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Extracting tomographic information
about quantum states is a crucial task in
the quest towards devising high-precision
quantum devices. Current schemes typ-
ically require measurement devices for
tomography that are a priori calibrated
to high precision. Ironically, the accuracy
of the measurement calibration is funda-
mentally limited by the accuracy of state
preparation, establishing a vicious cycle.
Here, we prove that this cycle can be
broken and the dependence on the mea-
surement device’s calibration significantly
relaxed. We show that exploiting the
natural low-rank structure of quantum
states of interest suffices to arrive at a
highly scalable ‘blind’ tomography scheme
with a classically efficient post-processing
algorithm. We further improve the effi-
ciency of our scheme by making use of
the sparse structure of the calibrations.
This is achieved by relaxing the blind
quantum tomography problem to the
de-mixing of a sparse sum of low-rank
matrices. We prove that the proposed
algorithm recovers a low-rank quantum
state and the calibration provided that
the measurement model exhibits a re-
stricted isometry property. For generic
measurements, we show that it requires a
close-to-optimal number of measurement
settings. Complementing these conceptual
and mathematical insights, we numerically
demonstrate that robust blind quantum
tomography is possible in a practical
setting inspired by an implementation of
trapped ions.
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1 Introduction
The development of quantum technologies is ar-
guably one of the most vivid scientific endeavours
of current times. This development is faced with
a daunting challenge: To achieve the promising
advantages of those technologies one must en-
gineer individual quantum components with an
enormous precision. The main limiting factors in
implementing the many existing theoretical pro-
posals for exciting applications in quantum com-
puting today are the achievable noise levels and
scalability of the components.

From an engineering perspective, improving
such noisy intermediate scale quantum (NISQ)
devices [1, 2] requires flexible diagnostic tech-
niques to extract actionable advice on how to im-
prove the device in the engineering cycle. Such
diagnostic schemes must meet tight practical con-
straints in terms of their complexity as well as the
required accuracy of the used devices. One of the
most basic diagnostic tasks is the extraction of
tomographic information about quantum states
from experimentally measured data. Indeed, at
the heart of every quantum computation is the
preparation of a quantum state. Quantum state
tomography can therefore provide valuable infor-
mation for improving quantum devices beyond a
mere benchmarking of their correct functioning
[3].

However, in any such endeavour one encounters
the following fundamental challenge: In order to
arrive at an accurate state estimate, most tomog-
raphy schemes rely on measurement devices that
are calibrated to a very high precision. At the
same time, a precise and detailed characteriza-
tion of a measurement device requires an accurate
state preparation. But improving the accuracy of
the state preparation using tomographic informa-
tion was our goal to begin with. We are trapped
in a vicious cycle. This vicious cycle, depicted in
Figure 1, constitutes a fundamental obstacle to
the improvement of quantum devices.

Using various assumptions and models that
are motivated by the specific underlying physi-
cal platform, quantum devices are routinely cal-
ibrated in a bottom-up fashion, building trust
in the individual components such as steps of
ground state preparation, read-out, and indi-
vidual gate pulses one at a time. However,
such methods are ultimately limited by the vi-
cious cycle. State-of-the-art quantum comput-

Figure 1: In the quest to engineer high fidelity quantum
technologies one encounters a vicious cycle: Extracting
actionable advice to correct for error in the state prepa-
ration requires accurate quantum state estimation. The
accuracy of a state estimate crucially relies on the precise
calibration of the measurement device. But the calibra-
tion can ultimately only be tested and improved if high
fidelity quantum states are provided.

ing experiments in addition employ the feed-
back from self-consistent characterization meth-
ods that are robust to state-preparation and mea-
surement (SPAM) errors such as (linear) cross-
entropy benchmarking [4, 5], other variants of
randomized benchmarking [6, 7, 8, 9] or gate-
set tomography [10, 11] to refine the device cal-
ibration heuristically. Notably, these approaches
are closely tied to modelling a quantum com-
puting device in terms of structured gate sets
in addition to state preparation and measure-
ment, and moreover require performing sequences
of multiple gates. Such models are distinct from
our abstraction in terms of an unknown state-
preparation and an uncalibrated device.

An important conceptual question with imme-
diate practical relevance is therefore: Is there any
hope to directly break the vicious cycle? In other
words, can one perform quantum state tomogra-
phy blindly, that is, without full knowledge of the
measurement to begin with? More specifically,
can one simultaneously infer a quantum state and
learn certain unknown calibration parameters of
the measurement device in a self-calibrating to-
mography scheme [12]? A simple parameter count
indicates that this is typically impossible by just
measuring a set of mutually orthogonal observ-
ables: While an arbitrary quantum state in a
d-dimensional Hilbert space is characterized by
d2−1 many real parameters, at the same time, the
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number of linearly independent measurements in
this space implies that we can learn at most d2

independent parameters. This leaves room for
a single additional (calibration) parameter only
and prohibits even slightly relaxing the require-
ment of a complete and accurate characterization
of the measurement device towards a partially un-
calibrated device. Tomography of an arbitrary
quantum state is therefore typically intrinsically
measurement device-dependent in this sense.

In this work, we break this vicious cycle. We
observe that the above naive parameter count
misses the point that in reasonably controlled
quantum devices, commonly encountered quan-
tum states exhibit a natural structure: they are
close to being pure. We leverage this natural
property to prove that one can simultaneously
learn an unknown calibration and a low-rank
quantum state. We thus arrive at what we coin
a semi-device-dependent scheme in which the de-
pendence on the measurement apparatus is sig-
nificantly softened.

In order to achieve this goal, we formulate the
blind tomography problem as the recovery task of
a highly structured signal. This allows us to ex-
ploit and further develop a powerful formal ma-
chinery from modern signal processing to pro-
pose a scalable self-calibrating state tomography
scheme that comes with mathematically guaran-
tees. We use a general model of the measure-
ment device which applies in a variety of relevant
experiments: we model the measurements as de-
pending linearly on the unknown parameters of
the possible calibration errors. Indeed, in many
situations the daunting uncertainty about the de-
vice calibration is small and can be approximated
as a linear deviation from an empirically known
calibration baseline.

Our scheme makes a trade-off between the de-
pendence on the measurement device and the
state preparation device explicit and allow to
optimally exploit this dependence in a practical
scheme. It is an intriguing feature of our results
that while structural assumptions on the quan-
tum state to be learned typically allow for more
efficient solutions [13, 14, 15, 16, 17], here, struc-
tural assumptions allows one to solve a task in
settings where it could not be solved at all in the
absence of this assumption.

Going further, we exploit yet another structure
to significantly extend the realm of applicability

and efficiency of our scheme, namely the spar-
sity of the calibration. Physically, this structural
property amounts to the assumption that only a
small number out of the many possible calibration
errors has occurred in the specific experiment. In
our scheme we therefore simultaneously exploit
the low-rank structure of the quantum state and
sparsity of the calibration coefficients to overcome
the vicious tomography cycle and provide rigor-
ous guarantees with a favourable scaling in terms
of both the system dimension and the number of
calibration errors.

1.1 Provable blind tomography via sparse de-
mixing

Let us be slightly more formal in order to give an
overview over methods used, and technical con-
tributions made in this work. In mathematical
terms, the blind tomography task that we solve
is to infer a vector ξ of n calibration parameters
and a rank-r quantum state ρ from data of the
form

y = Bξ(ρ) = A(ξ ⊗ ρ) (1)

where B : ξ, ρ 7→ Bξ(ρ) is a bi-linear map de-
scribing the measurement model. The measured
data y might for example be estimates for the
expectation values of observables or probabilities
of POVM elements. For the time being, we ig-
nore the error of the estimates induced by finite
statistics. It is convenient to regard the data as
associated to a structured linear estimation prob-
lem: we can equivalently model the measurement
map as a linear map A acting on ξ ⊗ ρ.

Such structured linear inverse problems are
studied in the mathematical discipline of model-
based compressed sensing [18, 19], where efficient
algorithms with analytical performance guaran-
tees have been developed. A work horse of com-
pressed sensing that most rapidly solve the rele-
vant inverse problems are so-called iterative hard-
thresholding (IHT) algorithms [20]. In this work,
we will use this general algorithmic paradigm,
study the novel thresholding operations that arise
in our context and prove new recovery guarantees.

As a first result of this work, we establish that
the key step of an IHT algorithm that solves the
blind tomography problem is NP-hard. To over-
come this obstacle, we propose an IHT algorithm
that solves a slightly relaxed version of the blind
tomography problem: the task of de-mixing a
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sum of n different low-rank quantum states ρi,
i.e., data of the form

y = A
(

n∑
i=1

ξiei ⊗ ρi

)
, (2)

where {ei}n
i=1 denotes the standard orthonormal

basis. An efficient IHT algorithm for the de-
mixing problem of low-rank matrices was devel-
oped and analysed in Ref. [21]. This algorithm
can be readily adapted to our problem.

But relaxing the blind tomography problem to
the de-mixing problem artificially introduces an
overhead in the number of unknown degrees of
freedom of the problem scaling as 2drn, and in
particular linearly with the number of calibration
parameters in the model. This leads to an un-
favourable situation in a two-fold manner: First,
determining many calibration parameters also re-
quires many measurement settings as the cost per
calibration parameter scales with the dimension
d of the quantum system. Second, a necessary
condition for a well-posed blind de-mixing prob-
lem of rank-r with a maximal number of d2 lin-
early independent measurements of the form (2)
is that there are more linearly independent mea-
surements than real parameters, i.e., 2rnd ≤ d2.
This means that the simultaneous determination
of a certain number of calibration parameters n
can in principle only work for sufficiently large
system dimension d in many situations. This
causes severe constraints in the achievable self-
calibration for small system sizes.

We argue that an additional well-motivated
structural assumption can render the blind to-
mography much more broadly applicable. This
structure is exploited in our new sparse-demixing
thresholding (SDT) algorithm. Our argument is
based on the observation that the problem of de-
termining an accurate estimate of the quantum
state in the blind setting involves solving two dis-
tinct sub-problems: first, one needs to determine
which ones of many potential error models of the
measurement contribute. Second, one needs to
estimate the calibration parameters of these mod-
els. Generically, there are many potential models
that parametrize, for instance, the deviation of
every imperfect implementation of a fixed mea-
surement setting from its ideal implementation.

In this case, the first problem becomes com-
binatorially costly since many distinct measure-
ment settings need to be simultaneously cal-

ibrated. In contrast, in our approach, it is
straightforward to solve both tasks simultane-
ously and even avoid a combinatorial overhead
using the built-in relaxations of compressed sens-
ing. To this end, we observe that allowing for
many potential errors with associated calibration
parameters only a small number s of which con-
tribute amounts to assuming that the calibra-
tion vector ξ is s-sparse, i.e., it has only s non-
vanishing entries. Of course, we do not assume
that we know the support of the vector ξ. This
falls naturally into the framework of structured
signal recovery. To summarize: we observe data
generated by linear measurements acting on ξ⊗ρ
where ξ is an s-sparse vector and ρ is a rank r
quantum state.

We are now faced with the recovery problem
of de-mixing a sparse sum of different low-rank
quantum states. We show that the projection
onto this structure can be efficiently calculated
using hierarchical thresholding [22] and therefore
circumvents our NP-hardness result. We derive
the corresponding iterative hard-thresholding al-
gorithm and prove that it successfully recovers
the states ρi and the sparse vector ξ provided
that the measurement map A acts isometrically
on sparse sums of low-rank states. We further
show that generic measurement ensembles with
m different measurement settings exhibit this re-
stricted isometry property provided that m scales
at least as srd + s logn. Thus, we find that our
algorithm solves the blind tomography problem
with an overhead in the required number of mea-
surements that scales linearly in s as compared
to the number of degrees of freedom in the prob-
lem given by rd + s. In particular, the number
of potential calibration models n enters only loga-
rithmically in the measurement complexity of the
scheme. This renders the scheme highly scalable
in n providing flexibility in the modelling of sys-
tematic measurement errors or calibration correc-
tions. Furthermore, it leaves sufficiently many
linearly independent parameters to allow one to
infer a couple of calibration parameters already
for comparably small system sizes. We demon-
strate the performance of the algorithm for the
physically relevant case of measuring Pauli oper-
ators that are locally mixed with the unknown
calibration parameters. Our results do not only
answer a practically-inspired, conceptional ques-
tion at hand in the context of blind quantum to-
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mography, but at the same time contribute to the
mathematical framework of compressed sensing
as such and have potential application in other
engineering disciplines.

1.2 Practical blind tomography

Going beyond working out the theoretical guar-
antees, we numerically demonstrate the func-
tioning of the scheme and the mindset behind
it. Specifically, we show that the iterative hard-
thresholding algorithm solves the blind tomogra-
phy problem from much fewer samples than com-
peting methods from generic (Gaussian) measure-
ments as well as sub-sampled random Pauli mea-
surements. We then take the theoretical model
to the practical testbed and turn to a realistic
model of measurement errors given by a coher-
ent over-rotation along some axis. Those mea-
surements have significantly more structure. We
observe that the measurement structure together
with the sparsity constraints causes the SDT al-
gorithm to frequently get stuck at objective vari-
ables with an incorrect support. For this reason,
we also study the performance of a more prag-
matically minded optimization strategy, namely,
constrained alternating minimization that does
not require the relaxation to the de-mixing prob-
lem. We numerically demonstrate that the blind
tomography problem in a realistic setting can be
solved using this adapted algorithmic approach.
Thereby, we show that exploiting the low-rank
structures of quantum states allows for perform-
ing tomography blindly in realistic calibration
and measurement models. These findings may
serve as a strong motivation and invitation to
translate our approach to a variety of concrete
experimental settings that are practically relevant
in the quantum technologies. The main theoret-
ical prerequisite is to identify plausible linear (or
simple non-linear) calibration models for concrete
measurement implementations. However, it is a
formidable experimental task in itself to identify
an application and demonstrate a concrete ad-
vantage of performing state tomography blindly
compared to using standard bottom-up proto-
cols, other semi-device-dependent robust calibra-
tion approaches or error mitigation techniques.

DI DDsemiDI semiDD

Self-
testing

[23, 24, 25, 26] Blind
tomography

Standard
tomography

Figure 2: Illustration of the spectrum between fully
device-independent (DI) and fully device-dependent
(DD) quantum system characterization methods such
as self-testing and standard tomography, respectively.
Semi-device-independent (semi-DI) methods relax the
stringent requirements of full device-independence. Self-
calibrating tomography relaxes the assumptions on the
calibration of the measurement device and therefore ex-
emplifies a semi-device-dependent (semi-DD) scheme.
The blind tomography scheme presented here is an ex-
ample of such a semi-device-dependent scheme.

1.3 Related work and applications in signal
processing

In our semi-device-dependent, self-calibrating
scheme we aim at softening the requirements of
fully device-dependent schemes that crucially rely
on perfect measurement apparata. Coming from
the opposite end, in quantum communications
introducing mild assumptions such as bounds
on the system dimension [27], one can weaken
the impractical stringency of full device indepen-
dence to semi-device independence [23, 24, 25,
26]. Device-independent and device-dependent
approaches can, thus, be seen as the extreme ends
of an axis that quantifies the amount of assump-
tions on the measurement device, see Figure 2 for
an illustration. Hand in hand with reducing the
amount of assumptions and gaining robustness to
imperfections, the amount of novel information
that can be gained is dramatically reduced. Semi-
device-independent schemes move away from the
requirements of full device-independence towards
more practical settings but are still extremely de-
manding in terms of the required resources and
acceptance criteria. Our semi-device-dependent
tomography scheme lies in the opposite regime. It
slightly relaxes the assumptions on the precision
of the measurement apparatus but still extracts
tomographic information.

