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Nomenclature

X Random variable

x Realization of a random variable X

X Alphabet of X, with X ∈ X ; values that a random variable X can assume

θ Parameter

P Probability, e.g. P(X = x|θ), the probability that the random variable X assumes
the value x given the parameter θ

L Likelihood, L(θ|X) = P(X|θ), where X are data, and θ parameters

E Expected value, e.g. E [X] =
∑

x∈X x · P(x)

H Information entropy, see equation (C.1), page 220

I Mutual information, see equation (C.4), page 221

Variables in bold font, e.g. X, are vector or matrix valued.
Given a function f(θ) of a vector valued argument θ = (θi)i=1,...,n, we denote the gra-

dient of f with respect to the components of θ by

∇f(θ) = ∇θf(θ) =
∂f(θ)
∂θ =

(
∂f(θ)
∂θi

)
i=1,...,n

.
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The fundamental problem of communication is that of reproducing at one point
either exactly or approximately amessage selected at another point. Frequently
the messages have meaning.

Claude E. Shannon, 1948
A Mathematical Theory of Communication

What lies at the heart of every living thing is not a fire, not warm breath, not a
‘spark of life’. It is information, words, instructions.

If you want a metaphor, don’t think of fires and sparks and breath. Think, in-
stead, of a billion discrete, digital characters carved in tablets of crystal.

If you want to understand life, don’t think about vibrant, throbbing gels and
oozes, think about information technology.

Richard Dawkins, 1986
The Blind Watchmaker

Indeed, the very idea is somewhat baffling: If there is a code, then who invented
it? What kinds of messages are written in it? Who writes them? Who reads
them?

James Gleick, 2011
The Information: A History, a Theory, a Flood. Chapter 10: Life’s own code
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Perhaps I can best describe my experience of doing mathematics in terms of
a journey through a dark unexplored mansion. You enter the first room of the
mansion and it’s completely dark. You stumble around bumping into the fur-
niture, but gradually you learn where each piece of furniture is. Finally, after
six months or so, you find the light switch, you turn it on, and suddenly it’s all
illuminated. You can see exactly where you were. Then you move into the next
roomand spend another sixmonths in the dark. So each of these breakthroughs,
while sometimes they’re momentary, sometimes over a period of a day or two,
they are the culmination of—and couldn’t exist without—the many months of
stumbling around in the dark that proceed them.

Andrew Wiles, 2000
NOVA interview

It can scarcely be denied that the supreme goal of all theory is to make the ir-
reducible basic elements as simple and as few as possible without having to
surrender the adequate representation of a single datum of experience.

Albert Einstein, June 10, 1933
“On the Method of Theoretical Physics,” the Herbert Spencer Lecture, Oxford

Il semble que la perfection soit atteinte non quand il n’y a plus rien à ajouter,
mais quand il n’y a plus rien à retrancher.

Antoine de Saint-Exupéry, 1939
Terre des hommes. Chapter III: L’avion

Everything should be made as simple as possible, but not simpler.

Common aphorism, simplifying the above Einstein quotation
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Abstract

This dissertation presents a study of discriminative learning techniques for probabilistic
sequence analysis that find application in pattern discovery of binding sites in nucleic
acid sequences. Sets of positive and negative example sequences define contrasts that
are mined for sequence motifs whose occurrence frequency varies between the sets. A
discriminative motif discovery method based on hidden Markov models (HMMs) is de-
scribed that allows choice of different objective functions, two of which are used for the
first time for motif finding with HMMs: mutual information of condition and motif occur-
rence (MICO), and Matthews correlation coefficient.

We perform an extensive and systematic comparison of motif discovery performance
of our method and numerous published tools. Using MICO or several other of the im-
plemented objective functions, our method’s performance exceeds that of all other tools.
MICO is also the most generally useful discriminative objective function, as it is applicable
both to the analysis of probabilistic as well as discrete binding motif models, can lever-
age contrasts of more than two conditions, and provides natural extensions to quantify
conditional association that are used to build models of multiple motifs.

The investigation concludes with several case studies comprising 30 datasets from
transcriptome-scale technologies—ChIP-Seq, RIP-ChIP, and PAR-CLIP—of embryonic stem
cell transcription factors and of RNA-binding proteins. The case studies demonstrate prac-
ticality and utility of the method, and validate it by reproducing motifs of well-studied pro-
teins. In addition, they provide novel insights by connecting previously known splicing-
relevant motifs to an alternative splicing regulator.

The presented motif discovery method scales to large data sizes, makes use of avail-
able repeat experiments for increased statistical power, and aside from binary contrasts
also more complex data configurations can be utilized. It is implemented in the open
source software Discrover (portmanteau of discriminative and discover), and is available
from https://github.com/maaskola/discrover.
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Summary

This chapter gives a summary of the contents of this thesis. It summarizes the methodol-
ogy, concentrating on the reasons of design choices rather than their details. Also sum-
marized are the main findings whose details are presented throughout the manuscript.
Where appropriate, pointers are provided to figures and tables in later chapters.

Objective The objective of this thesis is to describe a novel method for motif discovery
(MD) and to study its properties by applying it to various datasets. The method is designed
for the discovery of patterns in nucleic acid sequences (motifs) that serve as recognition
signals for nucleic acid binding proteins.

Background and relevance Nucleic acid binding proteins play central roles in regulating
important biological processes (chapter 1). In particular, DNA-binding proteins (DBPs) act
as epigenetic and transcriptional regulators. They regulate accessibility to the transcrip-
tional apparatus and synthesis rates of genes, respectively, by influencing the structural
and biochemical properties of chromatin, and by determining the composition of protein
complexes occupying gene enhancer and promoter regions. RNA-binding proteins (RBPs),
together with regulatory RNAs, act as post-transcriptional regulators, carrying out the pro-
cesses leading up to protein synthesis, and so direct protein production rates. Thus, DBPs
and RBPs jointly execute gene regulatory programs, and are informed by signals encoded
in sequences of the genome. As these sequence motifs encode regulatory instructions,
their study continues to be of central relevance to understanding cellular programs. Con-
sequently, and because this study involves the analysis of fairly large datasets, methods
to decipher sequence motifs are an important area for the application of computational
methods in biology.

Methodology

Various models are available to describe properties of sequence motifs (section 3.1). These
include discrete and non-discrete models, with complementing properties. Learning dis-
crete models is computationally less demanding than for non-discrete models, while non-
discrete sequence motif models, e.g. biophysically motivated probabilistic ones, are more
accordant with principles of statistical mechanics.

It is for this reason that many MD methods, including the one presented here, consist
of two phases. An initial phase discovers discrete models, that are subsequently refined
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Extended summary

in a second phase to yield parameters for a smooth model.
MD methods generally utilize a set of example sequences (signal sequences) which are

known to contain the sequence motif of interest. Aside from the motifs themselves, these
sequences typically contain context that is unrelated to recognition by the nucleic acid
binding proteins. Thus, MD methods have to model both the motifs and the surrounding
context (section 3.2). Although not directly bound by the proteins, the context can also be
of importance. For example, it may contain signals for co-factors or competing factors, or
it may influence binding of RBPs through accessibility of motifs by favoring or disfavoring
secondary structures of mRNAs.

Discriminative motif discovery

Aside from signal sequences, MD methods can utilize sequences which are assumed to
contain no, or few, occurrences of the sequence motifs. Some MD methods use such nega-
tive example sequences (control sequences) only to learn models of the sequence context,
or, after learning, to estimate the statistical significance of motifs discovered from the sig-
nal sequences. Discriminative motif discovery (DMD) methods use control sequences for
additional purposes. In particular, they search for such motifs that occur more frequently
in the signal sequences than in the control sequences.

Dissertation subject matter The DMD method I developed and describe in this thesis
is named Discrover (portmanteau of discriminative and discover). It uses hidden Markov
models (HMMs) (chapter 4) to model binding sites (chapter 5). HMMs offer efficient learn-
ing algorithms (chapter 6), using re-estimation- (section 6.1) and gradient-based methods
(section 6.2).

Contrasts and objective functions DMD methods can leverage different kinds of con-
trasts (chapter 7 and figure 7.1), including simple binary contrasts, but also more general
ones. Various measures can be used as discriminative objective functions to measure the
association that a motif has with the conditions of contrasts. Contingency tables of counts
of motif occurrences throughout the conditions of a contrast (section 7.2) form the basis
for some measures (chapter 8), others involve probabilistic modelling of the contrast’s
conditions (chapter 9). Discrover implements multiple discriminative objective functions,
thereby enabling experiments to study the consequences of different objective function
choices. One of the objective functions has not previously been used for MD, and others
have previously only been used for optimization of discrete motif models.

Mutual information and significance of association Due to its versatility, an informa-
tion theoretic discriminative objective function, mutual information of condition and mo-
tif occurrence (MICO), is of particular interest in this study. MICO is related to the log-
likelihood ratio of the independence hypothesis for events tallied in contingency tables,
and, in consequence, to the χ2 test for independence. Discrover uses this connection
(chapter 10) to efficiently compute significance of association, where an earlier MICO-
based DMD method resorted to computationally costly sampling-based significance cal-
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Methodology

culations. Unlike some other objective functions, MICO is not limited only to the analysis
of binary contrasts. Another distinctive advantage that MICO has over alternative dis-
criminative objective functions is the availability of natural extensions to quantify con-
ditional association via the conditional mutual information (cMI), which is used by Dis-
crover when discovering multiple motifs (see below).

Seeding: word-based motif finding As the HMM parameter learning methods used by
Discrover are local search methods, the choice of initial parameters is of influence. To
this end the method described here initially finds suitable word-based motifs (chapter 11).
This word-based MD method is named Plasma and is automatically used by Discrover to
determine starting points, but it can also be used independently to allow manual exper-
imentation. It is a fast, progressive algorithm that allows to optimize IUPAC regular ex-
pression (regex) based motifs for many of the discriminative objective functions available
in Discrover.

Motif discovery with Discrover The general procedure for MD with Discrover is as fol-
lows. First, Plasma is used to discover IUPAC regex based motifs that are discriminative
for a given contrast. The user selects the length range for which to discover regex motifs
and the number of motifs to find per length. Then, for each discovered regex motif, an
HMM is initialized by Discrover. Each HMM is then optimized using a combination of
re-estimation- and gradient-based learning techniques (chapter 12). After learning HMM
parameters, either the best is selected according to significance of association, or multiple
motifs may be combined (see below).

Both Plasma and Discrover can be applied to the analysis of RBP and DBP datasets, by
optionally also considering motif occurrences on the reverse complementary strand.

When repeat experiments are available, multiple analyses can be performed, and their
results compared to reveal robustly identified motifs. Alternatively, both Plasma and Dis-
crover can utilize multiple contrasts to find motifs that are jointly discriminative for the
specified contrasts. The benefit offered by joint analyses is increased statistical power.

Discovering multiple motifs It is frequently useful to find more than the single highest-
scoring motif. In particular, when the cognate motif of a factor is less enriched than other,
more recognizable motifs, it may be necessary to consider sub-maximally scoring motifs.
Also, e.g. ChIP-Seq1 data often contain motifs of associated co-factors.

For this purpose the Discrover framework offers a MICO-based procedure (chapter 13)
designed to yield a non-redundant set of motifs with maximal discrimination between
the conditions. It first finds seeds and independently optimizes HMMs for each, selecting
the best according to MICO-based p-value (figure 13.3). Then, progressively more motifs
are added that (a) have sufficient residual discriminatory contribution after accounting
for previously accepted motifs and (b) are not redundant with previously accepted motifs
(figure 13.4).

These two conditions are ensured by filtering based on conditional mutual informa-
tion (cMI) in two ways. We determine (I) cMI of conditions of the contrast and occurrences

1See section 1.3 and figure 1.3a.
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of the newly added motif given occurrences of previously accepted motifs (cMICO), and
(II) cMI between occurrences of new and previous motifs given the conditions of the con-
trast (motif pair cMI). cMICO quantifies the discriminatory contribution of the new motif
after accounting for previous ones, while motif pair cMI quantifies association between
occurrences of the new and previous motifs.

Related work A number of DMD methods have previously been published (chapter 14).
These methods use either IUPAC regex based or position weight matrix (PWM) based mo-
tif models. They employ a variety of different objective functions that are maximized with
different optimization procedures. Consequently, in comparing MD performance of these
different tools, the influences of motif models, objective functions, optimization proce-
dures, and implementation details are confounded.

Results and contributions

The second part of the thesis is an empirical study of MD methodology. Performance of
MD methods is studied on synthetic data, and real data of DBPs and RBPs are analyzed to
glean insights into the biology of nucleic acid binding proteins.

Synthetic data experiments

Synthetic data allows controlled experiments to systematically study performance of MD
methods. Aside from Discrover, several published discriminative and non-discriminative
MD methods are considered. First, synthetic data is generated. Then, MD methods are ap-
plied to discover motifs, and predict their occurrences. Finally, the methods’ performance
is quantified.

Parameters varied in synthetic data To allow for supervised MD performance evalua-
tion, multiple synthetic datasets are constructed (chapter 15). The synthetic datasets vary
parameters with influence on MD performance. These include length and number of se-
quences, information content (IC) and implantation frequency of signal (and decoy) mo-
tifs. Parameter values are varied in a combinatorial manner, yielding experiments con-
sisting of thousands of pairs of sequence sets.

Quantifying motif discovery performance The data construction process involves gen-
erating motifs and implanting occurrences of them into artificial or real sequences. With
the knowledge where the motif occurrences are implanted during data generation, it is
possible to classify motif occurrences predicted by MD methods as true or false positives,
and predicted non-motif positions as true or false negatives (figures 16.1 and 16.2). Conse-
quently, MD performance can be quantified with supervised metrics (chapter 16).

Motif discovery tools selected for evaluation The original intention was to evaluate
on the synthetic data all previously published DMD methods, as well as a selection of
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classical non-discriminative MD methods. However, three of the published DMD meth-
ods (Dispom, DIPS, and DEME) proved impractically slow (see below), and were there-
fore excluded. Thus, the comparison includes six published DMD methods, two non-
discriminative MD methods, as well as my HMM-based method Discrover with several
different objective functions. Also included in the comparison is Plasma, the IUPAC regex
based seed finding method of Discrover.

We exemplarily determined the runtimes of the three excluded methods on one sin-
gle pair of signal and control sequence sets (table H.1), and found them to be more than
1000 times higher than Discrover’s: the dataset was analyzed in about two minutes by Dis-
crover; Dispom needed 40 hours, DIPS more than than 25 days, and DEME did not finish
in 74 days.

Recognizability: paragon of motif discovery A limit for the maximally achievable MD
performance is given by how well implanted motif occurrences can be recognized by the
true model. As the generation process defines the true models for the synthetic data, they
are also available to predict motif occurrences in the generated sequences. Here, we refer
to the motif occurrence prediction performance of the true models as motif recognizability.
In the controlled synthetic data experiments, recognizability thus serves as a reference for
the performance of MD tools.

Motif discovery performance

Discrover is found to yield the highest MD performance of the considered methods (chap-
ter 17, figure 17.1, and table H.2). Using MICO as objective function, Discrover consistently
achieves MD performance exceeding 96% of motif recognizability. Two published DMD
methods, DREME and MoAn, also show good MD performance, albeit lower than that of
Discrover. They respectively achieve MD performance at 83–90% and 85–91% of motif rec-
ognizability. The other published methods yield much lower performance, not exceeding
75% of motif recognizability.

At 90–96% of motif recognizability the MD performance of Plasma without subse-
quent HMM optimization by Discrover is lower than Discrover’s but also surpasses that
of most previously published DMD methods.

Additional methods The synthetic data experiments were extended to include several
additional MD methods, as well as multiple parameter settings for some methods (fig-
ure H.2).

The MD performance of the different discriminative objective functions implemented
in Discrover was evaluated on the synthetic datasets. With one exception2, the discrim-
inative objective functions yield comparable MD performance, superior to that of other
methods.

An initial evaluation of MD performance used the then-current version 4.7.0 of DREME,
which did not support single-strand MD that is appropriate for the analysis of RBP data as

2The difference of log likelihood (DLOGL) objective function performs worse.
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simulated in the synthetic data. The current version 4.9.0 fixed this, but MD performance
did not improve much (figure H.2 and table H.2).

MoAn is a Monte-Carlo Markov chain (MCMC) sampling based MD method. Such meth-
ods allow global optimization of parameters, but are computationally expensive. By de-
fault, MoAn performs 30 million iterations. This number of iterations proved too slow,
and MoAn could only be included in the comparison by performing fewer iterations3. We
could evaluate MoAn’s MD performance with the default number of iterations only on
part of the synthetic datasets. This further increased MoAn’s MD performance (figure H.2
and table H.2), yet not to the level of Discrover’s.

Motif discovery runtime

There is considerable variation in the time that the different methods need to analyze
the synthetic datasets. The runtimes varied more than 360 fold between the fastest and
slowest methods (figure H.3).

The fastest method was Plasma, the IUPAC regex based seeding method of Discrover.
It required 2.6 hours to process all synthetic data experiments. DREME and Discrover
respectively took 3.4 and 6.5 times as long as Plasma, and were the third and fourth fastest
methods. MoAn, in spite of the reduced number of iterations, still required about 960
hours.

Signal-only and discriminative motif discovery

Motif recognizability and the performance of signal-only and discriminative MD are fur-
ther analyzed as functions of individual variates realized in the synthetic data (section 17.3
and figures 17.2 and H.4 to H.6). This reveals how the individual variates influence recog-
nizability and MD performance, and how they contribute to the inferior MD performance
of signal-only learning.

Discriminative filtering

We compare the performance of signal-only and discriminative MD with and without sub-
sequent filtering based on discriminative significance (section 17.4 and figure H.7). This
shows that MD performance of signal-only learning increases significantly, while discrim-
inative MD performance is only slightly affected by subsequent discriminative filtering.

Conclusions

Of the considered methods, Discrover, the DMD method I developed and describe in this
thesis, yields the highest MD performance. Two published DMD methods, DREME and
MoAn, also perform well, with MoAn slightly better than DREME. Plasma, the seeding
method of Discrover, achieves MD performance higher than that of DREME, and compa-
rable to that of MoAn. Plasma is also the fastest of the considered methods, while DREME

3A tenth of the default number of iterations was performed.
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and Discrover respectively took 3.4 and 6.5 times as long as Plasma, and MoAn being much
slower.

Due to its speed and second-best MD performance, Plasma is thus suited for fast, ini-
tial analyses of MD datasets. Yielding the best MD results while still being reasonably fast,
Discrover is recommended for more definitive analyses.

Post-transcriptional regulation: PUF RBP family

The PUF proteins are a wide-spread eukaryotic family of conserved post-transcriptional
regulators. Their RNA binding properties have been well studied, and for this reason the
PUF family of RBPs poses an excellent opportunity to demonstrate applicability of the
presented MD methodology to real biological data (chapter 18).

Materials

Data PUF family RBPs in different species are considered (section 18.1), including Sac-
charomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, and Homo sapi-
ens. DNA microarray quantification of co-IPed mRNA (RIP-Chip) was used to define tar-
gets of Puf1, Puf2, Puf3, Puf4, and Puf5 in yeast, of the worm homolog FBF-1, of Pumilio
in adult fly ovaries, and of human PUM1 and PUM2 from HeLa S3 cells. Additionally, PAR-
CLIP4 data of human PUM2 from HEK293 cells is analyzed.

Contrasts Due to the heterogeneity of the PUF family datasets, contrasts for DMD were
set up in different ways, including comparison of bound genes versus unbound ones, of
bound genes versus the genomic complement, of multiple groups of genes ranked by bind-
ing evidence, as well as the comparison of signal to shuffled sequences.

Methods and results

DMD was performed with Discrover (section 18.2), and essentially recovered the known se-
quence specificities of the individual members of this family (section 18.3 and table 18.1).

Motifs fromsignal-only, likelihood-based learningand fromdiscriminative learning We
also studied the results of applying two discriminative objective functions, among them
MICO, as well as signal-only, generative learning (section 18.4). The results of using dis-
criminative objective functions agreed, but signal-only learning using likelihood as objec-
tive function did not yield useful results.

Higher spatial resolution of PAR-CLIP confirms relevance of motif variants The analysis
results for the PUM2 motif differed on the second half of the motif between the PAR-CLIP
data and the two RIP-Chip datasets. We investigated this further (section 18.5). The PAR-
CLIP sequences are much shorter than the full 3’UTR sequences used for RIP-Chip analysis
(figure I.1). We reasoned that shorter sequence lengths of PAR-CLIP sequences allow to
recognize more diverse, and less strongly bound variants of the motif. Indeed, diluting the

4See section 1.3 and figures 1.2 and 1.3b.
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PAR-CLIP sequences by adding increasingly longer flanks and subsequently performing
MD produced motifs agreeing with the results of RIP-Chip analysis (table 18.3). Confirming
these results, scatter-plots of word frequencies (figures I.3 to I.6), as well as a progressive,
informative word mining algorithm (figure 18.1) revealed that the longer sequences of RIP-
Chip compress observable word frequency variability, and that, conversely, the higher
spatial resolution of binding sites of PAR-CLIP data yields a more finely resolved picture
of the binding site spectrum of PUM2.

Conclusions

Using MICO as objective function and the corresponding length corrected p-values, the
Discrover framework successfully recovered the known motifs, automatically yielding the
individual family members’ motif length preferences. Furthermore, we found that the
finer spatial resolution of PUM2 PAR-CLIP data allows to uncover the relevance of weak-
affinity variants that do not conform to the classic PUF recognition element, UGUAHAUA.

Alternative splicing regulation: RBM10

Another RBP that is studied in this thesis is the alternative splicing regulator RBM10 (chap-
ter 19), mutations of which are known to be associated with congenital diseases and have
been found in tumors. The molecular mechanism of how mutations in this splicing factor
contribute to pathology remained elusive until a recent publication5 revealed by analysis
of RNA-Seq and PAR-CLIP data that RBM10 mediates exon skipping.

Discriminative motif discovery with RBM10 PAR-CLIP data

Here we perform a motif analysis for RBM10 by mining PAR-CLIP data (section 19.1) for se-
quence motifs using the MICO-based multiple motif framework of Discrover (section 19.2).
The analysis uses PAR-CLIP cross-link centered regions, and is performed separately for
sequences whose central position lies within exons or introns. The discriminative motif
analysis use shuffled sequences as contrasts. Repeat experiments are available, and are
jointly analyzed to increase statistical power.

Known splicing motifs discovered for RBM10

The analyses reveal motifs (table 19.1) previously implicated in splicing regulation, whose
relevance for the alternative splicing factor RBM10 was not well appreciated. The exonic
sequences exhibit a purine-rich motif, known as exonic splicing enhancer (ESE) signal,
which is known to be bound by the splicing factor SFRS1 and by eIF4AIII, a member of
the exon-junction complex and involved in nonsense-mediated RNA decay.

The intronic sequences contain a pyrimidine-rich motif that resembles the signal of
the polypyrimidine tract, another well known splicing signal. RBM5, a related splicing
factor, is known to compete for binding to the polypyrimidine tract with U2AF65 which is
required for the binding of U2 snRNP to the pre-mRNA branch site.

5I co-authored this publication.
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The analysis reveal furthermore a pyrimidine-rich motif in the exonic sequences that
is reverse-complementary to the ESE motif, as well as a palindromic, previously unchar-
acterized motif in the intronic sequences.

Most published RBM10 motifs un-corroborated by PAR-CLIP data

Two recent publication reported many6 short words to be bound by RBM10. We inspected
whether these are also enriched in the PAR-CLIP data analyzed here, but did not find cor-
roborating evidence for most of them (>85%), while the minority that are enriched are
consistent with our own analyses. As the validation rate of the previously reported motifs
is so low, it seems justified to stress that our findings are first in underlining the central
importance for RBM10 binding of the motifs discovered by us.

Conclusions

Intriguingly, the polypyrimidine tract binding protein, PTB, has been reported to bind to
the double stranded region of a secondary structure motif in the form of a hairpin whose
one arm consists of pyrimidine-rich sequence, while the other consists of purine-rich se-
quence. It is conceivable, that similar secondary structure might also be of importance
to the regulation exerted by RBM10, which could either favor or disfavor the formation of
such hairpins and influence splicing through this mechanism.

In summary, based on the presented motif analyses, two mechanisms might be respon-
sible for the reported exon-skipping mediated by RBM10: (I) competition with splicing en-
hancers for the ESE motif, and (II) competition with U2AF65 for binding to the polypyrim-
idine tract.

Transcriptional regulation: mouse ESC TF ChIP-Seq

The empirical study of MD methodology concludes with an analysis of sequence binding
motifs of mouse embryonic stem cell (ESC) transcription factors (TFs) (chapter 20). We
consider 17 ChIP-Seq datasets of 14 different sequence specific TFs coming from two dif-
ferent studies (section 20.1). DMD is performed with Discrover in multiple motif mode,
using sequences of 101 nt centered on midpoints of ChIP-Seq regions as signal, and shuf-
fles as controls.

Motif discovery reveals known motifs One or more motifs are discovered in each of the
analyzed datasets (section 20.2 and table 20.1). In total 44 motifs are discovered. Database
searches reveal 40 of these 44 motifs to be bound by previously characterized factors.
Many motifs are discovered multiple times in different datasets, and in these cases the
motifs are quantitatively highly consistent.

The cognate motifs are found in 14 of 17 datasets, and in 12 of these they are the top-
ranking motifs. For two of the cases in which the purported cognate motifs are not discov-
ered, our findings agree with literature results that dispute these motifs’ veracity. A sim-
ple cross-contrasting approach (section 20.4 and table 20.3) directly reveals the cognate

6They list nearly 10% of all 5mers.
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motifs for the other cases in which they are not discovered or in which they are discovered
but not as top-ranking.

Co-discovered motifs are those of known co-factors In all datasets where—aside from
the cognate motifs—further known motifs are co-discovered, there is evidence supporting
the functional relevance of jointly discovered motifs. This includes overlapping sets of
ChIP-Seq target genes, mutual transcriptional activation, shared biological functions, and
physical interactions.

Spatial distribution ofmotif occurrences Inspection of the positional distribution of mo-
tif occurrences relative to the ChIP-Seq regions’ midpoints is not used in our MD approach,
and thus serves as orthogonal evidence to corroborate the discovered motifs (section 20.3,
figure 20.1, and table K.1). Cognate motifs are strongly peaked around the centers. Physi-
cally interacting co-factor motifs are also—yet less strongly—peaked around centers. One
of the four discovered but unidentified motifs exhibits a centrally peaked distribution pro-
viding corroboration for its relevance as true motif for an as-yet unknown co-factor. For
the other three discovered unidentified motifs, broader or more uniform spatial occur-
rence distributions provide, respectively, less or no further corroboration.

Oct4 motifs of Discrover, DREME, and FIRE Exemplarily, we compare the results of two
published MD tools, DREME and FIRE, with ours on one particular dataset (section 20.5
and table 20.4). For this purpose we generate two additional sets of shuffled sequences
as controls, and determine the motifs that Discrover, DREME, and FIRE discover for the
three contrasts formed from the same signal sequences and the three sets of shuffled se-
quences. Our method robustly identifies the same two motifs for the three contrasts. The
other methods report more motifs than Discrover, but not all motifs reported by the other
methods are reproduced when using different sets of shuffled sequences. The motifs dis-
covered by Discrover are full-length, while about half of the motifs reported by the other
methods are redundant, corresponding to partially overlapping segments of the same mo-
tif. Thus, while potentially missing some true motifs, Discrover consistently and robustly
identifies a non-redundant set of full-length motifs with a higher true positive rate than
competing methods.

Conclusions

We conclude that the Discrover analyses of ChIP-Seq data are stringent and robust, as in-
dicated by (I) the strong similarity of multiply discovered motifs, (II) the high proportion
of previously described motifs recovered, (III) the high proportion of known co-factor mo-
tifs among the previously described motifs, and (IV) the consistent results when applied
to multiple sets of shuffled sequences.
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Chapter 1

Systems biology of gene
regulation

This chapter gives a high-level review of the biological background of this dissertation.
Its structure is as follows. First, section 1.1 comments on the current state of research
in the field of life science Then, section 1.2 reviews the main processes of the systems
involved in gene regulation. The chapter concludes in section 1.3 with an overview of
recently developed experimental technologies that provide data analyzed in this thesis.

1.1 State of life science research

Life-science research has recently blossomed, having reached a state of maturity and pro-
viding levels of understanding exceeding even wild speculations of only few decades ago.
New insights continue to be found at a high pace thanks to the introduction of new ex-
perimental technologies and matching analytical techniques. Combined, they provide
detailed and vast amounts of data, that have moved biological research from small-scale
to high-throughput experiments that require the efforts and collaboration of experts com-
ing from fields of research spanning from physical sciences like chemists, physicists, and
molecular biologists to data analysis specialists like mathematicians, statisticians, and
computer scientists.

This chapter cannot but scratch the surface of the involved biological processes, and
the interested reader is instead referred to textbooks such as Alberts et al. (2007) and
Nelson and Cox (2012) for more comprehensive discussion of these topics. While the
high pace of research also means that efforts to give comprehensive overviews of biology
quickly become outdated and can not include the latest insights, fortunately the move
towards digital publishing, especially combined with open-access publishing policies,
means that research literature is increasingly available at the fingertips of the interested.
Thus I limit discussion of the biological background in this chapter to main topics, and en-
courage the reader to find more information in the original literature, for example through
portals such as NCBI’s literature database PubMed1.

1http://www.ncbi.nlm.nih.gov/pubmed
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Chapter 1. Systems biology of gene regulation

1.2 Gene regulatory processes

Processes in living cells are subject to many different levels of regulation. The focus of
this dissertation is that of gene regulation, which determines the activity of genes. Gene
regulation is exerted by a complex system of finely tuned processes, many of which so in-
timately intermeshed as to contemporaneously act on the same molecule. It is organized
in a spatio-temporal cascade of successive processing steps in different cellular compart-
ments. Developmental time points and tissue types are characterized by differential gene
expression and activity resulting from differences in gene regulation.

On a high level, gene regulation can be understood to be organized in four layers: epi-
genetic, transcriptional, post-transcriptional, and post-translational regulation. Epige-
netic regulation determines the degree of condensation of DNA and thus accessibility to
the transcriptional apparatus. Transcriptional regulation determines the rate at which
primary transcripts of a given gene locus are being produced. Post-transcriptional regula-
tion encompasses the regulatory steps leading through maturation and up to translation
of messenger RNAs (mRNAs) into polypeptide chains, and ultimately to destruction or
degradation of transcripts. Finally, post-translational regulation is the regulation of en-
zymatic activity of amino acid chains.

The methods presented in this thesis—based on probabilistic sequence modeling—are
geared towards the analysis of data involved in research on the first three of these layers,
which all involve identification of regions within nucleic acid molecules by proteins or
other nucleic acids2.

1.2.1 Epigenetic regulation

As has long been known, genetic information is stored on chromosomes (Griffith, 1928),
large nuclear structures composed of DNA and proteins. While the primary carrier of ge-
netic information is the DNA (Avery, Macleod, and McCarty, 1944), particularly its lin-
ear sequence (Watson and Crick, 1953), further mechanisms outside of DNA sequence
changes exists that allow long-term information transmission. Some of these mechanism,
carry information through cell divisions and play roles in development, others are stable
even through generations. Epigenetics is the study of information transmission and in-
heritance mechanisms that do not rely on DNA sequence changes.

Epigenetic mechanisms comprise modifications to DNA bases, such as methylation, as
well as post-translational modifications of histones. Together, these determine the degree
of condensation of regions of DNA which allow or hinder transcription. Vast regions of
DNA may condense, forming heterochromatin, thus becoming long-term transcriptionally
inactivated. Conversely, transcribed regions of the DNA are significantly less condensed
and known as euchromatin. While DNA modifications are rather stable, histone modi-
fications can be rearranged much more dynamically. There are many different kinds of
histone modifications, forming a histone modification code or language (Jenuwein and
Allis, 2001; J.-S. Lee, E. Smith, and Shilatifard, 2010; Rando, 2012).

2Post-translational regulation is also frequently informed by sequence-based recognition, but the larger al-
phabet of amino acids, as well as larger contributions due to structural properties of proteins put less emphasis
on sequence based modeling.
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1.2. Gene regulatory processes

Transcriptional (in-)activity and modifications to histones and DNA all feed back on
each other, but a comprehensive picture of these connections is only beginning to emerge.
Also, certain ribonucleic acids (RNAs) are involved in epigenetic regulation, e.g. long non-
coding RNAs (lncRNAs) (J. T. Lee and Bartolomei, 2013) and piRNAs (Peng and H. Lin,
2013).

1.2.2 Transcriptional regulation

As illustrated in figure 1.1 the biogenesis of an mRNA involves many finely regulated steps.
Transcriptional regulation of a gene is informed by the presence of binding sites for tran-
scription factors (TFs) in the vicinity of the gene. TFs are the class of DNA-binding proteins
(DBPs) that bind to chromatin to regulate in a positive or negative manner the rate of tran-
scription of genes. Regulatory regions proximal to the transcription start site (TSS) are
termed promoter, and regulatory regions distal to the TSS are known as enhancer regions.

Transcription factor binding sites (TFBSs) in enhancer and promoter regions consti-
tute regulatory signals interpreted depending on the activity of corresponding TFs, which
in turn is determined by expression strength and post-translational modifications such
as phosphorylation status. The regulatory signals of TFBSs promote or hinder the assem-
bly and determine the composition of the transcriptional machinery, a protein complex
that constitutes the transcriptional apparatus. When the necessary components of the
transcriptional machinery are present transcription is initiated and mRNA is synthesized,
complementary in sequence to the transcribed strand of DNA.

1.2.3 Post-transcriptional regulation

Once a gene has been transcribed it becomes subject to post-transcriptional regulation.
There are five important processes that constitute post-transcriptional regulation: splic-
ing, RNA editing, RNA localization control, RNA stability control, and translational con-
trol.

Already before synthesis of the nascent mRNA transcript is completed, proteins assem-
ble on it that add a 5’ methyl guanosine cap to the transcript. A second characteristic that
marks mRNAs, and which is added upon completion of transcription, is the presence of
a polyadenylated 3’ tail. The absence of either signal poises transcripts for degradation.
Splicing removes introns, yielding mature transcripts, often in a variety of alternative iso-
forms. Some mRNAs undergo RNA editing, in which individual bases are chemically mod-
ified, potentially changing the resulting amino acid when coding nucleotides are affected,
or otherwise influencing, i.e. introducing, abrogating, or modifying, regulatory signals in
the message.

Mature mRNA is exported from the nucleus into the cytoplasm and may subsequently
be transported to specialized localizations in the cell, for spatial or temporal sorting. Fi-
nally, protein synthesis may take place involving mRNA as template, or mRNAs may specif-
ically be degraded.

Post-transcriptional regulatory processes are mediated by specific RNA-binding pro-
teins (RBPs), and often involve various non-coding RNAs (ncRNAs). Diverse classes of
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small, ncRNAs (Ghildiyal and Zamore, 2009) execute important regulatory roles, and dys-
regulation of small ncRNAs is relevant to many diseases (Esteller, 2011). Structural, but
also regulatory roles are executed by larger ncRNAs, such as small nuclear RNAs (snRNAs),
small nucleolar RNAs (snoRNAs), transfer RNAs (tRNAs), and ribosomal RNAs (rRNAs).
Circular RNAs (circRNAs) are another class of recently discovered RNAs with regulatory
potency (Hansen et al., 2013; Memczak et al., 2013).

Splicing, editing, sorting, stability, storage, and degradation of an mRNA are all influ-
enced by regulatory signal in the transcript. Also, the efficiency with which an mRNA is
translated depends on various factors, including regulatory signals in the transcript, as
well as usage of differential efficiency of various synonymous tRNAs.

miRNA The best-studied examples of regulatory small ncRNAs are microRNAs (miRNAs)
(Ambros, 2001; Lau, L. P. Lim, et al., 2001; R. C. Lee and Ambros, 2001) which are RNA
molecules of about 22 nt length, many of which deeply conserved in sequence across the
phylogenetic tree (Berezikov, 2011; Wheeler et al., 2009). In conjunction with specific
RBPs miRNAs assemble the RNA-induced silencing complexs (RISCs) that regulates sta-
bility and translation efficiency of target mRNAs. A single kind of mRNA may be subject
to regulation by dozens of miRNAs, and one miRNA may regulate hundreds of mRNAs
(Baek et al., 2008; Selbach et al., 2008). The modus operandi for the RISC is recogni-
tion of target mRNAs by the miRNA through sequence complementarity. The constitution
of the RISC determines the effect on the targets, and miRNAs are sorted in a regulated
manner into different members of the Argonaute family (Czech and Hannon, 2011). Tar-
get mRNA may then be stored inaccessible for the translational machinery in RNA gran-
ules which are condensed droplets in the cytosol that are composed of proteins and RNAs.
While sequestered in RNA granules mRNAs may be translationally repressed or subject to
degradation (Huntzinger and Izaurralde, 2011). miRNA biogenesis is itself regulated on
transcriptional and post-transcriptional level (Krol, Loedige, and Filipowicz, 2010). Func-
tionally, miRNAs seem to be involved in canalization, i.e. robustification or stabilization
(Waddington, 1942), of gene expression programs and changes in the miRNA regulation
accompany many differentiation processes in developmental decisions (Hornstein and
Shomron, 2006; Peterson, Dietrich, and McPeek, 2009; C.-I. Wu, Shen, and T. Tang, 2009).
miRNA diversity and regulation contributed to the evolution of organismal complexity
(Berezikov, 2011).

piRNA PIWI-interacting RNAs (piRNAs) play a role in the germline and stem cells of di-
verse organisms (C. Juliano, J. Wang, and H. Lin, 2011), but also have epigenetic and so-
matic functions (Peng and H. Lin, 2013). Many species’ piRNAs are about 28 nucleotides
long, yet some species’ piRNAs are shorter, such as e.g. the 21U-RNA of C. elegans. They
protect the integrity of the genome from invasion by genomic parasites, and have for this
reason been nicknamed ‘guardians of the genome’ (Senti and Brennecke, 2010), as well
as ‘vanguard of the genome defense’ (Siomi et al., 2011).
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Figure 1.1: Biogenesis of an mRNA. The illustration shows a DNA region containing a gene
locus consisting of a TSS, a transcribed region downstream of the TSS, as well as a prox-
imal promoter region and a distal enhancer, with DNA regulatory elements in the form
of transcription factor binding sites (squares). Transcription creates primary transcripts
(pre-mRNA) of the gene locus, consisting of 5’UTR (light blue region on left side), coding
exons (thick, blue segments), introns (thick, green segments), and 3’UTR (light blue re-
gion on right side). The transcripts are 5’ methyl capped, and polyadenylated. Splicing
may create multiple alternative isoforms. Individual nucleotides may be modified by RNA-
editing (not shown). The mature transcripts are transported out of the nucleus and into
the cytosol, or to specific places in the cell. Mature mRNA may be subject to translation,
storage, or targeted degradation. Splicing, RNA-editing, transport, translation, storage,
and degradation of mRNA is directed by the tissue specific expression of RBPs and RBP
binding sites (ovals) in the transcripts. miRNAs may direct the cytosolic fate of mRNAs
via binding to miRNA target sites (semicircles), which are primarily located in the 3’UTR.
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1.3 Sequencing technologies

Microarray-based approaches fueled much of the last two decades’ molecular biology re-
search, but more recently advancements in sequencing technology opened up new av-
enues for biological research.

Classically, Sanger’s chain-termination method (Sanger, Nicklen, and Coulson, 1977)
was used to sequence DNA molecules of up to a few hundred bases length. Roche’s 454
platform (Margulies et al., 2005) pioneered the next-generation sequencing technologies.
It allows the simultaneous sequencing of hundreds of thousands of nucleotide sequences
of length ≥ 400 bases, producing about 100Mb sequence in a single sequencing run. Il-
lumina’s Solexa sequencing platform (Bentley, 2006) initially produced relatively short
reads of length 36 nucleotides, yielding about 1 GiB sequence per run. Later generations
of the platform allow longer reads of up to 100 bases, and yield up to 300 GiB of sequence
per run.

More recently developed sequencing technologies, such as ABI’s SOLiD platform (Val-
ouev et al., 2008) or Pacific Biosciences’ single molecule real-time (SMRT) sequencing (Eid
et al., 2009) offer further advantages. These include the ability to sequence even deeper
and more accurately, to detect chemical modifications of bases such as methylation, and
to directly sequence full isoforms for improved understanding of splicing.

Assaying transcriptional regulation by chromatin immunoprecipitation Prior to wide-
spread adoption of microarray-based technology, using chromatin IP (ChIP), PCR and
Sanger sequencing, only few sequences (on the order of dozens) were available that were
known to be bound in vivo by a given factor. The introduction of ChIP followed by microar-
ray quantification (ChIP-Chip) (Iyer et al., 2001; Ren, Robert, et al., 2000; L. V. Sun et al.,
2003; J. Wu et al., 2006) technologies, increased this to hundreds of sequences. The step
from few, well-characterized targets to hundreds of targets meant also a reduction of the
frequency of true positives in the sequence set.

ChIP-Seq The introduction of ChIP followed by sequencing (ChIP-Seq) (D. S. Johnson
et al., 2007; Robertson et al., 2007) boosted the number of identified candidate TF-bound
regions by another order of magnitude or two. ChIP-Seq also yields higher spatial resolu-
tion than previous ChIP-Chip approaches, and by sophisticated computational analysis
(e.g. Y. Zhang et al., 2008) targeted regions are also identified with higher confidence. See
figure 1.3 for an overview of the protocol used for ChIP-Seq. ChIP-Seq not only is applica-
ble to transcriptional regulation research, but also to assay chromatin state by targeting
epitopes characteristic of certain DNA or histone modifications, and thus is also useful to
epigenetic research (Ku et al., 2011).

Sequencing technologies for post-transcriptional research Analogously to the introduc-
tion of ChIP-Seq for DBP research, RIP-Seq technologies improving on the earlier DNA mi-
croarray quantification of co-IPed mRNA (RIP-Chip) (Tenenbaum et al., 2000), like HITS-
CLIP (Licatalosi et al., 2008), iCLIP (König et al., 2010), and PAR-CLIP (Hafner et al., 2010)
boosted RBP research.
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Figure 1.2: Structure of 4-thiouridine (4SU) and 6-thioguanosine (6SG), two of the photo-
activatable nucleoside analoga used in PAR-CLIP (Hafner et al., 2010). Red color marks
the sulfur groups that differ from regular uridine and guanosine.

PAR-CLIP PAR-CLIP uses photo-activatable nucleoside analoga to increase cross-linking
efficiency (Hafner et al., 2010). In particular, 4-thiouridine (4SU) and 6-thioguanosine
(6SG) are typically used for this, see figure 1.2. The advantage of using these nucleoside
analoga is that by using UV-light they induce covalent bonds between proteins and the
bound RNA. See figure 1.3 for an overview of the protocol. The cross-linked nucleotide
analoga are incorporated into RNA like the corresponding regular nucleosides, but have
different basepairing properties. During synthesis of the cDNA, cross-linked 4SU tends
to basepair with guanosine instead of adenosine, and cross-linked 6SG with thymidine
instead of cytidine. This has the consequence that upon sequencing and mapping the
reads to the genome, mismatches between the sequenced and the reference sequence are
observed. For 4SU T to C conversions are observed, and for 6SG G to A. A prerequisite for
cross-linking is intimate vicinity of the activatable group of 4SU or 6SG with amino acid
sidechains. Thus, nucleotide conversion events are typically observed within or next to
the cognate nucleotide sequence of the bound RNA. This allows bioinformatics analyses
to pinpoint the exact binding sites of an RBP. The spatial resolution that PAR-CLIP allows
is on the order of tens of nucleotides.
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(a) ChIP-Seq
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Figure 1.3: (a) ChIP-Seq and (b) PAR-CLIP methodologies. Corresponding steps are aligned
vertically. The first step of both methodologies is not necessary when antibodies against
endogenous proteins are used.
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Chapter 2

Published computational biology
research

This chapter gives an overview of the biological research that I have been involved in while
doing my PhD under the supervision of Nikolaus Rajewsky at the Laboratory for Systems
Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max-
Delbrück-Centrum für Molekulare Medizin, Berlin.

Throughout this chapter, discussion of the publications is generally structured as fol-
lows. First, abstract and introduction of the publications are presented. Then, the parts
of the investigation are outlined that I worked on. To this end, I discuss the methods I
applied, and then present research findings that derive from application of my method-
ological contributions. For the sake of brevity, findings that did not directly grow out of
my contributions are elided.

The discriminative motif discovery (DMD) methods described in this thesis have been
published in a peer-reviewed journal. Being the subject matter of this dissertation, they
will not be discussed further in this chaper.

Maaskola, J. and Rajewsky, N. (2014). Binding site discovery from nucleic acid sequences
by discriminative learning of hidden Markov models. Nucleic Acids Res 42(21):12995–
13011.

2.1 List of publications

Shared first authorships

I was shared first author of the following publications. My contributions to these collabo-
rative investigations constituted their main computational analyses.

Stoeckius, M., Maaskola, J., Colombo, T., Rahn, H.-P., Friedländer, M. R., Li, N., Chen, W.,
Piano, F., and Rajewsky, N. (2009). Large-scale sorting of C. elegans embryos reveals
the dynamics of small RNA expression. Nat Methods 6 (10): 745–751.
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von Eyss, B., Maaskola, J., Memczak, S., Möllmann, K., Schuetz, A., Loddenkemper, C.,
Tanh, M.-D., Otto, A., Muegge, K., Heinemann, U., Rajewsky, N., and Ziebold, U. (2012).
The SNF2-like helicase HELLS mediates E2F3-dependent transcription and cellular
transformation. EMBO J 31 (4): 972–985.

Further publications

The following is a list of publications about investigations to which I contributed compu-
tational biological analyses.

Friedländer, M. R., Chen, W., Adamidi, C., Maaskola, J., Einspanier, R., Knespel, S., and
Rajewsky, N. (2008). Discovering microRNAs from deep sequencing data using miRD-
eep. Nat Biotechnol 26 (4): 407–415.

Chen, K., Maaskola, J., Siegal, M. L., and Rajewsky, N. (2009). Reexamining microRNA site
accessibility in Drosophila: a population genomics study. PLoS One 4 (5): e5681.

Anders, G., Mackowiak, S. D., Jens, M., Maaskola, J., Kuntzagk, A., Rajewsky, N., Land-
thaler, M., and Dieterich, C. (2012). doRiNA: a database of RNA interactions in post-
transcriptional regulation. Nucleic Acids Res 40 (Database issue): D180–D186.

Song, J. L., Stoeckius, M., Maaskola, J., Friedländer, M., Stepicheva, N., Juliano, C., Lebe-
deva, S., Thompson, W., Rajewsky, N., and Wessel, G. M. (2012). Select microRNAs are
essential for early development in the sea urchin. Dev Biol 362 (1): 104–113.

Wang, Y., Gogol-Döring, A., Hu, H., Fröhler, S., Ma, Y., Jens, M., Maaskola, J., Murakawa,
Y., Quedenau, C., Landthaler, M., Kalscheuer, V., Wieczorek, D., Wang, Y., Hu, Y., and
Chen, W. (2013). Integrative analysis revealed the molecular mechanism underlying
RBM10-mediated splicing regulation. EMBO Mol Med 5 (9): 1431–1442.

2.2 Computational analysis of deep-sequencing data

Abstract The capacity of highly parallel sequencing technologies to detect small RNAs
at unprecedented depth suggests their value in systematically identifying miRNAs. How-
ever, the identification of miRNAs from the large pool of sequenced transcripts from a
single deep sequencing run remains a major challenge. Here, we present an algorithm,
miRDeep, which uses a probabilistic model of miRNA biogenesis to score compatibility of
the position and frequency of sequenced RNA with the secondary structure of the miRNA
precursor. We demonstrate its accuracy and robustness using published C. elegans data
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and data we generated by deep sequencing human and dog RNAs. miRDeep reports alto-
gether approximately 230 previously unannotated miRNAs, of which four novel C. elegans
miRNAs are validated by northern blot analysis.

Introduction Animal genomes harbor numerous small, non-coding miRNA genes be-
lieved to post-transcriptionally regulate many protein-coding genes to influence processes
ranging from metabolism, development and regulation of the nervous and immune sys-
tems to the onset of cancer (Bushati and Cohen, 2007). Despite concerted efforts to dis-
cover and profile miRNAs, even the number of miRNAs in the human genome remains
controversial, with estimates ranging from a few hundred (Bartel, 2004) to tens of thou-
sands (Miranda et al., 2006). Traditional experimental approaches to miRNA discovery
have relied on cloning and Sanger sequencing protocols (Aravin and Tuschl, 2005) and
human and murine miRNAs have been profiled in hundreds of cDNA libraries from dozens
of tissues (Landgraf et al., 2007). However, the vast dynamic range of miRNA expres-
sion (from tens of thousands to a few molecules per cell) complicates profiling of miRNAs
expressed in low numbers. A complementary approach, involving miRNA discovery by
computational predictions that analyze genomic DNA for structures that resemble known
miRNA precursors (Bentwich, 2005), is compromised by sensitivity problems and sub-
stantial numbers of false positives (Bentwich, 2005). Therefore, purely computational
approaches require experimental follow-ups, which are again difficult for miRNAs with
low expression levels in the sample.

‘Deep-sequencing’ technologies opened the door to detecting and profiling known
and novel miRNAs at unprecedented sensitivity. Next-generation sequencing platforms,
such as those from Solexa / Illumina and 454 Life Sciences / Roche, can sequence DNA
orders of magnitude faster and at lower cost than Sanger sequencing and are evolving so
rapidly that increases in sequencing speed by at least another order of magnitude seem
likely over the next few years. Although the Solexa / Illumina system can produce ~32 mil-
lion sequencing reads in one run, read length is currently limited to 35 bp. In contrast, the
current 454 platform yields reads up to 200 bases each, although the number of reads is
an order of magnitude less than that of Solexa / Illumina. The nature of sequencing errors
also contributes further to the different output characteristics of the two approaches.

Despite the ability of both technologies to sequence — and thus to detect — miRNAs at
previously unmatched throughput, deep sequencing presents formidable computational
challenges and suffers from biases such as those arising from the preparation of small
RNA libraries. Even mapping deep-sequencing reads to the genome is itself not trivial, as
no animal genome besides that of C. elegans, has been sequenced completely. Moreover,
sequencing errors and polymorphisms, as well as RNA editing and splicing are but some
of the factors that contribute to ambiguity. Although currently almost all of these prob-
lems remain mostly unsolved, deep sequencing can successfully survey the small RNA
contents of animal genomes with unmatched sensitivity (Aravin, Sachidanandam, et al.,
2007; Berezikov et al., 2006; Brennecke et al., 2007; Girard et al., 2006; Houwing et al.,
2007; Lau, Seto, et al., 2006; Pak and Fire, 2007; Ruby, Jan, et al., 2006; Tarasov et al.,
2007).

When profiling small RNAs by deep-sequencing technology, separating miRNAs from
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the pool of other sequenced small RNAs or degradation products is a central problem that
is often not described or only partially addressed (Berezikov et al., 2006; Ruby, Jan, et al.,
2006). Furthermore, despite a growing need to analyze deep-sequencing data, there is no
publicly available algorithm to detect miRNAs in these data.

miRDeep, our publicly available software package, can be used to solve this problem
at least in part. Importantly, it also includes stringent statistical controls to estimate the
false positive rate and the sensitivity of miRDeep predictions. Therefore, users can not
only run miRDeep on their own deep-sequencing data to detect known and novel miRNAs,
but can also estimate the quality of their results. At the heart of miRDeep is the idea of
detecting miRNAs by analyzing how sequenced RNAs are compatible with how miRNA
precursors are processed in the cell. As deep sequencing permits statistical analysis of
this model, one can assign a score of the likelihood that a detected RNA is indeed a mature
miRNA. Therefore, the foreseeable advances in sequencing capacity of deep-sequencing
technologies should further boost the power of miRDeep. In order to address an ongoing
discussion about the importance of non-conserved miRNAs (K. Chen and Rajewsky, 2007)
and to be as unbiased as possible, we designed miRDeep to detect miRNAs without cross-
species comparisons. Finally, given the rapid evolution of deep-sequencing technology,
we designed miRDeep to be as flexible as possible and tested it using both Solexa- and
454-derived data from human, the domestic dog and C. elegans — animals from the two
main branches of Bilateria, representing very different genomic complexity.

My contributions

I developed a deep-sequencing read alignment tool, described below, and used it to map
the dog small RNA deep-sequencing data to the canine genome. The other datasets were
mapped by my colleague Marc Friedländer using NCBI megablast (BLAST version 2.2.14).

Adapters were removed from the dog lymphocyte Solexa dataset with a custom map-
ping tool based on suffix arrays (Manber and Myers, 1993). First, the adapter sequences
were identified in the deep-sequencing reads. We required the presence of minimum
10 nt of the 5’ adapter sequence with a maximum of three edits (mismatches and/or in-
sertions/deletions). Reads that contained an identified adapter sequence had the adapter
removed and were retained, the rest were discarded. The retained reads were mapped to
the dog genome (Canis familiaris version canFam2, from UCSC) using the custom mapping
tool, allowing for up to two edits. For each read, mappings of suboptimal edit distance
were discarded (if the best-mapping was edit distance 1, all edit distance 2 mappings were
discarded).

Suffix array based alignment The suffix array based alignment tool allows to look up
perfect occurrences of queries in the database in time linear in the length of the query,
independent of the size of the database. Finding all m perfect matches for a query of
length n has a worst-case runtime ofO(An+m), where A is the size of the alphabet. For
genome sequences A = 4 or A = 5, depending on whether Ns in the genome are treated
as characters of the alphabet, or are randomly assigned one of the other four symbols.

The suffix array based alignment also allows to find imperfect occurrences of queries,
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using either Hamming distance or Levenshtein distance, which is also known as edit dis-
tance. Hamming distance allows substitutions of individuals symbols, while edit distance
additionally allows insertions or deletions of symbols. Generally, alignment is done by
first searching for perfect occurrences, then for occurrences in (Hamming or edit) distance
1, and finally for occurrences in distance 2. Frequently, only best matches are of interest,
so search can be stopped once matches have been found at a given distance. Optionally,
higher distance matches can be searched by in turn either incrementing by 1, or by dou-
bling the allowed distance.

To find genomic matches, alignment needs to be done twice, once for the original
query to find occurrences on the sense strand of the database, and once for the reverse
complement of the query to find occurrences on the antisense strand. Alternatively, us-
ing twice as much memory, a suffix array of both the sense and antisense strand of the
genome can be used, that only needs to be searched once. Genomic suffix arrays require
considerable amounts of memory, in the range of dozens of GiBs for mammalian genomes;
e.g. the suffix array for only the sense strand of the human genome requires 52 GiB of
RAM.

Allowing for imperfect occurrences in finding matches to a query increases runtime.
Occurrences of Hamming distance ≤ k to a query of length n are found in worst-case
runtime ofO(Ak+1n+m), where m is the number of matches in Hamming distance k.

Finding matches with edit distance ≤ k is done by performing a banded sequence
alignment of the query against the suffix array (Durbin et al., 1998; Gusfield, 1997; Mount,
2004). A banded alignment of a query of length n against a sequence of length N with
n ≤ N allowing up to k edits can be done in O ((2k+ 1) n). In principle, such a banded
alignment needs to be done against all unique prefixes of length n+k of the suffixes of the
database, yielding a maximal runtime ofO ((2k+ 1) nN), when there are N unique length
n + k suffix-prefixes in the database. However, runtime can be significantly reduced by
respecting two factors. First, banded alignments of a query q against any suffix-prefix s
can be stopped as soon it is clear that there is no alignment with edit distance d(q, s) ≤ k.
Second, the lexicographical order of the suffixes in the suffix array means that by per-
forming the alignment column-wise1 work can be saved when proceeding from one suffix
to the lexicographically next suffix due to the common prefixes of lexicographically or-
dered strings. Thus, only those columns of the dynamic programming table need to be
recomputed that correspond to the part of the next suffix that differ from the previous.

2.3 Population genomics of drosophilid miRNAs

1I.e. orienting the dynamic programming matrix such that positions of the query correspond to rows, and
positions of the template to columns.
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Abstract Kertesz et al. (2007) described PITA, a miRNA target prediction algorithm based
on hybridization energy and site accessibility. In this note, we used a population ge-
nomics approach to reexamine their data and found that the PITA algorithm had lower
specificity than methods based on evolutionary conservation at comparable levels of sen-
sitivity. We also showed that deeply conserved miRNAs tend to have stronger hybridiza-
tion energies to their targets than do other miRNAs. Although PITA had higher specificity
in predicting targets than a naïve seed-match method, this signal was primarily due to
the use of a single cutoff score for all miRNAs and to the observed correlation between
conservation and hybridization energy. Overall, our results clarify the accuracy of differ-
ent miRNA target prediction algorithms in Drosophila and the role of site accessibility in
miRNA target prediction.

Introduction Population genomics has been suggested as a method of evaluating the
accuracy of genome-wide predictions of cis-regulatory sites (Boffelli et al., 2004; K. Chen
and Rajewsky, 2006; Fairbrother, Holste, et al., 2004; Saunders, Liang, and Li, 2007). The
idea is to use polymorphism data and population genetics techniques to estimate the level
of purifying selection on predicted cis-regulatory sites genome-wide and to use this quan-
tity as a proxy for the accuracy of the prediction algorithm. The underlying assumption is
that an accurate prediction algorithm should identify functionally important sites that are
likely to be under selective constraint. This is the same assumption underlying compar-
ative genomics approaches but the population genomics approach is sensitive to natural
selection of a different strength and on a different time scale. It is likely to become more
useful in the future with the advent of high-throughput genome resequencing.

In this note we used a population genomics approach to reexamine the methods and
data presented in Kertesz et al. (2007). There the authors presented a method for predict-
ing miRNA binding sites in Drosophila using the score ddG = dG(duplex)–dG(open) where
dG(duplex) is the hybridization energy of the miRNA to the binding site and dG(open) is
the energy required to open the local RNA secondary structure around the binding site.
The ddG score was used to rank all possible miRNA seed matches in 3’UTRs (see Kertesz
et al. (2007) for details on the method). On a set of 190 experimentally validated target
sites, the method was shown to perform more accurately than several leading methods,
including Pictar (Krek et al., 2005; Lall et al., 2006) and the method of Stark, M. F. Lin, et al.
(2007), that do not use site accessibility but instead require conservation of seed matches
between species. We found this result surprising because we expected that conservation
would implicitly select for all sequence determinants of functional miRNA binding, in-
cluding site accessibility. We therefore sought to corroborate the results of Kertesz et al.
(2007) using a population genomics approach.

