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Abstract
Elementary flux modes (EFMs) play a prominent role in the constraint-based analysis
of metabolic networks. They correspond to minimal functional units of the metabolic
network at steady-state and as such have been studied for almost 30 years. The set
of all EFMs in a metabolic network tends to be very large and may have exponential
size in the number of reactions. Hence, there is a need to elucidate the structure of
this set. Here we focus on geometric properties of EFMs. We analyze the distribution
of EFMs in the face lattice of the steady-state flux cone of the metabolic network and
show that EFMs in the relative interior of the cone occur only in very special cases.
We introduce the concept of degree of an EFM as a measure how elementary it is
and study the decomposition of flux vectors and EFMs depending on their degree.
Geometric analysis can help to better understand the structure of the set of EFMs,
which is important from both the mathematical and the biological viewpoint.
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1 Introduction

Constraint-based analysis of metabolic networks is an important area in computational
biology (Bordbar et al. 2014; Fang et al. 2020). The stoichiometric and thermodynamic
constraints that have to hold in a metabolic network at steady-state have led to the
definition of the steady-state flux cone, which comprises all possible flux distributions
over the network at steady-state.

An important concept to analyze the flux cone in a mathematically and biologically
meaningful way are elementary flux modes (EFMs) (Schuster and Hilgetag 1994;
Schuster et al. 2002), which provide an inner description of the flux cone consisting of a
finite set of generating vectors (Gagneur andKlamt 2004;Wagner andUrbanczik 2005;
Larhlimi and Bockmayr 2008; Jevremovic and Boley 2013). From a mathematical
point of view, not all elementary flux modes are needed to describe the cone, i.e., the
set of all EFMs does not form a minimal generating set, except for special cases (for
example when all reactions are irreversible). Even for small networks, the number of
elementary flux modes may be very large.

Larhlimi and Bockmayr (2009) introduced metabolic behaviors and studied outer
descriptions of the flux cone based on minimal metabolic behaviors (MMBs), which
are in a one-to-one correspondence with the minimal proper faces of the flux cone.
Röhl and Bockmayr (2019) introduced the concept of a minimal set of elementary
flux modes (MEMo) and gave an algorithm to compute such a set. A MEMo consists
of an EFM from each minimal proper face of the flux cone together with a vector
space basis of the lineality space. In general, a minimal proper face may contain many
different EFMs.

The goal of this paper is to get a deeper understanding of the structure of the set
of EFMs by further studying their geometric properties. We generalize the result of
Larhlimi and Bockmayr (2009) and show that higher-dimensional faces of the flux
cone can be characterized by metabolic behaviors. We study the distribution of EFMs
over the faces of the flux cone and introduce as a measure of complexity the degree
of a flux vector or EFM, which is the dimension of the inclusionwise minimal face
containing it. The intuitive idea behind this is that the smaller the degree of a flux
vector or EFM, the more elementary it is. More formally, we show that any flux vector
of degree k can be decomposed into a sum of at most k EFMs of degree at most k.
We prove upper bounds on the degree of EFMs and show that EFMs in the relative
interior of the flux cone occur only in very special cases. We also study the effect of
removing blocked reactions and redundant irreversibility constraints and deduce an
upper bound on the cardinality of minimal metabolic behaviors.

2 Polyhedral cones

In this section we introduce some mathematical background on polyhedral cones. For
further reading we refer to Lauritzen (2013), Schneider (1993) and Schrijver (1986).
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A vector x ∈ R
n is a linear combination of the vectors x1, . . . , xk ∈ R

n if x =
λ1x1 + · · · + λk xk, for some λ1, . . . , λk ∈ R. If, in addition

⎧
⎨

⎩

λ1, . . . , λk ≥ 0,
λ1 + · · · + λk = 1,

λ1, . . . , λk ≥ 0, λ1 + · · · + λk = 1,

⎫
⎬

⎭
we call x a

⎧
⎨

⎩

conic
affine
convex

⎫
⎬

⎭
combination.

For a nonempty subset X ⊆ R
n , we denote by lin(X) (resp. cone(X), aff(X), conv(X))

the linear (resp. conic, affine, convex) hull of X , i.e., the set of all linear (resp. conic,
affine, convex) combinations of finitely many vectors of X .

A nonempty set C ⊆ R
n is a convex cone, if it is closed under conic combinations,

i.e., λx + μy ∈ C, for all x, y ∈ C and λ,μ ≥ 0. A convex cone C is polyhedral if it
is the solution set of a system of finitely many homogeneous linear inequalities, i.e.,
if

C = {x ∈ R
n | Ax ≥ 0},

for some matrix A ∈ R
m×n . If a cone C is the conic hull of a finite set X =

{x1, ..., xs} ⊂ R
n , it is called finitely generated and the set X is called a generating

set of C . By the well-known theorem of Farkas-Minkowski-Weyl (see e.g. (Schrijver
1986)), a convex cone is polyhedral if and only if it is finitely generated. For the rest
of this paper we will only consider polyhedral cones and often simply write cone.

If C = {x ∈ R
n | Ax ≥ 0}, is a polyhedral cone, an inequality ax ≥ 0, where a

denotes a row of A and ax the inner product of a and x , is called an implicit equality
in Ax ≥ 0, if ax = 0, for all x ∈ C . Following (Schrijver 1986), we denote by
A=x ≥ 0 the system of implicit equalities in Ax ≥ 0 and by A+x ≥ 0 the remaining
inequalities.

If removing an inequality ax ≥ 0 from Ax ≥ 0 does not change the associated
cone C , the inequality is called redundant. If there are no redundant inequalities, the
description Ax ≥ 0 is called irredundant.

The dimension dim(C) of a cone C is the dimension of its affine hull aff(C) =
{x ∈ R

n | A=x = 0} and is equal to n − rank(A=). Since 0 ∈ C , aff(C) coincides
with the linear hull lin(C).

A vector x ∈ C is in the relative interior of C , shortly x ∈ relint(C), if there exists
ε > 0 such that Bε(x)∩aff(C) ⊆ C , where Bε(x) is the n-dimensional ball of radius ε

centered at x . If x ∈ C is not in the relative interior of C , it is in the relative boundary
of C .