Self-calibrating tomography schemes have been
previously proposed in specific contexts using dif-
ferent methods and assumptions as a leverage to
break the vicious blind tomography cycle. In
Ref. [28] it has been argued that single photon
detectors can be simultaneously calibrated dur-
ing state tomography under the assumptions that
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the state is squeezed extending the mindset of
Ref. [29]; see also Ref. [30] for a more extensive
discussion of potential classes of states and the
recent Ref. [31] for error bars in this context.
Ref. [12] has reported experimental demonstra-
tion of simultaneously reconstructing a quantum
state together with certain unknown unitary ro-
tations associated to the measurement device via
maximum likelihood estimation in a linear optics
setting. Here, the term ‘self-calibrating tomogra-
phy’ was coined. From a practical perspective,
this work is perhaps closest in mindset to the
current work. Complementing and going signifi-
cantly beyond this work, here we prove that such
a self-calibrating approach works under very mild
and natural structural assumptions and give rig-
orous guarantees.

Another general-purpose framework is the
Gram matrix completion proposed in Refs. [32,
33]. Here, a correlation matrix encoding infor-
mation about the measurement, the state and
the measured data is completed from a subset
of known indices. So-called data-pattern tomog-
raphy [34] avoids the calibration of the measure-
ment device by comparing the data to previously
determined signatures of well-controlled reference
states such as coherent states [35]. More concep-
tually speaking, schemes incorporating model se-
lection for quantum state tomography can be also
viewed as self-calibrating [36].

Another set of approaches focuses on character-
izing entire gate sets or their respective unitary
errors self-consistently from the observed statis-
tics when applying different sequences [10, 11,
37, 38, 39, 40]. These methods typically rely on
a certain design of the measurement sequences
and cost-intensive classical post-processing. In
contrast, our model of the measurement devices
as linearly depending on a set of calibration pa-
rameters is much simpler and requires far less re-
sources.

Our work builds-on and further develops
compressed-sensing techniques for the tomogra-
phy of quantum devices. Previous compressed-
sensing schemes for quantum tomography re-
duce the effort in the data acquisition while
still ensuring an efficient classical post-processing
[13, 41, 42, 15, 43, 44]. These schemes come with
theoretical guarantees and have as well been suc-
cessfully employed in experiments [17, 16, 45].
The practical applicability of compressed sens-

ing tomography schemes rests on their robustness
and stability against various imperfections of the
experimental setup. Small deviations from the
compressive model assumption and additive er-
rors to the measurement outcomes, e.g. induced
by finite statistics, are reflected in a proportional
and only slightly enhanced estimation error. Still,
the schemes rely on measurement devices that are
calibrated to very high precision with the notable
exception of compressive tomography schemes for
quantum processes that use randomized bench-
marking data [46, 47]. Here, we relax this require-
ment using a semi-device-dependent approach. In
distinction, in the previous schemes low-rank as-
sumptions were considered to reduce the com-
plexity of a tomography scheme, giving rise to an
important quantitative improvement. Here, those
assumptions are expected to often make blind to-
mography possible in the first place and therefore
permit even a qualitative improvement over the
known schemes.

Recovery problems of the form (1) or the re-
lated de-mixing problem (2) also arise in other
disciplines. For example, these problems appear
in future mobile communication scenarios with
the promise to yield much more scalable proto-
cols with respect to the number of served devices
[48]. More specifically, our work can be applied
in order to extend the internet-of-things setup de-
scribed in Ref. [21] in case one additionally wants
to exploit the sporadic (sparse) user activity of
machine-type messaging. Furthermore, our work
identifies yet another set of hierarchical signal
structures that allow for an efficient projection:
It extends the work on compressed sensing with
hierarchically sparse signals of a subset of the au-
thors to low-rank matrices [49, 22].

The remainder of this work is organized as fol-
lows. In the subsequent Section 2, we give a
detailed description of a concrete experimental
setup that motivates our mathematical formula-
tion of the blind tomography problem. In Sec-
tion 3, we provide the formal definitions of the
blind tomography problem and introduce the no-
tation used in the subsequent parts of the work.
The details of the sparse demixing algorithm and
its variant based on alternating optimization are
derived in Section 4. On the way, we establish the
NP-hardness of the projection associated to the
original blind tomography problem. The theo-
rems guaranteeing the performance of the sparse
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demixing algorithm are explained in Section 5.
The corresponding proofs are given in the ap-
pendix. Finally, numerical simulations of the al-
gorithms performance and its application to prac-
tical use cases are shown in Section 6 before we
conclude with an outlook in Section 7.

2 Quantum state tomography with im-
perfect Pauli correlation measurements

So far, our description of the measurement
scheme has been fairly abstract. In the follow-
ing, we describe a concrete scenario in which our
formalism applies. Consider an ion trap exper-
iment preparing a multi-qubit quantum state ρ.
We perform Pauli correlation measurements, i.e.,
we estimate m expectation values of the form

A0(ρ)(k) = Tr
[
ρ
(
W

(k)
1 ⊗W

(k)
2 ⊗ · · · ⊗W

(k)
l

)]
,

(3)
where W (k)

j ∈ {X,Y, Z, Id} is a Pauli matrix act-
ing on the jth qubit and k ∈ [m] := {1, 2, . . . ,m}.
We refer to A0 : Cd×d → Rm as the measurement
map or sampling operator 1.

In many experimental setups, it is natural to
implement measurements of a certain Pauli ob-
servable – in the case of ion traps Pauli Z – while
the other Pauli observables require more effort.
A measurement of any other Pauli observable –
in the case of ion traps Pauli X and Pauli Y –
can then be implemented by applying a suitable
sequence of unitary gates prior to the measure-
ment. For example, using addressed laser pulses
of different duration one can implement rotations
around different axes and thus implement the
Hadamard gate H as well as the phase gate S.
In this way, one can realize measurements in the
X = HZH and Y = SHZHS† basis.

But each application of an additional gate may
come with a coherent error in addition to the
native error associated with the measurement
itself. In this way, we end up with different
systematic errors for different Pauli observables

1Note that one might actually implement projective
measurements in the multi-qubit Pauli basis as done, e.g.,
in Refs. [16, 17]. While such projective measurements
contain more information than the Pauli correlation mea-
surement, we restrict ourselves to Pauli expectation values
both for the sake of simplicity and to remain in a setting
for which theoretical guarantees can be proven [13, 42].

parametrized by the angles θ, φ of a coherent er-
ror given by eiθXeiφZ . This gives rise to some
probability of actually measuring the expectation
value of another local Pauli matrix than the tar-
geted one. For example, consider a coherent error
given by a (small) rotation around the Z-axis as
given by eiφZ . The faulty implementation of the
Hadamard gate is then given by H̃ = eiφZH. Of
course, the native Z-measurement is untouched
by this coherent error, since no unitary rotation
precedes this measurement. However, instead of
Y one now actually measures Ỹ = SH̃ZH̃†S† =
cos(2φ)Y + sin(2φ)X. At the same time X re-
mains undisturbed.

More generally, we can introduce calibration
parameters ξW →W̃ measuring the strength of the
error that replaces a certain target Pauli matrix
W by W̃ . For instance, in the above example
those parameters are given by ξY →Y = cos(2φ),
ξY →X = sin(2φ) and ξZ→Z = ξX→X = 1. For
simplicity, we assume that these calibration pa-
rameters are identical for different qubit registers.
Assuming that errors are not too large, the cal-
ibration parameters for the target measurement
fulfil ξW →W ≈ 1 or all W ∈ {X,Y, Z}. This
leaves us with six independent calibration param-
eters corresponding to the cross-contributions.
To construct the measurement map A, we start
from the definition of the target measurement A0
in (3). From A0 we can derive calibration mea-
surement components AW →W̃ appearing with the
coefficient ξW →W̃ by replacing all appearances of
the Pauli matrix W in the definition of A0 with
W̃ . If W appears in a multi-qubit Pauli observ-
able several times the resulting observable is the
sum of all Pauli observables generated by replac-
ing only one of the W by W̃ , assuming that the
coherent errors are small so that the higher-order
terms can be neglected. For example, a faulty re-
alization of the observable ZY ZZY is now given
by ξY →Y ZY ZZY +ξY →X(ZXZZY +ZY ZZX).

Altogether, to linear order in the calibration
parameters ξW →W̃ with W ̸= W̃ we end up con-
structing a description of the effective faulty mea-
surement by

y = ξ0A0(ρ) +
∑

W ̸=W̃ ∈{X,Y,Z}

ξW →W̃ AW →W̃ (ρ),

(4)
which can be written as linear map A action on
ξ⊗ ρ with ξ = [ξ0, ξX→Y , ξX→Z , . . . , ξZ→Y ]T . By
assumption, we set ξ0 = 1.
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In this measurement model the sparsity as-
sumption is justified if unitary errors in a certain
coordinate plane are dominant compared to oth-
ers thus singling out certain types of calibration
measurement components. Importantly, we do
not assume that we know which corrections are
dominant (i.e., the support of ξ) a priori. The
measurement model also exemplifies a setting in
which one is ultimately limited to measuring a
maximal set of d2 observables. Thus, blind to-
mography becomes only possible exploiting struc-
ture assumptions if one does not allow for differ-
ent ways of implementing the same measurement
that yield different calibration corrections with-
out introducing too many new calibration param-
eters.

3 Formal problem definition
Motivated by this example, we set out to pro-
vide a formal definition of the blind tomogra-
phy problem and the related sparse-de-mixing
problem. The notation and terminology intro-
duced in this section allows us to formulate a gen-
eral signal-processing framework using which the
blind tomography can be provably solved. Both,
the blind tomography and the sparse de-mixing,
problems are linear inverse problems that feature
a combination of different compressive structures.
These are smaller sets of linear vector spaces, and
it will be convenient to introduce some notation
to refer to these sets. The prototypical example
is the set of s-sparse real vectors

Σn
s := {ξ ∈ Rn | | supp ξ| ≤ s} ⊂ Rn,

which is defined by the support supp ξ of a vector
ξ, i.e., the index set of the non-vanishing entries of
ξ, having cardinality smaller or equal than s. The
set of s-sparse vectors is not a vector space itself
but the union of

(n
s

)
s-dimensional subspaces.

In the realm of quantum mechanics, the non-
commutative analogue of sparse vectors, namely
low-rank matrices, is important. We denote the
set of complex rank r matrices by

Cd×d
r := {x ∈ Cd×d | rank x ≤ r}.

Since we are dealing with quantum states we
will restrict our attention to the set Dd ⊂ Cd×d

of trace-normalized, positive semidefinite matri-
ces, i.e., ρ ≥ 0 and Tr ρ = 1 for all ρ ∈ Dd.

Cnd×d

=

Ωn,d
s,r

+· · ·+ =

Ω̂n,d
s,r

Figure 3: The signal sets of the blind tomography and
sparse de-mixing problem can be regarded as subsets of
Cnd×d, i.e., matrices consisting of n blocks of d × d.
For a blind tomography signal in Ωn,d

s,r , only s out of
the n blocks are non-zero and are proportional to the
same rank r matrix. In contrast, a signal of the sparse
de-mixing problem in Ω̂n,d

s,r comprises s non-vanishing
blocks with potentially different rank r matrices.

Our results can be straightforwardly generalized
to general matrices without these constraints.
We denote the set of rank-r quantum states as
Dd

r = Dd ∩ Cd×d
r . In particular, Dd

1 is the set
of pure quantum states. In order to solve the
blind tomography problem we need to simulta-
neously recover an s-sparse real vector ξ and a
rank-r quantum state ρ. It is convenient to regard
both ξ and ρ as a combined signal X = ξ⊗ρ and
model the measurement including its dependence
on the calibration parameter as a linear map A
acting on X. Considering such linear maps in-
stead of bi-linear maps is sometimes referred to
as ‘lifting’ in the compressed sensing literature
[50]. For a physicist, ‘lifting’ is also the natural
isomorphism at the heart of the density matrix
formulation of quantum mechanics. The signal
X is highly structured as it is a tensor product
of a sparse vector and a low-rank quantum state.
We denote the set of all potential signals as

Ωn,d
s,r := {ξ ⊗ x | ξ ∈ Σn

s , x ∈ Dd
r } ⊂ Cnd×d.

One can regard a signalX ∈ Ωn,d
s,r as an nd×dma-

trix consisting of n blocks of size d×d stacked on
top of each other as depicted in Figure 3, where
each d×d block is proportional to the same quan-
tum state ρ and only s of the blocks are non-
vanishing.

We are now equipped to concisely state the
problem we would like to study.

Problem 1 (Blind tomography). Let A :
Cnd×d → Rm be a linear map. Given data
y = A(X) ∈ Rm and the linear map A, recover
X under the assumption that

X ∈ Ωn,d
s,r .

Accepted in Quantum 2023-06-05, click title to verify. Published under CC-BY 4.0. 8



Our approach to algorithmically solving the
blind tomography problem makes use of a proxy
problem: we relax it to signals that are a bit less
restrictively structured

Ω̂n,d
s,r :=

{
n∑

i=1
ξiei ⊗ xi

∣∣∣∣∣ ξ ∈ Σn
s , xi ∈ Dd

r

}
.

Both sets Ω̂n,d
s,r and Ωn,d

s,r are subsets of Cnd×d.
The difference between them as illustrated in Fig-
ure 3 is the following: While for X ∈ Ωn,d

s,r all
d × d blocks are proportional to the same quan-
tum state x, we allow the d×d blocks of X̂ ∈ Ωn,d

s,r

to be proportional to different quantum states xi.
Again only s out of the n blocks of X̂ are non-
vanishing. Analogously to Problem 1, we define
the linear inverse problem associated with Ω̂.

Problem 2 (Sparse de-mixing). Let A :
Cnd×d → Rm be a linear map. Given data
y = A(X) ∈ Rm and the linear map A, recover
X under the assumption that

X ∈ Ω̂n,d
s,r .

The observed data of the sparse de-mixing
problem can be equivalently described as

y =
n∑

k=1
ξkAk(xk), (5)

where we have split up X into trace-normalized
d × d blocks xk and their norm ξk according to
the definition of Ω̂n,d

s,r . Correspondingly, we can
decompose the linear map A into the set of linear
maps {Ak}n

k=1 where each Ak acts only on the
kth d × d block of X. From this reformulation
it becomes clear that the problem amounts to re-
constructing a set of low-rank signals {xk}k from
observing its sparse mixture under linear maps,
hence the name sparse de-mixing.

For both the blind-tomography and the sparse-
de-mixing problem, we alternatively write each of
the n linear maps Ak in terms of m observables

{A(i)
k ∈ Cd×d | (A(i)

k )† = A
(i)
k }m

i=1

via
Ak(xk)(i) = ⟨A(i)

k , xk⟩ (6)

with the Hilbert-Schmidt inner product ⟨X,Y ⟩ =
Tr(X†Y ).

Note that as long as we consider Hermitian ma-
trices for the measurement A(i)

k and signals xi, we

end up with a real data vector y ∈ Rm. For ap-
plications other than quantum tomography it is
straightforward to adopt our proofs and results
to real signals or complex-valued measurement
maps. Furthermore, for the sake of simplicity we
have formulated both recovery problems without
noise. More generally, the data can be assumed
to be of the form y = A(X) + ϵ where ϵ denotes
additive, e.g. statistical, noise.

In the following, we will also make use of the
inner product of vectors x, y ∈ Rn defined as
⟨x, y⟩ =

∑
i xiyi, their ℓ2-norm ∥x∥ℓ2 =

√
⟨x, x⟩

and the Frobenius norm a matrix X ∈ Cd1,d2

induced by the Hilbert-Schmidt inner product
∥X∥F =

√
⟨X,X⟩.

4 Algorithm

We now turn to the technical derivation of our al-
gorithm for the blind quantum tomography and
the sparse de-mixing problem. Our algorithm
builds on primitives developed in the field of com-
pressed sensing. In particular, we generalize the
hard thresholding algorithm to accommodate the
structural assumptions of both problems. As a
first step, we establish the hardness of direct
thresholding approaches to the blind tomography
problem before stating a tractable algorithm for
the sparse de-mixing problem.

Let us be more precise: the blind quantum to-
mography problem requires different assumptions
on two levels. First, we want the signal to be
a tensor product ξ ⊗ ρ, i.e., of rank one. Sec-
ond, both tensor factors are assumed to be struc-
tured. Concretely, we assume ξ to be s-sparse
and ρ to be of rank r. We are therefore faced
with low-rank structures on two separate levels:
first, the block-structured signal as given by the
tensor product of calibration vector and quantum
state has unit rank. Second, by assumption the
target quantum states, i.e., the individual blocks
of the signal, have low rank.

