

using a hydrodynamic approach, and our analytical results obtained using the Poincaré-Lindstedt

perturbation theory. Despite the good agreement, we observe small differences, which are due to

the fact that reference [105] uses a parabolic variational ansatz for the condensate wave function,

while we use the Gaussian ansatz in equation (2.29). We have confirmed that, when applied to the

parabolic variational ansatz, our perturbative approach yields frequency shifts in perfect agreement

with Ref. [105].

4.3. Resonant Mode Coupling

In this section we study the phenomenon of nonlinearity-induced resonant mode coupling. As already

pointed out, even if a BEC system is excited precisely along the quadrupole or, equivalently, the

breathing mode, the emerging dynamics will lead to small oscillations which initially involve only

the corresponding mode, but then the other collective mode will eventually step in, as well as higher

harmonics of the two modes and their linear combinations. This phenomenon is caused by the nonlinear

nature of the system [109]. If the trap confinement of the system allows a geometric resonance, this

could greatly enhance the mode coupling and speed up the emergence of those modes which are

initially not excited, and therefore we designate it as a resonant mode coupling.

To demonstrate this phenomenon, we use the perturbative solution of Eqs. (4.1)–(4.2) with the initial

conditions defined by Eqs. (4.5) and (4.6), for which the initial state coincides with the equilibrium with

a small perturbation proportional to the quadrupole mode eigenvector. The second-order perturbative

solution can then be written in the form

u2(t) = u0 +

(

AρQ

AzQ

)

cosωQt+

(

AρB

AzB

)

cosωBt+ . . . , (4.30)
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Figure 4.6.: Comparison of the analytical results for the relative frequency shifts of (a) quadrupole

and (b) breathing mode in the Thomas-Fermi limit from Ref. [105] derived using the

parabolic variational ansatz (solid red lines) and the analytical results derived here using

the Poincaré-Lindstedt perturbation theory with the Gaussian variational ansatz (dashed

blue lines).

where dots represent higher harmonics and the respective amplitudes are given by

AρQ = εuρQ + ε2AρQ2

u2ρQ
ω2
Q

, (4.31)

AzQ = c1AρQ , (4.32)

AρB = ε2AρB2

u2ρQ(ω
2
B − 2ω2

Q)

ω2
B(ω

2
B − 4ω2

Q)
, (4.33)

AzB = c2AρB . (4.34)

Note that the absence of terms linear in ε in the expressions for AρB and AzB is due to the initial

condition, i.e. the fact that, initially, we only excite the quadrupole mode. The constants c1,2 in the

above expressions are defined by Eqs. (3.26) and (3.27), while AρQ2 and AρB2 are calculated to be

AρQ2 =
c2γρ + c1c2α+ c21c2β − α− 4c1β − c21γz

3(c1 − c2)
, (4.35)

AρB2 =
−c31β + α− c1γρ + 4c1β − c21α+ c21γz

c1 − c2
, (4.36)

with α, β, γρ, and γz defined by Eqs. (4.11)–(4.14).

In Fig. 4.7 we see the comparison of the derived analytical results and numerical simulations for the

amplitudes of the breathing mode, which emerge in the second order, as expected, due to nonlinear

features of the system. The numerical results are obtained, as before, by extracting the amplitude of

the breathing mode from the Fourier excitation spectra of the system for each value of the trap aspect

ratio λ. The agreement is quite good, and we see again a resonant behavior, which occurs at the same

trap aspect ratios as for the frequency shift of the quadrupole mode. From Eqs. (4.33) and (4.34) we

actually see that the resonances occur when the condition ωB = 2ωQ is satisfied, which is precisely

the same condition as for the frequency shift. Therefore, geometric resonances are not only reflected

in the resonances of frequency shifts of collective modes, but also in the resonant mode coupling.

In addition to the absolute values of the breathing mode amplitudes, which are excited through

the nonlinear mode coupling, it is also interesting to look at their relative values, compared to the
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Figure 4.7.: Amplitudes of the breathing mode emerging in the second order of the perturbation theory

from nonlinear BEC dynamics after initially only the quadrupole mode is excited, given

as functions of the trap aspect ratio λ for ε = 0.1 and different values of two-body and

three-body interaction strengths. The amplitudes AρB and AzB from Eqs. (4.33) and

(4.34) correspond to the condensate widths of the emerging breathing mode dynamics.

quadrupole mode amplitudes, i.e. the ratios

Rρ =
AρB

AρQ
∝
ω2
B − 2ω2

Q

ω2
B − 4ω2

Q

, (4.37)

Rz =
AzB

AzQ
∝
ω2
B − 2ω2

Q

ω2
B − 4ω2

Q

. (4.38)

Figure 4.8 shows the comparison of analytical and numerical results for the relative amplitudes of the

nonlinearity-excited breathing mode. Due to the geometric resonances, we see that the trap aspect

ratio can be tuned in such a way that the resonant mode coupling excites the breathing mode with

an amplitude which is even far larger than that of the quadrupole mode, which served as the source
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Figure 4.8.: Ratios of breathing and quadrupole mode amplitudes emerging in the second order of the

perturbation theory after initially only the quadrupole mode is excited, given as functions

of the trap aspect ratio λ for ε = 0.1 and different values of two-body and three-body

interaction strengths. The quantity Rρ and Rz from Eqs. (4.37) and (4.38) corresponds

to the ratio of amplitudes of the breathing and the quadrupole mode in the radial and

longitudinal condensate width.

of excitation.

Furthermore, from Eqs. (4.33) and (4.34) we see that, if the geometry of the trap is tuned such that

ωB = ωQ

√
2, then the amplitudes of the breathing mode vanish simultaneously, i.e. AρB = AzB =

0. Although this is true only in second-order perturbation theory, it still represents a significant

suppression of the nonlinear mode coupling. Therefore, the tunability of the trap aspect ratio offers

a unique tool for enhancing and suppressing the mode coupling in a BEC, which might be of broad

experimental interest.

In a similar way, we can initially excite only the breathing mode, which corresponds to Eqs. (4.1)–
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Figure 4.9.: Ratios of quadrupole and breathing mode amplitudes emerging in second order pertur-

bation theory after initially only the breathing mode is excited, given as functions of the

trap aspect ratio λ for ε = 0.1 and different values of two-body and three-body interaction

strengths. The quantity Rρ and Rz from Eqs. (4.46) and (4.47) corresponds to the ratio

of amplitudes of the breathing and the quadrupole mode in the radial and longitudinal

condensate width.

(4.2) with initial conditions defined in Eqs. (4.25) and (4.26). The solution in the second-order

perturbation theory has again the form

u2(t) = u0 +

(

AρB

AzB

)

cosωBt+

(

AρQ

AzQ

)

cosωQt+ . . . , (4.39)

but now the respective amplitudes read

AρB = εuρB + ε2AρB2

u2ρB
ω2
B

, (4.40)
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AzB = c2AρB , (4.41)

AρQ = ε2AρQ2

u2ρB(2ω
2
B − ω2

Q)

ω2
Q(4ω

2
B − ω2

Q)
, (4.42)

AzQ = c1AρQ , (4.43)

and the coefficients AρB2 and AρQ2 are given by

AρB2 =
−c1γρ − c1c2α− c1c

2
2β + α+ 4c2β + c22γz

3(c1 − c2)
, (4.44)

AρQ2 =
c32β − α+ c2γρ − 4c2β + c22α− c22γz

c1 − c2
. (4.45)

In this case, the amplitude ratios are given by

Rρ =
AρQ

AρB
∝

2ω2
B − ω2

Q

4ω2
B − ω2

Q

, (4.46)

Rz =
AzQ

AzB
∝

2ω2
B − ω2

Q

4ω2
B − ω2

Q

. (4.47)

Figure 4.9 compares analytical and numerical results for the mode coupling when initially only

the breathing mode is excited, and then the quadrupole mode emerges due to the nonlinearity of

the system. As for the case of the breathing mode frequency shift, there are no resonances, since

ωB > ωQ, and the resonance condition 2ωB = ωQ cannot be satisfied, as we see from the graphs. Also,

the condition ωB

√
2 = ωQ cannot be fulfilled, and therefore the amplitude of the quadrupole mode

cannot be fully suppressed. For a repulsive two-body interaction in Fig. 4.9(a)–(d) we see that the

ratios Rρ and Rz are below 10%, and the mode coupling mechanism is not able to produce a significant

amplitude for the quadrupole mode. For the case of an attractive two-body interaction in Fig. 4.9(e)–

(f), the ratio increases and the generated quadrupole mode amplitude is stronger. Here the agreement

between analytical and numerical results is only qualitative, so that the perturbation theory has to

be carried out to higher orders in the small parameter ε in order to improve the agreement.
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Resonance in Magnetic Trap

Several studies showed that the excitation of low-lying collective modes can be achieved by modulating

a system parameter. One example is to change the external potential trap [46,65,103–107] or, more

specifically, the trap anisotropy of the confining potential [105,112–114,119,227]. Alternatively, this

can also be achieved by a modulation of the s-wave scattering length [87,93,109,108,110,111] or possibly

by modifying the three-body interaction strength [108,112,113].

In 1961 W. Kohn [249] first showed in a three-dimensional solid that the interaction between elec-

trons does not change the cyclotron resonance frequency, i.e. the frequency of an electron moving in a

static uniform magnetic field on a circle due to the Lorentz force [249]. In addition the Kohn theorem

can be applied in the realm of the ultracold quantum gases where it states that the center of mass

of the entire cloud oscillates back and forth in the trapping potential with the natural frequency of

the trap irrespective of the strength and type of the two-body interaction. For instance, the Kohn

theorem is discussed explicitly at zero temperature for a Bose gas in the Bogoliubov approximation

in Ref. [250]. Furthermore, the Kohn theorem was shown to hold also at finite temperature, i.e. the

dipole mode frequency does not change even at finite temperature [222,226,251–253]. The authors in

Refs. [222,251] explored that the dynamics of a trapped Bose condensed gas at finite temperature is

consistent with a generalized Kohn theorem and satisfies the linearized ZNG hydrodynamic equations.

In particular the Kohn mode was studied in Ref. [252] by using and considering a nonlinear GP equa-

tion for the condensate wave function, which is coupled to a collisionless Boltzmann or Vlasov-Landau

equation describing the dynamics of the noncondensed cloud in the collisionless regime. The validity

of the Kohn theorem at finite temperature theory, based on a linear response formalism, was discussed

in Ref. [226], afterwards, was examined in Ref. [253] for a specific finite temperature approximation

within the dielectric formalism.

Another possible procedure to primarily excite the dipole mode consists in introducing an abrupt

change in the potential. The experimental achievement [64,69] was confirmed by Refs. [50,70], where

also the quadrupole frequency was determined as an eigenfrequency of the hydrodynamic equations.

The internal and external dynamics of a Bose-Einstein condensate oscillating in an anharmonic mag-

netic waveguide was studied in Ref. [67]. There also several nonlinear effects including second and

third harmonic generation of the center of mass motion, a coupling of the internal and external dy-

namics, and a nonlinear mode mixing were identified. Furthermore, the dipole mode frequency was

studied by using a variational sum rule approach in Refs. [254–257]. The collective dipole oscillations

in the Bose-Fermi mixture were studied theoretically in Refs. [255] and experimentally in Ref. [258].

In particular Ref. [255] investigated how the dipole mode frequency is affected by the unequal mases

of bosons and fermion. Furthermore, the dipole mode frequency was studied by using a spin-orbit

coupled Bose-Einstein condensate confined in a harmonic trap both experimentally [256] and theoret-

ically [256,257] and it was shown that, due to spin-orbit coupling, the dipole mode frequency deviates

from the trap frequency. The dipole mode was discussed in a fermionic mixture by using Boltzmann

equation in Ref. [259].

In the recent work [121], the authors explored a different physical idea by investigating the coupling

between dipole and quadrupole modes in the immediate vicinity of a Feshbach resonance. They
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started with considering a Bose-Einstein condensate in a magneto-optical trap with a controlled bias

field, where the dipole mode is excited. If the bias field is close enough to a Feshbach resonance,

the oscillation of the entire cloud through the inhomogeneous bottom of the trap causes an effective

periodic time-dependent modulation in the scattering length, which in turn excites other modes like

the quadrupole or the breathing mode.

Although Ref. [121] introduces this appealing physical notion, it only provides a rough quantitative

study. Therefore we calculate in this chapter in detail the collective excitation modes of a harmonically

trapped Bose-Einstein condensate in the vicinity of a Feshbach resonance for experimentally realistic

parameters of a 85Rb BEC [260]. To this end, we consider the situation that a Bose-Einstein condensate

oscillates within a dipole mode in z-direction and investigate how the dipole mode frequency changes

when the bias magnetic field approaches the Feshbach resonance [261]. At first we follow Ref. [121] and

transform the partial differential equation of Gross and Pitaevskii for the concentrate wave function

in Section 5.2 within a variational approach [84,85] into a set of ordinary differential equations for the

widths of the condensate and the center of mass oscillation in an axially-symmetric harmonic trap

plus a bias potential. We then explore in Section 5.3 the heuristic approximation ansatz of Ref. [121]

and determine the consequences for the frequencies of collective modes. Our own analysis is then

based on an exact treatment as is explained in Section 5.4. With this we calculate in Section 5.5

the dipole mode frequency and the frequencies of collective modes on top of the Feshbach resonance.

In contrast to the heuristic approximation of Ref. [121] we predict a finite dipole mode frequency on

top of the Feshbach resonance. Then we discuss the corresponding results for the right-side of the

Feshbach resonance in Section 5.6. In the limit that the bias field approaches the Feshbach resonance,

we reproduce our previous results from Section 5.5. When the bias magnetic field is far away from the

Feshbach resonance, however, we only partially recover the result of Ref. [121]. This shows that the

heuristic approximation of Ref.[121] is not even correct far away from the Feshbach resonance despite

its appealing physical motivation.

5.1. Near Feshbach Resonance

As mentioned in Chapter 2, the dynamics of a condensed Bose gas in a trap at zero temperature is

described by the time-dependent GP equation Eq. (2.12). In the presence of a magnetic field, the

s-wave scattering can be tuned by applying an external magnetic field due to the Feshbach resonance

resulting in Eq. (1.1) [50,262]. Here in this chapter, we consider a Bose-Einstein condensate confined

in a magneto-optical trap composed of a harmonic potential plus a bias

Vext.(r) = V0 +
Mω2

ρ

2

(

ρ2 + λ2z2
)

. (5.1)

This potential is generated by a corresponding magnetic field whose modulus is given by

B = B0 +
Mω2

ρ

2µB

(

ρ2 + λ2z2
)

, (5.2)

where µB is the magnetic dipole moment and B0 = V0/µB is the bias field. This kind of field can

be obtained, for instance, in a Ioffe-Pritchard trap [121,263]. From Eqs. (1.1) and (5.2), the inter-

particle interaction in the atomic cloud moving in this potential is controlled by the spatially dependent

scattering length

as = aBG

[

1− ∆

H +
Mω2

ρ

2µB
(ρ2 + λ2z2)

]

, (5.3)

where H = B0 − Bres denotes the deviation of the bias magnetic field B0 from the location of the

Feshbach resonance at Bres. To this end, we consider the potential Eq. (5.1) loaded with a condensed
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cloud whose dipole mode is excited in z-direction. In this configuration, far away from the Feshbach

resonance the center of mass oscillates periodically at the bottom of the trap with the Kohn mode

frequency ωz = λωρ.