The lineality space of a cone C = {x ∈ R
n | Ax ≥ 0} is given by lin. space(C) =

{x ∈ R
n | Ax = 0}, which is the inclusionwise maximal linear subspace contained in

C . A cone C is called pointed if its lineality space is trivial, i.e., lin. space(C) = {0}.
If a cone is pointed, it does not contain a line.

An inequality ax ≥ 0 is called valid for C if C ⊆ {x ∈ R
n | ax ≥ 0}. A nonempty

set F ⊆ C is called a face of C if there exists an inequality ax ≥ 0 valid for C such
that F = C ∩ {x ∈ C | ax = 0}. The hyperplane {x ∈ C | ax = 0} is then called a
supporting hyperplane of F . Alternatively, a face can be characterized as a nonempty
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set F ⊆ C with F = {x ∈ C | AI ,�x = 0}, where AI ,� is the submatrix of A whose
rows belong to the set I ⊆ {1, . . . ,m} (Schrijver 1986).

A polyhedral cone C has only finitely many faces, each face F of C is itself a
polyhedral cone and F ′ ⊆ F is a face of F if and only if F ′ is a face of C . A k-
dimensional face will also be called a k-face. A cone C is pointed if and only if it has
a 0-face, namely the origin.

A face F �= C of C is called a facet if it is inclusionwise maximal, i.e., there
is no other face F ′ �= C such that F ⊂ F ′. If the description Ax ≥ 0 of C is
irredundant, there is a 1–1 correspondence between the facets ofC and the inequalities
in A+x ≥ 0 (Schrijver 1986, Theor. 8.1). In particular, for every facet F there is an
inequality ax ≥ 0 from A+x ≥ 0 such that F = {x ∈ C | ax = 0}. We have
dim(F) = dim(C) − 1 for every facet F of C , and every face of C (except C itself)
is the intersection of facets of C .

The face lattice of a polyhedral cone C is the partially ordered set L(C) of all
faces of C , partially ordered by set inclusion (Henk et al. 2017; Ziegler 1994). Two
polyhedral conesC,C ′ are combinatorially equivalent if there is a bijection from L(C)

to L(C ′) that preserves the inclusion relation. The combinatorial type of a polyhedral
cone is the equivalence class under combinatorial equivalence.

Proposition 2.1 Let C = {x ∈ R
n | Ax ≥ 0} be a polyhedral cone and z ∈ C. Let A=

z
be the submatrix of A whose rows correspond to the inequalities in Ax ≥ 0 that are
fulfilled with equality by z. Let F be the face of C defined by F = {x ∈ C | A=

z x = 0}.
Then

(i) F is the inclusionwise minimal face of C containing z,
(ii) dim(F) = n − rank(A=

z ),
(iii) z ∈ relint(F).

Proof For x ∈ R
n , define I (x) = {i ∈ {1, . . . ,m} | ai x = 0}, where ai is the i-th row

in A. Let F ′ = {x ∈ C | AI ,�x = 0} be a face of C containing z. Then AI ,�z = 0 and
thus I ⊆ I (z), which implies F = {x ∈ C | AI (z),�x = 0} ⊆ F ′ and statement (i)
follows.

For x ∈ F , we have I (z) ⊆ I (x). Therefore, I (z) has the minimal number of
elements among I (x), where x ∈ F . The statements (ii) and (iii) now follow from
Proposition 4.3 in Lauritzen (2013) and its proof. 	


If C is a cone with dim(lin. space(C)) = t ≥ 0, a face of dimension t + 1 is called
a minimal proper face of C . For a pointed cone C , the minimal proper faces are the
1-faces, which are called the extreme rays of C . Equivalently, cone({r}) ⊆ C, r �= 0,
is an extreme ray of C if and only if r = x + y implies x, y ∈ cone({r}), for all
x, y ∈ C .

The Minkowski sum of two sets X and Y is defined as X + Y = {x + y | x ∈
X , y ∈ Y }. The next result states that any polyhedral cone can be decomposed into a
Minkowski sum of its lineality space and a pointed cone.

Proposition 2.2 Let C ⊆ R
n be a polyhedral cone, L = lin. space(C). Let

G1, . . . ,Gs, s ≥ 0, be the distinct minimal proper faces of C and gi ∈ Gi\L, for
i = 1, . . . , s. Let P = cone({g1, . . . , gs}). Then
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(i) P is a pointed cone and its extreme rays are cone({g1}), . . . , cone({gs}),
(ii) C = L + P = L + cone({g1, . . . , gs}), L ∩ P = {0} and if L ∩ lin(P) = {0}

then dim(C) = dim(L) + dim(P).

Proof (i) By definition P is a finitely generated cone. Assume that P is not pointed.
Then there exist λi ≥ 0, i = 1, . . . , s, not all equal to zero, such that 0 = ∑s

i=1 λi gi .
Hence, there exists j ∈ {1, . . . , s} such that −g j ∈ P ⊆ C and so g j ∈ L , contra-
dicting our choice.

To see that g1, . . . , gs define extreme rays of P , assume without loss of generality
that cone({g1}) is not an extreme ray of P . Then we can find μi ≥ 0, 2 ≤ i ≤ s, not
all equal to zero, such that g1 = ∑s

i=2 μi gi . As G1 is a face, there exists a supporting
hyperplane Ha := {x ∈ R

n | ax = 0}, a ∈ R
n\{0}, such that G1 = Ha ∩ C and

ax > 0 for all x ∈ C\G1. Thus, from 0 = ag1 = ∑s
i=2 μi agi we conclude that

agk = 0 for some k ∈ {2, . . . , s}. Therefore gk ∈ G1 and Gk ⊆ G1, which leads to
Gk = G1, because G1 is a minimal proper face. But then G1, . . . ,Gs are not distinct,
which is a contradiction.

(ii) By Theorem 8.5 in (Schrijver 1986), we have C = L + P . Since L is a face of
C , there exists a ∈ R

n\{0} such that ax = 0 for all x ∈ L and ax > 0 for all x ∈ C\L .
From agi > 0, i = 1, . . . , s, we get ax > 0, for all x ∈ P\{0}, hence L ∩ P = {0}. If
L ∩ lin(P) = {0}, we have lin(C) = L ⊕ lin(P), where L ⊕ lin(P) is the direct sum
of the vector spaces L and lin(P), and so dim(C) = dim(L) + dim(P). 	