It has been observed in the compressed sensing
literature that multi-level structures with struc-
tured tensor components can be notoriously hard
to reconstruct. One prototypical example of this
is combined sparsity and low-rankness in the
sense that the signal is the tensor product of two
sparse vectors, i.e., X = ξ ⊗ τ with ξ, τ ∈ Σn

s .
This problem is already very similar to the blind
tomography problem where one of the sparse vec-
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tors is replaced by a low-rank matrix, the quan-
tum state.

The obstacle arising from such structures
can be understood from a different perspec-
tive present in the compressed sensing litera-
ture that is related to different algorithmic ap-
proaches. The perhaps most prominent approach
in compressed sensing is the convex relaxation
of structure-promoting regularisers yielding effi-
cient convex optimization programs. Minimizing
the ℓ1-norm or the Schatten-1-norm is known to
solve linear inversion problems involving sparse
or low-rank vectors efficiently and sampling op-
timal, respectively. However, simply combining
both regularisers in a convex fashion does not
yield a sampling-optimal reconstruction of prob-
lems that feature both structures [51].

4.1 Hard-thresholding algorithms: Ease and
hardness of the projection
Another algorithmic approach used in com-
pressed sensing are so-called hard thresholding al-
gorithms such as CoSAMP, IHT or HTP [52, 20,
53]; see also the textbook [19] for an introduction.
These are typically iterative procedures that min-
imize the deviation from the linear constraints
in some way or other, e.g. by gradient descent,
and in each iteration project onto the structure
of the signal. For many compressed sensing prob-
lems this is possible because even though recovery
problems, such as

minimize
ξ

∥A(ξ) − y∥2
ℓ2 subject to ξ ∈ Σn

s ,

are NP-hard [54], the related projection

PΣn
s
(τ) := arg min

ξ∈Σn
s

∥ξ − τ∥ℓ2

can be computed efficiently. For the given exam-
ple of projecting onto s-sparse vectors, this solu-
tion is given by the hard-thresholding operation
defined as follows: Let Σmax be the set of indices
of the s absolutely largest entries of τ . Then,

(PΣn
s
(τ))i =

{
τi for i ∈ Σmax

0 otherwise.

In words, one keeps the largest entries of τ and re-
places the other entries by zero. Analogously, the
projection of Hermitian matrices onto low-rank
matrices can be efficiently calculated by calcu-
lating the eigenvalue decomposition and applying

PΣd
r

to the eigenvalue vector. Let X ∈ Cd×d be a
Hermitian matrix with eigenvalue decomposition
X = U diag(λ)U †. We define the projection onto
positive semi-definite low-rank matrices as

PDd
r
(X) = U diag(PΣd

r
(λ|≥0))U †,

where λ|≥0 denotes the restriction of λ to its non-
negative entries.

In hard-thresholding algorithms, the problems
associated with simultaneously exploiting sparse
and low-rank structures are manifest in the com-
putational hardness of computing the respective
projections. For the case of unit rank matrix with
sparse singular vectors, calculating the projection
is the so-called sparse PCA problem, i.e., given a
matrix A ∈ Rn×n

minimize
ξ,τ∈Σn

s

∥A− ξ ⊗ τ∥F .

Indeed, exactly solving this problem in the
worst case is NP-hard by a trivial reduction to
the CLIQUE problem [54]. But it turns out
that the hardness is much worse: one can even
make average-case hardness statements based
on conjectures regarding the hardness of the
planted clique problem [55, 56, 57]. Moreover, the
SparsePCA problem remains just as hard even
when one merely asks for an approximation up
to a constant relative error [58, 54].

As the first technical result of this work, we
show that also the projection onto Ωn,d

s,r is an NP-
hard problem by reducing it to the sparse PCA
problem.

Theorem 3 (Hardness of constrained minimiza-
tion). There exists no polynomial time algorithm
that calculates

minimize ∥A−X∥F subject to X ∈ Ωn,d
s,r ,

for all A ∈ Cnd×d unless P = NP. This still holds
for s = n.

The details of the proof are given in Ap-
pendix A. This hardness result provides a strong
indication that a straightforward adaptation of
compressed sensing techniques is not feasible. In
this work, our way out of this is to sacrifice sam-
pling optimality of the algorithm for a lower run-
time and being able to prove analytical perfor-
mance guarantees. Alternating minimization ap-
proaches that make the factorization explicit is
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Algorithm 1 Projection onto Ω̂n,d
s,r

Require: X ∈ Cnd×d.
1: Y = 0
2: for k ∈ [n] do
3: Yk = PDd

r
(xk)

4: nk = ∥Yk∥F

5: end for
6: W = suppPΣn

s
(n)

7: YW = 0.
Ensure: Y is projection of X onto Ω̂n,d

s,r .

also a viable way forward. We provide a detailed
description of such an algorithm in Section 4.4.
But proving global recovery guarantees for non-
convex algorithms typically becomes much more
involved.

4.2 Relaxing the blind tomography problem:
sparse de-mixing

In fact, the bi-sparse and low-rank structure
can be relaxed to a simple hierarchical sparsity
constraint [59, 60]. A vector ξ ∈ CNn con-
sisting of N blocks of size n is called (s, σ)-
hierarchically sparse if it has at most s blocks
with non-vanishing entries, that themselves are
σ-sparse [61, 62, 63, 64]. For this structure a
hard-thresholding algorithm together with theo-
retical recovery guarantees has been derived in
Refs. [22, 49, 65, 66]. It has been applied in dif-
ferent contexts [67, 68, 69, 70] including sparse
blind deconvolution [59] which features the com-
bined low-rank, sparse structure.

Here, we make use of this approach to solve the
blind quantum tomography problem as formal-
ized in Problem 1. At the heart of our approach
is the insight that the projection onto Ω̂n,d

s,r can
be efficiently computed since the n d × d blocks
may be different. This allows one to combine the
projection onto Σn

s and the projection onto Dd
r :

First, the low-rank projection PDd
r

is applied to
each of the d × d blocks of the input matrix X.
Subsequently, the sparse projection operator is
applied by setting the n − s smallest blocks in
Frobenius norm to zero. The resulting algorithm
is summarized as Algorithm 1, where YW denotes
the subvector of Y indexed by the entries in the
complement of W . The computational cost of the

Algorithm 2 SDT algorithm
Require: Data y, measurement A, sparsity s

and rank r of signal
1: Initialize X0 = 0.
2: repeat
3: Calculate step-widths µl

4: Gl = A†
(
y − A(X l)

)
5: X l+1 = PΩ̂n,d

s,r

(
X l + diag(µl)PT

Xl

(
Gl
))

6: until stopping criterion is met at l = l∗

Ensure: Recovered signal X l∗

projection onto Ω̂n,d
s,r is dominated by the eigen-

value decomposition required to compute the low-
rank approximation Dd

r of each block. Comput-
ing the full eigenvalue decomposition of the d× d
blocks requires computation time of O(d3) using,
e.g., Householder reflections [71]. Since we are
only interested in the dominant r ≪ d eigenval-
ues, the effort can be reduced to O(rdw) using
the Lanczos algorithm, where w is the average
number of non-zero elements in a row of a block
[71]. Using randomized techniques one might be
able to further reduce the computational costs
[72]. The calculation of the Frobenius norms con-
tributes O(nd2) flops. The largest blocks can be
selected using the quick-select algorithm [73] in
O(n). Note that the low-rank projections and
Frobenius norms of all blocks can also be per-
formed in parallel without any modification to
the algorithm.

Equipped with an efficient projection for Ω̂n,d
s,r ,

we can construct a structured iterative gradient
descent algorithm. This is a variant of the IHT al-
gorithm, that was originally developed for sparse
vectors [20]. The IHT algorithm is a projective
gradient descent algorithm that iteratively alter-
nates gradient steps to optimize the ℓ2-norm de-
viation between the data and a projection onto
the constraint set. The resulting recovery algo-
rithm for the sparse de-mixing (SDT) problem is
stated as Algorithm 2.

The SDT algorithm is closely related to the
IHT algorithm for de-mixing low-rank matrices
that was developed in Ref. [21]. We will refer to
this algorithm as the DT algorithm. The main
difference between our SDT and the DT algo-
rithm of Ref. [21] is that the latter does not make
the additional sparsity assumptions on the signal.
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For this reason, the SDT algorithm differs in the
projection PΩ̂n,d

s,r
that additionally applies the pro-

jection PΣn
s

selecting the s dominant blocks. In
fact, in the special case of considering non-sparse
signals in Ω̂n,d

n,r the SDT algorithm coincides with
the DT algorithm.

4.3 Details of the SDT algorithm

To be fully self-contained, let us now go through
the individual steps of the SDT algorithm and
specify the relevant details. Every iteration of
the algorithm starts with the computation of
Gl = A†(y−A(X l)), the gradient for the ℓ2-norm
deviation f(X) = 1

2∥y − A(X)∥2
ℓ2

evaluated at
X l. The algorithm subsequently employs a mod-
ification from Ref. [74] in calculating the steep-
est gradient inspired by geometrical optimization
techniques which leads to a faster convergence
[75, 76]: The set of rank r matrices is an embed-
ded differential manifold in the linear vector space
of all matrices. Thus, a direction on this embed-
ded manifold is characterized by a tangent vector
on the manifold. While this geometry straight-
forwardly generalizes to the set of nd × d matri-
ces with rank r blocks, due to sparsity constraint
Ω̂n,d

s,r fails to be a differential manifold. Nonethe-
less, we can make use of tangent vectors as ‘natu-
ral’ search directions in our optimization problem
for the non-vanishing blocks of X l that are con-
forming with the fixed-rank constraint.

The tangent space of rank r matrices at point x
is given by the set of matrices that share the same
column or row space x [75]. Correspondingly, the
tangent space projection of a non-vanishing block
of X can be defined as follows: Let xk = UkΛkU

†
k

be the eigenvalue decomposition of the kth block
of X with Λk the diagonal matrix with eigenval-
ues in decreasing order. Further, let U (r)

k denote
the restriction of Uk to its first r columns corre-
sponding to the range of xk. Then, the tangent
space projection acting on gk the kth block of G
is given by

PTX
(G)k = gk − (Id −PU )gk(1 − PU ), (7)

with (PU )k = U
(r)
k (U (r)

k )†. The entire tangent-
space projection PTX

(G) is defined by acting triv-
ially on the blocks of G corresponding to vanish-
ing blocks of X and as the projection (7) other-
wise.

As we prove below in generic situations the
SDT algorithm converges for a constant step-
width set to µl = 1 and even without using the
tangent space projection. Empirically, a faster
convergence is achieved with the tangent space
projection and using the following prescription for
the step-width calculation: From the projected
gradient Gl

P = PTX
(Gl) in the lth iteration we

then calculate the algorithm’s step width for each
block individually as

µl
k = ∥(Gl

P )k∥2
F

∥A((Gl
P )k)∥2

ℓ2

and multiply each block by the corresponding
µl

k. In order to have a compact notation,
we introduce the diagonal matrix diag(µl) =
diag(µ1

l , . . . , µ
l
1, µ

l
2, . . . , µ

l
2, . . . , µ

l
n) where each

step width is repeated d times. The new state
of the algorithm, X l+1, is given by the projection
of the result of a gradient step with step width µl

onto the set Ω̂n,d
s,r .

Finally, we have to specify a stopping criterion
at which the loop of the algorithm is exited. We
terminate the algorithms if the objective function
is below a specified threshold, i.e.,

∥y − A(X l)∥ℓ2

∥y∥ℓ2

≤ γbreak (8)

or a maximal number of iteration is reached. If
the data vector y has additive noise, γbreak has to
be chosen to be larger than the expected norm of
the noise. To be less relying on expectations on
the noise levels, one can alternatively make use
of criteria on the gradient and step width or test
for oscillating patterns in the identified support.

4.4 Blind tomography via alternating least-
square optimization
A more direct algorithmic approach to the blind
tomography problem is to use a constrained alter-
nating least square (ALS) optimization. In ALS
optimization, one performs a constrained opti-
mization of the objective function

fALS(ξ, ρ) = 1
2∥y − A(ξ, ρ)∥2

ℓ2 ,

with respect to one of the two variables while re-
garding the respective other variable as constant
in an alternating fashion, see Algorithm 3.

We perform the optimization over Σn
s , Algo-

rithm 3 Step 3, using the standard IHT algorithm
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Algorithm 3 ALS-BT algorithm
Require: Data y, measurement A, sparsity s

and rank r of signal
1: Initialize ρ0.
2: repeat
3: ξl = arg min

ξ∈Σn
s

fALS(ξ, ρl−1)

4: ρl = arg min
ρ∈Cd×d

r

fALS(ξl, ρ)

5: until stopping criterion is met at l = l∗

Ensure: Recovered signal ρl∗ , ξl∗

for sparse vector recovery. Note that calculat-
ing the linear measurement map for ξ given a
fixed ρ simply involves evaluating all calibration
measurement blocks individually, i.e., calculating
Ai(ρ) for all i ∈ [N ]. Analogously, the low-rank
optimization over Cd×d

r , Algorithm 3 Step 4, can
be performed with iterative hard-thresholding on
the manifold of low-rank matrices. A detailed
description of a suitable algorithmic implementa-
tion is given by Algorithm 2 in the special case of
a single matrix block, i.e., N, s = 1. Computing
the corresponding linear map acting on ρ for fixed
ξ amounts to summing up the individual mea-
surement blocks weighted by their corresponding
calibration coefficient.

The ALS optimization requires an initialization
with a suitable ρ0 in order to evaluate the first
objective function for optimizing ξ. One method
that we found viable is to randomly draw a rank-r
state using Haar-random eigenvectors. Note that,
in general, constrained ALS optimization can be
highly sensitive to the chosen initialization. For
this reason, depending on the measurement map
and calibration model, alternative initialization
strategies might become necessary. As break-off
criteria we can again use a bound on the objec-
tive function as in (8) and an allowed maximal
number of iterations.

5 Recovery guarantees

We now prove that for certain simple measure-
ment ensembles, the SDT algorithm converges
to the optimal solution before we numerically
demonstrate its performance in the following sec-
tion. More precisely, following the outline of

model-based compressed sensing [18, 77], the
SDT algorithm can be accompanied by recovery
guarantees based on a restricted isometry prop-
erty (RIP) of the measurement ensemble that is
custom-tailored to the structure at hand. Intu-
itively, it seems clear that a measurement map
should at least in principle allow for solving the
associated linear inverse problem uniquely if it
acts as an isometry on signals from the constraint
set. So-called RIP constants formalize this intu-
ition:

Definition 4 (Ω̂n,d
s,r -RIP). Given a linear map

A : Cnd2 → Cm, we denote by δs,r the smallest
δ ≥ 0 such that

(1 − δ)∥x∥2
F ≤ ∥A(x)∥2

ℓ2 ≤ (1 + δ)∥x∥2
F

for all x ∈ Ω̂n,d
s,r .