My contributions

In this investigation, my colleague Kevin Chen analyzed genetic variation in predicted
miRNA target sites, while I analyzed genetic variation in miRNA genes. As evolutionary
patterns within miRNA had been studied previously, my contribution allowed us to estab-
lish consistency of our genetic data with previous observations. To this end I examined
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genetic variation in miRNA genes, and compared its distribution across structurally de-
fined parts of miRNA genes.

Summary We used whole genome shot-gun sequence data from six inbred lines of the
fruit fly Drosophila simulans from the Drosophila Population Genomics Project (Begun et
al., 2007) to estimate levels of polymorphism within D. simulans and divergence between
D. simulans and D. melanogaster (see below). To verify the accuracy of the data and our
data processing methods, we first examined the patterns of polymorphism and divergence
in miRNA genes. These patterns have been established in previous studies of divergence
across species (e.g. Lai et al., 2003; Lunter, Ponting, and Hein, 2006) and within species
(Lu, Fu, et al., 2008; Saunders, Liang, and Li, 2007) and thus are a good test of data quality.
We note that such an analysis was not possible in a previous study of single nucleotide
polymorphisms (SNPs) in human miRNAs (K. Chen and Rajewsky, 2006) or in miRNA re-
sequencing studies in humans and Arabidopsis (Diederichs and Haber, 2006; Ehrenreich
and Purugganan, 2008; Iwai and Naraba, 2005) because of the low rate of polymorphism
in these species compared to Drosophila.

Our analysis of evolutionary patterns in miRNA genes confirmed the following hier-
archy of selective constraint on the different parts of the miRNA precursor: seed > ma-
ture miRNA > star miRNA > loop > flanking control region (see below). Our analysis of
indel patterns also confirmed that D. simulans miRNAs are more strongly depleted of in-
dels than nucleotide substitutions compared to flanking control regions (see below), as
previously observed between mammalian species (Lunter, Ponting, and Hein, 2006). A
notable observation from our analysis is that the miRNA precursor loop length is under
stabilizing selection since we observed a strong depletion of indels in the loop relative to
flanking control regions (see below) (one-sided Z test, insertions Z>3.4, p-value<0.0003,
deletions Z>3.9, p-value<4.8e-5). This suggests that miRNA precursor loop length is func-
tionally important, consistent with previous experimental (Zeng, R. Yi, and Cullen, 2005)
and computational (Rabani, Kertesz, and Segal, 2008) data.

Evolution of miRNA genes inD. simulans We mapped allD.melanogaster miRNA precur-
sors from Rfam 10.1 to the six D. simulans lines using the D. simulans syntenic assembly
produced by the Drosophila Population Genomics Project2. 141 out of 152 miRNAs had
complete sequence coverage in the D. simulans assembly, while the other 11 miRNAs did
not have complete coverage, typically because they are in heterochromatic regions. Of
the 141 fully sequenced miRNAs, we identified eight miRNAs that had an unusually high
number of differences between D. melanogaster and D. simulans (miR-303, miR-982, miR-
983-1, miR-983-2 and miR-984, which form a cluster, as well as miR-979, miR-985, and
miR-997). The high rate of divergence and the positions of the differences in the miRNAs
strongly suggest that these miRNAs are not functional inD. simulans (see Chen et al., 2009,
Supplementary Table 1 for details). Although we cannot completely exclude the possibil-
ity that these are functional miRNAs that have diverged in function in D. simulans, we
chose to exclude them from the remaining analysis, leaving a set of 133 confidently iden-
tified D. simulans miRNAs. Regardless of whether the eight miRNAs are non-functional or

2http://www.dpgp.org
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highly diverged in D. simulans, these data demonstrate that miRNAs can evolve rapidly
over short evolutionary distances.

The McDonald-Kreitman (MK) test is commonly used to infer directional selection by
comparing the ratio of divergence to polymorphism in a putatively selected region (typi-
cally non-synonymous sites) to that in a putatively neutral region (typically synonymous
sites). Adaptive mutations contribute more to divergence than to polymorphism, so an ex-
cess of divergence relative to polymorphism is indicative of positive selection. Conversely,
weakly deleterious mutations contribute more to polymorphism than to divergence and
so an excess of polymorphism is consistent with weak negative selection. We observed a
high ratio of divergence to polymorphism in miRNA genes compared to control flanking
regions (see next section, χ2 test, p value < 5e-5). This pattern is consistent with, but does
not necessarily prove, the notion that at least some miRNAs, like protein coding genes,
have evolved adaptively in Drosophila.

Despite the significant result from the MK test, caution in interpretation is warranted
when applying the MK test on a set of genes with potentially different genealogies scat-
tered across the genome because it is possible for the combination of a set of neutral MK
tables to result in an MK table that rejects neutrality (see Shapiro et al., 2007, for a detailed
discussion). Indeed, we observed that one family in particular, miR-310-313, had an usu-
ally high amount of divergence and low level of polymorphism, both in the miRNA and
control flanking regions. We noticed this family because there are two fixed substitutions
each in the mature miRNA sequences of miR-312 and miR-313 (though not in the seed).
Using the D. yakuba sequence as an outgroup, we found that substitutions in this region
frequently occurred on both the D. simulans and D. melanogaster lineages and we verified
that the pattern of polymorphism and divergence observed was not due to unusually low
sequence coverage in this region.

Although the low level of polymorphism in this family is consistent with a selective
sweep, another possible explanation for the pattern could be an unusually low recombina-
tion rate in the miR-310-313 region. Since accurate genome-wide recombination rates are
not available for D. simulans, we used an estimate of the recombination rate in D. melano-
gaster. There is significant correlation betweenD. simulans polymorphism andD.melano-
gaster recombination rates, suggesting that recombination rates between the two species
are comparable. The recombination rate in this region was estimated to be 3.7 cM/Mbp,
which is close to the highest rate on chromosome 2R (range: 0 to 3.76 cM/Mbp, average:
2.43 cM/Mbp)3, thus we can exclude the effect of suppressed recombination at this lo-
cus. In summary, the pattern of divergence and polymorphism in this gene family is sug-
gestive of one or more selective sweeps on the region containing the miR-310-313 family,
though experimental tests of the functional changes are needed to exclude other possible
non-selective explanations, such as demography. Taken together, our data indicate that
miRNA genes have evolved rapidly between D. melanogaster and D. simulans and that in
at least one case, evolution may have been adaptive. Our results are consistent with two
recent studies on the evolution of miRNAs, including the miR-310-313 family, between
D. melanogaster and D. simulans (Lu, Fu, et al., 2008; Lu, Shen, et al., 2008).

3http://cgi.stanford.edu/~lipatov/recombination/recombination-rates.txt
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Variation in miRNA genes strongly correlates with miRNA precursor structure We used
RNAfold (Hofacker et al., 1994) to predict the minimum free energy (MFE) secondary struc-
tures of the miRNA precursors. Based on these predicted secondary structures and the an-
notated mature miRNA sequences from Rfam 10.1, we defined the following five segments
of the miRNA gene: annotated mature region; the star-region that base-pairs to it, taking
into account the stereotypical 2 nt 3’-overhang; the loop region consisting of the bases
between the mature and star regions; the lower, base-paired segment; and the flanking
region defined as the single-stranded flanks of the miRNA precursor (Chen et al., 2009,
Supplementary Figure 1). In the case of miR-1017, this procedure produced a lower stem
only downstream of the hairpin, so this segmentation was manually corrected, leading to
a reduction by 10 counts of substitutions in the lower stem region.

MiRNA precursors can be divided into five regions: mature miRNA, miRNA star, loop,
lower stem and flank (Chen et al., 2009, Supplementary Figure 1). Each of these regions is
expected to experience different levels of selective constraint. We segmented each miRNA
precursor into these five different regions using the predicted MFE secondary structure of
the miRNA, as described above. We then tabulated all fixed and polymorphic substitu-
tions and indels in the precursor miRNAs (Chen et al., 2009, Supplementary Tables 1 and
2, Supplementary Figures 1 and 2). We used 50 nt of flanking sequence on either side
of the miRNA precursors as (putatively) neutral controls. Using control sequences in the
local neighborhood of the miRNAs is important to control for variation in rates of polymor-
phism and divergence across the genome. There are no known functional constraints on
the flanking sequences of miRNA precursors and since we observed increased selective
constraint on miRNA genes compared to flanking sequences, the presence of functional
elements in the flanking sequences would only make our approach more conservative. We
did not include control sequences for the mirtrons (i.e. miRNAs that constitute an entire
intron) since this would be exonic sequences which are unlikely to evolve neutrally.

We found the seed region (positions 2–8) of the mature miRNA to be under very strong
selective constraint since we did not find any substitutions in this region. However, we
found fixed substitutions in the first position of miR-960 and miR-973, consistent with the
target model that the first position of the mature miRNA is not bound to the target mRNA.
We also observed polymorphisms in the seeds of miR-133, miR-280, miR-966 and miR-990
that could be of functional interest since they are expected to affect miRNA targeting. Of
these polymorphisms, we attempted to validate the one in miR-133 because it is the best-
studied of these four miRNAs. However, upon resequencing of the relevant D. simulans
line, this was found to be a sequencing error (data not shown).

In addition to the seed, we detected strong selective constraint on the remainder of
the mature sequence, with SNP density only 5̃% relative to the controls (Chen et al., 2009,
Supplementary Table 1). This level of constraint may indicate that either 3’ compensatory
miRNA binding sites or regulatory elements in this region of the miRNA that mediate post-
transcriptional control are more common than currently believed. Also, consistent with
previous studies across species, selective constraint on the loop and miRNA flanking se-
quences was low compared to the rest of the miRNA, but still below the level of the controls
(Chen et al., 2009, Supplementary Table 1).

Finally, we observed significant selective constraint on the star sequence, with SNP

33



Chapter 2. Published computational biology research

density 1̃3% that of controls. This pattern likely reflects base pairing constraints both to
pair to the mature miRNA and to prevent the inappropriate strand from being incorpo-
rated into the RISC complex. An additional source of constraint is that the star sequence
can be incorporated into the miRNA-mediated silencing complex and the scope of target-
ing by the star sequence is of interest. To address this question, we used the lower stem of
the miRNA to model the selective constraint expected due to base pairing constraints and
tested for excess constraint on the star miRNA relative to the lower stem. We did not de-
tect any excess constraint on the star miRNA either with respect to SNP and substitution
density or with respect to the ratio of divergence to polymorphism (see below, Chi square
test, p-value > 0.63).

Strong selection against insertions and deletions in miRNA genes An advantage of
whole-genome shotgun sequence data over SNP data is the ability to study genome re-
arrangements, such as indel variation. Overall, we observe that indels are depleted in
miRNA genes relative to control sequences, making indel depletion a good feature for
identifying miRNAs (Chen et al., 2009, Supplementary Table 2). A similar pattern was pre-
viously observed using cross-species data in mammals (Lunter, Ponting, and Hein, 2006).

It is an interesting question whether the size of the loop region of the miRNA is under
selective constraint. It has been argued that the loop cannot be too big (Ruby, Stark, et
al., 2007) otherwise it would appear to be single-stranded RNA and cause inappropriate
Drosha processing while experiments have shown that small loops have impaired process-
ing (Han et al., 2006). We observed a strong depletion of indels in the loop (Chen et al.,
2009, Supplementary Table 2) (one-sided Z test, insertions Z > 3.4, p-value < 0.0003, dele-
tions Z > 3.9, p-value < 4.8e-5). This pattern suggests the action of stabilizing selection on
loop length, which in turn implies that the length of the loop is functionally important.
We verified that this result was not due to a significantly elevated level of insertions in
the flanking regions of miRNAs by checking that the rate of insertions in intergenic re-
gions (8.9 / kb) was higher than in miRNA control regions (7.3 / kb). The rate of insertions
across the entire genome was lower (6 / kb), presumably due to the lower rate of insertions
in genes.

2.4 Small RNAs in C. elegans embryogenesis

Abstract C. elegans is one of the most prominent model systems for embryogenesis, but
collecting many precisely staged embryos has been impractical. Thus, early C. elegans
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embryogenesis has not been amenable to most high-throughput genomics or biochem-
istry assays. To overcome this problem, we devised a method to collect staged C. ele-
gans embryos by fluorescence-activated cell sorting (eFACS). In a proof-of-principle ex-
periment, we found that a single eFACS run routinely yielded tens of thousands of al-
most perfectly staged 1-cell stage embryos. As the earliest embryonic events are driven by
post-transcriptional regulation, we combined eFACS with second-generation sequencing
to profile the embryonic expression of small ncRNAs. We discovered complex and orches-
trated changes in the expression between and within almost all classes of small RNAs,
including miRNAs and 26G-RNAs, during embryogenesis.

Introduction The nematode C. elegans is one of the best-explored model organisms for
developmental biology. The mechanistic basis of embryogenesis in C. elegans has been
dissected by describing the entire cell lineage (Sulston et al., 1983) and by performing
many molecular and genetic analyses. Various key proteins involved in early cell divi-
sion as well as hundreds of essential genes required for early embryogenesis and their
knockdown phenotypes have been described (Fernandez et al., 2005; Gönczy and Rose,
2005; Kamath et al., 2003; Oegema and Hyman, 2006; Piano, Schetter, Mangone, et al.,
2000; Piano, Schetter, Morton, et al., 2002; Sönnichsen et al., 2005). However, a true un-
derstanding of embryogenesis will require the knowledge of stage-specific gene expres-
sion. Modern high-throughput technologies such as deep sequencing, proteomics and
their many applications can be used, for example, to identify and quantify the transcrip-
tome, protein amounts and protein-protein interactions on a genome-wide scale. Prereq-
uisite to the study of embryogenesis progression with many of these methods are large
amounts of precisely staged embryos to yield enough RNA or other material. However,
this is currently not possible. Isolated embryos are mixtures of embryos at developmen-
tal stages ranging from the early 1-cell zygote to the almost hatching worm larvae with
approximately 600 cells. To date, staged embryos are usually obtained by manual sorting
using a mouth pipette, making it impractical to apply large-scale  techniques that require
tens of thousands of embryos. Alternatively, one can obtain many semi-synchronized
embryos by blocking their development with fluorodeoxyuridine (Stroeher et al., 1994),
or one can isolate young embryos from hermaphrodites that have just begun to produce
mature oocytes (Schauer and Wood, 1990). Although these methods can yield reasonable
quantities of young embryos, the collected embryos are not synchronous, and these ap-
proaches cannot be used to investigate specific developmental stages.

Here we describe a method to collect many precisely staged embryos by fluorescence-
activated cell sorting (eFACS). As C. elegans embryos have the same size throughout de-
velopment, eFACS can in principle be applied to any embryonic stage in which a specific
fluorescent marker protein can be stably expressed. Thus, eFACS allows the resolution
of embryonic stages with  sufficient yield of embryos for high-throughput analyses that
require large amounts of starting material.

InC. elegans embryos, some zygote-specific transcription is initiated at the 4-cell stage,
although pharmacological and genetic experiments have suggested that zygotic genes are
not required until later in embryogenesis (Edgar, Wolf, and Wood, 1994; Seydoux and
Dunn, 1997). Maternal  components seem sufficient to direct the embryo through the ini-
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tial cleavage rounds up to approximately the onset of gastrulation. Interference with key
enzymes involved in the RNA interference (RNAi) pathway lead to numerous defects in-
cluding embryonic lethality, suggesting functional roles for ncRNAs in embryogenesis
(Denli et al., 2004; Grishok et al., 2001; Knight and Bass, 2001). It is unknown which of
the previously described small RNA populations in C. elegans (Ambros et al., 2003; Baugh
et al., 2003; Evans and Hunter, 2005; Ruby, Jan, et al., 2006) such as miRNAs, endogenous
small interfering RNAs (siRNAs), 21U-RNAs (thought to be germline-specific and charac-
terized by a length of 21 nt, a strong bias for 5’ uracils and their interaction with PIWI pro-
teins) and the virtually uncharacterized class of 26G-RNAs (26 nt length and strong bias
for a 5’ guanine) are present in the early embryo, and it is unclear how the complexity
and composition of the small RNA transcriptome changes during the very first cell cycles
(Ambros et al., 2003; Baugh et al., 2003; Evans and Hunter, 2005; Ruby, Jan, et al., 2006).
We thus set out to use eFACS in combination with deep sequencing to profile small RNA
 expression during early embryogenesis.

My contributions

My contribution to this investigation consisted in the computational analysis of the deep-
sequencing data. This included mapping the reads to the genome using a previously de-
veloped suffix array based alignment program, and classifying the reads according to the
annotation of genomic features that the reads mapped to. For a description of the suffix
array based alignment please refer to page 28f.

Subsequently, I mined the deep-sequencing reads for novel 21U-RNAs, quantified ex-
pression of small RNAs, and computed expression fold changes for them, which were
validated by qPCR assays. Figure 2.1 displays the annotated small RNA read length distri-
bution at different developmental time points.

Mapping Mapping of Genome Analyzer 2 (Illumina) deep-sequencing reads was per-
formed using an in-house developed pipeline. This pipeline consists of an initial 3’ adap-
tor removal step, low-complexity read filtering, a mapping routine using a suffix array

Figure 2.1 (facing page): Small RNA expression in early development of C. elegans (Stoeck-
ius et al., 2009) (left column) and S. purpuratus (Song et al., 2012) (right column), assayed
by Solexa sequencing. Bars correspond to read lengths in nucleotides. Vertical extent cor-
responds to numbers of reads in units of 105. Upwards oriented bars represent reads map-
ping in sense direction to annotated features. For C. elegans, antisense mapping reads
are shown as downward oriented bars. For S. purpuratus, the displays are scaled so as
to yield identical vertical extent for the 22 nt miRNA fraction. Conservatively only those
reads are annotated as piRNAs in the S. purpuratus samples that occur paired with a 10 nt
overlapping antisense mapping read. Consequently, many of the≈28 nt reads annotated
as Unknown or CDS may in fact be piRNAs. In the 32-cell stage piRNA expression is mas-
sively increased, and the full bar height is not shown in order to reveal the dynamics of
the less highly expressed RNA moieties. The earlier fourC. elegans samples were prepared
by eFACS, sorting either once or twice, with or without prior fixing with methanol. The
later C. elegans samples and the S. purpuratus samples were selected by time relative to
fertilization (hpf: hours after fertilization).
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based alignment program and a 3’ adaptor identification refinement phase.
Briefly, initial adaptor removal was performed by using dynamic programming to find

in each read the suffix that best matched to a prefix of the 3’ adaptor. For this, all align-
ments of adaptor prefixes to suffixes of the read sequence were considered. In addition,
occurrences of the full adaptor sequence anywhere in the read sequence were considered.
Among these alignments, the best alignment was determined according to a simple one-
parameter model p(alignment|Θ) = Θn(1−Θ)n−k, where n is the length of the alignment,
k is the edit distance of the alignment, and Θ is a parameter describing the error rate. A
Θ value of 0.9 was heuristically chosen to reflect the relatively high error rate toward the
end of Illumina reads.

The alignment program proceeds by determining all genomic matches to a read in
edit distance k. For this application edit distance two was used. The alignment algorithm
was implemented using a suffix array of the genome against which each read is sought,
incrementally increasing the edit distance until matches are found.

In the 3’ adaptor identification refinement phase, the boundary between transcript
and adaptor parts of each read was redetermined in light of the genomic context that the
read was mapped to. This was done by computing a score S(i) = f(i) + r(i) for every
position i of the read. f(i) is derived by aligning prefixes of the genomic context to prefixes
of the read, from which f(i) gives the edit distance of the best match of the read prefix
of length i to the genomic context. r(i), the second part of the score is determined from
reverse alignments of the reversed read to reverse adaptor prefixes, that is, r(i)was the edit
distance of the best match between the read sequence positions i + 1 to n and a adaptor
prefix, where n was the length of the read. The 3’ adaptor beginning position t was then
determined so as to minimize S(t). In case of ties, the minimum of the tied positions was
used.

For the subsequent analyses we used weighted matches, i.e., reads mapping to multi-
ple loci have equal weight distributed across these loci (for example, a read represented
by two transcripts and mapping equally well to three loci had a weight of two-thirds as-
signed to each of the three loci).

Normalization ofmiRNA reads in-between samples Expression fold changes of sequenc-
ing data were determined using linear models of the log expression, i.e. logistic expres-
sion models, as follows. Assume we are given expression vectors a, b ∈ Rn

≥0, where n
is the number of genes and R is the set of real numbers, with a = (ai)i=1,...,n and ai the
expression of gene i. If reference values za, zb ∈ R≥0 are known, then the normalized
expression values are a

za and b
zb , and the fold change fci ∈ R≥0 of gene i is given by

fci =
bi
zb
ai
za

=
biza
aizb

= constant · bi
ai
.

Here ‘constant’ denotes an arbitrary constant determined by the ratio of the unknowns bi
and ai. Thus, the log fold changes are

log fci = log bi − log ai + log za − log zb = log bi − log ai + constant,
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which is equivalent to
log bi = log ai + log fci + constant. (2.1)

Typically, the expression of a RNA species that is known to be constant between the two
samples is used for the reference values. However, for the present study no such con-
stants were known. We resorted to fitting a linear model of the form response = predictor
+ residual + intercept to equation (2.1), in which log ai is the predictor, log bi the response,
the intercept term determines the ratio of normalizers, and finally the log fold changes
 correspond to the residuals. In fitting, the slope of the linear model is fixed to unity, es-
sentially only fitting the intercept term. From the fitted models the log fold changes are
found as the prediction residuals. Owing to the slope of unity, it is possible to trivially
accumulate the pairwise intercept terms of a sequence of expression samples for a joint
normalization.

The proposed normalization method is equivalent to assuming that the mean log fold
change is zero. The calculated fold changes of miRNA expression by this normalization
method were validated by qPCRs and showed to be in good agreement (see Stoeckius et
al., 2009, Fig. 4).

Classification and quantification of small RNA deep-sequencing reads Known miRNA
coordinates were retrieved from miRBase release 12 (Griffiths-Jones et al., 2008). Other
ncRNA, 3’UTR, 5’UTR, exon and intron coordinates were retrieved from WormBase, match-
ing genome release WS1904. The 21U-RNA coordinates were retrieved from the supple-
mentary materials of previous studies (Batista et al., 2008; Ruby, Jan, et al., 2006). Co-
ordinates of RepeatMasker annotations (Jurka, 2000) and simple repetitive sequences (G.
Benson, 1999) were obtained from the UCSC genome browser (Karolchik, R. M. Kuhn, et
al., 2008). Reads were annotated by intersecting the mapped coordinates subsequently
with the following sets of annotated feature coordinates and subtracting intersecting co-
ordinates before proceeding with the next annotation set. The order in which annotation
 categories were used was: (i) miRNA, (ii) rRNA, (iii) tRNA, (iv) snRNA, (v) snoRNA, (vi)
21U-RNA, (vii) mRNA and (viii) repetitive sequences. This order roughly reflects the num-
ber of genomic bases represented by the different classes. For each annotated feature, all
overlapping mapped reads were determined, and quantification was done by summing
the overlapping weighted matches.

Identification of new 21U-RNAs New 21U-RNAs were predicted using the motif scoring
modules provided by Ruby, Jan, et al. (2006), which use position-specific nucleotide fre-
quency matrices of the large and small 21U-RNA upstream motifs, as well as a model for
the distance between the two motifs to determine occurrences of 21U-RNA loci. The ma-
trices are parameterized from ungapped alignments of reads deriving from manually se-
lected portions of the genome that are rich in 21U-RNA. The motif scoring was applied
to the set of mapped loci that remained after removing other known ncRNAs (including
previously known 21U-RNA loci) in which the sequences scored consisted of the upstream

4http://www.wormbase.org; WS190
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100 nt and the read itself. We used the same score cutoff of 15.5 to call loci as was used
previously (Ruby, Jan, et al., 2006).

We observed expression from 7506 of 15 341 known 21U-RNA loci (Stoeckius et al.,
2009, Supplementary Tables 5,6). Reads mapping to known 21U-RNA loci derived almost
exclusively from the sense strand, had almost always a 5’ uracil, and their length distribu-
tion sharply peaked at 21 nt. We discovered 389 new 21U-RNAs (Stoeckius et al., 2009, Sup-
plementary Table 7). Their genomic  distribution followed the published pattern (Batista
et al., 2008; Ruby, Jan, et al., 2006) with additional dispersed genomic loci.

Differential expression across and within small RNA classes We next compared the ex-
pression of all known classes of small RNAs during embryogenesis. However, we note that
we most likely only observed small RNAs with a 5’ monophosphate owing to the cloning
protocol. Overall, we observed strong, orchestrated changes in the composition of small
RNAs between the sequenced samples (figure 2.1). Older embryos were dominated by
miRNAs whereas in very early stages we observed additional small RNA classes. Those
include mitochondrial tRNA as well as a sizable fraction of rRNA. The rRNA- and tRNA-
derived fractions in all samples had a uniform length distribution and thus were likely to
be degradation products. The 21U-RNAs were highly expressed in early embryos but diffi-
cult to detect in older embryos. We also observed differential expression of endo-siRNAs
and 26G-RNAs. The relative abundance of small RNAs in mixed-stage embryo samples
convoluted specific changes in small RNA expression during embryogenesis (figure 2.1).

Endogenous siRNAs are observed in the 1-cell stage embryo The length distribution of
reads mapping sense or antisense to exons or introns of mRNA transcripts varied distinctly
(figure 2.1). Sense reads were distributed uniformly, suggesting that they originated from
degraded mRNAs. Antisense reads mapping to exons were dominated by 22 nt and 26 nt
reads with a strong bias for a 5’ uracil or guanine, respectively (consistent with previous
reports Ambros et al., 2003; Ruby, Jan, et al., 2006). We will refer to the corresponding
small RNAs as endogenous siRNAs (endo-siRNAs). Most 1-cell stage embryo endo-siRNAs
mapped to mitochondrial enzymes. The majority of these mRNAs are known to be up-
regulated in RNAi pathway defects (rrf-1, eri-1, rde-3 and dcr-1 mutants), which suggests
that they are under control of small RNAs (Stoeckius et al., 2009, Supplementary Table
8). We also consistently observed possible degradation products of mitochondrial tRNAs
in the early embryo but not in other samples (figure 2.1). Notably, we found more ~22 nt
endo-siRNA in the 1-cell stage and 2–4-cell stage embryos, whereas ~26 nt endo-siRNA
dominated in the older samples. Additionally, we observed in older embryos a twofold
enrichment of antisense reads mapping to 3’ untranslated regions (UTRs) (27–32%) when
compared to 1-cell or 2–4-cell stages (15%).

Genomic organization and expression of 26G-RNAs After removing known RNA classes,
we studied the set of remaining reads. The length distribution of these RNAs peaked at
26 nt and were most highly expressed in the older embryonic stages. These 26-mers did
not map to any annotated loci and had a strong 5’ guanine bias (75.7%). Hereafter, we refer
to 26 nt reads with a 5’ guanine as 26G-RNAs (Ghildiyal and Zamore, 2009). Although these
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26G-RNAs were present only in low numbers in early embryos, we observed high 26G-RNA
expression in older embryos. Computational analyses revealed that 26G-RNAs mapped to
several clusters in intergenic regions on different chromosomes (Stoeckius et al., 2009,
Fig. 6a). We validated five (out of five tested) 26G-RNAs from two clusters (Stoeckius et al.,
2009, Fig. 6b).

Discussion Previous large-scale studies of small RNA expression had used samples com-
posed of mixed-stage embryos. These studies could not detect the orchestrated and dy-
namic changes between and within different classes of small RNAs that we observed when
comparing the 1-cell stage embryos to later stages. First, the majority of miRNAs is al-
ready expressed in the 1-cell stage embryo, suggesting that they are maternally deposited.
The reason remains to be determined. Second, we showed that miRNAs from the miR-35
cluster are likely early embryo–specific. Genetic knockouts and mutations for 95 miRNAs
have been published (Miska et al., 2007). Notably, the miR-35 cluster is the only known
miRNA cluster with an embryonic lethal knockout phenotype. Third, we observed many
small RNAs of uniform length mapping sense to rRNAs in 1-cell stage embryos (live-sorted
or methanol-fixed), with decreased expression in 2–4-cell embryos, but virtually absent
in samples from older stages. Thus, although we do not have independent validation, it
seems unlikely that the observed rRNA expression is an experimental artifact. rRNAs, un-
like mRNAs, are already transcribed in the 1-cell stage embryo (Seydoux and Dunn, 1997).
One may speculate about a turnover of maternally and paternally provided rRNAs to zygot-
ically transcribed rRNAs upon fertilization during very early embryogenesis. Finally, we
found consistent evidence for a turnover of mitochondrial components in the 1-cell stage
embryo. We observed degradation products of mitochondrial tRNAs in the early embryo
as well as many siRNAs directed against mitochondrial enzymes. Thus, it is tempting to
speculate about mechanisms that selectively degrade paternal mitochondria in early zy-
gotes, as described in vertebrates (Sutovsky, 2003).

Our data allowed us to study as yet virtually undescribed classes of small RNAs such
as 26G-RNAs. Observations of small RNAs, in particular ~26-nt-long with a 5’ guanine bias
have been reported earlier (Ambros et al., 2003; Ruby, Jan, et al., 2006) and were recently
dubbed 26G-RNAs (Ghildiyal and Zamore, 2009). We found that 26G-RNAs are dynami-
cally expressed and that they cluster in several intergenic regions. Northern blot anal-
ysis suggested that they may be initially generated with heterogeneous lengths or post-
transcriptionally modified such that they appear as having different sizes on the north-
ern blot. In addition to an increase in expression of 26G-RNAs in older embryos, we also
observed increased expression of 26-nt endo-siRNAs mapping to the antisense strand of
coding mRNAs. We did not computationally detect a ‘ping pong’ biogenesis mechanism
(Aravin, Sachidanandam, et al., 2007; Brennecke et al., 2007) between 26G-RNAs and 26-
nt endo-siRNAs.

Our eFACS data and analyses raise many more questions. However, altogether we are
tempted to conclude that the complexity of small RNA expression dynamics in very early
embryogenesis is comparable to the expression dynamics of protein-coding genes, and
that the use of eFACS will contribute to a more complete understanding of gene regulatory
networks during early animal development.
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2.5 Small RNAs in S. purpuratus early development

Abstract miRNAs are small ncRNAs that mediate post-transcriptional gene regulation
and have emerged as essential regulators of many developmental events. The transcrip-
tional network during early embryogenesis of the purple sea urchin, S. purpuratus, is well
described and can serve as an excellent model to test functional contributions of miRNAs
in embryogenesis. We examined the loss of function phenotypes of major components
of the miRNA biogenesis pathway. Inhibition of de-novo synthesis of Drosha and Dicer
in the embryo led to consistent developmental defects, a failure to gastrulate, and em-
bryonic lethality, including changes in the steady state levels of transcription factors and
signaling molecules involved in germ layer specification. We annotated and profiled small
RNA expression from the ovary and several early embryonic stages by deep sequencing
followed by computational analysis. miRNAs as well as a large population of putative
piRNAs had dynamic accumulation profiles through early development. Defects in mor-
phogenesis caused by loss of Drosha could be rescued with four miRNAs. Taken together
our results indicate that post-transcriptional gene regulation directed by miRNAs is func-
tionally important for early embryogenesis and is an integral part of the early embryonic
gene regulatory network in S. purpuratus.

Introduction Small RNAs are components of a conserved gene regulatory mechanism
that includes miRNAs, siRNAs and piRNAs. miRNAs negatively regulate protein expres-
sion by binding to sequence-complementary target sites in mRNAs which induces repres-
sion of mRNA translation or transcript destabilization and decay (Bartel, 2009; Brodersen
and Voinnet, 2009; Ghildiyal and Zamore, 2009; Guo et al., 2010; Hendrickson et al., 2009;
Rajewsky, 2006, 2011). In animals, miRNAs have thousands of targets and altogether reg-
ulate a major portion of protein coding genes (Baek et al., 2008; Bartel, 2009; R. C. Fried-
man et al., 2009; Krek et al., 2005; Lewis, Burge, and Bartel, 2005; Selbach et al., 2008;
Stark, Brennecke, et al., 2005; Xie et al., 2005). The vast majority of miRNAs are initially
processed by Drosha and its cofactor DGCR8 (Han et al., 2006; Y. Lee et al., 2003) and
the maturation of miRNAs and siRNAs requires Dicer. Dicer is a member of the RNase III
endoribonuclease family and is responsible for processing double stranded RNA (dsRNA)
to siRNAs during RNAi (H. Zhang et al., 2002). It is also the key enzyme that mediates the
final processing of most miRNAs from their precursors.

A number of fundamental steps in embryogenesis appear to be regulated by miRNAs
and while the documentation of gene regulatory networks involved in cell fate specifica-
tion and differentiation has revealed the importance of numerous signaling molecules
and transcription factors, the diverse regulatory roles of miRNAs in early development
are only now emerging (reviewed in Fabian, Sonenberg, and Filipowicz, 2010; Ghildiyal
and Zamore, 2009; Pauli, Rinn, and Schier, 2011). Recently a number of miRNAs were
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identified in the purple sea urchin, S. purpuratus (Campo-Paysaa et al., 2011; Friedländer,
Mackowiak, et al., 2012; Peterson, Dietrich, and McPeek, 2009; Wheeler et al., 2009), re-
vealing many deeply conserved miRNAs also present in humans. Echinoderms are a sister
group to the chordates and the function of miRNAs in these embryos may reflect transi-
tions in deuterostome development. Armed with the in-depth knowledge of transcrip-
tional gene regulatory networks in the sea urchin5, we set out to investigate the impor-
tance of miRNAs in early embryogenesis of this animal. We profiled and annotated small
RNA expression from the ovary and several early embryonic stages by deep sequencing
followed by computational analysis, including application of the miRNA identification
tool ”miRDeep” (Friedländer, W. Chen, et al., 2008; Friedländer, Mackowiak, et al., 2012).
Individual knockdowns of Dicer, Drosha and DGCR8 as well as miRNA rescue experiments
suggest that the miRNA pathway plays an important functional role in early cell fate de-
cisions of sea urchin embryogenesis and serves as a paradigm for an ancestral feature of
the deuterostome lineage.

My contributions

My contribution to this investigation was similar to that for the Stoeckius et al. (2009) in-
vestigation. Together with Marc Friedländer I mapped and classified the deep-sequencing
reads. After initially mapping the data to the genome, we found the sea urchin genome
annotation lacking, which made it difficult to classify reads by genomic annotations. In-
stead, we mapped the reads directly to sets of sequences of genomic features using the
Mapper module of miRDeep2 (Friedländer, Mackowiak, et al., 2012). We used a similar
hierarchy, as in Berninger et al. (2008) and Stoeckius et al. (2009), specifically, miRNA >
mRNA > tRNA > rRNA > unknown. To identify miRNA reads, we mapped to S. purpuratus
miRNA precursors from miRBase version 16 and to three novel precursors predicted using
miRDeep2 (Friedländer, Mackowiak, et al., 2012). To identify mRNA reads, we mapped
to the gene_cds (coding) sequences from SpBase6. To identify tRNA reads we analyzed
the Spur_v2.1 genome with tRNAscan-SE-1.23 using default eukaryotic parameters and
mapped to the predicted tRNA sequences. To identify rRNA reads we mapped to the S. pur-
puratus 18S and 28S rRNA sequences obtained at GenBank (D. A. Benson et al., 2004).
Last, all reads that mapped to the Spur_v2.1 genome but did not map to any of the above
annotations were labeled ‘unkown’. Reads were mapped with Bowtie (Langmead et al.,
2009) with these options: -f -n 1 -e 80 -l 18 -a –best –strata. Using this stringent proce-
dure we successfully mapped between 43% and 55% of the clipped reads in each of the
six datasets, corresponding to between 1.7 and 4.4 million reads. Even though some reads
may not have been mapped because of the incomplete state of the genome assembly, these
numbers were comparable to previous small RNA studies (Mayr and Bartel, 2009; Persson
et al., 2009), showing the consistent high quality of the data. We annotated piRNAs in the
following way: all reads that mapped to the genome but did not map to existing annota-
tions (‘unknown’ reads) were pooled across samples. Using a custom ruby script we iden-
tified all instances where two of these reads overlap with each other such that they are

5see www.spbase.org/endomes
6http://sugp.caltech.edu/SpBase/download/
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on opposite genomic strands and their 5’ ends overlap by exactly ten nucleotides. Since
this overlap is in perfect accordance with the ‘ping-pong’ model of piRNA biogenesis, we
annotated all such read pairs as piRNAs.

Dynamic small RNA expression We investigated the length distribution and annotation
of all sequencing reads. Small RNAs showed a bimodal length distribution with 2 distinct
peaks around 22 and 28 nucleotides (figure 2.1). All miRNAs identified by miRDeep ac-
count for a characteristic peak around 22 nucleotides. Interestingly, we found that most
of the sequenced sea urchin RNAs that do not map to existing annotations have a distinct
length profile peaking at 28 nucleotides, as has been observed for piRNAs in other species.
piRNAs are associated with silencing of transposable elements in the germline and have
recently been shown to be involved in maternal mRNA deadenylation in the early em-
bryo thus mediating the maternal-to-zygotic transition (Rouget et al., 2010). Further, we
found that a large portion of these RNAs tend to overlap with each other by exactly ten
nucleotides, with one read exhibiting a uridine bias at the 5’ end and the other an adenine
bias at the tenth nucleotide. These features are consistent with the conserved ‘ping-pong’
piRNA biogenesis pathway via mutual cleavage of the sense and antisense piRNA precur-
sors by the Piwi proteins (Aravin, Gaidatzis, et al., 2006; Brennecke et al., 2007; Girard
et al., 2006; Grivna et al., 2006; Gunawardane et al., 2007; Houwing et al., 2007; Saito
et al., 2006; Vagin et al., 2006; Watanabe et al., 2006). We therefore annotate the RNAs
that overlap by exactly ten nucleotides as piRNAs and refer to the remaining small RNA
species of around 28 nucleotides that do not overlap by ten nucleotides as ‘unknown’ se-
quences, although their length distribution suggests that they are likely highly enriched
in piRNAs (figure 2.1).

We observed a significant decrease in total reads mapping to miRNAs at the 32-cell
stage. This was correlated with an increase of reads mapping to putative piRNAs (fig-
ure 2.1). As distributions of sequenced reads do not reflect absolute abundance but rather
relative frequencies, two possible interpretations to the 32-cell stage transition are that
miRNAs are either cleared from the egg following fertilization, or that piRNAs strongly in-
crease at the 32-cell stage. To distinguish these possibilities, we performed Northern blots
for selected piRNA candidates. We observed a pronounced increase in 4 of the 5 detectable
piRNAs in the 32-cell stage (Song et al., 2012, Fig. S2). Moreover, RT-qPCR analysis did not
illustrate a drastic decrease of the tested miRNAs in the 32-cell stage (Song et al., 2012, Fig.
S1). Taken together the results suggest that piRNAs have a dynamic expression pattern
in the early sea urchin embryo. This increase of piRNA expression may correspond with
the specification of the piwi-positive small micromere lineage (C. E. Juliano et al., 2006;
Rodriguez et al., 2005).
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2.6 ChIP-Sequencing a cell-cycle regulator and a helicase

Abstract The activating E2F-transcription factors are best known for their dependence
on the Retinoblastoma protein and their role in cellular proliferation. E2F3 is uniquely
amplified in specific human tumours where its expression is inversely correlated with the
survival of patients. Here, E2F3B interaction partners were identified by mass spectro-
metric analysis. We show that the SNF2-like helicase HELLS interacts with E2F3A in vivo
and cooperates with its oncogenic functions. Depletion of HELLS severely perturbs the
induction of E2F-target genes, hinders cell-cycle re-entry and growth. Using ChIP-Seq,
we identified genome-wide targets of HELLS and E2F3A/B. HELLS binds promoters of ac-
tive genes, including the trithorax-related MLL1, and co-regulates E2F3-dependent genes.
Strikingly, just as E2F3, HELLS is overexpressed in human tumours including prostate can-
cer, indicating that either factor may contribute to the malignant progression of tumours.
Our work reveals that HELLS is important for E2F3 in tumour cell proliferation.

Introduction The E2F-transcription factor family is well conserved and widely known
for its role in proliferation and cell-cycle progression (van den Heuvel and Dyson, 2008).
Among this family, E2F1–E2F3 are most intriguing, since these E2Fs directly associate with
and are antagonized by the pRB (retinoblastoma) tumour suppressor protein (Burkhart
and Sage, 2008). Genetic mouse models provided first evidence that E2F3 largely con-
tributes to pRb-attributed tumorigenic events, such as the reduction of Rb-deficient pi-
tuitary adenomas in E2F3-deficient mice (Ziebold et al., 2003), but also pre-neoplastic
lesions of the lung (T. Parisi et al., 2007). In addition, the loss of E2F3, in combination
with E2F1 and E2F2, reduces hyperplasia in intestinal epithelia (Chong et al., 2009). Also
in human patients, aberrant E2F3-expression was linked to cancer. In some of these tu-
mours such as invasive urinary bladder carcinoma, it was suggested that the loss of pRB
as well as amplification of E2F3 are obligate events for tumorigenesis (Feber et al., 2004;
Hurst et al., 2008; Oeggerli et al., 2004). In advanced prostate cancers, E2F3 is highly
overexpressed and the highest E2F3 levels determine the worst clinical outcome for the pa-
tient (Foster et al., 2004). Apart from inappropriate E2F3-expression, the whole pRB/E2F-
pathway is regarded as being deregulated in nearly every human tumour (Hanahan and
Weinberg, 2011).

In the past, the transcriptional programmes of specific E2Fs were established after
overexpression of E2Fs in mammalian cells and subsequent microarray (DeGregori and
D. G. Johnson, 2006). These analyses led to the identification of many DNA synthesis,
checkpoint control, DNA repair and apoptosis-associated targets and suggested that there
are similarities but also specificity among the individual E2Fs (Kong et al., 2007). Using
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the more sophisticated ChIP assays coupled to microarrays, it was concluded that there
are functional overlaps between the E2Fs, but also that isoform-specific functions exist
(Asp et al., 2009; Ren, Cam, et al., 2002; Y. Takahashi, Rayman, and Dynlacht, 2000). Ow-
ing to these studies many new E2F-targets were identified, but the impact of most targets
for the oncogenic E2F function is still elusive.

Recently, more attempts were to deconstruct the mechanistic basis of the pRB/E2F
complex (Blais and Dynlacht, 2007). Various molecules were identified that are tethered
by pRB/E2F, acting both locally and globally, to modify the chromatin of E2F-dependent
promoters. Most of the numerous pRB-interacting molecules, such as the histone methyl-
transferase SUV39H1 contribute to repression. pRB-tethered SUV39H1 leads to hetero-
chromatinization and silencing of S-phase genes (Narita et al., 2003; Nielsen et al., 2001).
In order for a cell to proceed through the cell-cycle E2F-dependent promoters have to be
inverted from this repressive chromatin state into a state favouring transcription. E2F1–
E2F3 commence this transition by recruiting chromatin regulators such as HCF-1 in com-
plex with the mixed-lineage leukaemia (MLL1) protein that possess methyltransferase ac-
tivity towards histone H3 lysine 4, H3K4 (Tyagi et al., 2007). To alleviate the repressive
state of the chromatin, HCF-1 also enlists the histone lysine demethylase PHF8 (W. Liu
et al., 2010). That a majority of promoters bound by PHF8 overlap with E2F-bound pro-
moters was demonstrated by ChIP-Seq. Anticipating that all molecules that assist the
E2F-transactivating function or revert the state of the chromatin at E2F-dependent pro-
moters harbour immense potential as drug targets in human tumours, we explored such
molecules in the context of oncogenic E2F3.

Here, we identified the SNF2-like, ‘lymphoid-specific’ helicase HELLS7 as a novel E2F3-
interaction partner. Previously, it was shown that HELLS is required for the silencing of
constitutive heterochromatic regions such as retrotransposons or the pericentromer (Den-

7HELLS is also called SMARCA6, PASG or LSH.

Figure 2.2 (facing page): E2F3 and HELLS regulate many common targets, most notably
MLL1. (A) ChIP-Seq tag profiles of E2f3 (red) and Hells (yellow) in WT MEFs in a screenshot
from the UCSC genome browser displaying number number of ChIP-Seq tags mapping to
the Mll1 genomic context. Tag profiles were created by extending each read to a length
of 100 bases, and normalizing to 10 million mapped reads. RefSeq transcripts and mam-
malian sequence conservation (MamCon) are also shown. (B) Confirmatory ChIP analy-
ses of HELLS target genes in DU145 prostate carcinoma cells. The enrichment of E2F3 and
HELLS was assessed usingPDS5A,KRAS,MLL1,HSPD1, andRNF146primers spanning the
genomic regions around the TSS. CCNA2 is an E2F-dependent promoter and U2 served as
negative promoter (Ctrl) and IgG served as antibody control. (C) qRT–PCR (qPCR) analysis
depicting the relative expression of representative HELLS target genes in human prostate
carcinoma cells (PC3) after lentiviral depletion of E2F3 or HELLS using two independent
sequences each. The knockdown was verified by qPCR analysis of E2F3 and HELLS. The
transcriptional regulation of PDS5A, KRAS, MLL1, HSPD1, RNF146, SLC44A1, ZNF76 (M.
musculus Zfp523), XPO4, RALGPS2 and NEK6 was analyzed. GAPDH served as a control.
(D)MLL1was analyzed by qRT–PCR in synchronized PC3 cells, which were serum-arrested
and harvested at 0 or 18 h after serum addition. CDC6 is a S-phase-specific control. (E)
Effects of depleting HELLS in PC3 cells determined by western blots for MLL1, HELLS and
TUBULIN, using two independent hairpins (shHELLS S1 or S2) or control infections (shC-
trl).
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nis et al., 2001; L. Sun et al., 2004) via an interaction with DNA methyltransferases (Myant
and Stancheva, 2008). Now, we demonstrate that HELLS binds to E2F3 in vivo, aiding in-
duction of E2F-target genes and cell-cycle re-entry. Furthermore, we provide evidence that
HELLS, akin to E2F3, is overexpressed in several human tumours. In prostate carcinomas,
HELLS/E2F3 co-expression is marking the most aggressive stages. The vast overlap of the
identified co-bound promoters suggests that E2F3 and HELLS co-regulate target genes. No-
tably, a highly HELLS-enriched promoter is the trithorax-related MLL1. We suggest that in
cancer cells MLL1, that is important for histone methylation and activation of key cyclin
genes, depends itself on E2F3:HELLS.

My contributions

Before describing my contributions to the published part of this investigation, I would like
to refer the reader to an anecdote about a memorable episode during this investigation
that is described in appendix L.2.

Solexa read processing and mapping Solexa reads were base called using the manu-
facturer’s software SCS 2.5 / RTA 1.5. Subsequently, 3’ ligation adapter sequences were
identified and removed from the reads. Reads were clipped to 25 nt, and reads shorter
than 17 nt were discarded. The remaining reads were mapped against the mouse genome
(NCBI37/mm9) allowing up to edit distance 1 per read using a custom read mapping pipe-
line. Only reads mapping uniquely to the genome were considered. The mapped reads
were reduced to non-redundant tag position sets.

Adapter removal To remove 3’ ligation adapter sequences, all adapter prefix occurrences
up to edit distance 4 were considered. The best-matching adapter prefix occurrence of
each read was identified using a binomial model with parameters p, n, and k, where p,
the average sequencing accuracy, was set to 0.95, and n is the length of the prefix occur-
rence and k is the edit distance, i.e. the number of mismatches and indels (=insertions and
deletions) in the alignment of the adapter sequence to the adapter prefix occurrence in the
read. For each read we removed the prefix occurrence that had the highest log-likelihood
according to this model.

Tag density normalization To compare distributions of aligned deep-sequencing reads
between the different libraries we applied the following normalization procedure. First,
aligned tag position sets were smoothed by applying a sliding window of size 100 nt, calcu-
lating for each position the relative frequency of positions with aligned tags in the window
centered on that position. This relative frequency was divided by the number of aligned
tag positions and multiplied by 10 million to yield mapping density units of tags per 10
million aligned tags.

Tag density analysis around transcription start sites A non-redundant set of RefSeq
(Pruitt, Tatusova, and Maglott, 2005) TSS was extracted from the UCSC table browser

48



2.6. ChIP-Sequencing a cell-cycle regulator and a helicase

(Karolchik, Hinrichs, et al., 2004). For each library, we determined the expected tag den-
sities per 10 million aligned tags for each position in windows of size 1.5 around the TSS.
From these densities we computed the relative enrichment of each library to the IgG li-
brary in the same genotype.

Identification of binding regions The mapped reads were reduced to non-redundant tag
position sets. Regions enriched for E2F3 and HELLS were determined using MACS (Y.
Zhang et al., 2008) version 1.4.0beta. The IgG mapped read sets were pooled and used
as control in the analyses. Default parameter settings were used.

Determining target genes Target genes were defined by finding transcription start sites
situated closer than 1 kb to summits of enriched regions according to the MACS analysis
of the ChIP-Seq libraries.

Analysis of H3K4me3 data MEF histone modification data of Mikkelsen et al. (2007), in
particular H3K4me3, were retrieved from the supplement of Young et al. (2011). These data
are given in terms of Ensembl gene IDs, that we mapped to RefSeq genes. We performed
the analysis of overlapping target genes and H3K4me3 on the level of RefSeq genes.

HELLS and E2F3 are enriched at a large fraction of promoters The joint regulation of
cell-cycle entry by E2F3 and HELLS and their co-expression in human tumours are strong
evidence that these proteins share functional overlaps. To reveal the full extent of the
genome-wide chromatin association of E2f3 and Hells, we applied ChIP-Seq in mouse fi-
broblasts. Since Hells was previously reported to localize to heterochromatin (Yan et al.,
2003) and enforce DNA methylation and silencing of selected Hox genes (Xi et al., 2007),
we expected to detect Hells also at inactive, repressed loci. Such regions are also targets of
the polycomb group-mediated repression and characterized by trimethylation of histone
H3 at lysine 27, H3K27me3 (Sawarkar and Paro, 2010). Thus, the genome-wide distribu-
tion of Hells and E2f3 was assessed in WT MEFs and compared with that of the polycomb-
associated, repressive H3K27me3 mark. The ChIP-Seq data were mapped to the genome
and subjected to a bi-modal transcription factor type peak analysis to identify enriched
regions (von Eyss et al., 2012, supplementary data). The highest number of significant
peaks within 1 kb of RefSeq TSSs were found for E2f3 (von Eyss et al., 2012, figure 6A; sup-
plementary tables SII and SIII). Importantly, only 22% of the Hells targets coincide with
H3K27me3, but 93% of all Hells-associated TSS coincide with E2f3- bound TSS (von Eyss
et al., 2012, figure 6B). These findings indicate that Hells is more likely to co-bind E2f3
targets than the H3K27me3- enriched, presumably ‘repressed’ promoters. For a graphical
overview of E2f3 and Hells peaks, we chose the chromosomal context of Mll1 (figure 2.2A)
because for Hells it is the highest-ranking region according to the ChIP-Seq data (von Eyss
et al., 2012, supplementary table SIII). The ChIP-Seq data confirm our conventional ChIP
analysis that Hells and E2f3 co-occupy overlapping sets of promoters. Knowing that E2Fs
have strong preference for genomic regions closest to the TSS (DeGregori and D. G. John-
son, 2006), we assessed the global positional preference of E2f3 and Hells (von Eyss et al.,
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2012, figure 6D). As anticipated, E2F3 sharply concentrates at TSS. Also for Hells, the ChIP-
Seq summits clustered closely to the TSS, but with a preference towards a region of about
120 nt downstream of the TSS. Having observed that there is a global overlap of Hells and
E2F3-bound targets, we deter- mined if the co-bound target genes are likely to be active or
repressed by assessing the overlap with previously mapped regions that are enriched for
histone H3 trimethylated at lysine 4, H3K4me3 (Mikkelsen et al., 2007). As expected, the
majority of E2f3 targets are also enriched for H3K4me3 (von Eyss et al., 2012, figure 6E).
Importantly, 86% of the Hells targets are likely to be actively transcribed, since they also
show H3K4me3 enrichment at their promoter.

The activities of HELLS and E2F3 are essential to induce MLL1 and other targets to cre-
ate a proliferative circuitry Next, confirmatory ChIP analysis was performed in DU145
prostate cancer cells, since here the E2F3:HELLS activity is physiologically relevant. Con-
sistently, both E2F3 and HELLS were enriched at the promoter of MLL1 and other ChIP-Seq
targets such as PDS5A,KRAS,HSPD1 andRNF146 (figure 2.2B; von Eyss et al., 2012, supple-
mentary figure S5). We used the established E2F- target CCNA2 that was previously shown
to depend on HELLS (von Eyss et al., 2012, figure 3C), as a positive control. Also in the
mouse fibroblasts, Hells ChIP-Seq reads were found at the Ccna2 promoter (von Eyss et al.,
2012, supplementary figure 6C). Next, we used human prostate carcinoma cell lines again
to determine if in this context the HELLS activity would affect the expression of MLL1 or
any of the other targets (von Eyss et al., 2012, supplementary table SII). Either HELLS
or E2F3 was acutely depleted by lentiviral shRNA and the knockdown of E2F3 or HELLS
was verified using qRT–PCR. Importantly, HELLS-depletion led to a reduction of MLL1
and also of PDS5A, KRAS, HSPD1, RNF146, SLC44A1, ZNF76 (Mus musculus Zfp523), XPO4
and RALGPS2. Only NEK6 expression was elevated upon HELLS loss (figure 2.2C). This is
in stark contrast to the effect of Hells loss on MCM4/6 or CDC6 shown before (von Eyss
et al., 2012, figure 3A). Importantly, also E2F3 is needed for normal MLL1 levels and also
regulates the expression of most of the other targets, except SLC44A1. Since we also de-
tected a diminished expression of MLL1 and other HELLS targets in T98G cells after HELLS-
depletion (von Eyss et al., 2012, supplementary figure S7A–C), we assessed whether the
expression pattern of MLL1 resembles that of typical E2F-targets. In synchronized human
prostate cancer cells, MLL1 was induced more strongly than CDC6 upon serum-induced
cell-cycle re-entry (figure 2.2D). Given that the expression of the MLL1 RNA not always
correlates with the protein level (H. Liu, Cheng, and Hsieh, 2007), we tested the effect of
HELLS-depletion upon the expression of the MLL1 protein in the same prostate cells and
clearly found MLL1 to be reduced (figure 2.2E). Furthermore, theMll1RNA and protein also
declined in E2f3-deficient mouse cells, where it is associated with a reduction of H3K4me3.
In accordance to the ChIP-Seq data, theMll1promoter is indeed bound by Hells in both WT
and E2f3-deficient cells (von Eyss et al., 2012, supplementary figure S7D–F). Combined,
our data potently support that the top-ranking ChIP-Seq targets of HELLS, among them
MLL1, are HELLS targets in vivo. Importantly, Mll1, Kras and Rnf146 are Hells- regulated
targets in both mouse and human cells. Lastly, both E2F3 and HELLS are necessary for
proper activation of MLL1 and other targets.
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2.7 Data curation for post-transcriptional research

Abstract In animals, RBPs and miRNAs post-transcriptionally regulate the expression
of virtually all genes by binding to RNA. Recent advances in experimental and computa-
tional methods facilitate transcriptome-wide mapping of these interactions. It is thought
that the combinatorial action of RBPs and miRNAs on target mRNAs form a post-transcrip-
tional regulatory code. We provide a database that supports the quest for deciphering this
regulatory code. Within doRiNA, we are systematically curating, storing and integrating
binding site data for RBPs and miRNAs. Users are free to take a target (mRNA) or regulator
(RBP and/or miRNA) centric view on the data. We have implemented a database frame-
work with short query response times for complex searches (e.g. asking for all targets of
a particular combination of regulators). All search results can be browsed, inspected and
analyzed in conjunction with a huge selection of other genome-wide data, because our
database is directly linked to a local copy of the UCSC genome browser. At the time of
writing, doRiNA encompasses RBP data for the human, mouse and worm genomes. For
computational miRNA target site predictions, we provide an update of PicTar predictions.

My contributions

I curated the analyses for the PAR-CLIP datasets for the RBPs AGO1–4, IGF2BP1, PUM2,
and QKI, produced by Hafner et al. (2010) that were included in the database.

2.8 Splicing regulation
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Abstract RBM10 encodes an RNA binding protein. Mutations in RBM10 are known to
cause multiple congenital anomaly syndrome in male humans, the TARP syndrome. How-
ever, the molecular function of RBM10 is unknown. Here we used PAR-CLIP to identify
thousands of binding sites of RBM10 and observed significant RBM10–RNA interactions
in the vicinity of splice sites. Computational analyses of binding sites as well as loss-of-
function and gain-of-function experiments provided evidence for the function of RBM10
in regulating exon skipping and suggested an underlying mechanistic model, which could
be subsequently validated by minigene experiments. Furthermore, we demonstrated the
splicing defects in a patient carrying an RBM10 mutation, which could be explained by dis-
rupted function of RBM10 in splicing regulation. Overall, our study established RBM10 as
an important regulator of alternative splicing, presented a mechanistic model for RBM10-
mediated splicing regulation and provided a molecular link to understanding a human
congenital disorder.

My contributions

Using the DMD methods described in this thesis, I analyzed motifs present in RBM10 PAR-
CLIP data. Specifically, I compared the PAR-CLIP bound regions with sets of expression
stratified control sequences sequences sampled from RNA-Seq data of the same tissue
type. I found the exonic splicing enhancer (ESE) motif GAAGAV, originally described by
Fairbrother, Yeh, et al. (2002), Lavigueur et al. (1993), and Zavolan et al. (2003), to be the
most significantly enriched motif present in the data. This finding is consistent with the
splicing associated function of RBM10.
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Overview of probabilistic sequence
analysis

Affinity of a protein to a given nucleic acid is determined by unspecific and specific con-
tributions to the binding free energy (von Hippel and Berg, 1986). The unspecific contri-
butions include a large electrostatic component due to ionic interactions between basic
amino acid side chains and the acidic sugar phosphate backbone of the nucleic acid. Spe-
cific components are caused by hydrogen bonding between nucleobases and protein side
chains in the protein’s binding pocket. Given a binding pocket, the hydrogen bonding
patterns are determined by the sequence identity of the nucleic acids and the ensemble
of structural conformations that the nucleic acid assumes. As the structural ensembles of
RNA have higher degrees of freedom than those of (typically double stranded) DNA, struc-
tural contributions to binding harbor more specificity determining potential for RBPs than
for DBPs. However, many RBPs prefer single stranded conformations of binding sites in
RNA and, consequently, nucleic acid sequence identity is frequently as important a speci-
ficity determinant for RBPs as it is for DBPs. While, apart from sequence and structure,
still further properties8 influence binding to nucleic acids of both DBPs and RBPs, mod-
eling of sequence binding properties remains a fundamental tool to decipher regulatory
programs.