The combinatorial type of the pointed cone P = cone({g1, . . . , gs}) in Proposi-
tion 2.2 is (in general) not uniquely determined. However, if we choose g1, . . . , gs

such that L ∩ lin(P) = {0}, i.e., all the gi are contained in some linear subspace L ′
complementary to L , then the combinatorial type of P is independent of the choice of
the gi from the minimal proper faces. Observe that for any complementary space L ′
of L , L ′ ∩ Gi is a ray, i.e., L ′ ∩ Gi = cone({gi }) for some gi ∈ L ′ ∩ Gi .

Proposition 2.3 Let C ⊆ R
n be a polyhedral cone, L = lin. space(C), and let P1, P2

be pointed cones with L + P1 = C = L + P2 and L ∩ lin(P1) = {0} = L ∩ lin(P2).
Then P1 and P2 are combinatorially equivalent.

Proof Without loos of generality let dim(C) = n anddim(L) = t .With L ′
j := lin(Pj ),

by Proposition. 2.2 we have dim(L ′
j ) = n − t and C ∩ L ′

j = Pj , for j = 1, 2.

Let u1, . . . , un−t be a basis of L ′
1. As also L ′

2 is a complement of L , there exist
uniquely determined v1, . . . , vn−t ∈ L ′

2, w
1, . . . , wn−t ∈ L such that ui = vi + wi ,

1 ≤ i ≤ n − t . Now let T : R
n → R

n be the invertible linear map with

T (u) = u, ∀u ∈ L, T (ui ) = vi , 1 ≤ i ≤ n − t .

Then we get T (C) = C . To see this let y = u +w ∈ C with u ∈ L ′
1 and w ∈ L . Then

we may write

y =
n−t∑

i=1

λi u
i + w, for some λ1, . . . , λn−t ∈ R.
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Thus

T (y) =
n−t∑

i=1

λiv
i + w =

n−t∑

i=1

λi (u
i − wi ) +

(

y −
n−t∑

i=1

λi u
i

)

= y −
n−t∑

i=1

λiw
i ∈ C + L = C,

and vice versa. We conclude

T (P1) = T (L ′
1 ∩ C) = T (L ′

1) ∩ T (C) = L ′
2 ∩ C = P2.

Thus, P1 and P2 are affinely and thereby also combinatorially equivalent. 	


We also point out that the relative interior of a polyhedral cone can easily be
described by looking at the implicit equalities in Ax ≥ 0:

Proposition 2.4 Let C = {x ∈ R
n | Ax ≥ 0} = {x ∈ R

n | A=x = 0, A+x ≥ 0} be a
polyhedral cone. Then

relint(C) = {x ∈ R
n | A=x = 0, A+x > 0}.

Proof If x ∈ C with A+x > 0 then for any y ∈ lin(C) = {y ∈ R
n | A=y = 0}

there exists ε > 0 such that A+(x + εy) > 0. Hence x ∈ relint(C). Conversely, let
x ∈ relint(C) and let a be an arbitrary row of A+. By definition of A+ there exists
z ∈ C with az > 0. As x ∈ relint(C), there exists ε > 0 such x − εz ∈ C and so
a(x − εz) ≥ 0. Thus ax > 0. 	


3 Metabolic networks

Ametabolic networkN = (M,R, S, Irr) is givenby a setMof (internal)metabolites,
a set R = Rev∪ Irr of reversible and irreversible reactions, and a stoichiometric
matrix S ∈ R

m×n , where m = |M| and n = |R|. For J ⊆ R, we denote by S�,J the
submatrix of S whose columns belong to J .

The network can be seen as a weighted hypergraph with the generalized incidence
matrix S, where the metabolites are represented by nodes and the reactions by hyper-
arcs. A positive entry Si, j > 0 in the stoichiometric matrix S indicates that reaction j
produces metabolite i . If Si, j < 0, metabolite i is consumed in reaction j .

Example 3.1 The metabolic network in Fig. 1 has the set of metabolites M =
{A,B, . . . ,G,H}, the set of reversible reactions Rev = {1, 3, 4, 5, 9, 10, 11, 12} and
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Fig. 1 Example of a metabolic network

the set of irreversible reactions Irr = {2, 6, 7, 8, 13}. The stoichiometric matrix is

S =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 −1 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 −1 0 0 0 0 0 0 0 0
0 1 0 −1 0 −1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 −1 0 −1 0 0
0 0 0 0 0 1 −1 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 0 1 −1 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where we assume that reversible reactions are oriented from left to right and from top
to bottom. Furthermore, for simplicity, all stoichiometric coefficients are supposed to
be 0,1, or −1.

3.1 Flux cones

Inmetabolic network analysis, we often assume that the network is in steady-state, i.e.,
for each internal metabolite the rate of production is equal to the rate of consumption.
Inmatrix notation, the steady-state constraints can bewritten as Sv = 0, where v ∈ R

n

denotes a flux vector. By adding the thermodynamic irreversibility constraints v j ≥ 0,
for all j ∈ Irr, and setting

A =
⎛

⎝
S

−S
IIrr,�

⎞

⎠ (1)
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we obtain the polyhedral cone

C = {x ∈ R
n | Ax ≥ 0} = {v ∈ R

n | Sv = 0, vIrr ≥ 0}, (2)

which is called the (steady-state) flux cone ofN . Here, vIrr is the subvector of v whose
components belong to Irr, and IIrr,� the submatrix of the (n × n) identity matrix In
whose rows correspond to the irreversible reactions.

Implicit equalities The implicit equalities in the definition (2) of a flux cone C
include all steady-state constraints Sv = 0. If any of the irreversibility constraints v j ≥
0, j ∈ Irr, is an implicit equality, the corresponding reaction j ∈ Irr is blocked, i.e.,
v j = 0, for all v ∈ C . For some of our results, we will assume that there are no implicit
equalities in vIrr ≥ 0, or equivalently that there are no blocked irreversible reactions.
Blocked reactions can be determined by solving a linear optimization problem.

Redundant inequalities If in (2) one of the irreversibility constraints v j ≥ 0, j ∈ Irr,
is redundant, the corresponding reaction j can be shifted from the set Irr of irreversible
reactions to the set Rev of reversible reactions, without changing the flux cone C . The
constraint v j ≥ 0 is then implied by the remaining constraints.