For experimental data, we follow Refs. [260,264] and consider N = 4× 104 atoms of a 85Rb BEC in

a harmonic trap with ωρ = 2π×156 Hz along the radial direction and ωz = 2π×16 Hz along the axial

direction. The Feshbach resonance parameters are given by the background value aBG = −443 a0,

where a0 is the Bohr radius, the width ∆ = 10.7 G, and the resonance location at Bres = 155

G. The magnetic dipole moment µB of a 85Rb [265] is equal to one Bohr magneton mB = e~
2Me

=

9.27400968(20)×10−24J/T, which represents the magnetic dipole moment of the Hydrogen atom with

the electron charge e and the electron rest mass Me.

Initially, we discuss qualitatively the consequences of the Thomas-Fermi approximation for a van-

ishing three-body interaction strength g3 = 0. As we assume to have a strong two-body interaction,

we can neglect the kinetic energy term in Eq. (2.15) and obtain

µ = Vext.(r) + g2nc(r). (5.4)

Far away from the Feshbach resonance we can consider the potential in Eq. (5.3) to be small, thus we

expand Eq. (5.3) up to the first order of the external potential, yielding

µ = Vext.(r) +
4π~2aBGnc(0)

M

[

1− ∆

H +
∆

H2µB

Mω2
ρ

2

(

ρ2 + λ2z2
)

+ .....

]

, (5.5)

where nc(0) is the TF density at the trap center with the chemical potential µ being defined in

Eq. (2.21) for vanishing three-body interaction. On the one hand we read off from Eq. (5.5) that the

effective s-wave scattering length is given by

aeff = aBG

(

1− ∆

H

)

. (5.6)

Thus, the BEC is unstable, i.e. aeff < 0, provided that B0 > Bcrit +∆. Conversely, the TF approxi-

mation yields a stable BEC, i.e. aeff > 0, in the case that Bres < B0 < Bcrit = Bres +∆. On the other

hand, we obtain from Eqs. (2.17) and (5.5) the effective Kohn mode frequency

ωD,eff = λωρ

√

1 +
4π~2aBGnc(0)

M

µ∆

H2µB
. (5.7)

On the right-hand side of the Feshbach resonance we expect for Bres < B0 < Bcrit = Bres + ∆

the expected Kohn mode frequency ωD,eff which is smaller than the corresponding one without the

Feshbach resonance due to aBG < 0. In the following we will show that this initial qualitative finding

is confirmed by a more quantitative analysis.

5.2. Variational Approach

In order to analytically study the dynamical system of a BEC with two-body contact interaction,

where the dipole mode is excited in z-direction, we use a Gaussian variational ansatz which also

coincides the center of mass oscillation in z-direction according to Refs. [84,85,121]. For an axially

symmetric trap, this time-dependent ansatz reads

ψG(ρ, z, t) = N exp

[

− ρ2

2u2ρ
+ iραρ + iρ2βρ

]

exp

[

−(z − z0)
2

2u2z
+ izαz + iz2βz

]

, (5.8)
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where N = 1/
√

π
3
2u2ρuz is a normalization factor, while uρ,z, z0, αρ,z, and βρ,z denote time-dependent

variational parameters, which represent radial, axial condensate widths, the center of mass oscilla-

tion, and the corresponding phases. If we insert the Gaussian ansatz Eq. (5.8) into the Lagrange

function (2.26), we obtain

L = − ~

2

[

u2zβ̇z + 2z20 β̇z + 2z0α̇z + 2u2ρβ̇ρ +
√
πuρα̇ρ

]

− ~
2

2M

[

1

2u2z
+

1

u2ρ
+ 2u2zβ

2
z + 4z20β

2
z

+ 4z0βzαz + α2
z + 4u2ρβ

2
ρ + 2

√
πuρβραρ + α2

ρ

]

− V0 −
Mω2

ρ

2

[

u2ρ +
λ2u2z
2

+ λ2z20

]

− ~
2NaBG√
2πM

1

u2ρuz
+

4~2NaBG∆

πu4ρu
2
zM

f(uρ, uz, z0) , (5.9)

where we have introduced the integral

f(uρ, uz, z0) =

∫ ∞

0
dρ

∫ ∞

−∞

dz
ρ exp

[

−2ρ2/u2ρ − 2(z − z0)
2/u2z

]

H +
Mω2

ρ

2µB
(ρ2 + λ2z2)

. (5.10)

From the corresponding Euler-Lagrange equations Eq. (2.31) we obtain the equations of motion for

all variational parameters. The phases αρ,z and βρ,z can be expressed explicitly in terms of first

derivatives of the widths uρ, uz, and the center of mass coordinate z0 according to

αρ = 0 , αz =
M

~
ż0 − 2z0βz , βρ =

M

2~

u̇ρ
uρ
, βz =

M

2~

u̇z
uz
. (5.11)

Inserting Eq. (5.11) into the Euler-Lagrange equations for the width of the condensates uρ, uz, and

the center of mass coordinate z0, we obtain a system of three second order differential equations for

uρ, uz, and z0:

üρ + ω2
ρuρ −

~
2

M2u3ρ
−
√

2

π

aBGN~
2

M2uzu3ρ

[

1− 16∆f(uρ, uz, z0)√
2πu2ρuz

+
4∆√
2πuρuz

∂f(uρ, uz, z0)

∂uρ

]

= 0 , (5.12)

üz + λ2ω2
ρuz −

~
2

M2u3z
−
√

2

π

aBGN~
2

M2u2zu
2
ρ

[

1− 16∆f(uρ, uz, z0)√
2πu2ρuz

+
8∆√
2πu2ρ

∂f(uρ, uz, z0)

∂uz

]

= 0 , (5.13)

z̈0 + λ2ω2
ρz0 −

4~2NaBG∆

πM2u4ρu
2
z

∂f(uρ, uz , z0)

∂z0
= 0 . (5.14)

In the following we discuss different approaches how to extract the frequencies of the low-lying collective

modes from the equations of motion Eq. (5.12)–(5.14).

5.3. Approximative Solution

In this section we discuss the heuristic approximation of Ref. [121] how to evaluate the integral

Eq. (5.10). To this end we assume that the cloud size is much smaller than the oscillating amplitude,

which means that the cloud experiences the same field equally at any point, i.e., the scattering length is

the same throughout the entire cloud. This is equivalent to stating that the numerator of the integral

Eq. (5.10), i. e.

ρ exp
[

−2ρ2/u2ρ − 2(z − z0)
2/u2z

]

, (5.15)

is much narrower than the denominator

1

H +
Mω2

ρ

2µB
(ρ2 + λ2z2)

, (5.16)
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which leads to the condition

uρ ≪
√

2µBH
Mω2

ρ

, uz ≪
√

2µBH
Mω2

ρλ
2
. (5.17)

Thus, the heuristic approximation of Ref. [121] seems to be valid for a large enough H, i.e. far away

from the Feshbach resonance.

In that case, we can expand Eq. (5.16) around the center of mass ρ = 0 and z = z0, which gives us

in leading order
1

H +
Mω2

ρ

2µB
(ρ2 + λ2z2)

≈ 1

H +
Mω2

ρ

2µB
λ2z20

. (5.18)

Within this approximation, the integral Eq. (5.10) can be evaluated exactly

f(uρ, uz, z0) ≈
√
2π

8H
u2ρuz

(

1 +
Mω2

ρλ
2z20

2µBH

) . (5.19)

By substituting Eq. (5.19) into Eqs. (5.12)–(5.14) and after introducing dimensionless parameters

according to Eq. (2.34) with

PBG =

√

2

π

NaBG

l
, ε0 =

∆

H , ε1 =
HµB
~ωρ

, (5.20)

we get a system of three second ordinary differential equations uρ, uz, and z0 in the dimensionless

form

üρ + uρ −
1

u3ρ
− PBG

uzu3ρ

(

1− ε0
1 + z20λ

2/2ε1

)

= 0 , (5.21)

üz + λ2uz −
1

u3z
− PBG

u2zu
2
ρ

(

1− ε0
1 + z20λ

2/2ε1

)

= 0 , (5.22)

z̈0 + λ2z0

[

1 +
ε0PBG

2ε1u2ρuz
(

1 + z20λ
2/2ε1

)2

]

= 0 . (5.23)

The time-independent solution uρ = uρ0, uz = uz0, and z0 = z00 is determined by setting the

accelerations in Eqs. (5.21)–(5.23) to zero:

uρ0 −
1

u3ρ0
− PBG

uz0u3ρ0
(1− ε0) = 0 , (5.24)

λ2uz0 −
1

u3z0
− PBG

u2z0u
2
ρ0

(1− ε0) = 0 , (5.25)

z00 = 0 . (5.26)

Let us now determine the frequencies of collective modes in this approximation which has not been

considered in Ref. [121]. To this end we linearize Eqs. (5.21)–(5.23) around these equilibrium positions,

so we expand the condensate widths as uρ = uρ0+ δuρ, uz = uz0+ δuz, and the center of mass motion

z0 = z00+δz0, insert these expressions into the corresponding equations, and expand them around the

equilibrium widths by keeping only linear terms. From Eqs. (5.21) and (5.22) we obtain an eigenvalue

problem of the form Eq. (2.63), from which we immediately get the frequencies of the breathing and

the quadrupole mode

ω2
B,Q =

1

2

[

m1 +m3 ±
√

(m1 −m3)2 + 8m2
2

]

, (5.27)
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Figure 5.1.: Equilibrium positions uρ0 (red curves), uz0 (blue curves), and trap aspect ratio uρ0/uz0
(green curves) as a function of magnetic field B0 for the experimental dimensionless pa-

rameter of the two-body contact interaction PBG = −856.732 with different trap aspect

ratios (a) λ = 0.5 and (b) λ = 2. The solid and dashed curves correspond to the exact

results Eq. (5.24), Eq. (5.25) and the TF approximation Eq. (5.32), respectively.
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Figure 5.2.: Dipole mode frequency as a function of magnetic field B0 for the experimental dimension-

less parameter of the two-body contact interaction PBG = −856.732 with different trap

aspect ratios (a) λ = 0.5 (blue curves) and (b) λ = 2 (red curves). The solid and dashed

curves correspond to the exact result Eq. (5.31) and the TF approximation Eq. (5.34),

respectively.

where the abbreviations m1,m2, and m3 are calculated by using Mathematica [242] and defined as

follows

m1 = 1 +
3

u4ρ0
+

3PBG

u4ρ0uz0
(1− ε0) , (5.28)

m2 =
PBG

u3ρ0u
2
z0

(1− ε0) , (5.29)

m3 = λ2 +
3

u4z0
+

2PBG

u2ρ0u
3
z0

(1− ε0) . (5.30)

In addition we obtain from Eq. (5.23) the dipole mode frequency

ω2
D = λ2

(

1 +
ε0PBG

2ε1u
2
ρ0uz0

)

. (5.31)

Now, we discuss the Thomas-Fermi approximation to find an analytical expression for the condensate

widths uρ0, uz0, and the ratio of uρ0/uz0 as well as the frequencies of collective modes. The equilibrium
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Figure 5.3.: Breathing (blue curves) and quadrupole (red curves) mode frequencies as a function of

magnetic field B0 for the experimental dimensionless parameter of the two-body contact

interaction PBG = −856.732 with different trap aspect ratio (a) λ = 0.5 and (b) λ =

2. The solid and dashed curves correspond to the exact results Eq. (5.27) and the TF

approximation Eq. (5.33), respectively.

positions Eqs. (5.24) and (5.25) in the TF approximation have the form

u5ρ0 − PBGλ (1− ε0) = 0 , λuz0 = uρ0 . (5.32)

The frequencies of collective modes (5.27) with the abbreviations (5.28)–(5.30) reduce in the TF

approximation (5.32) to

ω2
B,Q = 2 +

3

2
λ2 ± 1

2

√

16− 16λ2 + 9λ4 , (5.33)

thus they coincide with Eq. (4.29) and do not depend on the bias magnetic field B0. The dipole mode

frequency (5.31) in the TF approximation (5.32) has the form

ω2
D = λ2

(

1 +
ε0PBGλ

2ε1u3ρ0

)

, (5.34)

where the dipole mode frequency is not valid on top of the Feshbach resonance, i.e. for ε1 = 0.

Figure 5.1 shows the equilibrium widths of the condensate uρ0, uz0, and the trap aspect ratio uρ0/uz0
as a function of the bias magnetic field B0 for the experimental value PBG = −856.732 [260,264] and

the trap anisotropy (a) λ = 0.5 and (b) λ = 2. Due to the approximative solution of Ref. [121]

both condensates widths are divergent on top of the Feshbach resonance, where H → 0. The TF

approximation Eq. (5.32) agrees quite well with the exact results of the condensate widths Eqs. (5.24)

and (5.25). In particular Fig. 5.2 shows that the dipole mode frequency goes to zero just before the

Feshbach resonance and we have good agreement between the exact result Eq. (5.31) with the TF

approximation Eq. (5.34). In Fig. 5.3 we show the frequencies of collective modes as a function of the

bias magnetic field B0. These frequencies in Eqs. (5.27) have good agreement with the frequencies in

the TF approximation Eqs. (5.33) and show that the breathing and quadrupole modes depend only

the trap anisotropy λ and do not depend on the bias magnetic field B0. In the following we show that

these consequences of the heuristic approximation Eq. (5.19) from Ref. [121] turn out to be neither

correct on top of the Feshbach resonance nor far away from it.

5.4. Schwinger Trick

In the last section we have shown that the approximation Eq. (5.19) of Ref. [121] for the integral

Eq. (5.10) seems to be valid far away from the Feshbach resonance. In order to study the frequencies
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of collective modes correctly both in the vicinity of the Feshbach resonance and on the right-hand side

of the Feshbach resonance, i.e. for H > 0, we develop our own approach by using the Schwinger trick

[266] in order to rewrite the integral Eq. (5.10) in form of

f =

∫ ∞

0
dρ

∫ ∞

−∞

dz

∫ ∞

0
ds ρ exp

[

− 2ρ2

u2ρ
− 2(z − z0)

2

u2z

]

exp

{

−s
[

H +
Mω2

ρ

2µB

(

ρ2 + λ2z2
)

]

}

. (5.35)

Within the linearization of the equations of motions Eqs. (5.12)–(5.14), we have to take into the

account that the equilibrium value of the center of mass oscillation vanishes according to Eq. (5.26).

This allows to expand the integral of Eq. (5.35) up to the second order of z0 which yields

f =

∫ ∞

0
dρ

∫ ∞

−∞

dz

∫ ∞

0
ds ρ exp

{

−2ρ2

u2ρ
− 2z2

u2z
− s

[

H +
Mω2

ρ

2µB

(

ρ2 + λ2z2
)

]

}

×
(

1 +
4zz0
u2z

− 2z20
u2z

+
8z2z20
u4z

+O[z0]
3

)

. (5.36)

Thus, the corresponding first derivatives read

∂f

∂uρ
=

∫ ∞

0
dρ

∫ ∞

−∞

dz

∫ ∞

0
ds ρ exp

{

−2ρ2

u2ρ
− 2z2

u2z
− s

[

H +
Mω2

ρ

2µB

(

ρ2 + λ2z2
)

]

}

×
(

4ρ2

u3ρ
+

16ρ2zz0
u3ρu

2
z

+O[z0]
2

)

, (5.37)

∂f

∂uz
=

∫ ∞

0
dρ

∫ ∞

−∞

dz

∫ ∞

0
ds ρ exp

{

−2ρ2

u2ρ
− 2z2

u2z
− s

[

H +
Mω2

ρ

2µB

(

ρ2 + λ2z2
)

]

}

×
(

4z2

u3z
− 8zz0

u3z
+O[z0]

2

)

, (5.38)

∂f

∂z0
=

∫ ∞

0
dρ

∫ ∞

−∞

dz

∫ ∞

0
ds ρ exp

{

−2ρ2

u2ρ
− 2z2

u2z
− s

[

H +
Mω2

ρ

2µB

(

ρ2 + λ2z2
)

]

}

×
(

4z

u2z
− 4(u2z − 4z2)z0

u4z
+O[z0]

2

)

. (5.39)

In the next two sections we study the consequences of this integral representation both on top and on

the right-hand side of the Feshbach resonance.

