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ABSTRACT: Classical molecular dynamics (MD) simulations
provide invaluable insights into complex molecular systems but
face limitations in capturing phenomena occurring on time scales
beyond their reach. To bridge this gap, various enhanced sampling
techniques have been developed, which are complemented by
reweighting techniques to recover the unbiased dynamics. Girsanov
reweighting is a reweighting technique that reweights simulation
paths, generated by a stochastic MD integrator, without evoking an
effective model of the dynamics. Instead, it calculates the relative
path probability density at the time resolution of the MD
integrator. Efficient implementation of Girsanov reweighting
requires that the reweighting factors are calculated on-the-fly
during the simulations and thus needs to be implemented within
the MD integrator. Here, we present a comprehensive guide for implementing Girsanov reweighting into MD simulations. We
demonstrate the implementation in the MD simulation package OpenMM by extending the library openmmtools. Additionally, we
implemented a reweighted Markov state model estimator within the time series analysis package Deeptime.

■ INTRODUCTION
Classical molecular dynamics (MD) simulations yield
trajectories of a molecular system at atomistic resolution and
are an excellent tool to study the dynamics of complex
molecular systems. A complication emerges from the fact that
relevant time scales of the molecular system, from slow
conformational changes to complex formation and ultimately
chemical reactions, occur on time scales that are orders of
magnitude beyond the time scales that can be covered by an
unbiased MD simulation. To close this time scale gap a wide
variety of enhanced sampling techniques1 have been proposed,
which broadly can be classified into methods which (1) change
the temperature of the system,2,3 (2) change the classical
Hamiltonian, in particular the potential energy function, of the
system,4−8 or (3) bias the initial state of the trajectory but
otherwise leave the dynamics unchanged.9,10 A necessary
complement of enhanced sampling techniques are reweighting
methods,1,11,12 which recover the unperturbed stationary
density and the unperturbed dynamics from biased simu-
lations.
Girsanov reweighting13−20 is a dynamical reweighting

technique to recover the unbiased dynamics of a molecular
system from simulations that were conducted with a biased
potential. It differs from other dynamical reweighting

techniques21−25 in that it does not assume an effective
model of the molecular dynamics but reweights the dynamics
directly on the level of the stochastic MD integrator. In this
sense, Girsanov reweighting is an exact reweighting technique.
The method is based on the theory of stochastic path
integrals.26−28 It has been applied to model systems13−17 and
peptide dynamics.19 Recently, it has been used for the machine
learning of optimal collective variables based on enhanced
sampling simulations.29

Girsanov reweighting can also be applied in a prospective
manner. From MD trajectories obtained at a reference
potential energy function, one can calculate the transition
rates at a modified potential energy function and investigate
the sensitivity of the transition rates with respect to certain
parameters of the potential energy. In fact, while modern
empirical potential energy functions often reproduce the
structural and thermodynamic properties with high fidelity,30,31
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the dynamic properties, such as transition times across barriers,
may vary considerably across different potential energy models
for the same molecule.32 In ref 33, Girsanov reweighting has
been combined with the maximum caliber approach34 to
optimize potential energy functions such that the resulting
dynamics reproduce a specific transition rate.
Since Girsanov reweighting is based on stochastic path

integrals, it requires that the MD simulations are carried out
with a stochastic MD integrator.35 To achieve reweighting
accuracy at the level of the MD integrator, the random
numbers and bias force at each integration time step are
collected and aggregated in path reweighting factors. The path
reweighting factor can be calculated for any time interval [t, t +
τ] of the entire MD trajectory and represents the relative
probability of the path from t to t + τ at the target potential
relative to its probability at the simulation potential.
Interpreting the path reweighting factor as the relative path

probability gives an intuitive explanation of why stochastic MD
integrators are needed for Girsanov reweighting. The
probability of a specific deterministic path, by definition, is
one at the simulation potential but zero at any other potential.
Hence, the relative probability of a deterministic path, i.e., the
ratio of the path probability between the target potential and
the simulation potential, is always zero.
For stochastic integrators, the path reweighting factor can be

calculated efficiently by formulating it in terms of the random
numbers generated during a stochastic MD simulation and in
terms of random number differences that account for the
difference between the dynamics at the simulation potential
and the dynamics at the target potential to which the simulated
dynamics should be reweighted.18,36 The equation for the
random number difference depends on the integrator and can
easily be derived for the Euler-Maruyama integrator,28,35 of
overdamped Langevin dynamics.14−16 However, a much more
realistic description of the molecular dynamics is achieved by
underdamped Langevin dynamics. Ref 37 (unpublished
results) presents a general approach to derive the relative
path probability density for stochastic integrators of under-
damped Langevin dynamics, and it provides a framework to
analyze whether the relative path probability for a given
integration algorithm is defined throughout the path space. If
the relative path probability density is defined, its value can be
calculated, and reweighting underdamped Langevin dynamics
is thus possible.
While specialized simulation protocols for Girsanov

reweighting have been published, there is a lack of ready-to-
use simulation programs that allow on-the-fly estimation of
reweighting factors. Calculating the relative path probability
density requires access to the random numbers and forces at
the time resolution of the MD integrator. Even though the
implementation of the relative path probability density
amounts to adding a reporter to the inner loop of the MD
integrator, for most simulation packages this requires deep
knowledge of the package architecture. The goal of this
contribution is to provide a template for efficiently
implementing the relative path probability density into an
MD program. We use OpenMM38 which provides an easy and
versatile implementation of Langevin integrators via the
openmmtools package,39,40 to demonstrate the implementa-
tion.
As an example analysis of the simulation data, we reweight

Markov state models (MSMs)41−46 and implement the
reweighting factor into the time-series analysis package

Deeptime.47 While Girsanov reweighting can be used to
reweight other rate estimators,33 MSMs have the advantage
that they are well suited to model multistate dynamics and
that, due to the short Markov lag time, a model of the long-
time dynamics can be constructed from short paths. Our
additions to the two software packages are open source and
provide a blueprint for extending an MD simulation and
analysis program to include Girsanov reweighting.