The constant δs,r measures how much the ac-
tion of A when restricted to elements of Ω̂n,d

s,r

deviates from that of an isometry. Correspond-
ingly, if δs,r is sufficiently small we expect this
to be sufficient to ensure that the restricted ac-
tion of A becomes invertible. In fact, if a mea-
surement map has a sufficiently small RIP con-
stant one can prove the convergence of projec-
tive gradient descent algorithms to the correct
solution of the structured linear inverse prob-
lem. For the sake of simplicity, we analyze the
SDT algorithm omitting the tangent space pro-
jection and also assuming a constant step widths
µl = 1. In numerically simulations we observe
that making use of the tangent space projection
and a more sophisticated heuristic for the step
width yields faster convergence and better recov-
ery performance. But the RIP assumption is in
fact strong enough to already for this simpler al-
gorithmic variant ensure that the following theo-
rem holds:

Theorem 5 (Recovery guarantee). Let A :
Cnd×d → Cm be a linear map and suppose that
the following RIP condition for A holds

δ3s,3r <
1
2 . (9)

Then, for X ∈ Ω̂n,d
s,r , the sequence (X l) defined

by the SDT algorithm (Algorithm 2) with µl = 1
and PT

Xl
= Id with y = A(X) satisfies, for any

l ≥ 0, ∥∥∥X l −X
∥∥∥

F
≤ γl

∥∥∥X0 −X
∥∥∥

F
,
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where γ = 2δ3s,3r < 1

The theorem’s proof is presented in Ap-
pendix B. We establish that the SDT algorithm
converges to the correct solution of the sparse de-
mixing problem at a rate that is upper bounded
by the RIP constant δ3s,3r of the measurement
map. The right-hand side of the RIP condition
(9) is not expected to be optimal. Typically, one
can at least improve the bound to 1√

3 with a
slightly more complicated argument [19]. Since
we are interested in the parametric scaling here,
we choose to present a simpler argument at the
cost of slightly worse constants. Furthermore,
the statement of Theorem 5 does not account
for statistical noise or potential mild violation of
the signal constraints. When deployed in prac-
tice, one of course expects that the calibration
parameter and the quantum state will only be
approximately sparse and of approximately low-
rank, respectively. For example, even a small
amount of depolarizing noise causes a pure quan-
tum state to be of full rank. Such a state will
still be well-approximated by a rank-one matrix,
however, and one would expect the recovery to
be robust to such deviations. Theorem 5 can be
generalized to a noise- and model-robust guaran-
tee. We provide a detailed discussion at the end
of Appendix B. For the current analysis focusing
on the scaling behaviour, we are content with the
significantly simpler version.

The pressing next question is, of course, which
measurement ensembles actually exhibit the re-
quired RIP. Interestingly, it is notoriously hard
to give deterministic constructions of measure-
ment maps that are sample optimal and feature
the RIP. In fact, already for the RIP for s-sparse
vectors there are no sample optimal determinis-
tic measurement maps known to date [19]. To
further complicate the state of affairs, it is also
known to be NP-hard to check whether a given
measurement map exhibits the s-sparse RIP with
RIP constant small than a given δ [78].

For this reason, the field of compressed sensing
uses probabilistic constructions to arrive at prov-
ably sampling optimal measurement maps. Us-
ing a random ensemble of measurement maps of
sampling optimal dimension one establishes that
with high probability a randomly drawn instance
will exhibit the RIP property. In other words,
one proves that the originally hard linear inverse
problem typically becomes easy for a certain mea-

surement ensemble. Arguably, the simplest mea-
surement ensemble consists of observables given
by i.i.d. chosen random Gaussian matrices. In
our setting a fully Gaussian measurement map
can be constructed from a set of {Ai ∈ Rnd×d}m

i=1
of m Gaussian matrices with entries draws i.i.d.
from the normal distribution N (0, 1) and defining
y(l) = Tr(AiX).

As a toy model for quantum tomography it is
more natural to consider observables drawn from
a random ensemble of Hermitian matrices such
as the Gaussian unitary ensemble (GUE). Oper-
ationally, we define the GUE by drawing a ma-
trix X with complex Gaussian entries, Xk,l ∼
N (0, 1) + iN (0, 1), and subsequently projecting
X onto Hermitian matrices using P : X 7→
1
2(X + X†). For measurement maps from GUE
we prove the following statement:

Theorem 6 (Ω̂n,d
s,r -RIP for random Hermitian

matrices.). Let {A(k)
i }n,m

i=1,k=1 be a set of Her-
mitian matrices drawn i.i.d. from the GUE.
Let A be the measurement operator defined by
{A(k)

i }n,m
i=1,k=1 via Eqs. (5) and (6). Then 1√

m
A

satisfies the Ω̂n,d
s,r -RIP with parameter δs,r with

probability at least 1 − τ provided that

m ≥ C

δ2
s,r

[
s ln en

s
+ (2d+ 1)rs ln c

δ
+ ln 2

τ

]
(10)

for sufficiently large numerical constants C, c >
0.

The proof of the theorem is provided in Ap-
pendix C. Based on the result for random Her-
mitian measurement maps we now discuss the
asymptotic scaling of the measurement complex-
ity of our approach to the blind tomography prob-
lem and the sparse de-mixing problem. First,
the derived measurement complexity (10) is in
accordance with the degrees of freedom of sig-
nal X ∈ Ω̂n,d

s,r . The second term of O(drs) cor-
responds to the number of degrees of freedom
specifying the s rank-r matrices of dimension d.
The first term of O(s lnn) is the minimal sam-
pling complexity in s for learning the s non-trivial
entries and their support [19]. Second, in anal-
ogy, we expect the optimal number of measure-
ments for the blind tomography problem, i.e., re-
constructing signals in Ωn,d

s,r instead of Ω̂n,d
s,r , to

scale as O(s lnn + dr). Hence, having a prov-
ably efficient algorithms capable of solving the
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blind tomography as well as the sparse de-mixing
problem comes at the cost of an increase in the
sampling complexity by an additional factor of s
in the second term of the sampling complexity.
Most importantly, invoking the sparsity assump-
tion on the calibration vector ξ allows us to get
away without a linear increase n of the number
of calibration parameters. Thus, the overhead in
measurement complexity of our approach to the
blind tomography problem is relatively mild.

In fact, the measurement complexity derived
for Gaussian measurements can often be used as
a guideline for the sampling complexity of other
measurement ensembles that are also sufficiently
unstructured. However, the proof techniques for
model-based compressed sensing that exploit the
combination of different structures are not easily
translatable to other measurement ensembles. An
exception are measurement ensembles that fea-
ture a structure that is sufficiently aligned with
the signal structure such as the one exploited in
Ref. [22] for hierarchically sparse signals. We
leave the study of more involved measurement en-
sembles to future work.

6 Numerical results

The analytical results of the previous section pro-
vide worst-case bounds on the asymptotic scal-
ing for a class of idealized, unstructured mea-
surements. In order to benchmark and assess
the non-asymptotic performance of compressed
sensing algorithms in practice, however, numeri-
cal simulations are indispensable. In a first step
we therefore perform numerical simulations for
the idealized measurement model as given by ran-
dom GUE matrices, comparing the performance
of our algorithm to related established algorithms
that do not entirely exploit the structure of the
problem. In a second step, we compare the SDT
algorithm 2 with standard CS tomography in
a blind tomography setting involving measure-
ments of Pauli correlators, cnf. (3). To do so
we randomly draw subsets of the possible Pauli
measurements as possible calibrations Ai of the
measurement apparatus. Finally, we demonstrate
the feasibility of blind tomography under struc-
ture assumptions in the realistic measurement
and calibration setting involving single-qubit co-
herent errors described in Section 2. To this end,
we employ the Algorithm 3 that performs alter-

Figure 4: The recovery rate for the SDT, DT and in-
formed DT algorithm for different number of observ-
ables m for GUE measurements. Each point is averaged
over 50 random measurement and signal instances with
r = 1, d = 16, n = 10 and s = 3. A signal is consid-
ered successfully recovered if its Frobenius norm devia-
tion from the original signal is smaller than 10−3. One
observes nearly coinciding recovery performances for the
informed DT and the SDT algorithm. In comparison, the
DT algorithm requires significantly more observables for
recovery.

nating constrained optimization. The algorithms
and the scripts producing the plots have been im-
plemented in Python and will be made available
under Ref. [79].

6.1 GUE measurements

The SDT algorithm goes beyond existing IHT al-
gorithms for the de-mixing problem of low-rank
matrices in that it additionally allows one to ex-
ploit a sparse mixture. We demonstrate that
this yields a drastic and practically important
improvement in the number of measurement re-
quired for the reconstruction.

To this end, we draw signal instances X = ξ⊗ρ
at random from Ωn,d

s,r . We use four qubit pure
states ρ = |ψ ⟩⟨ψ | with r = 1 and d = 16, where
|ψ ⟩ is drawn uniformly (Haar) random from the
complex ℓ2-norm sphere. The calibration vector
ξ ∈ Rn with n = 10 has a support of size s = 3
drawn uniformly from the set of all

(n
s

)
possible

supports. The non-vanishing entries of ξ are nor-
mal distributed with unit variance. The measure-
ments are drawn at random from the GUE en-
semble as defined above with a varying number
of observables m.

The closest competitor to the SDT algorithm is

Accepted in Quantum 2023-06-05, click title to verify. Published under CC-BY 4.0. 15



0 50 100 150 200
measurements m

10 4

10 3

10 2

10 1

100
st

at
e 

re
co

ns
tru

ct
io

n 
er

ro
r

SDT
standard tomography
calibration coefficients level

0 100 200
measurements m

10 3

10 1

ca
lib

ra
tio

n 
re

c.
 e

rro
r

Figure 5: The trace norm reconstruction error for the SDT compared to the standard tomography algorithm for
different number of observables m for sub-sampled random Pauli measurements. Each point is averaged over 30
random measurement and signal instances with r = 1, d = 8, n = 10 and s = 3. The inline figure shows the mean
ℓ2-norm reconstruction error of the calibration coefficients for the SDT algorithm.

the related algorithm of Ref. [21]. The algorithm
of Ref. [21] coincides with the special case of the
SDT algorithm where we use the projection on
to Ω̂n,d

n,r with s = n ignoring the sparsity in the
block structure. We will refer to this algorithm
as the DT algorithm. We can also give the DT
algorithm the ‘unfair’ advantage of restricting the
problem to the correct block support of the signal
from the beginning. We will refer to this variant
as the informed DT algorithm.

Figure 4 shows the recovery rate for the SDT
algorithm, the DT algorithm and its informed
variant for differentm. Each point is average over
50 random signal and measurement instances.
We consider a signal as successfully recovered
if the distance of the algorithm’s output to the
original signal is smaller than 10−3 in Frobenius
norm. The algorithm terminated if either the
stopping criterion (8) with γbreak = 10−5 is met
or after a maximal number of 600 iteration. We
observe that if one of the algorithm successfully
recovers a signal it typically meets the stopping
criterion after less than 100 iterations.

The curves for all three algorithm in Figure 4
display a sharp phase transition from a regime
where the number of measurement is too small
to recover any signal to a regime of reliable re-
covery. While the phase transition for the SDT
algorithm appears in a similar regime to the in-
formed DT algorithm, the DT algorithm requires
considerably more samples in order to recover the

signal instances.
We conclude that the sparsity of the calibra-

tion parameters can be exploited by the SDT al-
gorithm to considerably reduce the required num-
ber of measurements. Even more so, this does not
require many more sampling points as compared
to an algorithm which is given a priori knowl-
edge which errors were present, that is, the block
support of the signal. This shows that the SDT
algorithm solves the de-mixing and blind tomog-
raphy task in a highly efficient way and scalable.
Finally, the number of possible erroneous mea-
surements Ai can be scaled up at a very low cost
in terms of required measurement settings.

6.2 Sub-sampled Pauli measurements

For the application in characterizing quantum de-
vices, it is key to compare the recovery perfor-
mance of the SDT algorithm with standard low-
rank quantum tomography algorithms. To this
end note that the SDT algorithm restricted to
n, s = 1 is also a state-of-the-art algorithm for
standard low-rank state tomography without the
on-the-fly calibration. Thus, we will make use
of this implementation of conventional low-rank
state tomography in the following.

We draw signal instances as before but using
three-qubit states, s ∈ {3, 4} and altering the
model for the calibration parameter: We set the
first entry of ξ to ξ0 = 1. The support of the re-
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Figure 6: The trace norm reconstruction error for the SDT compared to the standard tomography algorithm for
different number of observables m for sub-sampled random Pauli measurements. Each point is averaged over 30
random measurement and signal instances with r = 1, d = 8, n = 10 and s = 4. The inline figure shows the mean
ℓ2-norm reconstruction error of the calibration coefficients for the SDT algorithm.

maining entries is drawn uniformly at random.
The non-vanishing entries are then i.i.d. taken
from the normal distribution rescaled by a fac-
tor of 1/10. This mimics a setting where we
have a dominant target measurement and a cou-
ple of small systematic deviation from a known
set of candidates. The target measurements as
well as the systematic deviations are uniformly
sub-sampled Pauli observables. Thus, A0 till An

have the form of (3) with differently i.i.d. se-
lected Pauli observables uniformly selected from
{Id, X, Y, Z}. We simulate statistical noise us-
ing 108 samples per expectation value in order to
realistically limit the resolution of the SDT algo-
rithm.

We simultaneously perform recoveries with the
SDT algorithm using the entire measurement ma-
trix including the calibration measurement com-
ponents and the SDT algorithm using only the
target measurement A0 as in a conventional to-
mography setting.

The resulting trace distance of the state esti-
mate, i.e., the trace-normalized first block of X,
from the original ρ is shown for different num-
ber of measurements in Figure 5 and Figure 6
for different sparsity s = 3 and s = 4, respec-
tively. The curves indicate the median over the
depicted 30 sample points per value of m. The
inline plot of both figures show the ℓ2-norm devi-
ation of the reconstructed calibration parameters
and the original ξ.

One observes that the conventional low-rank
tomography becomes more accurate with an in-
creasing number of measurement but is asymp-
totically still bounded from below by the system-
atic error induced by the calibration on the or-
der of 10−1. This agrees with the order of mag-
nitude of variance of the calibration coefficients.
In contrast, the SDT algorithm while performing
slightly worse in a regime of insufficient measure-
ments outperforms the conventional algorithm for
a moderate number of samples and is ultimately
only limited by the statistical noise. However, in
the parameter regime under investigation there
are even for large number of samples m > 150
a small number (well below 10%) of instance
where SDT only reaches an accuracy compara-
ble to standard tomography. In these instances
we find that the support for the calibration mea-
surement components was incorrectly identified.
For s = 4 we furthermore observe one patholog-
ical instance of SDT for m = 240 that is worse
in recovery than standard tomography is in this
regime. For s = 4 the phase transition of SDT
appears for a slightly larger values of m compared
to s = 3. The curves for the reconstruction er-
ror of the quantum state approximately coincide
with the curves for the error in the calibration pa-
rameter. We conclude that for a sufficient num-
ber of measurement settings, the SDT algorithm
almost always performs a significantly more accu-
rate state reconstruction and simultaneously ex-
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Figure 7: The trace norm reconstruction error for the ALS compared to the standard tomography algorithm for
different number of observables m for Pauli measurements with coherent single-qubit errors. Each point is averaged
over 50 random measurement and signal instances with r = 1, d = 16, n = 7 and s = 2. The inline figure shows
the mean ℓ2-norm reconstruction error of the calibration coefficients for the ALS algorithm.

tracts the calibration parameters. The precision
is ultimately only limited by the statistical error
in the estimation of the expectation values.

6.3 Pauli measurements with coherent single-
qubit errors

We now come back to the concrete realistic sce-
nario described in Section 2. There we derived
the calibration measurement model originating
from coherent errors in the gates that implement
the single-qubit measurements.

For the numerical simulations, we draw a set
of m Pauli observables uniformly at random as
the target measurement. Subsequently, we intro-
duce six calibration blocks such that every ob-
servable in the set {X,Y, Z} is swapped with
another Pauli observable in {X,Y, Z} in a spe-
cific block. We generate data y for given states
and calibration parameters using the linear cali-
bration measurement model without noise as in-
duced by finite statistics.

We find that in the parameter regimes that
are easily amenable to numerical studies on desk-
top hardware the SDT algorithm is not capa-
ble of successfully reconstructing the states when
the calibration parameters for the corrections are
considerably smaller than the leading order mea-
surement. To thoroughly understand this limita-
tion, in the following, we briefly report the per-
formance of the SDT algorithm on different sub-

tasks related to the recovery problem.
First, we choose d = 16 and n = s = 1 such

that only a single block, either the ideal mea-
surement or one of the correction blocks, is used
to generate the signal from a random pure state
(r = 1). We observe that the SDT algorithm is
able to recover the signals in this standard tomog-
raphy problem. This indicates that also the cali-
bration blocks individually allow for tomographic
reconstruction of low-rank states. Second, the
SDT algorithm can discriminate between differ-
ent mixtures of the six correction blocks. To
demonstrate this, we ignore the ideal measure-
ment and employ only the correction blocks to
generate the signal. We set the active calibration
coefficients to one. Thus, n = 6, s ≤ n and ξi = 1
for i active. We observe that given a sufficient
number of measurement settings the SDT algo-
rithm correctly reconstructs pure states in this
measurement setting. The same findings hold
true if the target measurement is again consid-
ered as long as the active calibration coefficients
are set to 1. We observe successful reconstruc-
tions of unit rank states for n = 7 and s ∈ 1, 2, 3.

