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Abstract
Boolean networks are popular tools for the exploration of qualitative dynamical properties of biological systems. Several

dynamical interpretations have been proposed based on the same logical structure that captures the interactions between

Boolean components. They reproduce, in different degrees, the behaviours emerging in more quantitative models. In

particular, regulatory conflicts can prevent the standard asynchronous dynamics from reproducing some trajectories that

might be expected upon inspection of more detailed models. We introduce and study the class of networks with linear cuts,

where linear components—intermediates with a single regulator and a single target—eliminate the aforementioned reg-

ulatory conflicts. The interaction graph of a Boolean network admits a linear cut when a linear component occurs in each

cycle and in each path from components with multiple targets to components with multiple regulators. Under this structural

condition the attractors are in one-to-one correspondence with the minimal trap spaces, and the reachability of attractors

can also be easily characterized. Linear cuts provide the base for a new interpretation of the Boolean semantics that

captures all behaviours of multi-valued refinements with regulatory thresholds that are uniquely defined for each inter-

action, and contribute a new approach for the investigation of behaviour of logical models.

Keywords Boolean networks � Updating semantics � Reachability � Attractors

Mathematics Subject Classification 94C99 � 92B05 � 06E30 � 68Q10 � 37B15

1 Introduction

Boolean networks are a class of non-deterministic discrete

event systems used as qualitative dynamical models of

biological processes. The study of complex biological

processes leads to two types of results: insight about the

internal molecular mechanisms, and observation of their

state over time and different external stimulations. While

the changes of state emerge from the internal mechanisms,

they can not be directly compared. The integration of

mechanistic knowledge into dynamical models enables to

contrast the behaviour emerging from the model with the

experimental observations. Such models are valuable tools

to identify inconsistencies, evaluate hypothesis and prior-

itize their experimental validation. Starting with a known

initial condition, the model can be used to predict the

reachability and stability of a target phenotype, which

corresponds to properties of the reachable states of the

model. The lack of precise information on the initial con-

ditions and kinetic parameters impedes the construction of

comprehensive quantitative models without performing

time-consuming exploration of parameters. Boolean and

more generally qualitative models have been proposed to

cope with this lack of quantitative knowledge (Kauffman

1969; Thomas 1973). These discrete models are well suited

to build large comprehensive models based on incomplete

knowledge. They are also amenable to formal analysis, in

particular for the identification of attractors (Naldi et al.

2007; Dubrova and Teslenko 2011; Klarner et al. 2014).

Multi-valued networks can be used to account for com-

ponents for which a higher activity level (denoting for
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2 I3S, Université Côte d’Azur - CNRS, Sophia Antipolis,

France

3 Department of Mathematics and Computer Science, Freie

Universität, Berlin, Germany

123

Natural Computing (2023) 22:431–451
https://doi.org/10.1007/s11047-023-09945-2(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-6495-2655
http://crossmark.crossref.org/dialog/?doi=10.1007/s11047-023-09945-2&amp;domain=pdf
https://doi.org/10.1007/s11047-023-09945-2


example a higher concentration or a stronger activation)

can lead to different effects (new targets, stronger or dif-

ferent effect). Most large networks lack this level of detail

and consider only Boolean components (sometimes a few

selected multi-valued components). In practice, the coarse-

grained predictions obtained with these models are suffi-

cient to reproduce relevant behaviours in a wide range of

biological applications (e.g. Sizek et al. 2019; Béal et al.

2021; Bonzanni et al. 2013; Cohen et al. 2015; Collombet

et al. 2017).

The analysis of these models often aims initially at the

identification of attractors (fixed points or stable oscilla-

tions) and reachability properties, which are computation-

ally hard problems in the classical asynchronous semantics.

Modelers can attempt to simplify the analysis by first

considering trap spaces, stable subspaces that can be effi-

ciently identified using constraint-solving approaches (K-

larner et al. 2015; Chevalier et al. 2019; Trinh et al. 2022).

