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a b s t r a c t

Domain shifts in the training data are common in practical applications of machine learning; they occur
for instance when the data is coming from different sources. Ideally, a ML model should work well
independently of these shifts, for example, by learning a domain-invariant representation. However,
common ML losses do not give strong guarantees on how consistently the ML model performs for
different domains, in particular, whether the model performs well on a domain at the expense of its
performance on another domain. In this paper, we build new theoretical foundations for this problem,
by contributing a set of mathematical relations between classical losses for supervised ML and the
Wasserstein distance in joint space (i.e. representation and output space). We show that classification
or regression losses, when combined with a GAN-type discriminator between domains, form an upper-
bound to the true Wasserstein distance between domains. This implies a more invariant representation
and also more stable prediction performance across domains. Theoretical results are corroborated
empirically on several image datasets. Our proposed approach systematically produces the highest
minimum classification accuracy across domains, and the most invariant representation.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Learning from data that originates from different provenances
epresenting the same physical observations occurs rather com-
only, but it is nevertheless a highly challenging endeavor. These
ultiple data sources may e.g. originate from different users,
cquisition devices, geographical locations, they may encompass
atch effects in biology, or they may come from the same mea-
urement devices that each are calibrated differently. Because the
ource of the data itself is typically not task-relevant, a learned
odel is therefore required to be invariant across domains. A valid
trategy for achieving this is to learn an invariant intermediate
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representation (illustrated in Fig. 2). Furthermore, in certain ap-
plications, privacy requirements such as anonymity dictate that
the source should not be recoverable from the representation.
Hence, building a domain invariant representation can also be a
desideratum by itself.

Domain invariance, in some contexts referred to as subpop-
ulation shift (Koh et al., 2021) or distributional shifts (Amodei
et al., 2016; Goel, Gu, Li, & Ré, 2021), can be contrasted to two
related and well-researched areas that are domain adaptation
(DA) (Shimodaira, 2000; Sugiyama, Krauledat, & Müller, 2007)
and domain generalization (DG) (Dou, de Castro, Kamnitsas, &
Glocker, 2019; Zhou, Jiang, Shui, Wang and Chaib-draa, 2021).
Domain adaptation is mainly concerned with the model perfor-
mance on the (unlabeled) target domain, often at the expense of
incurring more errors on the (labeled) source domain. Domain
generalization, on the other hand, aims to build a ML model
that generalizes across all domains, including unseen ones. This
generality imposes additional constraints on the solution, that can
hamper the careful enforcement of invariance w.r.t. the domains
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Visual overview of the differences between domain adaptation, domain invariance and domain generalization in the context of classification. X denotes the
nput domain, and P denotes the various probability distributions. Domain adaptation learns a classifier that matches the target domain (Ptarget) using information
from the source domain, irrespective of its performance on it (errors as circled in red). Domain invariance treats each of the nd domains equally and aims to build
domain invariant representations and therefore a predictor that works equivalently well on each of them. Domain generalization addresses the more complex task of
building a classifier that performs well on any domain drawn from some distribution D (including unseen ones, here depicted in gray). This is done potentially at
the cost of giving up some accuracy on the few given domains (errors on the two domains of interest are circled in red).
Fig. 2. Illustration of the problem of domain invariance in the case of classification. We would like to learn a function Φ that maps the data to a representation
here the domains cannot be differentiated, and from which a domain-invariant classifier f can be built. The invariant representation induced by this model can
erve further purposes such as domain privacy or extraction of domain-related insights. X , Z , Y correspond to the input, representation and target (label) space
espectively.
t hand. In comparison, domain invariance (DI), our focus in this
aper, considers that the ML model is trained and applied on
finite and given set of domains, and each domain is treated
qually. The objective is to learn a model whose performance is
ell-balanced over the multiple given domains. The differences
re highlighted graphically and with equations in Fig. 1. Hence,
e address a singular and important problem, which has so far
eceived little attention, especially in the context of deep learning
odels.
In order to address domain invariance, we consider in the

resent work the Wasserstein distance (Peyré, Cuturi, et al., 2019;
illani, 2008) as it characterizes the weak convergence of mea-
ures and displays several advantages over e.g. the more common
ullback–Leibler divergence, as discussed in Arjovsky, Chintala,
nd Bottou (2017) and Montavon, Müller, and Cuturi (2016).
e contribute several bounds relating the Wasserstein distance
etween the joint distributions of two or more domains, and
he objective function of practical supervised neural networks.
his theoretical basis supports the rigorous learning of domain-
nvariant classifiers through the incorporation of a GAN-type
iscriminator between domains (or domain critic) as an auxiliary
ask.1 With the proposed theoretical grounding, one can show
hat (1) the Wasserstein distance between the different domains
s systematically reduced as an effect of training, and (2) the
rediction performance gap between domains is also reduced as
result.

1 Anecdotally, the use of a domain critic makes our method relate to works
n domain adaptation such as DANN (Ganin et al., 2016) and WDGRL (Shen, Qu,
hang, & Yu, 2018).
234
Furthermore, a significant part of the novelty of our work lies
in contributing a formalism, which makes our theory applicable
to partially labeled distributions. This allows us in particular to
cover both supervised and semi-supervised learning scenarios.
While a few other works also addressed the scenario where do-
mains are partially labeled, they focus on the related but distinct
problems of domain adaptation (Cheng & Pan, 2014; He, Liu, Fan,
& You, 2020; López-Paz, Hernández-Lobato, & Schölkopf, 2012)
and domain generalization (Sharifi-Noghabi, Asghari, Mehrasa, &
Ester, 2020).