A more natural setting however would typi-
cally have calibration coefficients that are con-
siderably smaller than the ideal measurement.
This justifies the linear expansion for the mea-
surement model in the first place. If we choose,
e.g., ξi = 1/10 for the indices i of active blocks,
we were unable to identify a parameter regime on
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Figure 8: The trace norm reconstruction error for the ALS compared to the standard tomography algorithm for
different number of observables m for Pauli measurements with coherent single-qubit errors. Each point is averaged
over 30 random measurement and signal instances with r = 1, d = 16, n = 7 and s = 3. The inline figure shows
the mean ℓ2-norm reconstruction error of the calibration coefficients for the ALS algorithm.

desktop hardware where the SDT algorithm can
successfully recover the majority of instances of
pure states. We observe that if the SDT algo-
rithm settles on an objective variable with an in-
correct block support in the first few iterations, it
is not able to subsequently run into objective vari-
ables with a different block support in most in-
stances. Despite the negative result for the SDT
algorithm in the most realistic setting, the gen-
eral mindset to exploit structure (low-rankness)
to allow quantum state tomography in a blind
fashion is fruitful using a slightly different algo-
rithmic strategy.

To this end, we use the constrained alternating
least square (ALS) algorithm described in Sec-
tion 4.4. We set the first calibration coefficient
corresponding to the ideal measurement to one.
The support of the remaining active calibration
coefficients is drawn uniformly at random and
their value are i.i.d. drawn from a shifted nor-
mal distribution with standard deviation 0.05 and
mean value 0.2. We use Haar random pure states,
r = 1 of a four-qubit system, d = 16, as the target
states.

The algorithm is initialized with a Haar-
randomly drawn pure state. We allow for a maxi-
mal number of 1000 iterations of the algorithm or
terminate if the criterion (8) with γbreak = 10−5

is met. Furthermore, if the stopping criterion is
not met after 50 iterations, we re-initialize the
algorithm with a new random pure state. We

allowed for a maximal number of 10 or 20 re-
initializations for s = 2 and s = 3, respectively.
We observe that in case of successful recovery
typically at most 3 re-initializations are required
with most instances already correctly converging
from the initial state.

As in the previous section, we compare the re-
covery performance of the ALS with the standard
low-rank tomography algorithm. The trace-norm
error and calibration error for different numbers
of measurement settings for s = 2 and s = 3 are
displayed in Figure 7 and 8, respectively. We ob-
serve that, as expected, the reconstruction error
of standard low-rank tomography is again lower-
bounded by a scale set by the magnitude of the
calibration parameters. In contrast, with an only
slightly larger number of measurement settings,
the constrained ALS algorithm is capable of re-
covering the states and the calibration parameter
with an accuracy that is improved by orders of
magnitude and in the noiseless scenario only lim-
ited by the algorithms stopping criterion. Com-
pared to recovery performance of the SDT algo-
rithm we observe an even sharper phase transi-
tion to the regime of recovery.

Finally, in practice due to further imper-
fections, e.g. incoherent noise, the underlying
state and calibration vector will actually be only
approximately of low-rank and approximately
sparse, respectively. In order to probe the ro-
bustness of the ALS algorithm against such model
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Figure 9: The reconstruction error of the state and cal-
ibration coefficients for the ALS algorithm when adding
model mismatch in terms of depolarizing noise on the
state or Gaussian noise to the zero entries of the cal-
ibration coefficients. Each point is averaged over 20
random measurement and signal instances with r = 1,
d = 16, n = 10, s = 2 before adding the model mis-
match. We use m = 130 Pauli measurements with co-
herent single-qubit errors. The error bars indicate a half
of the standard deviation. The reconstruction error in-
creases proportional to the model mismatch indicating
robustness of the method.

mismatch, we generate measurement data as be-
fore for s = 2, choosing m = 130 and either
add depolarizing noise to the state of different
strength or replace the vanishing coefficient in the
calibration vector by the absolute value of ran-
dom Gaussian variables of different standard de-
viation. Figure 9 displays the reconstruction er-
ror of the state and calibration coefficients against
the amount of model mismatch, as determined by
the depolarizing strength and Gaussian widths.
We observe a linear dependency of the recon-
struction errors with the model mismatch and
conclude that the method is robust enough to
tolerate small deviations from the structure as-
sumptions.

7 Summary and outlook
In this work, we have shown that the natural as-
sumption of low-rankness allows one to perform

self-calibrating quantum state tomography. Re-
laxing the blind tomography problem to a sparse
de-mixing problem has allowed us to develop an
efficient classical post-processing algorithm, the
SDT algorithm, that is theoretically guaranteed
to recover both the quantum state and the de-
vice calibration under a restricted isometry condi-
tion of the measurement model. We have demon-
strated the necessity of relaxing the blind to-
mography problem within the framework of hard-
thresholding algorithms by establishing the NP-
hardness of the projection onto the set consist-
ing of the outer products of vectors and fixed-
rank matrices. Introducing a sparsity assump-
tion on the calibration coefficients ensures that
the reconstruction scheme can already be applied
for fairly small system dimension. We have ex-
plicitly proven that a Gaussian random measure-
ment model meets the required restricted isom-
etry condition with a close-to-optimal measure-
ment complexity in O(s lnn+drs). Furthermore,
we have numerically demonstrated an improved
performance of the SDT algorithm for random
instances of measurement models compared to
previously proposed non-sparse de-mixing algo-
rithms and standard low-rank state tomography.

While these generic measurement and calibra-
tion models allows us to derive analytical guar-
antees, it is fair to argue that these models might
at best capture some aspects of actual experimen-
tal implementations. A potential starting point
for extending recovery guarantees to more real-
istic settings is the generalization of our results
to random Pauli measurements as considered in
Sec. 6 [42] together with the coherence measures
and structured measurement guarantees devel-
oped in the context of hierarchically spares sig-
nals [63, 22, 65, 66].

To complement our conceptually and rigor-
ously minded work with a more pragmatic ap-
proach, we have additionally developed and im-
plemented a structure-exploiting blind tomogra-
phy algorithm based on alternating optimiza-
tion. We have numerically demonstrated that
the alternating algorithm is able to perform self-
calibrating low-rank tomography in a realistic
measurement and calibration model that is well-
motivated by gate implementations in ion traps.
These numerical simulations indicate that the ap-
proach to the blind tomography problem devel-
oped here might be well-suited to improve tomo-
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graphic diagnostics in current experiments. Ulti-
mately, the recovery performance of the proposed
algorithms has to be evaluated on experimental
data. It is the hope that this work contributes
to establishing a new mindset in quantum sys-
tem identification and specifically tomographic
recovery in which no component used has to be
precisely known, but still under physically mean-
ingful structural assumptions, a mindset here re-
ferred to as being semi-device-dependent.

A Hardness of projection
As a starting point we state the SparsePCA prob-
lem.

Problem 7 (SparsePCA). Input: Symmetric
matrix A ∈ Rn×n, sparsity s, positive real num-
ber a > 0. Question: Does there exist an s-sparse
unit vector v ∈ Rn with vTAv ≥ a?

It has been folklore for quite some time that the
sparse PCA problem is NP-hard. A formal proof
can be found in Ref. [54], where the CLIQUE
problem is encoded into instances of SparsePCA.
From the hardness of SparsePCA it follows that
there does not exist a polynomial time algorithm
for the projection onto the set of symmetric, unit
rank matrices with sparse eigenvectors, unless
P = NP. Formally, we have:

Proposition 8 (Hardness of projection onto the
set of symmetric, unit rank matrices with sparse
eigenvectors). Given a matrix A ∈ Rd×n and
s, σ ∈ N, there exist no polynomial time algo-
rithm that calculates

minimize ∥A− vwT ∥F ,

subject to v ∈ Σd
σ, w ∈ Σn

s ,

unless P = NP. This still holds for σ = d.
Proof. It turns out to be sufficient to only con-
sider the case where σ = d, i.e., only one of the
factors is required to be sparse. It is straightfor-
ward to see that solving the problem with both
vectors being sparse allows one to solve the pro-
jection with only one sparse vector: Define

A =
(

0d−σ,n

A′

)
with 0a,b being an a× b matrix filled with zeros.
It then holds that

min
v∈Σd

σ ,w∈Σn
s

∥A−vwT ∥F = min
v′∈Cσ ,w∈Σn

s

∥A′−v′wT ∥F .

We now embed the SparsePCA problem. To do
so we first make the normalization of the vectors
v, w in the optimization problem explicit to it to
a maximization problem over normalized vectors:

min
v∈Rσ ,w∈Σn

s

∥A− vwT ∥2
F

= min
λ∈R,v∈Rσ∩Bσ

ℓ2
,w∈Σn

s ∩Bn
ℓ2

∥A− λvwT ∥2
F

(11)

with Bn
ℓ2

= {v ∈ Rn | ∥v∥ℓ2 ≤ 1} the ℓ2-norm
ball. Solving the optimization problem over λ
yields

min
λ∈R

∥A− λvwT ∥2
F

= min
λ∈R

{
∥A∥2

F + λ2∥v∥2
ℓ2∥w∥2

ℓ2 − 2λ⟨w,Av⟩
}

= ∥A∥2
F − min

v∈Rσ∩Bσ
ℓ2

,w∈Σn
s ∩Bn

ℓ2

⟨w,Av⟩2.

Since A is fixed we conclude that the optimiza-
tion problem (11) is equivalent to

maximize |⟨w,Av⟩|
subject to v ∈ Rσ ∩Bσ

ℓ2 , w ∈ Σn
s ∩Bn

ℓ2 .

Furthermore, using the Cauchy-Schwarz inequal-
ity we find that

max
v∈Rσ∩Bσ

ℓ2
,w∈Σn

s ∩Bn
ℓ2

|⟨v,Aw⟩| = max
w∈Σn

s ∩Bn
ℓ2

∥Aw∥ℓ2 .

Now consider an instance of the SparsePCA
problem with a symmetric input matrix B ∈
Rn×n, sparsity s and a > 0. W.l.o.g. we
can assume that B is a positive matrix since
solving the SparsePCA problem for the B −
min {0, λmin (B)} Id shifted by the smallest eigen-
value λmin (B) of B and a shifted correspond-
ingly, allows one to solve the SparsePCA problem
for B. For a positive matrix B we find a factor-
ization B = ATA. Hence, deciding whether the
maximum over all w ∈ Σn

s of wTBw is larger
than a is solved by calculating the maximum of
∥Aw∥2

ℓ2
= wTBw. This completes the reduc-

tion.

We are now prepared to tackle our related
problem: the projection onto Ωn,d

s,r . We have the
following statement:

Theorem 9 (Hardness of constrained minimiza-
tion). There exist no polynomial time algorithm
that calculates for all A ∈ Cn×n:

minimize ∥A−X∥F subject to X ∈ Ωn,d
s,r ,
(12)

unless P = NP. This still holds for s = n.
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We note that our result for exactly computing
straightforwardly generalizes to the case of ap-
proximating the target function up to constant
relative error using results on the approximata-
bility of SparsePCA [58].

Proof. Suppose there existed an efficient algo-
rithm that determines the objective value of the
projection (12). To encode the SparsePCA prob-
lem, we choose an instance of A as follows:
Let A′ ∈ Rn×d be a matrix and let A′

i denote
the ith row of A. Let ei be the basis vectors
(ei)j = δi,j , with δi,j the Kronecker symbol. We
choose A =

∑n
i=1 ei ⊗ diag(A′

i), where diag(A′
i)

denotes the diagonal matrix with the ith row
of A′ on its diagonal. Furthermore, we define
a′ = (A′

1, . . . , A
′
n) ∈ Rnd to be the vector aris-

ing by concatenating all rows of A. By definition
an X ∈ Ωn,d

s,r can be decomposed as X = ξ ⊗ ρ

with ξ ∈ Σn
s and ρ ∈ Hd

r . Let ρ = U diag(λ)U †

the eigenvalue decomposition of ρ with a suitable
unitary U ∈ U(n) and λ the vector of its eigen-
values. Then, we can rewrite

∥A− ξ ⊗ ρ∥2
2 =

n∑
i=1

∥ diag(A′
i) − ξiρ)∥2

2

= ∥ diag(a′) − (Idn ⊗U) diag(ξ ⊗ λ)(Idn ⊗U †)∥2
2

= ∥ diag(a′)(Idn ⊗U) − (Idn ⊗U) diag(ξ ⊗ λ)∥2
2

=
nd∑

i,j=1
|A′

i − (ξ ⊗ λ)j |2|(Idn ⊗U)i,j |2,

where we have used the unitary invariance of the
ℓ2-norm in the third step. We can introduce the
doubly stochastic matrix W with entries Wk,l =
|Uk,l|2 and relax the optimization to

min
ξ∈Σn

s ,ρ∈Hd
r

∥A− ξ ⊗ ρ∥2
2 (13)

≤ min
W ∈DSn, ξ∈Σs

n, λ∈Σd
r

nd∑
i,j=1

|A′
i − (ξ ⊗ λ)j |2(Idn ⊗W )i,j ,

where W is optimized over all doubly stochastic
matrices DSd ⊂ Cd×d. For σ ∈ Sd, a permuta-
tion of the symbols in [d], we denote the corre-
sponding permutation matrix by Πσ : Cd → Cd,
ξ 7→ Πσξ with (Πσξ)i = ξσ(i). By Birkhoff’s the-
orem, see e.g., Ref. [80, Theorem II.2.3], the set
of extremal points of the convex set of doubly

stochastic matrices DSd are the permutation ma-
trices ΠSd

= {Πσ | σ ∈ Sd}.
Since the optimum is, hence, attained for a per-

mutation matrix W = Πσ and Ui,j = (Πσ)1/2
i,j =

(Πσ)i,j is a unitary matrix, the inequality (13) is
saturated. Therefore, we conclude that

min
ξ∈Σn

s ,ρ∈Hy
r

∥A′ − ξ ⊗ ρ∥2
2

= min
ξ∈Σn

s ,λ∈Σd
r ,σ∈Sd

∥a′ − ξ ⊗ Πσλ∥2
2

= min
ξ∈Σn

s ,λ∈Σd
r

∥a′ − ξ ⊗ λ∥2
2

= min
ξ∈Σn

s ,λ∈Σd
r

∥A′ − ξλT ∥2
2.

Thus, an algorithm calculating the projection
onto Ωn,d

s,r for the matrix A chosen here solves the
SparsePCA problem for A′. We conclude that
there exists no polynomial time algorithm for the
problem.

B Convergence proof
In this section we provide the proof of Theorem 5.
We first introduce a bit more notation. Consider
X ∈ Ωn,d

s,r . By definition, it can be written as
X =

∑n
i=1 ξiei ⊗ xi with ξ ∈ Σn

s and xi ∈ Dd
r

for all i. Let Qi be the projector onto the range
of xi. Furthermore, we set Qi = 0 for all i not
in the support of ξ. Slightly overloading our no-
tation, we define the projection of every ‘block’
onto the range of the corresponding ‘block’ of X
as PΩ̂(X)(Y ) := PΩ̂(X)Y PΩ̂(X) with

PΩ̂(X) := diag(Q1, . . . , Qn).

Note that the projection simultaneously projects
onto the “block-wise support” of X.

It is common and useful to rewrite the RIP in-
equalities such as in Definition 4 as an equivalent
spectral condition of restrictions of A†A.