■ THEORY
Molecular Simulations and Path Probabilities. Con-

sider a system of N atoms with Cartesian position vector
q N3 and associated momentum vector p N3 . Mo-
mentum and position vectors can be combined to a phase
space vector x q p( , ) N6= . The time-evolution of such a
system in a thermal bath is modeled by underdamped
Langevin dynamics

Mq t V q t Mq t RT M t( ) ( ( )) ( ) 2 ( )= + (1)

The left-hand side of eq 1 represents the total force on the

particles, where q t q t( ) ( )
t

2

2= is the acceleration vector at
time t. M is the 3N × 3N-dimensional mass matrix, which
contains the masses of the particles along its diagonal.
The force consists of three terms (right-hand side of eq 1):

(i) the force due to the gradient of the potential energy
function −∇V(q); (ii) the friction force, where
q t q t v t( ) ( ) ( )

t
= = is the velocity vector and ξ is the

collision rate with unit s−1; and (iii) a random force. According
to the dissipation fluctuation theorem,48 the random force
along the lth degree of freedom has the mean 0 and variance
2RTξMll, where R is the ideal gas constant, T is the
temperature, and Mll is the l diagonal element in M and
represents the mass associated with the lth degree of freedom.
We model this random force by an uncorrelated white
Gaussian noise with unit variance centered at 0, η(t), which
is then scaled by RT M2 ll in order to fulfill the fluctuation
dissipation theorem.48

We report the potential in molar energy units, J mol−1;
correspondingly, the thermal energy is reported as molar
quantity: RT. If energy units are used for the potential,
R should be replaced by the Boltzmann constant kB = R/NA in
eq 1 and all of the following equations. NA is the Avogadro
constant.
Langevin integrators35 are numerical schemes that provide

an approximate solution to eq 1. They yield a time-discrete
trajectory or path x = (x0, x1, x2, ...xn), where x0 = (q0, p0) is the
initial state at time t = 0, xk = (qk, pk) is the state at time t =
kΔt with time step Δt. The path length is τ = nΔt.
To model the random force, typical Langevin integrators

draw either one or two random numbers from a standard
normal distribution per integration time step and degree of
freedom. The simulation thus additionally yields either one
sequence of random number vectors, η = [η0, η1...ηn−1], or two
sequences of random number vectors, η(1) = [η0(1),η1(1)...ηn−1

(1) ]
and η(2) = [η0(2),η1(2)...ηn−1

(2) ], where k
N3 , k

N(1) 3 , and

k
N(2) 3 . The lth element of a random number vector ηk

contains the random number that determines the random force
on the lth degree of freedom at the time step k.
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The path probability x[ ] is the probability of observing a
specific time-discretized path x. It can be decomposed using
the Chapman−Kolmogorov equation49 as

p x x x x p x p x xx ( ) ... ( ) ( )n
k

n

k k0 1 0 0
0

1

1[ ] = · [ | ] = · |
=

+
(2)

where p(x0) is the probability density of the initial state. We
here assume that the initial states are distributed according to
the Boltzmann distribution

i
k
jjjjj

y
{
zzzzz

i

k
jjjjjjj

y
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zzzzzzz
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3
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=

= ·
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(3)

where ( )Z qd exp V q
RT
( )= is the classical configurational

partition function,50 and pl,0 is the lth element of the initial
momentum vector p0.
In eq 2, p(xk+1|xk) is the one-step transition probability to

reach xk+1 within one integration step, given that the current
state is xk. Langevin integrators that only take current state xk
into account when updating position and momentum imple-
ment a Markov process. For these integrators, eq 2 is exact. For
Langevin integrators that additionally take the previous state
xk−1 into account, eq 2 is an approximation.
The mathematical expression for p(xk+1|xk) depends on the

Langevin integrator. One can however argue36 that the single-
step transition probability is equal to the probability of drawing
the random number vector ηk that gives rise to this specific
transition

i
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3
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2
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where we used the random numbers ηl,k that are drawn from a
standard normal distribution. Equation 4 holds for the
Langevin integrator, which draws a single random number
per integration step and degree of freedom l. The path
probability density (eq 2) can then be written as
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Analogously, the path probability density (eq 2) for Langevin
integrators that draw two random numbers per integration step
and degree of freedom is

i

k

jjjjjjjjj

y

{

zzzzzzzzz

i

k

jjjjjjjjj

y

{

zzzzzzzzz

p x p p

p x

x ( ) ( ) ( )

( )
1

2
exp

2
exp

2

k

n

k k

k

n

l

N
l k l k

0
0

1
(1) (2)

0
0

1

1

3
,
(1)2

,
(2)2

[ ] = ·

= ·

=

= = (6)

Girsanov Reweighting. Girsanov reweighting is an
importance sampling technique1 for path probability densities
at different potential energy functions. Following the principles
of importance sampling, a path expected value at target
potential Ṽ can be reweighted as

s s sx x x x
x
x

x xVpath, = [ ] [ ] = [ ]
[ ]

[ ] [ ]
(7)

where x[ ] is the path probability density at the target
potential Ṽ(q), x[ ] is the path probability density at the
simulation potential V(q). s[x] is a path observable, i.e., a
function that assigns a real-valued number to each path x. ⟨...⟩
denotes an expected value, where we added the subscript
“path” to emphasize that the expected values is calculated with
respect to path probability density x[ ] and not with respect to
a phase space probability p(x). The path integral x ...
integrates over the space of all possible time-discretized
paths of length τ = nΔt.
If an analytical expression for the relative path probability
x x/[ ] [ ] can be found, the path expected value in eq 7 can

be estimated from a set of paths S = (x1,...xn dpaths
) generated at

the simulation potential V(q) as

s s
x
x

xlimV n
S

i

i
i

x
path,

i

paths
= [ ]

[ ]
[ ]

(8)

A critical question is under which conditions the relative
path probability x x/[ ] [ ] exists. For time-continuous paths,
these conditions have been discussed by Girsanov27 and
Onsager and Machlup.26 It depends on the integrator in the
case of time-discretized paths; ref 37 (unpublished reference)
discusses path probability ratios for Langevin splitting
operators.
The potential energy V(q), at which the simulation is carried

out, and the target potential energy Ṽ(q), to which the path
expected value is reweighted, are related by a potential U(q)

V q V q U q( ) ( ) ( )= + (9)