Example 3.2 In the metabolic network of Fig. 1, the irreversible reaction 13 is blocked,
i.e., v13 = 0, for all v ∈ C , because there is no reaction to consume metabolite H.

The irreversibility constraint v6 ≥ 0 is redundant. There can be no flux from
metabolite E to metabolite C because there is no reaction producing E.

The reversible reaction 1 cannot carry flux from right to left. Reaction 1 could be
added to the set Irr of irreversible reactions, but then the inequality v1 ≥ 0 would be
redundant.

If redundant inequalities are removed from the description of a flux cone, the result-
ing irredundant description is in general not unique, because it depends on the order
in which the redundant constraints are removed.

Proposition 3.3 Let C = {v ∈ R
n | Sv = 0, vIrr ≥ 0} be a flux cone such that none

of the inequalities v j ≥ 0, j ∈ Irr, is redundant or an implicit equality. Then C has
exactly |Irr| facets and each facet F has the representation

F = {v ∈ C | v j = 0}, for some j ∈ Irr . (3)

Proof If there are no implicit equalities in vIrr ≥ 0 and A is given by (1), then A= =(
S

−S

)

and A+ = IIrr,�. Since there are no redundant inequalities in vIrr ≥ 0, the

result follows from Theorem 8.1 in Schrijver (1986). 	


3.2 Elementary fluxmodes

In metabolic network analysis we are particularly interested in minimal functional
units of the network. Let C be the flux cone of a metabolic network N . A vector
e ∈ C\{0} is called an elementary flux mode (EFM) (Schuster and Hilgetag 1994) if
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it has inclusionwise minimal support, i.e., if

∀v ∈ C \ {0} : supp(v) ⊆ supp(e) �⇒ supp(v) = supp(e), (4)

where the support of v ∈ R
n is defined by supp(v) = {i ∈ R | vi �= 0}. We say that

a reaction i ∈ R is active in v ∈ C if i ∈ supp(v). By irr. supp(v) := supp(v) ∩ Irr
we denote the irreversible support of v, i.e., the set of active irreversible reactions in
v. Analogously, rev. supp(v) := supp(v) ∩ Rev denotes the reversible support of v.

To verify whether a given flux vector v ∈ C is an EFM the rank test (Jevremovic
et al. 2010; Urbanczik and Wagner 2005) can be applied, i.e.,

v ∈ C is an EFM if and only if rank(S�,supp(v)) = |supp(v)| − 1. (5)

Proposition 3.4 Let C = {v ∈ R
n | Sv = 0, vIrr ≥ 0} be the flux cone of a metabolic

network. Then

|irr. supp(e)| ≤ rank(S�,Irr) + 1,

for each EFM e ∈ C.

Proof Suppose the opposite. Then

|supp(e)| = |irr. supp(e)| + |rev. supp(e)|
≥ rank(S�,Irr) + 2 + |rev. supp(e)|
≥ rank(S�,irr.supp(e)) + 2 + rank(S�,rev.supp(e))

≥ rank(S�,supp(e)) + 2,

contradicting the rank test (5). 	


3.3 Illustrative examples

To illustrate the theoretical results in the following sections through concrete exam-
ples, we will use the metabolic networks Pyruvate and Pentose Phosphate
Pathway from the KEGG database (https://www.genome.jp/kegg/pathway.html,
(Kanehisa and Goto 2000)) and Escherichia coli str. K-12 substr.
MG1655 (E.coli core) from the BiGG database (King et al. 2016), where
we removed the biomass reaction. The characteristics of these networks are sum-
marized in Table 1. The EFMs were computed with efmtool (https://csb.ethz.ch/
tools/software/efmtool.html, (Terzer 2009)). For polyhedral computations we used
polymake (https://polymake.org/, (Assarf et al. 2017)).

4 Faces of the flux cone andmetabolic behaviors

Given a metabolic network N with flux cone C , a metabolic behavior (Larhlimi
and Bockmayr 2009) of C is a nonempty set of irreversible reactions D ⊆ Irr with
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Table 1 Characteristics of the three example networks

E. coli core Pentose phosphate Pyruvate

(m, n) = (|M|, |R|) (72, 94) (34, 57) (28, 81)

|Irr| 48 19 40

|Rev| 46 38 41

rank(S) 67 34 28

n − rank(S) 27 23 53

dim(C) 23 23 53

t = dim(L) 0 8 16

dim(P) 23 15 37

|Facets| 39 17 37

|blocked irr| 8 0 0

|blocked rev| 2 0 0

|EFMs| 16673 5180 47854

|MMBs| 1421 19 37

|M| and |R| denote the number of metabolites resp. reactions, which correspond to the number of rows
resp. columns of the stoichiometric matrix. |Irr| and |Rev| denote the number of irreversible resp. reversible
reactions of the network. rank(S) is the rank of the stoichiometric matrix. The flux cone C = L + P is the
Minkowski sum of the lineality space L and a pointed cone P , with dim(C) = dim(L) + dim(P). |Facets|
is the number of facets of the flux cone, which is equal to the number of irreversibility constraints if none of
these is redundant or an implicit equality. |blocked irr| resp. |blocked rev| describe the number of blocked
irreversible resp. blocked reversible reactions. |EFMs| is the number of EFMs and |MMBs| the number of
minimal metabolic behaviors (cf. Sect. 7)

D = irr. supp(v), for some v ∈ C . A minimal metabolic behavior (MMB) is a
metabolic behavior D forwhich there is no othermetabolic behavior D′

� D. Larhlimi
and Bockmayr (2009) have shown that minimal metabolic behaviors are in a 1–1
correspondence with the minimal proper faces of the flux cone C . In particular, if G is
a minimal proper face and L the lineality space of C , then all flux vectors v ∈ G \ L
have the same irreversible support DG = irr. supp(v), which is a minimal metabolic
behavior.

Proposition 4.1 Let C be the flux cone of a metabolic network. Then each metabolic
behavior is the union of MMBs.

Proof Let ∅ �= D ⊆ Irr be a metabolic behavior and let v ∈ C with D = irr. supp(v).
Let L be the lineality space and G1, . . . ,Gs, s ≥ 0, be the minimal proper faces
of C . Since D �= ∅ and irr. supp(l) = ∅, for all l ∈ L , we have C �= L . Thus
C has at least one minimal proper face and s ≥ 1. By Proposition 2.2, v = l +∑s

i=1 λi gi , for some l ∈ L and λi ≥ 0, gi ∈ Gi\L , for i = 1, . . . , s. It follows
irr. supp(v) = ⋃

λi>0 irr. supp(g
i ) = ⋃

λi>0 D
i , where Di = irr. supp(gi ) is the

MMB of the minimal proper face Gi , for i = 1, . . . , s. 	