Our proposed approach is tested empirically on three domain
invariance benchmarks: MNIST vs. SVHN, and the multi-domain
Office-Caltech and PACS datasets. Results confirm our theoretical
analysis, in particular, we find that our approach yields highly
invariant representations, and that the latter support predic-
tions that are accurate on all domains, including the most diffi-
cult ones. Lastly, we inspect the learned invariant representation
using UMAP embeddings (McInnes, Healy, Saul, & Großberger,
2018) and ‘explainable AI’ (cf. Ribeiro, Singh, & Guestrin, 2016;
Samek, Montavon, Lapuschkin, Anders, & Müller, 2021). This al-
lows us to visually highlight how the data distributions associated
to each domain merge into a single distribution under the effect
of the training objective. It also allows us to explore which input
features are used to map the data into the desired invariant
representation (Liu, Long, Wang, & Jordan, 2019). Interestingly,
we find that recognizing and exploiting domain-specific features
remains in fact an integral part of the neural network strategy to

arrive ultimately at the desired invariant representation.
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. Related work

Significant research in machine learning and statistics has
een dedicated to the question of distributional shifts (between
raining and/or test distributions) (Amodei et al., 2016; Delage
Ye, 2010). This has resulted in a variety of machine learn-

ng formulations that can be broadly categorized into domain
daptation, domain generalization, and domain invariance.

.1. Domain Adaptation

Domain Adaptation (Ben-David et al., 2010) has been studied
ue to the fact that in real-world situations, when the source and
arget distributions differ, for instance by a covariate shift (Shi-
odaira, 2000; Sugiyama et al., 2007), models trained on the
ource distribution perform significantly worse on the target.
omain adaptation has two major well-studied settings: Unsu-
ervised Domain Adaptation and Semi-Supervised Domain Adap-
ation.

Unsupervised Domain Adaptation considers the situation
here the source domain has labels but the target domain has
ot (cf. Zhang & Gao, 2022 for a review). Using the theoretical
ramework of Ben-David et al. (2010) where the target error is
pper-bounded by the error on the source domain, the diver-
ence between marginal distribution of the two domains and a
onstant term, Ganin et al. (2016) and Shen et al. (2018) propose
domain adaptation technique based on the minimization of

his upper-bound. The joint distribution optimal transportation
JDOT) method of Courty, Flamary, Habrard, and Rakotomamonjy
2017) is similar to Shen et al. (2018), but it aims to mini-
ize the Wasserstein distance between joint distributions. Note

that Courty et al. (2017) does not use adversarial learning and
instead solves the primal form of the optimal transport problem,
and relies on a single-domain classifier to learn on the target
domain with transported source-domain labels. The approach
of Ganin et al. (2016) has been extended to a number of sub-
sequent domain adaptation methods (Shu, Bui, Narui, & Ermon,
2018; Xu et al., 2020; Zhang, Ouyang, Li, & Xu, 2018). Other
metrics than the Wasserstein distance can be used to align do-
mains including the MMD, in works such as (Zhang, Li, & Teng,
2021) that use pseudo labels for unlabeled data, with a manifold
regularization; or the Bures–Wasserstein distance (a specific case
of the Wasserstein distance on normal distributions) such as
in Liu, Ren, Xu, and Huang (2022). The method of Xiao and Zhang
(2021), inspired by Saito, Watanabe, Ushiku, and Harada (2018),
considers the alignment between domains and the class dis-
criminability simultaneously, and proposes to weight these two
terms in the objective in a dynamic manner. Although departing
from existing theoretical frameworks, it achieves state-of-the-art
empirical performance.

Semi-Supervised Domain Adaptation assumes a setting where
there are a well-labeled source domain and a partially-labeled
target domain. Observing that a few target labels can greatly im-
prove task performance in applications such as object detection
and image recognition, Semi-Supervised Domain Adaptation has
recently attracted attention. The methods in Qin et al. (2021) and
Saito, Kim, Sclaroff, Darrell, and Saenko (2019) correct the clas-
sifier’s predictions that are biased to the large amount of labeled
data in the source domain by using conditional entropy computed
from its predictions. In Jiang et al. (2020), Kim and Kim (2020)
and Li, Liu, Zhao, Zhang and Fu (2021), the input data is perturbed
by a powerful data augmentation (e.g. Cubuk, Zoph, Shlens, & Le,
2020; DeVries & Taylor, 2017) or adversarial method (e.g. Miyato,
Maeda, Koyama and Ishii, 2018), and then the model is trained
so that the predictions for the original input and the perturbed
input are consistent. Ref. Yang et al. (2021) proposes an efficient
235
method for training a model by assigning pseudo one-hot labels
to unlabeled target data predicted with high confidence during
training. The methods presented above achieve good results in
numerical experiments, but do not provide a rigorous theoretical
discussion of the generalization error. In particular, Saito et al.
(2019) minimizes an upper-bound of the target error, but that
upper-bound contains the joint minimum error that cannot be
optimized, and therefore it is not guaranteed that the target error
will necessarily be small after training. One such exception is
JDIP (Chen, Harandi, Jin, & Yang, 2020), which conducts a the-
oretical study with some similarities to ours, however in the case
of domain adaptation, and with the classical L2 distance instead
of a metric on distributions (the Wasserstein distance, with its
advantages). This method builds on linear transformations and
kernels models, whereas our approach works alongside more
powerful and flexible neural networks.

Note that on both domain adaptation settings, the main goal
is to improve generalization performance in the target domain,
often at the expense of performance in the source domain. In our
work, we would like to have high performance in all given do-
mains, and this task is better addressed using domain invariance.

2.2. Domain Generalization

Domain Generalization (Blanchard, Lee, & Scott, 2011; Muan-
det, Balduzzi, & Schölkopf, 2013; Zhou, Liu, Qiao, Xiang, & Loy,
2022) is a very challenging problem that aims to achieve high
performance on unseen target domains by learning models from
multiple fully-labeled source domains. Domain generalization has
received significant attention recently. Ref. Li, Pan, Wang and
Kot (2018) combines an adversarial loss with a maximum mean
discrepancy regularizer in order to extract a representation where
domains are aligned. The method of Li, Tian et al. (2018) uses two
adversarial losses to take advantage of label information in fully-
labeled domains. The first loss matches the latent representation
for each class, and the second loss reduces the negative effects
of differences in class distributions across domains. The method
of Dou et al. (2019) uses meta-learning in order to extract features
that are consistent across domains. Ref. Zhou, Jiang et al. (2021)
starts from an adversarial approach and incorporates a metric
learning loss into the classifier in order to improve classification
boundaries. Ref. Meng et al. (2022) introduces a new attention
diversification framework, based on attention maps, where the
latter are trained to produce diversified responses for task-related
features and to remove domain specific features. The approach
of Zhou, Yang, Qiao and Xiang (2021) mixes instance-level fea-
ture statistics across source domains. Mixing styles of training
data has the effect of creating pseudo-new domains, resulting in
increased diversity of training domains and improved generaliza-
tion capability to unseen domains. The method of Li, Du et al.
(2021) can address unsupervised domain adaptation and model
adaptation (or source-free unsupervised domain adaptation) as
well as domain generalization. The method generates adversarial
attacks to the extent that semantic information of original data
is retained, and then learns to reduce the classification loss for
those adversarial examples.