The following part discusses modeling techniques for probabilistic sequence analysis.
Chapter 3 deals with models for binding motifs. As binding motifs are typically not found
in isolation, but rather are embedded into unrelated sequence context, the same chap-
ter also presents models for binding sites. Hidden Markov models (HMMs) are versatile
modeling tools that find manifold applications in biological sequence analysis, and their
theory is presented in chapter 4. Subsequently, chapter 5 presents a model for binding
sites based on HMMs. Learning methods for HMMs are presented in chapter 6.

8Such as chemical modifications of nucleic acids, or protein and nucleic acid interaction partners of DBPs
and RBPs.
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Chapter 3

Motif and binding site models

Numerous models are available to describe binding preferences of nucleic acid binding
proteins (Stormo, 2000). Section 3.1 gives an overview of common models for the binding
specificity contribution of core cognate nucleotides. We will refer to these as binding motif
models.

In motif discovery (MD) problems involving real biological data motifs rarely present
themselves in isolation. Rather, the available sample sequences include functionally un-
related, non-cognate sequence context into which the binding patterns lie embedded.

Section 3.2 addresses composite models of probabilistic character that describe the
binding motif embedded in surrounding sequence context. Models of this kind are re-
ferred to as binding site models.

3.1 Binding motif models

Word-based models, the oldest and simplest motif models considered here, require little
explanation and are addressed in section 3.1.1. Models that allow degeneracy at certain
positions without being quantitative about preferences at the degenerate positions are
discussed in section 3.1.2. Subsequently, section 3.1.3 discusses probabilistic motif models
that leverage the toolbox of graphical modeling. Section 3.1.3.1 explains how inference is
performed to detect occurrences of probabilistic motif models, and also briefly mentions
how probabilistic motif models relate to statistical-mechanical models from biophysics.
The section finishes in section 3.1.3.2 with information theoretic concepts applicable to
sequence motifs.

3.1.1 Consensus models

The most basic form of binding preference modeling is the specification of the single most
frequently bound word, the so-called consensus sequence. An example is given in fig-
ure 3.1a. This form of modeling has two advantages. The first is the simplicity of repre-
sentation, the second the feasibility of finding words that are globally optimal. Obviously
the representational simplicity entails that word-based model should only in rare cases
allow a comprehensive characterization of all sequences that a factor binds to.
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(a) S ET G T A A A T A

(b) S ET G T A H A T A

(c) S E1 2 3 4 5 6

(d) S E1 2 3 4 5 6

(e) S E1 2 3 4

(f) S E1 2 3 4

Figure 3.1: Graphical probabilistic models for bindings motifs and sites. (a) consensus
motif model, (b) IUPAC regex motif model, (c) BLOCKS motif model, (d) META-MEME motif
model, (e) Profile HMM motif model, (f) Plan7 HMMER2 binding site model. Start and stop
states are labeled S and E, and are marked by double circles. States that are regular parts
of the motifs are depicted in rectangle boxes. Insertion states are depicted as diamond
shaped nodes. Silent, deletion states are depicted by small circled nodes. In (a) and (b)
regular states labeled by a letter emit only characters of that kind. In (c)–(f) numbered
regular states and insertion states have individual emission distributions. Figure based
on figure 3 of Eddy (1998).
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Table 3.1: The IUPAC code for nucleic acids.

Code Symbols Mnemonic
A A Adenine
C C Cytosine
G G Guanine
T (or U) T Thymine (or Uracil)
R A or G Purine
Y C or T/U Pyrimidine
S C or G Strong
W A or T/U Weak
K G or T/U Keto
M A or C Amino
B C or G or T/U Not A
D A or G or T/U Not C
H A or C or T/U Not G
V A or C or G Not T/U
N A or C or G or T/U Any

3.1.2 Regular expression type models

A simple extension of word-based models is to allow degeneracy at certain positions. We
may specify the allowed nucleotides at a given position using e.g. the IUPAC codes for
nucleic acids, see table 3.1. An example is given in figure 3.1b. Regular expression (regex)
type models are more general than word-based models. Yet they still fail to faithfully
represent specific binding preferences in which the presence of a particular nucleotide at
a given position may be tolerated but is less conductive to binding than other nucleotides.

3.1.3 Probabilistic models

This section summarizes classical, matrix-based probabilistic models for sequence motifs,
their usage in probabilistic sequence analysis, and some related information theoretic
concepts.

Conceptually and historically the representations presented here build on matrices of
nucleotide counts at the different positions of the motif in a set of example sequences.
Thus these are discussed first, followed by a probabilistic interpretation of the counts as
frequencies. The combination of such a model for a motif of interest with a background
model allows to condense the representation into score matrices, that are subsequently
discussed.

Matrix-based motif models can be represented by graphical probabilistic models as
exemplified in figure 3.1c. Models for motifs of variable lengths due to non-facultative in-
ternal positions, such as exemplified in figures 3.1d to 3.1f, are not covered in this section,
but are naturally modeled with the tools of HMMs introduced in chapter 4.

Nucleotide count matrix The simplest probabilistic model for binding site specificity,
a position-specific count matrix (PSCM), is built from a set of example binding site se-
quences of identical lengthw. PSCMs specify the number of times that a given nucleotides
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is observed at each position in the example sequences. In a PSCM the parameter at posi-
tion i, j specifies how often the symbol j is observed at the i-th position of the motif.

Nucleotide frequencymatrix By transforming the counts of a PSCM at each position into
a probability distribution, a position-specific frequency matrix (PSFM) may be derived.
In so doing, a pseudo-count is frequently added. In a PSFM the parameter at position
i, j in the matrix gives the probability of observing the symbol j at the i-th position of the
motif. Formally, in a PSFM M = (pij)1≤i≤w

1≤j≤4
the emission probabilities of each position i

represent a multinomial distribution. Together with an independence assumption of the
contributions of the individual positions (Benos, Bulyk, and Stormo, 2002), the columns
of a PSFM form a product-multinomial model.

Scorematrix It is often convenient to directly combine a PSCM with a background model,
yielding a position-specific score matrix (PSSM), which is also frequently called position
position weight matrix (PWM). It was introduced by Stormo et al. (1982). In a PSSM the
observation frequencies of the model are divided by frequencies given by a background
model and then log-transformed1. Assuming that the background model specifies proba-
bilities (bij) for symbol j at position i, the PSSM of the PSFM P contains scores

sij = log2 pij − log2 bij. (3.1)

The advantage of this representation is the numerical convenience it allows in calculating
the score S of a sequence X = (Xi)1≤i≤w by simply summing the relevant entries of this
table.

S(X|θ) =
w∑
i=1

siXi (3.2)

Scores of this kind are the log-likelihood ratio of the model to the background, see below.

Score distribution There exists an algebraic algorithm due to Staden (1989) to calculate
the background score distribution of a given PSSM. As remarked by Rahmann (2003), by
applying it to the signal model the same algorithm may be used to compute the signal
score distribution. Rahmann also gives a dynamic programming variant of the Staden
algorithm.

3.1.3.1 Inferring motif occurrences

Where for discrete word-based models the question of motif occurrence is a matter of con-
sistency with the model, for probabilistic motif models it has a probabilistic answer. In
situations where probabilistic methods are used it is customarily understood that differ-
ent kinds of errors may happen, referred to as type I and type II errors. Type I errors are
such where a true signal is not recognized as such, in this case where a true motif occur-

1Note that we will mostly use logarithms to the base two for the sake of consistence with the conventional
usage of units of bits from information theory.

60



3.1. Binding motif models

rence is not recognized. Type II errors are such where background is mistaken for signal,
i.e. where a background sequence is assumed to be a motif occurrence.

Two schools of thought exist to cope with this, those of statistical hypothesis testing
and of Bayesian inference. Statistical hypothesis testing typically aims to determine a suit-
able threshold λ to accept or reject the hypothesis of a motif occurrence, where Bayesian
inference computes posterior probabilities. Both approaches often agree on the outcome,
but close to the decision boundary of hypothesis testing Bayesian inference computes
intermediate probabilities, interpolating between the decisions and reflecting the uncer-
tainty about which is the right decision.

Hypothesis testing for motif occurrences The Neyman-Pearson lemma states that the
likelihood ratio test is uniformly most powerful2 when deciding between two point hy-
potheses (Neyman and E. Pearson, 1933).

Λ(X) =
L(motif|X)

L(background|X)
=

P(X|motif)
P(X|background)

≥ λ, (3.3)

where the threshold λ is chosen such that the probability of falsely rejecting the back-
ground hypothesis is α, P(Λ(X) ≥ λ|H0) = α. It is often numerically advantageous to
compute log-likelihoods in place of likelihoods. In this case the test becomes

log2 Λ(x) = log2 L(motif|X)− log2 L(background|X)

= log2 P(X|motif)− log2 P(X|background) ≥ log2 λ.
(3.4)

As remarked at the end of section 3.1.3, the distributions of scores of sequences gener-
ated by the signal or background model can be determined. These distributions may then
be inspected to determine suitable cutoffs for hypothesis testing. The background score
distribution yields the Type-1 error, i.e. p-value. The signal score distribution yields the
statistical power of the test, i.e. the probability to detect true signal.

Bayesian reasoning for motif occurrences Within the framework of Bayesian reasoning
one may consider a related ratio of probabilities, namely that of joint posterior probabili-
ties,

R =
P(X,motif)

P(X,background)
=

P(X|motif)P(motif)
P(X|background)P(background)

, (3.5)

or, again because of numeric advantages, the difference of logarithmic probabilities,

log2 R = log2 P(X|motif)− log2 P(X|background) + log2 P(motif)− log2 P(background).
(3.6)

It is clearly seen that the Bayesian log ratio of posterior probabilities is identical to the
log likelihood ratio statistic plus the log ratio of prior probabilities. In other words, the
threshold motivated by the trade-off between Type I and II errors in hypothesis testing

2A test is uniformly most powerful when it has the greatest power 1−β among all tests of a given false positive
rate α. Statistical power of a test is also known as sensitivity, and β is the probability of committing a type II
error. False positive rate is the probability of committing a type I error, i.e. of rejecting the null hypothesis when
it is true.
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corresponds in Bayesian reasoning to a constant that reflects the prior knowledge of the
frequency of the two classes.

Apart from the log ratio of joint probabilities R which is practically equivalent to hy-
pothesis testing, the Bayesian formalism offers further possibilities, such as calculating
the posterior probability for a motif occurrence,

P(motif|X) = P(X,motif)
P(X,motif) + P(X, background)

=
P(X|motif)P(motif)

P(X|motif)P(motif) + P(X|motif)P(motif)

(3.7)

It may be noted in passing that the posterior probability is equivalent to the sigmoid func-
tion σ applied to the above difference of logarithmic joint probabilities3,

σ(log2 R) =
1

1 + 2− log2 R
=

1
1 + 1

R

=
1

1 + P(X,background)
P(X,motif)

=
P(X,motif)

P(X,motif) + P(X, background)

=P(motif|X).

(3.8)

This equivalence of posterior motif probabilities and the sigmoid function applied to
log2 R establishes a biophysical underpinning for the probabilistic formalism. In statis-
tical mechanics Fermi-Dirac statistics describe the state distribution of systems of many
particles obeying the Pauli exclusion principle. In particular, the sigmoid is equivalent
to the Fermi-Dirac statistics of a two state system like that of a site that may be occupied
by a bound factor or may be free for binding. This equivalence relates the log motif like-
lihood ratio to the binding energy and the log ratio of prior probabilities (or equivalently
the hypothesis testing threshold) to the chemical potential, scaled by the product of tem-
perature and gas constant.

3.1.3.2 Information theoretic concepts

Information entropy of a motif This and the following subsections use some tools from
information theory which are summarized in the appendix C.2. The information entropy
(see appendix C.2.1) of a PSFM M = (pij)1≤i≤w

1≤j≤4
at a position i is given by

Hi(M) = −
4∑
j=1

pij log2 pij. (3.9)

When the base of the logarithm in the above equation is two, the unit of information
entropy is bit. The minimum of 0 bit is attained for a degenerate distribution, e.g. for
pi = (1, 0, 0, 0), the maximum of 2 bit for a uniform distribution, i.e. for pi = ( 1

4 ,
1
4 ,

1
4 ,

1
4 ).

Assuming independence of the contribution of the individual positions to the binding
(Benos, Bulyk, and Stormo, 2002), the information entropy of a PSFM M of width w is

3Note that the sigmoid function is typically defined as σ(x) = 1
1+e−x , but here we use a variant defined as

σ(x) = 1
1+2−x . Also note the first footnote of this chapter.

62



3.1. Binding motif models

given by

H(M) =
w∑
i=1

Hi(M) = −
w∑
i=1

4∑
j=1

pij log2 pij. (3.10)

The minimal value of information entropy of a motif of width w is 0 bit, its maximum is
2w bit.

Information content of a motif Schneider, Stormo, et al. (1986) introduced the concept
of information content (IC) of a PSFM. The IC of a PSFM M of width w may be determined
relative to a background model B,

IC(M,B) =I(M;B) (3.11)

=

w∑
i=1

4∑
j=1

pij log2
pij
bij

(3.12)

=
w∑
i=1

4∑
j=1

pij log2 pij −
w∑
i=1

4∑
j=1

pij log2 bij (3.13)

=−
w∑
i=1

4∑
j=1

pij log2 bij −H(M). (3.14)

It is the Kullback-Leibler (KL) divergence (see appendix C.2.4) of the model and the back-
ground model, IC(M,B) = DKL(M||B). If the background model B is a uniform, zeroth
order Markov chain, i.e. bij = 1

4 for 1 ≤ i ≤ w and 1 ≤ j ≤ 4, then the IC of a length-w
motif M is

IC(M) =−
w∑
i=1

4∑
j=1

pij log2
1
4
−H(M) (3.15)

=2w−H(M). (3.16)

In the case of a uniform background model, the maximum IC is 2w bit, which is attained
when all positions are degenerate, and the minimum information is 0 bit when all posi-
tions are uniform.

The IC of a motif may be interpreted as the reduction of information entropy of a motif
relative to the background.

Another interpretation of the IC of a PSFM M is the expected PSSM score of sequences
X generated by the underlying PSFM M,

IC(M) = E [S(X|θ)|X ∼ M] . (3.17)

Note again our previous remark in section 3.1.3 that the distribution of PSSM scores can
be computed efficiently, and by calculating its mean we can experimentally confirm this
theoretical expectation.

Sequence logo Sequence logos are a way of representing the binding preferences of a
nucleic acid binding factor that was introduced by Schneider and Stephens (1990).
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(a) S B M B E

(b) S B M B E

(c) S E

M

B

Figure 3.2: Simple binding site model topologies. (a) One occurrence per sequence (OOPS)
model. (b) Zero or one occurrence per sequence (ZOOPS) model. (c) Arbitrary number of
occurrences (ANOPS) model. Double circles denote start (S) and end (E) states. Rectangles
denote motif (M) and background (B) states.

The idea is to scale the total vertical extent of each position by the IC of that position.
The letters at this position divide this total height up proportionately to their probability.

Sequence logos will be used to present the outcome of MD applications later in this
thesis, such as in chapters 18 and 20.

3.2 Binding site models

3.2.1 Binding site model topologies

Figure 3.2 shows graphical representations of basic binding site models. The one occur-
rence per sequence (OOPS) model is for sequences with exactly one occurrence of the
binding motif, possibly embedded in background sequence. The zero or one occurrence
per sequence (ZOOPS) model represents sequences with either exactly one or no binding
motif, optionally surrounded by background sequence. The arbitrary number of occur-
rences per sequence (ANOPS) model is used to model sequences that may have zero, one
or multiple motif occurrences, with optional surrounding background sequence.

3.2.2 Likelihoods

Expressions for the probabilistic models corresponding to the OOPS and ZOOPS models
are as follows. Assuming the sequence X to be of length n, and the motif to be of width w,
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3.2. Binding site models

the likelihood for the OOPS model is given by

L(OOPS, θ|X) =P(X|OOPS, θ)

=

n−w+1∑
i=1

P(Mi|θ)P(X1...i−1|B, θ)P(Xi...i+w−1|M, θ)P(Xi+w...n|B,θ)

=P(X|B, θ)
n−w+1∑
i=1

P(Mi|θ)
P(Xi...i+w−1|M,θ)
P(Xi...i+w−1|B, θ)

,

(3.18)

where P(Mi|θ) is a positional prior, that is often chosen to be uniform, P(Mi) = 1
n−w+1 .

By making use of PSSM scores, as defined in equation (3.2), this can be written as

L(OOPS, θ|X) = P(X|B, θ)
n−w+1∑
i=1

P(Mi|θ)2S(Xi...i+w−1|θ). (3.19)

The likelihood of the ZOOPS model is given by a mixture model on top of the OOPS
model,

L(ZOOPS, θ|X) = P(X|ZOOPS, θ) = λ · P(X|OOPS, θ) + (1− λ) · P(X|B, θ), (3.20)

where λ is the probability of observing a binding motif in the site.

The ANOPS model is conveniently formulated using the theory of HMMs. After outlin-
ing HMM theory in chapter 4, we return to the ANOPS binding site model in chapter 5.

3.2.3 Posterior probabilities

Based on the above given expressions we can define expressions for different posterior
probabilities under the OOPS and ZOOPS model.

Let us label the hypothesis of observing a motif occurrence at position i as Mi, and,
overloading notation, label the hypothesis of observing at least one motif occurrence any-
where in a sequence as M. By definition, the posterior probability of observing a motif
occurrence anywhere in the sequence is 1 for the OOPS model, P(M|X,OOPS, θ) = 1.

The posterior probability of Mi under the OOPS model is

P(Mi|X,OOPS, θ) =P(Mi,X|OOPS,θ)
P(X|OOPS, θ)

=
P(X|B, θ)P(Mi|θ)
P(X|OOPS, θ)

P(Xi...i+w−1|M,θ)
P(Xi...i+w−1|B, θ)

=
P(X|B, θ)P(Mi|θ)
P(X|OOPS, θ) 2S(Xi...i+w−1|θ).

(3.21)

65



Chapter 3. Motif and binding site models

The corresponding posterior probability for Mi under the ZOOPS model is given by

P(Mi|X, ZOOPS, θ) =P(Mi,X|ZOOPS, θ)
P(X|ZOOPS, θ)

=
λP(X|B, θ)P(Mi|θ)
P(X|ZOOPS, θ)

P(Xi...i+w−1|M, θ)
P(Xi...i+w−1|B, θ)

=
λP(X|B, θ)P(Mi|θ)
P(X|ZOOPS, θ) 2S(Xi...i+w−1|θ).

(3.22)

The posterior probability of M under the ZOOPS models is given by

P(M|X, ZOOPS, θ) =
n−w+1∑
i=1

P(Mi|X, ZOOPS, θ). (3.23)

We will refer to the hypothesis of not observing a motif in the ZOOPS model as ¬M by
using the mathematical negation notation for the logical complement. The posterior for
¬M is given by

P(¬M|X, ZOOPS, θ) =P(¬M,X|ZOOPS, θ)
P(X|ZOOPS, θ)

=
(1− λ)P(X|B)
P(X|ZOOPS, θ) .

(3.24)

As M and its negation ¬M are complementary events, this yields a second expression for
the posterior probability of M,

P(M|X, ZOOPS, θ) = 1− P(¬M|X, ZOOPS, θ). (3.25)

Based on the theory HMMs, the posterior probability for the ANOPS model is given
later in section 5.2.
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Chapter 4

Hidden Markov models

Hidden Markov models (HMMs) are probabilistic graphical models. They are used in sit-
uations that may be described by a set of variables of which only a subset is observed, in
so-called partial data modeling.

Hidden Markov modeling involves two spaces, one that represents the observable enti-
ties, and another one that represents underlying states. Both state and observation spaces
may be continuous or discrete. In this thesis we will only consider discrete state and ob-
servation spaces.

Relevant literature on HMMs includes a famous review by Rabiner (1989), as well as
some textbooks. Rabiner and Juang (1993) detail speech recognition applications. Durbin
et al. (1998) focus on biological sequence applications. Cappé, Moulines, and Rydén
(2010) cover more theoretical aspects. Koller and N. Friedman (2009) address the general
theory of probabilistic graphical models. Finally, general machine learning textbooks by
MacKay (2003) and Bishop (2006) also outline the theory of HMMs.

4.1 Formal definition

The notation and definitions here follow Baum, Petrie, et al. (1970) and Rabiner (1989).

Definition 1 (Hidden Markov model). Let A = (aij) be an N × N stochastic matrix, i.e.∑N
j=1 aij = 1 for all 1 ≤ i ≤ N, and aij ≥ 0 for all 1 ≤ i, j ≤ N. Let a = (ai), 1 ≤ i ≤ N be a

probability distribution, i.e.
∑N

i=1 ai = 1, and ai ≥ 0 for all 1 ≤ i ≤ N. For each 1 ≤ i ≤ N
let bi(y) be a probability density:

∫
bi(y)dy = 1. Let θ be the triple A, a, b = {bi}. We define

a stochastic process X = {Xt} with density

L(θ|X) =P(X1 = x1,X2 = x2, . . . ,XT = xT|θ)

=
N∑

i0,i1,...,iT=1

ai0ai0i1bi1(x1)ai1i2bi2(x2) · · · aiT−1iTbiT(xT).
(4.1)

Then θ is a hidden Markov model for {Xt}.
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4.1.1 Modeling beginning and end of sequences

It is possible to simplify the structure of HMMs by adding a special state in which the
model is initialized. Below, we assume that the index of this state is 1. Thus, a1 = 1 and
ai = 0 for 1 < i ≤ N. The role of the initial state distribution parameter a = (ai), 1 ≤ i ≤ N
is thus realized by the transition probabilities (a1j), 1 ≤ j ≤ N.

Definition 2 (Hidden Markov model with start state). Let A = (aij) be an N×N stochastic
matrix. For each 1 ≤ i ≤ N let bi(y) be a probability density. Let θ be the pair A, b = {bi}.
We define a stochastic process X = {Xt} with density

L(θ|X) =P(X1 = x1,X2 = x2, . . . ,XT = xT|θ)

=
N∑

i1,...,iT=1

a1i1bi1(x1)ai1i2bi2(x2) · · · aiT−1iTbiT(xT).
(4.2)

Then θ is a hidden Markov model with start state for {Xt}.

Similarly, it is possible to model the end of sequences. For this one may introduce
another special state as end state. It is however also possible to identify start and end
states. When doing so, we again assume that the index of the start and end state is 1.

Definition 3 (Hidden Markov model with start and end state). Let A = (aij) be an N × N
stochastic matrix. For each 1 ≤ i ≤ N let bi(y) be a probability density. Let θ be the pair
A, b = {bi}. We define a stochastic process X = {Xt} with density

L(θ|X) =P(X1 = x1,X2 = x2, . . . ,XT = xT|θ)

=
N∑

i1,...,iT=1

a1i1bi1(x1)ai1i2bi2(x2) · · · aiT−1iTbiT(xT)aiT1.
(4.3)

Then θ is a hidden Markov model with start and end state for {Xt}.

The start and end state is the only state to emit a specific symbol, ε, the so called
empty symbol that is never occurring in the observations and which is not emitted by any
other state. It is assumed that the observation sequence is pre- and postfixed by the empty
symbol ε, thus forcing any valid state path to begin and end in that state.

4.2 Fundamental problems and basic inference algorithms

Rabiner (1989) lists three fundamental problems in HMM applications: decoding, evalua-
tion, and learning.

The decoding problem seeks to find the most likely state path that explains an observa-
tion given a model. The evaluation problem is how to compute the likelihood with which
a given observation sequence is generated by a model. The learning problem is that of
determining the parameters of a model that are most suitable to describing a set of obser-
vations.

The solution to the decoding problem is often found with the Viterbi algorithm, which
is described in section 4.3. The evaluation problem is solved by the forward-backward
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algorithm, outlined in section 4.4. Learning methods for HMMs deserve a more extensive
discussion. Chapter 6 is dedicated to outlining some approaches for this purpose. Later
chapters of this dissertation outline new discriminative learning approaches.

The following two sections of this chapter detail the two fundamental methods of infer-
ence for HMMs: the Viterbi algorithm in section 4.3 and the forward-backward algorithm
in section 4.4.

As detailed below, both algorithms are of the same order of complexity: for an HMM
with E transitions of non-zero probability, and a sequence of length T the complexity is in
both casesO(TE) and thus linear in the size of the data.

Both algorithms run into numerical issues when implemented in a straight-forward
manner. However, numerically stable variants are available, and detailed below. For the
Viterbi-algorithm we explain a log-space calculation that avoids these problems. For the
forward-backward algorithm the numerical issues may be avoided by a scaling method.

Note that the algorithms as given below assume that the HMMs have a start and end
state. Observation sequences mentioned below are thus assumed to be pre- and postfixed
by the empty symbol ε. For example if an observation sequence X = X1X2 . . .XT of length
T is given, it is treated as εX1X2 . . .XTε, i.e. with X0 and XT+1 equal to ε.

4.3 Viterbi algorithm

The problem of decoding amounts to determining the state sequence q∗ that is individu-
ally most likely to generate a given observation sequence X = X1X2 . . .XT with a model
θ,

q∗ = argmax
q

P(q,X|θ). (4.4)

The Viterbi algorithm is a recursive scheme to determine vt(k), the probability of the
most probable path ending in state k with observation Xt. During the computation a
pointer structure ptr is created that allows the subsequent determination of the corre-
sponding path via backtracking.

1. Initialization (t = 0):

v0(j) =

1 for j = 1

0 for 1 < j ≤ N
(4.5)

2. Recursion (t = 1, . . . ,T):

vt(j) = bj(Xt)max
i

(vt−1(i)aij) for 1 ≤ j ≤ N (4.6)

ptrt(j) = argmax
i

(vt−1(i)aij) for 1 ≤ j ≤ N (4.7)

3. Termination:

P(q∗,X|θ) = max
i

(vT(i)ai1) (4.8)

q∗T = argmax
i

(vT(i)ai1) (4.9)

4. Traceback (t = T, . . . , 1):

q∗t−1 = ptrt(q∗t ) (4.10)
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Complexity The complexity of the recursion is demonstrated by noting that for each time
point 1 ≤ t ≤ T and each state 1 ≤ j ≤ N all previous states 1 ≤ i ≤ N need to be
considered, resulting in O(TN2). The initialization is of complexity O(N), and the trace
back phase is of complexityO(T). Thus, the total runtime complexity isO(TN2).

Considering the fact that most HMM topologies are far from complete graphs, it is pos-
sible to implement this algorithm in O(TE), where E is the number of transitions with
non-zero probability. E ≥ N − 1 for HMMs that have the topology of a connected graph,
and E ≤ N2 for general graphs. This speed-up can be achieved by considering only the
topological predecessors of a given state in performing the maximizations during the re-
cursive steps. The topological predecessors of a given state are the states that have a non-
zero transition probability to the state. Appendix B illustrates this.

4.3.1 Numerical aspects - log-space computation

Numerical problems are encountered when calculating the Viterbi path for long observa-
tion sequences. The likelihood is the product of probabilities, i.e. numbers less or equal
to one, and any product of sufficiently many probabilities will tend towards zero. Thus
simple implementations will lead to numerical underflow.

These numerical issues of the Viterbi algorithm can be easily avoided by resorting to
log-space probability calculations. The algorithm then determines log vt(k), the logarithm
of the probability of the most probable path ending in state k with observation Xt. The
trace-back phase is identical to the previous version.

(4.11)

1. Initialization (t = 0):

log v0(j) =

0 for j = 1

−∞ for 1 < j ≤ N
(4.12)

2. Recursion (t = 1, . . . ,T):

log vt(j) = log bj(Xt) + max
i

(log vt−1(i) + log aij) for 1 ≤ j ≤ N (4.13)

ptrt(j) = argmax
i

(log vt−1(i) + log aij) for 1 ≤ j ≤ N (4.14)

3. Termination:

logP(q∗,X|θ) = max
i

(log vT(i) + log ai1) (4.15)

q∗T = argmax
i

(log vT(i) + log ai1) (4.16)

4. Traceback (t = T, . . . , 1):

q∗t−1 = ptrt(q∗t ) (4.17)

To avoid redundant calculation, the logarithms of the transition and emission proba-
bilities may be precomputed.
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4.4 Forward-backward algorithm

The forward-backward algorithm consists in computing two matrices α and β of likeli-
hoods of partial observations, such that

αt(i) := P(X1X2 . . .Xt, qt = Si|θ) (4.18)

is the conditional joint probability of the partial observation sequence X1X2 . . .Xt and be-
ing in state Si at time t given the model θ. The matrix β is defined by

βt(i) := P(Xt+1Xt+2 . . .XT|qt = Si, θ) (4.19)

and gives the conditional probability of the partial observation sequence Xt+1Xt+2 . . .XT
given the model θ and given that the state at time t is Si.

α and β can be computed efficiently with algorithms that we give next. They can be
used to compute probabilistic values of interest. Among these are the likelihood, the pos-
terior probability of being in a given state at a given time, and expected values of these
posterior probabilities. Also the likelihood gradient can be computed efficiently from the
forward and backward matrices, as we will show at the end of this chapter.

4.4.1 Algorithm to compute the forward matrix

The following algorithm computes the forward matrix.

1. Initialization (t = 0):

α0(j) =

1 for j = 1

0 for 1 < j ≤ N
(4.20)

2. Recursion (t = 1, . . . ,T+ 1):

αt(j) = bj(Xt)
N∑
i=1

αt−1(i)aij for 1 ≤ j ≤ N (4.21)

Regarding the initialization step in the algorithm, note that we use an HMM with start and
end state, assuming that it is initialized in state q0 = S1.

4.4.2 Algorithm to compute the backward matrix

The following algorithm computes the backward matrix.

1. Initialization (t = T+ 1):

βT+1(j) =

1 for j = 1

0 for 1 < j ≤ N
(4.22)

2. Recursion (t = T, . . . , 0):

βt(i) =
N∑
j=1

aijbj(Xt+1)βt+1(j) for 1 ≤ i ≤ N (4.23)
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Regarding the initialization step in the algorithm, note again that we use an HMM with
start and end state, assuming that it has to end in state qT+1 = S1.

Complexity For both the forward and the backward algorithm the complexity is again
demonstrated by noting that for each time point 1 ≤ t ≤ T and each state 1 ≤ j ≤ N all
possible predecessor or successor states 1 ≤ i ≤ N need to be considered, resulting in
O(TN2).

Like the Viterbi algorithm, also the forward and backward algorithms can be computed
inO(TE), where E are the number of edges in the HMM topology, by respecting the graph
topology of the HMM (see section 4.3 and appendix B).

4.4.3 Inference

Computing posterior probability of being in some state Using the forward and back-
ward matrices we find that the joint probability of being in state Si at time t and an obser-
vation sequence X = X1X2 . . .XT given the model θ is given by

P(X, qt = Si|θ) =P(X1X2 . . .Xt, qt = Si|θ)P(Xt+1Xt+2 . . .XT|qt = Si,θ)

=αt(i)βt(i).
(4.24)

Using Bayes’ theorem, we see that the posterior probability of being in state Si at time t
given an observation sequence X = X1X2 . . .XT is then given by

P(qt = Si|X, θ) =
P(X, qt = Si|θ)

P(X|θ) =
αt(i)βt(i)
P(X|θ) . (4.25)

Similarly, if we want to compute the posterior probability of a transition from state Si to
state Sj at time t we may use

P(qt = Si, qt+1 = Sj|X, θ) =
P(X, qt = Si, qt+1 = Sj|θ)

P(X|θ) =
αt(i)aijbj(Xt+1)βt+1(j)

P(X|θ) . (4.26)

Expected transitions and emissions By summing (4.26) over all times t, we can compute
for an observation sequenceX the expected number of transitionsAij from state Si to state
Sj,

Aij =

T∑
t=0

P(qt = Si, qt+1 = Sj|X, θ) =
T∑

t=0

αt(i)aijbj(Xt+1)βt+1(j)
P(X|θ) . (4.27)

The expected number of times that observation x occurs in state Si in observation se-
quence X is given by summing (4.25) over those times at which x is observed,

Bi(x) =
∑

{t|Xt=x}

P(qt = Si|X, θ) =
∑

{t|Xt=x}

αt(i)βt(i)
P(X|θ) . (4.28)
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Computing the likelihood By marginalizing (4.24) over all states at any time t we can
compute the likelihood of an observation sequence X = X1X2 . . .XT given the model θ,

L(θ|X) = P(X|θ) =
N∑
i=1

P(X, qt = Si|θ) =
N∑
i=1

αt(i)βt(i). (4.29)

For HMMs with start and end state S1 another way of determining the likelihood from
the forward matrix alone is

L(θ|X) = P(X|θ) = P(X, qT+1 = S1|θ) = αT+1(1), (4.30)

and similarly, using only the backward matrix:

L(θ|X) = P(X|θ) = P(X, q0 = S1|θ) = β0(1). (4.31)

4.5 Scaled forward-backward algorithm

With increasing length of the observation the numbers in the matrices α and β quickly
become smaller than what can be represented by floating point types. To alleviate this
problem a scaling method can be used, which is detailed below.

The scaled forward-backward algorithm determines matrices α̃ and β̃, as well as a scal-
ing vector s such that

αt(i) = α̃t(i)
t∏

k=0

sk = α̃t(i)
t∏

k=1

sk, (4.32)

and

βt(i) = β̃t(i)
T+1∏
k=t

sk. (4.33)

In equation (4.32) the latter identity is due to s0 = 1.

4.5.1 Algorithm to compute the scaled forward matrix

The following algorithm computes the scaled forward matrix α̃ and the scaling vector s.

1. Initialization (t = 0):

α̃0(j) =

1 for j = 1

0 for 1 < j ≤ N
(4.34)

s0 = 1 (4.35)
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2. Recursion (t = 1, . . . ,T+ 1):

α̂t(j) = bj(Xt)
N∑
i=1

α̃t−1(i)aij for 1 ≤ j ≤ N (4.36)

st =
N∑
i=1

α̂t(i) (4.37)

α̃t(j) =
α̂t(j)
st

for 1 ≤ j ≤ N (4.38)

Note that the algorithm to compute the scaled forward matrix α̃ differs from the algorithm
for the unscaled forward matrix α in that first an intermediate value α̂t is computed, which
is subsequently summed over to yield st. This sum is then used to scale the values in the
matrix α̂ for time t, yielding α̃.

4.5.2 Algorithm to compute the scaled backward matrix

The following algorithm computes the backward matrix β̃ using the scaling vector s.

1. Initialization (t = T+ 1):

β̃T+1(j) =

 1
sT+1

for j = 1

0 for 1 < j ≤ N
(4.39)

2. Recursion (t = T, . . . , 0):

β̂t(i) =
N∑
j=1

aijbj(Xt+1)β̃t+1(j) for 1 ≤ i ≤ N (4.40)

β̃t(i) =
β̂t(i)
st

(4.41)

Note that in the algorithm for the scaled backward matrix the same st values are used that
were determined in the calculation of the scaled forward matrix.

Correctness and complexity For a proof of the correctness of the scaling variants of the
algorithms the reader is kindly referred to appendix A.

Runtime complexity of the scaling variants of the forward and backward algorithms is
identical to that of the original algorithms. Note again that while a trivial realization of the
above code is inO(TN2), the algorithms can be implemented inO(TE)by only considering
transitions with non-zero probability.

4.5.3 Inference

Computing the likelihood Building on (4.30), and using the scaling coefficient vector
s, the likelihood of the observation sequence X = X1X2 . . .XT given the model θ may be
computed by

L(θ|X) = P(X|θ) = αT+1(1) = α̃T+1(1)
T+1∏
t=0

st =
T+1∏
t=0

st =
T+1∏
t=1

st, (4.42)
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as α̃T+1(1) = 1, and s0 = 1. Similarly, and numerically preferably, the log-likelihood may
be determined by

logL(θ|X) = logP(X|θ) =
T+1∑
t=1

log st. (4.43)

Computing posterior probability of being in some state An expression based on the
scaled variants of the forward and backward matrices, α̃ and β̃ corresponding to (4.25)
for the posterior probability of being in a state Si at time t given the observation sequence
X = X1X2 . . .XT and the model θ is

P(qt = Si|X, θ) =
αt(i)βt(i)
P(X|θ)

=
α̃t(i)

∏t
k=0 sk β̃t(i)

∏T+1
k=t sk∏T+1

k=0 sk
=α̃t(i)β̃t(i)st.

(4.44)

Similarly, (4.26) may be computed as

P(qt = Si, qt+1 = Sj|X, θ) =
αt(i)aijbj(Xt+1)βt+1(j)

P(X|θ)

=
α̃t(i)

∏t
k=0 skaijbj(Xt+1)β̃t+1(j)

∏T+1
k=t+1 sk∏T+1

k=0 sk
=α̃t(i)aijbj(Xt+1)β̃t+1(j).

(4.45)

Expected transitions and emissions Instead of using α and β, the expected transitions
may also be computed using the scaled forward and backward matrices α̃ and β̃. Then,
instead of (4.27), we have

Aij =

T∑
t=0

P(qt = Si, qt+1 = Sj|X, θ) =
T∑

t=0
α̃t(i)aijbj(Xt+1)β̃t+1(j). (4.46)

Similarly, instead of using (4.28), the expected emissions may be computed as

Bi(x) =
∑

{t|Xt=x}

P(qt = Si|X, θ) =
∑

{t|Xt=x}

α̃t(i)β̃t(i)st. (4.47)

4.6 Likelihood gradient

We first consider expressions for the likelihood gradient of a single sequence X. Equa-
tion (4.48) for the partial derivatives of the likelihood with respect to the transition prob-
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abilities was given by Baum (1972),

∂L(θ|X)
∂aij

=
∂P(X|θ)

∂aij
=

T∑
t=0

αt(i)bj(Xt+1)βt+1(j) (4.48)

=
Aij

aij
P(X|θ). (4.49)

Equation (4.49) is derived by using the definition of the expected number of transitions
from state Si to state Sj, Aij, in (4.27). From this we have the partial derivative of the log-
likelihood with respect to the transition probabilities,

∂ logL(θ|X)
∂aij

=
∂ logP(X|θ)

∂aij
=

1
P(X|θ)

∂P(X|θ)
∂aij

=
Aij

aij
(4.50)

An expression for the partial derivative of the likelihood with respect to the emission
probabilities corresponding to the one of Baum (1972) is

∂L(θ|X)
∂bj(k)

=
∂P(X|θ)
∂bj(k)

=
∑

{t|Xt=k}

N∑
i=1

αt−1(i)aijβt(j) (4.51)

=
1

bj(k)
∑

{t|Xt=k}

αt(j)βt(j) (4.52)

=
Bj(k)
bj(k)

P(X|θ). (4.53)

Equation (4.52) uses the definition of αt(j) in (4.21), equation (4.53) uses the definition of
the expected number of emissions of kind k in state Sj, Bj(k) in (4.28). From this we get
the partial derivative of the log-likelihood with respect to the emission probabilities,

∂ logL(θ|X)
∂bj(k)

=
∂ logP(X|θ)

∂bj(k)
=

1
P(X|θ)

∂P(X|θ)
∂bj(k)

=
Bj(k)
bj(k)

. (4.54)

Equations (4.49), (4.50), (4.53) and (4.54) can all be found in Krogh (1994).

4.6.1 Transformed probabilities

In order to avoid boundary issues Mao and Hu (2001) suggest to consider quantities gij
and hil, which are defined to transform into the corresponding transition and emission
probabilities as

aij =
egij∑N
k=1 egik

(4.55)

and
bi(l) =

ehil∑M
k=1 ehik

. (4.56)

Using that ∂aij
∂gkl = δik

(
δjl − aij

)
ail Mao and Hu give (4.57) for the partial derivative of
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the likelihood with respect to the transformed transition probabilities gij,

∂L(θ|X)
∂gij

=
∂P(X|θ)

∂gij
=

N∑
k=1

T∑
t=0

αt(i)bk(Xt+1)βt+1(k)
(
δkj − aij

)
aik (4.57)

=

N∑
k=1

(
δkj − aij

) T∑
t=0

αt(i)aikbk(Xt+1)βt+1(k) (4.58)

=P(X|θ)
N∑
k=1

Aik
(
δkj − aij

)
. (4.59)

While (4.58) is just a reordering of (4.57), (4.59) uses the definition of Aik in (4.27). From
this we have the partial derivative of the log-likelihood with respect to the transformed
transition probabilities

∂ logP(X|θ)
∂gij

=
1

P(X|θ)
∂P(X|θ)

∂gij
=

N∑
k=1

Aik
(
δkj − aij

)
. (4.60)

Similarly, with ∂bi(l)
∂hjk = δij (δlk − bi(l)) bi(k) Mao and Hu give (4.61) for the partial

derivative of the likelihood with respect to the transformed emission probabilities hjk as

∂L(θ|X)
∂hjk

=
∂P(X|θ)
∂hjk

=
M∑
l=1

 ∑
{t|Xt=l}

N∑
i=1

αt−1(i)aijβt(j)

 · (δkl − bj(k)) bj(l) (4.61)

=
M∑
l=1

1
bj(l)

 ∑
{t|Xt=l}

αt(j)βt(j)

 · (δkl − bj(k)) bj(l) (4.62)

=P(X|θ)
M∑
l=1

Bj(l) (δkl − bj(k)) , (4.63)

where M denotes the size of the alphabet. As above, (4.62) uses the definition of αt(j) in
(4.21), and (4.62) the definition of the expected emissions Bj(l), in (4.28). From this we
have the partial derivative of the log-likelihood with respect to the transformed emission
probabilities

∂ logP(X|θ)
∂hjk

=
1

P(X|θ)
∂P(X|θ)
∂hjk

=
M∑
l=1

Bj(l) (δkl − bj(k)) , (4.64)

4.6.2 Complexity

Here we collect the runtime complexities of HMM likelihood gradient calculations pre-
sented in this section. As for the Viterbi algorithm, and the computation of the forward
and backward matrices, the runtime of computations of the gradient expressions is re-
duced by considering only non-zero terms.

Define T to be the length of the observation sequence, N the number of states, and M
the size of the alphabet. Further, let E be the number of edges in the HMM topology (the
number of non-zero transition probabilities), and F be the number of admissible emis-
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sions in all states, i.e. F is the number of state-emission pairs (k, x) such that bk(x) is non-
zero. In general, N− 1 ≤ E ≤ N2 and N ≤ F ≤ NM.

Likelihood gradient due to Baum The calculation of partial derivatives of the likelihood
with respect to the transition probabilities according to (4.48) can be done inO(TE). Sim-
ilarly, the partial derivatives of the likelihood with respect to the emission probabilities
according to (4.51) may be computed inO(TE+ F), where the contribution F is due to re-
specting all state-emission pairs’ partial derivatives. Together, using the expressions of
Baum (1972) the likelihood gradient may thus be determined inO(TE+ F).

Likelihood gradient due to Krogh The likelihood gradient expressions (4.50) and (4.54)
due to Krogh (1994) are simpler than those of Baum (1972) but depend on calculation of
the expected statistics, and thus have the same cumulative runtime ofO(TE+ F).

Likelihood gradient due to Mao and Hu The expressions for the partial derivatives of
the likelihood with respect to the transformed transition probabilities in (4.57) and with
respect to the transformed emission probabilities in (4.61) considerably increase the run-
time toO(TEN) andO(TFN), respectively. Note that, similar to how considering the num-
ber of non-zero transitions E rather than N2 yields more precise upper bounds for the
runtime of the forward-back algorithm, consideration of numbers like that of pairs of non-
zero transitions to a given state (summed over all states) may allow to bound the runtime
of the expressions of Mao and Hu further.

Importantly, while the expressions that Mao and Hu also have runtime linear in the
size of the data, their runtime has a coefficient that is larger than that of the expressions
for the gradient of the untransformed probabilities.

Likelihood gradient due to Maaskola Basing the expressions of the likelihood gradient
with respect to the transformed probabilities on the expected statistics as proposed here
in (4.60) and (4.64) allows to reduce the runtime to the same asymptotic order as that of
the untransformed probabilities’ gradient, however with a larger constant1 term.

Note again that the respective runtime of O(EN) and O(FM) to compute the trans-
formed probabilities’ likelihood gradient from the expected statistics in (4.60) and (4.64)
could be bounded more stringently by considering the number of non-zero transition
pairs to each state, and non-zero emission pairs of each state. Importantly, these ex-
pressions for the transformed probabilities’ gradient, subsequently to determining the
expected statistics, do not further dependent on data size.

1with respect to the data size
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4.6. Likelihood gradient

Table 4.1: Runtime complexity and inter-dependence of HMM inference algorithms. Dep.:
Depends on algorithm #. T: length of the observation sequence. N: number of states. E:
number of non-zero transition probabilities, withN− 1 ≤ E ≤ N2. M: size of the alphabet,
F: number of state-emission pairs (k, x) such that bk(x) is non-zero, with N ≤ F ≤ NM.
References: A Baum (1972), B Krogh (1994), C Mao and Hu (2001), D Maaskola and Rajewsky
(2014).

# Algorithm Complexity Dep. Equations

1 Viterbi path O(TE) (4.11)–(4.17)
2 Forward, unscaled / scaled O(TE) (4.20)–(4.21) / (4.34)–(4.38)
3 Backward, unscaled / scaled O(TE) (4.22)–(4.23) / (4.39)–(4.41)
4 Expected transitions O(TE) 2, 3 (4.27)
5 Expected emissions O(TN) 2, 3 (4.28)
6 L gradient A O(TE+ F) 2, 3 (4.48), (4.51)
7 L gradient B O(E+ F) 4, 5 (4.50), (4.54)
8 L gradient, transformed C O(TEN+ TFN) 2, 3 (4.57), (4.61)
9 L gradient, transformed D O(EN+ FM) 4, 5 (4.60), (4.64)
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Chapter 5

Binding site hidden Markov model

This chapter presents an HMM-based probabilistic model for binding motifs in sequence
context. The model makes use of a specific topology, described in section 5.1. Section 5.2
explains how posterior probabilities of motif occurrences are computed with this proba-
bilistic model.

5.1 An HMM for binding sites

The probabilistic model is an HMM with start and end state, as defined in section 4.1.1.
For ease of specification, the model is based on a default topology, illustrated in figure 5.1,
that includes HMM states for one or more motifs, as well as for the sequence context. The
model also includes a start and end state, displayed as separate states S and E in figure 5.1,
but the implementation of Discrover actually uses a combined start/end state. By default,
the transition and emission probabilities of each state depend only on the state, realizing
a 0th order Markov property. However, Discrover allows for the emission probabilities of
each state to additionally depend on the n previous emissions, and the emission order
may be specified per state. This feature is intended to allow higher order emissions for
the background state B, combined with 0th order emissions for the motif states.

5.1.1 Motif chains

Each motif corresponds to a chain of states, indicated by the numbered states in figure 5.1.
The motif states are sequentially connected such that the first motif chain state transi-
tions to the second, the second to the third, and so on. There are transitions from the
background state B, and from the start state S to the first of each motif chain. The last
state of each motif chain may transition to the background state B, to the end state E, and
to the first state of each motif chain.

Insert states As is visible in figure 5.1, insert states may be included between adjacent
motif chain states. To avoid unnecessary parameters, by default no insert states are in-
cluded, and the user has to specify where insert states should be allowed.
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Motif

S EB

1 2 3 4 5 6 7 8

Figure 5.1: Default topology of a binding site HMM with a motif of 8 nucleotides length
and a background state B. The model includes a start state S, and an end state E. The
numbered states represent motif chain states, the diamond shaped states are (optional)
insert states. The box around the motif is an instance of plate notation from the theory
of probabilistic graphical models, see Koller and N. Friedman (2009), and indicates that
there may be multiple motifs.

5.2 Posterior motif occurrence probability

Continuing with definitions of section 3.2.3, we designate the hypothesis of observing at
least one motif occurrence as M. As posterior probability for motif occurrence in obser-
vation sequence X = X1X2 . . .XT we compute the probability for a binding site HMM θ to
transition at least once through the chain of states corresponding to that motif.

Transitioning at least once through the chain of motif states is the complementary
event to not transitioning through the chain at all. Thus, the posterior probability of at
least one pass through the motif chain is given by subtracting from 1 the posterior proba-
bility of not passing through the motif chain,

P(M|X, θ) = 1− P(¬M|X, θ). (5.1)

Due to Bayes’ theorem, the posterior probability of not transitioning through the motif
chain can be computed as the ratio of the likelihood of not transitioning through the motif
chain and the unrestricted likelihood,

P(¬M|X, θ) = P(¬M,X|θ)
P(X|θ) . (5.2)

For the denominator, the likelihood of θ given the observation sequence X, P(X|θ), we
have equation (4.29). For the numerator we have

P(¬M,X|θ) =
∑
q

P(q,X|θ), (5.3)

where the summation is over all paths q that do not transition through the motif state
chain. This summation can be easily performed with a slight modification of the forward-
backward procedure that ignores transitions to, within, and from the motif state chain.

Note that when the binding site HMM θ comprises chains for multiple motifs, the
above described procedure allows to separately compute the posterior probabilities of
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5.2. Posterior motif occurrence probability

each individual motif occurring at least once. Similarly, it is also possible to compute
whether at least one occurrence of any of a set of motifs is present in a sequence.

Gradient The gradient of the posterior occurrence probability is

∇P(M|X, θ) =−∇P(¬M|X, θ)

=−∇P(¬M,X|θ)
P(X|θ)

=
P(¬M,X|θ)∇P(X|θ)− P(X|θ)∇P(¬M,X|θ)

P(X|θ)2

=
P(¬M,X|θ)
P(X|θ)

(
∇P(X|θ)
P(X|θ) −

∇P(¬M,X|θ)
P(¬M,X|θ)

)
=P(¬M|X, θ) (∇ logP(X|θ)−∇ logP(¬M,X|θ)) .

(5.4)

This expresses the gradient of the posterior motif occurrence probability in terms of the
gradients of the log likelihood,∇ logP(X|θ), and of the log likelihood of no motif occur-
rence,∇ logP(¬M,X|θ).

Expressions for the gradient of the log likelihood are given in section 4.6. In particu-
lar, equations (4.50) and (4.54) give expressions for the partial derivatives of the log like-
lihood with respect to transition and emission probabilities, respectively. Alternatively,
when transformed probabilities are used, then equations (4.60) and (4.64) respectively
give the corresponding expressions with respect to transformed transition and emission
probabilities.

The gradient of the log likelihood of no motif occurrence, ∇ logP(¬M,X|θ), can be
computed similarly, using the same equations as for the gradient of the log likelihood.
The only difference is that the expected counts of transitions Aij and emissions Bj(k) in
equations (4.50) and (4.54) or equations (4.60) and (4.64) need to be computed disallow-
ing transitions to, within, and from the motif chain.
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Chapter 6

Learning algorithms

The solution to the learning problem depends on the choice of criteria for suitability of
parameters. The classical paradigm is to choose the parameters such that the likelihood
of the set of observations is maximized, and is called maximum likelihood (ML) learning.
Baum and Eagon (1967) presented a theorem about an inequality for homogeneous poly-
nomials with non-negative coefficients that guarantees that an expectation-maximization
(EM) (Dempster, Laird, and Rubin, 1977) called scheme increases the likelihood in each
iteration until a critical point1 is reached. This inequality was later generalized and re-
expressed in terms of an inequality for continuous transformations by Baum (1972) and
Baum, Petrie, et al. (1970). The corresponding EM training for HMMs has become known
as Baum-Welch (BW) algorithm and is described in section 6.1.

This chapter also outlines alternatives to the BW algorithm. Viterbi learning, which is
structurally similar to EM but does not optimize the likelihood, is described in section 6.1.3.
Gradient optimization, applicable to the optimization of arbitrary objective functions, can
also be used to maximize the likelihood. This chapter concludes by introducing in sec-
tion 6.2 the gradient optimization framework used later in this thesis to optimize discrim-
inative objective functions.

All learning algorithms presented in this chapter are iterative, local search algorithm.
This means that they depend on the choice of starting parameters for the search, which are
iteratively improved in the course of optimization. In particular, the algorithms are not
guaranteed to find global optima, or might require multiple starts with different initial
parameters to increase the likelihood of finding global optima.

6.1 Baum-Welch algorithm

Like the general EM approach, BW training is suitable for inference given partial data.
Partial data modeling fundamentally characterizes the HMM framework. In particular, an
HMM is a representation for systems comprising entities that are observed, i.e. for which
data are available, and entities that are unobserved, for which in other words the state
must be inferred.

1Points where the first derivative is zero, i.e. (local or global) maxima or minima, or saddle points.
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At its basic level, the BW algorithm operates by iteratively executing two steps. The
first, the so called expectation, or E-step, consists in determining the expected states of all
modeled entities, in particular of the unobserved ones. Given these expected states, the
maximization step consists in modifying the parameters so as to maximize the likelihood
of generating this expected state assignment.

6.1.1 Expected parameters and likelihood maximization

Algorithm 1 gives pseudo code for the E-step of the BW algorithm. First, the forward and
backward matrices αm and βm, or their scaled variants α̃m and β̃

m
, are computed for each

observation sequence Xm. From these, for each sequence Xm, are then computed the ex-
pected number of transitionsAm

ij from state Si to state Sj, as well as the expected number
of emissions Bmi (x) of symbol x in state Si. Expressions for the above-mentioned calcula-
tions are given in sections 4.4 and 4.5.

Note that upper indices are used here to denote the observation to which a variable
pertains. Then, by summing over all M observation sequences, the total expected num-
bers of transitionsAij from state Si to state Sj are determined,

Aij =

M∑
m=1
Am

ij . (6.1)

Similarly, by summing over all observation sequences, the total expected numbers of
emissions of kind x in state Si are determined,

Bi(x) =
M∑

m=1
Bmi (x). (6.2)

During the maximization step the parameters are updated so as to maximize the like-
lihood with which the expected hidden variable assignments are observed. As shown by
Baum (1972), this amounts to row-normalizing the expected count matricesA and B:

aij =
Aij∑N
k=1Aik

, (6.3)

and
bi(x) =

Bi(x)∑
k Bi(k)

. (6.4)

Algorithm 2 gives pseudo code for the M-step of the BW algorithm.

6.1.2 Pseudocode

The pseudocode in algorithm 3 realizes the BW algorithm. It starts with an arbitrary or
random parameterization that is successively improved. The only requirements regarding
the initial parameterization needs to fulfill are consistency with the desired topology and
emission characteristics of the HMM. These must be such that any transition and emission
events that are assumed possible have non-zero probability. The reason for this is that any
event with zero probability will keep this zero probability during the BW routine.
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Algorithm 1 Baum-Welch expectation step
Input: HMM parameters θ, observation sequences X1,X2, . . . ,XM

Output: Expected number of transitions A = Aij from state Si to state Sj and expected
number of emissions B = Bi(x) in state Si of symbol x

1: form = 1 toM do
2: compute αm or α̃m using Xm and θ
3: compute βm or β̃

m
using Xm and θ

4: computeAm
ij for 1 ≤ i, j ≤ N with (4.27) or (4.46)

5: compute Bmi (x) for 1 ≤ i ≤ N and all observations x with (4.28) or (4.47)
6: computeAij for 1 ≤ i, j ≤ N with (6.1)
7: compute Bi(x) for 1 ≤ i ≤ N and all observations x with (6.2)
8: return {A, B}

Algorithm 2 Baum-Welch maximization step
Input: Expected number of transitionsA and expected number of emissions B
Output: HMM parameters θ′ = {A,b} with P(X|θ′) ≥ P(X|θ)

1: compute A usingA with (6.3)
2: compute b using B with (6.4)
3: return {A,b}

As given here, the BW algorithm terminates after a maximal number of iterations has
been performed, or when the improvement in log likelihood over the previous iteration
falls below a threshold. An alternative for the latter criterion is to threshold on a norm of
the parameter vector difference to the previous iteration. Frequently, the L1-norm2 is used
for this purpose.

6.1.3 Viterbi learning

Viterbi learning is similar to the BW algorithm, as it uses the same algorithmic structure
of iteratively re-estimating the parameters. Differently from BW training, in which the
expected state assignment determines a distribution over possible states that explain an
observation, Viterbi learning only considers the single most likely state path.

Statistics of transitions and emissions of the Viterbi path For each sequenceXm Viterbi
learning first determines the Viterbi path q∗m using the Viterbi algorithm of section 4.3,
and then extracts the number of transitions from state Si to state Sj in the Viterbi path of
observation m,

Am
ij =

Tm∑
t=1

1q∗mt =i∧q∗mt+1=j, (6.5)

and subsequently in all observations,

Aij =

M∑
m=1
Am

ij . (6.6)

Similarly, the number of emissions of symbol x in state Si is counted in the Viterbi path
2The sum of absolute values.

87



Chapter 6. Learning algorithms

Algorithm 3 Baum-Welch
Input: initial HMM parameters θ, observation sequences X1,X2, . . . ,XM, tolerance ε,

maximal number of iterations n
Output: HMM parameters θ at a critical point of the likelihood

1: l0 ← −∞
2: k← 0
3: repeat
4: k← k+ 1
5: A,B ← Baum-Welch expectation step using X and θ
6: θ← Baum-Welch maximization step usingA and B
7: lk ← logL(θ|X)
8: until lk − lk−1 < ε or k > n
9: return θ

of observation sequence Xm,

Bmi (x) =
∑

{t|Xmt =x}

1q∗mt =i. (6.7)

Subsequently, the emission counts of symbol x in state Si are added for all observations,

Bi(x) =
M∑

m=1
Bmi (x). (6.8)

Maximization step Based on the transition and emission counts observed in the Viterbi
paths of all observations, Viterbi learning uses the same expressions (6.3) and (6.4) to re-
estimate the transition and emission parameters. BW training increases the likelihood
in each iteration until convergence. The similar algorithmic structure of Viterbi learning
suggests that it maximizes the likelihood of the most likely decoding.