Proposition 10. Let X ∈ Ω̂n,d
s,r and A :

Cnd×d → Rm a linear map. Then the following
two statements are equivalent:

a.)
∥∥∥PΩ̂(X) ◦ (Id −A† ◦ A) ◦ PΩ̂(X)

∥∥∥
∞

≤ δ.

b.) For all Y ∈ range PΩ̂(X) it holds that

(1 − δ) ∥Y ∥2
F ≤ ∥A(Y )∥2

F ≤ (1 + δ) ∥Y ∥2
F .
(14)
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Proof. The inequality

δ ≥
∥∥∥PΩ̂(X) ◦ (Id −A† ◦ A) ◦ PΩ̂(X)

∥∥∥
∞

= max
Y ∈range PΩ̂(X)

|⟨Y, (Id −A† ◦ A)Y ⟩|
∥Y ∥2

F

holds if and only if for all Y ∈ range PΩ̂(X)

δ ∥Y ∥2
F ≥ | ∥Y ∥2

F − ∥A(Y )∥2
F |.

The last bound is equivalent to (14).

We will now prove the recovery guarantee, The-
orem 5. The derivation of recovery guarantees
for the IHT algorithm follows largely the same
blueprint developed in the original IHT proposal
for sparse vectors [20], see also Ref. [19] for a de-
tailed description of the proof. Here, we are in
addition in the comfortable position that Ref. [21]
already fleshed out the details of the recovery
proof for an IHT algorithm for de-mixing low-
rank matrices. However, in order to accommo-
date a non-trivial choice of the step width the
proof of Ref. [21] yields a slightly weaker result
than what can be shown by a simpler argument
for a fixed step width. Thus, we give a slightly
simpler proof that carefully adapts the one given
in Ref. [21] to account for the additional spar-
sity constraint and uses a slightly more concise
notation.

Proof of Theorem 5. Let X ∈ Ω̂n,d
s,r be the matrix

to be recovered. Let X l denote the lth iterate
of the vector of matrices in the SDT algorithm
(Algorithm 2). Since the algorithm always in-
volves a projection step onto Ω̂n,d

s,r the lth iter-
ate X l is in Ω̂n,d

s,r . Furthermore, we observe that
X +X l +X l+1 ∈ Ω̂n,d

3s,3r. For convenience, we de-
note the projection onto the (“block-wise”) joint
range and support of X, X l and X l+1 simply by
P l := PΩ̂(X+Xl+Xl+1) and its orthogonal comple-
ment by P l

⊥. It is crucial for the proof to bound
norm deviations restricted to the range of P l as
this eventually allows us to apply a RIP bound.

We want to show the convergence of the iter-
ates of the algorithm X l to the correct solution
X. In other words, we want to derive a bound of
the form ∥∥∥X l+1 −X

∥∥∥
F

≤ γ
∥∥∥X l −X

∥∥∥
F

with constant γ < 1. Note that by the theorem’s
assumption we set the step width to µl = 1 and
omit the tangent space projection PT

Xl
.

We first derive the following consequence of
the thresholding operation: Let Gl := A†(y −
A(X l)) = A† ◦ A(X − X l). By the definition of
X l+1 as the best approximation to X l + Gl in
Ω̂n,d

s,r it holds that∥∥∥X l+1 −
[
X l +Gl

]∥∥∥
F

≤
∥∥∥X −

[
X l +Gl

]∥∥∥
F
.

Since the parts of both sides of the inequality
that are not in the kernel of P l

⊥ coincides, we get
the same inequality also for the with P l inserted∥∥∥X l+1 −

[
X l + P l(Gl)

]∥∥∥
F

≤
∥∥∥X −

[
X l + P l(Gl)

]∥∥∥
F
.

With the help of this inequality, we can bound∥∥∥X l+1 −X
∥∥∥

F
≤
∥∥∥X l+1 −

[
X l + P l(Gl)

]∥∥∥
F

+
∥∥∥X −

[
X l + P l(Gl)

]∥∥∥
F

≤ 2
∥∥∥X −

[
X l + P l(Gl)

]∥∥∥
F

= 2
∥∥∥M1(X l −X)

∥∥∥
F

≤ 2 ∥M1∥∞

∥∥∥X l −X
∥∥∥

F
,

(15)

where in the last step we used the definition of
Gl, the fact that P l acts trivially on X l −X and
defined M1 := P l ◦ (Id −A† ◦ A) ◦ P l. To arrive
at the theorem’s assertion, we now bound the
spectral norm of M1 using the RIP property of
A and Proposition 10:

∥M1∥∞ =
∥∥∥P l ◦ (Id −A† ◦ A) ◦ P l

∥∥∥
∞

≤ δ3s,3r

(16)
since the range of P l is in Ωn,d

3s,3r. Using (16) in
(15) completes the proof.

Theorem 5 assumes that the input data y
for the SDT algorithm originate from a signal
X ∈ Ω̂s,r. In particular, we are assuming a
bound on the block-sparsity s and rank-r of the
blocks. In practice, one will often encounter the
situation that the signal producing the data is
not exactly sparse and of low-rank but rather
well-approximated by a structured signal. It is
straight-forward to also derive a model-robust
version of Theorem 5. We here briefly sketch
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the required modifications to the proof: Let X̃ ∈
Cnd×d (an arbitrary signal without the hierarchi-
cal structure) and suppose that y = A(X̃) =
A(X) + A(X̃ − X) with X = PΩ̂n,d

s,r
(X̃) is the

input to the SDT algorithm. In the proof, we
can adapt the definition of Gl to include the
additional term involving the model-mismatch
X̃ − X. In the following steps, we can finally
account for the model-mismatch term by an ad-
ditional summand to the right-hand side of (15)
proportional to

∥∥∥X̃ −X
∥∥∥

F
. In this way, we es-

tablish that liml→∞
∥∥∥X l −X

∥∥∥
F

≤ C
∥∥∥X̃ −X

∥∥∥
F

for some constant C, independent of n,d,s, and
r. We, thus, conclude that if the signal is vio-
lating the structure assumptions, the SDT algo-
rithm converges to the projection of the signal
onto the Ω̂n,d

s,r up to an accuracy proportional to
the magnitude of the model-mismatch, measured
as
∥∥∥X̃ − PΩ̂n,d

s,r
(X̃)

∥∥∥
F
.

C RIP guarantee for Hermitian ran-
dom matrices

In this section we provide the proof of Theorem 6
that establishes the RIP condition for measure-
ment matrices consisting of Hermitian matrices
i.i.d. drawn from the GUE. Establishing RIP con-
ditions for Gaussian matrices for a set of struc-
tured signals typically proceeds in two steps: One
first derives a strong concentration result for a
single signal in the set using standard concen-
tration of measure. Second, one takes the union
bound over the signal set with the help of an ϵ-
covering net construction to arrive at the uniform
statement of RIP. We can readily adapt this strat-
egy also to GUE.

For the first step, we derive a Gaussian-type
concentration result, modifying a standard line
of arguments for our example, see, e.g., Ref. [21].
The result is summarized as the following lemma:

Lemma 11 (Gaussian-type concentration). Let
X ∈ Ω̂n,d

s,r . Let {A(k)
i }n,m

i=1,k=1 be a set of
Hermitian matrices drawn i.i.d. from the GUE
and A be the measurement operator defined by
{A(k)

i }n,m
i=1,k=1 via Eqs. (5) and (6). Then, for

0 < δ < 1

(1 − δ) ∥X∥2
F ≤ 1

m
∥A(X)∥2

ℓ2
≤ (1 + δ) ∥X∥2

F

with probability of at least 1−2e−mδ2/Cδ and con-
stant Cδ ≥ 40.

Our proof essentially follows the argument of
Ref. [21] for Gaussian measurements and then
exploits that the Hermitian blocks of the signal
X ∈ Ω̂n,d

s,r only overlap with the Hermitian part
of the Gaussian measurement matrix.

Proof. Let X ∈ Ω̂n,d
s,r and denote its n d×d blocks

by xi. Consider a set {B(k)
i ∈ Cd×d}m,n

k,i=1 of
m · n d × d matrices with entries independently
drawn from the complex-valued normal distri-
bution. Let A(k)

i := P B
(k)
i be corresponding

matrices drawn from the GUE and A the corre-
sponding measurement map. Since all blocks xi

are Hermitian, we have

A(X)(k) =
n∑

i=1
⟨A(k)

i , xi⟩ =
n∑

i=1
⟨P B

(k)
i , xi⟩

=
n∑

i=1
Re{⟨B(k)

i , xi⟩}.

Since all entries of B(k)
i are i.i.d. complex nor-

mal random variables and xi is Hermitian,
Re{⟨B(k)

i , xi⟩} are i.i.d. real random variables
from the distribution N (0, ∥xi∥2

F ) for all i and
k. We conclude that all entries yk = A(X)(k)

of A(X) are Gaussian distributed with variance
σ2 =

∑
i ∥xi∥2

F = ∥X∥2
F and have even mo-

ments E[yk
2t] = 2−tt!

(2t
t

)
σ2t [19, Corollary 7.7].

Correspondingly, the squared entries are sub-
exponential random variables with mean E[y2

k] =
σ2. We denote the associated centred sub-
exponential variable as

zk := y2
k − σ2.

The moments of zk are bounded by

E[|zk|t] ≤ 2tE[|yk|2t] = t!
(

2t
t

)
σ2t,

where the first inequality follows from the trian-
gle and Jensen’s inequality. The binomial can
be upper bounded using Stirling’s formula [19,
(C.13)] by

(2t
t

)
= 4trt/

√
πt with rt ≤ e1/(24t).

Thus, for t ≥ 2 we have E[|zk|t] ≤ t!Rt−2Σ2/2
with R = 4σ2 and Σ2 =

√
2/πe1/4816σ4 ≤

0.815 · 16σ4. Controlling the moments of zk for
t ≥ 2, we can apply the Bernstein inequality [19,
Theorem 7.30] and bound the probability that
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∥A(X)∥2
ℓ2

varies by more than ∆ > 0 from its
expectation value

P
[∣∣∣∣ 1
m

∥A(X)∥2
ℓ2

− ∥X∥2
F

∣∣∣∣ ≥ ∆
]

= P
[∣∣∣∣∣

m∑
k=1

zk

∣∣∣∣∣ ≥ m∆
]

≤ 2 exp
[
− m∆2/2

Σ2 +R∆

]

≤ 2 exp
[

−m∆2

32∥X∥4
F + 8∥X∥2

F ∆

]
.

(17)

Let ∆ = δ∥X∥2
F for some 0 < δ < 1. Then we

can rewrite the tail bound (17) as

P
[∣∣∣∣ 1
m

∥A(X)∥2
ℓ2

− ∥X∥2
F

∣∣∣∣ ≥ δ∥X∥2
F

]
≤ 2 exp

[
−mδ2

Cδ

] (18)

with a constant Cδ ≥ 40. Hence, the condition

(1 − δ)∥X∥2
F ≤ 1

m
∥A(X)∥2

ℓ2
≤ (1 + δ)∥X∥2

F

holds with probability at least 1−2e−mδ2/Cδ .

Note that by the homogeneity of the RIP condi-
tion it suffices to restrict ourselves to normalized
elements of Ω̂n,d

s,r in the proof of Theorem 6. In
the following, we will therefore focus on the set

Ω̄n,d
s,r := {X ∈ Ω̂n,d

s,r | ∥X∥2
F = 1}.

To take a union bound over the set Ω̄n,d
s,r we need

to bound the size of an ϵ-net that covers the set
Ω̄n,d

s,r . An ϵ-net S covering a set of matrices M ⊂
Cnd×d is a finite subset of M such that for all
X ∈ M there exists X̄ ∈ S such that ∥X−X̄∥F ≤
ϵ. Our construction generalizes the construction
of Ref. [21]. Therein, a covering net for the set
of normalized block-wise low-rank matrices Ω̄n,d

n,r

was derived. We summarize the statement given
in Ref. [21] in the following lemma without giving
a proof.

Lemma 12 (Covering Ω̄n,d
n,r [21]). For Ω̄n,d

n,r there
exists an ϵ-covering net Sn,d

r with cardinality
bounded by (9/ϵ)(2d+1)nr.

The proof of Lemma 12 basically lifts the re-
sult of an ϵ-net for low-rank matrices of Ref. [81]
to the set Ω̄n,d

n,r using the triangle inequality.

We can combine multiple ϵ-nets for Ω̄s,d
s,r to

construct an ϵ-covering net for the set Ω̄n,d
s,r of

block-sparse matrix vectors with low-rank blocks.
The bound on the cardinality of the resulting ϵ-
covering net is given in the following lemma:

Lemma 13 (Bound on the cardinality of a cover-
ing net). For Ω̄n,d

s,r there exists an ϵ-covering net
Sn,d

s,r of cardinality bounded by
(n

s

)
(9/ϵ)(2d+1)sr.

Furthermore, for each X = [X1, . . . , Xn] ∈ Ω̄n,d
s,r

there exists X̄ = [X̄1, . . . , X̄n] ∈ Sn,d
s,r such that

∥X − X̄∥F ≤ ϵ and ∥X̄k∥F = 0 for all k for
which ∥Xk∥F = 0.

Proof. Let Γ ⊂ [n] with |Γ| ≤ s, i.e., the indices
of the support of an s-sparse vector. The set

Ω̄Γ
r :=

∑
i∈Γ

ξiei ⊗ xi

∣∣∣∣∣∣ ξi ∈ R, xi ∈ Dd
r

 ⊂ Ω̄n,d
s,r

shall consist of all elements of Ω̄n,d
s,r which have

non-vanishing blocks only supported on Γ. To
each element of Ω̄Γ

r , we can associate an ele-
ment of Ω̄s,d

s,r by omitting the vanishing blocks
in the matrix vector and vice versa. By virtue of
Lemma 12 we thus know that Ω̄Γ

r has a covering
net SΓ

r of cardinality bounded by (9/ϵ)(2d+1)sr.
We can decompose the entire set Ω̄n,d

s,r as

Ω̄n,d
s,r =

⋃
Γ⊂[n],|Γ|≤s

Ω̄Γ
r ,

and thus, the set

Sn,d
s,r =

⋃
Γ⊂[n],|Γ|≤s

SΓ
r

is an ϵ-covering net for Ω̄n,d
s,r . The union is taken

over
(n

s

)
different sets. Thus, the cardinality of

Sn,d
s,r is upper bounded by

(n
s

)
(9/ϵ)(2d+1)sr. The

second statement follows by construction.

We are now in the position to prove Theorem 6.

Proof of Theorem 6. The proof proceeds in two
steps. First, we prove the RIP for elements of
the ϵ-covering net Sn,d

s,r of Ω̄n,d
s,r . To do so, we

combine the concentration result of Lemma 11
and the union bound of Lemma 13 to establish
uniform concentration. In a second step, follow-
ing Ref. [21], we then use the definition of an ϵ-
covering net to show that for elements X ∈ Ω̄n,d

s,r

that are close enough to an element of the net,
the RIP condition still holds.
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Step 1: Taking the union bound over the ϵ-
net Sn,d

s,r constructed in Lemma 13 and using the
result of Lemma 11 in the form of (18) with con-
stant Cδ ≥ 40 we get

P
(

max
X∈Sn,d

s,r

∣∣∣∣ 1
m

∥A(X)∥2
ℓ2 − ∥X∥2

F

∣∣∣∣ ≥ δ/2
)

≤ 2|Sn,d
s,r |e−mδ2/(4Cδ)

≤ 2
(
n

s

)(9
ϵ

)(2d+1)sr

e−mδ2/(4Cδ).

(19)

The aim is to find a lower bound for the number
of measurements m for which the probability (19)
small. To this end, we rewrite

2
(
n

s

)(9
ϵ

)(2d+1)sr

e−mδ2/(4Cδ)

≤ 2 exp
[
s ln en

s
+ (2d+ 1)sr ln 9

ϵ
− mδ2

4Cδ

]
≤ τ,

(20)

using
(n

s

)
≤
(

en
s

)s [19, Lemma C.5]. The latter
inequality becomes true under the condition that

m ≥ 4Cδ

δ2

[
s ln en

s
+ (2d+ 1)sr ln 9

ϵ
+ ln 2

τ

]
.

(21)
Assuming that (21) holds, we have established
the RIP condition for the ϵ-net Sn,d

s,r , i.e., for all
vectors X ∈ Sn,d

s,r it holds that

(1 − δ/2)∥X∥2
F ≤ ∥A(X)∥2

ℓ2 ≤ (1 + δ/2)∥X∥2
F

(22)
with probability at least 1 − τ .

