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Abstract
Exposure to multiple substances is a challenge for risk evaluation. Currently, there is an ongoing debate if generic “mixture 
assessment/allocation factors” (MAF) should be introduced to increase public health protection. Here, we explore concepts 
of mixture toxicity and the potential influence of mixture regulation concepts for human health protection. Based on this 
analysis, we provide recommendations for research and risk assessment. One of the concepts of mixture toxicity is additiv-
ity. Substances may act additively by affecting the same molecular mechanism within a common target cell, for example, 
dioxin-like substances. In a second concept, an “enhancer substance” may act by increasing the target site concentration and 
aggravating the adverse effect of a “driver substance”. For both concepts, adequate risk management of individual substances 
can reliably prevent adverse effects to humans. Furthermore, we discuss the hypothesis that the large number of substances 
to which humans are exposed at very low and individually safe doses may interact to cause adverse effects. This commen-
tary identifies knowledge gaps, such as the lack of a comprehensive overview of substances regulated under different silos, 
including food, environmentally and occupationally relevant substances, the absence of reliable human exposure data and 
the missing accessibility of ratios of current human exposure to threshold values, which are considered safe for individual 
substances. Moreover, a comprehensive overview of the molecular mechanisms and most susceptible target cells is required. 
We conclude that, currently, there is no scientific evidence supporting the need for a generic MAF. Rather, we recommend 
taking more specific measures, which focus on compounds with relatively small ratios between human exposure and doses, 
at which adverse effects can be expected.
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Introduction

Humans are exposed to large numbers of substances, 
including those that are man made, either intentionally 
or unintentionally formed, as well as naturally occurring 
compounds. These substances are present in our food, 
environment and workplaces (Huhn et al. 2021). While 
risk assessment is well established for single compounds, 
simultaneous exposure to multiple substances is a chal-
lenge for risk evaluation and basic toxicological research. 
The toxicity elicited by exposure to multiple substances is 
referred to as “mixture toxicity” (Sarigiannis and Hansen 
2012; Shaw 2014). It is important to understand how dif-
ferent substances act and interact when concomitantly 
present in the human body and whether such interactions 
influence toxic effects. Together, they may lead to additive 
or even more than additive (synergistic) effects as com-
pared to the toxicity of the individual components (Del-
fosse et al. 2021; Elcombe et al. 2022).

Recently, concern that mixtures of substances could 
cause unknown or elevated known toxicity in humans led 
to a discussion on how to account for potential combined 
effects of mixture components (Tralau et  al. 2021). A 
generic “Mixture Assessment/Allocation Factor” (MAF) 
(KEMI 2021) was proposed as a risk management meas-
ure by Swedish (KEMI) and Dutch (RIVM) EU Member 
State authorities and taken up by the European Commis-
sion in the “EU Chemicals Strategy for Sustainability” 
(European Commission 2020). A generic MAF reduces 
the acceptable exposure limit (AEL) by a factor of, for 
example, 2, 5 or 10. The AEL is usually determined as the 
risk characterisation ratio (RCR)/risk quotient (RQ), i.e. 
the quotient of the exposure of an individual and a health-
based guidance value (HBGV) such as the acceptable/
tolerable daily intake (ADI/TDI) or the derived no-effect 
level (DNEL) representing the highest dose not assumed 
to cause adverse effects in humans. In contrast to a specific 
data-driven approach, a generic MAF is equally applied to 
all substances to which humans are exposed, regardless of 
their individual potential to contribute to mixture effects. 
However, before implementing untargeted and universal 
measures, scientific evidence, mechanistic plausibility and 
the uncertainties of mixture toxicity should be explored.

In the current debate on toxic effects of mixtures, it 
is sometimes difficult to differentiate between well-estab-
lished concepts and hypotheses that have not yet been 
proven since the available experimental data is inconclu-
sive. To facilitate the discussion, we first describe estab-
lished mechanisms of substance interactions. For the sake 
of better recognition, we named these concepts “multi-
headed dragon” and “synergy of evil”. In the “multi-
headed dragon” concept, several substances—symbolised 

by the heads of the dragon—act by the same mechanism or 
mechanisms converging in the same molecular key event, 
leading to effects in the same biological target, e.g. in a 
certain cell type. In the “synergy of evil” concept, one sub-
stance enhances the toxic effect of another. This can occur 
because of the inhibition of enzymes involved in metabolic 
detoxification or transporters responsible for the excretion 
of substances resulting in increased substance concentra-
tions (toxicokinetic “synergy of evil”). Moreover, differ-
ent mechanisms (with no overlap in their key events) may 
indirectly enhance each other (toxicodynamic “synergy of 
evil”). We also look at the prevalent assumption that large 
numbers of substances to which human populations are 
exposed at very low, individually harmless doses com-
pound to cause adverse effects (Dinca et al. 2023). We 
named this assumption the “revolting dwarfs” hypothesis. 
Based on the available data we conclude that mixture 
toxicity in mammals and humans, if applicable, largely 
follows the “multi-headed dragon” concept and discuss 
conditions for grouping substances that may act additively 
when present at relevant exposure concentrations over a 
relevant exposure duration and a critical time window. 
We further conclude that there is currently neither experi-
mental evidence nor a plausible mechanism supporting the 
“revolting dwarfs” hypothesis. Consequently, there is also 
no need for generic protective approaches against health 
impacts from multi-chemical exposures at very low levels. 
Instead, we highlight the need to further develop and refine 
concepts for targeted mixture toxicity assessment.