A few works have focused on theoretical aspects of Domain
Generalization. Ref. Li et al. (2020) develops theoretical argu-
ments based on a strong assumption that the distribution of
latent variables in all domains is represented by a linear combina-
tion of other domains. Ref. Albuquerque, Monteiro, Darvishi, Falk,
and Mitliagkas (2019) shows an upper-bound theorem indicating
that minimizing the divergence between the source marginal
distributions like (Ganin et al., 2016; Shen et al., 2018) can min-
imize the unseen target error when the target distribution exists
in the neighborhood of the convex hull of source distributions.
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owever, it is also known that minimizing the divergence to
n extremely small value increases the divergence between the
arget distribution and the convex hull, which leads to an increase
n the upper-bound. Sicilia, Zhao, and Hwang (2023) derives a
ighter upper-bound of the target error than Albuquerque et al.
2019). Note that the negative effect resulting from minimizing
he divergence remains unresolved.

While domain generalization is a challenging and interesting
opic on its own, it differs from the setting we consider in the
resent paper by requiring the model to generalize well to any

new domain. Not only this makes the theoretical analysis sig-
nificantly harder than for the finite domain setting, performance
gains on new unseen domains are often obtained at the expense
of the existing domains, which are in our case the domains of
interest.

2.3. Domain invariance

In contrast to domain adaptation and domain generaliza-
tion, domain invariance is a comparatively less explored set-
ting. Domain invariance shares some technical similarities with
works in distributionally robust optimization (Duchi, Hashimoto,
& Namkoong, 2023; Duchi & Namkoong, 2021; Rahimian & Mehro-
tra, 2019). These works however focus on the optimization prob-
lem and its theoretical properties rather than the problem of
generalization between different groups or domains. Another
related area is subpopulation shifts, which addresses the question
of generalization across predefined subgroups (e.g. Goel et al.,
2021; Koh et al., 2021; Sagawa, Koh, Hashimoto, & Liang, 2019).
Unlike domain invariance, works on subpopulation shifts focus
on building invariance to subgroups of the same domain, of-
ten numerous with few samples and small discrepancies, rather
than producing invariance to qualitatively different domains.
Furthermore, works on subpopulation shifts typically consider
that the different subgroups are fully labeled, whereas the domain
invariance framework we introduce in our work enables learn-
ing with domains that are partially labeled. Due to the limited
previous works and the lack of reference methods for domain
invariance, our experiments section will resort to ablation studies
for comparison.

3. Domain invariance and optimal transport

Domain invariance can be described as the property of a
representation to be indistinguishable with regards to its original
domain, in particular, the multiple data distributions projected
in representation space should look the same (i.e. have low dis-
tance). A recently popular way of measuring the distance between
two distributions is the Wasserstein distance. The latter can be
interpreted as the cost of transporting the probability mass of one
distribution to the other if we follow the optimal transport plan,
and it can be formally defined as follows:

Definition 1. Let P ∈M1
+
(A),Q ∈M1

+
(B) be two arbitrary prob-

ability distributions defined over two measurable metric spacesA
nd B. Let c be a cost function. Their Wasserstein distance is:

W (P,Q) def
= inf

π∈Π (P,Q)

∫
A×B

c(a, b)dπ (a, b) (1)

ith Π (P,Q) def
= {π ∈ M1

+
(A × B) : PA#π = P and PB#π =

}, where PA# and PB# are push-forwards of the projection of
A(a, b) = a and PB(a, b) = b. This can be loosely interpreted as
(P,Q) being the set of joint distributions that have marginals
and Q.

Hence, we measure the invariance of representations by how
ow the Wasserstein distance is between the distributions P
236
nd Q associated to the two domains. The P and Q distribu-
tions respectively are the P1 and P2 distribution of Fig. 1. The
Wasserstein distance being scale-dependent, we assume that rep-
resentations of both domains have fixed scale. In comparison
to other common alternatives such as the Kullback–Leibler di-
vergence, the Jensen–Shannon divergence, or the Total Variation
distance, the Wasserstein distance has the advantage of taking
into account the metric of the representation space (via the cost
function c(a, b)), instead of looking at pure distributional overlap,
and this typically leads to better ML models (Arjovsky et al., 2017;
Montavon et al., 2016). Computing the Wasserstein distance with
Eq. (1) is expensive. Luckily, if we use the metric of our space as
a cost function, such as the Euclidean distance c(a, b) = ∥a−b∥2,
e can derive a dual formulation of the 1-Wasserstein distance
s follows:

(P,Q) = sup
∥ϕ∥Lip≤1

EP [ϕ] − EQ[ϕ] (2)

where EP [ϕ] is the expected value of function ϕ on the dis-
ribution P . This formulation replaces an explicit computation
f a transport plan, by a function to estimate, a task particu-
arly appropriate for neural networks. Recently several methods
ave used this approach to learn distributions (Montavon et al.,
016) specifically in the context of Generative Adversarial Net-
orks (Arjovsky et al., 2017; Shen et al., 2018). The main con-
traint lies in the necessity of the function ϕ, which we will call
he discriminator (or critic), to be 1-Lipschitz. A few approaches
ere proposed to tackle this problem, such as gradient clip-
ing (Arjovsky et al., 2017), gradient penalty (Gulrajani, Ahmed,
rjovsky, Dumoulin, & Courville, 2017) and more recently the
pectral Normalization (Miyato, Kataoka, Koyama and Yoshida,
018). It is however important to note that in practice the set of
ossible discriminators will be a subset of 1-Lipschitz continuous
unctions.