Equation 9 takes the viewpoint of a perturbation,18,20,33,36 (ref
37 unpublished results), where the target potential differs from
the reference (simulation) potential by a perturbation U(q).
Alternatively, one can take the viewpoint of enhanced sampling
simulations, where a bias potential Ubias(q) needs to be
subtracted from the simulation potential V(q) to obtain the
molecular (target) potential, thus V q V q U q( ) ( ) ( )bias= . By
setting U(q) = −Ubias(q), one can reconcile

19 the enhanced
sampling viewpoint with eq 9. It is important to be aware of
the sign-convention since it enters the equations for the
reweighting factor.
Using eq 5, the path probability density ratio can be

expressed as36
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where k is the random number vector that yields an update xk

→ xk+1 at the target potential Ṽ(q), and ηk is the random
number vector that yields the same update at the simulation
potential V(q). The intuition is that one calculates k and
compares it to the random number vector ηk, which was used
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in the simulation at V(q). However, in our implementation, k
is never calculated directly. Instead, the two random number
vectors are related by a random number difference vector Δηk
with

l k l k l k, , ,= + (11)

The random numbers ηl,k can be recorded during the
simulation at simulation potential V(q), but Δηk,l needs to
be calculated at each integration time step. The equation for
Δηk,l depends on the integrator, and the equations for various
Langevin integrators are reported later in the text.
Analogously, using eq 6, the path probability density ratio

can be expressed as36
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with random number differences

.
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The formulas for Δηl,k, Δηl,k
(1), and Δηl,k

(2) depend on the
Langevin integrator37 (unpublished reference).
The path probability ratio can be decomposed into the

probability ratio of the initial state p x p x( )/ ( )0 0 and the ratio of
the path probabilities conditioned on the initial state

p x
p x

M xx
x

x
( )
( )

0

0
0

[ ]
[ ]

= · [ | ]
(14)

where the conditional path probability ratioM[x|x0] is given by
the product over time steps k in eqs 10 or 12. If the initial state
x0 is drawn from the Boltzmann distribution eq 3, the
probability ratio of the initial state in eqs 10 and 12 is given as
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Girsanov Reweighting for Langevin Integrators.
Commonly used Langevin integrators are based on the
splitting method.51,52 Equation 1 is formulated as a vector
field and separated in three terms, each of which is integrated
separately, yielding three update operators,35,51 (ref 37
unpublished results) for the position ql,k and the momentum
p M ql k ll l k, ,=
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where
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We have formulated the three update operators here as
operators that act on a single degree of freedom l. In the
simulation of a multidimensional system, these update
operators are applied to each degree of freedom.
A full update of xk → xk+1 is obtained by sequentially

applying all three update operators. Different Langevin
integrators can be derived by varying the sequence in which
the update operators are applied. Symmetric splitting
integrators use a symmetric sequence. An example is the
ABOBA algor i thm, which appl ies the sequence

q p( , )k k
T , where update operators that appear

twice in the sequence are applied with half a time step and are
denoted with a prime. The corresponding parameters a′, b′(q),
d′, and f ′ are obtained by replacing Δt with t

2
in eq 18
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In eq 16, we formulated the updates for position and
momenta, which leads to the ABO notation of the update
operators.51,53 The update can analogously be formulated for
position and velocities,39,52
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where an -step is the analogue of an -step, a V-step is the
analogue of a -step, and a a M/ ll= , q b q M( ) ( )/l k l k ll, ,= , d̅ =

d, f f M/ ll= . Equation 19 leads to the RVO notation of
Langevin splitting operators.39,52

A systematic approach to derive the random number
difference between an update xk → xk+1 at the simulation
potential V(q) and the same update at the target potential
Ṽ(q) is given in ref 37 (unpublished results). The reference
also discusses why the relative path probability density

x x/[ ] [ ] may not be defined for some Langevin splitting
integrators. In these cases, path reweighting is not possible. For
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Langevin splitting integrators, which have a finite relative path
probability density, the expressions for the random number
differences are summarized in Table 1. The same equations for
the random number difference are obtained when deriving
them from the RVO update operators in eq 19. As an example,
consider the RVO algorithm, whose random number difference
is d f t U q( / ) ( )l k M q l k,

1
, 1ll l

= + . But since d̅ = d and

f f M/ ll= , we obtain d f t U q( / ) ( )l k q l k, , 1
l

= + , which is

the equation given in Table 1.
Reweighting a Markov State Model. In a Markov state

model (MSM),41−46 the 3N-dimensional position space Ω is
discretized into nstate nonoverlapping states Ωi, i.e.,

i
n

i
N

1
3states == . The probability vector p(t) contains

the time-dependent probabilities pi(t) of finding the system in
Ωi at time t. The time-evolution of this discrete probability
vector is then modeled as a Markov process

t tp p P( ) ( ) ( )T T+ = (20)

where P(τ) is the MSM transition matrix with dimension nstates
× n s t a t e s . τ is the MSM lag time. Its elements
P q t q t( ) ( ( ) ( ) )ij j i= + | contain the conditional
probability of finding the system in state Ωj at time t + τ, given
that it has been in state Ωi at time t. By definition, the matrix is
row-normalized, such that P ( ) 1j

n
ij1

states == .
The conditional transition probability Pij(τ) can be

calculated from the absolute transition probability Cij(τ)
between states Ωi and Ωj as

P
C

C
( )

( )

( )ij
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j
n

ij1
states

=
= (21)

The absolute transition probability can be formulated as a
path integral.17,18

C h q h qx x( ) ( ) ( )ij i j n0= [ ]
(22)

where hi(q) is the indicator function of state Ωi
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Analogously, hj(q) is the indicator function of state Ωj. The
path observable s[x] = hi(q0)hj(qn) thus evaluates to one if the
path x starts in Ωi and ends in Ωj and to zero otherwise. Cij(τ)
can be reweighted according to eq 8, and the reweighted
estimator is
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(24)

where S = (x1,...xn dpaths
) is a set of paths of length τ = nΔt

generated at the simulation potential V(q), q0(m) is the initial
position of the mth path and qn

(m) is its last position. C ( )ij is
the absolute transition probability at a target potential Ṽ(q).
Note that due to the normalization of the transition probability
in eq 21, the constant ratio of the partition functions Z/Z̃
appearing in eq 15 cancels.18