Trap spaces provide a crude approximation of some of the

attractors, but may not capture all of them. In addition, they

can be used to rule out some reachability properties, since

all states outside of the smallest trap space including the

initial state are not reachable. On the other hand, reacha-

bility analysis inside a given trap space remains hard to

solve. These questions are much easier to tackle using the

recently proposed most permissive semantics (Paulevé

et al. 2020), an over-approximation of the asynchronous

semantics which lifts competition between concurrent

events by introducing intermediate states representing the

inherent uncertainty of Boolean networks. This approach

formally accounts for the reachability properties of all

possible refinements and uncovers missing realistic beha-

viours that are not captured by the asynchronous semantics.

This results in very good computational properties, with all

attractors being trap spaces and reachability analysis being

polynomial. On the other hand, the most permissive

semantics can also introduce non-monotonic behaviours,

which may contradict the original intent of the model and

could be considered as artefacts.

In this work, we propose an alternative semantics based

on structural properties underlying the competition

between components. We study constraints on the order of

events in the asynchronous and most permissive semantics,

specifically those related to the existence of maximal

geodesics. We introduce the class of Boolean networks that

admit a linear cut, that is, networks in which every cycle

and every path from a component with multiple targets to a

component with multiple regulators contains at least one

linear component (a component with in- and out-degree

equal to one). In essence, these linear components can be

used to relax competitions between other components in

the network. We show that for all initial states with

stable linear components (canonical states), maximal

geodesics of the most permissive semantics exist in the

asynchronous dynamics. We prove two main consequences

of this observation: (1) minimal trap spaces provide a

precise (but not exact) characterization of all attractors; and

(2) given a canonical initial condition, all trap spaces

(hence all attractors) included in the smallest trap space

containing the initial state are reachable. The characteri-

zation of reachability from other states and subspaces

remains a hard problem. While many realistic Boolean

networks do not satisfy the required topological properties,

we show that one can always construct an extended net-

work which does, by adding intermediate components on

competing interactions. We use this extension to define a

new semantics which is an over-approximation of the

classical asynchronous semantics and an under-approxi-

mation of the most-permissive semantics. In Boolean net-

works of biological systems, interactions are often abstract

representations summarizing multiple intermediate steps,

hence networks resulting from the addition of explicit

intermediates can presumably be considered as valid can-

didate models. In these cases, the extended semantics takes

advantage of some key computational properties of the

most permissive semantics with a higher confidence in the

interpretability of the results.

In Sect. 2, we present classical concepts and formal

notation used in this work. In Sect. 3, we introduce im-

plicant maps as a tool to study constraints between tran-

sitions in asynchronous and permissive trajectories. In

Sect. 4, we define the topological class of L-cuttable

Boolean networks and derive some of their key dynamical

properties, in particular the one-to-one correspondence

between minimal trap spaces and attractors. In Sect. 5 we

show that extended networks, accounting for realistic delay

effects, can be used to take advantage of the dynamical

properties of cuttable networks to investigate any Boolean

network, and to recreate behaviours of a class of monotonic

multi-valued refinements. Finally, we discuss how the

semantics of linearly extended networks relate to the

asynchronous and permissive semantics, and their potential

practical application to the exploration and validation of

biological models.

2 Background

In this section we introduce notations and definitions used

throughout the paper. The symbol B will denote the set

f0; 1g. Given a set A, we will write PðAÞ for the power set
of A.

A Boolean network is defined by a pair M ¼ ðV; f Þ,
where V ¼ f1; . . .; ng is called the set of variables or

components of the Boolean network, and f is an
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endomorphism of BV .