. Relating Wasserstein distance to supervised losses

We would like to align the predicting behavior of a ML model
n multiple domains following the approach illustrated in Fig. 2,
.e. by learning a domain-invariant representation. Specifically, we
aim for a representation of data where the distributions associ-
ated to the two domains have minimum Wasserstein distance
and therefore cannot be distinguished. At the same time, the
representation should contain the features that are necessary to
solve the given prediction task, e.g. using common supervised loss
functions. We focus here on the two-domain case, and refer to
Supplementary Note D for the case of three or more domains.

Let us start with some formalities: We denote by X the input
space, by Z ⊂ Rd our representation or feature space, and by
Y the label or target space. We further denote by Φ : X →

the feature extractor, and by f : Z → Y the prediction
function (e.g. regression; classification). We assume Z and Y to
be compact measurable spaces, and we denote by M1

+
(Z×Y) the

set of probability distributions defined on their product space. Let
P t ,Qt

∈M1
+
(Z×Y) be the true probability distributions formed

by the two domains we would like to align. When necessary, we
add a subscript to these distributions to specify their support.

Similarly to previous works, domain alignment will be mea-
sured as the Wasserstein distance W (P t ,Qt ) of samples embed-
ded in feature space, but also including their labels. We contribute
by showing that the Wasserstein distance W (P t ,Qt ), can be re-
lated formally to common loss functions used in classification or
regression, via mathematical inequalities. With these inequalities
one can design practical learning objectives fairly easily, whose
minimization not only solves the task at hand, but also implies
as a side effect the minimization of the Wasserstein distance



L. Andéol, Y. Kawakami, Y. Wada et al. Neural Networks 167 (2023) 233–243

o
i
t

b
d

i
t
t
i
a

4

w

P
t

P

w
a
c

N
d
h
d
a
b

W

I
W
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etween distributions of the two domains, thereby achieving
omain invariance.
From a technical standpoint, our novel approach draws some

nspiration from Courty et al. (2017) and is based on measure
heory, in order to formalize partially labeled distributions and
herefore our problem of aligning multiple joint distributions. The
ndividual steps are presented in Sections 4.1–4.2, and we provide
n overview of our novel theoretical framework in Fig. 3.

.1. Incorporating semi-supervised data

Computation of the true Wasserstein distance W (P t ,Qt )
ould require knowledge of the true distributions P t and Qt .

In practice, we only have a finite sample of these distributions,
and the quality with which the Wasserstein distance can be
approximated largely depends on the amount of labeled data
available. (For high-dimensional tasks, the necessary amount of
labels would be overwhelming.) However, in practice, it is com-
mon that unlabeled data is available in much larger quantity than
the labeled data. We consider this semi-labeled scenario where
only a fraction of data are obtained from P t ,Qt (i.e. labeled). The
remaining data are unlabeled and obtained from the marginals
P t
Z ,Q

t
Z .

By learning an appropriate function f : Z → Y , say, a neural
network classifier, that infers labels from features, one can obtain
an approximation P f

= (z, f (z))z∼Pt
Z

of the true joint distribution
t . This implies that the distribution we effectively have access
o (and draw from) in practice is the mixture:

= αP t
+ (1− α)P f .

here α ∈ (0, 1) is the fraction of labeled data. We will refer to P
s the inferred distribution. Identically for the second domain, we
onstruct an appropriate function g : Z → Y from which one can
predict labels, and which results in another inferred distribution:

Q = βQt
+ (1− β)Qg .

ote that the functions f and g need not be identical. Also, β may
iffer from α, which addresses the case where different domains
ave different proportions of labeled data. Let the Wasserstein
istance’s cost function c be the metric on the space Z × Y . By
pplication of the triangle inequality, the following relation can
e extracted:

(P t ,Qt ) ≤ W (P t ,P)+W (P,Q)+W (Q,Qt ). (3)

n other words, the distance between inferred distributions
(P,Q) to which we add the inference ‘errors’, i.e. the distance
237
etween true and inferred distributions on each domain, form an
pper-bound to the true distance between distributions. Let us
ow analyze the error term W (P t ,P). We consider the case of P
analogously so for Q).

emma 1. Let K ∈M1
+
(Z × Y) be an arbitrary probability distri-

ution, we then have W (P,K) ≤ αW (P t ,K) + (1 − α)W (P f ,K),
nd for the special case where K = P t , we get

(P,P t ) = (1− α)W (P f ,P t ). (4)

A proof can be found in Supplementary Note A. The proof
roceeds by first decomposing P into its mixture components,
nd then applying Jensen’s inequality on the Wasserstein dual’s
upremum. For the special case of Eq. (4), the equality is due to K
eing an element of the mixture P and the Wasserstein distance
f K to that mixture element being consequently zero.
Finally, combining the results above, that is, by applying the

riangle inequality, Lemma 1, and using the symmetry property
f the Wasserstein distance, one can obtain another bound on
he true Wasserstein distance, where unlike Eq. (3), some mixture
omponents now appear explicitly:

heorem 1. Given the Wasserstein distance’s cost function c is the
etric on the product space Z × Y , we get

(P t ,Qt ) ≤ (1−α)W (P t ,P f )+W (P,Q)+(1−β)W (Qt ,Qf ). (5)

This final formulation will let us relate in Section 4.2 some
f the expanded terms, specifically, the distances W (P t ,P f ) and
(Qt ,Qf ) to common loss functions used in supervised machine

earning.

.2. Connection to supervised ML losses

Various loss functions have been proposed for supervised
earning. They address the diversity of output types (e.g. class la-
els; regression targets) and statistical properties of the data (e.g.
argin between classes; presence/absence of outliers). Ideally,
ne would be able to achieve domain invariance while retaining
he ability to optimize the most suitable loss function for a given
roblem.
Let us start with Eq. (5) in Theorem 1, in particular, the

istance W (P t ,P f ). The latter essentially measures the level of
rror with which the function f predicts the true labels y. It
herefore plays a similar role to common loss functions used for
upervised machine learning. Both can also be mathematically
elated. First, the Mean Absolute Error (MAE) commonly used in
obust regression can be related to W (P t ,P f ) as follows:
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emma 2.