Thresholds of toxic effects and concepts 
of risk evaluation of individual substances

A basic assumption in toxicology is that adverse effects of 
substances are dose dependent. Lower doses of a substance 
will cause lower or no toxicity in a given organism compared 
to higher doses. Without this, life could not exist as it con-
stantly faces chemical challenges, be it from substances of 
natural or synthetic origin. Unsurprisingly, all organisms, 
therefore, dedicate significant parts of their biochemistry to 
the metabolism, excretion and inactivation of harmful sub-
stances, which emanate from both endogenous and exog-
enous sources (Monosson 2012). Particularly regarding food 
it should be noted that our daily diets routinely consist of 
complex mixtures that contain a plethora of substances, for 
which efficient metabolic detoxification is known. Without 
such highly efficient mechanisms that cover a vast chemical 
space, many substances would show a much higher degree 
of toxicity. Based on our mechanistic understanding, adverse 
effects will not manifest below a specific dose. The molecu-
lar basis for this assumption is that the interaction of a toxic 
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agent with its biological target, which is responsible for 
the effect, is negligible below a certain concentration or—
for irreversible interactions—below a certain cumulative 
concentration. An exception are carcinogens with a direct 
genotoxic mode of action where the dose at which no carci-
nogenicity occurs may be very low and difficult to identify 
(Bolt et al. 2004; Hengstler et al. 2003; Nohmi 2018). It 
should be noted, however, that nowadays there is increasing 
discussion that agents acting via genotoxic and mutagenic 
mechanisms may also exhibit non-linear dose–response rela-
tionships that allow a threshold to be established (Guth et al. 
2023; Hartwig et al. 2020). Nevertheless, there is general 
agreement that for all other adverse effects—at least theo-
retically—an identifiable exposure threshold exists below 
which no adverse effects occur.

In dose-dependent animal experiments, usually two val-
ues are determined as the so-called “points of departure” 
(PoDs) for risk assessment: the no observed adverse effect 
level (NOAEL), the highest dose that has not caused adverse 
health effects in that experiment, and the lowest observed 
adverse effect level (LOAEL), the lowest dose at which a 
measurable adverse effect in vivo has been observed. Both 
parameters are usually expressed as mg per kg body weight 
per day (mg/kg bw/day) for exposures via the oral route 
(Fig. 1). For most substances, the NOAEL and LOAEL were 
derived from sub-chronic or chronic studies with rodents. 
Upon data availability, NOAELs and LOAELs may also be 
derived from human epidemiological or clinical studies.

Benchmark dose (BMD) modelling has been imple-
mented into regulatory toxicology to provide a more robust 
and objective means of threshold derivation. It considers 
the whole dose–response curve while referring to a defined 
critical effect size and accounting for uncertainty in the 
derived PoD. Usually, this is reflected by using the BMD 
lower confidence limit (BMDL) rather than the BMD itself. 
On average, the BMD- and NOAEL-based approaches will 
in general result in comparable PoDs, although substantial 

differences, e.g. within one order of magnitude, are possible 
in individual cases (EFSA Scientific Committee et al. 2022). 
Consequently, already derived NOAELs can remain in place, 
but should be reviewed upon substance re-evaluation using 
the BMD approach as recommended by EFSA.

In risk assessment, PoDs like BMDL or NOAEL enable 
decisions on authorisation and safe use levels. However, 
both exposure and threshold values are estimated with 
uncertainties. The observed PODs clearly depend on the 
sensitivities of the measurements carried out and there is no 
guarantee that all relevant health effects of the compounds 
are covered by the tests applied. Hence, human exposure 
should be a rather small fraction of the PoD. There are dif-
ferent approaches to determine health-based guidance values 
(HBGVs), representing the maximum exposure of humans 
to a substance that is not expected to result in an appreciable 
health risk, taking into account the uncertainties of the safety 
data and the exposure conditions. Examples of HBGVs are 
the DNEL, ADI/TDI and Occupational Exposure Limits 
(European Commission 2018). To derive HBGVs the PoD is 
usually divided by an overall assessment factor (OAF) com-
bining a set of individual assessment factors (AFs) account-
ing for, e.g. inter- or human intraspecies variability (Dourson 
et al. 1996; EFSA Scientific Committee 2012; Lehman and 
Fitzhugh 1954; World Health Organization 2009; World 
Health Organization et al. 1987). Historically, an OAF of 
100 has been routinely applied in his context, but devia-
tions are possible (both in the direction of higher and lower 
values), e.g. depending on the species used in the animal 
experiment or if substance-specific AF were available. In 
more recent times, this concept has been further extended, 
inter alia by implementing the concept of Allometric Scal-
ing under Regulation (EC) 1907/2006 [REACH Regulation 
(European Commission 2006)] or by the representation of 
AFs as distributions rather than point estimates (Chiu and 
Slob 2015; World Health Organization and International 

Fig. 1   Principle of risk evalu-
ation of individual substances. 
DNEL, derived no-effect level; 
ADI, acceptable daily intake; 
TDI, tolerable daily intake; 
OEL, occupational exposure 
limit; BMDL, benchmark 
dose lower confidence limit; 
NOAEL, no observed adverse 
effect level

Risk evaluation of individual substances

Dose
(mg/kg bw/day)

Point of departure (PoD)
experimentally determined

e.g. BMDL, NOAEL

Exposure of  
an individual

(Ei)

Margin of exposure (MoE): PoD / Ei

Health-based
guidance value

(HBGV)
e.g. DNEL, ADI/TDI, OEL

Risk characterization
ratio (RCR or RQ):

HBGV / Ei

Overall assessment factor
(OAF): often but not 

necessarily 100
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Programme on Chemical Safety 2018) to enable probabilis-
tic hazard and risk characterisation.