The set BV will be called the set of states of the Boolean

network, sometimes called state space. Any pair of states x

and y delimit a subspace [x, y] defined as the subset of

states fz 2 BV j zi ¼ xi ¼ yi for all i 2 V s.t. xi ¼ yig. We

will denote subspaces also as elements of f0; 1;HgV , so
that a state x belongs to a subspace t 2 f0; 1;HgV if for all

variables i we have either xi ¼ ti or ti ¼ H. That is, we use

H to represent free variables. Note that states are subspaces

without free variables and that a subspace with k free

variables contains 2k different states.

Given a Boolean network (V, f) and a component i 2 V ,

we call fi : B
V ! B the Boolean function associated to the

component i. An implicant of fi is a subspace t such that

fiðxÞ ¼ 1 for all states x 2 t. An implicant is prime if it is

not contained in any larger implicant (i.e. if it has a min-

imal set of fixed variables).

For a subset A of BV , [A] will denote the minimal

subspace containing A, and DðAÞ the set of free variables of
[A] (that is, DðAÞ ¼ fi 2 V j 9x; y 2 A s.t. xi 6¼ yig). If A

consists of two states x and y, we will write Dðx; yÞ for

DðAÞ. We extend the notation Dðx; yÞ to apply to elements

x, y of f0; 1;HgV as follows: i 2 Dðx; yÞ if and only if

xi 6¼ H, yi 6¼ H and xi 6¼ yi.

Given a state x 2 BV and a set of components I � V , we

define the state �xI by �xIi 6¼ xi for all i 2 I and �xIj ¼ xj for all

j 2 VnI. By convention, �xi ¼ �xfig.
For a Boolean network (V, f), we say that i 2 V is a

regulator of j 2 V if there exists x 2 BV such that

fjðxÞ 6¼ fjð�xiÞ. In this case, component j is called a target for

i. We will use the notations R; T : V ! PðVÞ to denote the

maps that give the set of regulators and targets of com-

ponents, respectively.

The interaction graph of a Boolean network (V, f)

summarises the regulations between components. It is the

graph with set of vertices V and set of edges defined by

fði; jÞ 2 V j j 2 TðiÞg. The edges of the interaction graph

are also called interactions of the network.

The dynamical behaviour of a Boolean network (V, f) is

encoded in transitions between states. These transitions are

defined by the Boolean rules f and an updating semantic,

which can be deterministic (each state has a single suc-

cessor) or non-deterministic (each state can have multiple

successors defining alternative dynamical trajectories). The

deterministic synchronous updating was first proposed by

Kauffman (1969). In this work, we focus on the non-de-

terministic asynchronous updating, introduced by Thomas

(1973). As the name suggests, the synchronous updating

assumes that all possible changes always happen at the

same time, while the asynchronous updating assumes that

all changes happen separately. In the generalized

asynchronous updating, changes can happen either at the

same time or separately: it contains all transitions from the

synchronous and asynchronous updatings, as well as all

other transitions where a subset of components are updated.

More in detail, for a Boolean network (V, f), given two

distinct states x, y (i.e. Dðx; yÞ 6¼ ;), there exists a transition
from x to y

• in the synchronous dynamics, if and only if y ¼ f ðxÞ,
• in the asynchronous dynamics, if and only if y ¼ �xi with

i 2 Dðx; f ðxÞÞ,
• in the generalized asynchronous dynamics, if and only

if Dðx; yÞ � Dðx; f ðxÞÞ.
Note that each state has at most one successor in the syn-

chronous updating, at most n successors in the asyn-

chronous updating and up to 2n � 1 successors in the

generalized asynchronous case.

Other updatings have been proposed, in particular the

bloc-sequential updating (deterministic, see Robert 1986)

and the use of priority classes (non-deterministic, see Fauré

et al. 2006). In addition, one can define stochastic

dynamics by adding transition probabilities to non-deter-

ministic updatings. A trajectory from a state x to a state y in

any of these updatings implies the existence of a trajectory

from x to y in the generalized asynchronous dynamics. By

definition, all transitions in the synchronous, asynchronous

and priority updatings are also transitions in the general-

ized asynchronous dynamics. Individual bloc-sequential

transitions may not correspond to transitions in the gener-

alized asynchronous dynamics; however, equivalent tra-

jectories always exist. In summary, the reachability

properties of the generalized asynchronous dynamics pro-

vide an over-approximation of the reachability properties

in all other classical updatings. More precisely, the set of

reachable states in the generalized asynchronous dynamics

contains those of other updatings.