(P t ,P f ) ≤ E(z,y)∼Pt
[
|y− f (z)|

]
(6)

The proof is given in Supplementary Note A. In the case of
lassification, a similar result can be provided for the Kullback–
eibler (KL) divergence, which is equivalent to the cross-entropy
oss when PY|z is deterministic:

emma 3. Assuming that P f and P t admit densities, we then
btain

(P t ,P f ) ≤ diam(Z × Y)

√
1
2
Ez∼PZ

[
KL(P t

Y|z ∥ P
f
Y|z)

]
, (7)

where KL(P ∥ Q) = −
∫
Z×Y log dQ

dP dP is the Kullback–Leibler
divergence; and where diam(·) is the diameter of the space received
as input, i.e. the largest distance obtainable in that space.

For a proof, see Supplementary Note A. Lemmas 2 and 3
now relate the Wasserstein distance formulation to loss functions
occurring in regression and classification tasks that are easily
computable, and with the desired statistical properties. Together
with the relation shown in Section 4.1, we can now propose a ML
formulation that both addresses the prediction task, and enforces
domain invariance.

5. Learning a domain invariant neural network

Consider the data available consists of examples sampled from
both domains, specifically, from distributions P and Q. Under
hese distributions, part of the data comes with the true labels.
or the rest of the data, labels are inferred via the functions f and
respectively. We denote by (Xp, Y p) the dataset of n examples
rawn from the first domain P and by (Xq, Y q) the dataset of m
xamples drawn from the second domain Q. Based on Theorem 1
nd Lemmas 2–3, one can define a learning procedure that con-
ists of simultaneously minimizing a supervised loss function L
n each domain and the Wasserstein distance W (P,Q) aligning
istributions of the two domains. In the classification setting, the
upervised loss for the first domain is defined as

(Zp, Y p) =
1
n

n∑
i=1

KL(f (Zp
i ) ∥ Y

p
i ), (8)

where Y p
i and f (Zp

i ) are vectors containing probabilities of each
class. A similar loss function can be built for the second domain.
Note that the loss is only effective on the examples that come
with a true label, because when the label is inferred, we have
KL(f (Zp

i ) ∥ Y p
i ) = KL(f (Zp

i ) ∥ f (Zp
i )) = 0. In a similar fashion,

or the regression setting, we define L(Zp, Y p) = 1
n

∑n
i=1|f (Z

p
i )−p

i |. For the minimization of the Wasserstein distance W (P,Q)
e consider the dual form provided in Eq. (2), specifically, an
mpirical estimate of it:

(P,Q) ≈ max
ϕ : ∥ϕ∥Lip≤1

{1
n

n∑
i=1

ϕ(Zp
i , Y

p
i )−

1
m

m∑
i=1

ϕ(Zq
i , Y

q
i )  

∆(Zp, Y p, Zq, Y q)

}
(9)

and this forms our domain critic. Finally, one can sum the su-
pervised terms and the domain critic, i.e. Eqs. (8) and (9), and
optimize the resulting objective w.r.t. the functions f , Φ , ϕ (more
precisely, the parameters of the neural networks implement-
ing these functions). This can be formulated as the GAN-like
238
optimization problem:

min
Φ,f

max
ϕ

{
∆(Φ(Xp), Y p,Φ(Xq), Y q)

+ λpL(f (Φ(Xp)), Y p)

+ λqL(f (Φ(Xq)), Y q)
}

s.t. ∥ϕ∥Lip ≤ 1.

(10)

where the classifier terms and the domain critic are in com-
petition. The hyperparameters λp and λq can either be fixed to
1 − α and 1 − β respectively (and for classification multiplied
by the domain’s diameter) in order to match the theory; or
they can be selected heuristically or based on some validation
procedure. The Lipschitzness constraint on ϕ is practically en-
forced by using one of the regularization techniques mentioned
at the end of Section 3. Additionally, a constraint on the scale
of the representation or the Lipschitzness of the classifier f can
be added in order to prevent an arbitrary downscaling of the
representation which may cause the Wasserstein distance to
artificially go to zero. Lastly, supplementary regularization terms,
such as EntMin Grandvalet, Bengio, et al. (2005), Virtual Adversar-
ial Training (Miyato, Maeda et al., 2018), and Virtual Mixup (Mao,
Ma, Yang, Chen, & Li, 2019) can be added to the objective, in order
to take further advantage of the unlabeled examples. A visual
representation of our model is given in Fig. 4. The steps needed to
train a domain invariant networks are summarized in Algorithm
1.

Data: Semi-supervised datasets for both domains:
(Xp, Y p), (Xq, Y q)

Input: Untrained Φ, f with parameters θ , hyperparameters
λp, λq

Result: Trained Φ , f
for epochs do

for batch (xp, yp), (xq, yq) ∈ (Xp, Y p), (Xq, Y q) do
/* Compute features */
zp ← Φ(xp)
zq ← Φ(xq)
/* Impute instances with missing labels in

the batch */
ypi ← f (zpi ) ∀ unlabeled i
yqj ← f (zqj ) ∀ unlabeled j
/* Reverse gradient of features for domain

discriminator */
zprev, y

p
rev ← Rev_Grad(zp), Rev_Grad(yp)

zqrev, y
q
rev ← Rev_Grad(zq), Rev_Grad(yq)

/* Compute losses */
Ldisc ← ∆(zprev, y

p
rev, z

q
rev, y

q
rev)

Lclassif ← λpL(f (zp)), yp)+ λqL(f (zq)), yq)
Ltotal ← Ldisc + Lclassif
/* Perform a gradient descent step */
θ ← θ − γ∇Ltotal

end
end
Algorithm 1: Algorithm for training our proposed domain
invariant network. The function ‘Rev_Grad’ denotes a gradient
reversal layer, which leaves the forward pass unchanged but
multiplies the gradient by −1 in the backward pass (see e.g.
Ganin et al. (2016)).

We now outline some specific condition on the data distribu-
tion which provides statistical consistency of the estimator.