Concepts of how several substances 
in mixtures can interact to cause adverse 
effects

Chiefly, there are two concepts of concern that explain how 
substances in a mixture can interact to increase adverse 
effects beyond what might be caused by their individual 
components. In the present work, we further explore these 
concepts under the names of “multi-headed dragon” and 
“synergy of evil”.

Concept of the “multi‑headed dragon”

Substances in a mixture may exhibit additive effects of 
toxicity if they act by the same molecular mechanism in 
identical target cells, even if they are present below their 
respective HBGVs and, thus, are considered safe individu-
ally (Fig. 2A). We dub this the concept the “multi-headed 
dragon”: the mechanism that results in injury—here sym-
bolised by the dragon head—is multiplied to create an even 
more dangerous dragon. In toxicology, this principle is well 
documented, e.g. for polychlorinated dibenzo-p-dioxins 
(PCDDs), polychlorinated dibenzofurans (PCDFs), and pol-
ychlorinated biphenyls (PCBs), all of which cause adverse 
effects predominantly by the activation of the aryl hydro-
carbon receptor (AhR) (Beischlag et al. 2008; Bradshaw 

Fig. 2   Concepts of mixture 
toxicity. A The Multi-Headed 
Dragon. B The Synergy of Evil

CONCEPT 1: The multi-headed dragon

CONCEPT 2: Synergy of evil

Exposure to two (or more) compounds at doses below the HBGV
Compounds act by the same molecular mechanism and target the same cell type 
Co-exposure may lead to an additive effect, which may cause adverse effects

Exposure by two (or more) compounds
One compound is responsible for a driver and the second for an enhancer mechanism 
Co-exposure enhances toxicity of the driver mechanism

A

B

Dose 
(mg/kg bw/day)

Point of departure
(PoD)

Health-based guidance
values (HBGV)

Dose 
(mg/kg bw/day)

Point of departure
(PoD)

Health-based guidance
value (HBGV)
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and Bell 2009; Fernandez-Salguero et al. 1996; Gonzalez 
and Fernandez-Salguero 1998; Peters and Gonzalez 2011; 
Peters et al. 1999). For these substances, mixture effects can 
be assessed using toxic equivalents (TEQs), which repre-
sent the toxicity of a substance as a fraction of the most 
toxic substance of this type (Safe 1998). Each compound is 
allotted a toxic equivalency factor (TEF), rating its toxicity 
in relation to the most toxic congener (e.g. 2,3,7,8-TCDD), 
which is assigned the highest TEF of 1.0. To evaluate the 
mixture effects of such compounds, concentrations of the 
individual substances (Ci) are multiplied by their individual 
TEFs (Ci × TEF) and the sum of all Ci × TEF is calculated. 
It should be noted that dioxin-like substances may also act 
by AhR-independent mechanisms (Neumann 1996; Peters 
and Gonzalez 2011; Safe 1997). However, according to the 
concept of the multi-headed dragon, which requires activity 
via the same mechanism, they are of minor relevance for 
mixture effects within this compound class. Moreover, some 
PCDDs, PCDFs and PCBs may act less than additively, since 
toxicokinetics as well as bioavailability are not considered 
in this risk assessment approach (Peters and Gonzalez 2011; 
Safe 1997).

The TEF approach has also been discussed for the assess-
ment of mixture toxicity for compound groups other than 
dioxin-like compounds, such as perfluoroalkyl substances, 
although this approach is still challenging (Peters and Gon-
zalez 2011; Scialli et al. 2007). There are two classes of 
perfluoroalkyl substances: perfluorinated carboxylic acids 
(PFCAs) and perfluorosulfonic acids (PFSAs), which are 
suspected to cause hepatotoxicity, developmental toxicity, 
immunotoxicity and tumorigenesis (Colnot and Dekant 
2021; Kudo and Kawashima 2003; Lau et al. 2007, 2004). 
However, in contrast to dioxin-like substances that cause 
adverse effects predominantly via a single receptor, the AhR, 
PFCAs and PFSAs may act via numerous nuclear receptors, 
including PPARα, PPARγ, PPARβ/δ, CAR, PXR, liver X 
receptor α and ERα (Fenton et al. 2021; Peters and Gonzalez 
2011). This leads to a complex scenario because it is insuffi-
ciently clear via which receptors individual substances cause 
adverse effects or how these receptors may interact with each 
other quantitatively. In addition, the individual PFCAs and 
PFSAs exhibit toxicokinetic differences, a varying degree 
of interspecies variability and target different tissues (Peters 
and Gonzalez 2011). Therefore, the development of a TEF 
concept appears to be difficult for perfluoroalkyl substances.