Once the reweighted MSM transition matrix P̃(τ) has been
calculated, the MSM is analyzed via the eigenvalue and
eigenvectors of P̃(τ)

i nI P I( ) ( ) 0, 1 ...( 1)T
i

T
states= = (25)

where li is the ith left eigenvector and λi(τ) is the associated
eigenvalue. Due to the row-normalization of P̃(τ), the leading

Table 1. Random Number Differences as Function of Perturbation Force U
ql

or Bias Force − ∇Ubias, Integration Step Δt,

Dissipation d, and Fluctuation f Terms for Underdamped Langevin Integratorsa
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: perturbation force is evaluated before position update; U q( )
q l k, 1l + : perturbation force is evaluated after position update;

U q( )
q l k, 1/2l + : perturbation force is evaluated at an intermediate position during update sequence of the Langevin integrator.
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eigenvalue is always λ0 = 1 and its associated eigenvector l0 is
the stationary density of the MSM. For a molecular system
evolving according to eq 1, it should be equal to the
(discretized) configurational Boltzmann density. The slow
dynamic processes are represented by eigenvectors with
eigenvalues close to 1.
In Markovian dynamics, the eigenvalues of the MSM

transition matrix decay exponentially with the lag time τ:
t( ) exp( / )i i

ITS= . Thus, if the time-evolution of p(t) can
indeed be modeled by a Markov process, the implied time
scale should be independent of τ

t
ln( ( ))i

i

ITS =
(26)

The implied time scale test43 uses eq 26 to check the
approximation quality of an MSM by calculating MSM
transition matrices at various lag times and checking whether
the right-hand side of eq 26 is indeed independent of τ.

■ METHODS
General Approach. Performing Girsanov path reweighting

for MSMs requires two main steps: (i) computing the relative
path probability (eqs 10 and 15) and (ii) estimating the
reweighted MSM transition matrix (eq 24). The first step is
handled by the MD simulation program on-the-fly during the
simulation. The second step is handled by an MD analysis
program. The data that is exchanged between the simulation
and the analysis program are the position trajectory and an
associated trajectory of path reweighting factors. Figure 1
illustrates the data flow.

In path reweighting, and in Girsanov reweighting in
particular, the role of MD simulation is to generate a set of
paths S = (x1,...xn dpaths

) at the simulation potential V(q). While it
is possible to run a separate MD simulation for each path xi, in
the context of MSMs the paths are usually extracted from a
long trajectory via a sliding window. The path length is then τ
= nΔt = nout·nintervalΔt, where nout represents the interval (in
number of MD time steps Δt) between writing coordinates to
the output trajectory file, and ninterval is the number of intervals
noutΔt that fit into the path length τ. To illustrate, in Figure 1
coordinates are written to file every nout = 10 time steps, and
ninterval = 4 of these recording intervals fit into a path, yielding a

path length of τ = 40Δt. We denote the iteration of the MD
integrator with index k and the index of the recorded
coordinates by k′. The indices are related via k = k′nout.
path probability density is calculated and written to a file at

the same interval as the coordinates. To do this efficiently, the
relative path probability for a path starting at k = k′ = 0 is
decomposed into a product of two factors as shown in eq 14.
Inserting eq 15 and omitting the factor Z/Z̃ yields
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(27)

We omitted the factor Z/Z̃ because it cancels in the equation
for the MSM transition probability (eq 21). The factor also
cancels in other rate estimators.33

Using a sliding window, path xi may start at any time-point k
= k′nout at which coordinates are written to file. The indices in
eq 27 then shift accordingly, i.e., q0 → qk′ and [x0, x1...xn] →
[xk′, xk′+1...xk′+n]. To be able to calculate the relative probability
of the initial state of a sliding window path, the perturbation
energy U(qk′) (or equivalently the bias energy Ubias(qk′)) is
written to the reweighting file, whenever coordinates
q qk k nout

= are written to file.
For a Langevin integrator which draws a single random num-

ber per degree of freedom and simulation time step, M[x|x0] is
given by the double product in eq 10. To account for the
recording interval, we reformulate the factor as
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where we split the product over the integration time steps k
into an outer product over the recording intervals k′ and an
inner product over the simulation time steps k″ within a given
recording interval. The indices in eqs 10 and 29 are related by
k = k′ninterval + k″. Furthermore, we have

D
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n

l
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l k n k

0

1

1
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2
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+ (29)

S
D k
1 is calculated in the inner loop of the MD simulation
program. At each integration time step k and for each degree of
freedom, the random number l k l k n k, , interval

= + is recorded,
and the random number difference l k l k n k, , interval

= +
according to the appropriate equation in Table 1. The terms

l k l k l k, ,
1
2 ,

2+ are then summed over all degrees of

freedom l, and the result is added to a buffer variable S
D k
1 .

The buffer variable is accumulated throughout the recording

Figure 1. Overview of path reweighting.
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interval, i.e., for nout steps. When the recording interval has
elapsed and coordinates are written to the position trajectory,
the value of the buffer variable S

D k
1 is written to the

reweighting factor trajectory, and the buffer variable is reset to
zero.
To calculate Δηk, one needs the bias force −∇Ubias or the

perturbation force −∇U. When Girsanov reweighting is used
to unbias a biased simulation, the bias force is already available
within the inner loop of the simulation. When Girsanov
reweighting is used in a prospective manner to predict the
influence of a perturbation U(q) on a reference potential V(q),
perturbation forces −∇U(q) need to be calculated in addition
to the forces −∇V(q) that are used to propagate the system.
For Langevin integrators that draw two random numbers per

integration time step, S
D k
1 is given as
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+ (30)

The variable name S
D k
1 is a nod to the path action, where

D is the diffusion constant. When formulating the path
probability in terms of the path action,15,26,54 S[x], eqs 29 and
30 can be interpreted as the action difference between the
simulation and the target potential, scaled by the diffusion
constant.
Given the position trajectory at the simulation potential

V(q) and the trajectory of path reweighting factors, an MSM at
the target potential Ṽ(q) can be obtained via eq 24. The
relative path probability density is calculated from the path
reweighting factors by summing up S

D k
1 for all nintervals

recording intervals that make up the path x (eq 28) and
multiplying the resulting conditional path reweighting factor
M[x|x0] with the relative probability density of the initial state
of the path (eq 27).
Implementation in OpenMM via Openmmtools.