Remark 1. Let us consider the condition on which Eq. (10) is
statistically consistent when sufficiently many labeled examples
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Fig. 4. Diagram of the proposed machine learning model, that induces a domain-invariant representation through a domain critic.
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re observed. For the data distributions P t
XY = P t

Y|XP t
X and

t
XY = Qt

Y|XQt
X , suppose that there exists a function z = Φo(x)

such that

(i) the conditional probabilities satisfy P t
Y|X (y|(Φo)−1(A)) =

Qt
Y|X (y|(Φo)−1(A)) for any measurable subset A ⊂ Z , and

(ii) Φo
∗
PX = Φo

∗
QX ,

where Φo
∗
is the push-forward with the function x ↦→ Φo(x).

Under the above assumptions, we see that Φo
∗
P t
XY = Φo

∗
Qt

XY
olds. Hence, the Wasserstein distance estimator ∆ under the
opulation distribution becomes zero. Due to the assumption
n the conditional distribution, the optimal classifier f on Z is
ommon for both distributions. Therefore, the optimal classifier
ith domain-invariant features is obtained by Eq. (10).

To put it more simply, by assuming there exists a feature map
here marginal distributions are aligned, and that the conditional
istributions are equal almost everywhere for the image of Φo(x),
ptimizing our objective function leads to the optimal classifier.

.1. Generalization bounds

Interestingly, the Wasserstein distance between the true dis-
ributions of the two domains (that we have upper-bounded in
heorem 1) can also be related to the risks of the classifier on
he two domains. Let RPt (f ) = Ez,y∼Pt [L(f (z), y)] be the risk
r error of a classifier f . We here develop a result using the
oint Wasserstein distance, similar to previous result obtained
y Redko, Habrard, and Sebban (2017) on the distance between
arginals.

heorem 2. Let Z,Y be two compact measurable metric spaces
hose product space has dimension d. Let P t ,Qt

∈M1
+
(Z×Y) two

oint distributions associated to the two domains, and P̂ t , Q̂t their
mpirical counterparts. Let the transport cost function c associated to
he optimal transport problem be c(z1, y1; z2, y2) = ∥

( z1
y1

)
−
( z2
y2

)
∥2,

he Euclidean distance as the metric on Z×Y and L : Y×Y → R+
symmetric κ-Lipschitz loss function. Then for any d′ > d and
′ <
√
2 there exists some constant N0 depending on d′ such that for

ny δ > 0 and min(NP ,NQ ) ≥ N0 max(δ−(d
′
+2), 1) with probability

t least 1− δ for all λ-Lipschitz f the following holds:

RQt (f )−RPt (f )| ≤ κ
√
(λ2 + 1)

×

[
W1(P̂ t , Q̂t )+

√
2
ψ ′

log
(
1
δ

)(√
1
NP
+

√
1
NQ

)]
. (11)

(A proof is given in Supplementary Note A.) In other words,
he empirical Wasserstein distance between the two domains
pper-bounds the prediction performance gap between the two
239
domains. In practice, we can therefore expect the optimization of
the objective in Eq. (10) to not only reduce the Wasserstein dis-
tance between domains (as we have shown in the previous sec-
tions), but also to produce a more uniform classification accuracy
across domains and therefore a higher minimum accuracy.

We may also want to compare the joint discriminatorW (P,Q)
o the more common marginal discriminator W (PZ ,QZ ). In-
eed, it seems that in many cases, such as when the conditional
istribution is identical between the two domains, the solution
btained appears to be equivalent. This is true due to theoretical
easons we will explore here. Let us first recall a bound on the
istance between errors with a marginal Wasserstein distance.

heorem 3 (From Shen et al., 2018 (Adapted)). Let P t
Z ,Q

t
Z ∈

1
+
(Z) be two probability measures. Assume the functions f ∈ H

are all λ-Lipschitz continuous for some λ. Then for every f ∈ H the
following holds

|RPt (f )−RQt (f )| ≤ 2λ ·W1
(
P t
Z ,Q

t
Z
)
+ E

where E is the combined error of the ideal f ∗ that minimizes the
combined error RPt (f )+RQt (f ).

The main difference compared with our bound is the presence
of E , the combined error of the hypothesis on both domains. In-
deed, when the features of the two domains are properly aligned,
the bound obtained with a joint or marginal Wasserstein dis-
tances are similar. However, when the domains are not properly
aligned, usually due to the transformation between the two do-
mains being large, and to the lack of labeled samples, we can
have a large E such as E = 1, which renders the bound very
large. Such a case arises when both domains have entirely iden-
tical samples but with opposite labels, for instance. The bound
with the joint Wasserstein distance can lead to features more
aligned even with large transformations between domains. We
expect to observe similar performances between marginal and
joint discriminators on experiments with simple transformations,
and larger discrepancies as the transformations get larger.

6. Experiments

To test whether our proposed approach truly achieves an
invariant representation and reduces the performance gap be-
tween domains (as predicted by Theorems 1 and 2 respectively),
we conduct experiments on three common image classification
problems. First, a handwritten digits recognition task where the
digit images come from two popular datasets: MNIST (LeCun,
1998) and SVHN (Netzer et al., 2011), each of them constituting
one domain. Then, we consider the Office-Caltech classification
dataset (Gong, Shi, Sha, & Grauman, 2012), which consists of
four domains. Finally, we consider the recent and more complex

PACS multi-domain image recognition dataset (Li, Yang, Song
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nd Hospedales, 2017), which also consists of four domains. We
escribe below these multi-domain tasks, and the training proce-
ure for our models. More details are provided in Supplementary
ote B.