A precondition for setting up a TEF concept for perfluoro-
alkyl substances would be to establish a database containing 
information on the degree to which individual perfluoro-
alkyl substances activate the aforementioned receptors and 
the tissues affected. This concept may be extended to other 
substances, such as triazole fungicides. It has been shown 
recently that two of these fungicides, propiconazole and 
tebuconazole, act in a concentration-additive manner on the 

RNA expression of drug metabolism-related genes, such as 
CYP3A4 (Knebel et al. 2018). However, combined exposure 
to just these two substances is complex since some effects 
may be additive, such as CYP3A expression, and some 
antagonistic, such as CAR activation (Knebel et al. 2018). 
These findings suggest that the probability of additive effects 
of substances in a mixture will decrease with the number 
of different molecular targets they act upon and with the 
number of different cell types and tissues that are affected 
due to differences in toxicokinetics (EFSA Scientific Com-
mittee et al. 2021). In addition, the exposure to the mixture 
components needs to be relatively constant, spanning at least 
a critical time window to be considered relevant for potential 
mixture effects.

For life-long exposure, more than additive effects have 
been reported in some cases (Dinca et al. 2023). Confir-
mations and mechanistic details of such studies require 
further research. Based on the understanding that different 
chemicals may affect similar processes in biology, EFSA 
has developed the concept of cumulative assessment groups 
(CAG). An example would be pesticides that “affect the 
motor division of the nervous system” (van Klaveren et al. 
2021). Many pesticides in this CAG inhibit acetylcholine 
esterase. Thus, they affect the same molecular target and 
signalling pathway. However, there are also entirely different 
targets, such as sodium channels, on other cells or parts of 
the body that affect motor behaviour. This exemplifies that 
the original CAG concept is not molecularly defined, but 
rather takes biological functions or pathological observa-
tions as starting points. The latter point is exemplified by 
the CAG for hepatotoxicants, which comprise, for instance, 
the group of compounds triggering hypertrophy or steatosis 
(Colnot et al. 2020). Another example is the CAG that refers 
to craniofacial malformations or neural tube defects (Euro-
pean Food Safety Authority et al. 2022). Many different tar-
gets and cell types may be involved in these pathologies. As 
the CAG concept is developed further, it will include more 
pathologies (e.g. renal toxicity) and more molecular subdivi-
sions (European Food Safety Authority et al. 2019). It can be 
expected that CAGs may be linked to adverse outcome path-
ways (AOP) or target pathways, when sufficient information 
is available on the relationship of pathological endpoints and 
the responsible target pathways. The examples of steatosis 
or neural tube defects show that many molecular targets and 
signalling pathways may converge on one given pathology. 
This implies that also compounds affecting different parts 
of such a network of pathways may, in theory, act additively 
(or synergistically) with respect to the final adverse outcome.

Concept of the “synergy of evil”

Toxicokinetic “synergy of evil”. The most frequently 
observed type of synergism is the toxicokinetic “synergy of 
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evil”, where the toxic effect of one substance or a mixture of 
substances, named “driver(s)”, may be enhanced by a second 
substance (or mixture), named “enhancer” (Fig. 2B). For 
example, synergism is observed when the enhancer reduces 
the metabolic inactivation or excretion of the driver lead-
ing to a situation where more driver substance is present 
at the site of effect. Consequently, the toxicity induced by 
the driver will be increased by the enhancer, if the dose of 
the driver as a single substance is already above that of the 
LOAEL. If the dose of the driver (as a single substance) is 
below the HBGV, as shown in Fig. 2B, the addition of the 
enhancer can, in principle, increase the concentrations of the 
driver substance in an organism such that effect thresholds 
are exceeded. A further scenario causing “synergy of evil” is 
given when an enhancer substance induces enzymes that are 
responsible for metabolic activation of a driver substance.

A recently published example of a toxicokinetic “syn-
ergy of evil” is the combined exposure of the mycotoxin 
ochratoxin A (OTA) with the unspecific pan-cytochrome 
P450 (CYP) inhibitor, 1-aminobenzotriazole (ABT) (de 
Montellano 2018) (Fig. 3A–D). One of the main mecha-
nisms of action of OTA is its induction of oxidative stress 
(Ghallab et al. 2021; Hassan et al. 2022a; Kőszegi and 
Poór 2016; Mally and Dekant 2009; Ringot et al. 2006; 
Tao et al. 2018). Moreover, OTA is known to be detoxi-
fied by CYP enzymes (Hassan et al. 2022a). Under the 
conditions of the study, OTA alone induced only a slight 
increase in serum alanine transaminase (ALT) activity, a 
marker of hepatotoxicity. Histological analysis showed 
signs of weak hepatotoxicity as evidenced by the necro-
sis of individual hepatocytes around the central vein. In 
contrast, ABT alone had no effect on hepatotoxicity at the 