6.2 Gradient learning

Many learning methods used in this thesis are based on gradient optimization, an itera-
tive, local learning method. It allows to optimize arbitrary differentiable objective func-
tions f(X, θ) of some data X and a model θ, only requiring an expression for the gradient,
∇θf(X, θ). In each iteration of gradient optimization, the gradient is computed and used
to improve the current parameter estimate. In iteration k, the parameter estimate θk+1

is computed by determining the direction of steepest increase of the objective function
∇θf(X, θ)|θ=θk at the point θk and taking a step of length αk into that direction.

θk+1 = θk + αk ∇θf(X, θ)|θ=θk (6.9)

A suitable step size αk is computed in each iteration k using one of several algorithms to
perform line search in the direction of the gradient (Press et al., 1995).

Discrover uses the Moré-Thuente line search algorithm (Moré and Thuente, 1994) to
ensure sufficient increase and proximity to the local maximum along the search direction.
Specifically, the algorithm determines such an αk = α that fulfills the following two con-

88



6.3. Complexity

0 Step length α

φ
(α
)

Sufficient increase
condition

Curvature
condition

Figure 6.1: Conditions enforced by the Moré-Thuente line searching algorithm. The black
curve gives the value of the auxiliary function φ(α) at α. The position α = 0 corresponds
to the current parameter estimate, positive values of α move from the current parameter
estimate in direction of the gradient. The sufficient increase condition (6.10) is fulfilled in
the red interval, defined by the intersections of the black curve φ(α) and the red dashed
lineφ(0)+μφ′(0)α. The curvature condition (6.11) is fulfilled in the blue interval, defined
by the blue dashed lines which are tangents to φ(α) at α such that |φ′(α)| = η|φ′(0)|.

ditions:

Sufficient increase condition φ(α) ≥ φ(0) + μφ′(0)α (6.10)

Curvature condition |φ′ (α)| ≤ η|φ′(0)|, (6.11)

where μ and η are parameters of the algorithm andφ(α) is an auxiliary function that gives
the objective function value at a distance of α from the current parameter estimate in the
direction of the gradient,

φ (α) = f(X, θ + α∇θf(X, θ)), (6.12)

and φ′(α) is the derivative of this function. Figure 6.1 illustrates these conditions.

6.3 Complexity

Convergence to a fixed point has been proven for the BW algorithm in the general case
(Baum, Petrie, et al., 1970), but it is not clear how many iterations may be needed. Simi-
larly, for gradient learning, supposing that line search finds a parameter with higher ob-
jective function value in a finite number of tries, or that gradient search terminates in
case no suitable point can be found during line searching, a bounded objective function
implies convergence of gradient learning in finite time.

While thus the number of iterations until convergence is unknown, we discuss below
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the computational complexity of each iteration using variables defined in section 4.6.2.

Re-estimation learning First, as noted in section 4.4, computation of forward and back-
ward matrices, of their scaled variants, and of the Viterbi path is done in O(TE). Thus,
the computation for the E-step of the BW and Viterbi learning algorithms can be done in
O(TE). Subsequently, the M-step is done in O(E + F). In summary, the runtime for one
iteration of re-estimation learning isO(TE+ F).

Gradient learning Gradient learning needs to compute the gradient of the objective func-
tion at least once per iteration. While the complexity of gradient calculations for arbitrary
models can not be discussed in general, for HMMs we have seen that the likelihood gra-
dient is computed in time O(TE + F) for the untransformed probabilities, and in time
O(TE+EN+FM) for transformed probabilities, which is in both cases linear in the amount
of data.

The line searching step of gradient learning requires several evaluations of the objec-
tive function until a suitable point has been found. Clearly, the choice of line searching
procedure is of influence (see Moré and Thuente, 1994, for details). Thus, we here just
relate our empirical experience that in the implementation of Discrover, which uses the
Moré-Thuente line search algorithm, typical iterations only need two function evaluations
in addition to the gradient computation.
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Discriminative Learning for
Probabilistic Sequence Analysis
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Overview of discriminative
learning methods

The following part collects the discriminative learning methods for probabilistic sequence
analysis that constitute the main contributions of this thesis. Chapter 7 introduces the
statistics used in the discriminative sequence analysis approaches presented here. Ob-
jective functions that measure association of motif occurrence with the conditions of a
contrast are explained in chapter 8. In order to avoid clashing mathematical notation, we
separated the description of classification probability based objective functions to chap-
ter 9. Where simple expressions are available, chapters 8 and 9 also give expressions for
the gradients of these objective functions in order to allow gradient-based optimization.
Significance of association depends both on the number of parameters and the amount
of data available, and chapter 10 proposes measures of significance of association for this
purpose. An application of the objective functions to identify informative words is pre-
sented in chapter 11. Chapter 12 explains how generative and discriminative objectives
may be used to jointly train binding site HMM parameters. Chapter 14 concludes this part
with an overview of published DMD programs.
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Chapter 7

Statistics for discriminative
learning

Discriminative learning requires statistics of a feature of interest across a suitably chosen
contrast between a set of signal and control data samples. This chapter first discusses
suitable contrasts for MD by discriminative learning in section 7.1. For conditions of such
contrasts section 7.2 then presents tables with counts of signal and control sequences that
have at least one motif occurrence.

7.1 Contrasts

In many applications the data analysis practitioner is given data containing a signal of
interest and is asked to characterize the signal. In order to elicit which parts of the data
constitute signal, the discriminative learning approach suggests to compare what differ-
entiates real data from suitably chosen control data. Naturally, the choice of control data
strongly affects the chances of successfully discovering the signal.

(a) (b) (c) (d)

Shuffles

(e)

Figure 7.1: Contrasts for discriminative sequence analysis. Test tubes represent samples
from different biological conditions, boxes are sets of sequences with blackness indicat-
ing the true positive rate in the set. (a) Binary constrast from a single biological sample,
e.g. bound and not bound, or expressed and not expressed. (b) Binary contrast of differ-
ent biological conditions, e.g. pull-down and mock, two different tissues, cell-types, or
treatments. (c) Binary contrast of sequences from two different database searches. (d) Bi-
nary contrast in which the data of the contrasting condition is synthesized from the signal
data by shuffling. (e) Contrast from grading the signal strength.
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Binary contrasts For MD, a minimal contrast to which discriminative learning is appli-
cable is that in which a single experiment yields evidence for binding to one set of se-
quences, and no evidence for another, see figure 7.1a. Another suitable binary contrast
may be to compare the sequences that have more binding evidence in the first of a pair of
experiments with those that have more evidence in the second, as depicted in figure 7.1b.
Similarly, different database queries could provide signal and control sequences, see fig-
ure 7.1c. In case no suitable biological control is available it is possible to synthesize a
control set of sequences, as illustrated in figure 7.1d. For example, this may be done by
shuffling the signal sequences keeping word frequencies up to some order.

Notable ways of procuring biological control samples for binary contrasts comprise
mock treatments, chromatin accessibility stratification for DBPs, and expression stratifi-
cation for RBPs. The latter can for example be achieved by sampling sequences directly
from RNA-Seq data of the same tissue.

Contrastswithmore than two conditions Another possibility is that an experiment gives
rise to a binding evidence rank order of the sequences. Then, the analyst may break the
data into groups by their ranks, as indicated in figure 7.1e, and study which rank-grouping
is useful to elicit the signal.

Repeat experiments Frequently data from repeat experiments is available. While in
such cases multiple independent analyses may be applied to determine whether the re-
sults are consistent, it is also possible to analyze repeat experiments jointly so as to in-
crease statistical power and sensitivity.

7.2 Contingency tables of features across contrasts

Differential binding affinity of a nucleic-acid binding factor to sets of bound and unbound
sequences is a necessary precondition for an efficient recognition and selection of specific
targets. It is hoped that the characteristics that distinguish sets of bound and unbound
sequences may be elucidated by studying their statistical properties. Thus, upon perform-
ing an experiment that indicates that a set of sequences may potentially be bound by a
nucleic-acid binding factor we still need to answer two critical questions.

The first question is which of these potentially bound sequences are truly bound and
which are false positives of the experiment. A variant of this question is which sequences
are directly bound, which are bound by co-factors, and which are just experimental arti-
facts.

The second question is related to the first, and answers to it help to tell true from false
positives. What are the characteristics that separate true from false positives, or directly
from indirectly bound sequences and from artifacts?

In order to address these questions we need to collect statistics of potentially relevant
features. For this purpose the following two statistics may be considered. The first is about
sequences that have at least one feature occurrence, the other about words that constitute
feature occurrences. Reasoning that a sequence exhibiting a certain feature at least once
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7.2. Contingency tables of features across contrasts

might be sufficient for explaining the recognition of the sequence, we use as feature the
question whether a sequence has at least one occurrence of a given motif. Alternatively,
because multiple occurrences of a motif in a sequence might induce a stronger regulatory
response, also the number of occurrences per sequence may be a relevant feature. Here,
we focus on the prior feature, but the methods presented here might be extended to the
latter case too.

We tabulate in how many of the potentially bound sequences a given feature occurs,
and in how many it is not observed. As features that are observed in most of the potentially
bound sequences may also be frequent in unbound sequences, one can procure a second
dataset of sequences for which no evidence for binding is available. When two such sets of
sequences are given, we refer to these sets of sequences as signal and control, respectively.

For each potentially interesting feature θ we then tabulate the number of sequences
in signal and control that have the feature and those that do not, as illustrated in table 7.1.

Table 7.1: 2×2 contingency table of number of sequences in datasets of two conditions
that have or do not have at least one occurrence of a motif. TP and FP stand for true and
false positives, TN and FN for true and false negatives, respectively.

Condition Motif present Motif absent
Signal TP FN

Control FP TN

2× 2 contingency tables as depicted in table 7.1 are applicable in binary classification
problems on data representing contrasts involving a pair of positive and negative example
sets.

Similarly, when there are more than two conditions, we may consider contingency
tables as in table 7.2.

Table 7.2: k×2 contingency table of number of sequences with and without a feature in
datasets of k conditions. mi gives the number of sequences with motif in the regulatory
sequences of dataset i. ni is the number of sequences in dataset i.

Condition Motif present Motif absent
1 m1 n1 −m1
2 m2 n2 −m2
...

...
...

k mk nk −mk

Note that for probabilistic motif models θ these contingency tables will hold expected
counts mi(θ) of sequences with motif occurrence in dataset Xi,

mi(θ) = E
[
P(M|Xi, θ)

]
=
∑
X∈Xi

P(M|X, θ), (7.1)

where the expectation and summation are over the sequences X in dataset Xi, and the
posterior probability of motif occurrence in one sequence X, P(M|X, θ), is computed as
explained in section 5.2.
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Chapter 7. Statistics for discriminative learning

Gradient Due to the linearity of the expectation operator, the gradient of the expected
counts of sequences with motif occurrences in dataset Xi is trivially given by the sum of
gradients of the probability of motif occurrence in the individual sequences X ∈ Xi,

∇mi(θ) = ∇E
[
P(M|Xi, θ)

]
=
∑
X∈Xi

∇P(M|X, θ). (7.2)

An expression for the gradient of the posterior probability of occurrence of a motif M in a
sequence X given the model θ,∇P(M|X, θ), is given in equation (5.4).
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Chapter 8

Table-based discriminative
objective functions

This chapter discusses discriminative objective functions based on contingency tables
that are of potential interest for MD problems. Table 8.1 illustrates how some of these
quantify the association of motif occurrences with conditions in several small hypotheti-
cal datasets. Some of these objective functions are directional, i.e. motifs that maximize
them are not only differential but in fact enriched in the signal sequences. By considering
motifs that minimize directional objective functions one can identify differential motifs
that are depleted in the signal sequences. For non-directional objective functions it is
possible to filter differential motifs for enrichment in the desired sample.

We first discuss measures of association computable from 2×2 contingency tables, as
in table 7.1. Then we will turn to k×2 contingency table based measures, as in table 7.2.
Where simple expressions are available, expressions for the gradients of the objective
functions will also be given. The gradients of the objective functions given in this chap-
ter are based on the gradient of the expected site counts,∇mi(θ) = ∇E

[
P(M|Xi, θ)

]
, in

equation (7.2).

8.1 Difference of occurrence frequency

The first directional measure of association that we want to discuss here is the difference
of relative frequency (DFREQ) of motif prevalence in the signal and control data. It is
defined in terms of the number of true and false positives TP and FP, and of true and false
negatives TN, FN,

DFREQ =
TP

TP+ FN
− FP

FP+ TN

=
m1(θ)
n1

− m2(θ)
n2

,

(8.1)

where the second expression uses the variables introduced in table 7.2, and we assume
that conditions 1 and 2 represent signal and control, respectively. One may argue that,
measuring enrichment rather than significance of enrichment, a possible shortcoming of
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Table 8.1: Comparison of discriminative performance of four motifs on regulatory se-
quences in a contrast of two conditions. Motifs 1 and 4 are discriminative, with positive
correlation of motif 1 with condition A, and equally strong anti-correlation in the case
of motif 4. Motif 2 is weakly discriminative, and motif 3 is neutral with respect to occur-
rences in the two conditions. Seq: regulatory sequences, Occ: motif occurrences in the
sequences, filled and empty circles denote (counts of) sequences with at least one motif oc-
currence. DFREQ: difference of relative frequency of sequences with motif occurrence be-
tween conditions, p-Fisher: p-value according to Fisher’s exact test, MCC: Matthews cor-
relation coefficient, MICO: Mutual information of condition and motif occurrence. Even
for motifs 1 and 4 the p-values according to Fisher’s exact test are not significant due to
the small sizes of these hypothetical datasets.

Motif 1 Motif 2 Motif 3 Motif 4
Condition Seq Occ Occ Occ Occ

A 4 1 5 0 2 3 1 4

B 1 4 4 1 2 3 4 1

DFREQ 60 % 20 % 0 % -60 %
p-Fisher 0.2063 1 1 0.2063

MCC 0.6 0.3 0 -0.6
MICO 1.92 bit 0.31 bit 0 bit 1.92 bit

this measure is the failure to assign higher relevance to qualitative differences between
signal and control samples. To illustrate, consider the following two contingency tables,

T1 =

(
1000 0
500 500

)
and T2 =

(
950 50
450 550

)
.

For both T1 and T2 the relative frequency difference DFREQ = 1
2 , but there is a qualitative

difference in that the data of T1 are consistent with the hypothesis FN = 0, while there is
evidence contradicting this hypothesis for T2.

Gradient The gradient of DFREQ of sequences with motifs between the signal and con-
trol is given by

∇DFREQ =
∇m1(θ)

n1
− ∇m2(θ)

n2
. (8.2)

8.2 Matthews correlation coefficient

Another frequently used directional measure of association is Matthews correlation coef-
ficient (MCC) (Matthews, 1975), defined as

MCC =
TP · TN− FP · FN√

(TP+ FP)(TP+ FN)(FN+ TN)(FP+ TN)
. (8.3)

Adopting the notation of table 7.2 and assuming that conditions 1 and 2 respectively
represent signal and control, we have

MCC =
1√
n1n2

· n2m1(θ)− n1m2(θ)√
(m1(θ) +m2(θ))(N−m1(θ)−m2(θ))

, (8.4)
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where N = n1 + n2.
As the name indicates, the MCC is a proper measure of correlation, i.e. it takes on

values between -1 and 1, where a value of 1 indicates perfect correlation, a value of -1 an
inverse perfect correlation, and a value of 0 statistical independence.

The MCC of the matrices T1 and T2 is 0.577 and 0.546, respectively, demonstrating that
the MCC assigns higher relevance to the association observed in the case of T1.

Gradient To derive an expression for the gradient of the MCC, we consider first the gra-
dient of the numerator of the second term of equation (8.4),

∇ (n2m1(θ)− n1m2(θ)) = n2∇m1(θ)− n1∇m2(θ). (8.5)

The gradient of the denominator of the second term of equation (8.4) is

∇
√

(m1(θ) +m2(θ))(N−m1(θ)−m2(θ))

=

(N
2 −m1(θ)−m2(θ)

)
· (∇m1(θ) +∇m2(θ))√

(m1(θ) +m2(θ))(N−m1(θ)−m2(θ))
. (8.6)

Using these two expressions, the quotient rule for differentiation, and canceling a few
terms, we have the following expression for the gradient of the MCC,

∇MCC =
1√
n1n2

1√
(m1(θ) +m2(θ))(N−m1(θ)−m2(θ))

(
n2∇m1(θ)− n1∇m2(θ)

+
(n2m1(θ)− n1m2(θ))

(N
2 −m1(θ)−m2(θ)

)
(m1(θ) +m2(θ))(N−m1(θ)−m2(θ))

(∇m1(θ) +∇m2(θ))
)
. (8.7)

8.3 Fisher’s exact test

Another widely used measure of association on 2× 2 contingency tables is the exact test
of Fisher (1922). It is based on the tail probabilities of the hypergeometric distribution.
The hypergeometric distribution quantifies the likelihood of drawing in d draws without
replacement w white balls from an urn containing a total of D balls, of which W are white,

P(d,D,w,W) =

(W
w
)(D−W

d−w
)(D

d
) , (8.8)

where
(a
b
)
= a!

b!(a−b)! is a binomial coefficient. Fisher’s exact test amounts to summing the
probabilities of all contingency tables that are as extreme or more so than the observed
contingency table. It thus gives the probability of observing a contingency table as ex-
treme or more so than the observed one based on a null model of independence of rows
and columns under fixed marginals.

For T1 and T2 Fisher’s exact test gives an odds ratio of∞ and 23.17, respectively, which
both correspond to p-values less than the smallest representable positive floating point
number. When adding one pseudo-count before computing Fisher’s exact test, the result-
ing odds ratios are 984.59 and 22.73, respectively. There exist generalizations of Fisher’s
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exact test to contingency tables larger than 2× 2 (Mehta and Patel, 1983).

8.4 Normalized enrichment score

The first k × 2 contingency table based measure that we want to discuss here are nor-
malized enrichment scores. They are related to the difference of relative frequency dis-
cussed above, and are usable when the contrast provides one set of positive example se-
quences and multiple sets of control sequences. Normalized enrichment scores divide the
difference of relative frequency in the signal data and the mean of relative frequencies in
the control by a standard deviation computed from the relative frequencies in the control
datasets.

We refer to the relative frequency of sequences with motif occurrences in condition i as
fi = mi

ni . We assume that condition 1 is the signal dataset, and conditions 2 to k are control
datasets. Then the normalized enrichment score z is given by

z =
f1 − μ
σ

, (8.9)

where μ is the mean relative frequency of sequences with motif occurrences in the control
data, and σ the standard deviation of relative frequencies in the control datasets.

8.5 Pearson’s χ2 test for independence

Perhaps the most widely used association measure is the χ2 test for independence (K.
Pearson, 1900). Given a n × k contingency table with counts Oij in the cell in row i and
column j, and defining the row sums Ri =

∑k
j=1 Oij and column sums Cj =

∑n
i=1 Oij,

as well as the expected counts under the independence hypothesis Eij =
RiCj
N , where

N =
∑n

i=1 Ri =
∑k

j=1 Cj, then the X2 statistic is given by

X2 =
n∑
i=1

k∑
j=1

(Oij − Eij)2

Eij
. (8.10)

This statisticX2 is asymptotically distributed like χ2 with (n−1)·(k−1) degrees of freedom,
and p-values are available for it.

8.6 Mutual information of condition and occurrence

Assume to be given a contingency table of numbers of sequences with or without at least
one occurrences of a motif M across the conditions of a contrast C. Mutual information of
condition C and feature occurrence M, is an undirectional measure of association from
information theory (Cover and Thomas, 2006; MacKay, 2003; Shannon, 1948), see ap-
pendix C,

I(C;M) =
∑
c∈C
m∈M

P(C = c,M = m) log2
P(C = c,M = m)

P(C = c)P(M = m)
, (8.11)
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where P(C = c,M = m), P(C = c), and P(M = m) are joint and marginal relative
frequencies of contingency tables like the one depicted in table 7.2, and P(C = c) =∑

m∈M P(C = c,M = m), and P(M = m) =
∑

c∈C P(C = c,M = m). In terms of the
variables of table 7.2 this is

I(C;M) = log2 N+
1
N

( k∑
i=1

mi(θ) log2
mi(θ)

ni
∑

jmj(θ)

+
k∑
i=1

(ni −mi(θ)) log2
ni −mi(θ)

ni
∑

j (nj −mj(θ))

)
,

(8.12)

where N =
∑k

j=1 nj.
Being the KL divergence of the joint probability model and the independent proba-

bility model, I(C;M) = DKL(P(C,M)||P(C)P(M)) (see appendix C), mutual information
measures discrimination, or association of condition and motif occurrence. It quantifies
how much information is conveyed about the distinction between signal and control, or
generally the condition, by knowing the motif to be present or absent. Symmetrically it
also quantifies how much information is conveyed about the motif presence by the sig-
nal/control distinction. Mutual information is measured in units of bits per sequence.

We define mutual information of condition and motif occurrence (MICO) by scaling
mutual information by the number of sequences N, to yield

MICO = N · I(C;M), (8.13)

in units of bits, not bits per sequence.

Gradient As detailed in appendix F, from equation (8.12) we derive the following expres-
sion for the gradient of the mutual information of condition and motif presence,

∇I(C;M) =
1
N

(∑
i

(∇mi(θ)) log2
mi(θ)

ni −mi(θ)
−

(∑
i

∇mi(θ)
)

log2

∑
imi(θ)∑

i ni −mi (θ)

)
.

(8.14)

Analyzingmultiple contrasts Frequently it is useful to jointly analyze multiple contrasts,
such as when repeat experiments are available. In this case—as MICO is an additive
measure—the MICO values of the individual contrasts can simply be added together.
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Chapter 9

Probabilistic discriminative
objective functions

This chapter discusses three related discriminative objective functions that are not based
on contingency tables but utilize probabilistic formulations for classificiation. Section 9.1
discusses an approach which uses one probabilistic model. An approach that uses mul-
tiple probabilistic models is presented in section 9.2. And a composite-model-based ap-
proach is outlined in section 9.3.

9.1 Difference of log likelihood

A directional, discriminative objective function applicable to binary contrasts that is not
based on contingency tables is the difference of log likelihood (DLOGL) between signal
and control,

DLOGL = logL(θ|Xsignal)− logL(θ|Xcontrol)

= logP(Xsignal|θ)− logP(Xcontrol|θ)

=
∑

i∈signal

logP(Xi|θ)−
∑

i∈control

logP(Xi|θ),
(9.1)

where Xsignal and Xcontrol are the signal and control data, respectively, and θ are the pa-
rameters of a probabilistic model. In words, this objective functions identifies models for
which the signal data appear as typical examples but simultaneously the control data ap-
pear as unlikely examples. Thus, data yielding high likelihood for a model selected by
DLOGL tends to indicate signal data.

The choice of DLOGL as objective function for learning necessitates balancing of the
sizes of signal and control data used for learning. In case the control dataset is consider-
ably larger, any gain in likelihood for the signal data may be outweighed by a loss of likeli-
hood for the control data. Dominating control data sizes may thus lead to parameters that
are determined primarily by being bad generative models for the control data. Conversely,
in case the control dataset is considerably smaller, this objective function is dominated by
the signal likelihood and loses it discriminative character as DLOGL becomes practically
equivalent to ML learning.
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Gradient The gradient of the DLOGL is simply the difference of log likelihood gradients,

∇DLOGL =
∑

i∈signal

∇ logP(Xi|θ)−
∑

i∈control

∇ logP(Xi|θ). (9.2)

For the case of an HMM θ, expressions for the log likelihood gradient ∇ logP(X|θ) are
given in section 4.6.

9.2 Multiple model classification

Instead of learning just one modelθ, it is also possible to use two or more modelsθ1, θ2, . . .,
which are identified with the conditions of the contrast. We think of the conditions as
classes C1,C2, . . .. The conditional probability of classifying a sequence X as belonging to
class Ci is then

P(C = Ci|X) =
P(C = Ci,X)

P(X)

=
P(C = Ci,X)∑
kP(C = Ck,X)

=
P(X|C = Ci)P(C = Ci)∑
kP(X|C = Ck)P(C = Ck)

.

(9.3)

Here, P(C = Ci) is the prior for class Ci. The likelihood of the data X given by class Ci is
given by a class-dependent model,

P(X|C = Ci) = P(X|θi). (9.4)

Possible choices for the class-dependent models are the OOPS or ZOOPS models for signal
data, and a pure background model for control data in the case of a binary contrast. An-
other possibility is to use for all classes ZOOPS models for the same motif but with mixing
parameter λi depending on the class Ci.

This objective function is not implemented in Discrover.

9.3 Probability of correct classification

We now turn to consider a different probabilistic model of classes. For this we assume that
the data are given in form of paired sets of sequencesX = (Xi)with corresponding classes
c = (ci). Maximum mutual information estimation (MMIE) considers the probability of
correctly classifying all samples,

P(C = c|X, θ) =
∏
i

P(Ci = ci|Xi, θ), (9.5)

or its logarithm,
logP(C = c|X, θ) =

∑
i

logP(Ci = ci|Xi, θ). (9.6)

It may appear tempting to identify the classes with motif presence or absence, but this
turns out to be problematic when the data includes mislabeled samples, in particular false
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C

M

Xθ

Figure 9.1: The graphical model of MMIE. C represents the class, or dataset, M the mo-
tif presence, and X the observed sequence. For an explanation of the graphical model
notation see e.g. Koller and N. Friedman (2009).

positives. As both false positives and false negatives appear to be common in real biologi-
cal data, it makes sense to consider alternatives. One possibility is to add a mixture model
as follows.

The model comprises three random variables, X for the sequence, a binary variable
M for the motif presence in a sequence, and a discrete variable C for the class of the se-
quence. Additionally, there are parameters θ for a probabilistic (sub-) model that deter-
mines P(X|θ). The structure of the model is as depicted in figure 9.1, which corresponds
to the following factorization,

P(C,M,X|θ) = P(X|M, θ)P(M|C)P(C). (9.7)

The conditional motif occurrence probabilitiesP(M|C), the class priorP(C), as well as the
HMM parameters θ are parameters of the MMIE model. P(C) is a probability distribution
over k = |C| classes, and thus represents k − 1 free parameters. P(M|C) is a table of
conditional probabilities with k × 2 entries, and k free parameters. Given an expression
for the likelihood P(X|θ) and for posterior probability of a feature occurrence P(M|X, θ),
we then have

P(C,M,X|θ) = P(X,M|θ)
P(M)

P(M|C)P(C) = P(M|X, θ)P(X|θ)
P(M)

P(M|C)P(C), (9.8)

where P(M) =
∑

c∈C P(M,C = c) =
∑

c∈C P(M|C = c)P(C = c). The likelihood of motif
presence and class, P(C,M|X, θ), is then given by

P(C,M|X, θ) = P(C,M,X|θ)
P(X|θ) =

P(M|X, θ)
P(M)

P(M|C)P(C). (9.9)

By summing over M ∈M = {M,¬M}we can express the posterior probability of classify-
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ing data X as class C given the HMM parameters θ, P(C|X, θ), as follows,

P(C|X, θ) =P(C,M|X, θ) + P(C,¬M|X, θ) (9.10)

=P(C)
(
P(M|X, θ)
P(M)

P(M|C) + P(¬M|X, θ)
P(¬M)

P(¬M|C)
)

(9.11)

=P(C)
(
P(M|X, θ)
P(M)

P(M|C) + 1− P(M|X, θ)
1− P(M)

(1− P(M|C))
)

(9.12)

=P(C)
(
P(M|X, θ)
P(M)

P(M|C)− P(M|X, θ)
1− P(M)

(1− P(M|C)) + 1− P(M|C)
1− P(M)

)
(9.13)

=P(C)
(
P(M|X, θ)

(
P(M|C)
P(M)

− 1− P(M|C)
1− P(M)

)
+

1− P(M|C)
1− P(M)

)
(9.14)

=
P(C)

1− P(M)

(
P(M|X, θ)

(
P(M|C)
P(M)

− 1
)
+ 1− P(M|C)

)
. (9.15)

In (9.11) we use (9.9). Step (9.12) uses the fact that M is a binary variable, and thus M and
¬M are complementary events, from which we have P(M) = 1 − P(¬M), and similarly
P(M|C) = 1 − P(¬M|C), and P(M|X, θ) = 1 − P(¬M|X, θ). The steps (9.13), (9.14), and
(9.15), are just rearranging and cancelling terms.

Gradient The MMIE learning routine of Discrover uses gradient optimization for the
HMM parameters θ. The other MMIE parameters, i.e. the class prior P(C) and the con-
ditional motif occurrence priors P(M|C), are simply re-estimated by Discrover’s MMIE
learning routine. Thus, for MMIE, we only give the gradient of the classification proba-
bility∇P(C|X, θ) with respect to the HMM parameters θ,∇f(θ) =

(
∂f(θ)
∂θi

)
i
,

∇P(C|X, θ) = P(C)
1− P(M)

(
P(M|C)
P(M)

− 1
)
∇P(M|X, θ). (9.16)

As the global MMIE objective (9.6) is given by the sum of log probabilities of correct classi-
fication of the individual sequences, we finally consider the gradient of the log probability
of correctly classifying a sequence X as belonging to class C given the model θ,

∇ logP(C|X, θ) = ∇P(C|X, θ)
P(C|X, θ) =

P(C)
1− P(M)

(
P(M|C)
P(M)

− 1
)
∇P(M|X, θ)
P(C|X, θ) . (9.17)
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Chapter 10

Significance of association

In this work we make use of the following connection between mutual information and
the likelihood ratio test which allows to compute p-values for mutual information in con-
tingency tables. This connection is explained in section 10.1. Section 10.2 details how
p-values of association may be corrected for multiple testing (MT) to control the family-
wise error rate (FWER). Finally, section 10.3 describes how MT-corrected p-values that do
not meet significance criteria are filtered to increase MD performance.

10.1 Mutual information, likelihood ratio, and χ2 test

The value of mutual information I is related to the log likelihood ratio log Λ of the hypoth-
esis that the counts in rows and columns of a contingency table are distributed indepen-
dently by

log Λ = −I · n · log 2, (10.1)

where n is the total number of cases in the table. Wilks’ theorem (Wilks, 1938) relates
the log likelihood ratio to the χ2 test. Specifically, for k × 2 contingency tables and for
increasing sample sizes, −2 log Λ is asymptotically distributed like χ2 with k − 1 degrees
of freedom. Also see appendix D.

In MD frequently the problem arises to compare the discriminative performance of
models with differing numbers of parameters. If two models are optimal for their respec-
tive motif spaces, and when additionally the larger of the two motif spaces comprises
the smaller one, then discriminability must be greater or equal for the motif which is
optimal over the larger motif space. Through the connection of mutual information to
the χ2 test via the likelihood ratio test we may determine p-values in both cases. By cor-
recting p-values for motif space size, we propose to make comparable the discriminabil-
ity of motifs with different numbers of parameters. To this end we correct p-values in a
Bonferroni-style by multiplying with the motif space size, to control the FWER (Hochberg
and Tamhane, 1987). This counteracts usage of overly long or degenerate motifs, for which
the search space is large, by favoring short words or words with low degree of degeneracy,
with a correspondingly smaller search space. Note that control of the FWER may be con-
servative (Hochberg, 1988), and that more powerful MT-correction methods are available,
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e.g. those of Benjamini and Hochberg (1995), Benjamini and Yekutieli (2005), Hochberg
and Benjamini (1990), and Storey and Tibshirani (2003).

We will next propose ways of calculating motif space sizes for the discrete case of IU-
PAC regexes and for the continuous case applicable to HMMs.

10.2 Multiple testing correction for motif discovery problems

Any MD method aims to find optimal sets of parameters according to some objective func-
tion. During this (exact, approximate, or heuristic) optimization many parameter values
are tested and the best one is reported. Clearly, the larger the allowed motif space the
higher the maximally achievable objective function is. It is thus desirable to account for
the difference in number of parameters when comparing the values of the objective func-
tion on the same data for two parameter sets with differing numbers of parameters. There
is no generally applicable way to account for difference in number of parameters for arbi-
trary objective functions. However, whenever the objective function represents a p-value
P, we may, in a Bonferroni style, multiply the p-value with the size N of the motif space,
to yield a corrected p-value Pcorrected. In log-space we have then

logPcorrected = min (0, logP+ logN) . (10.2)

Below, we give expressions for the motif space size for discrete, string-based motif repre-
sentations, as well as a proposition for continuous matrix-based motif representations.

10.2.1 Discrete motif space sizes

We first consider the case when the motif space over which the optimization takes place is
that of strings of length n over the nucleic acid alphabet. In this case the motif space has
a size N = 4n. Similarly, the motif space of all IUPAC regexes of length n is of size N = 15n.

When considering IUPAC regexes up to some maximal degeneracy the motif space size
is less than given above. In this case the computation of the motif space size is easily done
by dynamic programming in the length of the motif and the degree of degeneracy.

For this define the matrix M with entries for each length n and degree of degeneracy
d, whose entries are given by the following recursive equations,

M(n, d) =



0 if 3n < d

1 if n = 0 and d = 0

4 ·M(n− 1, d) if n > 0 and d = 0

4 ·M(n− 1, d) + 6 ·M(n− 1, d− 1) if n > 0 and d = 1

4 ·M(n− 1, d) + 6 ·M(n− 1, d− 1) + 4 ·M(n− 1, d− 2) if n > 0 and d = 2
4 ·M(n− 1, d) + 6 ·M(n− 1, d− 1) + 4 ·M(n− 1, d− 2)

+1 ·M(n− 1, d− 3)
if 3 ≤ d ≤ 3n

(10.3)

Note that the maximal degeneracy of a motif of length n is 3n, giving the first recursion
anchor. Then, there is exactly one motif of length 0, the empty motif. Next, when consid-
ering motifs of length n with degeneracy zero, there are four times as many as motifs of
length n − 1 with degeneracy zero, as each of these may be extended by appending one
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10.3. Significance of association significance filtering

of A, C, G, or T. Similarly, when considering motifs of length n with degree of degeneracy
d = 1, in addition to extending motifs of length n− 1 and d = 1, one may extend motifs of
length n − 1 and d = 0 with any of the six singly-degenerate symbols S, W, M, K, R, and
Y. Motifs of length n and degree of degeneracy d = 2 additionally may extend motifs of
length n− 1 and d = 1 with the four two-fold degenerate symbols B, D, H, and V. Finally,
for motifs of length n and degree of degeneracy d ≥ 3, the motifs of length n− 1 and d = 2
may be extended with the single three-fold degenerate symbol N.

From the matrix M we can then easily compute the number N(n, d) of IUPAC motifs of
size n with degeneracy up to d as

N(n, d) =
d∑

k=0

M(n, k). (10.4)

10.2.2 Continuous motif space sizes

For general matrix-based motif representations there are infinitely many values due to
infinitely many distributions that exist already for individual positions. Some methods
restrict the continuous matrix space to a lattice, and the number of lattice vertices natu-
rally defines the size of the motif space in this case.

Here we propose to base the effective number of parameter in a continuous matrix on
rank statistics. Considering individual positions, we assume that one to four nucleotide
may be allowed. If one nucleotide is allowed, there are four possibilities of choosing this
one nucleotide. When two nucleotides are allowed, e.g. nucleotides x and y then we may
have x < y, x = y, x > y, indicating that nucleotide x is respectively less frequent, as
frequent, or more frequent than nucleotide y. Thus, for two nucleotides, one can choose
two of the four nucleotides and can have the two nucleotides in three relations, resulting
in
(4

2
)
· 3 = 18 possibilities. Following this logic, we have the following formula for the

total number of rankings of up to 4 elements selected from the nucleic acid alphabet,

J =
4∑
i=1

(
4
i

)
· K(i) = 4 · 1 + 6 · 3 + 4 · 13 + 1 · 75 = 149, (10.5)

where K(i) is the number of total preorders of i elements (). Then, by multiplying this
number across the positions, we have a motif space size of N = Jn.

10.3 Significance of association significance filtering

Rejecting models whose MT-corrected p-values are not significant reduces the number of
falsely predicted models. Thus, Discrover accepts or rejects the final, optimized param-
eterization, depending on whether the MT-corrected MICO-based p-value meets a given
threshold. This discriminative significance filtering based on MICO is applied regardless
of the objective function chosen for seeding and optimization.

Discrover uses the motif space calculation as described in section 10.2.2. Regarding
significance filtering in Plasma we experimented with the motif space size definition given
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Chapter 10. Significance of association

in section 10.2.1. While we generally found it to be useful (results not shown), we ulti-
mately decided for the sake of comparability with Discrover to also base significance cal-
culation for Plasma on the continuous motif space size definition given in section 10.2.2.
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Chapter 11

Discrete optimization of
discriminative objectives

This chapter describes two methods for optimizing discriminative objectives over discrete
spaces. Section 11.1 describes a progressive algorithm, named corenmers, that enumer-
ates words over an alphabet in decreasing order of residual contribution to discrimina-
tion. The methods that is used to determine seeds for subsequent HMM optimization is
described in section 11.2.

Both methods are based on sets of sequences, and may utilize the non-probabilistic,
table-based discriminative objective functions DFREQ, MCC, and MICO described in chap-
ter 8. Naturally, when more than two sets of sequences are given, then the binary discrim-
inative objective functions DFREQ and MCC are not applicable, and only MICO may be
used.

11.1 Enumerating residually most discriminative words

The following method is implemented in the program corenmers that is part of the Dis-
crover software package released with this thesis.

As input corenmers expects a set of sequence sets. The user may specify one length n
or a length range n1 to n2. The method then enumerates all n-mers of the desired lengths
occurring in the sequences, and prints out the top scoring k words or all words in the
sequences, in order of decreasing objective function.

Algorithm 4 gives pseudocode for corenmers.
The algorithm determines the kmost relevant words in the desired length range on the

dataX according to some objective function f. This is done by progressively identifying the
most relevant word, and masking its occurrences in the data, before identifying further
words. The algorithm is relatively simplistic and just considers all words occurring in the
sequences, without allowing degenerate positions. This allows a runtime of O(kdn) to
determine the k most-relevant words, where d = n2 − n1 + 1 and n is the total length of
the sequences. Masking may either mask out the exact occurrence of the word, or discard
sequences with occurrences of the word. Optionally, the algorithm also takes into account
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Chapter 11. Discrete optimization of discriminative objectives

Algorithm 4 Core-nmer analysis
Input: word length range n1 to n2, number of words to determine k, data X, objective

function f, alphabetA
Output: (wi)i=1,...,n the k most relevant words of length n1 to n2

1: for i = 1→ k do
2: wi ← argmaxw∈An,n1≤n≤n2

f(w,X)
3: X← mask(X,wi)
4: return (wi)i=1,...,n

words on the reverse complementary strand to allow analysis of DBPs.

As mentioned in the introductory paragraph to this chapter, the objective functions
must be based on discrete counts, and we typically employ MICO. In addition to the above-
mentioned discriminative objective functions, also the MT-corrected p-value of associa-
tion based on MICO (see chapter 10), and relative occurrence frequency in all sequences
may be used as objective function.

As the objective function for a word may change after masking of occurrences of an
overlapping word or due to co-occurring with previously identified words, we refer to the
objective function value at which a word is selected as its residual objective value. The
residual objective value is thus an estimate of the independent contribution a word con-
veys for discriminating sets of sequences after more relevant words have been accounted
for.

11.2 Identifying discriminative words with degeneracy

The following method is implemented in the program Plasma that is part of the Discrover
software package released with this thesis. It is the routine that is used to find seeds for
subsequent optimization of HMM parameters. To allow both manual experimentation
and automation, Plasma is integrated into the HMM preprocessing, but can also be run
separately.

The seed finding routine heuristically identifies motifs in the form of IUPAC regexes
that score high according to the chosen objective function. The seed finding procedure
presented here is similar to DREME (Bailey, 2011), but offers multiple, contingency table
based objective functions to choose from, and uses a different heuristic to filter unpromis-
ing candidate motifs. Input to seed finding consists of sets of sequences among which
discriminative motifs are suspected. Parameters include the choice of objective function
and motif lengths to consider. The objective functions comprise relative occurrence fre-
quency, DFREQ, MCC, and MICO. Optionally, discriminative motifs may be filtered for
enrichment in specific samples.
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11.2. Identifying discriminative words with degeneracy

(a) Generalization

ACG

[AC]CG

[AG]CG

[AT]CG

AC[AG]

AC[CG]

AC[GT]

A[AC]G

A[CG]G A[CT]G

(b) Specialization

A[CG][GT]

AC[GT]

AG[GT]

A[CG]T

A[CG]T

Figure 11.1: IUPAC generalizations of ACG (a) and specializations of A[CG][GT]=ASY (b).

Algorithm 5 Most discriminative IUPAC motif
Input: word length k, maximal degeneracy D, data X, objective function f, number of

candidates to maintain n
Output: Heuristically most discriminative IUPAC word w of maximal degeneracy D

1: d← 0
2: C← kmers(X, k)
3: C← topn(c ∈ C, f(c,X))
4: while C ̸= ∅ and d ≤ D do
5: G← {g ∈ generalizations(c) |c ∈ C}
6: C←

{
g ∈ G

∣∣f(g,X) ≥ maxs ∈ C ∩ specializations(g) f(s,X)
}

7: C← topn(c ∈ C, f(c,X))
8: d← d+ 1
9: return top1(c ∈ C, f(c,X))

Algorithm Algorithm 5 gives pseudocode for Plasma. Initially, the algorithm considers
all words of a given length occurring in the set of sequences, and for each occurring word
w the number of sequences that contain w is determined for each of the sets of sequences.
From these counts, and the number of sequences in each set, the objective function is
evaluated for each word, and the words are sorted according to it. Then, only the top n
words are retained as candidates, where n is a parameter whose default value is 100.

Each retained word w is generalized (line 5) by generating all IUPAC generalization
of w that differ from w by allowing one additional nucleotide at any position. E.g. the
word ACG may be generalized to [AC]CG, [AG]CG, [AT]CG, A[AC]G, A[CG]G, A[CT]G, AC[AG], AC[CG],
AC[GT], see figure 11.1(a). By scanning over the sets of sequences, occurrence statistics
are procured for each of the generalizations. Subsequently, the objective function is com-
puted from the statistics of the generalizations. Generalizations with a score less than
any of their generating specializations (see figure 11.1(b)) are dropped (line 6), and the
resulting top n generalizations are kept (line 7) for further rounds of adding degeneracy,
scoring, and retaining the top.

This scheme is iteratively continued until no further generalizations are available ei-
ther because all have been dropped, or because the maximal degeneracy was reached.
The user may limit the maximally allowed degeneracy with an absolute or relative limit1.

1For words of length k the maximal degeneracy is 3k; a relative limit g on degeneracy would allow up to
⌊3gk⌋ degrees of degeneracy. For example, a relative degeneracy of g = 0.2 for a motif of length 8 allows up to
⌊3 · 0.2 · 8⌋ = 4 degrees of degeneracy.
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Optionally, the algorithm also takes into account word occurrences on the reverse com-
plementary strand to allow analysis of DBPs.

Multiple seeds When multiple seeds are desired, the most relevant one is identified ac-
cording to algorithm 5. Subsequently, all occurrences of this motif are masked from the
sequences, and further seeds may be sought. Alternatively, instead of masking just occur-
rences, the sequences containing occurrences may be discarded for the identification of
further seeds.

Runtime complexity and implementation details Plasma uses a suffix array based word
counting procedure, that finds occurrences of words without degenerate positions in time
linear in the number of occurrences. For each occurrence, it is then necessary to deter-
mine the sequence that the position is contained in. For each position, this is done in
constant time by means of a table that stores the index of the sequence that each position
occurs in. The sequence indices are then reduced to unique sequence indices, incurring
a runtime cost ofO(n log n) due to sorting2, where n is the number of involved sequences.
Then, for each sequence, the index of the set of sequences that the sequence is part of is
determined in constant time by look-up in a sequence index to set index table.

However, for words that include positions where multiple symbols are allowed look
up time is larger than for non-degenerate words. The runtime increase for words with
degenerate positions depends both on the data and on where in the word degeneracy is
allowed. In view of this, we do not give a formulation for the theoretical runtime cost of
the algorithm used, but refer the reader to the example execution wall clock time given in
the next paragraph.

Example execution Figure 11.2 lists the output of running Plasma on the cross-linking
centered regions of PUM2 data of Hafner et al. (2010), analyzed in chapter 18. As is visi-
ble, execution of Plasma took under 5 seconds, demonstrating feasibility of optimizing a
discriminative objective over IUPAC regexes on regular workstations.

2This cost could be reduced by using a hash-based routine to determine unique sequence indices. However,
sorting the sequences indices is not the main contribution to runtime.
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11.2. Identifying discriminative words with degeneracy

$ plasma PUM:pum.ccr.signal.fa control:pum.ccr.control.fa -m PUM:8
IUPAC representation tgtanhwh
Regular expression tgta.[act][at][act]
Length 8
Information content [bit] 9.83007
Information content [bit / pos] 1.22876
Degeneracy 8
Objective: PUM:mutual information
Score 0.134184
Delta frequency 0.413516
Matthew’s correlation coefficient 0.423151
Mutual information [bit] 0.13426
Mutual information (pscnt) [bit] 0.134184
Expected mutual information [bit] 0.134248
Variance mutual information [bit] 1.49677e-05
Sd mutual information [bit] 0.00386882
Z mutual information [bit] 34.7001
G-test 2913.06
Uncorrected log-P -1460.74
Corrected log-P -1439.95
Occurrence statistics pum.ccr.signal.fa 4702 / 7828 = 0.600664
Occurrence statistics pum.ccr.control.fa 1465 / 7828 = 0.187149
User time = 4.596 sec
System time = 0.026 sec
CPU time = 4.622 sec
Elapsed time = 0.873674 sec
529.03% CPU

Figure 11.2: Example run of Plasma on sequences of PAR-CLIP cross-linking centered re-
gions of PUM2 data by Hafner et al. (2010) optimizing MICO over the space of IUPAC
regexes. The dataset comprises 7828 signal sequences, and equally many control se-
quences. The command line options instruct Plasma to find a motif of length 8 that is
discriminative for the two specified FASTA files. The command was run on a workstation
with an Intel® Core™i7-4770K CPU @ 3.50GHz, which has 8 cores.
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Chapter 12

Hybrid learning

12.1 Signal and context parameters

Binding site HMMs are composite models of the cognate motifs as well as the surround-
ing sequence context. Some parameters of binding site HMMs, in particular the emission
probabilities of the motif chain states, pertain to signal features, and we refer to these
as signal parameters. The other parameters are referred to as context parameters, and
comprise the emission probabilities of the background and all transition probabilities,
including the prior occurrence probabilities of the motifs, realized as transition probabil-
ities from other states to the beginning of the respective chain of motif states.

We assume that only the presence of signal features differs between signal and con-
trol sequences, while the surrounding sequence context is shared. Thus we propose to
employ discriminative learning principles to learn signal parameters by contrasting sig-
nal and control sequences. However, to leverage HMM learning methods, we must spec-
ify a complete set of HMM parameters, including the context parameters. When context
parameters are learned uninformed of signal features, they may erroneously incorporate
properties of the signal features. There is thus a mutual dependence of the learning prob-
lems of signal and context parameters. In order to resolve it we propose the following
procedure.

12.2 Learning scheme

We associate objective functions to the signal and context parameters. The signal param-
eters will use a discriminative objective, and the context parameters a generative one. We
then employ a hybrid learning scheme which aims to jointly optimize both objectives over
their respective parameters. The scheme consists of alternatingly updating the signal and
context parameter classes, using suitable updating methods for their respective objective
function. Hybrid learning is finished when termination criteria of both updating proce-
dures are simultaneously fulfilled.

The natural choice for the generative objective function is the likelihood. Thus, up-
dates for the context parameters are performed using iterations of the Baum-Welch algo-
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rithm. Signal parameters may be optimized for any of the implemented discriminative
objective functions by performing iterations of gradient search.

Choice of learning scheme and alternatives This hybrid learning scheme in which only
the motif emissions are optimized by discriminative objectives, and all other parameters
are optimized by the Baum-Welch algorithm is used by default in Discrover. It is not guar-
anteed to terminate in the general case of arbitrary data and arbitrary choices of gener-
ative and discriminative objective functions. Yet, in our experience such problems are
rare. In any case, to practically address the termination problem, the user may specify a
maximal number of iterations to perform.

Aside from the hybrid learning scheme, Discrover also allows the user to train all pa-
rameters by one objective function, or only the motif emissions and leave other parame-
ters unmodified. Should the hybrid learning scheme fail for some data, these alternative,
single-objective learning schemes are expected to optimize more robustly.

Sequence sets for learning context parameters By definition, the occurrence frequency
of discriminative motifs differs between sets of sequences of suitable contrasts. Thus it
matters which set of sequences the occurrence prior is learned from. By default all se-
quence sets are used to train the context parameters, but the user may specify a subset
of the sequence sets to train the context parameters on. E.g., for contrasts of signal and
scrambled sequences context parameters may be learned from the signal data only.

Learning MMIE parameters Differently from the other objectives, the optimization of
the MMIE objective requires learning of class priors P(C) and conditional motif occur-
rence probabilities in the classes P(M|C) in addition to the HMM parameters. It has been
suggested to optimize these separately from the other parameters (Krogh, 1994). Accord-
ingly, Discrover separately re-estimates these class and conditional occurrence probabil-
ities during each iteration of learning, after the HMM parameters have been updated.

12.3 Multi-objective learning

Next, we will formulate the above-described procedure more abstractly to arrive at a more
general understanding of its properties.

The method proposed here partitions the parameters to be estimated in n classes,
θ = (θi)i∈Zn

. With each class i is associated an objective function fi (X, θ). Note that the
objective function of each class may depend on the values of parameters in all classes. For
notational simplicity in what follows we will not make explicit the dependence on the data
X, fi (X, θ) = fi (θ). Denote by θ¬i all parameters that are not in class i, i.e. θ¬i = (θj)j ̸=i so
that each class i induces a partition of θ as θ = θi × θ¬i.

The proposed optimization problem is that of determining parameters θ∗ such that it
holds simultaneously for all classes i

θ∗i = argmax
θi

fi(θi × θ∗¬i). (12.1)
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In words this criterion states that the parameters in each class i should be chosen so as to
maximize the associated objective functions over all assignments of values to parameters
in class i keeping the other parameters constant.

Clearly, such parameter values are not not unique, and different parameter assign-
ments may fulfill this criterion. Also, the achieved maximum of an objective function
fi may only be a local one. As an illustration of this point consider that in the general
case each objective function i is assumed to depend on all parameters θ (and the data
X), not just on those in class i. Thus choosing some values for the complement of class i,
i.e. for θ¬i, the achievable value of the constrained optimization over the parameters of
class i is less or equal to the achievable value of global optimization over all parameters,
maxθi fi (θi × θ¬i) ≤ maxθ fi (θ).

While this criterion neither identifies unique parameters nor guarantees each objec-
tive to be globally optimized, it does guarantee local optimality in the sense that by mod-
ifying the parameters in class i leaving other parameters fixed no better value of the ob-
jective function fi may be achieved. The criterion therefore is helpful in identifying mean-
ingful parameters in case multi objectives are to be optimized and if it is clear which pa-
rameters should tune which objective.

The derivative of a function at a maximum vanishes. The converse is not true however,
as also minima and saddle points of a function have vanishing derivative. Thus, for any
parameter θ∗ that is valid according to the above criterion, we simultaneously have for
each class i

∂fi (θ)
∂θi

∣∣∣∣
θ∗

= 0. (12.2)

Using gradient optimization or re-estimation-based methods it is possible to perform a
modification to the parameters of each class i that increases the value of objective function
fi. Thus, a simple procedure to find parameters that fulfill the above requirement is to
alternatingly update the parameters of each class until convergence is reached when no
update to any class changes the parameters more than some limit.

Unfortunately, convergence properties of such a procedure are quite unclear in the
general case.
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Chapter 13

Discovering multiple motifs

13.1 Measures of conditional association

Discrover makes use of conditional mutual information (cMI) (Cover and Thomas, 2006),
see equation (C.13) in appendix C.2.6. In particular, it is used to define cMI of conditions
of a contrast C and occurrence of motifA given occurrences of motif B (cMICO),

cMICO (C;A|B) = I (C;A|B) , (13.1)

as well as to define motif pair cMI of occurrences of two motifsA and B given conditions
of a contrast C,

motif pair cMI (A;B|C) = I (A;B|C) . (13.2)

cMICO of a contrast C and a motifA given a motif Bmeasures the discriminatory con-
tribution of A across the contrast C after accounting for the discriminatory contribution
of B. Motif pair cMI ofA and B across C quantifies how strongly occurrences ofA and B
are associated throughout the contrast.

13.1.1 Motif pair MI and motif pair cMI

Our usage of cMICO and motif pair cMI for filtering (see section 13.2) is motivated by
FIRE (Elemento, Slonim, and Tavazoie, 2007). Unlike our criterion, however, FIRE uses
the non-conditional motif pair mutual information (MI) in place of the motif pair cMI. In
our opinion motif pair cMI improves over motif pair MI, as illustrated by the two cases in
figure 13.1 and figure 13.2. In the first case, two motifs that independently occur within
each condition are found as associated by MI, but not by cMI. Conversely, in the second
case two motifs that are dependently occurring within each condition are only found as
associated according to cMI, but not according to MI.

In other words, usage of (non-conditional) motif-pair MI may lead to the conclusion
that independently occurring motifs are occurring dependently, and conversely that de-
pendent motifs are occurring independently, while cMI does not have this problem. The-
ses cases are of course instances of Simpson’s paradox (Simpson, 1951).
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(a) Condition 1

A ¬A
B 1 9
¬B 9 81

(b) Condition 2

A ¬A
B 81 9
¬B 9 1

(c) Marginal (1+2)

A ¬A
B 82 18
¬B 18 82

Figure 13.1: Two motifs occur independently in condition 1, and independently in con-
dition 2, but their marginal distribution appears dependent. In this case motif pair cMI
yields 0.44 bit, while motif pair MI yields 61 bit (calculations done after adding a pseudo-
count of 1).

(a) Condition 1

A ¬A
B 40 0
¬B 0 60

(b) Condition 2

A ¬A
B 0 60
¬B 40 0

(c) Marginal (1+2)

A ¬A
B 40 60
¬B 40 60

Figure 13.2: Two motifs are dependently occurring in condition 1, and dependently in
condition 2, but their marginal distribution appears independent. In this case motif pair
cMI yields 167 bit, while motif pair MI yields 0 bit (calculations done after adding a pseudo-
count of 1).

13.2 Discovering multiple motifs

Figure 13.3 illustrates the first part of the multiple motif discovery mode of Discrover. First,
seeds are discovered using Plasma. For each seed an HMM is initialized and indepen-
dently optimized by Discrover. The HMM achieving the best MICO based p-value is ac-
cepted. In a second part further motifs are then added to this HMM as described below
and illustrated in figure 13.4.

In turn, the single HMM motifs are added to the accepted HMM, forming candidate
HMMs. The candidate HMMs are then filtered, ensuring that newly added motifs pro-
vide sufficient additional discrimination and are not redundant with previously accepted
motifs. This is done by comparing in each candidate HMM the new motif first pairwise
against each previously accepted motif, and then jointly against all previously accepted
motifs. Candidate HMMs and corresponding single-motif HMMs are discarded when the
filtering criteria—outlined below—are not met for the newly added motif, whether in any
of the pairwise comparisons or in the joint comparison.

Filtering is based on cMI, calculated in two ways: (I) cMI of conditions of the contrast
and occurrences of the newly added motif given occurrences of previously accepted motifs
(cMICO), and (II) cMI between occurrences of newly added and previously accepted motifs
given the conditions of the contrast (motif pair cMI). cMICO quantifies the discriminatory
contribution of the new motif after accounting for previous ones, while motif pair cMI
quantifies association between occurrences of the newly added and previously accepted
motifs. See section 13.1 for definitions of cMICO and motif pair cMI. In order to concentrate
on motifs with a large residual explanatory contribution relative to their association with
previous motifs, HMMs are discarded if at least one of two criteria is fulfilled: (a) the ratio
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Contrasts

Plasma: find seeds

Seeds

Discrover: Seed
& optimize HMMs

Single-motif HMMs

Select by
MICO
p-value

Accepted HMM Remaining HMMs

best
other

Figure 13.3: Flow chart of the first part of multiple motif discovery. The resulting accepted
HMM and the set of remaining single-motif HMMs are the inputs for the second part, de-
picted in figure 13.4. See text for description.

of cMICO over motif pair cMI does not meet a threshold1, or (b) the cMICO based p-value
is not significant.

As mentioned above, these criteria are first checked pairwise for the newly added motif
and each previously accepted motif, and subsequently for the new motif and jointly all
previously accepted motifs. In the joint comparison, an occurrence for the previously
accepted motif is counted whenever any of the previously accepted motifs occurs.

Among the candidate HMMs that pass the filtering steps, we select the one whose
newly added motif achieves the best cMICO based p-value. This HMM is then re-trained
to optimize MICO for the feature of sequences having at least one occurrence of any of its
motifs. If, after retraining, the MICO based p-value improves over the previously accepted
one’s, it is accepted, and further motifs may be added. Otherwise, or if all candidate mo-
tifs have been discarded, the last accepted HMM is reported.

13.2.1 Note on filtering

Note that usage of the ratio of cMICO over motif pair cMI is quite related to the usage
of cMICO over motif pair MI as is done by FIRE (Elemento, Slonim, and Tavazoie, 2007).
However, as already mentioned in section 13.1.1, unlike FIRE we use the motif pair cMI
instead of motif pair MI. The intention behind this choice is to avoid pitfalls as illustrated

1We use the same threshold value of 5.0 as FIRE (Elemento, Slonim, and Tavazoie, 2007). As noted by Ele-
mento et al., the user may want to experiment with this value, as it serves as a redundancy trade-off parameter.
High values yield fewer motifs, low values yield more redundant motifs.