.1. Data and models

MNIST and SVHN are two common digit recognition datasets
omposed of 60000 and 73257 training examples respectively.
hile MNIST digits are black&white, SVHN digits are colored

nd have more complex appearances, making them harder to
redict. In our MNIST-SVHN two-domain scenario, we simulate
artly labeled data by only providing labels for a random subset of
xamples (1000 for each domain for the experiments of Table 1,
nd 3000 per domain for experiments of Table 2). The remaining
xamples are given unlabeled. MNIST images are brought to the
VHN format by scaling and setting each RGB component to the
NIST grayscale value. For experiments in Tables 1 and 2, the

unction Φ is implemented by the Conv-Large model from Miy-
ato, Maeda et al. (2018). The model takes as input images of size
32 × 32 × 3. We use small random translations of 2 pixels as
ell as color jittering as data augmentation.
Importantly, for the purpose of evaluating the domain in-

ariance of representations, we would like to stabilize the scale
f representations learned by the different models. Specifically,
e add for the experiments of Table 1 a further penalty to the
bjective: the Wasserstein distance between the distribution of
istances in representation space (the histogram of distances of
he union distribution of PZ and QZ ) and a predefined Gaussian
mixture, which we set to be a univariate mixture of Gaussians
1
10N (5, 2)+ 9

10N (15, 3). The two modes model distances between
ata points of same class and of different classes respectively.
ince the distribution of distances is a 1-dimension histogram,
he Wasserstein distance can be computed analytically (Peyré
t al., 2019). This added constraint ensures a similar scale for the
epresentation extracted by our model and the different base-
ines. In particular, it ensures that a reduction of Wasserstein
istance in representation space can be reliably interpreted as an
ncrease of domain invariance, and not as a simple scaling of the
epresentation. We have experimented with several new metrics
nd constraints for settling for this one, although it comes with
ome side effects. Indeed, by its very definition, it implies that
here should be 10 equidistant and equally sized clusters, which
s an assumption that is not verified for all datasets (for instance,
VHN). Moreover, it gives a stronger advantage (in the form of
prior) to the bare methods, without any discriminator, acting

ndirectly as one.
Our second scenario is based on the Office-Caltech dataset. It

s composed of four domains (Amazon, Caltech, DSLR, Webcam)
ontaining pictures of objects present in offices (such as moni-
ors) from different sources, such as pictures from a real office,
r ones with white backgrounds from an e-commerce website.
here are 10 classes, and a varying number of samples depending
n the domain (between 150 and 1100). We use the Decaf6
Donahue et al., 2014) features with 4096 dimensions. We use the
esnet-18 architecture (He, Zhang, Ren, & Sun, 2016). We train a
odel on each possible bi-domain task (6 tasks) and average the

esulting accuracies per domain.
Our third and last scenario is based on the PACS dataset, which

onsists of 10000 examples, with 4 domains (Photo, Art, Cartoon,
ketch) and 7 classes. We simulate semi-labeled data by pro-
iding labels for only 500 randomly sampled images from each
omain, and giving remaining images unlabeled. The classes and
omains are imbalanced, i.e. contain a different number of ex-
mples. The images are resized to 224 × 224 × 3, and a pipeline
f data augmentation is applied based on RandAugment (Cubuk
240
Table 1
Effect of the domain critic on the classification accuracy and the Wasserstein
distance between the two domains in representation space. We use 1000 labels
per domain. Best performance is shown in bold. For indicative purpose, we
report in the first two rows the classification accuracy on individual domains.
Model Accuracy W dist.

MNIST SVHN Avg Min

No critic 98.9 90.2 94.55 90.2 3.92
Marginal critic (Shen et al., 2018) 97.5 91.5 94.5 91.5 3.43
Joint critic (Ours) 97.5 91.5 94.6 91.5 3.36

et al., 2020). We again use the Resnet-18 architecture. On this
dataset, we test domain invariance in a ‘one vs. rest’ setting.

In all our experiments, the classifier f is a simple 2-layer MLP,
and the discriminator ϕ a 3-layer MLP with spectral normalized
weights (Miyato, Kataoka et al., 2018). (On the multi-domain
PACS, we use a discriminator for each domain, computed in a one-
vs-rest manner.) The weights (hyperparameters) for each loss
term λp and λq are set to one, as well as the discriminator’s.
Unless mentioned otherwise, the networks are trained for 20 to
50 epochs using the Adam (Kingma & Ba, 2015) optimizer.

6.2. Results and analysis

As a first experiment, we study the effect of the domain critic
we have proposed in Section 5 on the accuracy of the model,
and on the Wasserstein distance between the two domains. We
consider two baselines for comparison: (1) a simple supervised
neural network without domain critic, (2) a supervised network
where the critic ϕ is based only on marginal distributions (such
as proposed in Shen et al. (2018)). These two baselines can be
interpreted as an ablation study of our method, where instead
of applying the Wasserstein distance to the joint input-label
distribution, we apply it first only to the input variables (marginal
critic), and then to no variables at all (no critic). For this experi-
ment we do not use any additional losses/regularizers, and simply
optimize the classification and domain alignment terms. We re-
port the Wasserstein distance between the two domains’ joint
distributions, and the minimum classification accuracy for the
two domains. These are two properties that our domain-invariant
network is expected to fulfill (Theorems 1 and 2 respectively).
Results are shown in Table 1.

Results corroborate our theory. In particular, we observe that
the Wasserstein distance significantly decreases under the effect
of adding a domain critic, specifically a joint domain critic that
puts more focus on Y , and the minimal accuracy over the two
domains increases. Furthermore, we observe in this experiment
that the use of a joint critic also leads to the highest average
accuracy across domains.

Independently of the question of domain invariance, unsuper-
vised data has already been routinely leveraged by classical semi-
supervised learning approaches. These approaches have shown
powerful on data with manifold structure (e.g. Li, Xu, Zhu, Zhang,
2017; Rasmus, Berglund, Honkala, Valpola, & Raiko, 2015). In our
next experiment, we test the benefit of domain alignment tech-
niques on models that are already equipped with semi-supervised
learning mechanisms. Specifically, we consider a combination of
two common semi-supervised techniques: conditional entropy
minimization (EntMin) (Grandvalet et al., 2005) and virtual ad-
versarial training (VAT) (Miyato, Maeda et al., 2018), which have
shown strong empirical performance on numerous tasks. Results
are given in Table 2.

We observe that semi-supervised learning on both domains,
achieved by a combination of VAT and EntMin, leads to a strong
baseline. In particular, it achieves the highest performance on
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Table 2
Evaluation of our method in combination with classical semi-supervised learning
regularizers (VAT+EntMin). We use 3000 labels per domain. Best results are in
old.
Model Accuracy

MNIST SVHN Avg Min

No critic + VAT/EntMin (only MNIST) 99.14 · · ·

No critic + VAT/EntMin (only SVHN) · 94.79 · ·

No critic 98.76 87.33 93.05 87.33
No critic + VAT/EntMin 99.29 91.86 95.58 91.86

Joint critic (Ours) + VAT/EntMin 99.26 92.75 96.01 92.75
Joint critic (Ours) + VAT/EntMin + Fine-tuning 99.09 94.33 96.71 94.33

Table 3
Comparison of our method to a classic marginal domain critic and an absence
of critic, on the Office-Caltech dataset. We use 200 labels per domain except for
DSLR which uses 100. Accuracy is reported as averages over of all bi-domain
tasks. Best results overall are in bold.