dose applied by Hassan et al. (2022b). However, combined 
exposure to OTA and ABT caused a hepatotoxic effect 
several orders of magnitude stronger than OTA alone, 
as evidenced by a massive increase in serum ALT and 
aspartate aminotransferase (AST) activities, as well as 
necrosis of the entire pericentral zone of the liver lobules 
(Fig. 3B–D). This example illustrates an important feature 
of the “synergy of evil”: synergism occurs between two 
different mechanisms. In the case of toxicokinetic “syn-
ergy of evil”, one of the two substances acts as a driver 
(here, OTA by inducing oxidative stress), the second as an 
enhancer (here, ABT acting by CYP inhibition). In con-
trast to the driver, exposure to the enhancer must exceed its 
effect threshold causing the inhibition of CYP, thus gener-
ating synergism. This does not mean that at this dose the 
enhancer must cause adverse effects such as tissue injury 
or cell death. If exposure to ABT falls below inhibitory 
doses, the entire “synergy of evil” collapses and toxicity 
of OTA will not be increased. However, if doses of OTA 
are below thresholds that generate reactive oxygen spe-
cies, combination with an enhancer may—in principle—
increase the OTA concentrations in tissues above criti-
cal levels where adverse effects occur. From a regulatory 
perspective, it is therefore important that enhancers stay 
below doses where the enhancing mechanism becomes 
active in order to guarantee that a “synergy of evil” does 
not occur. However, modes of kinetic interaction, such as 
CYP inhibition, are not yet routinely considered for BMD 
or NOAEL derivation. The potentially enhancing proper-
ties of a substance are currently neglected in mixture risk 
assessment. The lack of systematic substance screens for 
their respective inhibitory potential against metabolism or 

Fig. 3   Example of Synergy of 
Evil of two substances of an 
experiment in mice (from Has-
san et al. 2022a, b). A Doses 
of the driver (ochratoxin A) 
and enhancer (1-aminobenzo-
triazole) substance; B Gross 
pathology of the exposed mouse 
livers; C Histological analysis; 
D Serum activities of the liver 
enzyme alanine transaminase 
(ALT)

DRIVER

Ochratoxin A (OTA) 
7.5 mg/kg, i.v.

Mycotoxin that causes oxidative stress
Detoxyfying metabolism by cytochrome 

P450 enzymes

Cyp-inhibition by ABT strongly enhances the hepatotoxicity of OTA 

ENHANCER

1-aminobenzotriazole (ABT) 
150 mg/kg; gavage 2h before OTA 

administration

Pan-cytochrome P450 inhibitor

+A

B C D
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active transport or the overall impact of kinetic interaction 
at low concentrations remains a data gap that should be 
addressed in the future.

With regard to the synergism of OTA and ABT, it should 
be considered that the dose of OTA used in the above exam-
ple (7.5 mg/kg bw) was chosen in order to illustrate the prin-
ciple of combined exposure to CYP substrates and inhibitors 
(Hassan et al. 2022b), although human exposure is known 
to be much lower. The 95th percentile of exposure of the 
European population at the upper bound has been reported 
to be only 0.013 µg/kg bw/day. It appears very unlikely that 
even a strong enhancer can increase tissue concentrations of 
the driver by several orders of magnitude.

Human exposure to inhibitors of CYP is possible. For 
example, various furocoumarins found in grapefruit juice 
are potent inhibitors of CYP3A and other CYP isoenzymes, 
which play a central role in the metabolism of many drugs or 
chemicals (Girennavar et al. 2007; SKLM 2004). The con-
sumption of typical amounts of grapefruit juice may increase 
the bioavailability/maximum plasma concentrations or the 
elimination half-life of certain drugs and chemicals and cor-
responding warnings are thus included in patient information 
sheets (SKLM 2004). There is consensus that human expo-
sure to plant constituents at doses that cause CYP inhibition 
should be avoided.

Toxicodynamic "synergy of evil". Toxicodynamic “syn-
ergy of evil” describes the effect of one substance indi-
rectly enhanced by another, without the substances shar-
ing toxicodynamic mechanisms or interacting kinetically. 
Although conceptually convincing and well known in phar-
macology (both for therapeutic and adverse side effects), 
it is currently challenging to identify examples, where two 
or more substances have been demonstrated experimentally 
to be responsible for a toxicodynamic “synergy of evil” in 
humans. Acute-on-chronic liver injury appears to fulfil these 
criteria. Chronic exposure, for example, to alcohol, leads to 
hepatocytes being more susceptible to acute exposure by 
certain hepatotoxic drugs. Nonetheless, several aspects of 
this form of drug induced liver injury still remain insuffi-
ciently understood (Zaccherini et al. 2021).

In animal experiments, possible interactions of polychlo-
rinated biphenyls (PCBs) and perchlorate (ClO4

−) have been 
studied (McLanahan et al. 2007). Both compounds induce 
hypothyroidism by different mechanisms. The PCB conge-
ner used in this study (PCB126) is known to bind to the 
AhR, inducing uridine diphosphate glucuronosyltransferases 
(UDPGTs) in hepatocytes and increasing biliary excretion 
of thyroxine glucuronide, which may lead to hypothyroid-
ism. ClO4

− inhibits iodide uptake into the thyroid gland, 
which decreases the production of thyroid hormone. When 
rats were exposed to relatively high doses of PCB126 
prior to ClO4

− administration, the ClO4
− dose–response 

curve was shifted to the right, demonstrating a combined 

effect. However, the combined effect was less than addi-
tive (McLanahan et al. 2007). When rats were exposed to 
doses of PCB126 and ClO4

− at or near the NOAEL for each 
compound, no such combined effect on thyroid indices was 
observed (McLanahan et al. 2007). The example of the 
PCB–perchlorate effect illustrates that borderline situations 
may exist between the toxicokinetic and toxicodynamic 
“synergy of evil”, since PCB induces the metabolism and 
excretion of T4, thereby aggravating the effect of perchlo-
rate. However, the canonical toxicokinetic “synergy of evil” 
as defined in this study requires that the enhancer substance 
increases the concentration of the driver substance at the 
target cells of toxicity. In contrast, in the PCB–perchlorate 
example two different mechanisms converge at the same key 
event, namely reduced T4 levels, while each substance does 
not influence the concentration of the other.