125



Chapter 13. Discovering multiple motifs

by the two cases in figure 13.1 and figure 13.2. While the illustrated cases may be said to
be extreme, we found the underlying issue to be real. As motif pair cMI is used in the
denominator of the ratio, the filtering step is rather sensitive to misjudgement of motif
pair association. It is, in our view, therefore crucial to avoid quantitatively misjudging
motif pair association as may frequently happen when using non-conditional motif pair
MI.
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Add single motifs
to accepted HMMAccepted HMM Single-motif HMMs

Candidate HMMs

Filter by
ratio of
cMICO to
motif pair

cMI

Discard corresponding
single-motif HMM

Filter by
cMICO
p-value

Select by
cMICO
p-value

Keep corresponding
single-motif HMM

Retrain HMM
for MICO

Improved
MICO

p-value?
Stop

pass

fail

pass

fail

best

other

yes
no

Figure 13.4: Flow chart of the second part of multiple motif discovery. Inputs are the ac-
cepted HMM, and the set of remaining single-motif HMMs resulting from the first part,
depicted in figure 13.3. This part is executed until all single-motif HMMs have been ac-
cepted or discarded, or until the MICO p-value is not improved after retraining. See text
for description.
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Chapter 14

Related work

This chapter reviews previously published DMD algorithms. It first gives an overview in
section 14.1. The individual methods are then reviewed in sections 14.2 to 14.11. Finally,
section 14.12 briefly mentions some further discriminative tools.

14.1 Overview

DMD tools can be classified according to many different characteristics, among them most
importantly discriminative objective function, and employed motif models. Table 14.1
gives an overview of the methods reviewed below.

14.2 DREME: Discriminative Regular Expression Motif Elicitation

DREME, published by Bailey (2011), is a regex-based DMD tool. The objective function of
DREME is Fisher’s exact test (Fisher, 1922) applied to contingency tables of numbers of
sequences with at least one occurrence of a given motif.

Table 14.1: An overview of published methods for discriminative motif discovery.

Method Model Objective References
DREME RegEx Fisher’s exact test Bailey (2011)
YMF RegEx z-score Sinha and Tompa (2000, 2002, 2003)
CMF PWM z-score, min-FDR Mason, Plath, and Zhou (2010)
DME PWM DLOGL A. D. Smith, Sumazin, Das, et al. (2005) and A. D.

Smith, Sumazin, and M. Q. Zhang (2005)
DIPS Site set DFREQ Sinha (2006)
DECOD PWM DFREQ Huggins et al. (2011)
DEME PWM MMIE Redhead and Bailey (2007)
MoAn PWM MMIE Valen et al. (2009)
Dispom PWM MMIE Keilwagen et al. (2011)
FIRE RegEx MICO Elemento, Slonim, and Tavazoie (2007) and Lieber,

Elemento, and Tavazoie (2010)
Discrover HMM Multiple Maaskola and Rajewsky (2014)
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Initialization DREME considers all n-mers occurring in the sequences for 4 ≤ n ≤ 8,
and determines for each the number of sequences that have at least one occurrence of it.
From these statistics it computes the value of the objective function for each n-mer, and
keeps as seeds the 100 n-mers that are most significantly enriched.

Discrete optimization In a second stage, seed generalizations that are more significant
than the seeds are found by heuristic search (see below). DREME uses regexes based
on the IUPAC code for nucleic acids. In each iteration all generalizations of a regex are
considered that differ from it at one position by allowing one additional nucleotide at that
position. After improving the regexes until no further improvement is possible, the most
significant regex is selected and accepted. In order to find multiple motifs, occurrences of
the accepted motif are removed from the set of sequences by replacing them with special
symbols.

Heuristic search DREME performs a heuristic search that keeps a pool of the 100 most
significant regexes, of which generalizations are respected. In order to save runtime while
determining significant generalizations in the second phase of the algorithm, DREME at
first only estimates the enrichment of generalizing regexes. Only after finding the top 100
generalizations according to the estimated significance does DREME determine the actual
significance of the top 100 generalized regexes.

Termination Finally, when significance of the regex can not be increased anymore by
further generalizations, DREME determines a PSCM from the sequence occurrences that
match the regex.

14.3 YMF: Yeast Motif Finder

Sinha and Tompa (2000, 2002, 2003) utilize in their approach YMF, Yeast Motif Finder, as
alphabet a subset of the IUPAC code, namely {A, C, G, T, R, Y, S, W}, with optional spacer
positions of N in the middle, while only allowing up to two positions of the degenerate
letters R, Y, S, W. YMF requires a signal dataset of sequences of identical length. Before
discovering motifs, a 3rd order Markov chain is extracted from a suitable set of genomic
loci, e.g. from promoter sequences. The Markov chain is used to generate multiple control
sequence sets of equally many sequences as in the signal dataset, with sequence lengths
identical to those of the signal dataset.

Objective function YMF identifies motifs with the z-score of occurrence frequency as
objective function. The z-score of motif m is defined as

zm =
Nm − μm

σm
, (14.1)

where Nm is the number of occurrences of m in the signal sequences, μm = E[Nm] is the
expected occurrence frequency of m in the control sequences, and σm is the standard de-
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viation of the occurrence frequency of m in the control datasets. YMF then reports the
motifs in the order of decreasing z-score.

14.4 CMF: Contrast Motif Finder

A related method that also uses a standardized enrichment score is the Contrast Motif
Finder (CMF), published by Mason, Plath, and Zhou (2010). The objective function used
by CMF is the difference of proportions test, and is given by

z(m) =
p̂1 − p̂2√

p̂ (1− p̂)
(

1
L1
+ 1

L2

) , (14.2)

where p̂1 = C1
L1

, p̂2 = C2
L2

, and p̂ = C1+C2
L1+L2

, and C1 and C2 are the occurrence counts of the
w-mer m in the signal and control datasets S1 and S2, and L1 and L2 are the number of
positions at which w-mers can occur in signal and control, respectively.

CMF consists of two phases: seed finding and subsequent matrix optimization.

Seedfinding The strategy used by CMF to determine seeds consists of finding sub-neigh-
borhoods of words that are enriched in the signal data as compared to the control. For this
first all words of length w occurring in the sequences are enumerated and their z-score is
calculated. Then, every word is considered as the center of a neighborhood where two
words are considered neighbors if they have Hamming distance at most m. Mason, Plath,
and Zhou use w = 7 and m = 2 in their publication. The neighborhood is then con-
strained in two ways. First, only those neighbors are included that are overrepresented in
the same set of sequences as the center of the neighborhood. The second restriction con-
siders sub-neighborhoods that differ from the center of the neighborhood on the same set
of positions J, where J is a sizem subset of {1, . . . ,w}. For example, for the string TTCGCGC
the strings aTCGCGC, cTCGCGC, and gTCGCGC are part of the sub-neighborhood for mis-
match position 1. CMF thus determines for each seed w-mer the sub-neighborhood that
yields the highest z-score with counts C1 and C2 being the total number of occurrences of
the members of the sub-neighborhood in signal and control.

Iterative matrix optimization In the second phase, CMF iteratively updates matrix mo-
tifs. For this, the sub-neighborhoods of the initial phase are summarized in w × 4 count
matrices N(1)

1 and N(1)
2 , for signal and control respectively. In general, N(t)

1 will contain
the nucleotide counts at each position of the predicted sites in the signal sequences in
iteration t, and analogously for N(t)

2 and the predicted sites in the control sequences.
After rescaling N(t)

2 by L2
L1

, Mason, Plath, and Zhou regard N(t)
2 as a matrix of expected

nucleotide frequencies in false-positive sites. Thus, to mitigate for the presence of false-
positive predictions in the signal sequences, CMF computes in each iteration N(t) as

N(t) =
(
N(t)
ij

)
w×4

= max
(
N(t)

1 − N(t)
2 , 0

)
. (14.3)
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Figure 14.1: Column types of discrete matrices in DME. Column type B is used by DME for
motifs of width w ≤ 10, column type A for motifs of width w ≥ 11.

After adding 5% pseudo-counts to this matrix, the PSFM θ(t) is obtained by renormaliza-
tion. A PSFM θ(t) is used to identify predicted sites by computing the likelihood ratio of a
sequence X = X1 . . . ,Xw, Xi ∈ {A,C,G,T},

LR(X) =
∏w

i=1 θ
(t)
i,Xi∏w

i=1 θ0 (Xi−1,Xi)
, (14.4)

where the background model θ0 is assumed to be a 1st order Markov chain, i.e. θ0 (Xi−1,Xi)
is the transition probability from Xi−1 to Xi.

During iterative updating CMF predicts sites whose likelihood ratio exceeds a thresh-
old τ(t), which is determined as the lowest τ such that FDR(τ) < δ, where δ is a user-
specified upper bound. The FDR is estimated by FDR(τ) = C2

C1

L1
L2

, whereC1 is the number of
sites in the signal sequences with a likelihood ratio exceeding τ, andC2 the corresponding
number in the control sequences. As above, L1 and L2 are the number of positions where
sites can occur.

Then the following algorithm is executed for t = 1, 2, . . .:

1. Update θ(t) using N(t)
1 and N(t)

2 , as described above.

2. Scan S1 and S2 with θ(t) and determine τ(t).

3. Use sites with LR(X) > τ(t) to create N(t+1)
1 and N(t+1)

2 .

Termination CMF terminates when d(t), the maximal absolute value of parameter differ-
ences between iterations t and t+ 1,

d(t) = max
i,j

∣∣∣θ(t+1)
ij − θ(t)ij

∣∣∣ < ε,

falls below a specified value ε. Mason, Plath, and Zhou choose ε = 0.01.

14.5 DME: Discriminating Matrix Enumerator

DME, the Discriminating Matrix Enumerator, published by A. D. Smith, Sumazin, Xuan,
et al. (2006) and A. D. Smith, Sumazin, and M. Q. Zhang (2005), uses a discriminative
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objective function similar to DLOGL, and optimizes this objective function over a discrete
matrix space.

Objective function Unlike our definition of DLOGL in section 9.1 based on HMMs, DME
does not define the likelihood P(X|θ) of a sequence X in terms of smoothing over all pos-
sible parses q, P(X|θ) =

∑
qP(X,q|θ), but rather in terms of the maximum likelihood

parse,
P(X|θ) = max

q
P(X,q|θ). (14.5)

In other words, DME computes the Viterbi parse q∗, and uses the Viterbi path’s likelihood
as the likelihood, i.e. P(X|θ) = P(X,q∗|θ), where q∗ = argmaxqP(X,q|θ) is the Viterbi
parse.

A. D. Smith, Sumazin, Das, et al. consider the difference of log-likelihoods of the signal
and control as function of the parameters θ,

log λ(θ) =
∑

X∈Xsignal

logP(X|θ)−
∑

X∈Xcontrol

logP(X|θ). (14.6)

But instead of maximizing log λ(θ), DME maximizes an approximation log λ̃(θ) to it, that
only considers the likelihood contribution due to motif occurrence in signal and control
sequences, but not the likelihood contribution due to non-motif positions. As A. D. Smith,
Sumazin, and M. Q. Zhang write, the well-foundedness of this approximation rests on
some assumptions. First, that motif occurrence are not too frequent, i.e. that the num-
ber of non-motif occurrence positions is a lot larger than the number of motif occurrence
positions in both signal and control sequences. And second, that the base composition
of non-motif occurrence positions is close to equal between signal and control sequences.
Although unmentioned by the authors, a further assumption appears to be that the signal
and control dataset sizes are balanced, as mentioned in section 9.1.

Then, DME defines θ∗ so as to maximize log λ̃(θ),

θ∗ = argmax
θ

log λ̃(θ). (14.7)

Initial search As mentioned above, DME optimizes over a discrete matrix space, where
matrices are formed as products of discrete column spaces. A. D. Smith, Sumazin, and
M. Q. Zhang state two intended goals in the choice of allowed column types. One is to
cover matrix column space uniformly in the sense of a grid that spans the space it is em-
bedded in uniformly. Thus, DME allows different column types depending on the motif
length, see figure 14.1. Second, that the discrete column spaces are combined in a manner
that enforces a minimal matrix-wise IC, depending on the motif length, see table 14.2.

DME then enumerates all matrices in this discrete space, and computes the objective
function (14.7) for each. The matrix that maximizes the objective function is then sub-
jected to the local search procedure described below for further optimization.

Local search DME terms the matrix resulting from the initial search the original matrix.
In the second phase, DME performs a local search in the vicinity of the original matrix
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Table 14.2: Default parameters for DME depending on the width of the motif. Column
types given in figure 14.1; IC: information content in bit; g: parameter for local search.

Width Column types IC per column min g
6 B 1.90 0.01
7 B 1.90 0.01
8 B 1.80 0.01
9 B 1.65 0.05

10 B 1.60 0.05
11 A 1.55 0.10
12 A 1.50 0.10

that achieves a higher objective function value. A parameter g ∈ (0, 1) is involved that
determines the distance in which candidate matrices are tried, and which is increasingly
constrained during local search. Given a matrixM and a value for g, A. D. Smith, Sumazin,
and M. Q. Zhang define a g-neighborhood Ng(Mi) for each column Mi as follows,

Ng(Mi) = {X|d1(Mi,X) ∈ {0, 2g} ,∀j : |Mij − Xj| ∈ {0, g}} , (14.8)

where d1(X,Y) = ||X − Y||1 =
∑

i |Xi − Yi|. The g-neighborhood of M then consists of all
matrices M′ such that M′

i ∈ Ng(Mi). There are 2
(4

2
)
+ 1 = 13 g-neighbor columns for each

column, thus for a length w matrix there are 13w − 1 g-neighbor matrices.
DME computes the objective function for each of the g-neighbor matrices. If any of

the neighbors achieves a higher score than the original matrix, it is used in place of the
original matrix, g is halved, and the procedure continues until g is below a given cutoff.
The cutoff for g depends on the motif width, see table 14.2.

Termination and further motifs After local search has finished, DME accepts the found
matrix, and masks all of its occurrences in the sequences. Subsequently, further motifs
are sought by repeating the procedure on the masked sequences.

Extension Related to DME is DME-X (A. D. Smith, Sumazin, Das, et al., 2005) which ex-
tends DME by incorporating localization information.

14.6 DIPS: Discriminative PWM Search

The motif finder DIPS, Discriminative PWM Search, by Sinha (2006) uses as binding motif
model a set of subsequences of equal length m of the signal sequences. These subse-
quences define in a unique way a PSCM, which together with a (fixed) background model,
gives rise to a unique PWM. As described below, DIPS uses the PWMs in a way similar to
HMMs.

Objective function DIPS computes the relative occurrence frequencies of a motif M per
position in the signal and control sequences, fS(M) and fC(M), and considers their differ-
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ence as objective function.

f(M|S,C, θ) = fS(M|θ)− fC(M|θ), (14.9)

where the relative frequency of motif occurrence of motif M among the signal sequences
is defined as

fS(M|θ) =
∑

X∈XS

E[M|X,θ]
|X|

|S|
, (14.10)

where |S| is the number of signal sequences, the summation is over all signal sequences
X, |X| is the length of sequence X, and E [M|X, θ] is the expected number of occurrences
of M in the sequence X given the model parameters θ. This is

E [M|X, θ] =
∑
q
c(M|q)P(q|X, θ), (14.11)

where the summation is over all parses q of the model θ over the sequenceX, c(M|q) gives
the number of occurrences ofM in the parseq, andP(q|X, θ) is the posterior probability of
parse q given the sequence X and parameters θ. Sinha (2006) computes E [M|X, θ] using
the forward-backward algorithm from the theory of HMMs, described in chapter 4.

fC(M) is defined analogously to fS(M).

Optimization As written above, DIPS operates on sets of subsequences of length m of
the signal sequences. Initially, a random set of subsequences is chosen. DIPS then itera-
tively improves the set such that the objective function of the PWM M resulting from the
set of subsequences increases. In each iteration a number of improvements is tried, as
described next.

Modifications to the set of subsequences are performed by first deleting one of the
subsequences from the set. For this, the objective function is determined for each of n
sets of subsequences that result from deleting one of the subsequences from the current
set of n subsequences. Then, the subsequence is deleted for which the objective function
of the resulting set of n− 1 subsequences is maximal.

Subsequently, a new subsequence is selected that is to be added to the set. Not all
possible such subsequences are tried, but rather selection is stopped once a subsequence
has been found whose resulting objective function is higher than the objective function
prior to the removal of this iteration’s removed subsequence.

DIPS uses gradient information to order the subsequences that are probed for addition
so as to try first promising subsequences.

Termination Iterations of modifications to the set of subsequences are performed until
in an iteration 500 modifications to the set have been tried without yielding an improved
score.

Further capabilities As part of the model θ, in addition to the to-be-optimized PWM M,
DIPS allows the specification of a set of previously known motifs.
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DIPS also offers another discriminative objective function. Before counting motif oc-
currences, this alternative objective function transforms PWM scores using the logistic
function into soft classifiers. Sinha (2006) reports that out of 20 replicates of test data 9
times the above defined objective function outperformed the logistic variant, while the
logistic variant was better in 3 cases, with the remaining 8 being inconclusive.

14.7 DECOD: Deconvolved Discriminative Motif Discovery

DECOD, short for Deconvolved Discriminative Motif Discovery, by Huggins et al. (2011)
uses DFREQ as discriminative objective function, and is thus limited to the analysis of
binary contrasts. Unlike the definition of DFREQ given in chapter 7, the feature used by
DECOD is not sequences with at least one occurrence of a motif, but relative occurrence
frequency of motifs in the sequences. DECOD models binding motifs with PSFMs.

Count table based approach DECOD extracts two tables of k-mer counts, A and B for the
signal and control data, respectively. All subsequent operations are based on these count
tables. A significant benefit offered by using count tables is fast look-up times. However,
k-mers that overlap only partially with motif occurrences are also enriched in signal se-
quences, and could be mistaken for the true motif. To overcome this difficulty, DECOD
uses a deconvolution approach that explicitly models the convolved k-mer occurrences
in the signal sequences.

Mixture model DECOD uses a mixture model θ for k-mers, composed of a motif compo-
nent M and a background component B, with a mixture parameter p = P(M) = 1−P(B).
Thus the likelihood of a k-mer X ∈ Σk is given by

P(X|DECOD) = pP(X|M) + (1− p)P(X|B). (14.12)

The background component’s likelihood P(X|B) is modeled by a simple 0th order Markov
model.

Convolvedmotif component In order to account for convolution of partially overlapping
k-mers, DECOD specifies the motif component’s likelihood by

P(X|M) =
1

2k− 1

(
P(X|Bk−2Mk−1) + P(X|Bk−3Mk−2) + . . .

+P(X|B0M1) + P(X|M0) + P(X|Mk−2Bk−1)+

. . .+ P(X|M0B1)) ,

(14.13)

where Mi and Bi signify that positions 0 to i of X are generated by the last i positions of M
or B respectively; similarly, Mi and Bi denote that positions i to k− 1 of X are generated by
the first k − i + 1 positions of M or B, respectively. Note that in this notation P(X|M0) =

P(X|Mk−1).
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Expected difference of motif occurrence frequency Using the count tables A and B, we
can look up the number of times k-mer X is occurring in the signal and control sequences,
AX and BX. From this, the expected difference of occurrences of the motif M between the
signal and control sequences is then given by

EA [M]− EB [M] =
∑
X∈Σk

P(M|X) (AX − BX)

=
∑
X∈Σk

pP(X|M)

pP(X|M) + (1− p)P(X|B) (AX − BX) .
(14.14)

Optimization and speed-up A discretized heuristic hill-climbing method is employed by
DECOD to optimize the objective function (14.14).

While look-up times for the number of occurrences of a k-mer take constant time with
precomputed count tables, the number of k-mers over which equation (14.14) is summing
still grows exponentially1 in k. For this reason, DECOD implements a speedup variant,
that computes an approximation to the partial derivative of (14.14). The approximation
replaces the sum over all k-mers by performing two sums. The first is over all k-mers
that exhibit a large occurrence frequency difference between signal and control sequences.
The second sum then uses the current motif estimate M to include all those k-mers that
are similar to M.

14.8 MoAn: Motif Annealer

MoAn, the Motif Annealer, by Valen et al. (2009), is a DMD tool whose objective function
is based on the conditional probability of the class label C given the sequence X and the
model parameters θ, L(θ;C,X) = P(C|X,θ).

Objective function Assuming, independence of the labeled samples D = {⟨C,X⟩}, the
objective function of MoAn is the joint log likelihood of correct classification of all sam-
ples,

log2 L(θ;D) =
∑

⟨C,X⟩∈D
log2 P(C|θ,X). (14.15)

The conditional probability of the class label C, P(C|X, θ), is computed via Bayes theorem
from

P(C|X, θ) =P(X,C|θ)
P(X|θ) (14.16)

=
P(X|C, θ)P(C)∑
C′ P(X|C′, θ)P(C′)

. (14.17)

In MoAn, the prior of class C is estimated as the relative frequency of sequences of this
class among all sequences, P(C) = nC∑

C′ nC′
, where nC is the number of sequences of class

1Of course, the exponential growth of the number of k-mers is still limited by the linear length of all se-
quences.
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C. The other terms in this expression, P(X|C, θ), the likelihood of sequence X in class C,
are specified by the probabilistic model described next.

Probabilistic model MoAn’s likelihood function assumes two motifs, which can either
have or not have one binding site in a sequence. Thus the likelihood function is a sum
over four terms that represent no binding site, one binding site of motif 1, one binding
site of motif 2, or one binding site of either motif,

P(X|C, θ) = P(no BS|C)P(X|no BS, θ)

+P(BS1|C)P(X|BS1, θ)

+P(BS2|C)P(X|BS2, θ)

+P(BS1,BS2|C)P(X|BS1,BS2, θ).

(14.18)

The terms P(no BS|C), P(BS1|C), P(BS2|C), and P(BS1,BS2|C), which represent the prior
probabilities of the joint or single (non-)occurrence of motifs 1 and 2 in class C, are param-
eters of MoAn.

When MoAn is executed in a single motif mode, then P(BS2|C) = P(BS1,BS2|C) = 0.
For C = signal, in single motif mode the default values for the remaining parameters are,
P(no BS|signal) = 0.01, P(BS1|signal) = 0.99. For C = control, the default values are,
P(no BS|control) = 0.8, P(BS1|control) = 0.2.

MoAn uses a 0th order background model for P(X|no BS, θ),

P(X|no BS, θ) =
|X|−1∏
i=0

P(Xi|BG, θ), (14.19)

where |X| is the length of sequenceX, and P(Xi|BG, θ) is the probability of emittingXi, the
i-th symbol of X, in the background model.

Defining the log-odds score matrix W = (Wi,b)0≤i<w
b∈A

, where w is the length of W, for

position i and symbol b by

Wi,b = log2
P(b|Motif1(i), θ)

P(b|BG, θ) , (14.20)

where P(b|Motif1(i), θ) is the emission frequency of symbol b at the i-th position of motif
1, Valen et al. compute the log odds score of a motif occurrence at position k in sequence
X with

S(X, k,W) = log2 P(Xk,...,k+w−1|Motif1, θ)− log2 P(Xk,...,k+w−1|BG, θ) =
w−1∑
i=0

Wi,Xk+i .

(14.21)
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The model used by MoAn for the case where one binding site of motif 1 is occurring is

P(X|BS1, θ) =
1

|X| − w+ 1

|X|−w∑
k=0

H(S(X, k,w)− c)2S(X,k,w)
|X|−1∏
i=0

P(Xi|BG, θ)

=
1

|X| − w+ 1

|X|−w∑
k=0

H(S(X, k,w)− c)
P(Xk,...,k+w−1|Motif1, θ)∏k+w−1

i=k P(Xi|BG, θ)

|X|−1∏
i=0

P(Xi|BG, θ), (14.22)

where, H(x) is the Heaviside step function, H(x) = 0 for x < 0 and H = 1 for x ≥ 0, and c
is a cutoff on the PWM score of motif 1.

The likelihood P(X|BS2, θ) is defined analogously to P(X|BS1, θ); for the definition of
P(X|BS1,BS2, θ) see Valen et al. (2009).

Optimization MoAn uses simulated annealing to sample PWM space, so it directly op-
timizes matrices for its discriminative objective function. The advantage of this is that it
performs a global optimization, and does not rely on a specific choice of initial value. Con-
versely, the large number of iterations necessary to sufficiently explore parameter space
can make the method prohibitively slow for large dataset sizes.

14.9 DEME: Discriminatively Enhanced Motif Elicitation

DEME, Discriminatively Enhanced Motif Elicitation, by Redhead and Bailey (2007) uses,
like MoAn, the conditional log-likelihood of the class labels as objective function, see
equation (14.15). The probabilistic model for the classes used by DEME is nearly equiv-
alent to the single motif model of MoAn, described in section 14.8. There are only two
small differences. First, DEME does not threshold on the PWM score, thus instead of
the Heaviside function in equation (14.22) DEME has a constant factor of unity. Second,
DEME assumes that there are no binding sites in the control data, i.e. for C = control,
P(no BS|control) = 1 and P(BS|control) = 0 (see section 14.8). For C = signal, DEME
learns a parameter λ such that P(BS|signal) = λ and P(no BS|signal) = 1− λ.

Differently from MoAn which operates exclusively by sampling parameters of the prob-
abilistic model, DEME first performs a substring search, followed by a branching search
on regexes, and finally turns to gradient-based matrix optimization.

Initial search Substring search considers each substring of length w occurring in the se-
quences, and maps it to a PSFM by mixing with a uniform distribution, where the mixing
is determined by a parameter specified by the user. The PSFMs corresponding to each
occurring substring are evaluated using the objective function and the top n are retained.

During branching search, for each of the top n substrings all possible ways of allowing
one additional nucleotide at any position are considered. For each of these, a PSFM is
formed as above and their corresponding objective function value is determined. Again,
the top n are retained. This procedure is repeated for a number of iterations that is given
by the user.
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Local search The regex that achieved the highest objective function value during the ini-
tial search is used as a seed, and its corresponding PSFM is used as starting point for local
search. Optimization of the PSFM and the parameter λ is done by DEME using conjugate
gradient (Press et al., 1995).

Instead of directly optimizing the PSFM and the parameter λ, DEME transforms both
in a way similar to what is done in Discrover to transform the constrained into an uncon-
strained optimization problem (see Redhead and Bailey, 2007, for details).

14.10 Dispom

Dispom, published by Keilwagen et al. (2011), is a discriminative motif learning approach
that incorporates modeling of positional preference. Dispom uses as binding site model
a PWM that is assumed to be embedded in a 0th order Markov chain background.

Probabilistic model The binding site model is related to the ZOOPS model pioneered
by MEME (Bailey and Elkan, 1995a,b; Bailey, Williams, et al., 2006), and described in
equation (3.20). The positional preference model, P(Mi|θ) in equation (3.19), of Dispom
is related to those of Improbizer (Ao et al., 2004) and A-GLAM (N. Kim et al., 2008). Like
these approaches Dispom learns the positional preference simultaneously with that for
the sequence motif. Specifically, Dispom uses a mixture of a skew normal and a uniform
distribution to model the positional distribution.

A consequence of learning a positional model is that Dispom is limited to datasets
with sequences of identical length. Note that actually only a weaker constraint would be
necessary: the sequences have to be aligned to a common reference point. This could for
example be the position of the TSS in case of promoter sequences.

Objective function The objective function of Dispom is based on a supervised classifica-
tion posterior for the class C = c of a sequence X,

P(C = c|X, θ) =P(C = c,X|θ)
P(X|θ)

=
P(C = c,X|θ)∑
c̃∈C P(C = c̃,X|θ)

=
P(C = c|θ)P(X|C = c, θ)∑
c̃∈C P(c̃|θ)P(X|C = c̃, θ) .

(14.23)

For signal sequences, Dispom assumes the likelihood P(X|C = signal, θ) to be given by
the ZOOPS model of equation (3.20) extended by the positional distribution model, as
mentioned above. The likelihood of control sequences, P(X|C = control, θ), is assumed
by Dispom to be given by a 0th order Markov model.

Finally, the objective function of Dispom2 is given by maximizing θ over the sum of log

2Note that there is an error in equation 5 of Keilwagen et al. (2011). I notified the authors, and they promptly
issued a formal correction. See also appendix L.1.
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supervised classification posteriors for all sequences Xi with classes ci,

θ∗ = argmax
θ

∑
i

logP(C = ci|Xi, θ) + logQ(θ|α), (14.24)

where Q(θ|α) is some choice of prior for the parameters.

Optimization Dispom optimizes the objective function by gradient optimization. A set
of heuristic steps aims to avoid getting stuck in local minima due to locking in on phase
shifted variants of a motif. These heuristics consists in testing extensions and shortenings
of the motif during optimization. Also Dispom tries several different starting point for the
gradient optimization.

14.11 FIRE: Finding Informative Regulatory Elements

Another example of a word-based DMD method is FIRE (Elemento, Slonim, and Tavazoie,
2007; Lieber, Elemento, and Tavazoie, 2010). The acronym FIRE stands for Finding Infor-
mative Regulatory Elements. FIRE uses MICO as discriminative objective function.

Initialization The method starts off by considering all 7-mers occurring in the sequences,
which are sorted by MICO. The highest scoring ones are kept as seeds for a subsequent
optimization phase.

Randomized greedy optimization For the discrete optimization phase, the 7-mers are
embedded in the middle of 9-mers by extending both ends with Ns. Then, modifications
to the motif are tested to find variants that yield higher MICO. In particular, a position
is chosen randomly among the 9 positions, and all degenerate symbols consistent with
the present symbol at that position are considered. Consistency is here defined such that
only degenerate codes that include the present symbol are allowed. All consistent replace-
ments for the randomly chosen position are tested for discrimination, and if a variant in-
creases discrimination sufficiently, it replaces the previous motif. This greedy procedure
is repeated until no further improvement is possible, and the whole procedure is repeated
ten times for each seed.

Additional features In addition to finding motifs that discriminate between signal and
control sequences, Elemento, Slonim, and Tavazoie also use MICO to identify motifs that
exhibit positional bias, or that exhibit strand bias. This is done by means of Perl scripts
that break the sequence sets into groups according to position or strand, and evaluating
MICO on the thus-defined conditions. Similarly, FIRE uses MICO to find motifs associ-
ated with expression (changes) by binning continuous expression values into quantized
expression groups.
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14.12 Further motif discovery tools

There exist further MD tools based on discriminative learning techniques.
These include a method based on the hyper-geometric test for enrichment (Barash,

Bejerano, and N. Friedman, 2001). This unnamed method is apparently the first published
DMD method. No source code or executables are available for this method.

ALSE (acronym for: all sequences) by Leung and Chin (2006) apparently uses a proba-
bilistic model for enrichment. Unfortunately, the description of the objective function in
the paper is fairly inscrutable. In addition, the available source code fails to compile with
contemporaneous compilers, see appendix L.1.

The ChIP-Seq data analysis suite HOMER (Heinz et al., 2010) includes a method for
de-novo MD in ChIP-Seq data. Unfortunately, no publication describing the MD method
is available, and information about it is limited to a web page that describes usage of the
program. This web page has a dead link to another page that purportedly describes the
method. The method seemingly computes a p-value for enrichment of motif occurrences
in a set of signal sequences. The calculation is based on the binomial distribution, and
HOMER automatically determines a set of GC-content matched background sequences.

Another MD method that uses discriminative learning is DISPARE (Piedade, M. E. Tang,
and Elemento, 2009). Unfortunately, the description of Piedade, M. E. Tang, and Ele-
mento was not clear enough to allow the author of this thesis to understand the objective
function that the method tries to optimize.
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Empirical Study of Motif Discovery
Methodology
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Overview of applications

The following part is an empirical study of MD methodology. It will showcase appli-
cations of discriminative and non-discriminative learning methods for probabilistic se-
quence analysis in MD problems, including synthetic data, data of RNA-binding proteins
(RBPs), and of transcription factors (TFs).

Chapter 15 describes how synthetic data is generated that is used for supervised per-
formance evaluation. Metrics to evaluate MD performance are introduced in chapter 16.
Then, chapter 17 presents an evaluation of MD performance for various methods imple-
mented in Discrover and in published DMD tools.

Chapter 18 presents an application of DMD to the PUF RBP family. The data come
from various publications generated with two different technologies: RIP-Chip and PAR-
CLIP data. The results confirm previous findings, proving applicability of Discrover for
the analysis of real biological datasets.

Chapter 19 studies the alternative splicing regulator RBM10. DMD is applied to PAR-
CLIP data. This reveals motifs which have been implicated in splicing regulation but that
have not previously been connected to RBM10.

The part concludes in chapter 20 with an application to numerous mouse embryonic
stem cell (ESC) TFs. ChIP-Seq data of two publications will be analyzed.
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Chapter 15

Synthetic test data

Testing performance of MD methods on synthetic data offers several advantages, as well
as some disadvantages. Most importantly, generating synthetic data allows to evaluate
performance in a supervised manner, as true and false site occurrences are intrinsically
defined in the data generation process. Therefore control over the parameters determin-
ing the synthetic data generating process allows for controlled experiments of the sensi-
tivity of MD methods with respect to important variables.

Regarding disadvantages of performance testing with synthetic data, it is trivially true
for any specific choice of a synthetic data generation procedure that not all possible effects
can be tested. Thus, the central disadvantage of performance evaluation on synthetic data
is the blindness for sensitivity to effects not realized in the synthetic data.

In general, it is of course unknown whether all important effects that exist in real data
are accounted for in the generation of the synthetic test data. For this reason, diligence is
due in choosing which parameters to test.

15.1 Generation of synthetic data

Synthetic data was generated according to algorithm 6 and as described below.
Three sets of experiments were generated, respectively referred to as basic, 3’UTR,

and decoy experiments. The parameters varied in the experiments are summarized in
table 15.1, and include length and number of sequences, information content (IC) and
implantation frequency of signal (and decoy) motifs.

For each data generation parameter setting a pair of signal and control sequence sets
is generated. A signal motif with a specific IC is generated by choosing a random PWM
and polarizing (exponentiating component-wise and renormalizing) so as to achieve the
desired IC. Each sequence is generated according to the background model of the set of
experiments it is part of. Then, motifs are implanted into the signal sequences: signal
sequences are selected with a given implantation probability, and for each selected se-
quence one signal motif occurrence is generated from the PWM and inserted into the se-
quence at a random position.

All motifs are inserted on the sense strand, simulating an RNA MD experiment. The
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Algorithm 6 Synthetic sequence data generation
Input: Motif lengthw, signal and decoy motif IC, length l and number n of sequences, sig-

nal and control motif implantation probabilitiesPsignal andPdecoy, background model
Output: n signal and decoy sequences

1: generate signal PWM of length w with signal motif IC
2: optionally generate decoy PWM of length w with decoy IC
3: generate n signal sequences of length l using the background model
4: generate n control sequences of length l using the background model
5: for i← 1 . . . n do
6: with probability Pdecoy do
7: generate decoy motif instance from decoy PWM
8: implant decoy motif instance at random position of signal sequence i
9: with probability Pdecoy do

10: generate decoy motif instance from decoy PWM
11: implant decoy motif instance at random position of control sequence i
12: for i← 1 . . . n do
13: with probability Psignal do
14: generate signal motif instance from signal PWM
15: implant signal motif instance at random position of signal sequence i
16: return signal and decoy sequences

Table 15.1: Parameters for the generation of synthetic sequence data.

Parameter Basic 3’UTR Decoy

Sequence background Uniform, 0th-order MC Human 3’UTR Uniform, 0th-order MC
Sequence length [nt] 20, 50, 100, 200, 500, 1000 20, 50, 100, 200, 500, 1000 100
Sequence number 100, 1000, 10 000 100, 1000, 10 000 10 000
Motif length [nt] 8 8 8
Signal per sequence 0 or 1 0 or 1 0 or 1
Signal probability [%] 1, 2, 5, 10, 20, 50, 100 1, 2, 5, 10, 20, 50, 100 10
Signal motif IC [bit] 0, 2, 4, 6, 8, 10, 12, 14, 16 0, 2, 4, 6, 8, 10, 12, 14, 16 0, 2, 4, 6, 8, 10, 12, 14, 16
Decoy per sequence 0 0 0 or 1
Decoy probability [%] 0 0 1, 2, 5, 10, 20, 50, 100
Decoy motif IC [bit] NA NA 0, 2, 4, 6, 8, 10, 12, 14, 16
Strandedness Single-stranded Single-stranded Single-stranded

Total experiments 1134 1134 567

three sets of experiments differ by the choice of the sequence context into which motifs
are inserted. The basic and decoy experiments use a uniform, 0th-order Markov chain to
generate synthetic sequences, while the 3’UTR experiments use sequences sampled from
human 3’UTRs. In the decoy experiments, before implanting the signal motifs, occur-
rences of decoy motifs are implanted both into signal and control sequences.

15.2 Recognizability

How well motifs can be discovered depends on the difficulty of recognizing the motif when
it is already known. As a reference we evaluate motif recognizability, which we define as
the predictive performance of the true model. As an approximation to the true model we
use HMMs comprising a background state and a motif chain with emission probabilities
equal to the implanted PWM. The transition probability from the background state to the
motif state is chosen such that the expected number of motifs per sequence is equal to the
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implantation frequency of the experiment. I.e. if implantation frequency is 10% and if the
sequence length is 100 then the per-position probability of transiting from the background
state to the motif chain is set to 0.1 × 0.01 = 0.001. Background emissions of order zero
are used. The background emission probabilities are set to uniform distributions for the
basic and decoy experiments, but for the 3’UTR experiments are fit to the data with the
Baum-Welch algorithm prior to evaluation.
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Chapter 16

Performance metrics

Because the construction of synthetic data for performance evaluation, described in chap-
ter 15, intrinsically defines true binding sites, it is possible to use supervised metrics to
measure MD performance. This chapter presents a choice of supervised performance
metrics in section 16.1. Subsequently, summarization techniques will be discussed in sec-
tion 16.2.

16.1 Supervised performance metrics

Supervised performance metrics for MD require, in addition to the predicted binding sites,
an exhaustive specification of all true binding sites in a synthetic sequence dataset. Eval-
uation may be done either on nucleotide level with metrics presented in section 16.1.1, or
on the binding site level using metrics presented in section 16.1.2.

16.1.1 Nucleotide level performance metrics

Given a set of implanted and predicted motif coordinates, individual nucleotide positions
can be classified as true or false positives, and true or false negatives, as illustrated in
figure 16.1.

Basic nucleotide level statistics The following definitions for nucleotide-level statistics
can be found in Tompa et al. (2005).

nTP Number of nucleotides part of a site correctly predicted

nTN Number of background nucleotides correctly predicted

nFP Number of background nucleotides predicted to be part of a motif

nFN Number of nucleotides part of a site predicted as background

151



Chapter 16. Performance metrics

Predicted

Implanted
TN TN TN FP FP TP TP TP TP FN FN TN TN TN

Figure 16.1: Classification of nucleotide positions as true positives (TP), false positives
(FP), false negatives (FN), and true negatives (TN), based on the overlap with implanted
and predicted motifs.

Nucleotide correlation coefficient The nucleotide correlation coefficient (nCC), first de-
fined by Burset and Guigó (1996), and later also used by Tompa et al. (2005), is the MCC
applied on the nucleotide-level statistics. The nCC is given by

nCC =
nTP · nTN− nFP · nFN√

(nTP+ nFN)(nTN+ nFP)(nTP+ nFP)(nTN+ nFN)
. (16.1)

The nCC, like the general MCC, assumes values between -1 and +1, where a coefficient of
1 implies perfect prediction, and -1 a perfect inverse prediction. A coefficient of 0 implies
that performance is equivalent to that of a random prediction.

For the limit of any of the factors of the product under the square root in the denomi-
nator approaching zero, the limiting value of the MCC is zero, see appendix E.

16.1.2 Site level performance metrics

Basic site level statistics Valen et al. (2009) give the following definitions for basic bind-
ing site level statistics, see figure 16.2.

sTP Number of real sites that share at least 50% of their nucleotides with a predicted site

sFP Number of predicted sites that share less than 50% of their nucleotides with a real
site

sFN Number of real sites that share less than 50% of their nucleotides with a predicted
site

These definitions are more strict than the site-level statistics given by Tompa et al. (2005),
which consider a single overlapping base as sufficient. Using these basic statistics, one
may define the following site-level performance metrics. First, the site sensitivity (sSn) is
defined as

sSn =
sTP

sTP+ sFN
. (16.2)

Next, the site positive predictive value (sPPV) is defined as

sPPV =
sTP

sTP+ sFP
. (16.3)

Sensitivity is also known as recall, while another name for positive predictive value is
precision.
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Predicted
Implanted

FP
TP FN FN

FP

Figure 16.2: Classification of implanted binding sites as true positives (TP) and false neg-
atives (FN), based on≥ 50% overlap with predicted sites. Classification of predicted sites
as false positives (FP) based on lack of≥ 50% overlap with implanted sites.

Average site performance The average site performance (sAP) is the arithmetic mean of
site sensitivity sSn and of site positive predictive value sPPV:

sAP =
sSn + sPPV

2
. (16.4)

As both sSn and sPPV represent relative frequencies, they take on values between 0
and 1, where in both cases 0 signifies the worst performance. For the sSn a value of 1
denotes that each true site shares at least 50% of its nucleotides with a predicted site,
which is equivalent to there being no false negative sites. In case of the sPPV a value of
1 denotes that none of the predicted sites is a false positive. Clearly, as the sAP is the
average of these two measures, its values are confined to the same range.

Site F1 score Another choice of site-level statistic is the site F1 score (sF1). It is related to
the average site performance, as it is the harmonic mean of site sensitivity and site positive
predictive value:

sF1 = 2
sSn · sPPV

sSn + sPPV
. (16.5)

Like the sAP, the sF1 is symmetrical in the underlying statistics, assumes values be-
tween 0 and 1, and assumes its maximal value exactly when both underlying statistics
achieve their maxima. However, unlike the sAP it is zero whenever either underlying
statistic is zero. Whenever sSn is not equal to sPPV, the sF1 is less than the sAP, other-
wise they are equal.

16.2 Summarization

Another topic worth discussion in the context of performance metrics is that of summa-
rization. It is in principle possible to compute the nCC and sAP, and then study the distri-
bution of these performance values over some variate of interest. However, discussion is
eased by applying one of various ways of summarization.

Tompa et al. (2005) consider three summarization methods. These are ‘average’, ‘nor-
malized’, and ‘combined’.

Average This method summarizes by computing the average value of the performance
metric of interest for a variate of interest.

Normalized This method standardizes the performance of each experiment by subtract-
ing the mean performance of all methods applied to this experiment and dividing
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by the standard deviation of all methods’ performance values. For summarization,
these standardized scores are then averaged.

Combined This method unites the underlying statistics of the experiments to yield super-
experiment statistics. From these super-experiment statistics the final performance
values are computed.

Tompa et al. (2005) report few qualitative differences among these three methods of
summarizing, except for that averaging of nCC and sAP tends to reward methods that
make no prediction on many datasets. In light of this, in this work only the ‘combined’
method is used for summarization.
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Results on synthetic data

This chapter presents the results of the supervised performance evaluation of MD meth-
ods on the synthetic datasets. It first explains in section 17.1 which MD tools are included
in the MD performance analysis. Then, it gives a high level summary of the performance
of the considered MD methods by summarizing across all experiments in the three sets of
experiments in section 17.2. Subsequently, section 17.3 analyzes more closesly the perfo-
mance of representative signal-only and discriminative learning methods as functions of
the parameters varied within each set of experiments. Section 17.4 discusses the influence
of significance filtering.

17.1 Evaluated motif discovery tools

In general, all MD methods were used to discover the single-best motif of length 8 nt.
For methods, that do not allow to discover only one motif, the best motif was selected
according to the score reported by the method.

As the synthetic datasets simulate RNA MD experiments, methods that allow it were
instructed to consider only occurrences on the forward strand.

Motif occurrences were based on the methods’ predictions, where available. Some
of the published methods based on IUPAC regex motifs do not report motif occurrences.
For these methods, motif occurrences were found by matching the regexes against the
sequences.

Discriminative motif discovery with Discrover Discrover was run in single-motif discov-
ery mode. The method consists of three parts: seed finding with Plasma (see section 11.2),
HMM optimization by hybrid learning (see chapter 12), and significance filtering (see chap-
ter 10). The following five discriminative objective functions implemented in Discrover
were considered:

1. Log likelihood difference (DLOGL)

2. Relative occurrence frequency difference (DFREQ)

3. Matthews correlation coefficient (MCC)
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4. Maximum mutual information estimation (MMIE)

5. Mutual information of condition and motif occurrence (MICO)

Measures DFREQ, MCC, and MICO depend on statistics of counts of sequences that have
at least one occurrence of the motif. Where during discrete optimization integer counts of
sequences are used, optimization of HMMs involves expected counts of sequences. Thus
DFREQ, MCC, and MICO can be used both for seeding and subsequent HMM optimization.
DLOGL and MMIE may only be used in HMM optimization, as they are not applicable to
the non-probabilistic nature of the seed finding method. However, DFREQ appears as
a suitable objective for seeding HMMs to be optimized by DLOGL1. Similarly, for MMIE
optimization of HMM parameters, MICO is used for seed finding.

Published discriminative motif discovery tools We intended to include in the super-
vised MD performance analysis all published DMD tools described in chapter 14. How-
ever, some tools (DEME, DIPS, and Dispom) were impractically slow on large datasets
(see table H.1). Other tools (YMF, DISPARE, and the method of Barash, Bejerano, and N.
Friedman (2001)) are not publicly available. These were excluded from analysis. This left
the DMD methods CMF, DECOD, DME, DREME, FIRE, and MoAn, which were included in
the performance comparison.

The methods CMF, DME, and MDscan do not support RNA motif analysis, and were
thus run in DNA mode.

We found MoAn to be running relatively long (see table H.1), and therefore reduced to
a tenth the number of iterations that MoAn performs.

Signal-only motif discovery methods We evaluated MD performance of Discrover using
signal-only learning with the Baum-Welch algorithm using as seeds the IUPAC regex mo-
tifs with degeneracy less or equal to 2 that are most frequent in the signal sequences. Addi-
tionally, we evaluated the performance of signal-only learning using the Baum-Welch al-
gorithm after choosing discriminative seeds with MICO on signal and control data. These
two approaches are respectively referred to as BW and BW-MICO.

The MD performance analysis also includes two published signal-only MD tools: Bio-
Prospector (X. Liu, Brutlag, and J. S. Liu, 2001) and MDscan (X. S. Liu, Brutlag, and J. S.
Liu, 2002).

Command line options The command line options and parameters used to run the tools
are listed in appendix G.

17.2 Summary performance

High-level performance summary statistics were computed by summarizing across data-
sets (see section 16.2) the true and false site predictions, as well as true and false non-
predictions. Figure 17.1 depicts the summarized nCC for the different MD tools in the three

1For HMM optimization with DLOGL we also tried MICO seeding; the results were similar.
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Figure 17.1: Summarized motif discovery performance of various methods on three syn-
thetic datasets measured by the nucleotide-level Matthews correlation coefficient (nCC).
Recognizability (red) serves as reference. Blue denotes signal-only motif learning meth-
ods, while green denotes discriminative motif discovery methods. Dark letters and light
background denote published motif finding methods, light letters and dark background
denote motif finding with objective functions implemented in Discrover. BW: Baum-
Welch training of HMMs seeded with the most frequent IUPAC motifs of degeneracy maxi-
mally 2, BW-MICO: Baum-Welch training of HMMs seeded with IUPAC motifs maximizing
MICO. Plasma: IUPAC regex motif based seeding method of Discrover, optimizing MICO
as objective function. MoAn-3M: MoAn run with 3× 106 iterations.
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sets of experiments, as well as the motif recognizability (see section 15.2 for the defini-
tion of recognizability). Table H.2 gives the corresponding numbers. Figure H.1 presents
additional performance metrics, including sSn, sPPV, and sAP. More MD performance
analyses for the same methods but with different parameters are shown in figure H.2.

Recognizability nCC indeed is larger than all methods’ nCC in all three sets of experi-
ments. The MD performance of Discrover with MICO as objective function surpassed that
of all other methods and is only marginally below recognizability in all three sets of ex-
periments. It consistently achieved nCC of greater 96 % of recognizability (table H.2).

Plasma was the second-best performing MD method. At 90–96% of motif recognizabil-
ity (table H.2) its MD performance was lower than when subsequently optimizing HMM
parameters with Discrover but surpasses that of most previously published DMD meth-
ods.

Other methods are close to recognizability in some but not all of the sets of experi-
ments, including signal-only learning with the BW algorithm in the basic set of experi-
ments.

To separate the influence of objective function choice in seeding from that in HMM
parameter optimization, we used MICO to determine seeds that were used for signal-only
learning of HMM parameters with the BW algorithm (BW-MICO in figure 17.1). This alle-
viated some of the problems that signal-only learning with signal-only seeding (BW in
figure 17.1) has on the decoy experiments, but did not remedy those on the 3’UTR experi-
ments.

Motif discovery performance of published methods DREME and MoAn were the best-
performing previously published DMD methods and respectively achieved nCC of 83–90%
and 85–91% relative to recognizability (table H.2). Note that the MoAn MD performance
shown in figure 17.1 is based on the reduced number of iterations. We also evaluated
MoAn’s performance with the default number of iterations on the basic and 3’UTR ex-
periments, and this further increased the performance of MoAn (figure H.2), yet not to
the same level as that of Discrover. Other published MD methods achieved lower perfor-
mance. The performance of DME and DECOD is intermediate of the published discrimina-
tive methods. DME and DECOD show similar performance profiles across the experiments,
with DME performing slightly better than DECOD due to yielding higher sPPV.

The low performance of CMF seems to be caused by overly eagerly accepting binding
sites. This is evidenced by the highest average sSn over the three sets of experiments, and
simultaneously the lowest average sPPV. Perhaps stringent filtering of results might help
solve this problem.

Strandedness and motif analysis It should be noted that CMF, DME, and MDscan cur-
rently only support double-stranded DNA mode, and might exhibit higher MD perfor-
mance on these experiments by accounting for the larger RNA motif space2. However,
for DREME we made an observation contradicting this expectation. An initial evaluation

2DNA motif models treat non-palindromic sequences as equivalent to their reverse complement, while RNA
motif models distinguish between them; thus, the space of DNA motifs of size n is only roughly half as large as
the space of RNA motifs of size n.

158



17.3. Comparing signal-only and discriminative learning

of MD performance used the then-current version 4.7.0 of DREME, which did not support
single-strand MD that is appropriate for the analysis of RNA datasets as simulated in the
synthetic data. The current version 4.9.0 fixed this, but MD performance did not improve
much (figure H.2 and table H.2).

Runtime of motif finding methods There is considerable variation in the time that the
different methods need to analyze the synthetic datasets. The runtimes of the methods in-
cluded in the analysis varied more than 360 fold between the fastest and slowest methods
(figure H.3).

The fastest method was Plasma, the IUPAC regex based seeding method of Discrover.
It required 2.6 hours to process all synthetic data experiments.

The slowest method was MoAn, which achieved—together with DREME—the best MD
performance of previously published methods. In spite of the reduced number of itera-
tions, MoAn still required about 960 hours to analyze all synthetic datasets.

DREME needed a total of 8.9 hours, and Discrover 16.9 hours. With one exception,
DME, the other published MD methods had higher runtimes.

As mentioned, three methods (Dispom, DIPS, and DEME) had to be excluded as their
runtime prohibited a full evaluation of the synthetic datasets. Instead, we exemplarily
determined their runtime on one single pair of signal and control sequence sets (table H.1).
This dataset was analyzed in about two minutes by Discrover. Dispom needed 40 hours,
DIPS more than 600 hours, or more than 25 days, and DEME did not finish in 74 days.

17.3 Comparing signal-only and discriminative learning

To illustrate the benefits of using negative examples in MD, we next compare the rela-
tive merits of discriminative learning and of signal-only, generative learning. Thus, we
analyze the motif discoverability of representative objective functions, MICO and likeli-
hood, as a function of the variables controlled in the experiments, and compare to motif
recognizability. To emphasize differences between signal-only and discriminative learn-
ing, we use as seeds for HMM initialization for signal-only, generative learning the most
frequent words of length 8 in the signal sequences, allowing up to two alternative nu-
cleotides at any position (e.g. ACGTMSGT = ACGT[AC][CG]GT), i.e. BW in figure 17.1. For dis-
criminative learning seeds are chosen by heuristic optimization of MICO over the space of
IUPAC regexes as implemented in Plasma and described in section 11.2. Models found by
both learning approaches are subjected to discriminative significance filtering based on
MICO.

Figure 17.2 displays the nCC based on statistics broken down by variates, computed by
summing over the other variates.

Basic experiments As figure 17.2a shows, recognizability decreases in the basic exper-
iments with increasing sequence context size, with decreasing implantation frequency,
and with decreasing IC. Throughout most combinations of the varied parameters, the MD
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(a) Basic experiments
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(c) Decoy experiments
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Figure 17.2: Motif recognizability and discovery performance on synthetic data in the (a)
basic, (b) 3’UTR, and (c) decoy experiments. Recognizability and discovery performance
are measured by the nucleotide-level Matthews correlation coefficient (nCC) as a func-
tion of different variates, summarized over the remaining variates. Recognizability (red)
serves as reference. Signal-only learning (blue, BW in figure 17.1) was performed with the
Baum-Welch algorithm on the signal data only, and used as seeds the 8mers of degener-
acy at most 2 that are most frequent in the signal data. Discriminative learning (green,
MICO in figure 17.1) used MICO as objective function for seed finding and HMM parameter
optimization. See figures H.4 to H.6 for site-level average performance, sensitivity, and
positive predictive value.
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performance of both signal-only and discriminative learning is very close to motif recog-
nizability. Where the points in the graphs are overlapping, motif recognizability is always
(albeit at times only minutely) larger than the methods’ motif discoverability. While the
differences in MD performance are small between signal-only and discriminative learning
on the basic experiments, they are slightly in favor of signal-only learning. The largest re-
ductions relative to motif recognizability are seen when data is limited to 100 sequences.
Increasing sequence numbers to 1000 yields a MD nCC close to motif recognizability,
which increases further when 10 000 sequences are available. Some deficits relative to
motif recognizability are also seen for motifs of very low implantation frequency or very
low IC.

3’UTR experiments Motif recognizability and MD performance of discriminative learn-
ing in the experiments based on real human 3’UTR (figure 17.2b) are virtually identical to
those in the basic experiments. The MD performance of signal-only learning is, however,
negatively impacted in nearly all variate combinations by the higher complexity sequence
background. Even 1000 or more sequences are not sufficient to yield nCC close to motif
recognizability for signal-only learning. That nCC does not further approximate motif rec-
ognizability when 10 000 sequences are available demonstrates that signal-only learning
is genuinely confused by the characteristics of real 3’UTR sequences.

Decoy experiments In the decoy experiments (figure 17.2c), (signal) motif recognizabil-
ity varies in response to signal motif IC but is unaffected by variation of decoy motif im-
plantation frequency or IC. MD performance of discriminative learning is also unaffected
by increasing implantation frequency or IC of decoy motifs, and generally close to mo-
tif recognizability. MD performance of signal-only learning is deteriorating in response
to the increasing potential likelihood contribution of decoy motifs. As implantation fre-
quency of the signal motif was fixed to 10% in these experiments, a phase transition is
visible at decoy motif implantation frequency 10% between little or no, and strong neg-
ative influence of the decoy motif on the discovery performance of signal-only learning.
Similarly, decoy motifs of low IC do not strongly affect signal-only learning’s MD perfor-
mance, while higher IC decoy motifs lead to reduced MD performance.

Sensitivity and positive predictive value Figures H.4 to H.6 give sAP, sSn, and sPPV sum-
marized in the same manner as nCC in figure 17.2. Note that the reason for missing values
for sPPV and for sAP in some variate combinations is that sPPV is not defined when not
a single motif occurrence is predicted. It is apparent that sPPV is generally higher than
sSn. sPPV of Discrover with MICO as objective function is frequently higher than sPPV of
recognizability, while the converse holds for sSn. Another feature that is apparent from
figures H.5a and H.5b is that motif recognizability sSn exhibits a sigmoidal response to
changes in IC in the basic and 3’UTR experiments3.

3The same observation also holds for sSn of signal-only learning in the basic experiments, as well as for sSn
of discriminative learning in the basic and 3’UTR experiments
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17.4 Discriminative filtering

Significance filtering has a large effect on MD performance by reducing the number of
predictions of motif occurrences when insufficient evidence is available. In section 17.3,
discriminative significance filtering was applied for all objective functions implemented
in Discrover, including the signal-only learning approaches. To illustrate the effect of
significance filtering, figure H.7 compares MD performance metrics with and without ap-
plying significance filtering. As is evident, non-discriminative MD is much improved by
discriminative significance filtering based on MICO.
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Chapter 18

PUF RNA-binding protein family

The PUF1 proteins are a widespread, conserved family of eukaryotic RBPs that bind 3’UTRs
and modulate expression of mRNAs (Wickens et al., 2002).

In S. cerevisiae, the Puf proteins control aging, mitochondrial function and mating-
type switching (Kennedy et al., 1997; Olivas and Parker, 2000; Tadauchi et al., 2001). In
early D. melanogaster embryos, Pumilio controls anterior-posterior development by re-
pressing hunchback mRNA (Barker et al., 1992; Murata and Wharton, 1995). In C. elegans,
the developmental switch from male to female is regulated by the translational repression
of FEM-3 resulting from the binding of the PUF homolog FBF-12 to the 3’UTR of FEM-3 (B.
Zhang et al., 1997). Double knock-out of FBF-1 and FBF-2 leads to loss of germline stem
cells via de-repression of the meiosis-promoting GLD-1 (Crittenden et al., 2002).

Two PUF homologs exist in mammalian genomes. Consistent with roles in regulating
germline biology, knockout of the mouse Pum2 gene results in smaller testis, although no
reduction in fertility is observed (E. Y. Xu et al., 2007). The human PUM2 interacts with
RBPs that function in early germline stem cells, such as deleted in azoospermia (DAZ),
DAZ-like (DAZL) proteins, and the meiotic regulator BOULE (BOL) (M. Fox, Urano, and
Reijo Pera, 2005; Moore et al., 2003; Urano, M. S. Fox, and Reijo Pera, 2005). Among the
RIP-Chip-determined targets of human PUM1 and PUM2 are many DBPs acting as tran-
scriptional regulators of cell cycle control and RBPs acting as post-transcriptional regu-
lators (Galgano et al., 2008; Morris, Mukherjee, and Keene, 2008). The PUM1 and PUM2
targets also include PUM1 and PUM2 themselves (Galgano et al., 2008; Morris, Mukherjee,
and Keene, 2008). Binding sites of the human PUF proteins are enriched in the vicin-
ity of miRNA binding sites, indicating that PUF proteins and miRNAs interact in post-
transcriptional regulation (Galgano et al., 2008; P. Jiang, M. Singh, and Coller, 2013; Kedde
et al., 2010; Leibovich, Mandel-Gutfreund, and Yakhini, 2010; Miles et al., 2012; Triboulet
and Gregory, 2010).