Amazon Caltech DSLR Webcam Avg Min

No critic 90.63 84.27 93.75 98.31 91.74 84.27
Marginal critic 91.32 85.46 92.71 96.07 91.39 85.46
Joint critic (Ours) 91.67 86.05 93.75 97.00 92.12 86.05

Table 4
Comparison of our method to a classic marginal domain critic and an absence of
critic, on the PACS dataset. We use 500 labels per domain. Accuracy is reported
as Domain vs. Rest. Best results overall are in bold.

Art Cartoon Photo Sketch Avg Min
vs. R vs. R vs. R vs. R

No critic 84.03 85.62 78.74 60.45 77.21 60.45
Marginal critic 84.08 87.07 78.26 64.44 78.46 64.44
Joint critic (Ours) 77.15 88.61 83.41 71.52 80.18 71.52

MNIST. Our domain invariant approach, combined with the same
techniques, further improves over this strong baseline, by reduc-
ing the accuracy gap between the two domains and arriving at a
higher accuracy on the most difficult domain (and also on aver-
age). Results are further improved by applying a final supervised
fine-tuning step to our model without discriminator, and with
classification loss re-weighted depending on the domain classi-
fication error. Note that this fine-tuning step, while improving
classification, hampers the domain alignment and therefore the
reusability of features for alternative tasks as well as the domain
privacy. More details in Supplementary Note C.1.

Table 3 displays the average results of our bi-domain exper-
ments on the Office-Caltech dataset. We observe that the joint
ritic (ours) is always better than the marginal one. We also
bserve that the joint critic, compared to the lack thereof, leads to
ore uniform results across domains (and therefore higher mini-
um accuracy), as well as higher average. These observations are
onsistent with our theoretical results.
Finally, Table 4 shows prediction performance on the more

omplex PACS dataset. We test our model on this data in a one-
s-rest setting, so that the model must learn to be invariant
etween one domain and the three remaining domains.
Again, we find that our model produces the best minimum

nd average accuracy in each scenario. We found that a trade-off
ay exist between Art and other domains. Although our method
erforms worse than competitors on this domain, we observe
hat it leads to domain accuracies more concentrated around the
ean, and therefore a higher minimum accuracy. Additionally,
e note that the average accuracy has also increased.
Lastly, we would like to reiterate that the problem of domain

nvariance has received considerably less attention in the context
f deep neural networks than the tasks of domain adaptation
nd domain generalization. Our quantitative results as well as the
241
multiple baseline results aim to provide useful reference values
for future work on domain invariance.

6.3. Visual insights on learned representations

While results in the section above have verified quantitatively
the performance of our proposed domain invariant network, we
would like to also present some qualitative insights.

As a first experiment, we visualize how the representation
of the Conv-Large model trained with our proposed approach
becomes more task-specific and less domain-dependent through-
out training. For this, we take samples from PZ and QZ , join
them, and perform a low-dimensional embedding of the resulting
distribution via UMAP (McInnes et al., 2018). Plots before and
after training are shown in Fig. 5 (left). The visualization sug-
gests that the two domains are strongly separated initially, but
under the influence of domain invariant training, they collapse
to the same regions in representation space. As expected, the
learned representation also better resolves the different classes
after training (here roughly given by the cluster structure).

As a second experiment, we present SVHN-like synthetic ex-
amples to our domain invariant network and vary the digit and
the colors. Using the Layer-wise Relevance Propagation (LRP)
explanation method (Bach et al., 2015), we then compute for each
prediction the local response of the model. The LRP method iden-
tifies the contribution of each input pixel to the prediction. These
pixel-wise contributions can also be seen as the summands of a
linear model, and the latter forms a local interpretable surrogate
for the original model. We refer to weights of this linear model
as the ‘LRP response map’ (details on LRP and how to generate
response maps are given in Supplementary Note C.2).

A selection of examples and associated LRP response maps is
shown in Fig. 5 (right), featuring two digit classes and SVHN-like
color variations. Although we would expect that style and color
play a marginal role in representation space (our objective has en-
forced invariance between the colored SVHN and the black&white
handwritten MNIST domains), recognizing such style and color
variations remains an integral part of the neural network predic-
tion strategy. We indeed observe that the model precisely adapts
to the input digit by providing domain-specific response maps of
corresponding colors. This strategy is therefore instrumental in
the process of building the domain invariant representation.

7. Conclusion

Real-world data is often heterogeneous, subject to sub-popu-
lation shifts, or coming from multiple domains. In this work, we
have for the first time studied the problem of learning domain-
invariant representations as measured by the joint Wasserstein
distance. We have created a theoretical framework for semi-
supervised domain invariance and have contributed several upper-
bounds to the Wasserstein distance of joint distributions that
links domain invariance to practical learning objectives.

In our benchmark experiments, we find that optimizing the
resulting objective leads to high prediction accuracy on both
domains while simultaneously achieving high domain invariance,
which we also observe qualitatively on low-dimensional embed-
ding visualizations. We have further observed, somewhat coun-
terintuitively, that domain adversarial training can still result in
a model that makes use of domain-specific features in order to
arrive at the domain-invariant representations.

Our work allows for several future extensions. For example,
it would be interesting to obtain a theoretical connection to
other representation learning methods, in particular, contrastive
learning, that may be integrated to our framework. Furthermore,
an extension of our theory to domain generalization could enable
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Fig. 5. Left: UMAP visualization of the extracted representation before and after training. Right: Response (extracted using LRP) of the model to various input digits
ith different style (color).
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urther applications and increase our understanding of domain
eneralization itself.
Overall, our work on domain invariance provides new theo-

etical insights as well as quantitative competitive results for a
umber of scenarios and baselines. We believe it thereby consti-
utes a useful first basis for further research on domain-invariant
L models and applications thereof.
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