Openmmtools is a Python library layer that provides tools
that allow for a user-friendly setup of complex simulation

protocols. For our purpose, the most important openmmtools
class is LangevinIntegrator. This class ultimately
extends the OpenMM CustomIntegrator class (Figure
2) and provides access to Langevin Splitting integrators.35,52,53

Openmmtools used the RVO notation. The precise integrator
can be conveniently specified by passing the sequence of
update operators (eq 16) as a string. LangevinInte-
grator implements the update operators as member
functions _add_R_step(), _add_V_step(), and
_add_O_step(). The sequence of update operations is
realized by the function _add_integrator_steps(),
which reads a string input, e.g., ‘R V O V R’ and outputs the
corresponding update sequence.
To implement the reweighting factor trajectory, we created

the new class LangevinSplittingGirsanov within
openmmtools. With this new class, Girsanov reweighting
simulations can be set up simply by specifying the Langevin
integrator as a string, as one would normally do for a Langevin
simulation with openmmtools. Figure 2b shows a sample
OpenMM script for a Girsanov reweighting simulation.
LangevinSplittingGirsanov extends Lange-

vinIntegrator and thus inherits all methods from
LangevinIntegrator and its parent classes (Figure 2).
In this way, variables for Mll, T, ξ, Δt, etc. are automatically set.
The random number differences Δηl,k are implemented as a
dispatch table, which can be accessed via the class function
_delta_eta_table(self). When initializing the
LangevinSplittingGirsanov with a string of update
operators, the __init__-function checks whether Girsanov
reweighting is possible for this particular Langevin integrator
and whether the random number difference has been
implemented. The variable S

D k
1 is provided by the function

_get_logM(), which performs the summation over the 3N
degrees of freedom, the recording interval nout, and, if
necessary, the number of random numbers drawn per
integration step. An additional factor sets the buffer variable
for S

D k
1 to zero before the next recording step is performed.
An OpenMM simulation requires the input of an external

force field file, which is processed to the OpenMM System
object and can be called within the inner loop of the
simulation; for more details cf. Figure S1. Additional bias
forces can be provided by an interface like openmm-plumed55

and are stored in a separate force group of the OpenMM
Force object. To ensure the bias force update at the

Figure 2. Implementation of the Girsanov reweighting in OpenMM via openmmtools. (a) Inheritance structure for the class
LangevinSplittingGirsanov; (b) sketch of an OpenMM simulation script. LangevinSplittingGirsanov is called analogously to
LangevinInegrator.
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integration step corresponding to the Langevin splitting
s c h e m e c f . T a b l e 1 , w e h a v e a d a p t e d
_add_integrator_steps() to call the bias force
group accordingly. Furthermore, we provide reporter class
ReweightingReporter to record the path reweighting
factors.
Implementation in Deeptime. Deeptime47 is a Python

library for the analysis of time series data and offers a wide
range of tools to construct and analyze Markov models via the
module markov. It implements estimation of a count matrix
f rom a discre t i zed tra jec tory v ia the funct ion
count_matrix_coo2_mult(···), which is provided by
the module deeptime.markov.tools.estimation.
The function currently implements the direct maximum-
likelihood estimator for the matrix elements Cij(τ), which is
obtained by setting the path probability ratio in eq 8 to one.
We modified this function to implement the reweighted
estimator in eq 24. The modified function accepts a trajectory
of reweighting factors as an argument in addition to the
discretized trajectory. If a trajectory of reweighting factors is
passed to the function, the reweighted estimator is calculated;
otherwise, it calculates the direct estimator. For each lag time τ,
the reweighting factors are aggregated according to eqs 28 and
27 and used to calculate the reweighted count estimate
according to eq 24.
The extended function is called by the class Girsanov-

ReweightingEstimator, which is a child class of the
class TransitionCountEstimator. The Maximum-
LikelihoodMSM class is available as a higher-level
estimator of the MSM transition probabilities, which inputs
the GirsanovReweightingEstimator, like the
TransitionCountEstimator, and transforms the

reweighted count matrix (21) into a transition matrix (eq
21). From there, all functionalities available in Deeptime,
including the evaluation of the dominant eigenvalues (eq 25)
and implied time scales (eq 26) for a series of lag times, can be
achieved by feeding this transition matrix into the Markov-
StateModel class.

■ RESULTS
In this section, the performance of the LangevinSplittingGirsa-
nov class is investigated. Being part of the openmmtools
package, the LangevinSplittingGirsanov class receives its forces
from an OpenMM simulation object, which requires a
molecular force field as the input (Figure 2). The
LangevinSplittingGirsanov class thus cannot be directly
compared to a reference implementation of a Langevin
dynamics on an arbitrary low-dimensional potential. The
OpenMM CustomIntegrator class can handle arbitrary low-
dimensional potential as well as molecular force fields. To
ensure consistency, we first compare the reference implemen-
tation to the OpenMM CustomIntegrator class using the
Müller−Brown potential.56 Then we compare the OpenMM
CustomIntegrator class to our LangevinSplittingGirsanov class
by using a dissociation process in water.
Müller−Brown Potential. We use the Müller−Brown

potential V x y( , )MB
56 (Figure 3a, parametrized according to eq

31 and Table 2) to compare our reference implementation to
the implementation using the OpenMM CustomIntegrator
class. The potential is characterized by a global minimum
around (−0.5, 1.5) and two local minima around (0.0,0.5) and
(0.5,0.0). The system was propagated on two biased potentials
V x y V x y U x( , ) ( , ) ( )MB bias= + , where the first potential had a