Step 2: Let us now transfer the RIP of Sn,d
s,r to

the entire set Ω̄n,d
s,r while keeping the error under

control. To this end, we choose the net parameter
ϵ as δ

4
√

2 . By definition of an ϵ-net, for elements
X ∈ Ω̄n,d

s,r , there exists an element X ∈ Sn,d
s,r such

that
∥X −X∥F ≤ δ

4
√

2
. (23)

To prove the RIP for the set Ω̄n,d
s,r we need to

bound ∥A(X)∥F from above and below.
We start with the upper bound, making use of

Eq. (22):

∥A(X)∥ℓ2 ≤ ∥A(X)∥ℓ2 + ∥A(X −X)∥ℓ2

≤ 1 + δ

2 + ∥A(X −X)∥ℓ2 .
(24)

Now ∥A(X − X)∥ℓ2 has to be bounded from
above. We use that by the second statement
of Lemma 13 the block supports of X and X
coincide. Therefore, X − X has also s non-
vanishing blocks that have rank of at most 2r.
We can, thus, decompose X − X = B + C in
terms of orthogonal matrices B,C ∈ Ω̂n,d

s,r that
obey ⟨B,C⟩ = 0. In particular, B and C have
the same block support as X. Let us define

κs,r := sup
X∈Ω̄n,d

s,r

∥A(X)∥ℓ2 .

Then we get using homogeneity
∥A(X −X)∥ℓ2 ≤ ∥A(B)∥ℓ2 + ∥A(C)∥ℓ2

≤ κs,r(∥B∥F + ∥C∥F ) ≤
√

2κs,r

√
∥B∥2

F + ∥C∥2
F

=
√

2κs,r∥X − X̄∥F ,

where the last step makes use of the orthogonality
of B and C. Together with (23) it follows that

∥A(X −X)∥ℓ2 ≤ δ · κs,r

4 . (25)

It remains to derive an upper bound for κs,r. To
this end, we use that, by definition, κs,r is the
best upper bound of the left-hand side of (24).
Inserting (25) into the right-hand side of (24),
we find the condition

κs,r ≤ 1 + δ

2 + δ · κs,r

4 . (26)

Solving for κs,r, Eq. (26) implies for 0 < δ < 1

κs,r ≤ 1 + δ/2
1 − δ/4 ≤ 1 + δ. (27)

Altogether, this yields the desired upper bound

∥A(X)∥ℓ2 ≤ 1 + 3
4δ + δ2

4 ≤ 1 + δ,

for δ < 1. The lower bound is analogously ob-
tained by combining the inequality

∥A(X)∥ℓ2 ≥ ∥A(X)∥ℓ2 − ∥A(X −X)∥ℓ2

≥ 1 − δ/2 − ∥A(X −X)∥ℓ2

with (25) (27) to arrive at

∥A(X)∥ℓ2 ≥ 1 − δ/2 − δ(1 + δ)/4 ≥ 1 − δ.

With the choice of ϵ, we can rewrite the condition
(21) on m as

m ≥ C

δ2

[
s ln en

s
+ (2d+ 1)sr ln c

δ
+ ln 2

τ

]
with constants C ≥ 4Cδ ≥ 160 and c ≥ 36

√
2 ≥

51. This completes the proof.

Accepted in Quantum 2023-06-05, click title to verify. Published under CC-BY 4.0. 26



D Acknowledgements
We thank David Gross, Steven T. Flammia,

Christian Krumnow, Robin Harper, Yi-Kai Liu,
and Carlos A. Riofrio for inspiring discussions
and helpful comments. Furthermore, we are
grateful to Alireza Seif and Nobert Linke for valu-
able comments on realistic error models and Pe-
ter Jung for making us aware of Ref. [21]. We are
grateful to Susane Calegari for kindly providing
drawings used in Figure 1. This work has been
supported by the DFG (specifically SPP1798
CoSIP, but also EI 519/9-1, EI 519/7-1, CRC
183, as well as under Germany’s Excellence Strat-
egy - The Berlin Mathematics Research Center
MATH+, EXC-2046/1, project ID: 390685689),
the BMBF (DAQC, MUNIQC-ATOMS), and the
Munich Quantum Valley (MQV-K8). It has also
received funding from the Templeton Foundation
and from the European Union’s Horizon 2020 re-
search and innovation programme (PASQuanS2,
Millenion). D. H. acknowledges funding from the
U.S. Department of Defense through a QuICS
Hartree fellowship.

References
[1] J. Preskill. “Quantum computing in the

NISQ era and beyond”. Quantum 2,
79 (2018).

[2] A. Acin, I. Bloch, H. Buhrman, T. Calarco,
C. Eichler, J. Eisert, D. Esteve, N. Gisin,
S. J. Glaser, F. Jelezko, S. Kuhr, M. Lewen-
stein, M. F. Riedel, P. O. Schmidt, R. Thew,
A. Wallraff, I. Walmsley, and F. K. Wil-
helm. “The European quantum technologies
roadmap”. New J. Phys. 20, 080201 (2017).
arXiv:1712.03773.

[3] J. Eisert, D. Hangleiter, N. Walk, I. Roth,
R. Markham, D.and Parekh, U. Chabaud,
and E. Kashefi. “Quantum certification and
benchmarking”. Nature Rev. Phys. 2, 382–
390 (2020). arXiv:1910.06343.

[4] S. Boixo, S. V. Isakov, V. N. Smelyanskiy,
R. Babbush, N. Ding, Z. Jiang, M. J. Brem-
ner, J. M. Martinis, and H. Neven. “Char-
acterizing quantum supremacy in near-term
devices”. Nature Phys. 14, 595–600 (2018).
arXiv:1608.00263.

[5] D. Hangleiter and J. Eisert. “Computa-
tional advantage of quantum random sam-
pling” (2023). arXiv:2206.04079.

[6] J. Emerson, R. Alicki, and K. Życzkowski.
“Scalable noise estimation with random uni-
tary operators”. J. Opt. B 7, S347 (2005).

[7] E. Knill, D. Leibfried, R. Reichle, J. Brit-
ton, R. B. Blakestad, J. D. Jost, C. Langer,
R. Ozeri, S. Seidelin, and D. J. Wineland.
“Randomized benchmarking of quantum
gates”. Phys. Rev. A 77, 012307 (2008).
arXiv:0707.0963.

[8] E. Magesan, J. M. Gambetta, and J. Emer-
son. “Scalable and robust randomized bench-
marking of quantum processes”. Phys. Rev.
Lett.106, 180504 (2011). arXiv:1009.3639.

[9] J. Helsen, I. Roth, E. Onorati, A.H. Werner,
and J. Eisert. “General framework for ran-
domized benchmarking”. PRX Quantum 3,
020357 (2022).

[10] S. T. Merkel, J. M. Gambetta, J. A. Smolin,
S. Poletto, A. D. Córcoles, B. R. Johnson,
C. A. Ryan, and M. Steffen. “Self-consistent
quantum process tomography”. Phys. Rev.
A 87, 062119 (2013). arXiv:1211.0322.

[11] R. Blume-Kohout, J. King Gamble,
E. Nielsen, J. Mizrahi, J. D. Sterk,
and P. Maunz. “Robust, self-consistent,
closed-form tomography of quantum logic
gates on a trapped ion qubit” (2013).
arXiv:1310.4492.

[12] A. M. Brańczyk, D. H. Mahler, L. A.
Rozema, A. Darabi, A. M. Steinberg, and
D. F. V. James. “Self-calibrating quan-
tum state tomography”. New J. Phys. 14,
085003 (2012).

[13] D. Gross, Y.-K. Liu, S. T. Flammia,
S. Becker, and J. Eisert. “Quantum state
tomography via compressed sensing”. Phys.
Rev. Lett. 105, 150401 (2010).

[14] S. T. Flammia, D. Gross, Y.-K. Liu, and
J. Eisert. “Quantum tomography via com-
pressed sensing: error bounds, sample com-
plexity and efficient estimators”. New J.
Phys. 14, 095022 (2012). arXiv:1205.2300.

[15] A. Kalev, R. L. Kosut, and I. H.
Deutsch. “Quantum tomography protocols
with positivity are compressed sensing pro-
tocols”. npj Quant. Inf. 1, 15018 (2015).
arXiv:1502.00536.

[16] C. A. Riofrio, D. Gross, S. T. Flammia,
T. Monz, D. Nigg, R. Blatt, and J. Eisert.
“Experimental quantum compressed sensing

Accepted in Quantum 2023-06-05, click title to verify. Published under CC-BY 4.0. 27

https://dx.doi.org/10.22331/q-2018-08-06-79
https://dx.doi.org/10.22331/q-2018-08-06-79
https://dx.doi.org/10.1088/1367-2630/aad1ea
http://arxiv.org/abs/1712.03773
https://dx.doi.org/10.1038/s42254-020-0186-4
https://dx.doi.org/10.1038/s42254-020-0186-4
http://arxiv.org/abs/1910.06343
https://dx.doi.org/10.1038/s41567-018-0124-x
http://arxiv.org/abs/1608.00263
http://arxiv.org/abs/2206.04079
https://dx.doi.org/10.1088/1464-4266/7/10/021
https://dx.doi.org/10.1103/PhysRevA.77.012307
http://arxiv.org/abs/0707.0963
https://dx.doi.org/10.1103/PhysRevLett.106.180504
https://dx.doi.org/10.1103/PhysRevLett.106.180504
http://arxiv.org/abs/1009.3639
https://dx.doi.org/10.1103/PRXQuantum.3.020357
https://dx.doi.org/10.1103/PRXQuantum.3.020357
https://dx.doi.org/10.1103/PhysRevA.87.062119
https://dx.doi.org/10.1103/PhysRevA.87.062119
http://arxiv.org/abs/1211.0322
http://arxiv.org/abs/1310.4492
https://dx.doi.org/10.1088/1367-2630/14/8/085003
https://dx.doi.org/10.1088/1367-2630/14/8/085003
https://dx.doi.org/10.1103/PhysRevLett.105.150401
https://dx.doi.org/10.1103/PhysRevLett.105.150401
https://dx.doi.org/10.1088/1367-2630/14/9/095022
https://dx.doi.org/10.1088/1367-2630/14/9/095022
http://arxiv.org/abs/1205.2300
https://dx.doi.org/10.1038/npjqi.2015.18
http://arxiv.org/abs/1502.00536


for a seven-qubit system”. Nature Comm. 8,
15305 (2017).

[17] A. Steffens, C. A. Riofrio, W. McCutcheon,
I. Roth, B. A. Bell, A. McMillan, M. S.
Tame, J. G. Rarity, and J. Eisert. “Ex-
perimentally exploring compressed sensing
quantum tomography”. Quant. Sc. Tech. 2,
025005 (2017).

[18] R. G. Baraniuk, V. Cevher, M. F. Duarte,
and C. Hegde. “Model-based compressive
sensing”. IEEE Trans. Inf. Th. 56, 1982–
2001 (2010).

[19] S. Foucart and H. Rauhut. “A mathemat-
ical introduction to compressive sensing”.
Springer. Berlin (2013).

[20] T. Blumensath and M. E. Davies. “Iterative
thresholding for sparse approximations”. J.
Four. An. App. 14, 629–654 (2008).

[21] T. Strohmer and K. Wei. “Painless breakups-
efficient demixing of low rank matrices”. J.
Four. Ana. App. 25, 1–31 (2019).

[22] I. Roth, M. Kliesch, A. Flinth, G. Wunder,
and J. Eisert. “Reliable recovery of hier-
archically sparse signals for Gaussian and
Kronecker product measurements”. IEEE
Trans. Sig. Proc. 68, 4002–4016 (2020).
arXiv:1612.07806.

[23] M. Pawłowski and N. Brunner. “Semi-
device-independent security of one-way
quantum key distribution”. Phys. Rev. A 84,
010302 (2011).

[24] Y.-C. Liang, T. Vértesi, and N. Brunner.
“Semi-device-independent bounds on entan-
glement”. Phys. Rev. A 83, 022108 (2011).

[25] H.-W. Li, Z.-Q. Yin, Y.-C. Wu, X.-B. Zou,
S. Wang, W. Chen, G.-C. Guo, and Z.-
F. Han. “Semi-device-independent random-
number expansion without entanglement”.
Phys. Rev. A 84, 034301 (2011).

[26] H.-W. Li, M. Pawłowski, Z.-Q. Yin, G.-
C. Guo, and Z.-F. Han. “Semi-device-
independent randomness certification using
n → 1 quantum random access codes”. Phys.
Rev. A 85, 052308 (2012).

[27] R. Gallego, N. Brunner, C. Hadley, and
A. Acin. “Device-independent tests of clas-
sical and quantum dimensions”. Phys. Rev.
Lett. 105, 230501 (2010).

[28] D. Mogilevtsev. “Calibration of single-
photon detectors using quantum statistics”.
Phys. Rev. A 82, 021807 (2010).

[29] D. Mogilevtsev, J. Řeháček, and Z. Hradil.
“Relative tomography of an unknown quan-
tum state”. Phys. Rev. A 79, 020101 (2009).

[30] D. Mogilevtsev, J. Řeháček, and Z. Hradil.
“Self-calibration for self-consistent tomogra-
phy”. New J. Phys. 14, 095001 (2012).

[31] J. Y. Sim, J. Shang, H. K. Ng, and B.-G. En-
glert. “Proper error bars for self-calibrating
quantum tomography”. Phys. Rev. A100,
022333 (2019).

[32] C. Stark. “Simultaneous estimation of di-
mension, states and measurements: Compu-
tation of representative density matrices and
POVMs” (2012). arXiv:1210.1105.

[33] C. Stark. “Self-consistent tomography of
the state-measurement Gram matrix”. Phys.
Rev. A 89, 052109 (2014). arXiv:1209.5737.

[34] J. Řeháček, D. Mogilevtsev, and Z. Hradil.
“Operational tomography: Fitting of
data patterns”. Phys. Rev. Lett. 105,
010402 (2010).

[35] L. Motka, B. Stoklasa, J. Rehacek, Z. Hradil,
V. Karasek, D. Mogilevtsev, G. Harder,
C. Silberhorn, and L. L. Sánchez-Soto.
“Efficient algorithm for optimizing data-
pattern tomography”. Phys. Rev. A 89,
054102 (2014).

[36] C. Ferrie. “Quantum model averaging”. New
J. Phys. 16, 093035 (2014).

[37] D. Greenbaum. “Introduction to quan-
tum gate set tomography” (2015).
arXiv:1509.02921.

[38] R. Blume-Kohout, J. K. Gamble, E. Nielsen,
K. Rudinger, J. Mizrahi, K. Fortier, and
P. Maunz. “Demonstration of qubit opera-
tions below a rigorous fault tolerance thresh-
old with gate set tomography”. Nature
Comm. 8, 14485 (2017). arXiv:1605.07674.

[39] P. Cerfontaine, R. Otten, and H. Bluhm.
“Self-consistent calibration of quantum-gate
sets”. Phys. Rev. Appl. 13, 044071 (2020).
arXiv:1906.00950.

[40] R. Brieger, I. Roth, and M. Kliesch. “Com-
pressive gate set tomography”. PRX Quan-
tum 4, 010325 (2023).

[41] D. Gross. “Recovering low-rank matri-
ces from few coefficients in any basis”.
IEEE Trans. Inf. Th. 57, 1548–1566 (2011).
arXiv:0910.1879.