Next we generalize the characterization of minimal proper faces by MMBs

(Larhlimi and Bockmayr 2009) to higher-dimensional faces.
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Fig. 2 Face lattice of the network in Fig. 1. Each node represents a face of the flux cone together with the
corresponding metabolic behavior and the EFMs contained in that face. The active irreversible reactions are
underlined. Edges connecting the nodes indicate the inclusion of lower-dimensional in higher-dimensional
faces. The only 2-face is the lineality space L and the only 5-face is the entire flux cone C

Proposition 4.2 Let C be the flux cone of a metabolic network and let F be a face of
C. Then all v ∈ relint(F) have the same irreversible support or equivalently share
the same metabolic behavior.

Proof Let v,w ∈ relint(F). Assume w.l.o.g. that there exists j ∈ irr. supp(w)\
irr. supp(v). Then v j = 0, but w j > 0, and hence for any λ > 1, we have
λv + (1− λ)w /∈ C . However, since v,w ∈ relint(F), we know λv + (1− λ)w ∈ F ,
for some λ > 1. This shows irr. supp(v) = irr. supp(w), which implies the
statement. 	

Example 4.3 Consider the network in Fig. 1. If we remove the redundant irreversibility
constraint v6 ≥ 0 and assume 6 ∈ Rev, the MMBs of the network are {2}, {7}, {8}
(if 6 ∈ Irr, the MMBs are {2}, {6, 7}, {6, 8}). The face lattice together with the EFMs
contained in each face is shown in Fig. 2.

5 The degree of flux vectors

Let C be the flux cone of a metabolic network. We define the degree deg(v) of a flux
vector v ∈ C as the dimension of the inclusionwise minimal face of C containing v,
which for v �= 0 is the unique face F of C with v ∈ relint(F). By Proposition 2.1, we
have

deg(v) = n − rank(A=
v ), where A=

v =
⎛

⎝
S

−S
IIrr \ irr.supp(v),�

⎞

⎠ . (6)
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It follows that flux vectors in the lineality space L of C have degree dim(L) and flux
vectors in minimal proper faces have degree dim(L) + 1. A flux vector in the relative
interior of C has degree dim(C).

A widely used technique in metabolic network analysis is to split reversible reac-
tions into two irreversible reactions (Clarke 1980; Schilling et al. 2000; Papin et al.
2004;Gagneur andKlamt 2004;Röhl andBockmayr 2019). In particular, this is applied
in algorithms for EFM computation such as efmtool (Terzer 2009) or EFMlrs
(Buchner and Zanghellini 2021). In these algorithms, splitting all reversible reactions
leads to a pointed coneC ′ in a higher-dimensional space. The EFMs of the original flux
cone C correspond to extreme rays in the reconfigured cone C ′ (Gagneur and Klamt
2004), which all have degree 1 in C ′. Therefore, the degree of an EFM as defined by
(6) has to be determined in the original flux cone C and not in C ′.

Next we further characterize flux vectors in the relative interior of C .

Proposition 5.1 Let C = {v ∈ R
n | Sv = 0, vIrr ≥ 0} be a flux cone with no implicit

equalities in vIrr ≥ 0. For v ∈ C we have deg(v) = dim(C) if and only if vi > 0 for
all i ∈ Irr.

Proof Direct consequence of Proposition 2.4. 	

Although small examples with EFMs in the relative interior of the flux cone can be

constructed, we note that real biological networks typically do not have EFMs where
all unblocked irreversible reactions are active. In these cases, there are no EFMs in
the relative interior of the cone, i.e., all EFMs lie on the relative boundary of C .

Next we prove an upper bound on the degree of flux vectors.

Proposition 5.2 Let C = {v ∈ R
n | Sv = 0, vIrr ≥ 0} be the flux cone of a metabolic

network with lineality space L. Then for each flux vector v ∈ C

deg(v) ≤ dim(L) + |irr. supp(v)|.

Proof By definition of the lineality space L , t := dim(L) = n − rank(A), with

A =
⎛

⎝
S

−S
IIrr,�

⎞

⎠.

By (6), we have deg(v) = n − rank(A=
v ), with A=

v =
⎛

⎝
S

−S
IIrr \ irr.supp(v),�

⎞

⎠.

It follows rank(A)−rank(A=
v ) = (n−t)−(n−deg(v)) = deg(v)−t . Thus, at least

deg(v)−t rows from Amust bemissing in A=
v . This implies |irr. supp(v)| ≥ deg(v)−t

or deg(v) ≤ t + |irr. supp(v)|. 	

By combining Proposition 3.4 and Proposition 5.2, we get an upper bound on the
degree of EFMs.

Corollary 5.3 Let C = {v ∈ R
n | Sv = 0, vIrr ≥ 0} be the flux cone of a metabolic

network with lineality space L. Then for each EFM e ∈ C

deg(e) ≤ dim(L) + (rank(S�,Irr) + 1).
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A B
1 2

3

4

Fig. 3 Example network

Table 2 Maximum number of active irreversible reactions and maximum degree of EFMs together with
the upper bounds from Proposition 3.4, 5.2 and Corollary 5.3

E. coli core Pentose phosphate Pyruvate

(|M|, |R|) (72, 94) (34, 57) (28, 81)

|Irr| 48 19 40

|Rev| 46 38 41

rank(S) 67 34 28

rank(S�,Irr) 41 16 24

t = dim(lin. space(C)) 0 8 16

q = max{|irr. supp(e)| : e EFM} 23 9 10

r = rank(S�,Irr) + 1 (cf. Proposition 3.4) 42 17 25

max{deg(e) : e EFM} 6 14 24

t + q (cf. Proposition 5.2) 23 17 26

t + r (cf. Corollary 5.3) 42 25 41

dim(C) 23 23 53

|EFMs| 16673 5180 47854

The following example shows that the bound from Corollary 5.3 is sharp.