In this chapter, we apply DMD methods to datasets of the PUF family of RBPs in differ-
ent species and coming from different technologies. In section 18.1 the analyzed data is
presented, including data sources, which sequences are used, and how contrasts for dis-
criminative learning are set up. Subsequently, section 18.2 outlines the analyses applied

1Named after the first studied members of the family: Pumilio and FBF-1.
2Fem-3 binding factor 1
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to the PUF RBP family datasets. Section 18.3 discusses the motifs found by discriminative
learning. We compare the results of applying MICO, MMIE, and ML learning principles
in section 18.4. Section 18.5 presents the results of a dilution analysis. The chapter con-
cludes with a word-based analysis in section 18.5.2.

18.1 Materials

Data sources We analyze various dataset for the PUF family of RBPs in different species,
including S. cerevisiae, C. elegans, D. melanogaster, and H. sapiens. RIP-Chip was used to
define targets of Puf1p, Puf2p, Puf3p, Puf4p, and Puf5p in yeast (Gerber, Herschlag, and
Brown, 2004), of Pumilio in adult fly ovaries (Gerber, Luschnig, et al., 2006), of the worm
homolog FBF-1 (Kershner and Kimble, 2010), and of human PUM1 (Galgano et al., 2008;
Morris, Mukherjee, and Keene, 2008) and PUM2 (Galgano et al., 2008) from HeLa S3 cells.
Additionally, we analyze PAR-CLIP data of human PUM2 (Hafner et al., 2010) from HEK293
cells.

Sequence definition Due to the lack of finer spatial resolution entire 3’UTR sequences
are used for the RIP-Chip data. When probe sets map to multiple transcripts, the longest
3’UTR of the sequences is used. Yeast 3’UTRs are based on Nagalakshmi et al. (2008). Fly
3’UTRs are retrieved from FlyBase, version 5.48. Worm 3’UTRs are retrieved from Worm-
Mart, version WS220. Human 3’UTRs are retrieved from Ensembl release 70 (GRCh37.p10)
via Ensembl’s Biomart and from RefSeq NCBI36.1 / hg18 via the UCSC genome browser.
Human 3’UTRs for the RIP-Chip data are retrieved by Ensembl transcripts IDs and RefSeq
transcript ID (Galgano et al., 2008), or only by RefSeq transcript ID (Morris, Mukherjee,
and Keene, 2008).

For PAR-CLIP data, read covered regions are used, as available from the Dorina data
base (Anders et al., 2012).

Contrasts for discriminative learning For the yeast analysis, binary contrasts are con-
sidered, where the 3’UTR sequences of each Puf protein’s target genes serve as signal set,
and the controls comprise all yeast 3’UTRs not part of the signal set.

For the worm FBF-1 we retrieved a table of bound target genes from the supplementary
material of Kershner and Kimble (2010). We mapped WormBase gene IDs to transcript
IDs, and retrieved the 3’UTR sequences of all transcripts associated to each target gene,
keeping only the longest for each. To set up contrasts for the FBF-1 data, we follow the
analysis of Kershner and Kimble (2010) who split the data into 15 approximately equally
sized rank groups. Thus, we split up the 3294 3’UTR sequences of target genes by rank
into 14 groups of 220 and one group of size 214.

Target genes of the fly RBP Pumilio with estimated FDR < 1% are tabulated in the sup-
plementary material of Gerber, Luschnig, et al. (2006). We translated the FlyBase gene
IDs of the target genes in this table to transcript IDs. As signal sequences, for each target
gene we choose the longest available 3’UTR sequence over all associated transcripts. As
control sequences we choose the longest 3’UTR sequence for each non-target gene.
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The supplementary material of Morris, Mukherjee, and Keene (2008) provides a table
with LOD scores for binding of PUM1 to genes. Multiple RefSeq transcript IDs may be asso-
ciated with each gene locus, and we use the longest associated 3’UTR sequence for each
gene locus. Differently from the other RIP-Chip data that we use, this table also includes
gene loci for which there is no evidence of binding. Thus, following Morris, Mukherjee,
and Keene (2008) we use as signal data the 3’UTR sequences of gene loci with an LOD
greater zero, and the remainder as control.

The supplementary materials of Galgano et al. (2008) provide tables for targets bound
by PUM1 and PUM2. For each table entry multiple Ensembl and RefSeq transcript IDs may
be given. We retrieved the corresponding 3’UTR sequences, and use the longest one for
each entry of the table. We procured control data, by taking the set of Ensembl 3’UTR
sequences complementary to those mentioned in the bound targets tables.

For the PAR-CLIP data of Hafner et al. (2010) we consider dinucleotide distribution
conserving shuffles of the signal sequences as controls.

18.2 Methods

Discriminativemotif discovery We perform DMD with MICO as objective function on the
PUF RBP family datasets. As detailed in section 18.1, 3’UTR sequences are used for the RIP-
Chip data, and covered regions for PAR-CLIP. Discriminative analysis employs shuffled
sequences as control in the case of PAR-CLIP data, and 3’UTR sequences of non-target
genes for the RIP-Chip data. For each dataset the most discriminative IUPAC word accord-
ing to MICO is determined for each length of 7–12 nt using algorithm 5 implemented in
Plasma, described in section 11.2. HMMs are seeded on each of these and parameters op-
timized, maximizing MICO. For each RBP, we select the HMM motif with the best corrected
p-value.

Dilution analysis of PUM2 PAR-CLIP data We perform a dilution analysis of the PUM2
PAR-CLIP data by embedding the real sequences in increasingly larger, synthetically gen-
erated sequence context. Specifically, for each signal dataset, we extract dinucleotide
frequencies, and generate for each signal sequence shorter than the desired length flanks
of the appropriate size, as well as a control sequence of equal total size. We thus analyze
the original PUM2 data (mean length 35.0 nt), as well as variants embedded to minimum
lengths of 64, 128, 256, 512, and 1024 nt. Then, for the objective functions MICO and MMIE,
we optimize parameters of HMMs seeded on NNUGUANAUANN.

Word-based discriminative analysis We perform two word-based discriminative analy-
ses for the human members of the PUF RBP family PUM1 and PUM2 datasets of Galgano
et al. (2008), Hafner et al. (2010), and Morris, Mukherjee, and Keene (2008). We consider
scatterplots of relative occurrence frequencies of sequences that have at least one occur-
rence of a given word of length 8. Also, we apply algorithm 4 implemented in corenmers,
described in section 11.1, in order to determine the top 50 words of length 8 according to
residual MICO.
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Table 18.1: Discriminative motif analysis of the PUF RBPs family with MICO as objective
function. Shown are motifs of 7–12 nt with lowest corrected p-value. Data sources: A Ger-
ber, Herschlag, and Brown (2004), B Kershner and Kimble (2010), C Gerber, Luschnig, et
al. (2006), D Morris, Mukherjee, and Keene (2008), E Galgano et al. (2008), F Hafner et al.
(2010).

Protein Species Technology MICOmotif

Puf1p A S. cerevisiae RIP-Chip
Puf2p A S. cerevisiae RIP-Chip
Puf3p A S. cerevisiae RIP-Chip
Puf4p A S. cerevisiae RIP-Chip
Puf5p A S. cerevisiae RIP-Chip
FBF-1 B C. elegans RIP-Chip
Pum C D. melanogaster RIP-Chip

PUM1 D H. sapiens RIP-Chip
PUM1 E H. sapiens RIP-Chip
PUM2 E H. sapiens RIP-Chip
PUM2 F H. sapiens PAR-CLIP

18.3 Discriminative motifs in PUF RBP data

The motifs resulting from discriminative analysis are summarized in table 18.1, and de-
tails are presented in table 18.2. All identified motifs resemble published motifs of the
respective factors and are, except for the cases of Puf1p and Puf2p, similar to the known
PUF recognition element, UGUAHAUA (PRE) (Galgano et al., 2008; Hafner et al., 2010; Mor-
ris, Mukherjee, and Keene, 2008; X. Wang, McLachlan, et al., 2002). Most conserved is
the specificity of the first four positions, but variability is seen in the second part, and in
the context. Puf1p and Puf2p exhibit a motif very unlike that of the other RBPs analyzed
here, and the found discriminative motifs, consisting of two UAAU separated by three less
defined positions, are consistent with previous reports by Gerber, Herschlag, and Brown
(2004) and Yosefzon et al. (2011). Puf3p exhibits preference for a C two positions upstream.
Puf4p appears to favor a 9 nt variant, and Puf5p a 10 nt variant. Also, FBF-1 appears to
favor a 9 nt variant of the motif.

As is visible from the details in table 18.2a, all but the motif for Puf1p are deemed sig-
nificantly discriminative according to the corrected p-value that we calculate. In the case
of Puf1p, there is a considerable relative enrichment of 40.8% signal over 0.7% control
sequences that have at least one motif occurrence but there are only 32 signal sequences
in this dataset. Given the relatively large search space size of motifs length 7–12 nt, the
observed enrichment is insufficient to meet the threshold for significance. Nevertheless,
the identified motif is the same as what has previously been reported (Gerber, Herschlag,
and Brown, 2004; Yosefzon et al., 2011).

Discriminative analysis of the datasets of the fly Pumilio and of human PUM1 and
PUM2 RIP-Chip data uniformly yield UGUAHAUA as most discriminative motif, while analy-
sis of the PUM2 PAR-CLIP data yields a more diffuse affinity towards A/U on positions 7 to
10 (counting from the beginning of UGUAHWHH).
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Table 18.2: Motif discovery results for RIP-Chip and PAR-CLIP data of PUF RBP family
members. NS and NC: number of sequences in signal and control sequence sets. log-L:
log-likelihood of signal data. S and C: relative frequency of signal and control sequences
with at least one motif occurrence. log-p: MICO-based MT-corrected log-p value. MMIE:
log probability of correctly classifying all samples (equations (9.6) and (9.15)). (a): dis-
criminative motif analysis with MICO. MICO is used to find seeds of length 7–12 nt, and
to optimize HMM parameters. Motifs selected by log-p. (b): discriminative motif analy-
sis with MMIE. MICO is used to find seeds, and HMM parameters are optimized by MMIE.
Motifs selected by MMIE score. (c): Baum-Welch algorithm applied to the seed NNUGUA-
NAUANN. Data sources: A Gerber, Herschlag, and Brown (2004), B Kershner and Kimble
(2010), C Gerber, Luschnig, et al. (2006), D Morris, Mukherjee, and Keene (2008), E Gal-
gano et al. (2008), F Hafner et al. (2010).

(a) MICO

Protein NS NC Motif log-L S C MICO log-p
[%] [%] [bit]

Puf1p A 32 5180 −6862 40.8 0.7 64.3 0
Puf2p A 124 5088 −28 993 33.9 1.0 150.6 −47.3
Puf3p A 68 5144 −10 184 52.1 3.5 103.7 −24.6
Puf4p A 184 5028 −32 049 47.8 4.2 207.4 −101.9
Puf5p A 156 5056 −32 416 35.7 2.3 146.6 −49.5
FBF-1 B 3294 10 096 −970 238 20.9 5.2 462.4 −264.0
Pum C 834 12 135 −780 326 50.7 12.9 448.6 −274.4

PUM1 D 1401 18 651 −3 515 930 49.8 5.3 1375.8 −917.7
PUM1 E 836 6320 −2 094 000 61.6 13.1 638.3 −406.1
PUM2 E 565 19 535 −1 372 030 56.1 6.2 687.9 −440.5
PUM2 F 6916 6916 −327 370 54.1 10.8 2269.7 −1517.7

(b) MMIE

Protein NS NC Motif log-L S C MICO log-p MMIE
[%] [%] [bit]

Puf1p A 32 5180 −6876 38.7 0.8 58.3 0 −145
Puf2p A 124 5088 −29 003 36.2 2.0 130.5 −33.2 −464
Puf3p A 68 5144 −10 221 49.3 2.8 104.4 −15.0 −276
Puf4p A 184 5028 −32 077 45.6 3.5 208.7 −87.7 −611
Puf5p A 156 5056 −32 421 41.4 4.2 139.6 −39.6 −564
FBF-1 B 3294 10 096 −970 083 38.9 17.9 415.9 −246.7 −7005
Pum C 834 12 135 −780 320 54.7 15.7 441.9 −249.7 −2695

PUM1 D 1401 18 651 −3 515 800 59.1 9.0 1386.8 −905.3 −3776
PUM1 E 836 6320 −2 093 960 65.8 16.4 618.2 −372.2 −1998
PUM2 E 565 19 535 −1 372 080 58.3 7.9 646.1 −396.5 −1975
PUM2 F 6916 6916 −326 888 60.5 16.6 2127.8 −1419.3 −7626

(c) Baum-Welch

Protein NS NC Motif log-L S C MICO log-p
[%] [%] [bit]

Puf1p A 32 5180 −6771 88.9 82.4 0.3 0
Puf2p A 124 5088 −28 733 93.1 89.5 0.9 0
Puf3p A 68 5144 −10 127 85.3 68.7 6.4 0
Puf4p A 184 5028 −31 993 81.3 67.7 11.3 0
Puf5p A 156 5056 −32 377 35.3 38.1 0.3 0
FBF-1 B 3294 10 096 −963 728 94.0 90.0 36.2 0
Pum C 834 12 135 −774 029 99.2 97.8 5.3 0

PUM1 D 1401 18 651 −3 489 370 99.2 96.2 32.2 0
PUM1 E 836 6320 −2 070 780 99.6 96.8 18.6 0
PUM2 E 565 19 535 −1 359 480 95.6 75.0 121.8 −27.2
PUM2 F 6916 6916 −324 488 82.0 53.8 934.2 −591.4
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18.4 Comparing MICO, MMIE, and ML learning

To investigate the disparity of conclusions regarding the second half of the PUM2 motif
between our analyses of RIP-Chip and PAR-CLIP data, we investigate the influence of the
choice of objective function. We thus repeat the analysis of the PUF RBP family data using
MMIE as objective function. We initialize HMMs with seeds of length 7–12 nt determined
by MICO, optimize the HMM parameters for MMIE, and select the HMM with highest MMIE
score. We treat the FBF-1 data slightly differently in this section: it is split only in 2 groups,
rather than 15 groups as in the previous section3. The results are tabulated in table 18.2b.

We find that MMIE identifies longer variants of the MICO motifs which include posi-
tions with relatively low IC. This is because for MMIE we lack a comparable significance
correction for motif length as is available for MICO.

Note that for one dataset, the PUM1 data of Morris, Mukherjee, and Keene (2008), opti-
mization of MMIE yields a motif with higher MICO than that of the MICO motif of the same
dataset. This is caused by selecting MICO motifs based on the MICO-based MT-corrected
p-value rather than on MICO; however, the MICO motif’s p-value is lower than that of the
MMIE motif for this dataset due to the shorter length of the MICO motif.

The motifs identified by MMIE frequently have slightly lower IC than the MICO motifs
(results not shown), and occur more frequently than those of MICO. This observation is
in line with our findings on the synthetic datasets that MMIE yields higher sSn and lower
sPPV than MICO (see section 17.2). Also for MMIE we observe a disparity between the
RIP-Chip and PAR-CLIP analysis results regarding the second half of the motif.

To see what generative learning might yield, we apply the Baum-Welch algorithm to op-
timize the IUPAC seed sequence NNUGUANAUANN on the full PUF RBP family signal datasets.
While this successfully determines models with higher likelihood than those for MICO or
MMIE, it does not yield useful motifs, see table 18.2c. Although we use a seed similar to
the motifs discovered by discriminative analysis in all but the Puf1p and Puf2p datasets,
the PRE is mostly replaced by unspecific sequence. Only in the cases of Puf3p and Puf4p
RIP-Chip data, and PUM2 PAR-CLIP data do some traces of the motif remain. However,
the motifs incorporate so much background characteristic that for all except for the Puf5p
datasets they occur in more than half of the respective control sequences, which are either
random shuffles or all non-target 3’UTRs. For the Puf5p data, the motif is more frequent
in the control data than in the signal data.

18.5 Dilution and word-based analyses

18.5.1 Dilution analysis

Next, because the covered regions of PAR-CLIP data are much shorter than the 3’UTR se-
quences used for the RIP-Chip data (figure I.1), we perform a dilution analysis of the PUM2
PAR-CLIP data by embedding the real sequences in increasingly larger, synthetically gen-

3We do this to give all three methods the same signal data for the purpose of this comparison; in particular,
generative learning is supposed to only be applied to one signal dataset. Thus we chose to consider a binary
contrast for the two discriminative methods.
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Table 18.3: Dilution analysis of human PUM1 and PUM2 data for motifs found by optimiz-
ing (a) MICO and (b) MMIE. Sequences were embedded in increasing amounts of random
sequences, varying from top to bottom. In the length column, numbers marked by † give
the average length of the original sequences, other numbers give the length to which the
sequences were padded. HMMs are seeded on the IUPAC word NNUGUANAUANN and param-
eters optimized for MICO and MMIE, respectively. Data sources: A Hafner et al. (2010),
B Galgano et al. (2008), C Morris, Mukherjee, and Keene (2008).

(a) MICO

Protein Technology Length [nt] Motif

PUM2 A PAR-CLIP 35.0†
0
1
2

IC
[b
it]

PUM2 A PAR-CLIP 64 0
1
2

IC
[b
it]

PUM2 A PAR-CLIP 128 0
1
2

IC
[b
it]

PUM2 A PAR-CLIP 256 0
1
2

IC
[b
it]

PUM2 A PAR-CLIP 512 0
1
2

IC
[b
it]

PUM2 A PAR-CLIP 1024 0
1
2

IC
[b
it]

PUM2 A PAR-CLIP 2048 0
1
2

IC
[b
it]

PUM2 B RIP-Chip 1785.4†
0
1
2

IC
[b
it]

PUM1 B RIP-Chip 1842.5†
0
1
2

IC
[b
it]

PUM1 C RIP-Chip 1833.9†
0
1
2

IC
[b
it]

(b) MMIE

Protein Technology Length [nt] Motif

PUM2 A PAR-CLIP 35.0†
0
1
2

IC
[b
it]

PUM2 A PAR-CLIP 64 0
1
2

IC
[b
it]

PUM2 A PAR-CLIP 128 0
1
2

IC
[b
it]

PUM2 A PAR-CLIP 256 0
1
2

IC
[b
it]

PUM2 A PAR-CLIP 512 0
1
2

IC
[b
it]

PUM2 A PAR-CLIP 1024 0
1
2

IC
[b
it]

PUM2 A PAR-CLIP 2048 0
1
2

IC
[b
it]

PUM2 B RIP-Chip 1785.4†
0
1
2

IC
[b
it]

PUM1 B RIP-Chip 1842.5†
0
1
2

IC
[b
it]

PUM1 C RIP-Chip 1833.9†
0
1
2

IC
[b
it]
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erated sequence context. We thus analyze the original PUM2 data (mean length 35.0 nt),
as well as variants padded to minimum lengths of 64, 128, 256, 512, and 1024 nt. Then,
for the objective functions MICO and MMIE, we optimize parameters of HMMs seeded
on NNUGUANAUANN, and the results are shown in table 18.3. We find that with increasing
sequence context size the discriminative motif analyses of PAR-CLIP data embedded in
random sequence become more alike to the results of our RIP-Chip data analyses. The
dilution has the effect of yielding higher IC, particularly on the second half of the motif.

18.5.2 Word-based analyses

As another line of evidence we turn to word count analysis.

Scatter plots of frequency of sequences with a given word Scatter plots of frequencies
of sequences that have a given word in figures I.3 to I.6 reveal that the longer sequence
sizes of the RIP-Chip data compress the variability of word frequencies between signal
and control sequences.

Core-nmer analysis In order to separate independent contributions due to central and
neighboring words we employ a simple, progressive algorithm. We determine the top 50
words of length 8 on the human PUM1 and PUM2 datasets of Galgano et al. (2008), Hafner
et al. (2010), and Morris, Mukherjee, and Keene (2008) according to residual MICO. Fig-
ure 18.1 shows these in the order produced by the Core-nmer algorithm, with the bars
indicating how many of the sequences in signal (blue) and control (red) have at least one
occurrence of the word. The light parts of the bars indicate which of the sequences have
occurrences of any words with higher residual MICO, and thus are potentially already ex-
plained by them. It it thus the dark portions of the bars that indicate the novel explanatory
contribution of a word when accepting words in decreasing order of residual MICO.

As is visible from figure 18.1, there is greater variety of UGUANNNN conforming words
in the PAR-CLIP data among the 50 8mers with highest residual MICO. In contrast, only
UGUAAAUA, UGUAUAUA, and UGUACAUA appear to be strongly differential in the RIP-Chip data.

Differences of explanatory contribution of UGUAHAUA between technologies The IU-
PAC motif UGUAHAUA is occurring in more than half of the PUM1 and PUM2 RIP-Chip data
signal sequences, and in less than 15% of corresponding control sequences (figure I.2). In
contrast, for the PAR-CLIP data, this motif is only present in 19.7% and 2.3% of signal and
control sequences, respectively.

18.5.3 Conclusion

Given the higher variety of weaker variants that independently contribute to MICO in the
PAR-CLIP data, and that by diluting the PAR-CLIP data the results of DMD agree with those
of the RIP-Chip data, we surmise that the smear is not observed in the RIP-Chip data due
to the large length of 3’UTR sequences precluding discovery of weakly affine variants. It is
likely that this shadowing of the weaker variants in the RIP-Chip data is a consequence of
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Figure 18.1: Discriminative word analysis of human RBP datasets of PUM1 Morris, Mukher-
jee, and Keene (2008) (a) and Galgano et al. (2008) (b), and PUM2 Galgano et al. (2008)
(c), and Hafner et al. (2010) (d). Top 50 words of length 8 according to residual MICO as
determined by algorithm 4. Bars indicate how many of the sequences in signal (blue) and
control (red) have at least one occurrence of the word. Light parts of the bars indicate
which of the sequences have occurrences of any words with higher MICO, and thus are
potentially explained by them. It it thus the dark portions of the bars that indicate the
novel explanatory contribution of a word when accepting words in decreasing order of
MICO.
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our choice of feature, that a sequence is considered a target if it has at least one occurrence
of a motif.
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Chapter 19

Alternative splicing regulator
RBM10

RBM10 is an alternative splicing regulator (Y. Wang et al., 2013, that I co-authored) (Bechara
et al., 2013; Inoue et al., 2014). Mutations of this gene are known to cause TARP syn-
drome1 (Gripp et al., 2011; Johnston et al., 2010), and are also frequently found in lung
adenocarcinomas (Imielinski et al., 2012).

RBM10 is present in splicing complexes (Rappsilber et al., 2002): the spliceosome A
(Agafonov et al., 2011; Behzadnia et al., 2007; A. N. Kuhn et al., 2009) and B complexes
(Agafonov et al., 2011; Deckert et al., 2006; A. N. Kuhn et al., 2009). It is a core protein of
these complexes (Hegele et al., 2012), and interacts with spliceosome A complex proteins
SF1 (branch-point-binding protein) and SF4, as well as with the U2-related proteins SR140
and DEAH helicase hPRP43 (Hegele et al., 2012).

RBM10 has four RNA-binding domains: two RRM domains, and RanBP2- and C2H2-
type zinc finger domains. It may thus exhibit complex RNA-binding properties. SELEX2,
fluorescence anisotropy, and NMR analysis showed that GST-fusion proteins carrying the
RanBP2-type zinc finger domain of RBM10 bind in vitro to single-stranded RNA with the
motif aGGUaa3 (Loughlin et al., 2009; Nguyen et al., 2011). This sequence is almost iden-
tical to the conserved consensus sequence of metazoan 5’ splice sites (Ast, 2004; M. Q.
Zhang, 1998).

This chapter presents an application of the DMD methodology of Discrover to study
the in vivo sequence binding specificity of RBM10. Section 19.1 describes which data are
used, section 19.2 how motif analysis is performed and presents the discovered motifs,
and in section 19.3 it is shown that most previously published motifs for RBM10 are not
corroborated by the data analyzed here.

1Talipes equinovarus, atrial septal defect, Robin sequence and persistent left superior vena cava, MIM
#311900, an X-linked inherited disorder leading to multiple organ malformation in affected males

2Systematic evolution of ligands by exponential enrichment (Ellington and Szostak, 1990; Oliphant, Brandl,
and Struhl, 1989; Tuerk and Gold, 1990)

3Lower-case letters denote less conserved positions.
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Table 19.1: MICO motifs in RBM10 PAR-CLIP data from discriminative analysis versus shuf-
fles. N1 and N2: number of signal sequences in dataset 1 and 2, respectively. IC: informa-
tion content. S and C: expected relative frequency of signal and control sequences with at
least one motif occurrence. MICO: mutual information of condition and motif occurrence.
log-p: MICO-based log-p value, corrected for motif length.

PAR-CLIP dataset 1 PAR-CLIP dataset 2
Sequences N1 N2 Motif IC S C MICO log-p S C MICO log-p

[bit] [%] [%] [bit] [%] [%] [bit]

Exonic 7469 22 836
10.4 25.7 11.2 385.8−225.8 22.2 10.7 816.2−524.5

8.6 21.7 11.8 190.9−100.3 18.2 10.9 359.8−217.7
9.6 3.4 1.9 23.7 0.0 4.0 2.1 103.6 −29.5

Intronic 5908 21 764 10.2 12.5 6.9 76.8 −5.8 12.6 6.9 289.3−153.7
13.3 5.6 1.3 128.5 −41.9 3.5 1.0 222.7−107.4

19.1 Materials

GRCh37/hg19 coordinates were retrieved for binding sites of two RBM10 PAR-CLIP datasets
of Y. Wang et al. (2013) via GEO4. These are defined as the positions with the highest num-
ber of cross-linking events within each of the PAR-CLIP clusters. All binding sites are
considered that have at least 10 PAR-CLIP cross-linking events. Sequences of 41 nt are re-
trieved for each binding site by adding 20 nt flanks on each side. The sequences are split
into two groups: those whose central position lies in exons, and among the rest those
whose central position lies in introns. Exons and introns of RefSeq protein coding genes
are considered.

19.2 Motif discovery for RBM10 reveals splicing-relevant motifs

For RBM10 DMD is performed by jointly maximizing MICO across the contrasts given by
the two datasets and their respective shuffles. Exonic and intronic sequences are indepen-
dently analyzed. Using Plasma, the three most discriminative IUPAC regexes are identified
for each length of 5–10 nt. Discrover is run in multiple motif discovery mode, using the
seeds reported by Plasma, as well as 1-nt-shifted variants of each. In total, 6× 3× 3 = 54
seeds are considered for each analysis.

Discovered motifs The analysis of the RBM10 PAR-CLIP data reveals three motifs for the
exonic sequences, and two for the intronic ones, see table 19.1.

The motif , a known exonic splicing enhancer (ESE) signal (Caputi et al.,
1994; Fairbrother, Yeh, et al., 2002), is the most differential one within the exonic se-
quences. This motif is bound by SFRS1 (Ramchatesingh et al., 1995; Sanford et al., 2009;
Tacke and Manley, 1995; X. Wang, Juan, et al., 2011) and by eIF4AIII (Saulière et al., 2012).
Occurrence of the motif is positively correlated with the number of PAR-CLIP conversions
in the sequence (figure 19.1a), with the motif occurring in ≥ 30% of the sequences with
most conversions.

4Datasets available by GEO accession GSM1095142 and GSM1095143.
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(a) RBM10 exonic motif across exonic sequences
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(b) RBM10 exonic motif across exonic sequences
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(c) RBM10 exonic motif across exonic sequences
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(d) RBM10 intronic motif across intronic sequences
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(e) RBM10 intronic motif across intronic sequences
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Figure 19.1: Occurrences of RBM10 motifs across ranked sequences. (a)–(c) Exonic motifs
in exonic sequences. (d),(e) Intronic motifs in intronic sequences. Sequences are ranked
by the number of PAR-CLIP conversions (conversions decreasing left to right).
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Table 19.2: Summary statistics for enrichment in the PAR-CLIP data of Y. Wang et al. (2013)
of the 94 CLIP-Seq-based RBM10 motifs reported by Bechara et al. (2013). See tables J.1
and J.2 for details. Absolute and relative numbers of RBM10 motifs that are less or equally
frequent (≤), more frequent (>), or much more frequent (≫) in the signal sequences com-
pared to shuffled sequences. Motifs are counted as much more frequent if their relative
frequency is higher in signal than control and the MICO-based log-p value is less than or
equal to −10.

Data set S≤ C S> C S≫ C
[%] [%] [%]

Exonic 1 45 47.9 49 52.1 9 9.6
Exonic 2 49 52.1 45 47.9 14 14.9

Intronic 1 49 52.1 45 47.9 2 2.1
Intronic 2 54 57.4 40 42.6 10 10.6

The most differential motif in the intronic sequences, , resembles the sig-
nal of the pyrimidine-rich tract. Unlike the ESE motif in the exonic sequences, however,
this motif is negatively correlated with PAR-CLIP conversions (figure 19.1d).

The third exonic motif is remarkably reverse-complementary to the ESE motif. Like
the one found in the intronic sequences, it is pyrimidine-rich and also negatively corre-
lated with PAR-CLIP conversions (figure 19.1c). Its occurrence frequency in the exonic se-
quences is lower than that of the intronic pyrimidine-rich motif in the intronic sequences.

The second motif discovered in the intronic sequences is a palindromic 9mer with
consensus CCACNGUGG which has not previously been described, and whose occurrence is
positively correlated with PAR-CLIP conversions (figure 19.1e).

19.3 Previously reported RBM10 motifs not corroborated

Most RBM10 motifs of Bechara et al. (2013) unsupported by PAR-CLIP data A recent
publication performed CLIP-Seq of RBM10 (Bechara et al., 2013). Their analysis of words
enriched in the CLIP-Seq data yielded a set of 9 groups of 5mers, 94 words in total5. For
each of these words, we counted the number of sequences of the PAR-CLIP data of Y. Wang
et al. (2013) having at least one occurrence and determined MICO and the MICO-based p-
values, separately considering the exonic and intronic datasets, see tables J.1 and J.2. The
findings are summarized in table 19.2.

Notably, about half of the motifs of Bechara et al. actually occur more frequently in
shuffled controls than in the signal sequences. Furthermore, of those motifs that are more
frequent in the signal sequences than in the controls, only few (<15% of the Bechara et al.
motifs) are significantly enriched. Importantly, the Bechara et al. motifs that are signif-
icantly enriched in the Y. Wang et al. data match reasonably well to motifs reported by
Discrover and listed in table 19.1.

RBM10 consensus motifs of Inoue et al. (2014) unsupported by PAR-CLIP data Inoue et
al. (2014) derived RBM10 consensus motifs based on the sequences of 5’ splice sites of two

5Note that 95 words are more than 9% of all 1024 5mers.
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19.3. Previously reported RBM10 motifs not corroborated

exons affected by RBM10 knock-down. These motifs are essentially identical to the motif
reported to be bound by the RanBP2-type zinc finger domain of RBM10 (Loughlin et al.,
2009; Nguyen et al., 2011).

We counted the number of sequences in the PAR-CLIP data of Y. Wang et al. (2013) that
have at least one occurrence of these words, see tables J.3 and J.4. The resulting number
are extremely low (< 1% of sequences), in spite of our respecting all word occurrences
and not just those that overlap 5’ splice sites. We found the two Inoue et al. motifs not
to be enriched in either the exonic or intronic PAR-CLIP sequences compared to shuffled
sequences.
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Chapter 20

Mouse embryonic stem cell
transcription factors

In this chapter, we apply DMD with Discrover to ChIP-Seq data of two studies of mouse
embryonic stem cell (ESC) transcription factors (TFs) from X. Chen et al. (2008) and Mar-
son et al. (2008). The proteins studied include the four factors Oct4, Sox2, c-Myc, and Klf4,
which can be used to reprogram mouse fibroblasts into an induced pluripotent stem cell
(iPSC) state (K. Takahashi and Yamanaka, 2006).

20.1 Materials and methods

Mouse ChIP-Seq data The first study (X. Chen et al., 2008) performed ChIP-Seq experi-
ments for 13 sequence-specific TFs in mouse ESCs E14. These include Oct4, Sox2, Nanog,
Esrrb, and Zfx, involved in ESC self-renewal (Nichols et al., 1998; Niwa, Miyazaki, and
A. G. Smith, 2000)(Avilion et al., 2003)(Chambers et al., 2003; Mitsui et al., 2003)(Feng
et al., 2009; X. Zhang et al., 2008)(Galan-Caridad et al., 2007), Klf4, c-Myc, and n-Myc,
which contribute to reprogramming of somatic cells to a pluripotent state (J. Jiang et al.,
2008)(Cartwright et al., 2005), the cell cycle regulator E2f1 (Bieda et al., 2006), and Ctcf,
which insulates transcriptional domains (T. H. Kim et al., 2007), as well as Tcfcp2l1, which
is preferentially upregulated in ESCs (Ivanova et al., 2006). In addition, two factors down-
stream of signalling pathways are included: BMP1-induced Smad1 (Ying et al., 2003), and
LIF-induced Stat3 (Niwa, Burdon, et al., 1998).

The second study (Marson et al., 2008) produced additional ChIP-Seq data from mouse
ESCs V6.5 for Oct4, Sox2, Nanog, and Tcf3, a repressor of key pluripotency gene expression
(Cole et al., 2008; Tam et al., 2008; F. Yi, Pereira, and Merrill, 2008).

Data preparation and analytical treatment We retrieved the bound regions of the mouse
ESC ChIP-Seq data of X. Chen et al. and Marson et al. Sequences of length 101 nt spanning
50 nt up- and down-stream of bound region midpoints were extracted from mm8.

In order to find binding site patterns with discriminative learning, the ChIP-Seq data-
sets were individually contrasted to dinucleotide frequency preserving shuffles of the sig-
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nal sequences. Using Discrover, DMD was run for motifs of lengths of 5–16 nt, using MICO
as objective function. The three most discriminative IUPAC words of each length and 1-nt-
shifted variants of each were considered as seeds for HMM optimization. The multiple
motif discovery mode was used.

20.2 Discriminative motifs in ChIP-Seq data

For each ChIP-Seq dataset one or more motifs were discovered, see table 20.1. In total, 44
motifs were discovered in the 17 datasets. Many motifs are discovered multiple times in
different datasets, and in these cases the motifs are quantitatively highly consistent.

TOMTOM (Gupta et al., 2007) was used to identify factors known to bind to the discov-
ered motifs. This identified 40 of the 44 discovered motifs1. One of the four unidentified
motifs’ reliability is further corroborated by additional evidence presented later in this
chapter.

For 12 of the 17 datasets the top-ranking discovered motif is known to be bound by the
assayed factor. The other five cases comprise E2f1, Smad1, Tcf3, and both Nanog datasets.

Table 20.1: Discriminative motif analysis of mouse ChIP-Seq data. Protein: ChIP’d protein.
N: number of signal sequences. Motifs: One or more motifs discovered in the sequences
of the ChIP’d protein. Factor: TF (family) known to bind the discovered motif (TOMTOM
q-value ≤ 0.05 (Gupta et al., 2007)), bold if one of the ChIP’d proteins. IC: information
content. S and C: expected relative frequency of signal and control sequences with at
least one motif occurrence. MICO: mutual information of condition and motif occurrence.
log-p: MICO-based log-p value, corrected for motif length. Data sources: A X. Chen et al.
(2008), B Marson et al. (2008).

Protein N Motifs Factor IC S C MICO log-p
[bit] [%] [%] [bit]

c-Myc A 3422 Myc 12.5 40.9 8.4 747.8 −467.1

Ctcf A 39 609 Ctcf 18.7 83.4 3.5 43 892.7 −30 350.6
? 20.3 5.2 0.2 1753.4 −1154.5

E2f1 A 20 699
Ets TF family 14.6 5.6 1.4 414.8 −210.9

Yy1 14.9 3.8 0.6 397.5 −223.9
Nrf1 17.1 3.1 0.4 360.9 −183.4

Esrrb A 21 647 Esrrb 14.0 68.3 6.7 14 108.6 −9735.0
? 21.2 3.5 0.5 406.0 −219.8

Klf4 A 10 875 Klf/Sp1 14.8 57.5 8.0 4767.3 −3254.4

Nanog A 10 343

Sox2 13.4 29.8 6.8 1410.1 −916.5
Sox2-Oct4 16.6 21.4 2.9 1341.9 −859.2

Zic 14.8 13.1 2.2 685.0 −408.4
Nanog 13.0 8.0 2.8 202.7 −103.5

Nanog B 16 667

Sox2-Oct4 15.5 25.8 4.1 2430.6 −1619.1
Sox2 13.3 24.1 6.6 1487.1 −979.9

Klf/Sp1 14.0 10.1 2.2 699.1 −443.2
Zic 15.8 6.6 1.2 519.8 −288.8

1Where a motif is known to be bound by more than one protein of a TF family, the family name is used to
refer to the motif.
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20.2. Discriminative motifs in ChIP-Seq data

Table 20.1: continued from previous page.
Protein N Motifs Factor IC S C MICO log-p

[bit] [%] [%] [bit]

n-Myc A 7182 Myc 12.1 33.8 7.6 1152.3 −747.7
Klf/Sp1 16.0 10.5 3.1 235.4 −116.3

Oct4 A 3761 Sox2-Oct4 18.1 42.3 2.6 1422.7 −910.3
Klf/Sp1 16.1 7.3 1.6 109.8 −28.8

Oct4 B 17 225 Sox2-Oct4 17.4 46.8 3.8 6898.7 −4706.8
Klf/Sp1 15.5 8.4 1.7 635.2 −388.9

Smad1 A 1126

Sox2 11.2 31.0 9.6 119.5 −50.7
Oct4 12.2 17.5 4.5 74.3 −14.1

Klf/Sp1 14.2 13.2 2.5 69.7 −5.8
Esrrb 13.3 10.1 1.7 56.3 −1.5

Sox2 A 4526

Sox2 13.5 64.0 10.3 2177.7 −1434.0
Oct4 13.0 11.3 2.7 194.2 −102.6

Klf/Sp1 14.1 4.7 1.2 74.1 −13.9
Zic 16.3 6.2 0.9 149.2 −41.3

Sox2 B 15 036
Sox2-Oct4 17.5 38.9 3.3 4720.2 −3196.6

Sox2 13.2 30.2 6.7 2132.0 −1432.1
Klf/Sp1 14.1 7.7 1.4 554.1 −342.6

Stat3 A 2546 Stat3 14.1 40.0 3.7 800.8 −498.9
? 18.6 6.8 0.8 98.6 −11.0

Tcf3 B 6257

Sox2-Oct4 17.2 38.0 3.7 1829.5 −1192.4
Tcf3 14.5 22.5 4.3 702.2 −430.5
Zic 15.2 5.4 0.8 175.2 −64.4

Klf/Sp1 14.1 5.5 1.1 150.5 −47.2

Tcfcp2l1 A 26 910 Tcfcp2l1 14.6 75.0 10.9 17 829.4 −12 284.1
Esrrb 15.5 5.2 0.8 713.0 −457.9

Zfx A 10 338 Zfx 11.5 44.4 17.5 1287.5 −841.4
? 15.0 6.8 2.4 170.3 −66.0

The occurrence numbers given in table 20.1 are based on posterior decoding. This
means that overlapping motifs compete for binding sites, and the contributions of over-
lapping motifs for binding to a given site is averaged probabilistically, incorporating both
the fit of the motifs to the sequence of the site and the motifs’ prior occurrence probability.

Sox2-Oct4 heterodimer motif Sox2 and Oct4 are known to bind DNA as heterodimer
(Kuroda et al., 2005; Ng et al., 2012; Nishimoto et al., 1999; Tokuzawa et al., 2003; Tomioka
et al., 2002). The corresponding Sox2-Oct4 heterodimer binding site pattern is discovered
in six of the datasets, and the data in which it is discovered yield highly consistent motifs.
Moreover, in five of these six datasets, it is found to be the most discriminative motif. In
particular, it is independently discovered to be the most discriminative motif in both Oct4
datasets and one Sox2 dataset.

The Sox2-Oct4 heterodimer pattern is also the most discriminative motif in data of
the functionally related factors Nanog and Tcf3. The enrichment for the Sox2-Oct4 het-
erodimer pattern is in concordance with the overlap of regions bound by Sox2 and Oct4
with those bound by Nanog (X. Chen et al., 2008) or those bound by Tcf3 (Marson et al.,

181



Chapter 20. Mouse embryonic stem cell transcription factors

2008), as well as with the functional overlap of Sox2 and Oct4 with Nanog (Boyer et al.,
2005; Loh et al., 2006) and with Tcf3 (Cole et al., 2008; Tam et al., 2008; F. Yi, Pereira, and
Merrill, 2008).

Sox2 and Oct4 monomer motifs The monomer binding motifs of Sox2 and Oct4 are dis-
covered in five and two datasets, respectively. The Sox2 monomer motif is the most dis-
criminative motif in three dataset of X. Chen et al. These include the Sox2 dataset, and
those of Nanog and Smad1. The Oct4 monomer motif is the second most discriminative
motif for Smad1 data and in one Sox2 dataset.

Co-discovery of Sox2 and Oct4monomer and heterodimer motifs Interestingly, in some
datasets both the Sox2-Oct4 heterodimer and the Sox2 monomer motifs are discovered.
This is the case for both Nanog datasets, as well as one Sox2 dataset. In the other Sox2
dataset, as well as in the Smad1 dataset, both Sox2 and Oct4 monomer motifs are discov-
ered. The two Oct4 datasets, on the other hand, exhibit only the Sox2-Oct4 heterodimer
pattern.

Overall, in each dataset where a Sox2 monomer motif is discovered, also the Oct4
monomer motif or the Sox2-Oct4 heterodimer motif is discovered. Conversely, in each
dataset for which the Oct4 monomer motif is discovered, also the Sox2 monomer motif is
discovered.

Motif of pluripotency regulator Zic3 frequently co-discovered with Sox2 and Oct4 motifs
Zic3 is required for maintenance of pluripotency in ESCs (L. S. Lim, Loh, et al., 2007),
and is a direct activator of the Nanog promoter in ESCs (L. S. Lim, Hong, et al., 2010). In
addition, Zic3 has been shown to enhance the generation of mouse iPSCs (Declercq et al.,
2013). We co-discovered the Zic family motif in four of the eight samples in which either
the Sox2-Oct4 heterodimer motif or the Sox2 and Oct4 monomer motifs were found. In
particular, this includes both Nanog datasets.

Motif of pluripotency factor Klf4 co-discovered with Sox2 and Oct4 motifs The Klf/Sp1
motif2 is the only motif discovered in the ChIP-Seq dataset of the pluripotency factor Klf4.
It is co-discovered in eight other datasets: both Oct4 datasets, both Sox2 datasets, the
n-Myc, Smad1 and Tcf3 datasets, and one Nanog dataset. Importantly, in seven of the
eight datasets in which the Klf/Sp1 motif is co-discovered, also the Sox2-Oct4 heterodimer
motif or both Sox2 and Oct4 monomer motifs are discovered.

c-Myc and n-Myc The proto-oncogene c-Myc was one of the factors used in the first
reported reprogramming of mouse somatic cells to iPSCs (K. Takahashi and Yamanaka,
2006). In human stem cells it was found to induce apoptosis and differentiation into ex-
traembryonic tissue types (Sumi et al., 2007) and it is dispensable for induction of pluripo-
tency in human somatic cells (Yu et al., 2007).

2Because of their similarity we group together the motifs of the family of Krüppel-like factors (Klf) with that
of the evolutionarily related protein Sp1 (A. R. Black, J. D. Black, and Azizkhan-Clifford, 2001; Kaczynski, Cook,
and Urrutia, 2003).
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20.2. Discriminative motifs in ChIP-Seq data

Table 20.2: Longer motif variants of Tcfcp2l1. The first first row corresponds to the motif
given in table 20.1, the motifs in the other rows were seeded as indicated. Seeds are given
as IUPAC regexes, see table 3.1. Other columns as in table 20.1.

Seed Motif IC S C MICO log-p
[bit] [%] [%] [bit]

DDCYDRHYNNNDCYDN 14.6 75.0 10.9 17 829.4 −12 284.1
NNCCGGTTNNAACCGGNN 14.8 76.2 10.3 18 903.4 −13 018.6

NNNCCGGTTNNAACCGGNNN 15.0 76.7 9.9 19 506.4 −13 426.6
NNNNCCGGTTNNAACCGGNNNN 15.1 76.5 9.7 19 543.0 −13 441.9

The ChIP-Seq data of c-Myc and n-Myc are both enriched for the E-box motif bound by
the Myc TF family. In addition, in the n-Myc dataset the Klf/Sp1 motif is co-discovered.

That Myc proteins and Sp1 interact is well known: Myc and Sp1 cooperate in activating
transcription of the human telomerase reverse transcriptase gene hTERT (Kyo et al., 2000),
the catalytic subunit of human telomerase important for cellular immortalization and car-
cinogenesis; c-Myc interacts via its Zinc-finger domain with Sp1 (Gartel et al., 2001); pro-
moters bound by both c-Myc and Sp1 exhibit higher degrees of conservation between hu-
man and rodents, stronger correlation with TFIID-bound promoters, and preference for
permissive chromatin state (F. Parisi, Wirapati, and Naef, 2007); and interaction of Myc
and Sp1 is also important for the regulation of clock controlled genes (Bozek et al., 2010)
and various cancers (Gopisetty et al., 2013; H.-B. Wang et al., 2013).

Cognate motifs are discovered for Ctcf, Esrrb, Stat3, Tcfcp2l1 and Zfx In the ChIP-Seq
data of Ctcf, Esrrb, Stat3, Tcfcp2l1 and Zfx the most discriminative motifs versus shuffled
sequences are the known, cognate motifs.

The Ctcf motif shows the highest amount of evidence of all discovered motifs, followed
by the Tcfcp2l1 motif. Two reasons are responsible for the large amount of evidence for
these motifs: size of datasets and motif enrichment. Comprising respectively 39 609 and
26 901 ChIP-Seq sequences, the Ctcf and Tcfcp2l1 datasets are the largest of all considered
datasets. Simultaneously, the respective motif frequency in the signal sequences, as well
as the enrichment over the control sequences are the largest across all considered ChIP-
Seq datasets: 83.4% vs. 3.5% for Ctcf and 75% vs. 10.9% for Tcfcp2l1 (signal frequency vs.
control frequency).

In each of these five ChIP-Seq datasets secondary motifs are co-discovered. For the
Tcfcp2l1 the Esrrb motif is co-discovered. Affinity purification and subsequent mass spec-
trometry of Esrrb interacting proteins revealed Tcfcp2l1 to be the third-highest scoring TF
(van den Berg et al., 2010), and conversely Esrrb was the sixth-highest scoring TF among
the interacting proteins of Tcfcp2l1 (van den Berg et al., 2010).

The four co-discovered motifs in the Ctcf, Esrrb, Stat3, and Zfx data are not identified
by database queries using TOMTOM, and will be further discussed below.

A long Tcfcp2l1 motif composed of identical, reverse-complementary halves Seeds of
length 5–16 nt were used to discover the motifs of table 20.1, and the Tcfcp2l1 motif listed
there indicates that the true motif might be even longer. Table 20.2 compares the statistics
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of the discovered motif from table 20.1 with those of longer HMM motifs seeded on a core
sequence of CCGGTTNNAACCGG extended with Ns on both sides to lengths of 18, 20, and
22 nt. As is visible from this table, the longer motif variants yield increased MICO, but
beyond 20 nt length further flanking positions contribute only little IC. Given these results,
it appears that the preferred Tcfcp2l1 bind site consists of two adjacent, nearly identical
motif-halves. The halves consist of reverse-complementary 10mers of which the central 8
positions are responsible for discrimination. Previous analyses of this dataset have only
reported shorter motifs (Bailey, 2011; X. Chen et al., 2008).

Cognate Nanog and Tcf3 motifs are not the most discriminative motifs In the Tcf3 ChIP-
Seq data, the Tcf motif is less discriminative than the Sox2-Oct4 heterodimer motif (Sox2-
Oct4 motif: 38% vs. 3.7%, Tcf motif: 22.5% vs. 4.3%, signal frequency vs. control fre-
quency). As noted above, the discovery of the Sox2 and Oct4 motifs in the Tcf3 data is
consistent with their functional overlap (Cole et al., 2008; Tam et al., 2008; F. Yi, Pereira,
and Merrill, 2008).

In the Nanog ChIP-Seq data of X. Chen et al., the Nanog motif is only the fourth most
discriminative motif, outranked by the Sox2 monomer motif, the Sox2-Oct4 heterodimer
motif, and the Zic motif. Notably, the discovered Nanog motif’s occurrence frequency is
rather low in the signal sequences at only 8% (and 2.8% in the control sequences). In the
Nanog ChIP-Seq data of Marson et al., the Nanog motif is not discovered, while those of
the Sox2-Oct4 heterodimer, the Sox2 monomer, Klf/Sp1, and Zic are discovered. As also
already noted above, the discovery of the Sox2, Oct4, Klf/Sp1, and Zic motifs in the Nanog
data is consistent with their shared contribution to maintaining pluripotency (Boyer et al.,
2005; Loh et al., 2006), and for the cases of Sox2 and Oct4 with their overlapping set of
ChIP-Seq bound promoters (X. Chen et al., 2008).

The datasets of Nanog and Tcf3 will be subjected to further analysis in section 20.4.

Purported E2f consensus motif not supported by E2f1 motif discovery results The mo-
tifs discovered in the ChIP-Seq data of E2f1 are identified by TOMTOM database queries as
those of the Ets family of TFs, of Yy1, and of Nrf1. All of these motifs have two positions
with purines, either followed by or embedded in a stretch of pyrimidines. As such, they
are not unlike the purported E2f consensus motif TTTSSCGC3 derived from in-vitro experi-
ments (Chittenden, Livingston, and Kaelin, 1991). However, our results do not include a
motif that is identified by database searches as the E2f consensus motif, and occurrence
statistics of the consensus motif4 are not discriminative between the X. Chen et al. ChIP-
Seq sequences and shuffles.

Already earlier ChIP-Chip and ChIP-Seq experiments for E2f binding specificity did not
support the validity of the E2f consensus motif (Rabinovich et al., 2008; X. Xu et al., 2007),
in that few of the identified targets possess occurrences of the consensus motif. In fact,
Bailey and Machanick (2012) analyzed the X. Chen et al. E2f1 dataset consider here and
arrived at the same conclusions.

3Note that S stands for C or G, see table 3.1.
4Purported consensus motif in X. Chen et al. E2f1 ChIP-Seq sequences: 206 of 20 699 = 0.995%, shuffled

control sequences: 189 of 20 699 = 0.913%; MICO: 0.53 bit, log p-value≥ 0.
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Figure 20.1: Position-wise spatial distribution of motif occurrences in up to 250 nt distance
from midpoints of Tcfcp2l1 ChIP-Seq regions. (a) Tcfcp2l1 motif discovered in Tcfcp2l1
sequences. (b) Esrrb motif co-discovered in Tcfcp2l1 sequences. Black: occurrences in
the signal sequences, red: occurrences in the control sequences. Note that windows of
length 101 nt were used for motif discovery and are the basis of the statistics listed in
table 20.1. See table K.1 for the positional distributions of all discovered ChIP-Seq motifs.
Data source: X. Chen et al. (2008).

Smad1 Extrinsic signaling pathways are important for maintenance of pluripotency in
ESCs. In ESCs the cytokine leukemia inhibitory factor, LIF, acts to suppress differentia-
tion via STAT3 (Niwa, Burdon, et al., 1998). Another external signal, bone morphogenetic
factor, BMP, feeds into nuclear regulation of ESC transcriptional programs via the Smad
proteins (Attisano and Wrana, 2002; von Bubnoff and Cho, 2001). The mechanisms of LIF-
and BMP-signalling dependent regulation are complex and their effects context- and inter-
dependent (Ying et al., 2003). Nanog has been shown to physically interact with Smad1
and interfere with recruitment of co-activators (Suzuki et al., 2006).

In the Smad1 ChIP-Seq data both Sox2 and Oct4 monomer motifs are discovered by
Discrover. Also, the motifs of Klf/Sp1 and Esrrb are discovered, albeit at lower enrichment.
Our de-novomotif discovery results do not, however, include the Smad family motifs, and
thus yield no evidence for direct binding of Smad1 in the mouse ESC ChIP-Seq sequences
of X. Chen et al. This is in accordance with the requirement for co-activator interaction
of Smad1 for transcriptional regulation, as well as with previous findings by Bailey and
Machanick (2012), who, using database motifs, found central enrichment for the Sox2 and
Oct4 monomer motifs in the Smad1 sequences of X. Chen et al., but no central enrichment
for the Smad family motifs.

20.3 Spatial distribution of motif occurrences

Next we will consider spatial information of the discovered motifs’ occurrences within the
ChIP-Seq sequences. Table K.1 gives the spatial occurrence distribution around sequence
midpoints for all motifs listed in table 20.1, an illustrative case is shown in figure 20.1, and
we will make several observations from these.
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Cognate motifs exhibit higher central enrichment than co-factor motifs As illustrated
for the Tcfcp2l1 motif in the Tcfcp2l1 dataset in figure 20.1a, the spatial distribution around
sequence midpoints of occurrences of cognate motifs is peaking close to zero. Conversely,
the spatial occurrences distributions of co-discovered co-factor motifs often lack central
enrichment or are even depleted around sequence midpoints, as illustrated for the co-
discovered Esrrb motif in the Tcfcp2l1 sequences in figure 20.1b.

Spatial occurrence distribution corroborates relevance of unidentified motif in Ctcf data
Among the four unidentified motifs discovered in the ChIP-Seq data only the one found
in the Ctcf data exhibits a distribution of motif occurrences around sequence midpoint
that is strongly indicative of it being a relevant Ctcf co-factor motif. The unidentified mo-
tifs co-discovered in the Esrrb and Stat3 data appears to be slightly enriched around the
sequence midpoints but both also have a uniform contribution mixed into their spatial
distribution, and due to the low number of occurrences the central enrichment is not very
strong. Finally, the unidentified motif in the Zfx data appears rather uniformly distributed
and even somewhat depleted around sequence midpoints.

Concluding, only the unidentified motif in the Ctcf data is strongly corroborated by
the spatial distribution of occurrences around sequence midpoints.

20.4 Contrasting Nanog and Tcf3 against other ChIP-Seq data

For Nanog and Tcf3 the most discriminative motifs against shuffled sequences are those of
Sox2 and Oct4. Extending earlier analyses of Bailey (2011), we contrasted the Nanog and
Tcf3 sequences to other factors’ ChIP-Seq sequences highly enriched for the Sox2 and Oct4
motifs. The most discriminative motifs were identified based on the three most discrim-
inative seeds of lengths 5–16 nt and 1-nt shifted variants. These analyses yield in 15/16
cases the cognate motifs of Nanog and Tcf3, see table 20.3. Only Nanog (Marson et al.,
2008) versus Oct4 (X. Chen et al., 2008) yields another motif: the Sox2 monomer motif is
more discriminative across this contrast than the cognate motif.

In general, the cross-contrasting inter-dataset analyses for the Nanog datasets, espe-
cially that of Marson et al., show more variability in the discovered motif than those for
the Tcf3 dataset. The reason for this likely is the low frequency of the Nanog motif in the
Nanog datasets5.

20.5 Comparing results of DREME, FIRE, and Discrover

The DREME publication (Bailey, 2011) analyzed 13 of the 17 datasets studied here and re-
ported more motifs than discovered with our method. Exemplarily, we investigated the
differences of Discrover and DREME analyses of the Oct4 data of X. Chen et al., also includ-
ing FIRE into this comparison. We generated two additional sets of shuffled sequences,
and applied the methods on the three contrasts. Table 20.4 lists the results.

5The Nanog motif is found in about 25% in the X. Chen et al. sequences, and about 15% in those of Marson
et al., while the Tcf3 motif is found in about 30% of Tcf3 sequences, see table 20.3.
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Table 20.3: Inter-dataset comparison reveals motifs discriminating Nanog and Tcf3 data
from other ChIP-Seq data. (a),(b) comparing Nanog ChIP-Seq sequences against those of
Oct4, Sox2, and Tcf3. (c): comparing Tcf3 ChIP-Seq sequences against those of Nanog,
Oct4, and Sox2. Data sources: A X. Chen et al. (2008), B Marson et al. (2008).

(a) Nanog A, N=10 343

vs. Protein N Motifs Factor IC S C MICO log-p
[bit] [%] [%] [bit]

Oct4 A 3761 Nanog 10.1 30.8 10.7 478.7 −255.3
Oct4 B 17 225 Nanog 10.8 23.4 8.5 827.4 −507.3
Sox2 A 4526 Nanog 10.1 23.9 11.0 256.7 −131.1
Sox2 B 15 036 Nanog 10.5 22.6 9.7 568.5 −342.6
Tcf3 B 6257 Nanog 10.5 19.9 8.6 290.0 −159.2

(b) Nanog B, N=16 667

vs. Protein N Motifs Factor IC S C MICO log-p
[bit] [%] [%] [bit]

Oct4 A 3761 Sox2 8.3 53.0 31.9 402.9 −227.7
Oct4 B 17 225 Nanog 11.0 14.0 6.5 374.7 −208.0
Sox2 A 4526 Nanog 10.9 10.3 5.1 92.4 −21.7
Sox2 B 15 036 Nanog 11.3 11.1 5.7 217.5 −103.8
Tcf3 B 6257 Nanog 8.5 25.4 19.8 57.8 −12.5

(c) Tcf3 B, N=6257

vs. Protein N Motifs Factor IC S C MICO log-p
[bit] [%] [%] [bit]

Nanog A 10 343 Tcf3 14.7 26.0 6.4 883.9 −556.4
Nanog B 16 667 Tcf3 14.9 24.6 6.6 924.4 −584.6
Oct4 A 3761 Tcf3 12.0 38.4 11.2 681.7 −416.2
Oct4 B 17 225 Tcf3 13.8 30.1 8.8 1078.2 −686.2
Sox2 A 4526 Tcf3 13.8 29.7 7.5 636.5 −389.8
Sox2 B 15 036 Tcf3 14.7 24.6 5.6 1042.9 −666.8
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Table 20.4: Comparison of discriminative motif discovery with (a) Discrover, (b) DREME,
and (c) FIRE on Oct4 data of X. Chen et al. (2008) against three sets of shuffled sequences.
Motifs are presented in decreasing order of significance as reported by the method. Fac-
tor: factor binding the motif; factor identification based on TOMTOM searches (with q-
value < 0.05), with manual judgement in ambiguous cases, and in cases (denoted ‘?’)
where TOMTOM did not identify matches. DREME and FIRE discover IUPAC regex mo-
tifs, shown in these tables. Note, that for DREME and FIRE PWMs could be built from the
statistics of words matching the discovered regexes. The final rows list wall clock and
CPU time (hours:minutes:seconds).