[42] Y.-K. Liu. “Universal low-rank matrix recov-
ery from Pauli measurements”. Adv. Neu-

Accepted in Quantum 2023-06-05, click title to verify. Published under CC-BY 4.0. 28

https://dx.doi.org/10.1038/ncomms15305
https://dx.doi.org/10.1038/ncomms15305
https://dx.doi.org/10.1088/2058-9565/aa6ae2
https://dx.doi.org/10.1088/2058-9565/aa6ae2
https://dx.doi.org/10.1109/TIT.2010.2040894
https://dx.doi.org/10.1109/TIT.2010.2040894
https://dx.doi.org/10.1007/978-0-8176-4948-7
https://dx.doi.org/10.1007/s00041-008-9035-z
https://dx.doi.org/10.1007/s00041-008-9035-z
https://dx.doi.org/10.1007/s00041-017-9564-4
https://dx.doi.org/10.1007/s00041-017-9564-4
https://dx.doi.org/10.1109/TSP.2020.3003453
https://dx.doi.org/10.1109/TSP.2020.3003453
http://arxiv.org/abs/1612.07806
https://dx.doi.org/10.1103/PhysRevA.84.010302
https://dx.doi.org/10.1103/PhysRevA.84.010302
https://dx.doi.org/10.1103/PhysRevA.83.022108
https://dx.doi.org/10.1103/PhysRevA.84.034301
https://dx.doi.org/10.1103/PhysRevA.85.052308
https://dx.doi.org/10.1103/PhysRevA.85.052308
https://dx.doi.org/10.1103/PhysRevLett.105.230501
https://dx.doi.org/10.1103/PhysRevLett.105.230501
https://dx.doi.org/10.1103/PhysRevA.82.021807
https://dx.doi.org/10.1103/PhysRevA.79.020101
https://dx.doi.org/10.1088/1367-2630/14/9/095001
https://dx.doi.org/10.1103/PhysRevA.100.022333
https://dx.doi.org/10.1103/PhysRevA.100.022333
http://arxiv.org/abs/1210.1105
https://dx.doi.org/10.1103/PhysRevA.89.052109
https://dx.doi.org/10.1103/PhysRevA.89.052109
http://arxiv.org/abs/1209.5737
https://dx.doi.org/10.1103/PhysRevLett.105.010402
https://dx.doi.org/10.1103/PhysRevLett.105.010402
https://dx.doi.org/10.1103/PhysRevA.89.054102
https://dx.doi.org/10.1103/PhysRevA.89.054102
https://dx.doi.org/10.1088/1367-2630/16/9/093035
https://dx.doi.org/10.1088/1367-2630/16/9/093035
http://arxiv.org/abs/1509.02921
https://dx.doi.org/10.1038/ncomms14485
https://dx.doi.org/10.1038/ncomms14485
http://arxiv.org/abs/1605.07674
https://dx.doi.org/10.1103/PhysRevApplied.13.044071
http://arxiv.org/abs/1906.00950
https://dx.doi.org/10.1103/PRXQuantum.4.010325
https://dx.doi.org/10.1103/PRXQuantum.4.010325
https://dx.doi.org/10.1109/TIT.2011.2104999
http://arxiv.org/abs/0910.1879
https://dx.doi.org/10.48550/arXiv.1103.2816
https://dx.doi.org/10.48550/arXiv.1103.2816


ral Inf. Process. Syst. 24, 1638–1646 (2011).
arXiv:1103.2816.

[43] R. Kueng. “Low rank matrix recov-
ery from few orthonormal basis measure-
ments”. In Sampling Theory and Applica-
tions (SampTA), 2015 International Confer-
ence on. Pages 402–406. (2015).

[44] M. Kabanava, R. Kueng, H. Rauhut, and
U. Terstiege. “Stable low-rank matrix recov-
ery via null space properties”. Inf. Inf. 5,
405–441 (2016).

[45] A. Shabani, R. L. Kosut, M. Mohseni,
H. Rabitz, M. A. Broome, M. P. Almeida,
A. Fedrizzi, and A. G. White. “Efficient
measurement of quantum dynamics via com-
pressive sensing”. Phys. Rev. Lett. 106,
100401 (2011).

[46] S. Kimmel and Y. K. Liu. “Phase retrieval
using unitary 2-designs”. In 2017 Interna-
tional Conference on Sampling Theory and
Applications (SampTA). Pages 345–349.
(2017). arXiv:1510.08887.

[47] I. Roth, R. Kueng, S. Kimmel, Y.-K. Liu,
D. Gross, J. Eisert, and M. Kliesch. “Re-
covering quantum gates from few average
gate fidelities”. Phys. Rev. Lett. 121,
170502 (2018). arXiv:1803.00572.

[48] G. Wunder, H. Boche, T. Strohmer, and
P. Jung. “Sparse signal processing concepts
for efficient 5G system design”. IEEE Acc.
3, 195–208 (2015).

[49] I. Roth, M. Kliesch, G. Wunder, and J. Eis-
ert. “Reliable recovery of hierarchically
sparse signals”. In Proceedings of the third
“international traveling workshop on interac-
tions between sparse models and technology”
(iTWIST’16). (2016). arXiv:1609.04167.

[50] A. Ahmed, B. Recht, and J. Romberg. “Blind
deconvolution using convex programming”.
IEEE Trans. Inf. Th. 60, 1711–1732 (2014).

[51] S. Oymak, A. Jalali, M. Fazel, Y. C. Eldar,
and B. Hassibi. “Simultaneously structured
models with application to sparse and low-
rank matrices”. IEEE Trans. Inf. Th. 61,
2886–2908 (2015).

[52] D. Needell and J. A. Tropp. “CoSaMP: Iter-
ative signal recovery from incomplete and in-
accurate samples”. Appl. Comp. Harm. An.
26, 301 (2008).

[53] S. Foucart. “Hard thresholding pursuit: An

algorithm for compressive sensing”. SIAM J.
Num. An. 49, 2543–2563 (2011).

[54] M. Magdon-Ismail. “NP-hardness and in-
approximability of sparse PCA”. Inf. Proc.
Lett. 126, 35–38 (2017).

[55] Q. Berthet and P. Rigollet. “Complexity the-
oretic lower bounds for sparse principal com-
ponent detection”. In Conference on Learn-
ing Theory. Pages 1046–1066. (2013).
url: http://proceedings.mlr.press/v30/
Berthet13.html.

[56] Q. Berthet and P. Rigollet. “Optimal de-
tection of sparse principal components in
high dimension”. Ann. Statist. 41, 1780–
1815 (2013).

[57] M. Brennan and G. Bresler. “Optimal
average-case reductions to sparse PCA:
From weak assumptions to strong hard-
ness”. In 32nd Annual Conference on Learn-
ing Theory. Volume 99 of Proceedings
of Machine Learning Research. (2019).
arXiv:1902.07380.

[58] S. O. Chan, D. Papailliopoulos, and A. Ru-
binstein. “On the approximability of sparse
PCA”. In PMLR. Volume 49, pages 623–646.
(2016). arXiv:1507.05950.

[59] G. Wunder, I. Roth, R. Fritschek, B. Groß,
and J. Eisert. “Secure massive IoT using
hierarchical fast blind deconvolution”. In
2018 IEEE Wireless Communications and
Networking Conference Workshops, WCNC
2018 Workshops, Barcelona, Spain, April
15-18, 2018. Pages 119–124. (2018).
arXiv:1801.09628.

[60] S. Foucart, R. Gribonval, L. Jacques, and
H. Rauhut. “Jointly low-rank and bis-
parse recovery: Questions and partial an-
swers” (2019). arXiv:1902.04731.

[61] P. Sprechmann, I. Ramirez, G. Sapiro, and
Y. Eldar. “Collaborative hierarchical sparse
modeling”. In 2010 44th Annual Confer-
ence on Information Sciences and Systems
(CISS). Pages 1–6. (2010).

[62] J. Friedman, T. Hastie, and R. Tibshirani.
“A note on the group Lasso and a sparse
group Lasso” (2010). arXiv:1001.0736.

[63] P. Sprechmann, I. Ramirez, G. Sapiro, and
Y. C. Eldar. “C-HiLasso: A collabo-
rative hierarchical sparse modeling frame-
work”. IEEE Trans. Sig. Proc. 59, 4183–
4198 (2011).

Accepted in Quantum 2023-06-05, click title to verify. Published under CC-BY 4.0. 29

https://dx.doi.org/10.48550/arXiv.1103.2816
http://arxiv.org/abs/1103.2816
https://dx.doi.org/10.1109/SAMPTA.2015.7148921
https://dx.doi.org/10.1093/imaiai/iaw014
https://dx.doi.org/10.1093/imaiai/iaw014
https://dx.doi.org/10.1103/PhysRevLett.106.100401
https://dx.doi.org/10.1103/PhysRevLett.106.100401
https://dx.doi.org/10.1109/SAMPTA.2017.8024414
http://arxiv.org/abs/1510.08887
https://dx.doi.org/10.1103/PhysRevLett.121.170502
https://dx.doi.org/10.1103/PhysRevLett.121.170502
http://arxiv.org/abs/1803.00572
https://dx.doi.org/10.1109/ACCESS.2015.2407194
https://dx.doi.org/10.1109/ACCESS.2015.2407194
http://arxiv.org/abs/1609.04167
https://dx.doi.org/10.1109/TIT.2013.2294644
https://dx.doi.org/10.1109/TIT.2015.2401574
https://dx.doi.org/10.1109/TIT.2015.2401574
https://dx.doi.org/10.1145/1859204.1859229
https://dx.doi.org/10.1145/1859204.1859229
https://dx.doi.org/10.1137/100806278
https://dx.doi.org/10.1137/100806278
https://dx.doi.org/10.1016/j.ipl.2017.05.008
https://dx.doi.org/10.1016/j.ipl.2017.05.008
http://proceedings.mlr.press/v30/Berthet13.html
http://proceedings.mlr.press/v30/Berthet13.html
https://dx.doi.org/10.1214/13-AOS1127
https://dx.doi.org/10.1214/13-AOS1127
http://arxiv.org/abs/1902.07380
http://arxiv.org/abs/1507.05950
https://dx.doi.org/10.1109/WCNCW.2018.8369038
http://arxiv.org/abs/1801.09628
http://arxiv.org/abs/1902.04731
https://dx.doi.org/10.1109/CISS.2010.5464845
http://arxiv.org/abs/1001.0736
https://dx.doi.org/10.1109/TSP.2011.2157912
https://dx.doi.org/10.1109/TSP.2011.2157912


[64] N. Simon, J. Friedman, T. Hastie, and
R. Tibshirani. “A sparse-group Lasso”. J.
Comp. Graph. Stat. 22, 231–245 (2013).

[65] I. Roth, A. Flinth, R. Kueng, J. Eisert, and
G. Wunder. “Hierarchical restricted isom-
etry property for Kronecker product mea-
surements”. In 2018 56th Annual Aller-
ton Conference on Communication, Control,
and Computing (Allerton). Pages 632–638.
(2018).

[66] A. Flinth, B. Groß, I. Roth, J. Eisert,
and G. Wunder. “Hierarchical isometry
properties of hierarchical measurements”.
Appl. Comp. Harm. An. 58, 27–49 (2022).
arXiv:2005.10379.

[67] G. Wunder, I. Roth, R. Fritschek, and J. Eis-
ert. “HiHTP: A custom-tailored hierarchi-
cal sparse detector for massive MTC”. In
2017 51st Asilomar Conference on Signals,
Systems, and Computers. Pages 1929–1934.
(2017).

[68] G. Wunder, I. Roth, R. Fritschek, and
J. Eisert. “Performance of hierarchical
sparse detectors for massive MTC” (2018).
arXiv:1806.02754.

[69] G. Wunder, I. Roth, M. Barzegar, A. Flinth,
S. Haghighatshoar, G. Caire, and G. Ku-
tyniok. “Hierarchical sparse channel estima-
tion for massive mimo”. In WSA 2018; 22nd
International ITG Workshop on Smart An-
tennas. Pages 1–8. VDE (2018).

[70] G. Wunder, S. Stefanatos, A. Flinth, I. Roth,
and G. Caire. “Low-overhead hierarchically-
sparse channel estimation for multiuser
wideband massive MIMO”. IEEE Trans.
Wire. Comm. 18, 2186–2199 (2019).

[71] G. H. Golub and C. F. van Loan. “Matrix

computations”. The Johns Hopkins Univer-
sity Press. Baltimore (1989).

[72] N. Halko, P.-G. Martinsson, and J. A. Tropp.
“Finding structure with randomness: Prob-
abilistic algorithms for constructing approx-
imate matrix decompositions”. SIAM Rev.
53, 217–288 (2011).

[73] C. A. R. Hoare. “Algorithm 65: Find”. Com-
mun. ACM 4, 321–322 (1961).

[74] K. Wei, J.-F. Cai, T. F. Chan, and S. Leung.
“Guarantees of Riemannian optimization for
low rank matrix recovery”. SIAM J. Mat.
An. App. 37, 1198–1222 (2016).

[75] P.-A. Absil, R. Mahony, and R. Sepulchre.
“Optimization algorithms on matrix mani-
folds”. Princeton University Press. (2009).

[76] B. Vandereycken. “Low-rank matrix comple-
tion by Riemannian optimization”. SIAM J.
Opt. 23, 1214–1236 (2013).

[77] T. Blumensath and M. E. Davies. “Sampling
theorems for signals from the union of finite-
dimensional linear subspaces”. IEEE Trans.
Inf. Theory 55, 1872–1882 (2009).

[78] A. S. Bandeira, E. Dobriban, D. G. Mixon,
and W. F. Sawin. “Certifying the restricted
isometry property is hard”. IEEE Trans. Inf.
Th. 59, 3448–3450 (2013).

[79] J. Wilkens, D. Hangleiter, and
I. Roth (2020). Gitlab repository
at https://gitlab.com/wilkensJ/
blind-quantum-tomography.

[80] R. Bhatia. “Matrix analysis”. Graduate texts
in mathematics. Springer. New York (1997).

[81] E. J. Candes and Y. Plan. “Tight oracle in-
equalities for low-rank matrix recovery from
a minimal optnumber of noisy random mea-
surements”. IEEE Trans. Inf. Th. 57, 2342–
2359 (2011).

Accepted in Quantum 2023-06-05, click title to verify. Published under CC-BY 4.0. 30

https://dx.doi.org/10.1080/10618600.2012.681250
https://dx.doi.org/10.1080/10618600.2012.681250
https://dx.doi.org/10.1109/ALLERTON.2018.8635829
https://dx.doi.org/10.1016/j.acha.2021.12.006
http://arxiv.org/abs/2005.10379
https://dx.doi.org/10.1109/ACSSC.2017.8335701
http://arxiv.org/abs/1806.02754
https://dx.doi.org/
https://dx.doi.org/10.1109/TWC.2019.2900637
https://dx.doi.org/10.1109/TWC.2019.2900637
https://dx.doi.org/10.2307/3619868
https://dx.doi.org/10.2307/3619868
https://dx.doi.org/10.1137/090771806
https://dx.doi.org/10.1137/090771806
https://dx.doi.org/10.1145/366622.366647
https://dx.doi.org/10.1145/366622.366647
https://dx.doi.org/10.1137/15M1050525
https://dx.doi.org/10.1137/15M1050525
https://dx.doi.org/10.1515/9781400830244
https://dx.doi.org/10.1137/110845768
https://dx.doi.org/10.1137/110845768
https://dx.doi.org/10.1109/TIT.2009.2013003
https://dx.doi.org/10.1109/TIT.2009.2013003
https://dx.doi.org/10.1109/TIT.2013.2248414
https://dx.doi.org/10.1109/TIT.2013.2248414
https://gitlab.com/wilkensJ/blind-quantum-tomography
https://gitlab.com/wilkensJ/blind-quantum-tomography
https://dx.doi.org/10.1007/978-1-4612-0653-8
https://dx.doi.org/10.1007/978-1-4612-0653-8
https://dx.doi.org/10.1109/TIT.2011.2111771
https://dx.doi.org/10.1109/TIT.2011.2111771

	Introduction
	Provable blind tomography via sparse de-mixing
	Practical blind tomography
	Related work and applications in signal processing

	Quantum state tomography with imperfect Pauli correlation measurements
	Formal problem definition
	Algorithm
	Hard-thresholding algorithms: Ease and hardness of the projection
	Relaxing the blind tomography problem: sparse de-mixing
	Details of the SDT algorithm
	Blind tomography via alternating least-square optimization

	Recovery guarantees
	Numerical results
	GUE measurements
	Sub-sampled Pauli measurements
	Pauli measurements with coherent single-qubit errors

	Summary and outlook
	Hardness of projection
	Convergence proof
	RIP guarantee for Hermitian random matrices
	References