Example 5.4 The network in Fig. 3 contains 2 metabolites and 4 reactions, with Rev =
{1, 2} and Irr = {3, 4}. Given the stoichiometric matrix

S =
(
1 −1 0 0
0 1 1 −1

)

the network has the EFMs e1 = (1, 1, 0, 1), e2 = (−1,−1, 1, 0) and e3 =
(0, 0, 1, 1), with deg(e1) = deg(e2) = 1 and deg(e3) = 2. Note that C =
cone({e1, e2}) and e3 = e1 + e2 ∈ relint(C). Since there are no reversible flux
vectors, we have dim(lin. space(C)) = 0. Furthermore, rank(S�,Irr) = 1 and thus
deg(e3) = dim(lin. space(C)) + (rank(S�,Irr) + 1) = 2.

For the example networks E.coli core, Pentose Phosphate Pathway
and Pyruvate from Sect. 3.3, the maximum degree of EFMs and the upper bounds
from Proposition 5.2 and Corollary 5.3 are given in Table 2. We can see that l =
max{|irr. supp(e)| : e EFM} ismuch smaller than the upper bound rank(S�,Irr)+1 from
Proposition 3.4. The actual degrees of the EFMs in these networks are summarized in
Fig. 4.
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Fig. 4 Degree distribution of EFMs

The next proposition explains the scarcity of EFMs in the relative interior of a flux
cone C , in the facets of C and in the faces of dimension dim(C) − 2.

Proposition 5.5 Let C = {v ∈ R
n | Sv = 0, vIrr ≥ 0} be a flux cone with no

redundant inequalities or implicit equalities in vIrr ≥ 0. If |Irr| > rank(S�,Irr)+q, for
some q ∈ {1, 2, 3}, then deg(e) ≤ dim(C) − q, for each EFM e of C.

Proof By Prop. 3.4, |irr. supp(e)| ≤ rank(S�,Irr) + 1, for each EFM e of C .
Assume deg(e) = dim(C) − (q − 1), for some q ∈ {1, 2, 3}. Then, by definition,

the inclusionwise minimal face F containing e has dimension dim(C) − (q − 1) ≥
dim(C)−2. It follows that e resp. F is contained in exactly q−1 facets ofC . Here we
use for q = 3 that a (dim(C)−2)-face is contained in exactly two facets, cf. (Schrijver
1986, p.105).

By the hypothesis on the description of the cone, it follows |irr. supp(e)| = |Irr| −
(q − 1). So we get |Irr| − (q − 1) ≤ rank(S�,Irr) + 1 or |Irr| ≤ rank(S�,Irr) + q, in
contradiction to the hypothesis |Irr| > rank(S�,Irr) + q. 	


In the proof we used that (dim(C) − q)-faces of a cone C are contained in exactly
q facets of C , for q = 0, 1, 2. As the example of a 3-dimensional pointed cone with
n facets shows, a (dim(C) − 3)-face (here the origin) can be contained in an arbitrary
number of facets, and thus a similar argument does not hold for such faces. To limit
the number of facets a face can be contained in, we introduce the concept of l-simple
cones and use this for a generalization of Prop. 5.5.
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A cone C ⊆ R
n is called l-simple for some l ≥ 1, if every k-face of C is contained

in at most l · (dim(C) − k) facets of C , for all k = dim(lin. space(C)), . . . , dim(C).
Assuming that a flux cone is l-simple leads to another bound on the degree of EFMs.

Proposition 5.6 Let C = {v ∈ R
n | Sv = 0, vIrr ≥ 0} be an l-simple cone with no

redundant inequalities or implicit equalities in vIrr ≥ 0. Then for each EFM e ∈ C

deg(e) ≤ dim(C) − |Irr| − (rank(S�,Irr) + 1)

l
.

Proof By Prop. 3.4, |irr. supp(e)| ≤ rank(S�,Irr) + 1 for each EFM e ∈ C and thus at
least |Irr| − (rank(S�,Irr) + 1) entries of vIrr are equal to zero. Hence e is contained in
at least |Irr|− (rank(S�,Irr)+1) facets of C . Suppose deg(e) = k and let e ∈ F , where
F is a k-face of C . Since C is l-simple, F is contained in at most l · (dim(C) − k)
facets. It follows

|Irr| − (rank(S�,Irr) + 1) ≤ l · (dim(C) − k)

or

deg(e) = k ≤ dim(C) − |Irr| − (rank(S�,Irr) + 1)

l
.

	

Note that this bound is mainly theoretical because for the computation of l all faces
of the flux cone have to be considered. Nevertheless |Irr| ≥ rank(S�,Irr) and |Irr| is
typically significantly larger than rank(S�,Irr) (cf. Table 2).

6 Decomposing flux vectors

Elementary flux modes have been introduced as minimal functional units of a
metabolic network (Schuster and Hilgetag 1994; Schuster et al. 2000). Any vector
v ∈ C in the flux cone C of a metabolic network can be decomposed into a conic
combination

v =
m∑

i=1

λi e
i , with λi > 0, (7)

of elementary flux modes e1, . . . , em ∈ C , see e.g. Lemma 1 in (Schuster et al. 2002).
Note that in most cases, this decomposition is not unique.

Decomposing flux vectors into elementary flux modes has been widely used in
metabolic pathway analysis, see e.g. (Poolman et al. 2004; Schwartz and Kanehisa
2005; Chan and Ji 2011; Jungers et al. 2011; Rügen et al. 2012; Kelk et al. 2012;
Maarleveld et al. 2015; Oddsdóttir et al. 2015).
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Here we show that the size and complexity of such a decomposition crucially
depends on the degree of v. More precisely, we prove in Prop. 6.2 that any flux vector
of degree k is a conic combination of at most k EFMs of degree at most k.

We first note that decomposing a flux vector belonging to some face F ⊆ C is only
possible by using vectors from the same face F .

Proposition 6.1 Let C = {v ∈ R
n | Sv = 0, vIrr ≥ 0} be the flux cone of a metabolic

network. Let F = {v ∈ C | vI = 0}, for some I ⊆ Irr, be a face of C.
If v = ∑m

i=1 λiv
i , λi > 0, is a conic decomposition of a flux vector v ∈ F into flux

vectors v1, . . . , vm ∈ C, then v1, . . . , vm ∈ F.