5.5. On Top of Feshbach Resonance

We discuss in this section the frequencies of collective modes when the bias field B0 coincides with the

resonant magnetic field Bres, i.e. we have H = B0 − Bres = 0. In that case the integrals Eqs. (5.36)–

(5.39) can be exactly solved, yielding

f =

√
2πuρuzµBArcSec (uzλ/uρ)

Mω2
ρ

√

−u2ρ + u2zλ
2

+O[z0]
2 , (5.40)
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Figure 5.4.: Graph of the arc secant function.

∂f

∂uρ
=

√
2πuzµB

Mω2
ρ

(

u2ρ − u2zλ
2
)2

[

u3ρ − uρu
2
zλ

2 + u2zλ
2
√

−u2ρ + u2zλ
2ArcSec (uzλ/uρ)

]

+O[z0]
2 , (5.41)

∂f

∂uz
= −

√
2πu2ρµB

Mω2
ρ

(

u2ρ − u2zλ
2
)2

[

u2ρ − u2zλ
2 + uρ

√

−u2ρ + u2zλ
2ArcSec (uzλ/uρ)

]

+O[z0]
2 , (5.42)

∂f

∂z0
= − 4

√
2πuρµBz0

Mω2
ρuz

(

u2ρ − u2zλ
2
)2

[

u3ρ − uρu
2
zλ

2 + u2zλ
2
√

−u2ρ + u2zλ
2ArcSec (uzλ/uρ)

]

+O[z0]
2 , (5.43)

where ArcSec(x) = 1
ArcCos(x) is inverse of the secant function and it is discontinuous function defined

on entire real axis except the (−1, 1) range so, its domain is (−∞,−1]U [1,∞) [242]. By substituting

Eqs. (5.40)–(5.43) into Eqs. (5.12)–(5.14) and after introducing dimensionless parameters according

to Eqs. (2.34) and (5.20) with

ε = ε0ε1 =
∆µB
~ωρ

, (5.44)

we get a system of three second ordinary differential equations uρ, uz, and z0 in the dimensionless

form

üρ + uρ −
1

u3ρ
− PBG

uzu3ρ

[

1− ε

(

12u2zλ
2 − 16u2ρ

)

ArcSec (uzλ/uρ)

uρ
(

u2zλ
2 − u2ρ

)3/2
− 4ε
(

u2zλ
2 − u2ρ

)

]

+O[z0]
2 = 0 , (5.45)

üz + λ2uz −
1

u3z
− PBG

u2zu
2
ρ

[

1 +
8ε
(

u2ρ − 2u2zλ
2
)

ArcSec (uzλ/uρ)

uρ
(

u2zλ
2 − u2ρ

)3/2
+

8ε
(

u2zλ
2 − u2ρ

)

]

+O[z0]
2 = 0 , (5.46)

z̈0 + λ2z0 +
16εPBG

u3ρu
2
z

[

uzλ
2ArcSec (uzλ/uρ)
(

u2z0λ
2 − u2ρ0

)3/2
+

uρ

uz
(

u2ρ − u2zλ
2
)

]

z0 +O[z0]
2 = 0 . (5.47)

The experiment in Ref. [260,264] was performed with the following values of dimensionless parameters:

PBG = −856.732 , ε = 9.6052 × 104 . (5.48)

The time-independent solution uρ = uρ0, uz = uz0, and z0 = z00 are determined by setting the
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Figure 5.5.: Equilibrium results for (a) condensate widths uρ0 (red), uz0 (blue) and (b) aspect ratio

uρ0/uz0 (green) as a function of trap aspect ratio λ for the experimental parameters

Eq. (5.48). Solid and dashed curves correspond to the exact results Eqs. (5.49), (5.50)

and the TF approximation Eqs. (5.60), (5.61), respectively.

accelerations in Eqs. (5.45)–(5.47) to zero

uρ0 −
1

u3ρ0
− PBG

uz0u3ρ0






1−

ε
(

12u2z0λ
2 − 16u2ρ0

)

ArcSec
(

uz0λ
uρ0

)

uρ0

(

u2z0λ
2 − u2ρ0

)3/2
− 4ε
(

u2z0λ
2 − u2ρ0

)






= 0 , (5.49)

λ2uz0 −
1

u3z0
− PBG

u2z0u
2
ρ0






1 +

8ε
(

u2ρ0 − 2u2z0λ
2
)

ArcSec
(

uz0λ
uρ0

)

uρ0

(

u2z0λ
2 − u2ρ0

)3/2
+

8ε
(

u2z0λ
2 − u2ρ0

)






= 0 , (5.50)

z00 = 0 . (5.51)

Afterwards, we determine the frequencies of collective modes. The breathing and quadrupole mode

frequencies turn out to be given by Eq. (5.27), where the abbreviations m1,m2, and m3 are calculated

by using Mathematica [242] and are defined as follows

m1 = 1 +
3

u4ρ0
+

3PBG

u4ρ0uz0

[

1−
4ε
(

20u4ρ0 − 29u2ρ0u
2
z0λ

2 + 12u4z0λ
4
)

ArcSec
(

uz0λ
uρ0

)

3uρ0

(

−u2ρ0 + u2z0λ
2
)5/2

−
4ε
(

−3u2ρ0 + 2u2z0λ
2
)

(

u2ρ0 − u2z0λ
2
)2

]

, (5.52)

m2 =
PBG

u3ρ0u
2
z0

[

1−
12u2ρ0ε

(

u2ρ0 − u2z0λ
2
)2 −

4ε
(

4u4ρ0 − 13u2ρ0u
2
z0λ

2 + 6u4z0λ
4
)

ArcSec
(

uz0λ
uρ0

)

uρ0

(

−u2ρ0 + u2z0λ
2
)5/2

]

, (5.53)

m3 = λ2 +
3

u4z0
+

2PBG

u2ρ0u
3
z0

[

1−
4ε
(

2u4ρ0 − 5u2ρ0u
2
z0λ

2 + 6u4z0λ
4
)

ArcSec
(

uz0λ
uρ0

)

uρ0

(

−u2ρ0 + u2z0λ
2
)5/2

−
12u2ρ0ε

(

u2ρ0 − 2u2z0λ
2
)

(

u3ρ0 − uρ0u
2
z0λ

2
)2

]

. (5.54)
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The dipole mode frequency follows from Eq. (5.47) can be written as

ω2
D = λ2 +

16εPBG

u3ρ0u
2
z0







uz0λ
2ArcSec

(

uz0λ
uρ0

)

(

u2z0λ
2 − u2ρ0

)3/2
+

uρ0

uz0

(

u2ρ0 − u2z0λ
2
)






. (5.55)

From Eqs. (5.49) and (5.50) we read off the useful identity

ArcSec

(

uz0λ

uρ0

)

=

√

−u2ρ0 + u2z0λ
2

40PBGuρ0uz0ε

(

3u4ρ0 − PBGu
2
ρ0uz0 − 4u2ρ0u

2
z0 + 4u6ρ0u

2
z0 + 40PBGuz0ε

−3u2ρ0u
2
z0λ

2 + PBGu
3
z0λ

2 + 4u4z0λ
2 − 7u4ρ0u

4
z0λ

2 + 3u2ρ0u
6
z0λ

4

)

, (5.56)

so Eq. (5.55) reduces to

ω2
D = λ2 +

4
(

2u2ρ0 + PBGuz0 − u2z0 + u4ρ0u
2
z0 − 2u2ρ0u

4
z0λ

2
)

5u2ρ0u
4
z0

. (5.57)

Figure 5.5 shows the equilibrium widths of the condensate uρ0, uz0 and the aspect ratio uρ0/uz0 follow-

ing from Eqs. (5.49), (5.50) as solid lines versus trap aspect ratio λ and the experimental parameters

Eq. (5.48). From Fig. 5.5(b) we read off that the aspect ratio uρ0/uz0 turns out to coincide perfectly

with the trap aspect ratio λ. In order to analyze this finding in more detail, we observe that the large

values of the experimental parameters Eq. (5.48) suggest to consider the TF approximation. Thus,

we neglect the respective second term in Eqs. (5.49) and (5.50), which comes from the kinetic energy.

Furthermore, we use the ansatz
uz0λ

uρ0
= 1 + η (5.58)

and evaluate the resulting equations in the limit of a vanishing smallness parameter η. By using the

Taylor expansion

ArcSec(x) =
√
2
√
x− 1− 5(x− 1)3/2

6
√
2

+
43(x − 1)5/2

80
√
2

+ ..., x ≥ 1 , (5.59)

Eqs. (5.49) and (5.50) reduce to

uρ0 −
PBG

u3ρ0uz0

(

1− 40ε

3u2ρ0

)

= 0 , (5.60)

λ2uz0 −
PBG

u2ρ0u
2
z0

(

1− 40ε

3u2ρ0

)

= 0 , (5.61)

which corresponds, indeed, to the identity

uz0λ = uρ0 . (5.62)

Thus, the knowledge of one condensate width, for instance uρ0 from solving

u5ρ0 − PBGλ

(

1− 40ε

3u2ρ0

)

= 0 , (5.63)

implies that also the other condensate width is known. Fig. 5.5 confirms that the TF approximation

Eqs. (5.62), (5.63) agrees quite well with the equilibrium widths determined from Eqs. (5.49), (5.50).

77



5. Breakdown of Kohn Theorem Near Feshbach Resonance in Magnetic Trap

0 0.5 1 1.5 2 2.5 3
0

1

2

3

Λ

Ω
D

(a)

0 0.5 1 1.5 2 2.5 3
0

2

4

6

Λ

Fr
eq

u
en

cy

(b)

Figure 5.6.: Frequencies of collective modes results for (a) the dipole mode frequency (green) and (b)

the breathing (blue) and quadrupole (red) mode frequencies as a function of trap aspect

ratio λ for the experimental parameters Eq. (5.48). (a) Solid black curve corresponds to the

dipole mode frequency far away the Feshbach resonance which means that ωD = λ. Solid

and dashed curves correspond to the exact result Eq. (5.55) and in the TF approximation

Eq. (5.67), respectively. (b) Solid and dashed curves correspond to the Eqs. (2.72) for

vanishing three-body interaction strength K = 0 and in the TF approximation Eqs. (5.27),

where the abbreviations are defined in Eqs. (5.64)–(5.66), respectively.

In the similar way we insert Eq. (5.58) in the limit η → 0 into the frequencies of breathing and

quadrupole Eqs. (5.27), where the abbreviations in Eqs. (5.52)–(5.54) reduce to

m1 = 1 +
3PBGλ

u5ρ0

(

1− 856ε

45u2ρ0

)

, (5.64)

m2 =
PBGλ

2

u5ρ0

(

1− 344ε

15u2ρ0

)

, (5.65)

m3 = λ2 +
2PBGλ

3

u5ρ0

(

1− 256ε

15u2ρ0

)

. (5.66)

Correspondingly the dipole mode frequency Eq. (5.57) yields

ω2
D = λ2 +

32ελ3PBG

3u7ρ0
. (5.67)

In Fig. 5.6(a) we plot the dipole mode frequency as a function trap anisotropy λ. The solid black

curve corresponds to the dipole mode frequency far away from the Feshbach resonance ωD = λ, while

the solid green curve corresponds to the exact result of dipole mode frequency on top of the Feshbah

resonance Eq. (5.57) and the dashed curve corresponds to the dipole mode in the TF approximation

Eq. (5.67) for the experimental parameters Eq. (5.48). This result could be seen as being inconsistent

with the Kohn theorem [249], which says that the dipole frequency is equal to the trap frequency

and does not depend on the two-body interaction strength. However, the result of the Kohn theorem

is a consequence of the translational invariance of the two-body interaction, which is no longer true

in our case due to Eq. (5.3). As a consequence the dipole mode frequency Eq. (5.57) and its TF

approximation Eq. (5.67) depend on the two-body interaction strength PBG, the anisotropy of the

confining potential λ and the equilibrium values of the condensate widths from Eqs. (5.49) and (5.50).

Note that the heuristic approximation of Ref. [121] fails to predict a finite value for the dipole mode

frequency on top of the Feshbach resonance according to Eq. (5.34).
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In Fig. 5.6(b) we also show the breathing (blue curves) and quadrupole (red curves) mode frequencies

as a function of trap anisotropy λ. The solid curves correspond to the frequencies of collective modes

far away from the Feshbach resonance, which are described in Eqs. (2.72) for vanishing three-body

interaction strength K = 0, while the dashed curves correspond to the frequencies of collective mode

on top of the Feshbach resonance and in the TF approximation Eqs. (5.27) for the experimental

parameters Eq. (5.48). On top of the Feshbach resonance we observe a significant change of the

breathing mode frequency, whereas the quadrupole mode frequency remains basically unaffected.