To discuss reachability properties and asymptotic

dynamics, we will need some additional nomenclatures.

For a path or trajectory P in the asynchronous dynamics

given by the sequence of states x0; . . .; xl, we call direction

sequence of the path P the sequence i0; . . .; il�1 of the

directions of the edges in the path, and we call l the length

of the path. In other words, the sequences satisfy xkik 6¼ xkþ1
ik

for i ¼ 0; . . .; l� 1. If the direction sequence contains no

repetition, we say that P is a geodesic. For convenience, we

will call a geodesic in asynchronous dynamics an asyn-

chronous geodesic.

A fixed point (also called stable state or steady state), is a

state x such that f ðxÞ ¼ x. Given a fixed point x, we have

Dðx; f ðxÞÞ ¼ ;, and this state has no successor in any

updating.
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A trap space (also called stable motif), is a subspace t

such that for each x 2 t, f ðxÞ 2 t (equivalently, for all

i 2 V , either ti ¼ H or fiðxÞ ¼ ti for all x 2 t). One can

think of trap spaces as partial fixed points. If a state belongs

to a trap space, then all its successors in any updating also

belong to this trap space. We call a trap space minimal if it

is not a superset of any other trap space. Note that the

overlap of two trap spaces is also a trap space and that there

is a unique minimal trap space containing a given state x.

Given K � V , a K-trap space is a subspace t such that

for all i 2 K, either ti ¼ H or fiðxÞ ¼ ti for all x 2 t. In

other words, a K-trap space is closed for the dynamics

when only the variables in K are considered. V-trap spaces

are therefore standard trap spaces.

A trap set is a subset S � Bn of the state space that is

closed for the dynamics, meaning that f ðxÞ 2 S for all

states x 2 S. A trap space is therefore a trap set that is also a

subspace. An attractor is an inclusion-minimal trap set. It

can consist of an isolated state (it is then a fixed point), or

of multiple states; in the latter case it is called a cyclic or

complex attractor. Note that trap sets and attractors may

depend on the updating semantics, while fixed points and

trap spaces are structural properties of the network itself.

Each trap space is also a trap set and contains at least one

attractor for any updating; the number of minimal trap

spaces is thus a lower bound for the number of attractors.

Example 1 The Boolean network f ðx1; x2Þ ¼ ðx2; x1Þ has

two fixed points, 00 and 11. These are also the only

attractors of the asynchronous dynamics. The state f ð01Þ ¼
10 is reachable from 01 in the synchronous and generalized

asynchronous dynamics, but not in the asynchronous

dynamics. This network has three trap spaces: the state

space B2 (which is not minimal) and the two fixed points.

The set f01; 10g is a trap set and an attractor of the syn-

chronous dynamics (a cyclic attractor), but not of the

asynchronous and generalized asynchronous.

In addition to the classical updating semantics, the most

permissive (MP) semantics has recently been proposed to

account for trajectories of multi-valued or continuous

refinements which are not captured by the generalized

asynchronous dynamics (Paulevé et al. 2020). This

semantics can be defined by introducing intermediate states

(‘‘increasing’’ or ‘‘decreasing’’) representing uncertainty

during the transitions from regular Boolean states: when a

component is in an intermediate state, its target can behave

as if it were in either of the classical Boolean state. The

reachability of Boolean states in the most permissive

semantics can be formulated as follows (see Paulevé et al.