Proof Suppose vl /∈ F, for some l ∈ {1, . . . ,m}. Then vlj > 0, for some j ∈ I . It

follows v j = ∑m
i=1 λiv

i
j ≥ λlv

l
j > 0, and therefore v /∈ F . 	


Next we show that any flux vector v ∈ C of degree k can be decomposed into a
conic combination of at most k EFMs of degree at most t+1, where t is the dimension
of the lineality space L ofC . In other words, this means that any flux vector of degree k
can be written as a non-negative sum of at most k EFMs, all belonging to the lineality
space or to some minimal proper face of the flux cone. From each minimal proper
face, at most one EFM is needed for the decomposition and all EFMs belonging to
the same minimal proper face share the same minimal metabolic behavior (MMB). In
the special case k = t , the EFMs in the decomposition all have degree t and belong
to the lineality space (cf. Prop. 6.1).

Proposition 6.2 Let C ⊆ R
n be the flux cone of a metabolic network and let v ∈ C be

a flux vector with deg(v) = k. Let F ⊆ C, dim(F) = k, be the inclusionwise minimal
face containing v. Then

i) v can be decomposed into a conic combination v = ∑m
i=1 λi ei , λi > 0, of at most

m ≤ k EFMs ei ∈ F, with deg(ei ) ≤ t + 1, for i = 1, . . . ,m, where t is the
dimension of the lineality space L of C.
In the special case k = t and F = L, we have ei ∈ L and deg(ei ) = t , for
i = 1, . . . ,m.

ii) with probability 1, v does not allow for a conic decomposition into m < k EFMs.

Proof i): Since the EFMs generate the flux cone C (Schuster et al. (2002), Lemma 1),
there exists a conic decomposition v = ∑m

i=1 λi ei , λi > 0, for some EFMs
e1, . . . , em ∈ C . By Prop. 2.2 we can assume that e1, . . . , em belong to the lineality
space or to theminimal proper faces ofC , i.e., deg(ei ) ≤ t+1, for i = 1, . . . ,m. Using
Carathéodory’s theorem, see e.g. (Lauritzen 2013, Prop. 3.14), we can also assume
that the EFMs e1, . . . , em in the conic decomposition (7) are linearly independent. By
Prop. 6.1, it follows that e1, . . . , em ∈ F . Since dim(F) = k, there can be at most k
linearly independent vectors in F , thus m ≤ k and the result follows.

ii): Using k − 1 EFMs one can generate at most a (k − 1)-dimensional subset of
the k-dimensional face F . Since there are only finitely many ways of choosing k − 1
EFMs in the set of all EFMs, the set of flux vectors v ∈ F that can be decomposed
into a combination of k−1 EFMs is the finite union of sets of k-dimensional volume 0
and therefore itself a set of k-dimensional volume 0 in F . This implies the result. 	
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Note that Prop. 6.2 applies also to EFMs in higher-dimensional faces, for which
we get the following result:

Corollary 6.3 Let e ∈ C be an EFMwith deg(e) = k ≥ t +2, where t is the dimension
of the lineality space L of C. Then e can be decomposed into a conic combination
e = ∑m

i=1 λi ei , λi > 0, 2 ≤ m ≤ k, of at least 2 and at most k EFMs of degree
strictly smaller than k.

Since every k-face F ⊆ C is the conic hull of the EFMs contained in F , we get the
following lower bound on the number of EFMs in F .

Proposition 6.4 Let F ⊆ C be a face of the flux cone C with dim(F) = k. Then F
contains at least k EFMs. In particular, the cone C itself contains at least dim(C)

EFMs.

To conclude this section we illustrate the decomposition of flux vectors of different
degree on a concrete example from flux balance analysis (Orth et al. 2010).

Example 6.5 We consider again the E.coli core model, now with the biomass
reaction included. Using COBRApy (Ebrahim et al. 2013), we perform a flux balance
analysis (FBA), where we determine the optimal growth rate while glucose uptake
Ex_glc__D_e is limited by a lower bound of −10 (the number is negative because the
exchange reactions in this model are oriented outwards). The remaining reactions have
an upper bound of 1000 and lower bounds of −1000 resp. 0 for the reversible resp.
irreversible reactions. The optimal growth rate of 0.917 is attained by a flux vector of
degree 1, which is an extreme ray of the pointed flux cone and thus also an EFM.

Adding the lower bound 8.39 for the ATP-maintenance reaction ATPM leads to the
standard version of the model when downloaded from the BiGG database (King et al.
2016). Now the optimal growth rate is 0.874 and the flux vector achieving this has
degree 2. There is a unique decomposition into the 2 EFMs of degree 1 that span the
2-face containing this optimal solution.

If we perform a single knock-out of the gene b1761 (gdhA), which blocks the
reaction GLUDy, the new optimal growth rate is 0.851. The degree of the flux vector
achieving this optimal growth rate changes to 3 and the 3-face containing this optimal
solution is spanned by 3 EFMs of degree 1. Therefore, there is only one decomposition
of this optimal solution into 3 EFMs of degree 1.

After knocking out a second gene b3236 (mdh), which blocks the reactionMDH, the
new optimal growth rate is 0.801. The degree of the flux vector achieving this optimal
growth rate now is 4 and the 4-face containing this optimal solution is spanned by 6
EFMs of degree 1. Here there are 4 different decompositions of the optimal solution
into 4 EFMs of degree 1.

It should be noted that the optimal solutions to FBA problems are generally not
uniquely determined.We chose the solution that was returned by COBRApy. Different
solutions with the same optimal value can lie in different faces of the flux cone.
Therefore, they can have a different degree and thus also a different number of EFMs
in their decomposition.
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Fig. 5 Cardinalities of MMBs with and without redundant irrversibility constraints

7 The cardinality of minimal metabolic behaviors

We next prove an upper bound on the cardinality of MMBs.

Proposition 7.1 Let C be the flux cone of a metabolic networkN with lineality space
L. Then for each MMB D

|D| ≤ |Irr| − (dim(C) − dim(L)) + 1.

Proof By definition of an MMB, there exist a minimal proper face G of C , dim(G) =
dim(L) + 1, and a flux vector g ∈ G\L such that D = irr. supp(g). It follows that
g is contained in at least dim(C) − (dim(L) + 1) facets of C . Therefore at least
dim(C)− (dim(L)+1) inequalities in vIrr ≥ 0 are satisfied by g with equality, which
implies |irr. supp(g)| = |D| ≤ |Irr| − (dim(C) − (dim(L) + 1)). 	