A further example observed in mice is the loss of micro-
biota-mediated negative feedback control on bile acid syn-
thesis in the liver that can be caused by antibiotics. This 
loss of negative feedback results in increased hepatic bile 
acid concentrations, which in turn lead to the disruption 
of bile duct barrier function and, consequently, fatal liver 
injury. A precondition for fatal liver injury is that other, for 
example, toxic mechanisms have already caused a choles-
tatic condition (Schneider et al. 2021). However, it should be 
considered that large differences between humans and mice 
exist. Farnesoid X receptor (FXR)-mediated negative feed-
back mechanisms on bile acid synthesis are more efficient 
in human than murine hepatocytes.

In another recent study, zebrafish embryos were exposed 
for 3 days to eight substances selected because they induce 
craniofacial malformations in zebrafish embryos, either indi-
vidually or in combination via different mechanisms. Com-
bination of all eight substances at the individual NOAEL 
caused craniofacial malformations, which showed stronger 
combined effects compared to the individual substances. 
However, even though the eight compounds may act upon 
distinct molecular targets, their adverse mechanisms may 
still converge at a downstream target to induce craniofacial 
malformation (van Der Ven et al. 2022). To our knowledge, 
complex mixtures representative of realistic combined 
human exposure have not been experimentally studied.

Due to the limited availability of adequate in vivo studies, 
it remains debatable, whether substances acting by mecha-
nisms converging in a shared key event, such as mitochon-
drial toxicity, oxidative stress or accumulation of intracel-
lular bile acid concentrations, should be regarded under 
the concept of the toxicodynamic “synergy of evil” or the 
“multi-headed dragon”. Future research may answer the 
question, whether it is more adequate to limit the “multi-
headed dragon” concept to substances that act exactly by the 
same mechanism or to open it to substances that converge 
at specific key events. As the EFSA CAG concept suggests, 
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there may either be a certain overlap of the concepts, or we 
do not yet sufficiently understand how compounds affecting 
different nodes of a complex network act together towards 
a common adverse effect (Goodson III et al. 2015; Miller 
et al. 2017).

Hypothesis of the “revolting dwarfs”

There is no doubt that humans are continuously exposed 
to complex mixtures, i.e. very low doses of numerous sub-
stances at levels below the HBGV in food or via environ-
mental as well as occupational exposure (Escher et al. 2020). 
For many of these substances, only trace amounts are detect-
able in the human body. Here, we define a “dwarf” as a 
substance present in a mixture below its individual HBGV 
so that human exposure is below the PoD by more than 
the OAF. Individually, none of these low-dose substances 
causes adverse effects (Fig. 4). According to the “revolt-
ing dwarfs” hypothesis, these substances may nevertheless 
cause adverse effects in humans due to sub-additive, addi-
tive or synergistic activities despite their low doses, sim-
ply because of their sheer number. Although not under the 
name of “revolting dwarfs”, the basic idea has already been 
around for some time in the field of toxicology, albeit with 
some note of caution as all these substances would indeed 
require to be present at their targets simultaneously or in 
close succession. This requirement of concurrent exposure 
at a target site puts limits to the concept’s applicability, par-
ticularly in terrestrial organisms. The concept was recently 
put forward again, e.g. by Baumer et al. (2021) and Escher 
et al. (2021). Accordingly, it has been hypothesised by the 
authors that “individual contaminants may be present at very 
low concentrations, far below any concentration expected 
to cause adverse effects on their own but acting together 

in mixtures their biological activity may lead to detectable 
effects" (Escher et al. 2021).

Combining such “dwarfs” in a designed mixture experi-
ment to explore whether an additive effect is observed is 
pragmatic and in principle easily applicable. However, it is 
necessary to note that using this approach to study mixtures 
experimentally has a significant limitation if it assumes that 
the relative potency ratios between the individual “dwarfs” 
at their PoD are the same as those at their respective PoD/
OAF values. In other words, it linearly extrapolates from the 
PoD to the HBGV, where in reality the respective part of the 
dose–response relationship may not be linear at all and the 
dose causing an effect at the HBGV may in fact be higher or 
lower than the HBGV.

The question nevertheless remains if these dwarfs, at such 
individually harmless exposure levels may act together to 
cause adverse effects. The “revolting dwarfs” hypothesis has 
been addressed by several animal experiments. In a historical 
landmark study, Ito and colleagues exposed rats to 20 pes-
ticides (19 organophosphorus and one organochlorine sub-
stance) via their diet. Each pesticide was used at its individ-
ual ADI (Ito et al. 1995). The authors studied the formation 
of pre-neoplastic lesions in the liver initiated by N-nitroso-
diethylamine in an 8-week exposure model. This endpoint 
was relevant since liver carcinogenicity was reported or 
suspected for high doses of some of the tested substances, 
such as malathion or methidathion (Ito et al. 1995). Impor-
tantly, the mixture of these 20 pesticides at their ADI did not 
enhance pre-neoplastic lesions. In a second experiment, 40 
pesticides representing examples of high-production volume 
chemicals, or 20 pesticides with suspected carcinogenicity, 
were added to the diet at the respective ADI levels and tested 
by a multi-organ 28-week carcinogenicity protocol (Ito et al. 
1995). The mixtures did not induce carcinogenicity in any 
organ. Therefore, the 40 substances at individually harmless 