Figure 3. Comparison of the reference implementation (dotted) and the OpenMM CustomIntegrator class (solid) (a) Müller−Brown potential;
(b) Müller−Brown potential and linear bias; (c) Müller−Brown potential and polynomial bias; Trajectories for 100 time steps of simulation: (d) x-
component of the position, (e) x-component of the momentum, and (f) potential energy due to the bias. Difference between reference
implementation and the OpenMM CustomIntegrator class (solid) for 100 time steps of simulation: (g) difference in x-component of ththe
momentume momentum, (h) difference in the bias force F q U q( ) ( )k x kbias bias= , and (i) difference in the random number difference Δηk.
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linear bias along x (Figure 3b), and the second potential had a
strong polynomial bias along x (Figure 3c), cf. eq 32. The
second form is motivated by a plumed-like bias, which is
applied along a reaction coordinate and thus approximates a
polynomial of the potential function. The linear bias was
chosen to avoid position dependence in the force calculation.
A consequence of applying the bias along x is that the path
probabilities for the y-component of the path are the same in
the simulation and the target potential.
The reference implementation uses the analytical forces

from this potential and the Langevin splitting integrator
ABOBA35 to propagate the system. The OpenMM Custom-
Integrator class uses numerical forces provided by OpenMM
and also the Langevin splitting integrator ABOBA35 to
propagate the system. Similarly, analytical bias forces are
used to calculate the path reweighting factors S

D k
1 (eq 29) in

the reference implementation, whereas numerical forces are
used for this purpose in the OpenMM CustomIntegrator class.
Figure 3d−f shows the x-component of the position and

momentum trajectory, as well as the trajectory of the bias
energy for 100 simulation steps. We used the same random
number sequence in both implementations. The simulations
with the OpenMM CustomIntegrator class are shown as
colored solid lines: orange for the linear bias and blue for the
polynomial bias. The trajectories from the reference
implementation are shown as black dotted lines. Visually the
trajectories from the two implementations coincide. In fact, the
difference between the two implementations is in the range of
floating point precision. Figure 3g shows the difference of the
momentum trajectories between the two implementations,

which is on the order of 10−14 nm amu over 100 time steps, as
an example. The difference of the position trajectory and the
difference of the bias energy are shown in Figure S2. However,
we do find that the bias force can differ in the two
implementations (Figure 3h). While for the linear bias,
analytical and numerical bias forces are identical (orange line
in Figure 3h), the numerical force deviates from the analytical
force for a nonlinear bias potential (blue line in Figure 3h).
Since the bias force is used to calculate the random number
difference, Δηk differs between the two implementations for
the nonlinear bias (Figure 3i).
In summary, apart from the difference between analytical

and numerical forces, the OpenMM CustomIntegrator
implementation reproduces the trajectories and path reweight-
ing factor trajectories from our reference implementation.
Next, we confirmed that we can reweight an MSM using the

OpenMM CustomIntegrator class. Figure 4b shows the left
dominant MSM eigenvectors l0 and l1 of the unbiased Müller−
Brown potential, which is our target potential. l0 represents the
stationary density of the Müller−Brown potential. l1 changes
sign at the largest barrier of the potential and represents
equilibration across this barrier. The MSM was obtained by a
simulation at the unbiased Müller−Brown potential V x y( , )MB .
Figure 4c shows the same eigenvectors obtained by simulating
at a linearly biased potential V x y V x y U x( , ) ( , ) ( )MB bias= +
and then reweighting the MSM estimator (eq 24). The
reweighted eigenvectors are in excellent agreement with the
eigenvectors obtained from the unbiased simulation. Figure 4a
shows the implied time scales of the MSM from the unbiased
simulations (gray dashed line) and the MSM of the biased
simulation without reweighting (dotted orange line) and with
reweighting (solid orange line). Also for the implied time
scales, the reweighted results agree very well with the results
obtained from unbiased simulations.
I−−Ca2+−I− Dissociation Process in Water. We use

simulations of CaI2 in TIP3P water (Figure 5a) to compare the
implementation using the OpenMM CustomIntegrator class to
our new LangevinSplittingGirsanov class (Figure 5b−g). The
I− anions were position restrained such that they maintained a

Table 2. Parameters for Müller−Brown Potential

n = 1 n = 2 n = 3 n = 4 units

An −20.0 −10.0 −17.0 1.5 kJ/mol
an −1.0 −1.0 −6.5 0.7 nm−2

bn 0.0 0.0 11.0 0.6 nm−2

cn −10.0 −10.0 −6.5 0.7 nm−2

xn 1.0 0.0 −0.5 −1.0 nm
yn 0.0 0.5 1.5 1.0 nm

Figure 4. MSMs of the dynamics on the Müller−Brown potential. (a) Implied time scale t1
ITS associated with the slowest process. (b) MSM

eigenvectors l0 and l1 from an unbiased simulation on the Müller−Brown potential. (c) Reweighted MSM eigenvectors l0 and l1 from a simulation
on the linearly biased Müller−Brown potential.
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distance of 0.9 nm along the z-coordinate. The Ca2+ cation was
allowed to diffuse between these two anions, by applying
medium strong harmonic restraints along the y and x
coordinates of the Ca2+ cation. The resulting dynamics
resembles a double-well dynamics along z, where the Ca2+
cation alternates between being bound to the I− anion and
being bound to the other I− anion. In between the two bound
states, there is a considerable free-energy barrier. The target
potential Ṽ(q) consists of the molecular potential for this
system including the above-mentioned restraints. In the
potential V q V q U q( ) ( ) ( )bias= + , a linear bias potential
along z is added, where q is the position vector of all atoms
in the system.
Similar to the Müller−Brown potential (Figure 3), we

compared the two implementations for a trajectory of 100 time
steps, which was generated at the biased potential V(q). The

two simulations use the same random number sequence for
each degree of freedom. We observe a slight difference in the
position and momentum trajectories between the OpenMM
CustomIntegrator and the LangevinSplittingGirsanov. We
suspect this can be attributed to slight algorithmic differences
between our OpenMM CustomIntegrator implementation of
the ABOBA algorithm and the implementation of the ABOBA
algorithm via the parent class of LangevinSplittingGirsanov,
the class LangevinIntegrator. Apart from this slight drift, the
trajectory from our LangevinSplittingGirsanov class follows the
trajectory from the OpenMM CustomIntegrator class very
closely (Figure 5b−d).
Figure 5e−g shows trajectories of the bias force Fbias(qz,k), of

S
D k
1 , and of the random number ηz,k. The trajectories from
the two implementations are identical for the linear bias
(Figure S3a,b). Thus, the LangevinSplittingGirsanov imple-