In general, MMBs often contain irreversible reactions for which the non-negativity
constraint is redundant. If we remove redundant non-negativity constraints (i.e., shift
the corresponding reactions from Irr to Rev) until the description contains no more
redundant inequalities, this typically leads to much smaller cardinalities of MMBs.

For our example networks E.coli core, Pentose Phosphate Pathway
and Pyruvate, the number of MMBs is 1421, 19 and 37 respectively. In Fig. 5
we compare the cardinalities of the MMBs in the original description of the flux
cone and after removing redundant irreversibility constraints. If we start from the
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original description, Prop. 7.1 provides the upper bounds 18, 5 and 4 respectively,
while the actual maximal sizes of the MMBs are 17, 4 and 3. If we remove redundant
non-negativity constraints in lexicographical order (i.e., the redundant non-negativity
constraint corresponding to the irreversible reactionwith the smallest index is removed
first), the bounds become sharp, i.e., we get the bounds 9, 3 and 1 respectively, and
these bounds coincide with the actual maximal sizes of the MMBs.

Proposition 7.2 Let C = {v ∈ R
n | Sv = 0, vIrr ≥ 0} be the flux cone of a metabolic

network with lineality space L and no redundant inequalities or implicit equalities in
vIrr ≥ 0. Then the number of facets of C is equal to dim(C) − dim(L) if and only if
each MMB has cardinality one.

Proof By Prop. 3.3, the number of facets is equal to |Irr|. Thus if |Irr| = dim(C) −
dim(L), then by Prop. 7.1, 1 ≤ |D| ≤ |Irr| − (dim(C) − dim(L)) + 1 = 1, for each
MMB D in C .

Conversely, if each MMB has cardinality 1, then each minimal proper face is the
intersection of all facets of C but one. For all i ∈ Irr, Gi = {v ∈ R

n | Sv =
0, vIrr \{i} = 0, vi ≥ 0} is a face of C , with dim(Gi ) ≤ dim(L) + 1. Since vi ≥ 0 is
not an implicit equality, there exists gi ∈ C with gii > 0. Let D̄i = { j ∈ Irr | gij > 0}
be the metabolic behavior defined by gi . By Prop. 4.1, D̄i , i ∈ D̄i , is the union of
MMBs, which by hypothesis all have cardinality 1. Thus, for all i ∈ Irr, Di = {i}
is an MMB with the corresponding minimal proper face Gi , where Gi\L = {v ∈
R
n | Sv = 0, vIrr \{i} = 0, vi > 0} and dim(Gi ) = dim(L) + 1. We conclude that

the number of minimal proper faces of C is equal to the number of facets, which by
Prop. 3.3 is equal to |Irr|.

It remains to prove that |Irr| = dim(C)−dim(L). LetU = {u ∈ R
n | Su = 0} and

W = {w ∈ R
n | wIrr = 0}. Then U ∩ W = L and since by hypothesis there are no

implicit equalities, dim(C) = dim(aff(C)) = dim(U ). From the dimension formula,
we get dim(U +W ) = dim(U ) + dim(W ) − dim(U ∩W ) = dim(C) + (n − |Irr|) −
dim(L) or dim(C) − dim(L) = |Irr| − (n − dim(U + W )).

We claim dim(U + W ) = n, i.e., U + W = R
n . For each minimal proper face

Gi , i ∈ Irr, choose ei ∈ Gi\L with eii = 1. Then eiIrr is a unit vector, for all i ∈ Irr.

Given v ∈ R
n , let u = ∑

i∈Irr vi · ei and w =
(

vRev − uRev
0

)

. Since Sei = 0, i ∈ Irr,

we get Su = ∑
i∈Irr vi · Sei = 0 and thus u ∈ U . By definition, w ∈ W . For all

j ∈ Irr, we have u j = ∑
i∈Irr vi ·eij = v j e

j
j = v j , and thus uIrr = vIrr. Altogether, we

get u + w =
(
uRev
uIrr

)

+
(

vRev − uRev
0

)

=
(

vRev
vIrr

)

= v, which shows U + W = R
n .

	


8 Conclusion

In this paper, we studied geometric properties of elementary flux modes in metabolic
networks. To structure the set of EFMs, we introduce the degree of an EFM and more
generally of a flux vector. We show that EFMs of a smaller degree can be seen as
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more elementary than those of a higher degree, since the EFMs of higher degree can
be decomposed into ones of smaller degree. We use the degree of a given flux vector
to predict the number of EFMs needed to decompose it and illustrate this with FBA
solutions of different degree.

In previouswork, see e.g. (Wagner andUrbanczik 2005), EFMs that are not extreme
rays of a pointed flux cone were simply considered to be interior rays. We show that
EFMs that belong to the (relative) interior of the cone (in the sense of Prop. 5.1) occur
only rarely. Our bounds on the degree of EFMs as well as our computational results
indicate that the EFMs rather lie in lower-dimensional faces of the flux cone.

Regarding future research, the new insights about the distribution of EFMs in the
face lattice of the flux cone raise the question how these can be exploited algorith-
mically. For example, one could focus on enumerating EFMs of smaller degrees and
omit the enumeration of EFMs of larger degrees in order to make EFM analysis for
genome-scale metabolic network reconstructions more tractable.

Example 6.5 suggests that FBA solutions may be decomposed into a small number
of EFMs. Deepening the understanding of the degree of FBA solutions, different EFM
decompositions, and their biological relevance appears to be another promising topic
for further research.

In Sect. 7, we analyze the cardinality of minimal metabolic behaviors and study the
effect of removing redundant irreversibility constraints. Although irredundant descrip-
tions of flux cones are not uniquely determined, further research is needed to determine
theoptimal handlingof redundant constraints. Someproblemsbenefit from the removal
of redundant constraints, while others might benefit from adding them. For example,
looking at the faces of the flux cone becomes easier when there are no redundant
irreversibility constraints, because then every irreversible reaction corresponds to a
facet of the flux cone. Conversely, the reconfiguration method to determine EFMs by
splitting reversible reactions may benefit from adding redundant irreversibility con-
straints. Then fewer reversible reactions have to be split, which reduces the dimension
of the reconfigured cone.
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