HYPOTHESIS: Rewolting dwarfs

Dose 
(mg/kg bw/day)

Low exposure to 
numerous compounds

?
Combined 

effect

Point of departure
(PoD)

Health-based guidance
value (HBGV)

Fig. 4   Concept of the revolting dwarfs
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doses did not act together to cause adverse effects for the 
endpoint analysed in rats. For theoretical considerations, 
it would be interesting to combine even more substances 
at similarly low doses to learn how many substances are 
required until an adverse mixture effect can be observed. 
On the other hand, it is extremely unlikely that humans are 
simultaneously exposed to 40 pesticides at the doses used in 
rats in the study of Ito et al. (1995).

Numerous additional studies addressed the relevance 
of co-exposures using different mixtures including in vivo 
readouts (e.g. Elcombe et al. 2022; Heise et al. 2018; Hout-
man et al. 2014; Ma et al. 2023; Perez-Carreon et al. 2009; 
Rieke et al. 2017; Sams and Jones 2011; Schmidt et al. 
2016). Some studies used combinations of substances at the 
NOAEL of their respective assays. An important question 
is which criteria should be fulfilled by studies on mixtures 
in the future. Studies are required that test mixtures that are 
representative of what humans are actually exposed to. One 
possible approach is to identify human exposure to “dwarf” 
compounds and test these mixtures at current exposure lev-
els and at proportionally increased levels in experimental 
animals. An alternative approach is to define the individual 
doses in a mixture based on the PoD (testing combinations 
of for example 1/3, 1/10, 1/30, 1/100 of the PoD), to learn if 
the combination effects are sub-additive, additive or higher 
than additive in an experimental animal. In this type of 
experiment, it will be important to also generate reliable data 
of the individual substances (besides the mixtures) using 
the same exposure conditions and readouts to guarantee 
comparability between the individual substances and mix-
tures. Moreover, species differences need to be considered 
between humans and test animals. The conduction of simi-
lar experiments in vitro should account for relevant kinetic 
processes, e.g. by conducting PBTK modelling (Ma et al. 
2023). Alternatively, testing complex “real-life” mixtures 
can be done using a whole-mixture-based in vitro strategy, 
as currently explored within the Green Deal project PANO-
RAMIX (Escher et al. 2022).

Grouping by “cumulative assessment 
groups” (CAGs)

As discussed under the concept of the “multi-headed 
dragon”, substances acting by the same mechanism in a 
common target cell may cause additive effects. The concept 
of CAGs goes further in that it postulates additive effects, 
if substances belong to a common “cumulative assessment 
group” (CAG), whereby CAGs often refer to common tar-
get organ pathologies (Boberg et al. 2021; EFSA Scientific 
Committee et al. 2019; EFSA Scientific Committee et al. 
2021; van den Brand et al. 2022; Wohlleben et al. 2023). 
The concept may be legitimate for a conservative first 

tier assessment, e.g. for prioritisation purposes. However, 
considering a common organ to evaluate the hazard of a 
chemical mixture without further refinement is too generic 
to assume additive effects realistically. There are several 
examples showing that this concept needs further refine-
ment to the level of target molecules or target pathways. 
Organ toxicity, for instance, hepatotoxicity, may be caused 
by numerous mechanisms, such as activation of several 
nuclear receptors (Knebel et al. 2018), alteration of lipid 
metabolism (Brecklinghaus et al. 2022a), mitochondrial 
toxicity (Ghallab et al. 2019; Pessayre et al. 1999), protein 
or lipid binding (Agarwal et al. 2012; Sezgin et al. 2018), 
and inhibition of carriers of hepatocytes or cholangiocytes 
(Brecklinghaus et al. 2022b; Ghallab et al. 2022; Remetic 
et al. 2022), among others. Due to the multitude of possible 
mechanisms, grouping for additivity by target organ thus 
always needs to include mechanistic considerations.

Also grouping principles for additive effects based on 
specific pathologies, such as cholestasis (Boberg et al. 2021; 
Foster et al. 2020) may be too rough. Although more spe-
cific than simply grouping according to the target organ, and 
therefore representing a legitimate, slightly less conservative 
second tier assessment, grouping according to pathology, 
likewise, is too unspecific. As to the example of cholesta-
sis, it should be considered that the biliary tract is complex, 
and different mechanisms may be active in the canalicular 
network, interlobular ducts and large ducts (Jansen et al. 
2017; Vartak et al. 2021b). Numerous carriers orchestrate 
the uptake of bile acids and further organic solutes from the 
sinusoidal blood into hepatocytes. In contrast, other groups 
of carriers are responsible for secretion from hepatocytes 
into bile canaliculi (Vartak et al. 2021a). Several mecha-
nisms control the secretion of water by cholangiocytes, 
including cAMP-, PKA- and IP3-dependent mechanisms 
(Vartak et al. 2021a). Moreover, inflammatory processes 
may cause bile duct obstructions, while others compromise 
hepatocyte polarity, and consequently the efficacy of bile 
drainage via bile canaliculi (Vartak et al. 2016). This case 
serves as an example to illustrate that even a common pathol-
ogy, such as cholestasis, may remain too vague to define sub-
stances that will act additively. Rather, additive effects may, 
for example, occur when the same carrier is inhibited by two 
or more substances. A well-studied example is the inhibition 
of the canalicular bile salt secretion carrier BSEP (Breck-
linghaus et al. 2022b). When a substance inhibits BSEP, the 
secretion of bile acids from hepatocytes into bile canaliculi 
is reduced, which may lead to an increase in hepatocellu-
lar bile acid concentrations above cytotoxic thresholds. It 
is plausible that several substances that inhibit BSEP will 
act additively. Consistent with the latest grouping guidance 
of EFSA, these considerations demonstrate that common 
molecular mechanisms are the most reliable grouping prin-
ciple for possible additive effects, as similarly discussed for 
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nuclear receptors in the previous section (EFSA Scientific 
Committee et al. 2021).