5.6. Right-Hand Side of Feshbach Resonance

We consider in this section the frequencies of collective modes when the bias field B0 is larger than

the resonant magnetic field Bres, i.e. H = B0−Bres > 0. The integrals Eqs. (5.36)–(5.39) reduce then

to

f =
√
2πu2ρuzµ

3/2
B

∫ ∞

0

ds e−Hs

(

4µB +M s u2ρω
2
ρ

)

√

4µB +M s u2zλ
2ω2

ρ

+O[z0]
2 , (5.68)

∂f

∂uρ
= 8

√
2πuρuzµ

5/2
B

∫ ∞

0

ds e−Hs

(

4µB +Msu2ρω
2
ρ

)2
√

4µB +Msu2zλ
2ω2

ρ

+O[z0]
2 , (5.69)

∂f

∂uz
= 4

√
2πu2ρµ

5/2
B

∫ ∞

0

ds e−Hs

(

4µB +Msu2ρω
2
ρ

) (

4µB +Msu2zλ
2ω2

ρ

)3/2
+O[z0]

2 , (5.70)

∂f

∂z0
= −4M

√
2πu2ρuzz0λ

2µ
3/2
B ω2

ρ

∫ ∞

0

ds e−Hss
(

4µB +Msu2ρω
2
ρ

) (

4µB +Msu2zλ
2ω2

ρ

)3/2
+O[z0]

2 . (5.71)

Thus, we insert now Eq. (5.68)–(5.71) into Eqs. (5.12)–(5.14) and introduce the dimensionless param-

eters Eq. (2.34) and (5.20) with S = Hs. In this way we obtain a system of three second ordinary

differential equations for uρ, uz, and z0 in the dimensionless form:

üρ + uρ −
1

u3ρ
− PBG

uzu3ρ

[

1− 16ε ε
1/2
1

∫ ∞

0

dS e−S
(

2ε1 + Su2ρ
)

(

4ε1 + Su2ρ
)2√

4ε1 + Su2zλ2

]

+O[z0]
2 = 0, (5.72)

üz + λ2uz −
1

u3z
− PBG

u2zu
2
ρ

[

1− 16ε ε
1/2
1

∫ ∞

0

dS e−S
(

2ε1 + Su2zλ2
)

(

4ε1 + Su2ρ
)

(4ε1 + Su2zλ2)3/2
]

+O[z0]
2 = 0, (5.73)

z̈0 + λ2
[

1 +
16PBG

u2ρuz
ε ε

1/2
1

∫ ∞

0

dS e−SS
(

4ε1 + Su2ρ
)

(4ε1 + Su2zλ2)3/2
]

z0 +O[z0]
2 = 0 . (5.74)

The time-independent solution of the condensate widths uρ = uρ0, uz = uz0, and z0 = z00 are now

determined from

uρ0 −
1

u3ρ0
− PBG

uz0u
3
ρ0

[

1− 16ε ε
1/2
1

∫ ∞

0

dS e−S
(

2ε1 + Su2ρ0
)

(

4ε1 + Su2ρ0
)2√

4ε1 + Su2z0λ2

]

= 0 , (5.75)

λ2uz0 −
1

u3z0
− PBG

u2z0u
2
ρ0

[

1− 16ε ε
1/2
1

∫ ∞

0

dS e−S
(

2ε1 + Su2z0λ2
)

(

4ε1 + Su2ρ0
)

(

4ε1 + Su2z0λ2
)3/2

]

= 0, (5.76)

z00 = 0 . (5.77)

The breathing and quadrupole mode frequencies are given by Eq. (5.27), where the abbreviations

m1,m2 and m3 are calculated by using Mathematica [242]:
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Figure 5.7.: Equilibrium results for condensate widths uρ0 (red), uz0 (blue), and aspect ratio uρ0/uz0
(green) as a function of a magnetic field B0 for different trap anisotropy (a), (c) λ = 0.5

and (b) λ = 2 for the experimental parameters Eq. (5.48). Solid, dotted, and dashed

curves correspond to the approximation solution of Ref. [121] Eqs. (5.24), (5.25) and the

exact results Eqs. (5.75), (5.76) and the TF approximation Eqs. (5.82), (5.83), respectively.

m1 = 1 +
3

u4ρ0
+

3PBG

u4ρ0uz0

[

1− 16ε ε
1/2
1

∫ ∞

0

dSe−S
(

5S2u4ρ0 + 18Su2ρ0ε1 + 24ε21
)

3
(

Su2ρ0 + 4ε1

)3√
4ε1 + Su2z0λ2

]

, (5.78)

m2 =
PBG

u3ρ0u
2
z0

[

1− 32ε ε
1/2
1

∫ ∞

0

dSe−S
(

Su2ρ0 + 2ε1
) (

2ε1 + Su2z0λ2
)

(

Su2ρ0 + 4ε1

)2
(

4ε1 + Su2z0λ2
)3/2

]

, (5.79)

m3 = λ2 +
3

u4z0
+

2PBG

u2ρ0u
3
z0

[

1− 8ε ε
1/2
1

∫ ∞

0

dSe−S
(

16ε21 + 10Su2z0ε1λ2 + 3S2u4z0λ
4
)

(

Su2ρ0 + 4ε1

)

(

4ε1 + Su2z0λ2
)5/2

]

. (5.80)

The dipole mode frequency is given by

ω2
D = λ2

[

1 + 16ε ε
1/2
1

PBG

u2ρ0uz0

∫ ∞

0

dS e−SS
(

4ε1 + Su2ρ0
)

(

4ε1 + Su2z0λ2
)3/2

]

. (5.81)

Now, we discuss again the Thomas-Fermi approximation to find an analytical description for the

condensate widths uρ0, uz0, and the ratio of uρ0/uz0 and the frequencies of collective modes. To this

end we insert Eq. (5.58) into the time-independent solution uρ0 and uz0 of Eqs. (5.75) and (5.76) and

evaluate the expression in the limit η → 0, which yields

uρ0 −
PBG

uz0u3ρ0

[

1− 16ε ε
1/2
1

∫ ∞

0
dS e−S

Su2ρ0 + 2ε1
(

Su2ρ0 + 4ε1

)5/2

]

= 0 , (5.82)
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Figure 5.8.: (a) Dipole mode frequency as a function of a magnetic field B0 for different trap anisotropy

λ = 0.5 (blue) and λ = 2 (red) for the experimental parameters Eq. (5.48). Solid, dotted,

and dashed curves correspond to the approximation solution of Ref. [121] in Eq. (5.31), the

exact result Eq. (5.81) and the TF approximation Eq. (5.95), respectively, while (b) focuses

on the region of interest for the dipole mode frequency in addition for the hypothetical

Feshbach resonance width ∆ = 100.7 G with λ = 0.5 (black) and λ = 2 (green).

λ2uz0 −
PBG

u2z0u
2
ρ0

[

1− 16ε ε
1/2
1

∫ ∞

0
dS e−S

Su2ρ0 + 2ε1
(

Su2ρ0 + 4ε1

)5/2

]

= 0 . (5.83)

Solving the remaining S-integral we obtain the equilibrium widths uρ0 and uz0 in TF approximation

u5ρ0 − PBGλ

[

1− ε

3u5ρ0

(

40u3ρ0 + 64uρ0ε1

)

+ 3κu2ρ0 + 4κε1

]

= 0 , (5.84)

λuz0 = uρ0 , (5.85)

where we have introduced the abbreviation

κ =
8ε
√
πε1

u5ρ0
e4ε1/u

2
ρ0Erfc (2

√
ε1/uρ0) , (5.86)

with Erfc(x) representing the complementary error function:

Erfc(x) =
2√
π

∫ ∞

x
dt e−t2 . (5.87)

In the similar way we obtain the quadrupole and breathing mode frequencies in TF approximation by

inserting Eq. (5.58) into Eqs. (5.78)–(5.80) and and evaluating the limit η → 0, where the abbreviations

m1, m2, and m3 are defined according to

m1 = 1 +
3PBGλ

u5ρ0

[

1− 16ε ε
1/2
1

3

∫ ∞

0
dS e−S

5S2u4ρ0 + 18Su2ρ0ε1 + 24ε21
(

Su2ρ0 + 4ε1

)7/2

]

, (5.88)

m2 =
PBGλ

2

u5ρ0

[

1− 32ε ε
1/2
1

∫ ∞

0
dS e−S

(

Su2ρ0 + 2ε1
)2

(

Su2ρ0 + 4ε1

)7/2

]

, (5.89)

m3 = λ2 +
2PBGλ

3

u5ρ0

[

1− 8ε ε
1/2
1

∫ ∞

0
dS e−S

3S2u4ρ0 + 10Su2ρ0ε1 + 16ε21
(

Su2ρ0 + 4ε1

)7/2

]

. (5.90)
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Figure 5.9.: Frequencies for the quadrupole (red) and the breathing (blue) mode as a function of the

magnetic field B0 for different trap anisotropy (a) λ = 0.5 and (b) λ = 2 for the experi-

mental parameters Eq. (5.48). Solid and dashed curves correspond to the approximation

solution of Ref. [121] Eq. (5.27) with abbreviations m1, m2, and m3 from Eqs. (5.28)–

(5.30) and the TF approximation Eq. (5.27) with abbreviations m1, m2, and m3 from

Eqs. (5.92)–(5.94).

The dipole mode frequency Eq. (5.81) reduces correspondingly to

ω2
D = λ2 +

16PBGλ
3

u3ρ0
ε ε

1/2
1

∫ ∞

0
dS e−S S

(

4ε1 + Su2ρ0
)5/2

. (5.91)

Solving the remaining S-integrals we obtain the quadrupole and breathing frequencies in TF approx-

imation with

m1 = 1 +
3PBGλ

u5ρ0
(5.92)

×
[

1− 8ε

45u7ρ0

(

107u5ρ0 + 408u3ρ0ε1 + 256uρ0ε
2
1

)

+
κ

45u2ρ0

(

300u4ρ0 + 880ε1u
2
ρ0 + 512ε21

)]

,

m2 =
PBGλ

2

u5ρ0
(5.93)

×
[

1− 8ε

15u7ρ0

(

43u5ρ0 + 152u3ρ0ε1 + 64uρ0ε
2
1

)

+
κ

15u2ρ0

(

120u4ρ0 + 320u2ρ0ε1 + 128ε21

)]

,

m3 = λ2 +
2PBGλ

3

u5ρ0
(5.94)

×
[

1− 16ε

15u7ρ0

(

16u5ρ0 + 64u3ρ0ε1 + 48uρ0ε
2
1

)

+
κ

15u2ρ0

(

90u4ρ0 + 280u2ρ0ε1 + 192ε21

)]

,

whereas the dipole mode frequency in TF approximation reads

ω2
D = λ2 +

32PBGλ
3ε

3u10ρ0

[

u3ρ0 + 4uρ0ε1 −
κu5ρ0
8ε

(

3u2ρ0 + 8ε1

)]

. (5.95)

We plot in Fig. 5.7 the equilibrium widths of the condensate uρ0, uz0, and aspect ratio of uρ0/uz0
as a function of a magnetic field B0 for the experimental parameters Eq. (5.48) with different trap

anisotropy (a) λ = 0.5 and (b) λ = 2. The widths of the condensate Eqs. (5.75) and (5.76) are
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Figure 5.10.: Equilibrium results for condensate widths uρ0 (red), uz0 (blue), and aspect ratio uρ0/uz0
(green) as a function of a magnetic field B0 for different trap anisotropy (a) λ = 0.5

and (b) λ = 2 for the experimental parameters Eq. (5.48). Solid, dotted, dashed, and

square dotted curves correspond to the approximation solution of Ref. [121] Eqs. (5.24),

(5.25) and the exact results Eqs. (5.75), (5.76) and the TF approximation Eqs. (5.82),

(5.83), the TF approximation in the limit H → ∞ or ε1 → ∞ results Eqs. (5.98), (5.99),

respectively.

coupled, so we solve both equations iteratively. From Fig. 5.7 we read off that the approximative

solution of Ref. [121] Eqs. (5.24) and (5.25) is not valid on top of the Feshbach resonance and seems

to be valid only far away from the Feshbach resonance. Furthermore, Fig. 5.7 confirms that the

TF approximation Eqs. (5.84), (5.85) agrees quite well with the equilibrium widths determined from

Eq. (5.75), (5.76). In addition Fig. 5.7(c) shows that the radial condensate width uρ0 from Eq. (5.75)

vanishes at the critical magnetic field Bcrit = Bres + ∆ = 165.7 G. As already anticipated due to

a heuristic argument in Section 5.1, the system on the right-hand side of the Feshbach resonance

is not stable beyond this critical magnetic field Bcrit. Figures 5.8 and 5.9 show the frequencies of

the dipole, the breathing, and the quadrupole modes, respectively, for the experimental parameters

Eq. (5.48) with different trap anisotropy λ. From these figures we see how the frequencies of collective

modes change when one approaches the Feshbach resonance. As already expected in Section 5.1 in

Eq. (5.7), the dipole mode frequency on the right-hand side of the Feshbach resonance turns out

to be smaller than the dipole mode frequency far away from the Feshbach resonance. In particular

we observe that the approximative solution of Ref. [121] in Eqs. (5.27)–(5.31) is not valid on top of

the Feshbach resonance. Our results in Section 5.6 and the approximative solution of Ref. [121] for

the dipole mode frequency in Fig. 5.8 disagree only 0.05 G above the Feshbach resonance for the

experimental parameters Eq. (5.48). However, this still represents an experimentally accessible range

as the magnetic field can be controlled up to an accuracy of 1 mG [267]. Furthermore, Fig. 5.8(b) shows

how the dipole mode frequency changes with the magnetic bias field for the hypothetical Feshbach

resonance width ∆ = 100.7 G. Thus, the difference between our predication and the approximative

solution of Ref. [121] is more pronounced for a broader Feshbach resonance and for a pancake-like

condensate.

Now, as a consistency check for our calculation, we determine the TF approximation for the con-

densate widths Eq. (5.82), (5.83) and the frequencies of collective modes Eq. (5.27) with abbreviations

m1, m2, and m3 are defined in Eqs. (5.92)–(5.95) on top of the Feshbach resonance, i.e. in the limit

H → 0 or ε1 → 0. As expected we reproduce all respective findings of Section 5.5, in particular

Eqs. (5.62), (5.63) for the condensate widths, Eq. (5.64)–(5.66) for the abbreviations m1, m2, and m3

defining the breathing and quadrupole mode frequencies and Eq. (5.67) for the dipole mode frequency.

Thus, approaching the Feshbach resonance and performing the TF limit are commuting procedures
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Figure 5.11.: (a) Dipole mode frequency as a function of a magnetic field B0 for different trap

anisotropy λ = 0.5 (blue) and λ = 2 (red) for the experimental parameters Eq. (5.48).

Solid, dotted, dashed, and dotted square curves correspond to the approximation solu-

tion of Ref. [121] in Eq. (5.31), the exact result Eq. (5.81) and the TF approximation

Eq. (5.95) and the TF approximation in the limit H → ∞ Eq. (5.103), respectively, while

(b) focuses on the region of interest for the dipole mode frequency in addition for the

hypothetical Feshbach resonance ∆ = 100.7 G, with λ = 0.5 (black) and λ = 2 (green).

within our theory.

Accordingly, we can also discuss the TF approximation for the condensate widths Eq. (5.82), (5.83)

and the frequencies of collective modes Eq. (5.27) with abbreviations m1, m2, and m3 being defined

in Eqs. (5.92)–(5.94), (5.95) far away from the Feshbach resonance, i.e. in the limit H → ∞ or

ε1 → ∞ and compare the corresponding results with what we have found in Section 5.3 from the

heuristic approximation of Ref. [121]. To this end we have to expand the complementary error function

Eq. (5.87) for large real x

Erfc(x) =
e−x2

√
π

(

1

x
− 1

2x3
+

3

4x5
− 15

8x7
+

105

16x9
− 945

32x11
+ ....

)

, x≫ 1 , (5.96)

yielding a corresponding asymptotic expansion for the abbreviation Eq. (5.86)

κ = 8ε

(

1

2u4ρ0
− 1

16u2ρ0ε1
+

3

128ε21
−

15u2ρ0
1024ε31

+
105u4ρ0
8192ε41

−
945u6ρ0
65536ε21

+ ....

)

. (5.97)

Inserting Eq. (5.97) into Eqs. (5.84) and (5.92)–(5.95), we get for

• the condensate widths

u5ρ0 − PBGλ

(

1− ε0 +
u2ρ0ε0

8ε1
+ ....

)

= 0 , (5.98)

λuz0 = uρ0 , (5.99)

• the breathing and quadrupole frequencies:

m1 = 1 +
3PBGλ

u5ρ0

(

1− ε0 +
ε0u

2
ρ0

8ε1
−

17u4ρ0ε0

192ε21
+ ...

)

, (5.100)

m2 =
PBGλ

2

u5ρ0

(

1− ε0 −
ε0u

2
ρ0

8ε1
+

17u4ρ0ε0

64ε21
+ ...

)

, (5.101)

m3 = λ2 +
2PBGλ

3

u5ρ0

(

1− ε0 +
ε0u

2
ρ0

4ε1
−

17u4ρ0ε0

64ε21
+ ...

)

, (5.102)
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5.6. Right-Hand Side of Feshbach Resonance
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Figure 5.12.: Frequencies of collective modes results the quadrupole (red) and breathing (blue) as a

function of a magnetic field B0 for different trap anisotropy (a) λ = 0.5 and (b) λ = 2

for the experimental parameters Eq. (5.48). Solid, dashed, and square dotted curves

correspond to the approximation solution of Ref. [121] from Eq. (5.33) and the TF

approximation Eq. (5.27) with abbreviations m1, m2, and m3 from Eqs. (5.92)–(5.94)

and the TF approximation in the limit H → ∞ or ε1 → ∞ Eq. (5.27) with abbreviations

m1, m2, and m3 being defined in Eqs. (5.100)–(5.102), respectively.