2020, Supplementary Information):

Given x and y 2 Bn, y is reachable from x in the most

permissive semantics if and only if there exist K � V such

that the smallest K-trap space t containing x also contains y,

and for all i 2 K there exists z 2 t such that fiðzÞ ¼ yi.

To each transition in the general asynchronous dynamics

(which include all transitions of the synchronous and

asynchronous dynamics) corresponds at least one path in

the most permissive semantics: given K � Dðx; f ðxÞÞ, the
smallest K-trap space containing x contains �xK .

From a computational perspective, while the most per-

missive semantics increases the cost of explicit simulations

due to its large number of trajectories, it also enables

efficient analytical methods for the identification of

attractors and reachability properties.

3 Partial orders in asynchronous
and permissive trajectories

Here we investigate structural conditions guaranteeing that

all reachable states in the most permissive semantics are

also reachable in the asynchronous dynamics. For this, we

define permissive trajectories, inspired by the definition of

most permissive semantics. We will then use implicants

associated to the Boolean function and their differences

with the initial state to identify partial orders enabling

permissive geodesics. The partial orders that satisfy addi-

tional constraints correspond to geodesics in the classical

asynchronous dynamics.

Definition 1 A permissive trajectory is a sequence of

states x0; x1; . . .; xl such that for any k\l there is a com-

ponent i such that Dðxk; xkþ1Þ ¼ fig and the smallest sub-

space containing all states fx0; . . .; xkg contains at least one

state y such that fiðyÞ ¼ xkþ1
i . By extension, a permissive

geodesic is a permissive trajectory where each component

is used at most once. We say that the geodesic is maximal if

it cannot be extended to a permissive geodesic of greater

length.

An asynchronous trajectory is clearly also a permissive

trajectory. We further observe that, if there is a transition

from a state x to a state y in the generalized asynchronous

dynamics, then there is a permissive geodesic from x to

y. By extension, if there is a generalized asynchronous

trajectory from x to y, then there is also a permissive tra-

jectory from x to y (but not necessarily a geodesic). It can

also be shown that there is a permissive trajectory from x to

y if and only if y is reachable from x in the most permissive

semantics.

Proposition 1 Given any permissive trajectory from x to y,

there exists a permissive trajectory from x to y of length at

most 2n.
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This property corresponds to Lemma 1 in Paulevé et al.

(2020) (Supplementary Information). Note that we get a

bound of 2n steps here instead of the 3n bound in Paulevé

et al. (2020) as the transitions from transitory states to

regular Boolean states are implicit in the definition of the

permissive trajectories.

Proposition 2 Let x be a state and let y be such that

[x, y] is the minimal trap space containing x. Then all

maximal permissive geodesics starting in x end in y.

Proof Consider a maximal permissive geodesic P from x

to a state z. Since P is maximal, fiðwÞ ¼ xi for all w 2 ½x; z�
and i 62 Dðx; zÞ, that is, [x, z] is a trap space, hence it

contains [x, y], so Dðx; yÞ � Dðx; zÞ. Suppose that

Dðx; zÞnDðx; yÞ is not empty, and take the first variable i 2
Dðx; zÞnDðx; yÞ that changes along P. Then fiðwÞ 6¼ xi for

some w 2 ½x; y�, which contradicts the fact that [x, y] is a

trap space. Hence Dðx; yÞ ¼ Dðx; zÞ, which concludes. h

Example 2 Consider the Boolean network with V ¼ f1; 2g
and f ðx1; x2Þ ¼ ð0; x1Þ. The trajectory 10, 11, 01 is an

asynchronous geodesic from 10 to 01. The sequence of

states 10, 00, 01 is not an asynchronous trajectory, it is

however a permissive geodesic, since the state 10 satisfies

f1ð10Þ ¼ 0, f2ð10Þ ¼ 1.