(a) Discrover

Shuffles 1 Shuffles 2 Shuffles 3
Rank Motif Factor Motif Factor Motif Factor

1 Sox2-Oct4 Sox2-Oct4 Sox2-Oct4
2 Klf/Sp1 Klf/Sp1 Klf/Sp1

Wall 01:54:12 01:54:41 01:57:28
CPU 11:38:04 11:32:09 11:30:48

(b) DREME

Shuffles 1 Shuffles 2 Shuffles 3
Rank Motif Factor Motif Factor Motif Factor

1 Oct4 Oct4 Oct4
2 Sox2-Oct4 Sox2-Oct4 Oct4
3 Oct4 Oct4 Sox2
4 Klf/Sp1 Sox2 Klf/Sp1
5 Sox2 Klf/Sp1 Ets TF family
6 Ets TF family Ets TF family? Sox2-Oct4
7 Oct4? Oct4? Oct4?
8 Esrrb Esrrb Esrrb
9 Oct4? ? Oct4?

10 Klf/Sp1 ? ?
11 ? Oct4? Oct4?
12 Sox2? Klf/Sp1 Sp/Egr
13 Oct4? Sox2 Sox8
14 ? ? ?
15 Oct4? Oct4? Myc
16 Myc ? Zic
17 ? Oct4? Oct4
18 ? ? ?
19 Yy1 Myc
20 ?
21 Oct4?

Wall 00:16:36 00:16:50 00:15:43
CPU 00:16:36 00:16:50 00:15:43
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Table 20.4: continued from previous page. E: sample in which the FIRE motif is enriched;
+: signal sequences, -: control sequences.

(c) FIRE

Shuffles 1 Shuffles 2 Shuffles 3
Rank Motif Factor E Motif Factor E Motif Factor E

1 Oct4? + Oct4? + Oct4? +
2 Klf/Sp1 + ? - Sox2? +
3 ? - Klf/Sp1 + ? -
4 Sox2? + Oct4? + Klf/Sp1 +
5 ? - ? - Ets TF family +
6 ? - Ets TF family + ? -
7 ? - Nr4A2 + ? -
8 Ets TF family? + Oct4? + Oct4? +
9 Oct4? + ? + ? +

10 ? - ? - ? -
11 Sox2-Oct4? + ? - Esrrb +
12 ? + ? - ? +
13 Esrrb + Sox2? + ? +
14 ? -
15 Oct4? +
16 Oct4? +

Wall 00:13:02 00:14:54 00:14:03
CPU 00:13:02 00:14:54 00:14:03

Discrover consistently reports the full-length Sox2-Oct4 heterodimer motif and the
Klf/Sp1 motif (table 20.4a). DREME finds 18–21 IUPAC RE motifs (table 20.4b) and FIRE
13–16, of which 8–10 are enriched in the signal sequences (table 20.4c). Both DREME and
FIRE are designed for the discovery of short motifs, and respectively 8–10 and 3–6 of their
motifs are variants of partially overlapping segments of the Sox2-Oct4 heterodimer pat-
tern. DREME also consistently finds the Esrrb and Myc motifs, while FIRE finds the Esrrb
motif in 2 of 3 analyses. Other motifs found by DREME and FIRE are not identifiable as
known motifs, or are not reproduced when running repeatedly against different sets of
shuffled sequences.

Note that the results in tables 20.4a to 20.4c are listed in order of significance, as re-
ported by the methods. Inspection of motifs discovered by DREME and FIRE reveals that
the more dubious motifs are those with lesser significance. Thus, when a higher signifi-
cance threshold would be chosen than the standard one used by the methods, then the
DREME and FIRE results would include fewer dubious motifs, such as unidentified mo-
tifs or motifs that are not reproduced when different shuffles are used as controls. Conse-
quently, lower false-positive rates would be expected for DREME and FIRE. However, at
the same time both methods would also report fewer true-positive co-factor motifs, while
the redundancy issues would not be resolved.
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Chapter 21

Supervised motif discovery
performance experiments

This chapter discusses the supervised MD experiments based on synthetic data. Sec-
tion 21.1 summarizes the influence of the parameters varied in the synthetic data, and
relates the observed effects to theoretical expectations. Advantages and disadvantages of
generative and discriminative learning approaches are discussed in sections 21.2 and 21.3.
Section 21.4 comments on the robustness of hybrid learning. Finally, section 21.5 com-
pares the MD performance of Discrover and that of published methods.

21.1 Influence of parameters varied in synthetic data

Sequence number How much data is necessary to saturate MD performance was stud-
ied by varying the number of sequences available for learning. For all methods MD per-
formance substantially increased when going from 100 to 1000 sequences. With 10 000
sequences MD performance further approached the limit of motif recognizability.

Sequence context size andmotif implantation frequency Varying sequence context size
and implantation frequency allowed to study the sensitivity of MD performance with re-
spect to signal preponderance, i.e. the product of the implantation frequency and the
reciprocal of sequence context size. MD performance was found to react approximately
linearly to logarithmic changes of preponderance. This observation is in line with theo-
retical expectations according to motif occurrence inference schemes (see section 3.1.3.1)
in which the negative log-odds of the (position-wise) occurrence frequency acts as cutoff
on a PSSM score.

Motif information content Control over IC allows to determine the signal/noise ratio of
binding site predictions. Among the parameters varied, IC of the true motif was found to
be the most important determinant of motif recognizability, and thus of the limit of MD
performance. MD performance exhibits a non-linear response to variation of IC, with a
sigmoidal contribution due to the response of sSn.
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To understand the sigmoidal response of sSn, note the remark in equation (3.17) about
the interpretation of the IC of a motif as the expected score of a PSSM generated by the
PSFM. It implies that reductions in IC lead to a larger overlap of the distribution of PSSM
scores generated by the PSFM, and the distribution of PSSM scores generated by back-
ground. As the number of words typically generated by the background, i.e. its infor-
mation entropy, is generally much larger1 than that of the PSFM, the increasing distribu-
tional overlap with diminishing IC causes the observed sigmoidal response in sSn: when
IC is high, the distributions of PSSM scores of signal and background are well separated,
leading to a dominance of words generated by signal among the words that score above
threshold, and, correspondingly, an sSn that is close to 1; conversely, when IC is low,
due to the high number of words generated by background, any threshold on the PSSM
score that captures meaningful proportions of the signal words, must also capture many
background words. In combination with the fact that only few positions in the synthetic
sequences correspond to implanted motifs2, this leads to a dominance of background po-
sitions among the positions that score above threshold, which corresponds to an sSn close
to 0. In between these extremes is a phase of intermediate IC, in which the proportion of
words with PSSM above threshold shifts from signal dominated to background dominated.
In summary, this behaviour is tantamount to the properties of the sigmoidal function.

Sensitivity and positive predictive value Predictions of most methods3 generally yield
higher sPPV than sSn. This is likely due to the relative scarcity of binding sites in the data,
i.e. the fact the number of binding site positions is much less than the number of non-
binding site positions. When signal is sparse, overall performance is typically maximized
by tuning prediction so as to avoid type II errors (equivalent to high sPPV), at the price
of increased type I errors (equivalent to low sSn), see section 3.1.3.1 for the definitions of
these error types. Due to the relative scarcity of true site positions, only few type I errors
are possible. But if predictions were prone to type II errors, many type II errors would
happen due to the high number of non-binding site positions.

Similarly, DMD results yield higher sPPV than recognizability, while sSn of DMD is
lower than that of recognizability. This means that MD tends to miss true motifs, but
rarely errs when reporting motifs, which shows that MD results are conservative, in the
sense of only predicting motifs when sufficient evidence is available.

Averaging over remaining variates It should be noted that the observations regarding
the sensitivity of MD performance with respect to to one parameter are based on averag-
ing over the values of other parameters, and the additional gains from increased sequence
numbers are larger in more difficult learning problems. Thus, e.g. saturation of MD per-
formance with increasing number of sequences occurs earlier for frequent, high-IC motifs,
and later for infrequent, low-IC motifs.

1They are equal only for motifs of maximal information entropy, i.e. motifs that by definition are indistin-
guishable from a uniform background

2When p is the motif implantation probability and n the sequence length then motif are implanted with a
position-wise frequency of only p

n ≪ 1. In the synthetic data 0.01 ≤ p ≤ 1 and 20 ≤ n ≤ 1000, so 10−5 ≤ p
n ≤

0.05.
3With the exception of CMF and DECOD.

194



21.2. Generative, signal-only learning

Performance measurements also depend on invariants The observations made in the
synthetic data experiments also hinge on the choices for constant parameters of data gen-
eration. For example, a length of 8 nt was chosen to model typical RBP binding sites.
However, as exemplified in the ChIP-Seq data analyzed in chapter 20, many DNA-binding
factors recognize longer motifs.

PSSM as motif models Another point of discussion regarding the synthetic data exper-
iments concerns the choice of PSSM as simulated motif model to generate motif occur-
rences. While being much used in the field of sequence analysis (Benos, Bulyk, and
Stormo, 2002), PSSMs disregard the possibility of dependent emission probabilities at
different positions, and thus need not be good approximations to many, let alone most
binding site patterns.

21.2 Generative, signal-only learning

Opportunistic cases allow generative learning to excel The Baum-Welch algorithm em-
ployed for generative learning performs maximum likelihood (ML) estimation of HMM
parameters. ML estimation has the property of statistical consistency4. It is this property
that enables generative, signal-only learning in opportunistic cases5 to approximate the
motif recognizability limit (figure 17.2(a)). Indeed, it became apparent that already sam-
ple sizes of 1000 sequences are (within the ranges of the other parameters) frequently
sufficient for generative, signal-only learning’s MD performance to come very close to this
limit. Yet, the model correctness assumption on which consistency of generative, signal-
only learning rests may frequently be violated due to various factors.

Un-modeled effects deteriorate MD performance of generative learning Relative to mo-
tif recognizability the MD performance of generative, signal-only learning degrades when
the background is of a more complex nature than modeled (figure 17.2(b)), or when con-
founding motifs are present (figure 17.2(c)). When real data contains effects that are not
part of the model, generative, signal-only learning does not immediately become use-
less. Instead, it will yield models that incorporate characteristics of the unmodeled ef-
fects, accommodating them according to the structure of the model. If these effects are of
small magnitude, the models will tend to be useful to describe the signal. When they get
stronger, as is the case when the relative frequency or IC of confounding motifs increases,
then generative, signal-only learning may fail to identify the true signal and yield spu-
rious relationships. In such cases, the discovered motif may represent the confounding
motif, or one that is frequent in the background sequence.

Improving generative learning with discriminative seeding or filtering We considered
several ways how deficits of generative learning can be ameliorated by using contrasting
information in seeding, learning, or filtering of models. Using discriminative measures

4With increasing sample size estimates converge on their true values.
5I.e. when the true model is used.
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to seed models which are then optimized via generative learning may improve MD per-
formance, as was observed with the decoy experiments (BW-MICO vs. BW in figure 17.1).
Yet, In other cases discriminative seeding has little consequence and generative learning
invariably identifies the (non-discriminative) likelihood maximum by drifting away into
non-discriminative regions of parameter space, as in the 3’UTR experiments (BW-MICO vs.
BW in figure 17.1). When generative models are not discriminative versus suitable control
data, the true parameters are likely different from those of the model. By not predict-
ing models in such cases, MD performance is substantially improved (BW and BW-MICO
in figure H.7). Applying discriminative seeding and discriminative filtering to generative
models ameliorated the deficiencies that generative learning exhibits in its performance
on the decoy experiments as compared to recognizability (BW-MICO in figure H.7). How-
ever, in the 3’UTR experiments the MD performance deficiency of generative learning is
not equally ameliorated by discriminative seeding and filtering (BW-MICO in figure H.7).
Also, this could not be fixed by increasing the order of the used background model (results
not shown).

There exist further possibilities—not considered here—to approach the particular dif-
ficulties faced by generative learning in the synthetic data. E.g. the presence of confound-
ing motifs in the decoy experiments could be tackled by fixing the misspecification of the
model, by making use of multi motif models. After identifying parameters of a multi motif
model one would then ask which of the motifs, if any, correspond to signal. This could
be decided by considering discriminative measures.

21.3 Discriminative learning

When generative learning performs optimally discriminative learning is nearly as good
The basic set of synthetic sequence experiments demonstrates the optimality of genera-
tive learning when true model is within the parametric family. When these conditions are
fulfilled, generative learning based on the ML principle achieves a MD performance close
to the limit of motif recognizability. MD performance of discriminative learning is only
marginally inferior in this set of experiments. The largest reductions of MD performance
with respect to motif recognizability is seen for both learning approaches when data is
limited.

Leveraging control data ameliorates model mis-specifications The supervised exper-
iments utilizing real human 3’UTR sequences as background exhibit MD performance
deficits of generative, signal-only learning that are not seen for discriminative learning.
As the same set of parameters are used in this set of experiments as in the basic set of ex-
periments, any difference in MD performance is attributable to the increased complexity
of the sequence background into which motifs are implanted. The complex sequence com-
position of human 3’UTR sequences is sufficient to confound generative learning in many
instances. This results in models representing (possibly real) motifs present in human
3’UTRs whose enrichment in the data is however purely due to sampling effects. Such a
decrease in MD performance is not observed with discriminative learning.
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A particular model mis-specification was realized in the set of decoy motif experi-
ments, namely single motif models for data containing two motifs. Using single motif
models, MD performance was reduced for generative, signal-only learning but not for dis-
criminative learning.

Pre-requisites for discriminative learning Availability control data is a necessary condi-
tion in order for discriminative learning to be applicable, and, as discussed in section 7.1,
there are many ways in which useful control data can be procured. Yet, as the statistical
differences between signal and control data are the information source for discriminative
learning, it is clear that control data should be chosen diligently. Careless choice of con-
trol data may beget misguided conclusions regarding the sequence specificity of the an-
alyzed proteins. While we did not systematically study the consequences of such effects
empirically, there are theoretical considerations that indicate problems best avoided in
choosing control data:

Matching length distributions When control sequences are much shorter than the sig-
nal sequences, discriminative learning might yield fairly unspecific motifs, because
longer sequences have a higher chance of containing “random” occurrences of un-
specific motifs. Conversely, when control sequences are much longer than the sig-
nal sequences, discriminative learning might face difficulties in accepting the true
motifs, if—due to the sequence length bias—too many control sequence would ex-
hibit occurrences. Thus, control data should exhibit comparable length distribu-
tions to the signal data.

Note though, that in studying the PUF proteins not all contrasts had matching signal
and control length distributions, yet MD was still successful.

Matching sequence composition Many sets of biological sequences have characteris-
tic basic sequence compositions, such as GC-bias in core promoters, or AT-bias in
3’UTRs. As DMD is designed to pick up sequence features with differing frequencies
across the studied contrast, it is important not to introduce such differences inad-
vertently. Thus, one would be ill-advised to contrast a set of promoter sequences
with synthetic control sequences generated by a uniform, 0th-order Markov chain,
as then discriminative learning would likely produce low-IC, GC-rich motifs.

For this reason, in the absence of suitable biologically motivated control sequences,
shuffling the signal sequences guarantees that such basic sequence composition
effects are avoided. However, if analysis based on shuffled sequences does not re-
veal credible motifs, the question remains whether the signal sequences might not
potentially be selected precisely because of their basic sequence composition.

Conclusions Defining and measuring MD performance in terms of a supervised classifi-
cation problem may explain why discriminative learning, being suited to such problems,
is performing so well in these experiments. However, this is not an unfair comparison,
as the only additional information provided to discriminative learning is the set of con-
trol samples. In particular, the locations of the implanted sites or which of the signal
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sequences actually contained occurrences were not provided for learning, and this infor-
mation was only used during evaluation to measure MD performance.

Summarizing these experiments, generative learning was found to be optimal when
the true model is used and in these cases discriminative learning is nearly as good. But
in situations involving slight model mis-specification, which likely is the general case,
discriminative learning discovers motifs more robustly than generative learning.

21.4 Robustness of hybrid learning

As mentioned in section 12.3, termination of Discrover’s hybrid learning scheme is not
guaranteed in the general case. This is because, on the one hand, it is not clear that param-
eter choices exist whose generative and discriminative components are simultaneously
(locally) optimal for their respective objective functions. On the other hand, numerical
issues may prevent hybrid learning from reaching acceptable solutions.

However, in practice such problems were not observed, and there are multiple rea-
sons why this anecdotal evidence may be indicative of a more general phenomenon. First,
gradient optimization of discriminative objectives and Baum-Welch learning involve the
choice of some threshold for the iteration-wise parameter change upon reaching of which
learning is terminated. This naturally censors any theoretically possible non-terminating
optimization as long as optimization progress reaches a sufficiently small scale. Another
theoretical consideration is the compatibility of generative and discriminative learning
hinted at in the introduction, in cases in which they are mutually ancillary, i.e. when gen-
erative parameters represent variables of the model that play a peripheral but necessary
role for discrimination, and in which the discriminative parameters are not among the
parameters for which likelihood is most sensitive.

Hybrid learning gracefully terminates for hard MD problems, predicting no motifs For
hard MD problems6, we observed that during hybrid learning when the discriminative
learning of emissions strives towards higher-IC motifs, re-estimation of the generative
learning of context parameters7 frequently tends to reduce the motif priors. This gener-
ates a positive feedback loop, as less frequently occurring motifs can only be discrimina-
tive if their IC is high enough, and the higher the IC, the lower the occurrence counts are.
The result of these dynamics is that the motif degenerates to full IC and vanishing motif
prior. When practically no motif occurrences are predicted, the discriminative gradient
vanishes, line searching for the next local optimum fails, and no increase in the discrimi-
native objective function happens in that iteration. As hybrid learning finishes once both
the relative objective function change of the discriminative learning step and the absolute
parameter change of the re-estimation step fall below respective thresholds, this eventu-
ally terminates hybrid learning, and results in models that represent motifs for which no
occurrences are predicted.

6Low-IC, low implantation frequency, large sequence context, few sequences.
7Remember that the context parameters include the motif priors, see section 12.1.
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21.5 Comparison to published motif discovery methods

Our HMM-based method Discrover achieved the highest MD performance of all considered
methods in the synthetic data experiments. The second-best method was our IUPAC regex
based seeding method Plasma. The best-performing published DMD tools were MoAn and
DREME. The latter is an RE-based MD method and performed consistently better than
CMF, DECOD, and DME2, which are all based on PWMs. This shows that RE-based se-
quence specificity models are not necessarily inferior to probabilistic ones when different
objective functions and optimization procedures are used. Conversely, while FIRE uses
the same objective function as Discrover, its MD performance is much lower, demonstrat-
ing that aside from the objective function, also other properties of MD tools are important.

It was interesting to observe that the MD performance of DREME did not significantly
benefit from the update that allowed to perform single-stranded motif analysis. While
MoAn exhibited the highest MD performance of all published methods, it was also the
slowest of all considered methods8.

Of the discriminative objective functions implemented in Discrover, DFREQ exhibits
the lowest MD performance when applied to the synthetic data experiments. Similarly,
the MD performance of CMF and DECOD, which also use this objective function, was found
to be worse than that of many other DMD methods.

It appears probable that the inferior performance of DFREQ is due to that, unlike other
measures considered here, it does not embody a notion of significance of association. To
illustrate this, consider a motif that has a relative occurrence frequency of 0 in the control
sequences, and of x < 1

2 in the signal sequences. It should probably be judged more
significantly associated with the contrast than if the numbers were 1

2 and 1
2+x respectively.

Yet, DFREQ measures these cases as equally strongly associated with the contrast. This
leads us to discourage the use of DFREQ as discriminative objective function.

The two published signal-only MD tools included in the comparison, BioProspector
(X. Liu, Brutlag, and J. S. Liu, 2001) and MDscan (X. S. Liu, Brutlag, and J. S. Liu, 2002),
showed MD performance comparable to or below that of the worst-performing DMD meth-
ods considered.

Runtime Plasma and Discrover, the IUPAC regex and HMM based MD methods presented
in this thesis, respectively achieve the best MD performance for methods of their kind. Si-
multaneously, they are also the fastest methods in their respective categories of MD tools.
DREME, the second best IUPAC regex based method, was the third fastest IUPAC regex
based method, and faster than Discrover. MoAn, after Discrover the second-best method
based on probabilistic motif modeling, was the slowest of all considered methods.

Various reasons are responsible for the higher speed of Plasma and Discrover com-
pared to other methods. They comprise clever choice and design of algorithms, efficient
coding techniques in a compiled language, and usage of parallelism.

8Of course, the three excluded methods—DEME, DIPS, and Dispom—were slower still, see table H.1.
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Parallel computation Surprisingly, in spite of the natural parallelizability of the MD
statistics collection problem9, only few MD methods make use of multi-threading offered
by most current computers. Aside from Plasma and Discrover, the only MD tool consid-
ered here that makes use of parallel computation is Dispom. Given how easy paralleliza-
tion can be leveraged in most programming languages by using libraries such as OpenMP,
it would likely not take much work to parallelize the other methods.

9The problem is “embarrassingly parallel”, as the independence assumption of the individual sequences
implies inter alia that occurrence statistics for the sequences can be collected in parallel.
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Sequence motifs in biological data

This chapter discusses the experiences made by applying discriminative learning meth-
ods to real biological data. Section 22.1 discusses MD results for data of the PUF RBP
family, section 22.2 those of RBM10, and section 22.3 turns to those of the mouse ESC TF
ChIP-Seq experiments.

22.1 RIP-Chip and PAR-CLIP data of PUF family RBPs

Reproducing previous findings Analysis of the PUF RBP family data demonstrated that
the Discrover framework is capable of reproducing previous findings regarding the se-
quence specificity of this well-studied RBP family.

Showcasing multiple kinds of contrasts The application to the PUF RBP family show-
cased the usage of multiple kinds of contrasts, including comparison of bound genes ver-
sus unbound ones, of bound genes versus the genomic complement, of multiple groups
of genes ranked by binding evidence, as well as the comparison of signal to shuffled se-
quences.

Sequence length distributions differences do not impedeDMD The PUF RIP-Chip signal
and control data are not perfectly length distribution matched, demonstrating that DMD
is feasible also under relaxed constraints regarding equality of signal and control length
distributions.

Benefits of MICO-based p-values Using MICO as objective function and the correspond-
ing length corrected p-values, the MICO MD framework automatically yielded the individ-
ual family members’ motif length preferences.

Benefits of PAR-CLIP data Discrover analysis of the PUM2 PAR-CLIP data revealed the
relevance of weak-affinity variants that do not conform to the classic PRE UGUAHAUA. In
particular, the first four nucleotides of the motif are each found to exhibit close to 2 bit IC
per position, but the second half exhibits lower position-wise IC. While HAUA is a relevant
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IUPAC consensus for the second half, it is perhaps better described as excluding C on its
first position, followed by three to four purines.

It is noteworthy that this insight was enabled specifically by two facts: the fine spatial
resolution of PAR-CLIP data, and inclusion of lower-ranking PAR-CLIP cluster sequences.
As the dilution analysis showed, with larger sequence context, DMD yields high-IC posi-
tions also on the second motif half. And, as previous analyses of the same data showed,
considering only top-ranking sequences similarly leads to the conclusion of high-IC posi-
tions in the second half of the motif.

22.2 Alternative splicing regulator RBM10

We performed DMD for the alternative splicing regulator RBM10, jointly analyzing PAR-
CLIP repeat experiments, separately for exonic and intronic sequences. The analysis re-
vealed motifs previously implicated in splicing regulation. We also analyzed enrichment
of previously reported RBM10 motifs in the same data.

Earlier RBM10 motif analyses mostly uncorroborated Earlier analyses revealed that the
RanBP2 zinc finger domain of RBM10 binds in vitro to single-stranded RNA with the motif
AGGUAA (Loughlin et al., 2009; Nguyen et al., 2011), a pattern very similar to the conserved
metazoan 5’ splice site sequence (Ast, 2004; M. Q. Zhang, 1998). However, as these analy-
ses were done in vitro and with GST-fusion proteins containing only the zinc finger domain
rather than with the full RBM10 proteins including the other RNA-binding domains, the
relevance of these insights for in vivo RNA-binding specificity of RBM10 is dubious. Yet,
Inoue et al. (2014) found that two exons whose splicing is affected by RBM10 carry this
motif at their 5’ splice sites, and from this concluded this motif to be a RBM10 consensus
motif. Another recent analysis by Bechara et al. (2013) performed CLIP-Seq for RBM10 and
reported 94 words of length 5—nearly a tenth of all 5mers—to be enriched in the RBM10
CLIP-Seq sequences. The Bechara et al. motifs do not include the purported motif related
to the 5’ splice site consensus pattern.

We investigated whether these motifs are also enriched in the RBM10 PAR-CLIP data
of Y. Wang et al. (2013). We found the motif bound by the zinc finger domain not to be en-
riched. Similarly, most (~85%) of the words reported by Bechara et al. were either more
frequent in shuffled control sequences, or not significantly enriched in the PAR-CLIP se-
quences of Y. Wang et al. The few Bechara et al. RBM10 motifs that were enriched in the
PAR-CLIP sequences are consistent with the motifs that our own analysis revealed.

Discrover reports splicing-relevant motifs in PAR-CLIP data The most differential motif
we found with Discrover in the exonic clusters of the Y. Wang et al. (2013) PAR-CLIP data is
a purine-rich exonic splicing enhancer (ESE) signal reported to be bound by SFRS1 (Ram-
chatesingh et al., 1995; Sanford et al., 2009; Tacke and Manley, 1995; X. Wang, Juan, et al.,
2011) and by eIF4AIII (Saulière et al., 2012). The most differential intronic motif resembles
the signal of the polypyrimidine tract, a signal in the vicinity of the splicing branch point
sequence that is bound by U2AF65 and promotes assembly of the spliceosome.
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CorrelationwithPAR-CLIP conversion events While both the purine- and the pyrimidine-
rich motifs are overall much more frequent in their respective signal sequences than in
shuffled control sequences, they are not identically distributed across the ranks of PAR-
CLIP conversion ordered sequences. The purine-rich ESE motif found in the exonic se-
quences is positively correlated with PAR-CLIP conversions, while the pyrimidine-rich one
from the intronic sequences is negatively correlated. In other words, the prior is found
most frequently in the PAR-CLIP clusters with most conversions, while the latter is more
frequent in clusters with fewer conversions.

A mixture of reasons determines the number of conversion events observed in any
given cluster. On the one hand, due to stoichiometric reasons, transcripts with a high cel-
lular abundance may more frequently be bound by a given RBP than less highly expressed
ones, and thus show elevated levels of PAR-CLIP conversion events. On the other hand, se-
quences with higher-affinity binding sites would tend to be more tightly and longer bound
by a RBP. Thus, in PAR-CLIP datasets the clusters with most conversion events tend to be
a mixture of highly expressed transcripts and of high-affinity targets.

Note that sequence composition may also affect PAR-CLIP cross-linking efficiency and
thus the number of PAR-CLIP nucleotide conversion events observed in a cluster. E.g.
when PAR-CLIP is performed with 4SU—as is the case with the two libraries analyzed
here—then sequences that lack U would be at a disadvantage. However, this effect is
unlikely to be of consequence here as analysis of an (unpublished) PAR-CLIP library for
RBM10 generated with 6SG instead of 4SU yielded the same observations (results not
shown).

In summary, the positive correlation with PAR-CLIP conversion events suggests that
the purine-rich motif may be tightly bound by RBM10. Conversely, the negative correla-
tion with PAR-CLIP conversions of the pyrimidine-rich motif could be explained by several
factors. These include the pyrimidine-rich motif being bound with lesser affinity, perhaps
by a different domain of RBM10; or the pyrimidine-rich motif could be indirectly bound
by RBM10 due to involvement of RNA secondary structures or interacting proteins. Yet,
sequence composition effects could also account for the apparent lower efficiency of in-
duction of PAR-CLIP cross-linking in the vicinity of the pyrimidine-rich motif.

Interpretation RBM5, a splicing factor related and highly similar to RBM10, is known to
compete for binding to the polypyrimidine tract with U2AF65 (Jin et al., 2012). RBM5 and
RBM10 antagonistically regulate proliferative capacity of cancer cells (Bechara et al., 2013)
and have different effects on splicing: RBM10 effects mainly exon exclusion (Bechara et
al., 2013; Y. Wang et al., 2013), while the main effect of RBM5 appears to be exon-inclusion
(Bechara et al., 2013).

The polypyrimidine tract binding protein1, PTB, is a multi-functional protein with
roles in diverse biological processes including splicing, polyadenylation, mRNA stabil-
ity, and translation initiation (Sawicka et al., 2008). It binds to intronic pyrimidine-rich
sequences and inhibits formation of the U2 snRNP/pre-mRNA complex and thereby splic-
ing (García-Blanco, Jamison, and Sharp, 1989; R. Singh, Valcárcel, and Green, 1995). PTB
binds to pyrimidine-rich sequences in a variety of structural contexts (Clerte and Hall,

1PTB is also known as heterogeneous nuclear RNP (ribonucleoprotein) I, hnRNP I.

203



Chapter 22. Sequence motifs in biological data

2009), including—intriguingly—the double stranded region of a hairpin secondary struc-
ture motif whose one arm consists of pyrimidine-rich sequence, while the other consists
of purine-rich sequence (Mitchell et al., 2005). It is possible that similar secondary struc-
ture might also be of importance to the regulation exerted by RBM10, which could either
favor or disfavor the formation of such hairpins and influence splicing through this mech-
anism.

Alternatively, it is conceivable that interaction of RBM10 with PTB or other co-factors
explains why the pyrimidine-rich motif found is negatively correlated with PAR-CLIP con-
versions. According to this idea, the sequences most tightly bound by RBM10 would be
those containing the purine-rich motif correlated positively with PAR-CLIP conversions,
and the sequences containing the pyrimidine-rich motif would be negatively correlated
with PAR-CLIP conversions because their association to RBM10 is indirect via interaction
with PTB or other factors that are responsible for binding the pyrimidine-rich motif.

Conclusions Due to the presence of multiple RNA-binding domains, it would not be sur-
prising for RBM10 to present complex RNA-binding specificities. For this reason, our nega-
tive results regarding enrichment in the PAR-CLIP data of Y. Wang et al. for most previously
published RBM10 motifs are not necessarily in conflict with earlier analyses (Bechara et
al., 2013; Inoue et al., 2014).

Despite the fact that both the purine-rich and the pyrimidine-rich motifs found by Dis-
crover in the Y. Wang et al. data are included in the motifs reported by Bechara et al.,
it seems justified to stress that our findings are first in underlining their central impor-
tance for RBM10 binding, given that Bechara et al. report a total of 94 words, only few of
which are consistent with our motifs. Bechara et al. do not draw particular attention to the
motifs highlighted here, and instead follow up on other motifs that lack—as we showed
here—statistical evidence for enrichment in the Y. Wang et al. PAR-CLIP data.

Our results are lent credence by RBM10’s role in alternative splicing regulation and the
well-established involvement in RNA splicing regulation of the primary motifs we found,
the ESE motif in the exonic RBM10 clusters and the pyrimidine-rich motif in the intronic
ones. In summary, based on the motif analysis findings, two mechanisms might be re-
sponsible for the reported exon-skipping mediated by RBM10: (I) competition of RBM10
with splicing enhancers for the ESE motif, and (II) competition of RBM10 with U2AF65
for binding to the polypyrimidine tract–either through RNA secondary structure or via
co-factors.

22.3 ChIP-Seq data of mouse ESC TFs

Coping with the entirety of large datasets Using contrasting information obviated the
need to apply repeat masking or other kinds of filtering to preprocess the data, and MD
was applied directly to the significant ChIP-Seq bound regions. Discrover leveraged the
full size of these datasets that numbered up to 39 609 signal sequences2.

2And equal numbers of shuffled sequences.
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Concordance with earlier analyses By discriminative learning using MICO as objective
function, cognate sequence motifs were successfully de-novo discovered for most of the
analyzed ChIP-Seq data. In two cases, discriminative statistics provided evidence—in ac-
cordance with previous reports—for the absence of purported motifs.

Cogantemotifs are sometimes not themost discriminative ones In some ChIP-Seq data-
sets, exemplified by Nanog and Tcf3, the cognate motif is less discriminative than those
of co-factors. For such cases, discriminative learning with shuffled sequences as contrast
may fail to discover the cognate motifs when only considering the top-ranking motif, or it
may report the cognate motifs at a sub-maximal rank when discovering multiple motifs.
However, frequently the cognate motifs can then be easily discovered by cross-contrasting
these datasets to other datasets that are enriched for the same distracting motifs, as shown
in section 20.4.

Discrover results are stringent and robust The Discrover analysis results of ChIP-Seq
data appear to be stringent and robust. This is indicated by (I) the strong similarity of
multiply discovered motifs, (II) the high proportion of previously described motifs recov-
ered, (III) the high proportion of known co-factor motifs among the co-discovered motifs,
and (IV) the consistent results when applied to multiple sets of shuffled sequences.

Interpreting spatial distribution of motif occurrences The ChIP-Seq wet-lab procedure
and subsequent analysis by peak-calling software are designed to yield genome-wide, lo-
calized, quantitative evidence for the binding of the assayed factor. Hence, binding sites
of the assayed factor are expected to occur close to the identified ChIP-Seq peak signals.
While the exact distance from the peak signal of a ChIP-Seq region to the nearest binding
site is a function of many factors3, statistics of the distances between sequence midpoints
to motif occurrences should distinguish between the motifs of the assayed factor and of
co-factors.

Building on this principle, Bailey and Machanick (2012) present a method that uses a
database of previously discovered motifs, and calculates for each motif the central enrich-
ment around sequence midpoints of its occurrences in the sequences. Spatial information
can also be used for the purposes of MD4, but is not (currently) used Discrover. Thus, it
was available here to validate the discovered motifs as it constitutes evidence orthogonal
to the sequence information.

Motif presence versus de-novo discovery It is important to note the distinction between
de-novo motif discovery revealing a motif in a given dataset and confirming the presence
of a given, known motif in a set of sequences. Clearly, discovering a motif needs more
evidence than merely confirming motif presence. Consequently, an MD method can not be
expected to co-discover all motifs of co-factors for which association to the assayed factor

3Influential factors include stringency of the wet-lab processing, as well as adequacy of the models used by
the software to identify enriched regions.

4And is indeed used for this purpose for example by the DMD method Dispom (which we excluded from the
synthetic data analysis due to its slowness), as well as several other non-discriminative methods.
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is known, while it is also to be expected that more motifs’ presence can be confirmed than
will be discovered by an MD method in a given dataset.

Discrover yields non-redundant, full-lengthmotifs with high true-positive rate Compar-
ing Discrover, DREME, and FIRE DMD results on Oct4 data in section 20.5 showed that
DREME and FIRE yield more motifs than Discrover, and that these motifs may include
presumed-true co-factor motifs that are not identified by Discrover. However, the motifs
yielded by the regex-based methods are short, redundant and contain motifs that are ei-
ther not identifiable as known motifs, or that are not reproduced in multiple runs with
different sets of shuffled controls. Thus, while potentially missing some true motifs, Dis-
crover consistently and robustly identifies a non-redundant set of full-length motifs with
a higher true positive rate than competing methods.
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Chapter 23

Outlook

This chapter gives an overview over possible avenues for further research. We comment
on alternative, global learning approaches in section 23.1. Instead of set-based MD ap-
proaches, section 23.2 discusses possible usage of mutual information in the context of
rank-based MD problems. Section 23.3 mentions theoretical possibilities to reduce the
number of learning iterations by using the curvature of probabilistic models. In addition
to sequence data alone, MD methods might leverage further information sources, as ex-
plained in section 23.4. Finally, section 23.5 mentions settings outside of MD in nucleic
acids to which the methods discussed in this thesis could be applied.

23.1 Global optimization

Because gradient learning is an inherently local search method, it is desirable to con-
sider alternatives that globally explore parameter space. To this end, Monte-Carlo Markov
chain (MCMC) sampling has previously been used for DMD in MoAn (Valen et al., 2009).
Aside from gradient optimization, we thus implemented routines in Discrover to allow
the user to explore MCMC sampling-based optimization of HMM parameters. For this, Dis-
crover uses parallel tempering, also known as replica-exchange, to increase the efficiency
of the sampling (Earl and Deem, 2005). We found (results not shown) that parallel tem-
pering optimization of HMM parameter is feasible but expectedly much less efficient than
gradient optimization, and also computationally more intensive than MCMC optimization
of PSSM parameters, as offered in MoAn. Due to the high efficiency we recommend to first
try gradient learning, and turn to MCMC sampling when in doubt whether the maximum
found by gradient learning is global. Short runs of MCMC sampling can also be used to
find starting points for gradient optimization. Furthermore, while the current version of
Discrover does not support it, gradient optimization could be combined with MCMC sam-
pling in the form of Langevin MCMC (Stramer and Tweedie, 1999).
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23.2 Rank-based learning - Average rank information

Frequently data from experiments do not present themselves simply in the form of data
points with equally strong evidence either supporting or rejecting a certain hypothesis.
Rather, for a given sequence to be bound by a certain factor, it is typical that we may have
means to associate a quantitative value that measures how strong our believe is for the
sequence to be bound or not. While it is in most cases true, that these measures, being
based on real data, are far from perfect, they do frequently exhibit correlation with the
underlying hypotheses.

In this thesis, we based MD methods on data that is thresholded in different manners,
yielding sets of sequences where the sequences within each set are treated interchange-
ably. For example, we consider sets of positive or negative sequences, or sets of sequences
for which evidence favors being bound and sequences for which the evidence is larger for
them not to be bound.

Such evidence comes in different kinds of forms. For example, the RIP-Chip RBP data
of Morris, Mukherjee, and Keene (2008) presents itself in the form of LOD scores; PAR-
CLIP data may be quantified based on the amount of T-to-C conversions observed in the
bound regions (Corcoran et al., 2011). ChIP-Seq data is analyzed using tools that employ
various probabilistic models that measure enrichment in a signal pull-down over a mock
pull-down (e.g. Y. Zhang et al., 2008). This heterogeneity makes it difficult to apply general
methods that do not respect specific properties of the particular kind of evidence used.

However, rather than thresholding evidence and treating data in groups resulting from
that as interchangeable, MD methods may also try to leverage correlation or association
between the quantified evidence and the hypotheses of interest. Such methods include
cERMIT (Georgiev et al., 2010) and DRIM (Leibovich, Paz, et al., 2013; Leibovich and Yakhini,
2012).

One particular way of approaching rank-based learning in the context of information
theoretic measures is to consider the average rank information (RI). Given a ranked set of
n sequences (Xi)i=1,...,n, we may consider all n − 1 contrasts Ci that result from splitting
the set of sequences in two sets at rank i for 1 < i < n. Then, the average rank information
of a motif M is defined as the expected value of MICO over all such binary contrasts,

RI(X1,X2, . . . ,Xn) = Ei [MICO(Ci,M)] =
∑
i

1
n− 1

MICO(Ci,M) =
∑
i

n
n− 1

I(Ci,M).

(23.1)
Average rank information has already been implemented in Discrover, and preliminary
evaluation has shown it to be useful for MD (results not shown).

23.3 Faster learning

As with all gradient-based methods it may make sense to consider higher order methods
to accelerate learning. One such avenue might be to consider the natural gradient, like
suggested by Amari and Douglas (1998). With the natural gradient, the parameter updates
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of iteration k from (6.9) take the form

θk+1 = θk + ηk
∇θP(D|M(θ))
∇2

θP(D|M(θ)) , (23.2)

where∇2
θf(θ) is the Hessian matrix of f. For the step size ηk the same options exist as ex-

plained previously in section 6.2. This method to find maxima of a function is essentially
an application of the Newton-Raphson method to the derivative of the function. A require-
ment for the applicability of this approach is availability of expressions for the Hessian
of the objective function. As the computation of the Hessian is computationally more ex-
pensive than that of the gradient, the advantage of such approaches would likely hinge
on the factors hidden by the Landau notation for runtime complexity.

Alternatively, in the absence of (manageable) expressions for the Hessian, one may
resort to methods like the Levenberg-Marquardt algorithm (Levenberg, 1944; Marquardt,
1963), or quasi-Newton methods like the BFGS method (Broyden, 1970; Fletcher, 1970;
Goldfarb, 1970; Shanno, 1970).

23.4 Additional information sources

Another avenue of advancement might be to follow the path of the FIRE approach (Ele-
mento, Slonim, and Tavazoie, 2007). FIRE pioneered the usage of mutual information as
a general association measure, used as objective function for MD. Importantly, Elemento,
Slonim, and Tavazoie use mutual information of the motif occurrence not only in a bi-
nary signal-control distinction but also in a multiple class setting. Equally importantly
they leverage additional information like strand bias and position bias or covariation with
expression to find likely regulatory motifs. Clearly, the same kind of gradient-based ap-
proach presented in this thesis is generalizable to make use of such additional informa-
tion.

Possible sources of additional information include chromatin signatures (Won et al.,
2008), sequence conservation or more general phylogenetic information (Siddharthan,
Siggia, and Nimwegen, 2005), PAR-CLIP conversion events (Corcoran et al., 2011; Hafner
et al., 2010; Majoros et al., 2013), spatial information (Bailey and Machanick, 2012), or
RNA-secondary structures (Hiller et al., 2006).

Today, Discrover, using e.g. MICO as objective function, can operate on contrasts of
many conditions, and can also utilize multiple contrasts, and therefore already supports
such kinds of analyses to a certain extent. For this, the user has to split the supplied
sequences according to the desired annotation, e.g. discretize some annotation of interest,
like expression of RIP-Chip LOD, and group the sequences accordingly. We demonstrated
this kind of analysis for the FBF-1 data of Kershner and Kimble (2010) in chapter 18 where
we split the data into 15 groups by LOD.

However, Discrover does not currently utilize annotation along individual sequences.
This could be achieved by considering a product emission space, composed of the nucleic
acids emitted at a position as well as discrete or continuous annotated signals. It might
also be interesting to investigate whether such additional information sources could au-
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tomatically be mined, as FIRE does, to e.g. automatically determine strand bias.

23.5 Other applications

Aside from protein binding sites in nucleic acids, discriminative motif learning has al-
ready found application in other fields. One example is sequence features in amino acid
sequences. Some publications that present DMD methods for amino acid sequences in-
clude Lieber, Elemento, and Tavazoie (2010), T.-H. Lin, Murphy, and Bar-Joseph (2011),
and Vens, Rosso, and Danchin (2011).

To first approximation, modifying Discrover to work on amino acid sequences would
merely amount to using a larger alphabet. However, it seems likely that some learning
parameters, like pseudo-counts and convergence criteria, might also have to be adapted.
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Chapter 24

Conclusions

A novel MD method was presented that integrates different generative and discriminative
objective functions. The engineering aspects of the software enable analysis of large and
complex data setups. Synthetic data allowed controlled performance experiments of our
and published MD methods. Our method, Discrover, utilizing any of several adequate ob-
jective functions, yields the highest MD performance in these experiments. MICO appears
the most versatile among the best-performing DMD objective functions, as it is applicable
in both discrete and smooth parameter learning settings for seeding and HMM optimiza-
tion, can leverage contrasts of more than two conditions, as well as allowing joint analysis
of repeat experiments. In addition, information theory offers suitable generalizations in
the form of cMI, that Discrover uses to learn multiple motif models.

Mutual information was introduced to quantify the capacity of noisy signal transmis-
sion channels in communications theory (Shannon, 1948). The application to MD in the
form of MICO suggests to conceive of regulatory regions in nucleic acids as information
transmitting channels. In essence, enhancer and promoter regions mediate inherited con-
trol information to specialized receptors: sequence specific DNA-binding TFs. Similarly,
stretches of RNA molecules transmit control information to RBPs. Regulatory, nucleic
acid binding proteins sample their respective channels, and, upon discovering their cog-
nate signals in the nucleic acid patterns, these proteins bind and thereby initiate the exe-
cution of their regulatory purpose.

Analysis of RBP and TF data proved Discrover’s applicability and utility for real bio-
logical data. Motif discovery for PUF family RBPs accorded with earlier reports, and thus
validated the presented MD framework. Dilution analyses explained differences in motif
discovery results between RIP-Chip and PAR-CLIP data, implying that the finer spatial res-
olution of PAR-CLIP translates into refined motif models. For the alternative-splicing reg-
ulator RBM10 we discovered de-novo known splicing-relevant motifs whose importance
was previously not adequately appreciated. The analysis of ChIP-Seq datasets of mouse
ESC TFs proved Discrover’s multiple motif mode to robustly discover non-redundant sets
of full-length motifs with a high true-positive rate.

In conclusion, the presented MD method Discrover is expected to be a highly useful
tool to decipher sequence binding specificities from the expanding amounts data gener-
ated for nucleic acid binding proteins.
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Appendix A

Proof of correctness of the scaling
procedure

This appendix chapter presents a proof for the correctness of the scaling procedure pre-
sented in section 4.5.

A.1 Correctness for the forward matrix recursion

We want to show that

αt(i) = α̃t(i)
t∏

k=0

sk. (A.1)

The proof is by induction on the time of observation t.

For the initial step of the proof we observe that the initialization is identical between
the scaled and the unscaled variants. The identity thus trivially holds for t = 0.

Assume now that it holds for some t and all 1 ≤ j ≤ N that

αt(j) = α̃t(j)
t∏

k=0

sk. (A.2)

From the definition of αt+1(j) we have for 1 ≤ j ≤ N

αt+1(j) = bt+1(j)
N∑
i=1

αt(i)aij = bt+1(j)
N∑
i=1

α̃t(i)aij
t∏

k=0

sk = α̂t+1(j)
t∏

k=0

sk

=
α̂t+1(j)
st+1

t+1∏
k=0

sk = α̃t+1(j)
t+1∏
k=0

sk.

(A.3)

This shows that if the relation holds for any time t then it also holds for time t+ 1.

Together with the initial step this concludes this proof by induction.

215



Appendix A. Proof of correctness of the scaling procedure

A.2 Correctness for the backward matrix recursion

We want to show that

βt(i) = β̃t(i)
T+1∏
k=t

sk. (A.4)

The proof is by induction on the time of observation t, starting with the last position.
Again, the basis of the induction is trivially given, because initialization of the algo-

rithms to compute scaled and unscaled matrices are identical.
Assume now that it holds for some t+ 1 and all 1 ≤ i ≤ N that

βt+1(i) = β̃t+1(i)
T+1∏

k=t+1

sk. (A.5)

Then we have for 1 ≤ i ≤ N

βt(i) =
N∑
j=1

aijbj(Xt+1)βt+1(j) =
N∑
j=1

aijbj(Xt+1)β̃t+1(i)
T+1∏

k=t+1

sk = β̂t(i)
T+1∏

k=t+1

sk

=
β̂t(i)
st

T+1∏
k=t

sk = β̃t(i)
T+1∏
k=t

sk.

(A.6)

This shows that if the relation holds for any time t+ 1 then it also holds for time t.
Together with the initial step this concludes this proof by induction.
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Appendix B

Runtime of HMM inference
algorithms

This chapter explains how the runtime of the HMM inference algorithms presented in
chapter 4 can be reduced. The textbook runtime for the Viterbi algorithm, and for the
algorithms to compute the forward and backward variables are allO(TN2), where T is the
length of the data and N is the number of states in the HMM. This appendix shows how
the computations of these algorithms can be arranged so as to yield a runtime of O(TE)
where E is the number of transitions (edges) in the HMM whose corresponding transition
probability is non-zero. For general HMMs with a connected topology N− 1 ≤ E ≤ N2.

The upper limit is reached with equality for HMMs that have a complete graph as topol-
ogy, the lower limit is reached with equality if the HMM is a chain of states of which each
has one incoming and one outgoing edge, except for the start and end state, which have
one outgoing, and one incoming, respectively.

The runtime reduction is illustrated by contrasting a HMM with topology of a complete
graph (figure B.1a), and one which is close to the lower limit of edges (figure B.1b).

If we want to compute the Viterbi algorithm, or the forward or backward matrix calcu-
lations on these two HMMs we need to visit each state j at each point in time t yielding a
runtime ofO(TN). Then, for each state j and time t we need to inspect all possible states i
at time t− 1 for the Viterbi algorithm or for the forward matrix calculation. Similarly, for
the backward matrix calculation for each state i and time t we need to inspect all possible
states j at time t+ 1. The trellis structure corresponding to this is shown in figure B.2.

The important point is that only those states i need to be considered as predecessors,
or successors, whose transitions probabilities to or from the state j, aij are non-zero, and
thus the runtime can be reduced when the HMM topology is not a complete graph. When
there are E such transitions with non-zero probability in the HMM, for each time t only
exactly E predecessors states at time t− 1 or time t+ 1 behind the E transitions need to be
considered, yielding a runtime ofO(TE). The resulting trellis for the less connected HMM
is shown in figure B.3.
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Figure B.1: The transition graphs of two HMMs. (a) An HMM with a full transition topology,
with four states and 16 transitions, in which each state may transition to each other state.
(b) An HMM with a four states but only five possible transitions.
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Figure B.2: The trellis structure of the Viterbi, forward and backward algorithms for a
sequence of length 5 on the HMM shown in figure B.1a.
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Figure B.3: The trellis structure of the Viterbi, forward and backward algorithms for a
sequence of length 5 on the HMM shown in figure B.1b.

218



Appendix C

Information theory

This chapter summarizes the fundamental concepts of information theory. For more com-
prehensive discussion of these topics the reader is referred to textbooks (Cover and Thomas,
2006; Kullback, 1959; MacKay, 2003).

C.1 Communication systems

The subject of information theory, as defined by Shannon (1948), are communication sys-
tems. As depicted in figure C.1, communication systems are conceived of as a process
involving as entities an information source, a transmitter, a channel, a receiver, and a
destination, as well as a noise source.

The source is modeled as a probabilistic process that generates messages or sequences
of messages from a set of possible messages. In turn, the messages generated by the
source are encoded by a transmitter into a form suitable for transmission over the chan-
nel. On the receiving side of the channel the encoding of the transmitter is inverted by
a receiver to yield the received message. More modern terms for transmitter and receiver
are encoder and decoder, respectively.

As indicated, noise may perturb the transmitted signal, thus causing reception of mod-
ified signals and consequently differences may exist between the source and received mes-
sage. Note that noise may affect any of the processes from generation of the message, over
encoding, transmission, reception, and decoding. It is however sufficient for a general
discussion to assume the noise source to act on the channel.

C.2 Fundamental quantities of information theory

In order to be able reason about fidelity of information transmission it is necessary to be
able to quantify it. Information entropy and the related quantities that we define below
have certain beneficial properties making them uniquely suitable to this task, see (Shan-
non, 1948).
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Message MessageSignal
Received
signal

Noise
source

Receiver DestinationTransmitter
Information

source

Figure C.1: Schematic diagram of a general communication system; reproduction of figure
1 of Shannon (1948).

C.2.1 Information entropy

Information entropy H(X) quantifies the uncertainty about the realization of a random
variable X,

H(X) = −
∑
x∈X

P(x) log2 P(x). (C.1)

Similarly, by considering the joint state space of two variables X and Y, the joint informa-
tion entropy of X and Y is defined as

H(X,Y) = −
∑
x∈X
y∈Y

P(x, y) log2 P(x, y). (C.2)

By referring to the negative logarithmic probability− log2 P(x) as the information of P(x)
we may note that the information entropy of X corresponds to the expected information
over X.

Units of information Note that the choice of the logarithmic base determines the units
in which information entropy, and the other quantities defined below, are measured. The
choice of logarithms to the base 2 corresponds to units of bit, an abbreviation for binary
digits, a term proposed by J. W. Tukey, as Shannon noted. Other choices like the natural
logarithm yield units of nats, which is short for natural digits. If logarithmic base 10 is
used the units are referred to as bans1, or Hartley2.

C.2.2 Conditional information entropy

Conditional information entropy H(X|Y) is a measure for how much uncertainty about X
is remaining when Y is known,

H(X|Y) = −
∑
x∈X
y∈Y

P(x, y) log2 P(x|y). (C.3)

1The term ban refers to the cryptanalytic procedure Banburismus developed by Alan Turing and I. J. Good at
Bletchley Park, close to Banbury.

2Ralph Hartley had been working in the field of information theory already prior to Shannon’s seminal paper
(Hartley, 1928).
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H(X,Y)

H(X)

H(Y)H(Y)

H(X|Y) I(X;Y) H(Y|X)

Figure C.2: Relationship of information theoretic quantities.

When X is the source message and Y the received message, Shannon used the term equi-
vocation for H(X|Y) to label the average ambiguity of received messages.

C.2.3 Mutual information

Mutual information I(X;Y) is a measure of the reduction of uncertainty about one variable
when the state of the other variable is known,

I(X;Y) =
∑
x∈X
y∈Y

P(x, y) log2
P(x, y)

P(x)P(y)
. (C.4)

Shannon defined mutual information to capture the actual rate of transmission through
the channel. In turn, considering the maximal possible mutual information through a
channel allowed Shannon to define the channel’s capacity.

The symmetry I(X;Y) = I(Y;X) of mutual information is trivially given by the defini-
tion.

C.2.4 Kullback-Leibler divergence

The Kullback-Leibler (KL) divergence of two probability distributions P and Q (Kullback
and Leibler, 1951), also known as relative entropy, is defined as

DKL(P||Q) =
∑
x∈X

P(x) log2
P(x)
Q(x)

. (C.5)

Due to Gibbs inequality (Gibbs, 1902), KL divergences are never negative,

DKL(P||Q) ≥ 0. (C.6)

Gibbs inequality can be proven using an inequality due to Jensen (1906), see (Dembo,
Cover, and Thomas, 1991). Note that mutual information is the KL divergence of the joint
and independence models, where P(X,Y) = P(X,Y) and Q(X,Y) = P(X)P(Y),

I(X;Y) = DKL(P(X,Y)||P(X)P(Y)). (C.7)
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C.2.5 Relationships between information theoretic quantities

The information theoretic quantities defined in the preceding subsections are interrelated
in various ways. Among them are the following relations:

H(X|Y) =H(X,Y)−H(Y), (C.8)

and symmetrically,

H(Y|X) =H(X,Y)−H(X). (C.9)

Mutual information may be related to these quantities as follows:

I(X;Y) =H(Y)−H(Y|X) (C.10)

=H(X)−H(X|Y) (C.11)

=H(X) +H(Y)−H(X,Y). (C.12)

These relations are displayed graphically in figure C.2.

C.2.6 Conditional mutual information

We will also make use of conditional mutual information (cMI) (Cover and Thomas, 2006).
The cMI of a variable X and a variable Y given a variable Z, I(X;Y|Z), is defined as,

I(X;Y|Z) =
∑
x∈X
y∈Y
z∈Z

P(x, y, z) log2
P(x, y|z)

P(x|z)P(y|z)

=
∑
x∈X
y∈Y
z∈Z

P(x, y, z) log2
P(x, y, z)P(z)
P(x, z)P(y, z)

.

(C.13)

C.2.7 Chain rules

There are chain rules for the calculation of joint information entropy and mutual informa-
tion. The chain rule for joint information entropy generalizes equations (C.8) and (C.9),

H(X1,X2, . . . ,Xn) =
n∑
i=1

H(Xi|Xi−1, . . . ,X1). (C.14)

The corresponding chain rule for joint mutual information is

I(X1,X2, . . . ,Xn;Y) =
n∑
i=1

I(Xi;Y|Xi−1, . . . ,X1). (C.15)

For proofs of equations (C.14) and (C.15) see section 2.5 of Cover and Thomas (2006).
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Appendix D

Likelihood ratio, mutual
information and χ2 statistic

IfX1, . . . ,Xk are k independent, standard normally distributed random variables, then the
sum of their squares,

Z =

k∑
i=1

X2
i , (D.1)

is distributed according to the χ2 distribution with k degrees of freedom,

Z ∼ χ2(k) (D.2)

The probability density function of the χ2 distribution with k degrees of freedom is
given by

f(x, k) =
1

2 k
2 Γ( k2 )

x
k
2 −1e−

x
2 , (D.3)

where Γ(x) is the Gamma function. Figure D.1 displays the probability density function
for different degrees of freedom.

D.1 The likelihood ratio statistic for goodness of fit

When considering the likelihood ratio statistic for goodness of fit we first need to define
the null and alternative hypotheses. The null hypothesis is that a categorical random
variable is distributed according to a given distribution p0,

H0 : p = p0. (D.4)

This is to be contrasted with the alternative hypothesis that p assumes a different value,

HA : p ̸= p0. (D.5)
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Figure D.1: Probability density function of the χ2 distribution for different degrees of free-
dom.

When observing a multinomial sample of counts f, the likelihood given the null hypothe-
sis is

L(p0) = P(f|p0) =
n!∏k
j=1 fj!

k∏
j=1

pfjj . (D.6)

For the alternative hypothesis we evoque the maximum likelihood principle and define
the likelihood to be

L(p̂) = P(f|p̂) = n!∏k
j=1 fj!

k∏
j=1

(
fj
n

)fj
. (D.7)

Following Lindgren (1993 and 1998), the likelihood ratio statistic Λ is given by

Λ =
L(p0)

L(p̂) =
k∏
j=1

(pj)fj(
fj
n

)fj . (D.8)

Consequently, the log likelihood ratio statistic is

log Λ =
k∑
j=1

fj log
pj
fj
n

=
k∑
j=1

fj log
npj
fj

=
k∑
j=1

fj log
f̃j
fj
. (D.9)

Here, f̃ is the vector of expected counts under the null hypothesis. Clearly, Λ ≤ 1 and
log Λ ≤ 0, as the likelihood of the restricted null hypothesis must always be less or equal
to that of the unrestricted alternative hypothesis.