• the dipole mode frequency

ω2
D = λ2

(

1 +
ε0PBGλ

2ε1u
3
ρ0

+ ...

)

. (5.103)

Due to the dependencies ε0 → 1/H and ε1 → H, the results Eqs. (5.98)–(5.103) represent the 1/H
and 1/H2 corrections for the respective quantities, respectively. At first, we observe from compar-

ing Eqs. (5.98), (5.99) with Eq. (5.32) in Fig. 5.10 that the heuristic approximation of Ref. [121]

reproduces correctly the 1/H correction for the condensate widths but fails to determine the subse-

quent 1/H2 correction. This is not surprising as the heuristic approximation Eq.(5.19) for the integral

Eq. (5.10) is only exact up to order 1/H. But we read off from our results Eq. (5.103) for the dipole

mode frequency in Fig. 5.11 that the leading order correction to the Kohn theorem near Feshbach

resonance is of the order 1/H2. Therefore, the corresponding predication Eq. (5.34) of the heuristic

approximation of Ref. [121] is even incorrect far away from the Feshbach resonance. In addition the

same situation for the breathing and quadrupole frequencies show that the leading order of our results

Eqs. (5.27), with abbreviations m1, m2, and m3 are defined in Eqs. (5.100)–(5.102) with Fig. 5.11 is

1/H2 and the frequencies depend strongly on the magnetic field B0 and are divergent on top of the

Feshbach resonance, while the frequencies in the TF approximation Eqs. (5.33) depend only on the

trap anisotropy λ and do not depend on the bias magnetic field B0.
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6. Bose-Einstein Condensate with Single Vortex

The GP equation (2.12) gives a quantitatively accurate description of both the static and the dynamic

properties of the atomic condensate [49,50]. Therefore, the vortex structure and dynamics can be

discussed by a more fundamental approach than with superfluid helium, in which the interaction cannot

be described in such a simple local form. Furthermore, the diluteness of a gas leads to a relatively large

healing length that characterizes the vortex core size, thus enabling a direct experimental visualization

of vortex cores [19,169,174,194,268]. To this end we discuss in this chapter the physical properties

of a single vortex in condensates by reviewing first that the circulation around a closed contour in

the condensate is quantized in Section 6.1. In addition we describe the structure of a single vortex

in a condensate trapped by an axially-symmetric harmonic trap and the velocity field around the

vortex line in Section 6.2 by solving approximately the time-independent GP equation (2.15) in form

of an asymptotic series in the limit of strong two-body interaction strength. Afterwards, Section 6.3

deals with the dynamics of a BEC with a single vortex based on the Thomas-Fermi ansatz for an

axially symmetric trap in order to obtain variational equations of motion describing the widths of the

condensate and the relative vortex core size. Furthermore, we present the equilibrium positions of the

condensate widths as well as the relative vortex core size in Section 6.4 and determine the low-lying

collective excitation modes in Section 6.5. Then we discuss in Section 6.6 the energies for a condensate

with and without a vortex and obtain the critical rotation frequency for a rotating trap at which a

vortex state becomes stable. Finally, we investigate in Section 6.7 the behavior of the condensate

during the free expansion after the harmonic trapping potential is turned off.

6.1. Quantization of Circulation

Multiplying the time-dependent GP Eq. (2.12) with ψ∗(r, t) and subtracting its complex conjugate,

one gets the continuity equation for the particle density nc(r, t) = ψ(r, t)ψ∗(r, t)

∂nc
∂t

+▽ (ncv) = 0, (6.1)

where the velocity v of the condensate is defined by

v =
~

2Mi

(ψ∗ ▽ ψ − ψ▽ ψ∗)

ψψ∗
. (6.2)

Quantized vortices represent phase defects in the superfluid topology of the system. Under the

Madelung transformation [168], the macroscopic condensate ψ(r, t) can be expressed in terms of a

density nc(r, t) and a macroscopic phase S(r, t) according to

ψ(r, t) =
√

nc(r, t)e
iS(r,t). (6.3)

Substituting Eq. (6.3) in Eq. (6.2), we get a simple expression for the condensate velocity which

depends on the gradient of the phase

v =
~

M
∇S. (6.4)
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6. Bose-Einstein Condensate with Single Vortex

This implies that, unless the phase has a singularity, the velocity field is irrotational i.e.

∇× v = 0. (6.5)

From the single-valuedness of the condensate wavefunction it follows that, around a closed loop C,

the phase change ∆S must be an integer multiple of 2π. Thus the circulation

k =

∮

C
vdr (6.6)

is calculated to be

k = 2πγ
~

M
, (6.7)

where γ is an integer number. A vortex line is now characterized by the appearance of a velocity field

which is associated with a non-vanishing, quantized circulation Eq. (6.7). If we assume that the vortex

with γ = 1 is straight and oriented along the z-axis, the quantized circulation takes the simple form

∇× v = 2πγ
~

M
δ(2)(ρ− ρ0)ẑ, (6.8)

where δ(2) is the two-dimensional Dirac delta function and ρ the polar radius in the xy-plane.

6.2. Structure of Single Vortex

Let us now consider the structure of a single vortex in a condensate trapped by the axially-symmetric

harmonic potential. The condensate wave function with a straight vortex line located along the z-axis

takes the form

ψ(ρ, z, φ) = f(ρ, z)eiγφ, (6.9)

with f(ρ, z) =
√

n(ρ, z), an integer winding number γ and cylindrical coordinates (ρ, φ, z). Inserting

the solution ansatz Eq. (6.9) into the time-independent GP Eq. (2.15) leads to partial differential

equation for the amplitude f :

− ~
2

2M

[

1

ρ

∂

∂ρ

(

ρ
∂f

∂ρ

)

+
∂2f

∂z2

]

+
~
2

2Mρ2
γ2f +

M

2
ω2
ρ

(

ρ2 + λ2z2
)

f + g2f
3 = µf. (6.10)

Equation (6.10) represents the starting point for determining the energy of a vortex in a harmonic

trap. The kinetic energy brings a new centrifugal term arising from the velocity flow, which pushes

the atoms away from the z-axis. In a rotating condensate in the Thomas-Fermi regime, the vortex

core size is on the order of the so-called healing length ξ. The healing length is found by comparing

the kinetic energy that is proportional to ~
2/2Mξ2 with the interaction energy g2f

2, which gives

ξ =

√

~2

2Mg2f(ξ, 0)2
=

1
√

8πaf(ξ, 0)2
. (6.11)

Here f(ξ, 0)2 represents the Thomas-Fermi density without vortex at the trap center nc(0) = µ/g2 with

the chemical potential µ being defined in Eq. (2.21) for vanishing three-body interaction. From this

we conclude in the Thomas-Fermi regime that ξ = l2/Rρ, where the oscillator length l describes the

width of a non-interacting BEC and Rρ denotes the radial extension of the BEC cloud with repulsive

two-particle interaction. Thus, a clear separation of length scales ξ ≪ l ≪ Rρ holds, i.e., the vortex

core size is small compared to the oscillator length, which in turn is small compared to the size of the
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6.2. Structure of Single Vortex

condensate Rρ. Because Eq. (6.10) cannot be solved analytically, we solve Eq. (6.10) approximately

for the amplitude f in the two cases ρ≪ ξ and ξ ≪ ρ≪ Rρ, respectively.

For ρ≪ ξ the dominant term in Eq. (6.10) arises from the kinetic energy. Therefore, we neglect all

other terms and get

− ~
2

2M

[

1

ρ

∂

∂ρ

(

ρ
∂f

∂ρ

)]

+
~
2

2Mρ2
γ2f = 0 (6.12)

Solving for f yields the ρ-dependence

f = cργ , nc = c2ρ2γ , ρ≪ ξ, (6.13)

where c is a suitable constant. For ξ ≪ ρ ≪ Rρ the kinetic energy can be neglected and we get the

Thomas-Fermi solution

nTF(ρ, z) =
µ

g2

[

1−
(

ρ

Rρ

)2

−
(

z

Rz

)2
]

. (6.14)

Now, we interpolate between both asymptotic forms of Eqs. (6.13) and (6.14) by adopting the following

variational ansatz for the density profile of a condensate with a single vortex:

ψ(ρ, z, φ) = C

√

√

√

√

(

ρ2

ρ2 +R2
ρβ

2

)γ
[

1−
(

ρ

Rρ

)2

−
(

z

Rz

)2
]

eiγφ+iBρρ2+iBzz2 . (6.15)

Here Rρ, Rz, β, Bρ and Bz are time dependent variational parameters, where Bρ and Bz are included

in order to describe the dynamics of the condensate. Furthermore, we have introduced β = α/Rρ as

the ratio of the vortex core size and the transverse radius of the BEC. The phase φ accounts for the

superfluid rotation around the vortex in the usual way [49].

The velocity field around the vortex line follows from Eqs. (6.4) and (6.9):

vφ =
γ~

Mρ
. (6.16)

Thus the energy associated with a single vortex line is dominated by the kinetic energy of the superfluid

flow in the vortex, which can be written as

Ev =

∫

d3r
1

2
Mncv

2
φ =

γ2~2

2M

∫

d3r
nc
ρ2
. (6.17)

As we have Ev ∝ γ2, the energy cost to create one γ = 2 vortex is twice higher than that to create two

γ = 1 vortices. Thus vortices with γ > 1 are energetically unfavorable. Therefore, a stable quantized

vortex usually has γ = 1, and, therefore, we mainly concentrate on the case γ = 1 in the following.

In a uniform medium, the energy per unit length of a vortex with a single quantum of circulation

Eq. (6.7) lying along the axis of a cylindrical container of radius ρ is given by [269]

Ev = ncπ
~
2

M
log

(

1.464
ρ

ξ

)

, (6.18)

where nc is the density of a uniform medium and ξ is the healing length. Combining Eq. (2.18) and

(6.11), we are led to
ξ

Rρ
=

~ωρ

2µ
, (6.19)

where the chemical potential in Eq. (6.19) is related to the central density nc(0). If the characteristic

dimensions of the cloud are large compared with the coherence length at the center of the cloud ρ≫ ξ,
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6. Bose-Einstein Condensate with Single Vortex

we may determine the energy in a simple way by using the result Eq. (6.18) for the energy up to a

radius ρ satisfying ξ ≪ ρ ≪ Rρ and then by calculating the energy at larger distances in a purely

hydrodynamic manner [50]. We obtain from Eqs. (6.17) and (6.18) that the energy per unit length is

given by

εv =
4πnc(0)~

2Rz

3M
log

(

0.671
Rρ

ξ

)

, (6.20)

which agrees with the numerical calculations for large clouds [50,192].

6.3. Dynamics of BEC with Single Vortex

In order to obtain the dynamics of a BEC, we use the Thomas-Fermi approach introduced in Refs. [201,270].

This is a time-dependent variational method based on the Thomas-Fermi ansatz for an axially sym-

metric trap. Inserting Eqs. (2.26) and (6.15) into the Lagrange function Eq. (2.28), we obtain the

corresponding Lagrange function for systems of two-body interaction strength and for vanishing three-

body interaction strength. The condensate density has to remain positive, which yields a condition

for the integration domain for z and ρ:

1−
[

ρ

Rρ

]2

−
[

z

Rz

]2

≥ 0. (6.21)

The normalization constant C can be calculated by the normalization condition of Eq. (2.13)

C =

√

45N

8πR2
ρRzA1

, (6.22)

where A1 is introduced in appendix A. Thus, the resulting Lagrangian function reads

L =−N~

[

6R2
ρḂρ

7A1
− β2R2

ρḂρ −
6R2

zḂz

35A1
+
R2

zḂz

(

1 + β2
)

5

]

−MNω2
ρ

[

3R2
ρ

7A1
−
β2R2

ρ

2
+
λ2R2

z

(

1 + β2
)

10

−3R2
zλ

2

35A1

]

− N~
2

M

[

12B2
ρR

2
ρ

7A1
− 2β2B2

ρR
2
ρ −

12B2
zR

2
z

35A1
+

2
(

1 + β2
)

B2
zR

2
z

5
+

5
(

26 + 33β2
)

16A1R2
ρ

−
15
(

8 + 16β2 + 11β4
)

ArcCoth
(

√

1 + β2
)

16A1R2
ρ

√

1 + β2

]

− 9g2N
2

πR2
ρRz

[

9β2

8A1
− 27

28A2
1

+
1

2A1

]

. (6.23)

The first part of Eq. (6.23) has the time-dependent contribution, while the second and third part are

corresponding to the external potential trap and the two-body interaction strength, respectively, and

the last term corresponds to the kinetic energy. The Thomas-Fermi approximation corresponds to

neglecting the kinetic energy arising from the curvature of the slowly varying condensate background

envelope
√

1− ρ2/R2
ρ − z2/R2

z. To this end, we follow Ref. [201] and drop all terms which originate

from the gradient of this term. On the other hand, it is essential to retain the terms arising from

the gradient of the vortex part of the wave function
√

ρ2/(ρ2 +R2
ρβ

2), which varies rapidly in the êρ

direction, as well as the superflow term.

From Euler-Lagrange Eq. (2.31), we obtain the evolution equations for all variational parameters q,

i.e. Bi, Ri, β:

1. Minimizing the Lagrange function Eq. (6.23) with respect to Rρ yields

18A2g2N +A3R
4
ρRz

[

Mωρ2

2
+

2B2
ρ~

2

M
+ ~Ḃρ

]

− ~
2RzA4

M
= 0. (6.24)
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6.3. Dynamics of BEC with Single Vortex

2. Minimizing the Lagrange function Eq. (6.23) with respect to Rz yields

−45A2g2N +A5R
2
ρR

3
z

[

Mλ2ω2
ρ

2
+

2B2
z~

2

M
+ ~Ḃz

]

= 0. (6.25)

3. Minimizing the Lagrange function Eq. (6.23) with respect to β yields

− 9A6g2N

56A7R2
ρRz

−
Mω2

ρA8

(

5R2
ρ −R2

zλ
2
)

A9
+

~
2
(

A13 +A11B
2
ρR

4
ρ +A12B

2
zR

2
ρR

2
z

)

MA10R2
ρ

−
2~A8

(

5R2
ρḂρ −R2

zḂz

)

A9
= 0. (6.26)

4. Minimizing the Lagrange function Eq. (6.23) with respect to Bρ yields

Bρ =
M

2~

[

Ṙρ

Rρ
+A16β̇

]

(6.27)

5. Minimizing the Lagrange function Eq. (6.23) with respect to Bz yields

Bz =
M

2~

[

Ṙz

Rz
+A18β̇

]

(6.28)

Inserting Eqs. (6.27) and (6.28) into Eqs. (6.24)–(6.26), we obtain a system of three differential equa-

tions of second order, for β and the dimensionless radii

rρ = Rρ/l, rz = Rz/l, (6.29)

with the oscillating length l, the dimensionless time τ = ωρt, and the dimensionless two-body-

interaction strength P defined in Eqs. (2.24) and (2.38), respectively. With this, we obtain for rρ, rz
and β the equations of motion

r̈z + rz

[

λ2 +
(

A2
17 +A18

)

β̇2 +A17β̈
]

− 360πA2P
A5r2ρr

2
z

+ 2A17ṙzβ̇ = 0 , (6.30)

r̈ρ + rρ

[

1 +
(

A2
15 +A16

)

β̇2 +A15β̈
]

− 2A4

A3r3ρ
+

144πA2P
A3r3ρrz

+ 2A15ṙρβ̇ = 0 , (6.31)

[

A17r
2
z − 5A15r

2
ρ

]

β̈ − 5r2ρ + r2zλ
2 − 5rρr̈ρ + rz r̈z +

A9A13

A10A8r2ρ
− 9A6A9P

56A7A8r2ρrz
+

[

5 +
A9A11

4A8A10

]

ṙ2ρ

−
[

1− A9A12

4A8A10

]

ṙ2z +
A9A11A15rρṙρβ̇

2A8A10
+
A8A12A17rz ṙzβ̇

2A8A10
+

[

A9A11A
2
15

4A8A10
− 5A16

]

r2ρβ̇
2

+

[

A9A12A
2
17

4A8A10
+A18

]

r2z β̇
2 = 0 . (6.32)

Here the respective function Ai(β), i = 1, 2, .., 18, which depend on the relative vortex core size β, are

introduced in Appendix A. With the help of Eqs. (6.30) and (6.31) we can eliminate the derivatives

of β̇ and β̈ from Eq. (6.32), therefore, we get

1

r2ρ

(

A13A9

A10A8
− 10A4

A3

)

+
P
r2ρrz

(

360A2π

A5
− 9A6A9

56A7A8
− 720A2π

A3

)

= 0 . (6.33)

Thus, we read off that the variational TF ansatz Eq. (6.15) yields dynamic equations for the radial

and axial condensate widths, whereas the relative vortex core size just follows from a static equation.
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Figure 6.1.: Functions F1(β)–F5(β) are plotted versus relative vortex core size β. The blue curves

represent exact functions from Eqs. (6.35), (6.38), (6.39), (6.43), and (6.44), red dashed

curves represent the functions expanded up to second order β according to Eqs. (6.36),

(6.40), (6.41), (6.45), and (6.46), whereas orange dashed curves depict the functions ex-

panded up to sixth order β.