Example 3 The Boolean network with V ¼ f1; 2; 3g,
f ðx1; x2; x3Þ ¼ ð1; x1; x2 ^ :x1Þ (see Fig. 1a) admits the

permissive geodesic 000, 100, 110, 111, but no asyn-

chronous trajectory from 000 to 111.

We are interested in studying reachability from a given

initial condition x. In particular we are interested in

determining whether a target state is reachable from x by

looking at the implicants defining the network f. To this

end, we introduce implicant maps, which encode possible

choices of implicants for each component involved in a

trajectory. Note that the number of potential implicant

maps increases exponentially with the number of impli-

cants of the components. Furthermore, the number of

possible implicants of a given component increases expo-

nentially with the number of its regulators. In practice,

most components in biological networks have a small

number of regulators and these problems remain

tractable for example using constraint-solving approaches.

In the following, we will focus on specific properties of

these implicant maps.

For each component in this map, the comparison

between its associated implicant and the initial state then

defines sets of required and blocker components for the use

of this implicant. We then define two levels of consistency

of an implicant map formalizing the absence of conflict

between required and blockers components. We then

associate these consistency properties to either permissive

or asynchronous trajectories.

Definition 2 Given a state x and a set of components

J � V , the map I : J ! f0; 1;HgV is an implicant map of

J for the state x if for each component i 2 J and each state

y 2 IðiÞ we have fiðyÞ 6¼ xi.

Given the state x and a subspace t, we consider the three

following sets of components, which form a partition of V:

Dðx; tÞ ¼ fj 2 V j tj ¼ :xjg;
rðx; tÞ ¼ fj 2 V j tj ¼ xjg;
WðtÞ ¼ fj 2 V j tj ¼ Hg:

Observe that the state x is in the subspace t if and only if

Dðx; tÞ ¼ ;.
Given an implicant map I : J ! f0; 1;HgV for a state x

and a set of components J � V , we call Dðx; IðiÞÞ the set of
direct requirements of the component i 2 J associated to I ,

and rðx; IðiÞÞnfig its set of blockers.

The set of strong requirements Dþðx; IðiÞÞ of the

component i combines the set of requirements of i with the

set of components blocked by i: Dþðx; IðiÞÞ ¼
Dðx; IðiÞÞ [ fj 6¼ i j i 2 rðx; IðjÞÞg.

Intuitively, we want to establish if an implicant map

defines a geodesic from x to �xJ . Dðx; IðiÞÞ is the set of

components that need to change to enable a change in

component i. On the other hand, some components can

only be updated before a change in component i, thus

creating some potential ‘‘conflicts’’ that forbid some

updating orders. The sets Dþ capture these possible con-

flicts. To talk about absence of conflicts we introduce the

notion of consistency.

We need two additional auxiliary constructions. Given

an implicant map I : J ! f0; 1;HgV , define the graphs

GðI ; xÞ and GþðI ; xÞ with vertex set J and edge set fðj; iÞ j
j 2 Dðx; IðiÞÞg and fðj; iÞ j j 2 Dþðx; IðiÞÞg respectively.

For all i 2 J, define the sets

D
!ðI ; x; iÞ ¼ fj 2 J j there is a path of length

greater than zero from j to i in GðI ; xÞg;

Dþ�!
ðI ; x; iÞ ¼ fj 2 J j there is a path of length

greater than zero from j to i in GþðI ; xÞg:

We call D
!ðI ; x; iÞ the set of full requirements of i and

Dþ�!
ðI ; x; iÞ the set of strong full requirements of i.

An implicant map I is consistent if for each i 2 J we

have D
!ðI ; x; iÞ � Jnfig.

An implicant map I is strongly consistent if for each

i 2 J we have Dþ�!
ðI ; x; iÞ � Jnfig.
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The following result establishes that the conditions of

consistency and strong consistency exactly characterize the

ability of an implicant map to define a permissive geodesic

or an asynchronous geodesic.

Proposition 3 Given a state x and a set of components

J � V, there is a permissive geodesic from x to �xJ if and

only if there if a consistent implicant map of J for x.