Grouping into common kinetic groups 
(CKGs)

Another limitation of classical grouping is the disregard for 
kinetic interactions. As explained above for OTA and ATB, 
disrupting the metabolic clearance of a toxic substance may 
increase its concentration in target tissues and consequently 
its adverse effects. In addition, the inhibition of active efflux 
or the induction of active uptake transporters may also 
affect the toxicity of a substance (Braeuning et al. 2022). In 
substance-based risk assessment and threshold derivation, 
such modes of interaction are not considered and remain a 
data gap in mixture toxicity. Consequently, Braeuning et al. 
(2022) proposed to group substances based on their ability 
to induce or inhibit metabolic enzymes and active transport-
ers. In addition, more research is required to understand the 
impact of solvents and surfactants on the passive transport 
of toxic substances to their target sites (Karaca et al. 2021).

Conclusions and recommendations

Based on the currently available scientific evidence, the pre-
sent study did not find convincing proof that human health 
is at risk due to the combined exposure to many substances 
that are below their individual HBGV at current exposure 
conditions, arguing against the hypothesis of the “revolting 
dwarfs”. A “synergy of evil” may in principle take place, 
if there is actually an “enhancer substance” at sufficiently 
high concentrations in target tissues that co-occurs with a 
“driver substance”. However, if sufficient information would 
be available, this could be prevented by the adequate risk 
management of the enhancer and the driver as individual 
substances. Substances acting according to the “multi-
headed dragons” principle by affecting the same molecular 
mechanism in the same target cells may act additively, as 
reported for dioxin-like substances. This observation high-
lights the importance of elucidating the molecular mecha-
nisms leading to adverse outcomes, as well as of studying 
the compounds’ toxicokinetics.

Based on the abovementioned data and described prin-
ciples of mixture toxicity, we conclude that the available 
evidence does neither support the requirement of addi-
tional generic safety factors nor of generic MAFs. Despite 
the need for a more systematic review and screenings for 
substances potentially causing mixture effects, the weight 
of evidence indicates that mixture effects of concern for 
human health are likely rare when human exposure is 
below the HBGV of the individual substances. Rather, 

substances with relatively low ratios between PoD and cur-
rently occurring exposure require a targeted risk evalua-
tion; this is even more critical when these substances share 
common molecular mechanisms or interact kinetically. 
Therefore, to protect the general population as well as 
highly exposed subpopulations we propose that resources 
should be directed towards risk evaluation of substances 
with a relatively low margin of exposure (MoE, ratio of 
the POD to the predicted, or estimated human exposure 
level) or RCR.

A recommendation for future research is that the over-
view of substances to which human populations are exposed 
should be improved. This should lead to a comprehensive 
overview of all substances from different sources, such as 
food, environment and workplace, which are often regulated 
by different expert panels. Such overviews should include 
information on the exposure of human populations, HBGV 
and PoDs, molecular mechanisms responsible for the toxic-
ity and toxicokinetics including information on the affected 
cell types. Often, a major hurdle is the lack of reliable expo-
sure information for such chemicals based on the REACH 
standard information requirements, which prevents reliable 
RCR or MoE calculations and requires the use of worst-case 
assumptions that may lead to a significant overestimation of 
the risk. More accurate use and exposure information should 
therefore be provided on a mandatory basis.

New approach methodologies (NAMs) will be helpful 
in screening and prioritising substances of concern. In par-
ticular, toxicokinetic grouping into CAGs combined with 
co-exposure assessment will be a useful tool for the identi-
fication of substances with potentially synergistic effects. In 
addition, there should be a comprehensive compilation of all 
current knowledge on the target organs/target cell types and 
molecular mechanisms of toxicity. If substances share the 
same target organ and act, for example, via the same nuclear 
receptor or by inhibition of the same carrier, additive effects 
appear to be probable. In this case, the TEF concept, which 
is currently successfully applied for dioxin-like substances, 
could be implemented, even if the substances do not belong 
to the same substance class. Thus, it may be applied to sub-
stances acting by the same molecular mechanisms and on 
the same target cells.

In conclusion, considering the available scientific evi-
dence there are hardly any supporting arguments for generic 
mixture assessment/allocation factors, neither by the avail-
able conceptual data nor by in vivo experiments. This is not 
to say that mixture toxicity will not pose a risk for particular 
substances and exposure scenarios, particularly in the pres-
ence of drivers. However, in light of the aforementioned con-
cepts it seems questionable that these are best approached 
generically. Rather, more specific data-driven measures are 
warranted to improve the evaluation of substances with a 
low margin of exposure or a low risk characterisation ratio.
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