6.4. Equilibrium Positions

The stationary solution of Eqs. (6.30), (6.31), and (6.33) is determined by the following algebraic

equations:

1. Stationary solution of the axial part

λ2rz0 −
PF1(β)

r2ρ0r
2
z0

= 0, (6.34)

where the function

F1(β) =
360πA2

A5
, (6.35)

has the second-order approximation in β

F1(β) = 15 +

(

227

2
+ 30 log [2/β]

)

β2 +O[β]3. (6.36)
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Figure 6.2.: Cross section of the particle density of a BEC with a central vortex (solid curve) and

without a vortex (dashed curve) for P = 1200 and λ = 5 at y = z = 0.

2. Stationary solution of the radial part

rρ0 −
PF2(β)

r3ρ0rz0
− F3(β)

r3ρ0
= 0, (6.37)

with the functions

F2(β) =
−144πA2

A3
, (6.38)

F3(β) =
2A4

A3
, (6.39)

which have the second-order approximations

F2(β) = 15 + (327 + 135 log [2/β]) β2 +O[β]3, (6.40)

F3(β) =
35

24
(−13 + 12 log [2/β]) +

35β2

24
(−59 + 60 log [2/β]) +O[β]3. (6.41)

3. Stationary solution of vortex core

F4(β)

r2ρ0
+

PF5(β)

r2ρ0rz0
= 0, (6.42)

where

F4(β) =
A13A9

A10A8
− 10A4

A3
, (6.43)

F5(β) =
360A2π

A5
− 9A6A9

56A7A8
− 720A2π

A3
, (6.44)

which have the second-order approximations

F4(β) =
525

2β2 (−76 + 30 log [2/β])
+

175 (33.722 − 22.104 log [2/β])3

24 (−76 + 30 log [2/β])2

+
175β2 (72.583 − 54.881 log [2/β])4

96 (−76 + 30 log [2/β])3
+O[β]3, (6.45)

F5(β) =
15 (−409 + 120 log [2/β])

−76 + 30 log [2/β]
− 75β2 (64.122 − 31.87 log [2/β])3

2 (−76 + 30 log [2/β])2
+O[β]3. (6.46)
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Figure 6.3.: Radial and axial sizes rρ0 and rz0 of a condensate with a vortex as well as the relative vortex

size β0 versus the interaction P. The left curves are denoted for a cigar-like BEC with

trap anisotropy λ = 0.2, while the right curves represent a pancake-like BEC with λ = 5.

Solid blue and dashed red curves correspond to the numerical exact results Eqs. (6.34),

(6.37), (6.42) and the analytical approximations Eqs. (6.48)–(6.50), respectively.

We read off from Fig. 6.1 that the 2nd- and 6th-order approximations agree well with the exact

functions for small relative vortex core size β.

In order to obtain an approximate analytical expression for the equilibrium positions defined by

Eqs. (6.34), (6.37), and (6.42), we assume the following scaling for large P:

rz0 = cz0 P1/5, rρ0 = cρ0 P1/5, β0 = cβ0
P−α. (6.47)

The dependence of rz0 and rρ0 for large P is motivated by Eqs. (2.21)–(2.23) as one expects that the

vortex has a negligible impact on the TF radii. Substituting Eq. (6.47) into Eqs. (6.34), (6.37), and

(6.42) we obtain in the limit P → ∞ both the exponent α and the constants cρ0, cz0 and cβ0. Thus

the equilibrium positions for large P read

rz0 =
rρ0
λ
, (6.48)

rρ0 = (15Pλ)1/5, (6.49)

β0 =
51/10√

2 (3Pλ)2/5
. (6.50)
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Note that equations Eqs. (6.48) and (6.49) coincide with the TF-Radii Rρ and Rz from equations

Eqs. (2.22) and (2.23) for a condensate without a vortex, while Eq. (6.50) represents the relative

vortex core size β = α/Rρ. Note, the vortex core size α is of the order of the healing length ξ from

Eq. (6.11), according to

α = C0ξ , (6.51)

with C0 =
√

5/2 [43].

We have displayed the cross section of the density profile in Fig. 6.2 for a condensate with a vortex

described by our trial function for the stationary case as pointed out in this section. We have also

included the density profile of a condensate without a vortex in the Thomas-Fermi limit. The two

profiles are very much alike, differing significantly only at the center of the trap where the vortex is

located. Fig. 6.3 shows the radial and the axial condensate widths with a vortex for both a cigar-like

and a pancake-like BEC. As the scattering length is increased, the radii widens, since the increasing

repulsive interaction forces the atoms apart. Comparing the calculated radii to the TF-radii of a

condensate without a vortex yields that the spatial extensions of the cloud remain nearly unaltered

due to the presence of a vortex. In particular we read off from Fig. 6.3 that in the cigar-like condensate

that rρ0 increases and rz0 decreases with a vortex, whereas in the pancake-like condensate the Thomas-

Fermi radii remain basically unaffected. Indeed, we see that the relative core radius shrinks as the

scattering length is increased.

6.5. Collective Modes

Frequencies of the collective modes are determined by linearizing Eqs. (6.30)–(6.32) around the equi-

librium positions. To this end we insert the expansions rρ = rρ0 + δrρ, rz = rz0 + δrz and β = β0 + δβ

into Eqs. (6.30), (6.31), and (6.33) and get

δr̈z +m0δβ̈ +m1δrρ +m2δuz + δm3β = 0 , , (6.52)

δr̈ρ +m4δβ̈ +m5δrρ +m6δrz +m7δβ = 0, (6.53)

m8δrρ +m9δrz +m10δβ = 0. (6.54)

Here mi with i = 1, 2, ...., 10 are functions which depend on the relative vortex core size β0 and are

calculated by using Mathematica [242].

The coupled set of differential equation Eqs. (6.52)–(6.54) can be rewritten in matrix form

M1δr̈+M2δr = 0 , (6.55)

with the abbreviations

δr =

( δrρ
δrz
δβ1

)

, M1 =

(1 0 m4

0 1 m0

0 0 0

)

, M2 =

(m5 m6 m7

m1 m2 m3

m8 m9 m10

)

. (6.56)

If we insert therein the solution ansatz Eq. (2.62), the frequencies of the collective modes are related

to the following eigenvalue problem

(

M2 − ω2M1

)

δr = 0 . (6.57)

Non-trivial solutions of this homogenous system exist, provided that

det(M2 − ω2M1) = 0, (6.58)
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6. Bose-Einstein Condensate with Single Vortex

(a) δr1 (b) δr2

Figure 6.4.: Schematic representation of collective modes. (a) mode has all components oscillating in

phase. (b) mode has rz oscillation out of phase with rρ and β [272].

which reduces to a quadratic algebraic equation for ω2:

z1ω
4 + z2ω

2 + z3 = 0. (6.59)

Here we have used the abbreviations

z1=m10 −m4m8 −m0m9 , (6.60)

z2=−m10m2 −m10m5 +m2m4m8 −m0m6m8 +m7m8 +m3m9 −m1m4m9 +m0m5m9 , (6.61)

z3=m10m2m5 −m1m10m6 +m3m6m8 −m2m7m8 −m3m5m9 +m1m7m9 . (6.62)

Solving Eq. (6.59), we obtain the frequencies of two collective modes

ω2
1,2 =

−z2 ±
√

z22 − 4z1z3
2z1

, (6.63)

where ω1,2 refers to a plus and a minus sign, respectively. Inserting those collective frequencies into

Eq. (6.57), yields the corresponding eigenvectors. Due to the linear dependence of Eq. (6.57), we use

the first two lines in order to calculate the eigenvectors of modes. In this way we obtain

δr1,2 = N1,2













m3m6−m0m6ω2
1,2−(m2m7−m2m4ω2

1,2−m7ω2
1,2+m2

4ω
4
1,2)

−m1m6+m2m5−m2ω2
1,2−m5ω2

1,2+ω4
1,2

m1m7−m1m4ω2
1,2−(m3m5−m3ω2

1,2−m0m5ω2
1,2−m2

0ω
4
1,2)

−m1m6+m2m5−m2ω2
1,2−m5ω2

1,2+ω4
1,2

1













, (6.64)

where N1,2 denotes some normalization constant. Here the eigenvector δr1 corresponds to in-phase

radial and axial oscillations, thus they correspond to the breathing mode frequency ω1, while the

eigenvector δr2 has the lower frequency and is characterized by out-of phase radial and axial oscilla-

tions, so they represent the quadrupole mode frequency ω2. Furthermore, it turns out that the relative

vortex core size β oscillates in-phase with the radial width both for the breathing and the quadrupole

modes., as shown in Fig. 6.4.

In the limit P going to infinity, the relative vortex size β0 goes to zero, whereas rρ0 and rz0 go to

infinity according to Eqs. (6.48)–(6.50). One can expand the coefficients m0,....,m10 up to the first

order of β0 and by substituting them into Eqs. (6.60)–(6.62) and by using Eqs. (6.48) and (6.49), we

obtain the frequencies of collective modes Eq. (2.72) for vanishing three-body interaction K = 0, we

get

ω2
B,Q = 2 +

3

2
λ2 ± 1

2

√

16− 16λ2 + 9λ4 . (6.65)
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Figure 6.5.: Frequencies of collective modes: breathing mode (blue curves) and quadrupole mode (red

curves) in unit of ωρ versus trap anisotropy λ (a) P = 170 and (b) P = 800 [271,272].

Solid and dashed curves correspond to the frequencies of collective modes with a single

vortex Eq. (6.63) and the frequencies without vortex in the Thomas-Fermi limit Eq. (6.65),

respectively.

In Fig. 6.5 we show the resulting frequencies ω1,2 as a function of trap anisotropy λ, where the

solid curves denote the frequencies with a single vortex Eq. (6.63) and the dashed curves relate

to the frequencies without vortex in the Thomas-Fermi limit Eq. (6.65), respectively. We read off

from Fig. 6.5(a) that the frequencies change slightly in so far as the breathing and the quadrupole

frequency decrease and increase in the presence of a single vortex, respectively. Note that our results

from Eq. (6.63) in Fig. 6.5(b) coincide perfectly with the frequencies determined in Ref. [272], where

the variational TF ansatz Eq. (6.15) is extended in such a way that the relative vortex core size follows

from a dynamic equation.

6.6. Critical Rotational Frequency

We now calculate the energy of a single vortex in a trap Bose-Einstein condensate [50,179], which is

important determining the lowest angular velocity at which it is energetically favorable for a vortex

to enter the cloud. The total energy of the condensate is given by

ETotal =

∫

d3r

[

~
2

2M
∇ψ(r, t)∇ψ∗(r, t) + V (r) |ψ(r, t)|2 + g2

2
|ψ(r, t)|4

]

. (6.66)

Note that Eq. (6.66) has already been calculated in Eq. (6.23) as the Lagrangian reduces in the

stationary limit, where all accelerations and velocities have to be set to zero to this total energy. Thus

the total energy of a condensate in the TF-limit with a central vortex is given by

ETotal = N~ωρ

[

3r2ρ0
7A1

−
β20r

2
ρ0

2
− 3r2z0λ

2

35A1
+
λ2r2z0

(

1 + β20
)

10
+

36P
r2ρ0rz0

(

9β20
8A1

− 27

28A2
1

+
1

2A1

)

−
5
√

1 + β20
(

26 + 33β20
)

− 15
(

8 + 16β20 + 11β40
)

ArcCoth
[

√

1 + β20

]

16A1r2ρ0
√

1 + β20

]

. (6.67)

Figure 6.6 shows the total energy ETotal, as defined by Eq. (6.67), of a condensate with a vortex for

trap aspect ratio λ = 0.2 and λ = 5. In particular the energy with a vortex is larger than with out

a vortex for a cigar-like condensate. The agreement of the two curves for the energy with a vortex is
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6. Bose-Einstein Condensate with Single Vortex
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Figure 6.6.: The energy of the condensate with a central vortex scaled in units of N~ωρ versus the

dimensionless interaction strength P for trap aspect ratio (a) λ = 0.2 and (b) λ = 5. Blue,

red dashed, and black curves correspond to the numerical results Eq. (6.67) by taking into

the account the equilibrium condensate widths which are determined from Eqs. (6.34),

(6.37), and (6.42), the analytical approximation results Eq. (6.67) are calculated with

the equilibrium condensate widths calculated from Eqs. (6.48)–(6.50), and Eq. (6.68),

respectively.

excellent. The total energy rises with increasing scattering length as expected, since the part in the

energy functional due to the interaction is directly proportional to the s-wave scattering as.

The energy of a condensate without a vortex in the TF-limit is determined by substituting Eq. (6.14)

with relevant radii from Eq. (2.21)–(2.23) into Eq. (6.66), where, due to Thomas-Fermi approximation,

the kinetic energy is neglected. Thus, we obtain

E0 = N~ωρ
5

14
(15Pλ)2/5. (6.68)

In general it costs the energy Ev to create a vortex which is obtained by subtracting E0 from ETotal

Ev = ETotal − E0 . (6.69)

It is possible to stabilize a vortex state by applying a rotating trap potential [192]. To understand this

we consider a frame rotating at angular velocity about the z-axis for which the energy of the system

becomes

E′
Total = ETotal − ΩLz . (6.70)

For a nonrotating condensate without angular momentum the energy in the rotating frame remains

the same as before, whereas for a condensate with a single quantized vortex the energy is reduced.