Furthermore, there is an asynchronous geodesic from x

to �xJ if and only if there is a strongly consistent implicant

map of J for x.

Proof Take a geodesic x ¼ x0; x1; . . .; xl ¼ �xJ in the

asynchronous dynamics with direction sequence

i0; . . .; il�1. Consider the map I : J ! BV defined by

IðikÞ ¼ xk for k ¼ 0; . . .; l� 1 (i.e. the map that associates

each component involved in the geodesic with the state in

which it changes). Observe that this map is an implicant

map of J for x. For each k ¼ 0; . . .; l� 1 we have

Dðx; IðikÞÞ ¼ fi0; . . .; ik�1g; rðx; IðikÞÞ ¼ Jnfi0; . . .; ik�1g;
Dþðx; IðikÞÞ ¼ Dðx; IðikÞÞ [ fj 6¼ ik j
ik 2 rðx; IðjÞÞg ¼ fi0; . . .; ik�1g:

It follows that D
!ðI ; x; ikÞ ¼ Dþ�!

ðI ; x; ikÞ ¼ fi0; . . .; ik�1g.
The map I is thus strongly consistent.

Now we take a permissive geodesic

x ¼ x0; x1; . . .; xl ¼ �xJ . By definition, for all

k ¼ 0; . . .; l� 1, there exists yk 2 ½fx0; . . .; xkg� such that

fikðykÞ 6¼ ykik . Take the map I : J ! BV defined by IðikÞ ¼
yk for all k ¼ 0; . . .; l� 1. Observe that I is an implicant

(a)

(b)

(c)

(d)

Fig. 1 Reachability properties in Boolean, refined and extended

networks. Each row shows a Boolean network with its asynchronous

dynamics (left), one of its multi-valued refinements (center) and linear

extensions (right). White circles in the extended network denote

intermediate linear variables, whereas numbered coloured circles in

the refined network denote regulatory thresholds. Selected dynamical

trajectories are depicted below each interaction graph. Groups of

color-coded squares represent the states of all variables: white for

level 0, blue for level 1 (or max), gray and red denote intermediate

levels in refinements. Fixed points are marked with a dotted line on

the right. The values of intermediate linear variables are represented

with smaller squares on the right side of their regulators. a An

inconsistent feedforward loop: the first component has opposite

(direct and indirect) effects on the last one. This competition can be

relaxed by associating a higher threshold (center) or adding an

intermediate component (left) to the direct interaction. b A chain

propagating an activation. In the most permissive semantics and some

non-monotonic refinements (center), intermediate components can be

disabled after propagating the signal. This behaviour can often be

considered as an artefact and can not be reproduced in linear

extensions. c A chain with stabilizing feedback loops. This is an

extension of the previous example where feedback loops are added to

stabilize the unexpected (1, 0, 1) state. This state is still unreachable

in the Boolean network, however it can now be reached in monotonic

(single threshold) refinements and in linear extensions. d A positive

circuit showing that the reachability of the generalized asynchronous

(where transitions can involve multiple components) can be repro-

duced in linear extensions, however it may not be faithfully

reproduced in multi-valued refinements
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map of J for x. In addition, for all k ¼ 0; . . .; l� 1, since

Dðx; IðikÞÞ � fi0; . . .; ik�1g, we have D
!ðI ; x; ikÞ

� fi0; . . .; ik�1g. Hence the map I is consistent.

Consider I : J ! f0; 1;HgV a strongly consistent

implicant map of J for x and GþðI ; xÞ the associated

graph. Since I is strongly consistent, we have i 62
Dþ�!

ðI ; x; iÞ for all i 2 J, that is, GþðI ; xÞ has no cycle.