Figure 5. Molecular system of Ca2+I2− ion pair in TIP3P water is shown in (a). Comparison between OpenMM CustomIntegrator (black dashed)
and LangevinSplittingGirsanov class (orange solid) for 100 time steps of simulation: (b) position qz,k, (c) momentum pz,k, (d) bias potential
Ubias(qz,k), (e) bias force Fbias(qz,k), (f) reweighting factors S

D k
1 , and (g) random number ηz,k. Implied time scales from I−−Ca2+−I− reference

simulation at a unbiased potential (gray solid), as well as from a reweighted MSM (solid) and a standard MSM (dotted) from linearly biased
simulations with kz = 5 kJ/mol/nm in blue (h). First (i) and second (j) left dominant MSM eigenvectors are shown, with the same color code used
in (h).
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mentation reproduces the trajectories and path reweighting
factors from the OpenMM CustomIntegrator implementation.
Figure 5h−j tests whether we can reweight an MSM of the

CaI2 dynamics using the LangevinSplittingGirsanov class. The
MSM has been constructed by discretizing the z-coordinate,
thereby neglecting the solvent degrees of freedom. Figure 5i
shows the eigenvector l0 (gray solid line), which represents the
stationary density at the target potential Ṽ(q), and the
eigenvector l1 (blue dotted line), which represents the
stationary density at the biased potential. Due to the bias
potential, the two stationary densities differ. Reweighting the
simulation data from the biased simulation recovers the
stationary density l0 at the target potential Ṽ(q) with high
accuracy. Figure 5j shows the eigenvectors l1 and l1, which
represent the equilibration between the two bound states.
Interestingly, the process seems to be insensitive to the bias,
and thus the results from all three MSMs coincide. Figure 5h
shows the associated implied time scales from simulations at
the target potential Ṽ(q), simulations at the biased potential
V(q), and simulations at the biased potential V(q) reweighted
to the target potential Ṽ(q). While the MSM eigenvectors can
be reweighted with high accuracy, the reweighted implied time
scale exhibits a large statistical uncertainty. We will discuss
possible reasons for this in Conclusions.

■ COMPUTATIONAL DETAILS
Müller−Brown Potential. The Müller−Brown potential56

is

V x y A a x x b x x y y

c y y

( , ) exp( ( ) ( )( )

( ) )

n
n n n n n n

n n

MB
1

4
2

2

= +

+
=

(31)

its parameters are reported in Table 2.
We used two different bias potentials along the x-coordinate

U x k x

U x k a x

( )

( )
n

m

n n
n

bias,linear linear

bias,polynom polynom
1

= ·

= ·
= (32)

with klinear = 1 kJ/mol/nm and kpolynom = 50 kJ/mol/nm, m =
13, a1 = 2.06e − 02 nm−1, a2 = −2.32e − 02 nm−2, a3 = 3.83e −
03 nm−3, a4 = 3.92e − 02 nm−3, a5 = −1.39e − 02 nm−3, a6 =
−3.39e − 02 nm−3, a7 = 3.82e − 04 nm−3, a8 = 1.24e − 02
nm−3, a9 = 3.37e − 03 nm−3, a10 = −1.18e − 03 nm−3, a11 =
−7.50e − 04 nm−3, a12 = −1.38e − 04 nm−3, a13 = −8.81e − 06
nm−3. The particle mass was set to mp = 1 amu. The ideal gas
constant was set to R = 8.314 J/(K mol). The system was
simulated using the Langevin splitting algorithm ABOBA35

with time step Δt = 0.5 fs, friction coefficient ξ = 5 ps−1, and
temperature T = 300 K.
We used two different implementations of ABOBA: (i) a

reference stand-alone implementation in Python and (ii) an
abstraction using the OpenMM CustomIntegrator class. Both
implementations are available via GitHub.57,58

In the simulations using the reference implementation, the
initial positions were drawn randomly from a uniform
distribution and the initial velocities were set to v0 = (0.0,
0.0). We then generated 5 trajectories with 2.5 × 108 time
steps each for VMB(x, y) and 5 trajectories with 2.5 × 108 time
steps each for VMB(x, y) + Ubias,linear(x).

In the simulations using the OpenMM CustomIntegrator
class, the initial positions were drawn randomly from a uniform
distribution, and the initial velocities were chosen according to
the Boltzmann distribution at 300 K. We then generated 5
trajectories with 108 time steps each for VMB(x, y), 5
trajectories with 108 time steps each for VMB(x, y) +
Ubias,linear(x).
From the trajectories, we constructed two-dimensional

MSMs on a grid with 36 states, where the x-dimension was
discretized in the range −3.5 ≤ x ≤ 1.5, and the y-dimension
was discretized in the range −1.5 ≤ y ≤ 3.5. The lag time was
varied between 0.5 and 24.5 ps in steps of 1 ps. We calculated
un-reweighted MSMs for the trajectories at VMB(x, y) and
VMB(x, y) + Ubias,linear(x) using the estimators provided by
Deeptime.47 We calculated reweighted MSMs for the
trajectories at VMB(x, y) + Ubias,linear(x) using our implementa-
tion of the reweighted estimators which extends Deeptime.57

I−−Ca2+−I−. The model system is a Ca2+I2− ion pair (mCa =
40.08 amu, mI = 126.90 amu) in an explicit TIP3P water box,
containing 49 hydrogen bonds restrained water molecules. The
nonbonded interaction parameters are chosen according to the
AMBER99 force field,59 σCa = 3.05 × 10−1, εCa = 1.92, σI =
4.19 × 10−1, and εI = 1.67.
ABOBA simulations were performed either with open-

mmtools LangevinIntegrator40 or for biased runs with
LangevinSplittingIntegrator.58 The initial positions were
drawn randomly from a uniform distribution, and the initial
velocities were chosen according to the Boltzmann distribution
at 300 K. The step size of the integrator was 1 fs, with the
friction coefficient of 2 ps−1. The particle mesh Ewald
summation was used to calculate the interaction of all particle
pairs within a cutoff of 0.49 nm.
Five trajectories with 2.5 × 108 time steps each were created

for the reference simulations at the unbiased potential. A total
of 5 trajectories with 2 × 108 time steps each were created at
the biased potential.
To apply the bias linearly along one Cartesian coordinate of

the Ca2+ ion

U z k z( )bias,linear linear= · (33)

with klinear = 5 kJ/mol/nm, the degrees of freedom of the three
atoms are restricted in the other two dimensions by a harmonic
potential of the strength kx = ky = 200 × 103 kJ/mol/nm. The
displacement of the two iodide atoms is restricted in all
directions, kz = 500 × 103 kJ/mol/nm. Restraining the degrees
of freedom of the three atoms and the reduction to the
collective variable of the iodide-calcium distance dI−Ca means
that the slowest process takes place on a double-well potential.
The trajectories were used to construct one-dimensional