When the null hypothesis is true and for large sample sizes n, the log likelihood ra-
tio statistic −2 log Λ is distributed like χ2 with a suitable number of degrees of freedom.
Named after Samuel S. Wilks, this fact is known as Wilks’ theorem (Dudley, Spring 2003;
Wilks, 1938, 1962).
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D.2 G-test

When applied to test independence in a contingency tables, the likelihood ratio statistic
is also known as G-test (Sokal and Rohlf, 1969). The value of the G-test is given by

G = 2
∑
ij

Oij log
Oij

Eij
, (D.10)

and the summation is over all non-empty cells of the contingency table, Oij are the ob-
served counts of the cell in row i and column j, and Eij are the corresponding expected
counts, and are calculated according to

Eij =
1
n

(∑
k

Oik

)(∑
k

Okj

)
. (D.11)

The relation of the G-test and the likelihood ratio test is

G = −2 log Λ. (D.12)

Together with Wilks’s theorem this shows that the G-test statistic approximates the χ2

distribution with (nrow − 1)× (ncolumns − 1) degrees of freedom.

D.3 Likelihood ratio and mutual information

We consider the likelihood ratio statistic test for a null hypothesis of independence of two
variables X and Y,

H0 : X ⊥ Y⇔ P(x, y) = P(x)P(y), for all x, y. (D.13)

Then, the log likelihood ratio statistic is

log Λ =

J∑
j=1

fj log
pj
fj
n

. (D.14)

From this the relation of the likelihood ratio statistic and mutual information is apparent,

− 1
n

log Λ =

J∑
j=1

fj
n

log
fj
n
pj

= DKL(p||p0) = Ip(X;Y). (D.15)
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Appendix E

Limits of Matthews correlation
coefficient

This appendix demonstrates that the limiting value of the Matthew’s correlation coeffi-
cient is zero, when two of the statistics that it is based on approach zero.

First, let us recapitulate the definition of the mCC:

mCC =
nTP · nTN− nFP · nFN√

(nTP+ nFN)(nTN+ nFP)(nTP+ nFP)(nTN+ nFN)
. (E.1)

For the sake of brevity of notation, in this appendix we will refer to the number of true
and false positives, nTP and nFP, as a and b, and those of true and false negatives, nTN
and nFN, as d and c, respectively. Thus, we have

mCC =
a · d− b · c√

(a+ b)(a+ c)(b+ d)(c+ d)
. (E.2)

A zero factor appears in the denominator when at least one of a or d, and at least one
of b or c become zero. Without loss of generality let us assume that a and b approach zero.
In fact, let us first assume that a is zero, and b approaches zero. We then have

mCC =
−b · c√

b · c(b+ d)(c+ d)
. (E.3)

Now, by the rule of L’Hôpital we have

lim
b→0

mCC = lim
b→0

−b · c√
b · c(b+ d)(c+ d)

(E.4)

= lim
b→0

−c
1
2
√
c
√
c+ d 1√

b2+b·d (2b+ d)
(E.5)

= lim
b→0

−2c
√
b2 + b · d

√
c
√
c+ d (2b+ d)

(E.6)

=
0

√
c
√
c+ d · d

= 0. (E.7)

227



Appendix E. Limits of Matthews correlation coefficient

Let us now study the case when we take b to be zero, and letting a approach zero. In
this case we have

mCC =
a · d√

a · d(a+ c)(c+ d)
. (E.8)

Also in this case the rule of L’Hôpital gives

lim
a→0

mCC = lim
a→0

a · d√
a · d(a+ c)(c+ d)

(E.9)

= lim
a→0

d
1
2

√
d
√
c+ d 1√

a2+a·c (2a+ c)
(E.10)

= lim
a→0

2d
√
a2 + a · c√

d
√
c+ d (2a+ c)

(E.11)

=
0√

d
√
c+ d · c

= 0. (E.12)
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Appendix F

Gradient calculus

In this chapter we derive an expression for the gradient of MICO, starting from equa-
tion (8.12), which we repeat here:

I(C;M) = log2 N+
1
N

( k∑
i=1

mi(θ) log2
mi(θ)

ni
∑k

j=1 mj(θ)

+

k∑
i=1

(ni −mi(θ)) log2
ni −mi(θ)

ni
∑k

j=1 (nj −mj(θ))

)
,

(F.1)

where N =
∑k

j=1 nj, ni is the number of sequences in condition i, and mi(θ) is the number
of sequences in condition i with at least one motif occurrence.

For the purpose of this chapter, we will suppress the notational expression of the de-
pendence on the parameters θ of the number of sequences in condition i with at least one
motif occurrence, mi(θ), and simply use mi. Later, when we determine the gradient of
expressions based on this, we will remember that mi depends on the parameters, but not
ni.

Also, as the sums are generally running from 1 to k, where k is the number of conditions
in the contrast, we will in this chapter avoid writing out the limits of summation, and only
indicate the summation variable.

I(C;M) = log2 N+
1
N

(∑
i

mi log2
mi

ni
∑

jmj

+
∑
i

(ni −mi) log2
ni −mi

ni
∑

j (nj −mj)

) (F.2)

= log2 N+
1
N

(∑
i

mi log2
mi∑
jmj
−
∑
i

mi log2 ni

+
∑
i

(ni −mi) log2
ni −mi∑
j (nj −mj)

−
∑
i

(ni −mi) log2 ni

) (F.3)
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= log2 N+
1
N

(∑
i

mi log2
mi∑
jmj

+
∑
i

(ni −mi) log2
ni −mi∑
j (nj −mj)

−
∑
i

ni log2 ni

)
.

(F.4)

We now consider the gradient of equation (F.4), remembering that the number of se-
quences in condition i, ni, are not dependent on the parameters, and thus∇ni = 0.

∇I(C;M) =
1
N

(∑
i

(∇mi) log2
mi∑
jmj

+
∑
i

mi∇ log2
mi∑
jmj

+
∑
i

(∇ (ni −mi)) log2
ni −mi∑
j (nj −mj)

+
∑
i

(ni −mi)∇ log2
ni −mi∑
j (nj −mj)

)
(F.5)

=
1
N

(∑
i

(∇mi) log2
mi∑
jmj

+
∑
i

mi∇ log2
mi∑
jmj

−
∑
i

(∇mi) log2
ni −mi∑
j (nj −mj)

+
∑
i

(ni −mi)∇ log2
ni −mi∑
j (nj −mj)

)
(F.6)

=
1
N

(∑
i

(∇mi) log2
mi

ni −mi
−
∑
i

(∇mi) log2

∑
jmj∑

j (nj −mj)

+
∑
i

∇mi −
∑
i

∇mi +
∑
i

∇ (ni −mi)−
∑
i

∇ (ni −mi)

)
(F.7)

=
1
N

(∑
i

(∇mi) log2
mi

ni −mi
−

(∑
i

∇mi

)
log2

∑
imi∑

i (ni −mi)

)
. (F.8)
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Appendix G

Running parameters

The synthetic data were analyzed with a fixed motif length of eight nucleotides. Below,
SIGNAL and CONTROL denote the respective paths of signal and control FASTA files. OUTPUT
is the path for the output file(s).

Discrover
Discrover (v0.3-306-g6b8b582) was run with the following command line:
discrover --score SCORE signal:SIGNAL control:CONTROL -o OUTPUT -m signal:8

SCORE stands for the objective function, and is one of bw, dfreq, dlogl, mcc, mi, or mmie.
The switch -m signal:8 lets Discrover search for a motif of length 8 named signal. The
signal sequence file SIGNAL is annotated with signal, to indicate that the motif named
signal is supposed to be enriched in it. The label control for the control sequence file
CONTROL indicates that this file is not to be used for learning the generative parameters in
hybrid learning.

CMF
CMF (patched version, see appendix L.1) was run with the following command line:
cmf -f OUT_DIR -o SEED_OUTPUT -i1 SIGNAL -i2 CONTROL -w 8 > OUTPUT

The option -w 8 signifies that only motifs of length eight nucleotides are sought. OUT_DIR
specifies a directory where output files will be created and SEED_OUTPUT gives a path to
which seed statistics are written.

CMF does not support single stranded MD analysis.

DECOD
DECOD (v1.01) was run with the following command line:
java -Xms2G -Xmx2G -jar DECOD-20110613.jar -nogui -pos SIGNAL -neg CONTROL \
-w 8 -nmotif 1 -o OUTPUT -strand forward

The options -Xms2G and -Xmx2G set the initial and maximal size of the memory allocation
pool to 2 GiB. The option -w 8 signifies that only motifs of length eight nucleotides are
sought.
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DEME
DEME (v1.0) was run with the following command line:

deme -p SIGNAL -n CONTROL -w 8

The option -w 8 signifies that only motifs of length eight nucleotides are sought. By de-
fault, DEME searches only the forward strand for motifs.

DIPS
DIPS (v1.1) was run with the following command line:

dmotif -positive SIGNAL -negative CONTROL -len 8

The option -len 8 specifies that only motifs of length eight nucleotides are sought. DIPS
can only perform double-stranded MD analysis.

Dispom

Dispom (unversioned) was run with the following command line:

java -Xms1G -Xmx4G -jar Dispom.jar home=OUT_DIR fg=SIGNAL bg=CONTROL \
bothStrands=false init=best-random=100 p-val=1E-4 position=UNIFORM \
length=8 > OUTPUT

The option length=8 specifies that only motifs of length eight nucleotides are sought.
OUT_DIR specifies a directory in which output files will be generated. Single stranded mo-
tif discovery mode is selected by the switch bothStrands=false. The switches -Xms1G and
-Xmx4G instruct the Java virtual machine to use 1 GiB of memory initially and 4 GiB max-
imally, respectively. position=UNIFORM uses a flat spatial motif occurrence distribution
prior.

DME
DME (v2) was run with the following command line:

dme SIGNAL -b CONTROL -w 8 > OUTPUT

The option -w 8 signifies that only motifs of length eight nucleotides are sought.
DME does not support single stranded MD analysis.

DREME
DREME (v4.9.1) was run with the following command line:

dreme -norc -m 1 -oc OUT_DIR -p SIGNAL -n CONTROL -k 8 > OUTPUT

The option -k 8 signifies that only motifs of length eight nucleotides are sought. OUT_DIR
specifies a directory where output files will be created.
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FIRE
FIRE (v1.1a) was run with the following command line:

cat SIGNAL CONTROL | upseq.rb > JOINT
prep-fire.rb SIGNAL CONTROL EXPR
perl fire.pl -k 8 --dodna=0 --expfiles=EXPR --exptype=discrete \
--fastafile_rna=JOINT --seqlen_rna=LENGTH --nodups=1 > OUTPUT

First, both signal and control sequences are transformed to upper case1 and concatenated
into the file JOINT. Then, a script prep-fire.rb is run that creates an annotation file EXPR

that is used to inform FIRE which sequences belong to which class. Finally, FIRE is run
in RNA mode: the switch �dodna=0 instructs not to perform a double-stranded analysis.
The option -k 8 signifies that only motifs of length eight nucleotides are sought. FIRE
also needs to be informed of the length of the sequences via the switch �seqlen_rna. The
switch �nodups tells FIRE not to try to remove duplicate sequences.

MDscan
MDscan (unversioned) was run with the following command line:

moan -i SIGNAL -w 8 -t 100 > OUTPUT

The option -w 8 signifies that only motifs of length eight nucleotides are sought. The
switch -t 100 instructs MDscan to consider the top 100 sequences to look for candidate
motifs (default=5).

MDscan does not support single stranded MD analysis.

MoAn
MoAn (v1.01, patched to fix a problem with the random number generation routine, see
appendix L.1) was run with the following command line:

moan SIGNAL CONTROL -R 8,8 -i ITERATIONS > OUTPUT

The option -R 8,8 signifies that only motifs of length eight nucleotides are sought. MoAn
by default searches the forward strand only and performs 3× 107 iterations. By using the
switch -i ITERATIONS MoAn was run with 3× 106 iterations, a tenth of the default value.

1FIRE ignores lower case regions of sequences.
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Appendix H

Synthetic data experiments

This chapter gives supplementary results for the synthtetic data experiments presented
in chapter 17.

Table H.1 compares the runtime of several MD methods on one particular dataset.
Compared are Discrover, MoAn-3M, MoAn, DEME, DIPS, and Dispom. As is visible, with
MoAn, by reducing the number of iterations to a tenth of the default number (MoAn-3M),
the runtime is similarly decreased about tenfold. The methods DEME, DIPS, and Dispom
all run more than 1000 times as long as Discrover. As Discrover needs a total of 16.9 h
on the synthetic datasets (figure H.3), based on this estimate, these three methods would
be expected to run more than 16 900 h on the synthetic dataset, or more than 1.92 years.
For this reason they were excluded from the analysis presented in chapter 17.

In addition to the nCC, as shown in figure 17.1, figure H.1 presents site-level super-
vised metrics for MD performance, including sSn, sPPV, sAP, and sF1. The MD perfor-
mance in terms of nCC of additional methods is shown in figure H.2, and numerically in
table H.2. Figure H.3 gives runtimes of the considered methods. Figures H.4 to H.6 dis-
play sAP, sSn, and sPPV summarized in the same manner as nCC in figure 17.2. Finally,
Figure H.7 illustrates the effect of discriminative significance filtering. Particularly, the
non-discriminative methods profit from discriminative filtering.
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Table H.1: Runtime of several motif discovery method on one pair of signal and control
sequence sets. We considered one particular motif discovery experiment from the basic
dataset with 10 000 signal and 10 000 control sequences each of length 1000 with a motif
implantation probability of 1 % at an information content of 14 bit. Times are given as
hours:minutes:seconds. The last two columns give average CPU utilization in percent of
a single CPU, and wall clock time relative to that of Discrover. Experiments were run on
an Intel® Xeon® E5645 CPU running at 2.40GHz with 12 CPU cores. Note: DEME did not
finish after more than 74 days, 20 hours. Note: DIPS experienced contention for the used
CPU, otherwise wall clock time would be around the same as the CPU time.

Method Wall clock CPU time CPU [%] Relative wall clock
Discrover 00:01:59 00:08:12 413 1.00
DEME > 74 days > 74 days 100 > 54330.59
DIPS 628:27:21 605:10:46 96 19008.43
Dispom 40:09:41 88:09:16 219 1214.73
MoAn-3M 00:45:31 00:45:26 100 22.95
MoAn 08:20:57 08:20:04 100 252.53

Table H.2: Motif discovery performance. nCC: nucleotide-level Matthews correlation co-
efficient, %: nCC relative to recognizability. NA: not available. Numbers are plotted in
figure H.2.

Basic 3’UTR Decoy
nCC % nCC % nCC %

BioProspector 0.43 0.63 0.43 0.63 0.21 0.36
CMF 0.40 0.59 0.45 0.66 0.27 0.45
DECOD 0.42 0.62 0.34 0.51 0.42 0.72
DME 0.48 0.71 0.41 0.60 0.44 0.75
DREME DNA 0.56 0.83 0.59 0.86 0.52 0.88
DREME RNA 0.56 0.83 0.59 0.86 0.53 0.90
DREME RNA* 0.56 0.83 0.59 0.87 0.53 0.90
FIRE 0.39 0.58 0.40 0.59 0.37 0.62
MDscan 0.15 0.23 0.19 0.28 0.09 0.15
MoAn-3M 0.60 0.89 0.62 0.91 0.50 0.85
MoAn 0.63 0.92 0.64 0.94 NA NA
Recognizability 0.68 1.00 0.68 1.00 0.59 1.00
Discrover - BW (MICO) 0.67 0.98 0.51 0.76 0.55 0.93
Discrover - BW 0.67 0.98 0.51 0.74 0.49 0.83
Discrover - DFREQ 0.61 0.89 0.59 0.87 0.30 0.51
Discrover - DLOGL 0.66 0.97 0.66 0.97 0.58 0.97
Discrover - MCC 0.66 0.97 0.66 0.97 0.56 0.95
Discrover - MICO-DREME 0.65 0.96 0.66 0.97 0.57 0.96
Discrover - MICO 0.66 0.97 0.66 0.97 0.57 0.96
Discrover - MMIE 0.66 0.98 0.67 0.98 0.57 0.96
Plasma 0.63 0.93 0.61 0.90 0.56 0.95
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Figure H.1: Summarized motif finding performance of various methods on three synthetic
datasets measured by the nucleotide-level Matthews correlation coefficient (nCC), aver-
age site performance (sAP), site sensitivity (sSn), and site positive predictive value (sPPV),
as well as the sF1-score. See (16.1)–(16.5) for definition of the metrics. Recognizability
(red) serves as reference. Blue denotes signal-only motif learning methods, while green
denotes discriminative motif discovery methods. Dark letters and light background de-
note published motif finding methods, light letters and dark background denote motif
finding with objective functions implemented in Discrover. BW: Baum-Welch training of
HMMs seeded with the most frequent IUPAC regex motifs of degeneracy maximally 2, BW
(MICO): Baum-Welch training of HMMs seeded with IUPAC regex motifs maximizing MICO.
Plasma: IUPAC regex motif optimization with MICO as objective function.
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Figure H.2: Summarized motif finding performance of methods on three synthetic
datasets measured by the nucleotide-level Matthews correlation coefficient (nCC). See
figure 17.1 for description. Numbers are tabulated in table H.2. MoAn-3M: MoAn with
3 × 106 iterations. MoAn: MoAn with 3 × 107 iterations; note that it was infeasible to
evaluate the decoy dataset in this case. MICO-DREME: DREME provides seeds, on which
HMMs are seeded and further optimized for MICO by Discrover. DREME DNA: DREME
in double-stranded motif analysis mode, suitable for DNA-binding protein analysis; pro-
viding one seed. DREME RNA: DREME in single-stranded motif analysis mode, suitable
for RNA-binding protein analysis; providing one seed. DREME RNA*: DREME in single-
stranded motif analysis mode, discovering motifs as long as the E-value threshold is met,
of which subsequently the highest scoring one is used for evaluation.
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Figure H.3: Runtime of motif discovery methods on the three synthetic datasets using an
Intel® Xeon® E5645 CPU running at 2.40GHz with 12 CPU cores. Grey bars denote pub-
lished methods. As Discrover can utilize multiple threads, we include two time measure-
ments: orange bars denote multi-threaded runtime (wall clock time), blue bars denote
single-threaded runtime (CPU time). Note that the runtime of MoAn with the default num-
ber of iterations, which we performed for the basic and 3’UTR experiments is not included,
as it was run on a different compute, and thus the runtimes are not comparable.
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Appendix H. Synthetic data experiments

(a) Basic experiments
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(b) 3’UTR experiments
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(c) Decoy experiments
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Figure H.4: Motif recognizability and discovery performance measured by average site
performance (sAP) on synthetic data in the (a) basic, (b) 3’UTR, and (c) decoy experiments.
Note that sAP is not defined when sPPV is not defined (see figure H.6). See legend of
figure 17.2 for further explanations.
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(a) Basic experiments
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(b) 3’UTR experiments
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Figure H.5: Motif recognizability and discovery performance measured by site-level sen-
sitivity (sSn) on synthetic data in the (a) basic, (b) 3’UTR, and (c) decoy experiments. See
legend of figure 17.2 for further explanations.

241



Appendix H. Synthetic data experiments

(a) Basic experiments
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Figure H.6: Motif recognizability and discovery performance measured by site-level pos-
itive predictive value (sPPV) on synthetic data in the (a) basic, (b) 3’UTR, and (c) decoy
experiments. See legend of figure 17.2 for further explanations. Note that sPPV is not
defined when no motif occurrences are predicted, e.g. for low signal motif IC values in
(c).
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Figure H.7: Effect of significance filtering on motif discovery performance measured by the
nucleotide-level Matthews correlation coefficient (nCC). Blue and red bars give motif dis-
covery performance respectively with or without discriminative filtering for significance
of association after learning. For reference, the nCC of recognizability is indicated by the
dashed line. Significance filtering is done by evaluating MICO on the signal and control ex-
ample sequences, computing the associated p-value, correcting for multiple testing, and
discarding motifs failing the significance threshold. BW: signal-only learning of HMM
parameters with the Baum-Welch algorithm, using as seeds the 8mers of degeneracy at
most 2 that are most frequent in the signal data. BW (MICO): signal-only learning of HMM
parameters with the Baum-Welch algorithm, using discriminative seeds that maximize
MICO for IUPAC regexes on the signal and control data. MICO: Discriminative learning of
HMM parameters by MICO, with discriminative seed determined by optimizing MICO.
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Appendix I

PUF RBP family data

This chapter presents supplementary results for the motif analyses in chapter 18 of the
PUF RBP family datasets.

Figure I.1 shows the length distributions of sequences in the different datasets. Fre-
quently, but not for all datasets, the signal data have longer sequences than the controls.
In particular, this is visible for the worm, fly, and human RIP-Chip datasets, and is proba-
bly explained by an expression bias of genes that have long 3’UTRs. This length inequality
is not as pronounced for the yeast data, and is absent from the length-matched PAR-CLIP
data.

Figure I.2 gives the relative numbers of sequences in each of these datasets that have
at least one occurrence of the IUPAC regex motif UGUAHAUA. This shows that the members
of this RBP family fall into two classes. The datasets of Puf3, Pumilio, PUM1, and PUM2
all show enrichment for this motif, while the other datasets are not enriched for this 8mer.

Figures I.3 to I.6 give scatter plots of sequences that have at least one occurrence of a
given words for the PUM1 and PUM2 datasets of Galgano et al. (2008), Hafner et al. (2010),
and Morris, Mukherjee, and Keene (2008).
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Appendix I. PUF RBP family data
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Figure I.1: Boxplot of sequence lengths for the PUF RBP family datasets and their controls.
S: Signal sequences (dark blue). C: Control sequences (light blue). Data sources: A Gerber,
Herschlag, and Brown (2004), B Kershner and Kimble (2010), C Gerber, Luschnig, et al.
(2006), D Morris, Mukherjee, and Keene (2008), E Galgano et al. (2008), F Hafner et al.
(2010).
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Figure I.2: Number of sequences with at least one occurrence of the IUPAC motif UGUAHAUA
in the PUF RBP family data. Data sources: A Gerber, Herschlag, and Brown (2004), B Kersh-
ner and Kimble (2010), C Gerber, Luschnig, et al. (2006), D Morris, Mukherjee, and Keene
(2008), E Galgano et al. (2008), F Hafner et al. (2010).
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0.1 1 10 100

0.
1

1
10

Signal sequences [%]
with at least one word occurrence

Co
nt
ro
ls
eq
ue
nc
es

[%
]

w
ith

at
le
as
to
ne

w
or
d
oc
cu
rr
en
ce

UGUAAAUA
UGUAUAUA

UUGUAAAU

GUAAAUAUUGUACAUACUGUAAAU
GUAAAUAA

UUGUAUAUAUGUAAAU
UUUGUAUA

AUGUAUAU

UUUUUAAA

UAUUUUAA

UUUUAAAA
AUUUUUUU

AAUUUUUU

UAUAUAUA

GUAUAUUU

UUUUAUUU

UUGUACAG

UUUGUAAA

UUUUUUAA

UAUAUUUU

UUUUUUUU

UGUGUAUA

GUAAAUAG

UGUAUAUU

AUUUUUGU

GUGUAUAU
UGUACAGU

UGUAAAUA
UGUAUAUA

UGUACAUA

Figure I.3: Scatter plot of percentages of signal and control sequences that have a given
8mer for PUM1 data of Morris, Mukherjee, and Keene (2008). The 30 words with highest
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are labeled. The top three words according to residual MICO are highlighted in red.
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Appendix J

Alternative splicing regulator
RBM10

Table J.1: RBM10 motifs of Bechara et al. (2013) in exonic RBM10 PAR-CLIP sequences of
Y. Wang et al. (2013). Bechara et al. (2013) performed CLIP-Seq to identify RNA-binding
sites of RBM10 and defined 9 groups of 5mers as RBM10 target motifs. This table gives the
number of exonic sequences in the two PAR-CLIP datasets of Y. Wang et al. (2013) that have
occurrences of these 5mers. S and C: relative frequency of signal and control sequences
with at least one motif occurrence. MICO: mutual information of condition and motif
occurrence. log-p: MICO-based log-p value, corrected for motif length. The bars visualize
the log-p values; black and red bars respectively correspond to enrichment in the signal
or control sequences.

PAR-CLIP dataset 1 PAR-CLIP dataset 2

Group Motif S C MICO log-p S C MICO log-p
[%] [%] [bit] [%] [%] [bit]

1 AACUC 3.5 3.7 0.3 0.0 3.7 4.0 2.0 0.0
1 AAGUC 3.5 3.8 0.5 0.0 3.8 3.9 0.2 0.0
1 UACUC 1.9 1.7 0.3 0.0 2.2 1.6 17.9 −7.3
1 AACUG 5.6 5.9 0.4 0.0 5.4 5.9 3.1 0.0
1 UACUG 3.0 2.5 2.2 0.0 3.1 2.5 9.5 −1.2
1 GACUU 5.3 4.4 5.2 0.0 5.0 4.3 8.9 −0.8
1 GACUC 3.4 3.7 0.5 0.0 3.7 3.9 1.2 0.0
1 GACUG 4.8 6.5 14.8 −5.1 4.7 6.3 39.9 −23.0
1 UUCUC 3.4 2.9 1.5 0.0 4.0 3.2 15.5 −5.6
2 ACUCU 3.3 3.4 0.1 0.0 3.4 3.8 5.2 0.0
2 UCUGA 5.2 6.6 9.6 −1.3 5.1 6.6 37.4 −21.2
2 UCUGG 6.4 4.5 17.6 −7.1 5.6 4.4 24.3 −11.9
2 CCUGA 5.6 5.5 0.0 0.0 5.4 6.4 16.4 −6.3
2 ACUCC 2.8 2.7 0.0 0.0 3.2 3.0 1.3 0.0
2 GCUUG 2.8 4.7 27.5 −14.2 2.5 4.1 72.8 −46.0
2 ACUGA 5.4 8.0 29.0 −15.3 5.3 7.3 56.4 −34.6
2 ACUUC 4.4 3.3 8.7 −0.6 5.1 3.2 76.2 −48.4
2 UCUUG 3.0 4.4 13.8 −4.4 3.1 4.4 37.6 −21.4
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Appendix J. Alternative splicing regulator RBM10

TableJ.1: continued from previous page.

PAR-CLIP dataset 1 PAR-CLIP dataset 2

Group Motif S C MICO log-p S C MICO log-p
[%] [%] [bit] [%] [%] [bit]

2 ACUGG 6.3 5.2 6.1 0.0 5.5 5.3 0.6 0.0
2 ACUCA 3.4 4.6 10.1 −1.7 3.9 4.5 8.0 −0.1
2 UCUUC 4.3 3.1 12.0 −3.1 4.6 3.3 39.7 −22.8
2 ACUCG 1.2 1.5 1.9 0.0 1.1 1.3 4.8 0.0
2 ACUGU 2.9 2.9 0.0 0.0 3.3 3.1 1.2 0.0
2 UCUUA 2.4 2.3 0.0 0.0 2.3 2.6 2.1 0.0
2 ACUUG 3.9 4.6 3.8 0.0 3.9 4.7 10.5 −1.9
2 UCUGU 2.8 2.4 2.1 0.0 2.7 3.0 2.7 0.0
2 UGUGA 4.6 6.3 16.6 −6.4 4.9 6.3 34.4 −19.1
3 CUCUG 4.7 4.3 0.8 0.0 4.7 5.0 1.7 0.0
3 UUCUG 5.3 4.1 9.1 −0.9 5.1 4.2 15.3 −5.4
3 GUGUU 2.0 1.8 0.7 0.0 2.3 1.9 6.1 0.0
3 GUCUU 2.2 2.3 0.1 0.0 2.3 2.4 0.8 0.0
3 CUCUC 2.6 2.8 0.5 0.0 3.0 3.4 5.6 0.0
3 CUGUG 4.7 4.6 0.1 0.0 5.1 4.5 6.1 0.0
3 CUUUG 4.7 3.9 3.5 0.0 4.9 4.4 3.9 0.0
3 CUCUU 3.7 3.1 2.5 0.0 3.5 3.6 0.8 0.0
3 CUGUC 1.9 2.4 3.1 0.0 2.5 2.6 0.4 0.0
3 CUGUU 2.8 2.7 0.1 0.0 2.9 3.0 0.1 0.0
3 CUUUC 3.1 3.3 0.3 0.0 3.6 3.2 4.7 0.0
3 GUUUG 2.9 3.3 1.5 0.0 3.1 3.1 0.0 0.0
3 GUCUG 2.6 3.1 2.4 0.0 2.8 3.4 9.0 −0.8
4 CUGAA 10.0 8.7 5.4 0.0 9.3 8.4 7.3 0.0
4 UUGUG 3.4 4.2 4.4 0.0 3.3 4.0 11.6 −2.8
4 UUGAC 2.8 4.5 21.9 −10.2 3.0 4.5 53.2 −32.3
4 CUGAG 4.8 8.4 54.3 −33.1 4.9 7.9 120.0 −79.1
4 UUGUC 1.8 2.4 5.0 0.0 2.0 2.5 11.2 −2.5
4 CUGAC 3.0 4.2 11.5 −2.7 3.3 4.7 45.5 −27.0
4 UUGGA 11.1 7.4 45.7 −27.0 9.2 7.0 56.1 −34.4
4 UUGGG 3.8 4.5 2.9 0.0 3.5 4.2 10.6 −2.0
4 UUGAA 8.3 10.9 21.9 −10.2 8.1 9.4 18.2 −7.6
4 CUGGA 12.5 7.1 89.5 −57.8 11.1 6.9 185.1 −124.4
4 UUGUA 1.7 2.0 1.1 0.0 1.9 2.0 0.7 0.0
4 CUUGA 4.0 7.2 50.4 −30.4 4.0 6.5 100.1 −65.2
4 GUGGA 11.6 6.1 102.4 −66.8 8.8 5.2 163.2 −109.2
5 GAACU 6.8 6.3 1.0 0.0 6.0 5.6 3.1 0.0
5 GAAGG 9.7 9.4 0.2 0.0 8.8 8.1 6.0 0.0
5 GUACU 1.5 1.3 0.8 0.0 1.6 1.3 4.8 0.0
5 GAAGA 32.6 15.5 440.0 −301.6 27.5 14.4 868.2 −598.7
5 CAACU 3.6 4.0 1.7 0.0 4.0 3.9 0.0 0.0
5 GAGCU 5.7 5.1 1.6 0.0 5.0 5.3 1.2 0.0
5 GGACU 5.2 4.7 1.7 0.0 4.8 4.4 4.0 0.0
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TableJ.1: continued from previous page.

PAR-CLIP dataset 1 PAR-CLIP dataset 2

Group Motif S C MICO log-p S C MICO log-p
[%] [%] [bit] [%] [%] [bit]

5 GAAGU 8.3 5.9 23.3 −11.2 8.0 5.6 73.7 −46.7
6 UGGAA 14.6 9.3 72.6 −45.9 13.3 8.8 167.7 −112.3
6 UGUUG 3.5 3.8 0.5 0.0 3.5 3.7 1.1 0.0
6 UGUGC 2.4 3.2 6.0 0.0 2.6 2.9 2.4 0.0
6 UGUAG 2.3 2.0 1.4 0.0 2.0 2.3 2.4 0.0
6 UGGAG 13.5 8.5 68.6 −43.1 11.8 8.0 133.2 −88.3
6 UGUAC 2.0 1.3 8.1 −0.2 1.9 1.3 18.4 −7.7
6 UGAAG 20.2 11.5 153.9 −102.7 18.0 10.4 395.8 −270.8
6 UGUCC 2.2 2.2 0.0 0.0 2.6 2.3 3.2 0.0
6 UGAAC 5.1 6.3 6.8 0.0 5.0 5.6 5.9 0.0
6 UGUUC 2.4 2.0 1.6 0.0 2.7 2.4 2.7 0.0
6 UGGAC 9.7 5.2 77.1 −49.1 7.2 4.6 97.9 −63.6
6 UGUGG 6.7 4.8 17.0 −6.7 6.1 4.5 45.8 −27.1
6 AGAAC 9.2 7.5 10.3 −1.8 8.1 7.3 9.2 −1.0
7 CUUUU 3.7 3.7 0.0 0.0 4.0 3.8 0.6 0.0
7 GAUCU 4.3 4.6 0.6 0.0 3.8 4.7 15.5 −5.6
7 UGUCU 2.4 2.9 3.2 0.0 2.8 2.9 0.7 0.0
7 CCUUU 3.1 2.9 0.4 0.0 3.6 3.2 3.7 0.0
7 GGUCU 1.7 2.3 4.8 0.0 1.8 2.4 15.0 −5.3
7 CUUCU 4.0 3.3 4.5 0.0 4.2 3.7 7.2 0.0
7 UCUCU 3.1 3.1 0.0 0.0 3.3 3.6 1.8 0.0
7 CUUGU 1.9 2.6 5.0 0.0 2.1 2.8 15.5 −5.6
7 CUUAU 2.7 1.7 11.3 −2.5 2.5 2.1 5.1 0.0
7 UCUUU 3.2 3.5 0.4 0.0 3.7 3.8 0.4 0.0
7 GCUCU 3.4 2.9 2.6 0.0 3.3 3.3 0.1 0.0
7 GCUUU 3.2 2.8 1.3 0.0 3.5 3.0 5.8 0.0
7 CCUCU 3.2 3.0 0.3 0.0 3.4 3.6 0.8 0.0
7 AGUCU 2.8 3.3 3.0 0.0 2.7 3.5 17.9 −7.3
7 UGACU 3.8 5.3 13.6 −4.2 4.2 5.1 15.2 −5.4
8 UUCCU 4.0 3.0 9.4 −1.1 4.4 3.4 24.6 −12.1
8 UGCUU 2.6 3.6 9.2 −1.0 3.1 3.5 5.4 0.0
8 UCCUU 3.3 2.6 4.0 0.0 3.5 3.2 2.4 0.0
8 UCCCU 2.3 2.6 0.8 0.0 2.9 3.0 0.4 0.0
8 UUCUU 3.3 3.5 0.6 0.0 4.1 3.8 1.5 0.0
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Appendix J. Alternative splicing regulator RBM10

Table J.2: RBM10 motifs of Bechara et al. (2013) in intronic RBM10 PAR-CLIP sequences of
Y. Wang et al. (2013). Bechara et al. (2013) performed CLIP-Seq to identify RNA-binding
sites of RBM10 and defined 9 groups of 5mers as RBM10 target motifs. This table gives
the number of intronic sequences in the two PAR-CLIP datasets of Y. Wang et al. (2013)
that have occurrences of these 5mers. S and C: relative frequency of signal and control
sequences with at least one motif occurrence. MICO: mutual information of condition
and motif occurrence. log-p: MICO-based log-p value, corrected for motif length. The
bars visualize the log-p values; black and red bars respectively correspond to enrichment
in the signal or control sequences.

PAR-CLIP dataset 1 PAR-CLIP dataset 2

Group Motif S C MICO log-p S C MICO log-p
[%] [%] [bit] [%] [%] [bit]

1 AACUC 3.8 3.7 0.2 0.0 3.7 3.7 0.1 0.0
1 AAGUC 1.8 1.8 0.0 0.0 2.3 2.6 3.7 0.0
1 UACUC 3.3 3.4 0.1 0.0 3.6 2.8 17.1 −6.8
1 AACUG 3.0 3.7 3.0 0.0 3.3 4.3 20.7 −9.3
1 UACUG 2.5 3.0 2.3 0.0 2.9 3.0 0.0 0.0
1 GACUU 3.4 3.7 0.3 0.0 3.7 3.9 1.0 0.0
1 GACUC 3.6 4.5 3.8 0.0 3.4 4.1 12.8 −3.7
1 GACUG 4.6 6.3 11.2 −2.5 4.4 5.1 8.2 −0.3
1 UUCUC 10.2 7.7 17.1 −6.8 10.7 7.7 85.5 −55.0
2 ACUCU 6.3 6.9 1.3 0.0 5.9 6.2 1.8 0.0
2 UCUGA 5.2 6.3 4.8 0.0 5.3 6.1 9.7 −1.3
2 UCUGG 10.8 10.8 0.0 0.0 8.7 9.0 0.4 0.0
2 CCUGA 6.4 7.4 3.1 0.0 6.2 6.2 0.0 0.0
2 ACUCC 5.3 5.7 0.9 0.0 4.6 5.1 4.6 0.0
2 GCUUG 4.8 5.8 4.2 0.0 3.7 5.2 43.3 −25.4
2 ACUGA 3.5 3.9 1.3 0.0 3.7 4.5 13.0 −3.8
2 ACUUC 4.6 4.5 0.0 0.0 4.9 4.7 1.0 0.0
2 UCUUG 5.2 7.2 15.1 −5.3 5.1 7.3 63.6 −39.6
2 ACUGG 6.8 7.5 1.7 0.0 5.5 6.4 11.0 −2.3
2 ACUCA 3.9 4.9 4.2 0.0 4.3 4.7 3.0 0.0
2 UCUUC 8.5 7.8 1.3 0.0 8.9 7.4 20.9 −9.5
2 ACUCG 1.0 1.0 0.1 0.0 0.9 1.0 0.1 0.0
2 ACUGU 5.0 4.4 1.6 0.0 5.1 4.5 6.6 0.0
2 UCUUA 3.6 3.9 0.8 0.0 4.4 4.7 1.8 0.0
2 ACUUG 3.5 4.6 7.0 0.0 3.7 4.8 21.5 −9.9
2 UCUGU 7.3 6.3 3.1 0.0 7.0 6.2 8.0 −0.1
2 UGUGA 4.4 4.4 0.0 0.0 5.1 4.4 9.0 −0.8
3 CUCUG 12.3 12.1 0.2 0.0 10.7 10.4 0.6 0.0
3 UUCUG 8.5 8.1 0.5 0.0 8.0 7.5 3.8 0.0
3 GUGUU 3.2 3.1 0.1 0.0 3.7 3.1 7.9 −0.0
3 GUCUU 3.6 4.6 6.0 0.0 4.0 4.8 11.8 −2.9
3 CUCUC 10.0 10.1 0.0 0.0 8.8 8.7 0.1 0.0
3 CUGUG 12.6 9.8 16.8 −6.5 11.1 8.2 74.0 −46.9
3 CUUUG 5.4 5.9 1.2 0.0 5.5 6.5 14.7 −5.0
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TableJ.2: continued from previous page.

PAR-CLIP dataset 1 PAR-CLIP dataset 2

Group Motif S C MICO log-p S C MICO log-p
[%] [%] [bit] [%] [%] [bit]

3 CUCUU 10.3 10.1 0.1 0.0 9.7 9.3 1.9 0.0
3 CUGUC 7.0 6.7 0.3 0.0 6.5 6.3 0.3 0.0
3 CUGUU 5.5 5.5 0.0 0.0 5.7 5.6 0.2 0.0
3 CUUUC 9.2 7.3 9.4 −1.2 9.6 7.2 58.6 −36.1
3 GUUUG 2.8 2.9 0.1 0.0 3.4 3.6 0.7 0.0
3 GUCUG 6.1 6.7 1.3 0.0 5.1 6.0 11.6 −2.8
4 CUGAA 4.5 4.1 0.7 0.0 4.8 4.6 0.6 0.0
4 UUGUG 4.0 4.6 1.4 0.0 4.1 5.0 14.2 −4.7
4 UUGAC 1.7 3.4 27.5 −14.2 2.5 3.8 43.9 −25.8
4 CUGAG 8.1 8.5 0.4 0.0 7.4 7.5 0.2 0.0
4 UUGUC 3.3 4.1 3.8 0.0 3.3 4.5 29.8 −15.9
4 CUGAC 4.5 6.1 10.3 −1.8 4.5 5.1 6.1 0.0
4 UUGGA 4.9 4.7 0.2 0.0 4.6 5.0 2.3 0.0
4 UUGGG 7.7 7.4 0.2 0.0 6.3 6.5 0.7 0.0
4 UUGAA 2.4 3.2 5.0 0.0 3.6 4.6 19.0 −8.1
4 CUGGA 10.1 7.9 12.8 −3.7 8.3 6.8 25.1 −12.5
4 UUGUA 1.4 1.8 1.9 0.0 2.0 2.7 13.7 −4.3
4 CUUGA 3.1 4.9 18.3 −7.6 3.5 5.5 70.5 −44.5
4 GUGGA 6.0 4.6 8.4 −0.4 5.4 4.4 16.9 −6.6
5 GAACU 3.1 2.9 0.2 0.0 2.8 3.2 5.7 0.0
5 GAAGG 4.7 3.8 3.6 0.0 4.7 4.2 4.2 0.0
5 GUACU 1.8 2.0 0.9 0.0 1.7 2.0 3.0 0.0
5 GAAGA 4.9 2.9 22.5 −10.7 5.7 3.7 68.9 −43.4
5 CAACU 2.4 4.5 27.8 −14.4 2.9 4.3 42.9 −25.1
5 GAGCU 5.0 5.4 0.8 0.0 4.8 5.0 0.6 0.0
5 GGACU 5.0 5.1 0.1 0.0 4.2 4.9 7.6 0.0
5 GAAGU 2.8 2.1 4.2 0.0 3.1 2.6 5.8 0.0
6 UGGAA 5.6 3.6 20.5 −9.2 5.9 4.3 38.8 −22.2
6 UGUUG 4.0 4.3 0.7 0.0 3.8 4.6 12.2 −3.2
6 UGUGC 6.3 5.9 0.8 0.0 5.6 5.5 0.2 0.0
6 UGUAG 2.1 1.9 0.4 0.0 2.1 2.3 0.7 0.0
6 UGGAG 8.9 7.5 5.5 0.0 8.2 6.9 17.7 −7.2
6 UGUAC 1.6 2.0 1.6 0.0 2.0 2.2 0.9 0.0
6 UGAAG 4.9 3.6 8.5 −0.5 5.2 4.4 12.2 −3.2
6 UGUCC 6.1 5.5 1.5 0.0 5.6 5.2 3.2 0.0
6 UGAAC 2.5 3.1 2.7 0.0 2.6 3.1 6.1 0.0
6 UGUUC 4.2 3.9 0.5 0.0 4.5 4.6 0.3 0.0
6 UGGAC 6.3 5.1 5.3 0.0 4.7 4.8 0.1 0.0
6 UGUGG 10.6 8.8 8.4 −0.5 8.7 7.2 24.4 −12.0
6 AGAAC 2.7 1.9 5.3 0.0 2.7 2.6 0.1 0.0
7 CUUUU 7.6 7.4 0.1 0.0 9.2 8.4 5.8 0.0
7 GAUCU 2.2 3.4 9.8 −1.5 2.5 3.6 33.7 −18.6
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Appendix J. Alternative splicing regulator RBM10

TableJ.2: continued from previous page.

PAR-CLIP dataset 1 PAR-CLIP dataset 2

Group Motif S C MICO log-p S C MICO log-p
[%] [%] [bit] [%] [%] [bit]

7 UGUCU 5.9 6.1 0.2 0.0 5.8 6.2 1.9 0.0
7 CCUUU 8.1 7.3 2.1 0.0 8.5 7.0 22.4 −10.6
7 GGUCU 5.3 6.3 3.9 0.0 4.6 5.6 15.6 −5.7
7 CUUCU 9.9 10.1 0.0 0.0 9.7 8.8 7.7 0.0
7 UCUCU 10.3 9.7 1.0 0.0 10.4 9.1 17.2 −6.8
7 CUUGU 3.8 5.4 12.3 −3.3 3.9 5.6 51.7 −31.3
7 CUUAU 2.8 3.1 0.7 0.0 3.3 3.7 3.7 0.0
7 UCUUU 8.4 7.8 1.1 0.0 9.6 9.0 3.7 0.0
7 GCUCU 7.9 8.1 0.0 0.0 6.9 7.1 0.7 0.0
7 GCUUU 5.0 4.4 1.9 0.0 5.1 4.6 4.3 0.0
7 CCUCU 12.2 11.5 0.8 0.0 10.0 10.0 0.0 0.0
7 AGUCU 2.8 3.9 7.0 0.0 3.1 4.5 43.6 −25.6
7 UGACU 4.3 5.6 8.3 −0.4 4.6 5.2 5.9 0.0
8 UUCCU 12.4 7.7 51.1 −30.9 11.6 7.8 130.9 −86.6
8 UGCUU 5.1 5.8 2.0 0.0 5.6 5.8 1.3 0.0
8 UCCUU 10.1 8.4 7.1 0.0 9.6 7.9 27.8 −14.4
8 UCCCU 9.5 9.0 0.7 0.0 8.5 7.9 4.1 0.0
8 UUCUU 8.2 7.9 0.3 0.0 9.5 8.5 9.8 −1.5

Table J.3: RBM10 motifs of Inoue et al. (2014) in exonic RBM10 PAR-CLIP sequences of Y.
Wang et al. (2013). Inoue et al. (2014) defined motifs based on the sequences of 5’ splice
sites of two exons affected by RBM10 knock-down. This table gives the number of exonic
sequences in the two PAR-CLIP datasets of Y. Wang et al. (2013) that have occurrences
of these motifs. The vertical bar in the motif indicates exon-intron boundary of the two
example sequences (note: all occurrences in PAR-CLIP sequences are counted, whether
across exon-intron boundaries or not). S and C: relative frequency of signal and control
sequences with at least one motif occurrence. MICO: mutual information of condition
and motif occurrence. log-p: MICO-based log-p value, corrected for motif length. The
bars visualize the log-p values; black and red bars respectively correspond to enrichment
in the signal or control sequences.

PAR-CLIP dataset 1 PAR-CLIP dataset 2

Motif S C MICO log-p S C MICO log-p
[%] [%] [bit] [%] [%] [bit]

AG|GUAA 0.6 0.8 2.3 0.0 0.5 0.7 4.0 0.0
GG|GUAAG 0.1 0.1 0.6 0.0 0.1 0.1 3.5 0.0
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Table J.4: RBM10 motifs of Inoue et al. (2014) in intronic RBM10 PAR-CLIP sequences of
Y. Wang et al. (2013). Inoue et al. (2014) defined motifs based on the sequences of 5’ splice
sites of two exons affected by RBM10 knock-down. This table gives the number of intronic
sequences in the two PAR-CLIP datasets of Y. Wang et al. (2013) that have occurrences
of these motifs. The vertical bar in the motif indicates exon-intron boundary of the two
example sequences (note: all occurrences in PAR-CLIP sequences are counted, whether
across exon-intron boundaries or not). S and C: relative frequency of signal and control
sequences with at least one motif occurrence. MICO: mutual information of condition
and motif occurrence. log-p: MICO-based log-p value, corrected for motif length. The
bars visualize the log-p values; black and red bars respectively correspond to enrichment
in the signal or control sequences.

PAR-CLIP dataset 1 PAR-CLIP dataset 2

Motif S C MICO log-p S C MICO log-p
[%] [%] [bit] [%] [%] [bit]

AG|GUAA 0.5 0.3 4.4 0.0 0.6 0.4 2.3 0.0
GG|GUAAG 0.2 0.1 0.0 0.0 0.1 0.1 0.1 0.0
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Appendix K

Mouse ESC ChIP-Seq data

This chapter presents supplementary results for the mouse ESC ChIP-Seq motif analysis
of chapter 20. Table K.1 gives the positional distributions of occurrences for all motifs
presented in table 20.1 in windows of 501 nt around the midpoints of ChIP-Seq regions.

Table K.1: Positional distribution of Viterbi-decoded occurrences of predicted motifs of
table 20.1 in 501 nt windows in distance up to 250 nt from the peak of the ChIP-Seq regions.
Black: occurrences in the signal sequences, red: occurrences in the control sequences.
Note that windows of length 101 nt were used for motif discovery and are the basis of the
statistics listed in table 20.1. Data sources: A X. Chen et al. (2008), B Marson et al. (2008).
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Appendix K. Mouse ESC ChIP-Seq data

Table K.1: continued from previous page.

Protein Motif 1 Motif 2 Motif 3 Motif 4
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Table K.1: continued from previous page.

Protein Motif 1 Motif 2 Motif 3 Motif 4
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Appendix L

Research anecdotes

This chapter collects a number of anecdotes pertaining to topics presented in this disser-
tation. Appendix L.1 addresses some bugs and errors in MD tools and publications, and
appendix L.2 recounts a misadventure during our first ChIP-Seq run for the investigation
that lead to the publication von Eyss et al. (2012).

L.1 Motif discovery anecdotes

Mistake in equation of objective function of Dispom A mistake in the manuscript of Dis-
pom (Keilwagen et al., 2011) was discovered regarding the equation describing the objec-
tive function. A note was sent to the authors, who were quick to acknowledge the fact,
blaming the error on the editorial process. Subsequently, a formal correction was issued.

Trivial bug in CMF A trivial bug was found in the source code of CMF (Mason, Plath, and
Zhou, 2010) that prevented the method from reporting some occurrences of the identified
motif. Specifically, CMF would not report motif occurrences that start on the first position
or that end on the last position. The authors acknowledged the bug and promptly pro-
vided a patch to fix the problem. The MD performance analysis was based on the patched
version.

ALSE has bit-rotted The method ALSE (Leung and Chin, 2006) was found to not com-
pile with modern versions of the GCC. Although the C++ source code could be patched
such that the code compiled apparently successfully, the resulting program failed with
segmentation violations (memory access errors) when run to search for motifs of length
greater seven nucleotides. Thus the method was excluded from the analysis.

Hard coded limits for sequence numbers in DIPS The program DIPS (Sinha, 2006) was
modified to accommodate more sequences. In particular, the source code of DIPS hard-
codes limits for the number of sequences with two constants. Both were increased to allow
for tens of thousands of sequences to be processed. This did not affect the runtime issues,
that ultimately lead us to exclude DIPS from the performance evaluation.
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Appendix L. Research anecdotes

(a) #define RAND_INT(max) (int) (((float) max) * rand() / (RAND_MAX + 1.0))
(b) #define RAND_INT(max) (int) (((double) max) * rand() / (RAND_MAX + 1l))

Figure L.1: Routines for random number generation in MoAn. (a) Faulty random number
generation routine in MoAn. (b) Proposed fix.

Faulty random number generation in MoAn The problem I found with MoAn was due
to faulty integer random number generation. The routine used by MoAn is shown in fig-
ure L.1a. It is supposed to generate integers greater or equal to 0 and less than max. First,
an integer x between 0 and RAND_MAX= 231−1 = 2147483647 is generated using the system
routine rand(). max is cast to float and multiplied with xwhich is implicitly cast to float

for this. The product is subsequently divided by RAND_INT+1, a value strictly greater than
x, thus supposedly yielding a value that is strictly less than max. Finally, the resulting
floating point number is cast to int by truncating the fractional part.

However, this routine generates values that are equal to max with a probability of
64

2147483647 or about 2.98 × 10−8. The reason for this is that variables of type float lack
resolution to represent values that are close to, but less than 1. In particular, all division
results that fall above the largest representable number less than 1 are rounded to one.
The consequence is that instead of yielding numbers between 0 and n − 1, the routine
sometimes returns n. As such numbers are used by MoAn to index arrays, segmentation
violations may occur, and MoAn aborts. Although such events are individually relatively
rare, MoAn generates a lot (millions) of random numbers per run, and thus the problems
may occur with a frequency in the percent range. I fixed this problem by modifying the
routine as shown in figure L.1b.

FIRE’s sequence parsing routine ignores lower-case letters This peculiar behavior went
unnoticed at first, and FIRE’s MD performance in the supervised synthetic data experi-
ments was equally good as that of DREME and MoAn, i.e. it apparently scored among the
best previously published methods. However, when applying it together with DREME and
Discrover to the Oct4 data of X. Chen et al. (2008) (see section 20.5), it aborted with memory
errors. Investigating the reasons for the errors revealed that FIRE ignores all lower-case
parts of sequences. As the provided ChIP-Seq sequences consisted entirely of lower-case
letters, FIRE tried to discover from sets of sequences that were all empty, leading to the
aforementioned memory errors. Providing upper-cased versions of ChIP-Seq sequences
fixed this problem.

Subsequently, I revisited the synthetic data experiments, and found that the problem
was also manifesting itself there. The synthetic sequences used in the supervised exper-
iments consist of lower-case sequence context, and implanted motifs in upper-case. In
other words, FIRE ignored everything distracting and thereby cheated, as it only was look-
ing at the pure signal that was to be discovered.

After upper-casing also the synthetic sequences, the MD performance of FIRE dropped
significantly, and FIRE was not among the best-performing published methods anymore
(see section 17.2).
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L.2 A fishy smell in ChIP-Seq data

Initially, we performed ChIP-Seq in human cell lines for human homologs E2F3 and HELLS
of the later published ChIP-Seq’d mouse proteins (E2f3, Hells). After the data was se-
quenced, I mapped it to the human genome. To our surprise, we found that only few reads
actually mapped to the genome: among the samples we had, only 3–8% of reads were
seemingly deriving from the human genome. This was the first time, someone had done
ChIP-Seq in the wet-lab or computationally analyzed ChIP-Seq data on the MDC campus.
Previously, I had only worked with deep-sequencing data of small RNAs, and this expe-
rience with mapping small RNA to the genome told me that the observed low fraction of
reads mappable to the genome indicated problems. In particular, there were some reads
that were quite abundant in our data but that seemingly did not derive from the genome,
and that also did not look like obvious sequencing artifacts, for they were neither known
adapter sequences nor of low sequence complexity. After checking that I had not made
other mistakes in mapping, I proceeded to use NCBI’s BLAST web service1 to search for
these highly expressed reads in a non-redundant database of nucleotide sequences. To
my amusement, I found various fish species seemingly had sequences that were similar to
many of the top-expressed reads in our data. While I could not make much sense of this,
my wet-lab colleague when I told him about, after intial puzzlement, suddenly turned
rather pale. He realized a mistake that he had commited in his protocol.

It had been the first time that he had performed ChIP-Seq, and he had followed a proto-
col that he had earlier used for ChIP-Chip. The crucial mistake that he had commited was
to add unrelated DNA to the samples, prior to adding cellular extract, in order to cover the
beads. This is done in microarray-based ChIP analysis to reduce the amount of unspeci-
ficly interacting DNA that sticks to the beads. As microarrays only interrogate sequences
that are spotted onto them, the unrelated DNA will compete with unspecific DNA of the
organism under question, and is thus beneficial. Unfortunately, when the samples are
subsequently sequenced, as in ChIP-Seq, this is quite problematic, as also the unrelated
DNA will be sequenced, and will now in fact compete with the specifically bound IPed
DNA for sequencing. This lead to the low amount of IPed DNA in our sequencing samples
that could be mapped to the human genome.

The unrelated DNA typically used for this purpose is salmon sperm DNA, which ex-
plains the fishy character of the top-expressed reads.

While we clearly were not able to work with these samples further2, what little useful
data we had in them later was actually found to still be meaningful: analyzing the human
genome mappable reads for enriched regions, I found MLL1 to be by far the strongest
enriched target for HELLS, analogously to our later results with the mouse homologs, Mll1
and Hells.

1http://blast.ncbi.nlm.nih.gov/Blast.cgi
2We contacted the Salmon Genome Sequencing consortium, but they were not interested in these data.
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Zusammenfassung

Die Mustersuche in Sequenzdaten ist ein Standardproblem der Bioinformatik, der Anwendung von
Rechenmethoden in der Biologie. Klassische Verfahren der Mustersuche stützen sich vorrangig auf
Methoden des maschinellen Lernens, die üblicherweise auf probabilistischer Modellierung der Se-
quenzen basieren. Die Einführung neuer Methoden zur Sequenzierung von DNS und RNS im Laufe
des letzten Jahrzehnts sorgt für eine Flut von Daten, die motivieren, innovative Lösungen zur auto-
matisierten Analyse zu entwickeln.

Die vorliegende Dissertation beschreibt eine Untersuchung diskriminativer Lernmethoden der
Sequenzanalyse mit Anwendung zur Mustersuche in Nukleinsäuresequenzen. Der grundlegende
Ansatz diskriminativer Verfahren zur Mustersuche besteht darin, solche Muster aufzuspüren, die in
einem Satz von Sequenzen häufiger vorliegen als in einem anderen, oder deren Häufigkeit in meh-
reren Sequenzsätzen variiert. Es gibt vielfältige Maße zur Quantifizierung relativer Anreicherung
solcher Art. Eine Anzahl von Publikationen beschreibt diskriminative Mustersuchmethoden, die
sich nicht nur in der Wahl der Zielfunktion unterscheiden, sondern unter anderem auch in der Mo-
dellierung der Sequenzen, was es erschwert, die Nützlichkeit verschiedener Maße zu vergleichen.

Diese Dissertation bespricht klassische Verfahren der Sequenzanalyse und beschreibt darauf
aufbauend eine flexible Methode zur Mustersuche, die die Wahl verschiedener Zielfunktionen zu-
lässt. Die Leistungsfähigkeit der verschiedenen Zielfunktionen in der beschriebenen Methode und
der anderer, bereits publizierter Methoden wird sorgfältig analysiert mit Hilfe von umfassenden,
synthetisch erzeugten Daten. Insbesondere erlaubt diese Auswertung auch den Vergleich der Vor-
und Nachteile diskriminativer und nicht-diskriminativer Lernmethoden. Dabei stellt sich heraus,
dass einige der in der vorliegend beschriebenen Methode implementierten diskriminativen Ziel-
funktionen wesentlich bessere Ergebnisse erzielen als bisher veröffentlichte Methoden. In der Fä-
higkeit Muster zu entdecken, sind einige der Zielfunktionen in der betrachteten Aufgabenstellung
sehr nahe am theoretisch erreichbaren Optimum. Dies zeigt der Vergleich mit der Musterwieder-
erkennung, dem Bestimmen von Mustervorkommen, wenn das Muster bereits bekannt ist. Unter
diesen Zielfunktionen sticht die gegenseitige Information (mutual information), ein Maß aus der
Informationstheorie, heraus, da sie sich sowohl zur Optimierung probabilistischer, wie auch diskre-
ter Sequenzmodelle eignet, sie die Analyse von Kontrasten mit mehr als zwei Bedingungen erlaubt,
und sie außerdem geeignete Generalisierungen bietet um Modelle mehrerer Muster zu finden.

Schließlich wird die Nützlichkeit und realistische Anwendbarkeit der vorgestellten Methode un-
ter Verwendung der gegenseitigen Information dargestellt. Zahlreiche publizierte, mit unterschied-
lichen Technologien erzeugte, biologische Datensätze werden analysiert. Dies umfasst Daten einer
Familie von RNS-bindenden Proteinen in verschiedenen Spezies sowie Daten von Transkriptions-
faktoren, die von zentraler Bedeutung für die Regulation embryonaler Stammzellen höherer Säu-
getiere sind. Neue Erkentnisse ergeben sich für einen Alternative-Splicing-Faktor, für den Muster
gefunden werden, die als Splicing-relevant bekannt sind, deren Bedeutung für den untersuchten
Faktor allerdings bisher noch nicht vergleichbar gut belegt worden ist.
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