This is due to the fact that every particle carries the angular momentum of ~ and, consequently, the

total angular momentum adds up to Lz = N~. We see that, for a condensate in a trap rotating at

angular velocity, the vortex state becomes energetically favorable when Ω exceeds a critical rotational

frequency at which the energy cost to create a vortex equals the lowering of the energy due to the

rotating trap potential. Thus, the critical angular frequency becomes

ΩC =
Ev

N~
(6.71)

Furthermore an analytical expression for the critical angular velocity obtained by Pethick et al. [50]

is included in Fig. 6.7, which is calculated from Eq. (6.71), with Ev being defined in Eq. (6.20):

ΩC =
5ωρ

2R2
ρ

log

(

0.671
Rρ

ξ

)

. (6.72)
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6.7. Time-of-Flight Expansion
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Figure 6.7.: The critical angular velocity Ωc of a rotating trap versus two-body interaction strength

P for trap aspect ratio (a) λ = 0.2 and (b) λ = 5. Solid blue, dashed red, and black

curves correspond to the numerical results Eq. (6.71) obtained by taking into the account

the equilibrium condensate widths which are determined from Eqs. (6.34), (6.37), and

(6.42), the analytical approximation results Eq. (6.71) are calculated with the equilibrium

condensate widths calculated from Eqs. (6.48)–(6.50), and Eq. (6.73), respectively.

Substituting the relative vortex core radius β0 = α/Rρ from Eq. (6.50) into Eq. (6.72), yields

ΩC = ωρ

(

0.579 + 0.339 log[Pλ]
(Pλ)2/5

)

. (6.73)

Figure 6.7 shows the resulting critical rotation frequency ΩC as defined by Eq. (6.71) for the trap

aspect ratio λ = 0.2 and λ = 5. To this end, Fig. 6.7 reveals that our analytical result for the critical

rotational frequency Eq. (6.71) agrees very well with the numerical result Eq. (6.71) and is, indeed,

consistent with the analytical result derived by Pethick et al. [50] from equations Eq. (6.72) and (6.73).

Thus the difference between our results Eq. (6.71) and Pethick result Eq. (6.73) is more pronounced

for both a cigar-like condensate.

6.7. Time-of-Flight Expansion

In this section we study the free expansion of a trapped condensate with a central vortex in case of an

axially-symmetric harmonic trap by solving Eqs. (6.30), (6.31), and (6.33) without the terms, which

represent the trap:

r̈z + rz

[

(

A2
17 +A18

)

β̇2 +A17β̈
]

− 360πA2P
A5r2ρr

2
z

+ 2A17ṙzβ̇ = 0 , (6.74)

r̈ρ + rρ

[

(

A2
15 +A16

)

β̇2 +A15β̈
]

− 2A4

A3r3ρ
+

144πA2P
A3r3ρrz

+ 2A15ṙρβ̇ = 0 , (6.75)

1

r2ρ

(

A13A9

A10A8
− 10A4

A3

)

+
P
r2ρrz

(

360A2π

A5
− 9A6A9

56A7A8
− 720A2π

A3

)

= 0 . (6.76)

As it is difficult to study these equations exactly, we expand them up to second order of β, yielding

r̈z −
E1P

r2ρr
2
z

+ E2rzβ̇
2 + E3ṙzβ̇ +

E3

2
rzβ̈ = 0 , (6.77)

r̈ρ −
E5

r3ρ
− E4P

r3ρrz
+ E6ṙρβ̇ + E7rρβ̇

2 + E8rρβ̈ = 0 , (6.78)
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Figure 6.8.: Time evolution of the spatial extensions rρ (blue curves) and rz (red curves) after turning

off the trapping potential for trap anisotropy (a) λ = 0.2 and (b) λ = 5 for two-body

interaction P = 500. Solid and dashed curves correspond to the radii extensions with a

vortex in Eqs. (6.77), (6.78) and without a vortex in Eqs. (6.80), (6.81), respectively.
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Figure 6.9.: Evolution in time of relative vortex core size β after turning off the trapping potential

for trap anisotropy (a) λ = 0.2 and (b) λ = 5 for different two-body interaction P = 500

(solid curves), P = 1000 (dashed curves), and P = 2000 (dotted curves).

E9 +
E10P
rz

= 0 , (6.79)

where the abbreviations En, n = 1, ..., 10 are defined in Appendix B. To this end we solve these

equations numerically for the trap anisotropy λ = 0.2 and λ = 5, where we use as initial conditions

the numerically determined equilibrium positions for a trapped condensate from Eqs. (6.34), (6.37),

and (6.42), where the abbreviations F1(β)–F5(β) are defined in Eqs. (6.36), (6.40), (6.41), (6.45), and

(6.46), respectively.

For a condensate without a vortex is determined by numerically solving the equations of motion

obtained by setting all β terms in Eqs. (6.74)–(6.76) to zero, so we get

r̈z −
15P
r2ρr

2
z

= 0 , (6.80)

r̈ρ −
15P
r3ρrz

= 0 . (6.81)

which corresponds to the Thomas-Fermi approximation.

It becomes clear in Fig. 6.8 that the condensate in the cigar-like shape expands much faster in the

radial than in the axial direction in time, while the condensate in the pancake-like shape expands
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Figure 6.10.: Trap aspect ratio rρ/rz after turning off the trapping potential for trap anisotropy (a)

λ = 0.2 and (b) λ = 5 for two-body interaction P = 500. Solid and dashed curves

denote to the aspect ratios with a vortex from Eqs. (6.77), (6.78) and without a vortex

Eqs. (6.80), (6.81), respectively.

much faster in the axial than in the radial direction in time. In particular we show that the radial

expansion with a vortex is slower without a vortex, while the expansion for the axial extension occurs

faster with a vortex. The time evolution of the relative vortex core size in Fig. 6.9 shows that the

vortex core radius grows less rapid for large two-body interaction. This is an important insight for the

experimental detection and the investigation of vortex states. Hence, as β is monotonously increasing,

our study qualitatively confirms the result from Ref. [273], which was obtained with a different trial

function. Indeed, in the previous study [273] it has been suggested that the vortex core radius expands

faster than the radial extension of the cloud, which makes experimental detection feasible by using

a time-of-flight method, where the condensate is first set free and then pictures are taken after a

short expansion time. Figure 6.10 shows the aspect ratio rρ/rz for a condensate with and without a

vortex. Both curves in Fig. 6.10 clearly describe that the aspect ratio is inverted. Furthermore, we

conclude that a single vortex decreases the aspect ratio both for a cigar- and a pancake-like condensate.

Thus measuring the aspect ratio after free expansion represents an effective quantity to detect single

vortex states. Furthermore, the difference between the aspect ratio with and without a vortex is more

pronounced for a cigar-like condensate than for a pancake-like condensate.

In Fig. 6.11 the density plot of the condensate in the trapped state after turning off the trapping

potential is illustrated. The vortex core region is clearly visible as a bright line and its width increases

in time faster than the radial extension.
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Figure 6.11.: Density profiles of an expanding condensate with a central vortex after turning off the

trapping potential for the trap anisotropy λ = 5 and P = 1000.
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7. Conclusion

In this thesis we studied numerically and analytically low-lying collective excitations in Bose-Einstein

condensates at when both quantum and thermal fluctuations are negligible. At first, we presented a

historical introduction of Bose-Einstein condensates, which are inherently nonlinear quantum many-

body systems and lead to a number of interesting effects. For instance, the frequencies of collective

oscillation modes can be measured quite accurately and, thus, they represent a valuable source of

information about the properties of Bose-Einstein condensates.

The Gross-Pitaevskii mean-field theory of Bose-Einstein condensates was the focus of Chapter 2.

We started with the second quantised Hamiltonian for an interacting Bose gas with two- and three-

body collisions. With this we derived the Gross-Pitaevskii equation Eq. (2.12) from the Heisenberg

equation for the field operator in mean-field approximation Eq. (2.9). We discussed the TF approx-

imation of the density profile for a system of two- and three-body interactions Eq. (2.16), where we

saw that the TF radii are more sensitive with respective to the three-body interaction for increasing

s-wave scattering length Eqs. (2.21)–(2.23). Furthermore, we used a Gaussian variational ansatz to

analytically study the dynamical system of a BEC with two- and three-body interactions defined by

the time-dependent Gross-Pitaevskii equation Eq. (2.12). We determined the equilibrium positions of

the condensate widths Eqs. (2.50)–(2.51), which correspond to stable (unstable) stationary states of a

condensate. By linearizing the equations of motion of the condensate widths around the equilibrium

positions, we determined the low-lying collective excitation modes Eqs. (2.65)–(2.67). In addition we

discussed in detail the stability of BECs with two- and three-body interactions in an axially-symmetric

harmonic trap in different cases: repulsive and attractive two-body interactions, attractive two-body

and repulsive three-body interactions, and attractive two- and three-body interactions. In particular,

we showed in Fig. 2.8 that a small repulsive three-body interaction is able to stabilize the condensate

with attractive two-body interaction by increasing the critical number of atoms in the trap. Further-

more switching off the term corresponding to the harmonic trap and solving the resulting equations

of motion with the initial conditions provided by the equilibrium positions Eqs. (2.50) and (2.51), we

studied the time dependence of the condensate aspect ratio after release from the trap for a system

of both two- and three-body interactions.

Motivated by the recent experimental results of Ref. [93], we studied in Chapter 3 the nonlinear

BEC dynamics induced by a harmonically modulated two-body interaction strength. To this end we

combined an analytic perturbative approach and based on the Poincaré-Lindstedt method, a numerical

analysis based on the Gaussian variational approximation, with numerical simulations of the full

time-dependent Gross-Pitaevskii equation. We presented numerically calculated excitation spectra

in both a spherical-symmetric trap in Fig. 3.5 and an axially-symmetric trap in Fig. 3.11 and found

prominent nonlinear features: mode coupling, higher harmonics generation, and significant shifts in

the frequencies of collective modes. In addition, we provided an analytical perturbative framework that

captures most of the observed phenomena. The main results are the analytic formulae Eqs. (3.16) and

(3.33), which describe how the collective mode frequencies depend on both the modulation amplitude

and the external driving frequency for different trap geometries. Most prominently, our numerical

results indicate frequency shifts of 10% even outside the resonant regions according to Figs. 3.8 and

3.13, and this is where experimental measurements should be performed. Furthermore, we used a

Fourier analysis with a sufficiently good resolution in order to demonstrate that our analytical results
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7. Conclusion

agree quite well with numerical solutions based on both the Gaussian variational approximation and

the full numerical solution of the GP equation in Fig. 3.9.

In Chapter 4 we studied the nonlinear dynamics of a BEC with two- and three-body interaction by

changing the trap anisotropy. Also here we used the perturbative expansion of a Poincaré-Lindstedt

analysis within the Gaussian variational approach to study in detail the delicate interplay between

nonlinear effects due to two- and three-body interactions as well as the trap geometry. Within the

variational approach of the Poincaré-Lindstedt method we calculated frequency shifts and identified

the geometric resonances in terms of commensurate frequencies of the quadrupole and the breathing

mode of axially symmetric BEC systems in Eqs. (4.24) and (4.28), respectively. We showed that the

observed geometric resonances in Fig. 4.4 could be eliminated if two- and three-body interactions are

appropriately fine-tuned. In addition, we studied a numerical approach based on the Gaussian vari-

ational approximation with excitation spectra in Fig. 4.3 which reveals prominent nonlinear features

as, mode coupling, higher harmonics generation, and significant shifts in the frequencies of collective

modes. We showed in Fig. 4.6 that our analytical results of the frequency shift, which are based

on the third order of perturbation theory, agree well with a corresponding calculation based on the

hydrodynamic equations in the Thomas-Fermi approximation [70]. We also studied the resonant mode

coupling due to nonlinear interactions between the collective modes of the system. Thus, even if we

excite only one of them, the others will be eventually excited due to the nonlinearity of the BEC

dynamics.

Subsequently, we studied in Chapter 5 in detail how the dipole mode frequency and the collective

excitation modes of a harmonically trapped Bose-Einstein condensate change in the immediate vicinity

of a Feshbach resonance. To this end we derived equations of motion Eq. (5.12)–(5.14) for variational

parameters that describe the condensate radial and axial widths as well as the center of mass motion

and showed different approaches how to extract the corresponding frequencies of collective modes. At

first we discussed the heuristic approximation of Ref. [121] to evaluate the integral Eq. (5.10), which is

valid far way from the Feshbach resonance and, thus, can not predict correctly the dynamics on top of

the Feshbach resonance. Therefore, we developed our own treatment of the integral Eq. (5.10), which

is based on Schwinger trick [266] according to Eq. (5.35). Then we studied the resulting consequences

both on top and on the right-hand side of the Feshbach resonance. In this way, we saw how the

frequencies of the collective modes change when one approaches the Feshbach resonance as shown in

Fig 5.6. As expected in Eq. (5.7) we obtained a large reduction of the dipole mode frequency, so the

Kohn theorem is violated, as well as a significant effect for the breathing and the quadrupole mode

frequencies on top of the Feshbach resonance. Furthermore, we found that the system on the right-

hand side of the Feshbach resonance is not stable beyond a critical magnetic field as shown Fig. 5.7c.

Our results and the approximative solution of Ref. [121] disagree about 0.05 G above the Feshbach

resonance for the experimental parameters of Refs [260,264] which is still, so large that it could be

experimentlly measured that the magnetic field can be tuned up to 1 mG [267].

Finally we studied in Chapter 6 a Bose-Einstein condensate with a single vortex using a variational

approach. To this end we derived equations of motion for variational parameters that describe the

radial and axial condensate widths and the relative vortex core size in Eqs. (6.30)–(6.32). Then we

discussed the equilibrium positions of the condensate widths as well as the relative vortex core size,

for which we determined analytical approximations in the Thomas-Fermi limit Eqs. (6.48)–(6.50).

We found that the equilibrium positions of the condensate widths do slightly change in the presence

of a vortex, yielding a tiny decrease of the cloud aspect ratio. We then determined the frequencies

of collective modes and derived an analytic expression for the breathing and the quadrupole mode

frequencies Eqs. (6.63). We observe a significant change of the breathing and quadrupole mode

frequencies for a pancake-like condensate, whereas the breathing and quadrupole mode frequencies

remains basically unaffected for a ciger-like condensate. Furthermore we presented the frequencies of
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collective modes with a single vortex in the Thomas-Fermi limit of two-body interaction Eq. (2.72).

It turned out that the relative vortex core size oscillates in phase with both the quadrupole and the

breathing modes. Furthermore, we determined the energy of a condensate with a central vortex as

well as the critical frequency of a rotating trap at which a single vortex becomes stable. We discussed

the time-of-flight expansion of a trapped condensate with a central vortex and we showed that the

vortex core expands relatively faster than the radial extension of the cloud.