MSMs on a grid with 50 states of the iodide-calcium distance
dI−Ca in the range 0.3 ≤ dI−Ca ≤ 0.6. The lag time was varied
between 5 and 100 ps in steps of 5 ps. The unreweighted
MSMs for both the reference and biased trajectories are
calculated using the estimators provided by Deeptime,47 cf.
Figure S4. The reweighted MSMs based on trajectories at a
biased potential are performed with our implementation of the
reweighted estimator.57

■ CONCLUSIONS
This paper presents a guide for implementing Girsanov
reweighting in MD simulation and analysis programs using
the OpenMM with openmmtools and Deeptime as examples.
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In openmmtools, we extended an existing Langevin integrator
class such that the reweighting factors are calculated on-the-fly
and, at regular intervals, are written to a reweighting factor
trajectory file. In Deeptime, we extended the MSM estimator
class such that the transition counts are reweighted according
to the reweighting factor trajectory. We demonstrated the
correct functioning and error-free applicability of the newly
implemented functions and classes using both a low-dimen-
sional test system and a molecular system. The implementation
can be readily used for larger systems. The extended software
as well as instructions on how to use it are freely
available.57,58,60,61

The computational cost of the Girsanov reweighting is
usually small. During the simulation, it consists of recording
the bias forces and energies and the random numbers for the
degrees of freedom that are affected by the bias. During the
analysis, it consists of evaluating eqs 29 or 30. Since the bias is
typically low-dimensional, i.e., it affects only a few atoms in the
simulation box, l k n k, interval+

is zero for most dimensions l, and
the evaluation of the sums in eqs 29 and 30 incurs no relevant
computational cost. In our example of calcium−iodine ion
dissociation in water, the bias was applied along the z-
dimension of the Ca2+ cation. Thus, the bias force was one-
dimensional and the sum over the dimensions in eq 29
contained a single term. This is negligible compared to the cost
of evaluating a single MD simulation step with a 450-
dimensional force vector (49 water molecules and 3 ions in the
simulation box).
A more critical question is under which circumstances

Girsanov reweighting is efficient. One condition for efficiency
is that the length of the reweighted paths has to be
considerably shorter than the slow processes in the system.
MSMs are one way to construct Girsanov-reweighted kinetic
models from short paths because in these models the path
length is equal to the MSM lag time.18,19,36,62 This is the
approach we used here. Alternatively, one can reweight
transition rates within the framework of transition path
sampling or transition interface sampling, in which case only
the typically short transition paths are reweighted.33 The
second factor that influences the efficiency of Girsanov
reweighting is the bias. Finding an optimal bias is closely
connected to optimal control theory and to finding an optimal
reaction coordinate along which the bias is applied.29,63

When reweighting MSMs, the reweighted dominant
eigenvectors tend to be more accurate than the reweighted
implied time scales.18,36 This might be due to several reasons.
First, the relative path probability decreases exponentially with
an increasing path length, falling below the numerical floating
point accuracy. One simple remedy is to use a library which
allows for a higher precision in the floating point numbers
when analyzing the reweighting factor trajectories (for
generating the path reweighting trajectory, the usual double
precision should be sufficient). Second, in high-dimensional
systems, the bias might shift the transition path ensemble for
transitions across the barriers. A shifted transition path
ensemble at the biased potential is then not representative of
paths at the unbiased potential, which causes the relative path
probability to be analytically close to zero. To avoid a shift in
the transition paths, the bias can be deposited exclusively in the
minima of the potential energy function.22 Finally, drifting
implied time scales with large statistical uncertainties also
occur in discrete Markov models which are estimated from

unbiased simulations. This effect might be magnified by
reweighting. More accurate Markov models are obtained by
using an arbitrary ansatz function instead of a crisp
discretization, such as tICA-Markov models,64,65 variational
Markov models,66 or core-set Markov models.45,62,67 Since it is
straightforward to reweight the estimators for these Markov
models by the Girsanov relative path probability density, using
suitable ansatz functions instead of crisp states will likely
improve the accuracy of the reweighted implied time scales.
OpenMM provides very clean and clear access to the inner

loop of the MD simulation via the CustomIntegrator class, and
in previous studies, we have taken advantage of this class to
implement Girsanov reweighing.18,19,36 However, this ap-
proach requires a detailed understanding of both the numerical
schemes used to implement Langevin splitting integrators and
the equations for the relative path probability. With the
LangevinSplittingIntegrator class presented here, the running
of a Girsanov reweighting simulation is simplified to one line of
code in the OpenMM simulation script. A simple and error-
resistant way to set up a Girsanov reweighting simulation is the
starting point for more reweighting studies on large molecular
systems.

■ ASSOCIATED CONTENT
Data Availability Statement
We provide the software for MD simulation with Girsanov
reweighting as a pull request to the original openmmtools and
openmm repository. added class LangevinSplitting-
Girsanov: https://github.com/choderalab/openmmtools/
pull/729, added class ReweightingReporter: https://
github.com/openmm/openmm/pull/4533. The extensions of
the deeptime47 package for Girsanov reweighted Markov state
models are also available as a pull request. modified class
count_matrix_coo2_mult and added Girsanov-
ReweightingEstimator: https://github.com/
deeptime-ml/deeptime/pull/290. All simulation scripts and
input files can be viewed in our reweightingtools repository.
https://github.com/bkellerlab/reweightingtools.
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M.; Chodera, J. D.; Schütte, C.; Noé, F. Markov models of molecular
kinetics: Generation and validation. J. Chem. Phys. 2011, 134 (17),
174105.
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