We conclude that our detailed study of the nonlinear mean-field dynamics of Bose-Einstein conden-

sates at zero temperature could contribute to the design and analysis of future experiments.
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A. Abbreviations Ai

Here the abbreviations Ai(β) with i = 1, 2, ..., 19 are introduced which appear in the equations of

motion Eqs. (6.30)–(6.32):

A1=3 + 20β2 + 15β4 − 15β2
(

1 + β2
)3/2

ArcCoth[
√

1 + β2] (A.1)

A2=−54 + 7A1

(

4 + 9β2
)

(A.2)

A3=16πA1

(

−6 + 7A1β
2
)

(A.3)

A4=35A1π(26 + 33β2) (A.4)

A5=−
105A1π

(

8 + 16β2 + 11β4
)

ArcCoth
[

√

1 + β2
]

√

1 + β2
(A.5)

A6=16πA2
1 +A3 (A.6)

A7=β
√

1 + β2
(

−2454 + 24275β2 + 86835β4 + 102375β6 + 42525β8
)

−30β
(

−24 + 1057β2 + 5288β4 + 10087β6 + 8715β8 + 2835β10
)

ArcCoth
[

√

1 + β2
]

+1575β3
(

1 + β2
)5/2 (

8 + 20β2 + 27β4
)

ArcCoth
[

√

1 + β2
]2

(A.7)

A8=−1

4
A3

1

√

1 + β2 (A.8)

A9=β
√

1 + β2
(

228 + 1065β2 + 3430β4 + 4200β6 + 1575β8
)

−15β
(

6 + 63β2 + 379β4 + 812β6 + 700β8 + 210β10
)

ArcCoth
[

√

1 + β2
]

+1575β5
(

1 + β2
)7/2

ArcCoth
[

√

1 + β2
]2

(A.9)

A10=35A2
1

√

1 + β2 (A.10)

A11=280A2
1β
(

1 + β2
)3/2

(A.11)

A12=
√

1 + β2
(

−36480β2 − 206880β4 − 719200β6 − 1220800β8 − 924000β10 − 252000β12
)

+2400β2
(

1 + β2
)2 (

6 + 57β2 + 322β4 + 490β6 + 210β8
)

ArcCoth
[

√

1 + β2
]

−1575β2
(

1 + β2
)3/2 (

160β4 + 480β6 + 480β8 + 160β10
)

ArcCoth
[

√

1 + β2
]2

(A.12)

A13=
√

1 + β2
(

7296β2 + 41376β4 + 143840β6 + 244160β8 + 184800β10 + 50400β12
)

−480β2
(

1 + β2
)2 (

6 + 57β2 + 322β4 + 490β6 + 210β8
)

ArcCoth
[

√

1 + β2
]

−1575β2
(

1 + β2
)3/2 (−32β4 − 96β6 − 96β8 − 32β10

)

ArcCoth
[

√

1 + β2
]2

(A.13)
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A. Abbreviations Ai

A14=
√

1 + β2
(

−6300 + 53200β2 + 197575β4 + 223125β6 + 86625β8
)

−525β2
(

254 + 975β2 + 1458β4 + 1070β6 + 330β8
)

ArcCoth
[

√

1 + β2
]

−1575β2
(

1 + β2
)3/2 (−40− 120β2 − 105β4 − 55β6

)

ArcCoth
[

√

1 + β2
]2

(A.14)

A15=40β + 60β3 + 15β
(

1 + β2
)

− 45β3
√

1 + β2ArcCoth
[

√

1 + β2
]

−30β
(

1 + β2
)3/2

ArcCoth
[

√

1 + β2
]

(A.15)

A16=

[

− 6A15

7A2
1

− 2β

]/[

12

7A2
1

− 2β

]

(A.16)

A17= Ȧ16 (A.17)

A18=

[

6A15

35A2
1

+
2β

5

]/[

− 6

35A1
+

2

5

(

1 + β2
)

]

(A.18)

A19= Ȧ18 (A.19)
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B. Abbreviations Ei

Here the abbreviations E1–E14, defined in Eqs. (6.77)–(6.79), are introduced:

E1 = 15 +
1

2
(227 + 60 log [2/β]) β2 (B.1)

E2 =
1

36
(212 + 60 log [2/β]) +

β2

324
(−76 + 30 [2/β])2

+
β2

72

(

−14034 + 14500 log [2/β] − 974.68 log [2/β]2
)

(B.2)

E3 =
1

9
(76 + 30 log [2/β])β (B.3)

E4 = 15 + (327 + 135 log [2/β]) β2 (B.4)

E5 =
35

24
(−13 + 12 log [2/β]) +

35β2

24
(−59 + 60 log [2/β]) (B.5)

E6 = −76β − 798β2 + 30β log [2/β] + 315β2 log [2/β] (B.6)

E7 = −53− 1911β

2
− 26899β2

2
+ 15 log [2/β] + 315 log [2/β] β + 255 log [2/β]2 (B.7)

E8 = −38β − 399β2 + 15β log [2/β] +
315

2
β2 log [2/β] (B.8)

E9 =
525

2β2 (−76 + 30 log [2/β])
+

175 (33.722 − 22.104 log [2/β])3

24 (−76 + 30 log [2/β])2

+
175β2 (72.583 − 54.881 log [2/β])4

96 (−76 + 30 log [2/β])3
(B.9)

E10 =
15 (−409 + 120 log [2/β])

−76 + 30 log [2/β]
− 75β2 (64.122 − 31.87 log [2/β])3

2 (−76 + 30 log [2/β])2
(B.10)
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[127] T. Köhler, Three-Body Problem in a Dilute Bose-Einstein Condensate, Phys. Rev. Lett. 89,

210404 (2002).

[128] B. L. Tolra, K. M. O’Hara, J. H. Huckans, W. D. Phillips, S. L. Rolston, and J. V. Porto,

Observation of Reduced Three-Body Recombination in a Correlated 1D Degenerate Bose Gas,

Phys. Rev. Lett. 92, 190401 (2004).

[129] N. Akhmediev, M. P. Das, and A. V. Vagov, Bose-Einstein Condensation of Atoms with Attarc-

tive Interaction, Int. J. Mod. Phys. B 13, 625 (1999).

[130] A. Gammal, T. Frederico, L. Tomio, and P. Chomaz, Atomic Bose-Einstein Condensation with

Three-Body Interactions and Collective Excitations, J. Phys. B 33, 4053 (2000).

[131] F. K. Abdullaev, A. Gammal, L. Tomio, and T. Frederico, Stability of Trapped Bose-Einstein

Condensates, Phys. Rev. A 63, 043604 (2001).

[132] S. P. Tewari, P. Silotia, A. Saxena, and L. K. Gupta, Effect of Incorporating Three-Body In-

teraction in the Low-Density Energy Expansion of Bose-Einstein Condensate of 87Rb Atoms

Trapped in a Harmonic Potential, Phys. Lett. A 359, 658 (2006).

[133] E. Wamba, A. Mohamadou, and T. C. Kofane, A Variational Approach to the Modulational

Instability of a Bose-Einstein Condensate in a Parabolic Trap, J. Phys. B: At. Mol. Opt. Phys.

41, 225403 (2008).

[134] F. K. Abdullaev and M. Salerno, Gap-Townes Solitons and Localized Excitations in Low-

Dimensional Bose-Einstein Condensates in Optical Lattices, Phys. Rev. A 72, 033617 (2005)

[135] C. Bo-Lun, H. Xiao-Bin, and K. Su-Peng, Mott-Hubbard Transition of Bosons in Optical Lattices

with Three-Body Interactions, Phys. Rev. A 78, 043603 (2008).

[136] Y. Chen, K.-Z. Zhang and Y. Chen, Dynamic Behaviour of Bose-Einstein Condensates in Optical

Lattices with Two- and Three-Body Interactions, J. Phys. B: At. Mol. Opt. Phys. 42, 185302

(2009).

[137] K. Zhou, Z. Liang, and Z. Zhang, Quantum Phases of a Dipolar Bose-Einstein Condensate in

an Optical Lattice with Three-Body Interaction, Phys. Rev. A 82, 013634 (2010).

[138] J. Silva-Valencia and A. M. C. Souza, First Mott Lobe of Bosons with Local Two- and Three-

Body Interactions, Phys. Rev. A 84, 065601 (2011)

[139] M. Singh, A. Dhar, T. Mishra, R. V. Pai, and B. P. Das, Three Body on-Site Interactions in

Ultracold Bosonic Atoms in Optical Lattices and Superlattices, Phys. Rev. A 85, 051604 (2012).

[140] A. Safavi-Naini, J. v. Stecher, B. Capogrosso-Sansone, and S. T. Rittenhouse, First Order Phase

Transitions in Optical Lattices with Tunable Three-Body Onsite Interaction, Phys. Rev. Lett.

109, 135302 (2012).

120



BIBLIOGRAPHY

[141] B. Huang, S. Wan, Excitation Spectrum and Momentum Distribution of Bose-Hubbard Model

with On-Site Two- and Three-body Interaction, ArXiv:1212.3762.

[142] R. Dasgupta, Effects of Three-Body Scattering Processes on BCS-BEC Crossover, Phys. Rev. A

82, 063607 (2010).

[143] U. Roy, R. Atre, C. Sudheesh, C. N. Kumar, and P. K. Panigrahi, Complex Solitons in Bose-

Einstein Condensates with Two- and Three-Body Interactions, J. Phys. B: At. Mol. Opt. Phys.

43, 025003 (2010).

[144] A. Mohamadou, E. Wamba, D. Lissouck, and T. C. Kofane, Dynamics of Kink-Dark Solitons

in Bose-Einstein Condensates with Both Two- and Three-Body Interactions, Phys. Rev. E 85,

046605 (2012).

[145] M. Juan, L. Zhi, and X. Ju-Kui, Critical Rotation of an Anharmonically Trapped BoseEinstein

Condensate, J. Chin. Phys. B 18, 4122 (2009).

[146] M. S. Mashayekhi, J.-S. Bernier, D. Borzov, J.-L. Song, and F. Zhou, Two-Dimensional Bose

Gases Near Resonance: Universal Three-Body Effects, Phys. Rev. Lett. 110, 145301 (2013).

[147] Y. Wang, J. Wang, J. P. D’Incao, and C. H. Greene, Universal Three-Body Parameter in Het-

eronuclear Atomic Systems, Phys. Rev. Lett. 109, 243201 (2012).

[148] L. Guan-Qiang, F. Li-Bin, X. Ju-Kui, C. Xu-Zong, and L. Jie, Collective Excitations of a Bose-

Einstein Condensate in an Anharmonic Trap, Phys. Rev. A 74, 055601 (2006).

[149] H. Ji-Xuan, Collective Excitations of a 1D Bose-Einstein Condensate in an Anharmonic Trap,

Phys. Lett. A 368, 366 (2007).

[150] L. Guan-Qiang, P. Ping, L. Jian-Ke, and X. Ju-Kui, Collective Excitations and Nonlinear Dy-

namics of 1D BEC with Two- and Three-body Interactions in Anharmonic Traps, Commun.

Theor. Phys. 50, 1129 (2008).

[151] L. Hao-Cai, C. Hai-Jun, and X. Ju-Kui, Bose-Einstein Condensates with Two- and Three-Body

Interactions in an Anharmonic Trap at Finite Temperature Chin. Phys. Lett. 27, 030304 (2010).

[152] Y. Wen-Mei, W. Xiu-Fang, Z. Xiao-Yan, and X. Ju-Kui, Stability and Collective Excitation

of Two-Dimensional BECs with Two- and Three-Body Interactions in an Anharmonic Trap,

Commun. Theor. Phys. 51, 433 (2009).

[153] P. Ping and L. Guan-Qiang, Effects of Three-Body Interaction on Collective Excitation and

Stability of Bose-Einstein Condensate, Chin. Phys. B 18, 3221 (2009).

[154] P. A. Ruprecht, M. J. Holland, K. Burnett, and M. Edwards, Time-Dependent Solution of the

Nonlinear Schrödinger Equation for Bose-Condensed Trapped Neutral Atoms, Phys. Rev. A 51,

4704 (1995).

[155] M. Edwards and K. Burentt, Numerical Solution of the Nonlinear Schrödinger Equation for

Small Samples of Trapped Neutral Atoms, Phys. Rev. A 51, 1382 (1995).

[156] J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne, Experiments and Theory in Cold and

Ultracold Collisions, Rev. Mod. Phys. 71, 1 (1999).

121



BIBLIOGRAPHY

[157] Y. Kagen, A. E. Murshev, G. V. Shyapnikov, and J. T. M. Walraven, Bose-Einstein Condensation

in Trapped Atomic Gases, Phys. Rev. Lett. 76, 2670 (1996).

[158] A. Gammal, T. Frederico, and L. Tomio, Critical Nnumber of Atoms for Attractive Bose-Einstein

Condensates with Cylindrically Symmetrical Traps, Phys. Rev. A 64, 055602 (2001).

[159] L. Tomio, V. S. Filho, A. Gammal, and T. Frederico, Stability of Atomic Condensed Systems

with Attractive Two-Body Interactions, Laser Physics 13, 582 (2003).

[160] A. Gammal, L. Tomio, and T. Frederico, Critical Numbers of Attractive Bose-Einstein Con-

densed Atoms in Asymmetric Traps, Phys. Rev. A 66, 043619 (2002).

[161] A. G. de Sousa, A. B. F. da Silva, G. C. Marques, and V. S. Bagnato, Influence of confining

anisotropy on the unstable behavior of a Bose gas with attractive interaction, Phys. Rev. A 70,

063608 (2004).

[162] A. G. de Sousa, V. S. Bagnato, and A. B. F. da Silva, An Analytical Solution for the Critical

Number of Particles for Stable Bose-Einstein Condensation Under the Influence of an Anisotropic

Potential, Brazilian J. Phys. 38, 1 (2008).

[163] S. F. Victo, A. Gammal, and L. Tomio, Effect of Anharmonicities in the Critical Number of

Trapped Condensed Atoms with an Attractive Two-Body Interaction, Phys. Rev. A 66, 043605

(2002).

[164] S. F. Victo, T. Frederico, A. Gammal, and L. Tomio, Stability of the Trapped Nonconserva-

tive Gross-Pitaevskii Equation with Attractive Two-Body Interaction, Phys. Rev. E 66, 036225

(2002).

[165] M. Houbiers and H. T. C. Stoof, Stability of Bose condensed Atomic 7Li, Phys. Rev. A 54, 5055

(1996).

[166] A. Gammal, T. Frederico, and L. Tomio, Improved Numerical Approach for the Time-

Independent Gross-Pitaevskii Nonlinear Schrödinger Equation, Phys. Rev. E 60, 2421 (1999).

[167] P. G. Saffman, Vortex Dynamics (Cambridge University Press, Cambridge, 1992).

[168] R. J. Donnelly, Quantized Vortices in Helium II (Cambridge University Press, Cambridge, 1991).

[169] K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Vortex Formation in a Stirred

Bose-Einstein Condensate, Phys. Rev. Lett. 84, 806 (2000).

[170] Y. Shin, M. Saba, M. Vengalattore, T. A. Pasquini, C. Sanner, A. E. Leanhardt, M. Prentiss,

D. E. Pritchard, and W. Ketterle, Dynamical Instability of a Doubly Quantized Vortex in a

Bose-Einstein Condensate, Phys. Rev. Lett. 93, 160406 (2004).
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[239] A. I. Nicolin, R. Carretero-González, and P. G. Kevrekidis, Faraday Waves in Bose-Einstein

Condensates, Phys. Rev. A 76, 063609 (2007).

[240] L. Salasnich, A. Parola, and L. Reatto, Dimensional Reduction in Bose-Einstein Condensed

Alkali-Metal Vapors, Phys. Rev. A 69, 045601 (2004).

[241] D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, Quantum Dynamics of Single Trapped

Ions, Rev. Mod. Phys. 75, 281 (2003).

[242] Mathematica symbolic calculation software package http://www.wolfram.com/mathematica.

[243] SCL BEC MATHEMATICA codes, http://www.scl.rs/scl-research/codes/321

[244] P. Muruganandam and S. K. Adhikari, Fortran Programs for the Time-Dependent Gross-

Pitaevskii Equation in a Fully Anisotropic Trap, Comp. Phys. Comm. 180, 1888 (2009).
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