Hence GþðI ; xÞ admits a topological ordering i1; . . .; il. By

definition, for each k 2 f1; . . .; lg the sub-ordering

i1; . . .; ik�1 contains all components in Dþ�!
ðI ; x; ikÞ. For

all h ¼ 1; . . .; k � 1, since ih precedes ik in the ordering, we

have that ik 62 Dþðx; IðihÞÞ. In particular, ih is not in

rðx; IðikÞÞ, and is in either Dðx; IðikÞÞ or WðIðikÞÞ. Then
for each k ¼ 1; . . .; l we have �xfi1;...;ik�1g 2 IðikÞ, thus the

ordering defines the asynchronous geodesic

x; �xfi1g; �xfi1;i2g; . . .; �xJ .
The proof for the permissive geodesic case proceeds

similarly, with the sets of full requirements replacing the

sets of strong full requirements and GðI ; xÞ replacing

GþðI ; xÞ. h

Example 4 Consider the Boolean network of Example 2.

Take x ¼ 10. Define an implicant map of J ¼ f1; 2g at x as

follows: Ið1Þ ¼ 10, Ið2Þ ¼ 10. Then the graph GðI ; xÞ,
with set of vertices f1; 2g, has no edges, whereas the graph

GþðI ; xÞ contains the edges 1 ! 2 and 2 ! 1. Therefore

the implicant map I is consistent but not strongly consis-

tent. It identifies two permissive geodesics, 10, 00, 01 and

10, 11, 01, corresponding to the two topological orders of

GðI ; xÞ.

Let I and I 0 be two different implicant maps for J in x.

We say that I 0 is a generalization of I if for each i 2 J we

have IðiÞ � I 0ðiÞ. Observe that if I is (strongly) consis-

tent, then all its generalizations are also (strongly) consis-

tent. We say that I is a prime implicant map if it has no

generalization. Observe that if I is a prime implicant map,

then for each i 2 J, IðiÞ is a prime implicant of the func-

tion fi or of its negation (depending on the value of xi). In

this case, the sets of requirements and blockers, and by

extension the (strong) full requirements, associated to each

component are minimal.

Lemma 4 If I is a prime implicant map of J for x, given

i 2 J:

(i) for all j 2 Dðx; IðiÞÞ, the interaction graph of f has

an edge from j to i;

(ii) if i 2 rðx; IðjÞÞ for some j 2 J, then the interaction

graph of f has an edge from i to j. In particular, for

all j 2 Dþðx; IðiÞÞnDðx; IðiÞÞ the interaction graph

of f has an edge from i to j.

Proof

(i) By definition of implicant map, for all y 2 IðiÞ we
have fiðyÞ 6¼ xi. Consider j 2 Dðx; IðiÞÞ and sup-

pose that j 62 RðiÞ. Then I jðiÞ 6¼ H and fið�yjÞ 6¼ xi
for all y 2 IðiÞ. Then the implicant map I 0 defined

by I 0
jðiÞ ¼ H, I 0

kðiÞ ¼ I kðiÞ for all k 6¼ j and

I 0ðhÞ ¼ IðhÞ for all h 6¼ i is a generalization of

I , which contradicts the hypothesis.

(ii) If j is such that i 2 rðx; IðjÞÞ, then I iðjÞ 6¼ H and

fjðyÞ 6¼ xj for all y 2 IðjÞ. If i is not a regulator of j,
then fjð�yiÞ 6¼ xj for all y 2 IðjÞ and I admits a

generalization as in the previous point. h

The following proposition is a corollary of the lemma.

Here, given a directed graph G, we write ~G for the undi-

rected graph obtained by ignoring the directions of all

edges.

Proposition 5 Consider a Boolean network (V, f) with

interaction graph G and I : J ! f0; 1;HgV a prime

implicant map for x. Then, for all i; j 2 V:

(i) if j 2 D
!ðI ; x; iÞ then there is a path of length

greater than zero from j to i in G;

(ii) if j 2 Dþ�!
ðI ; x; iÞ then there is a path of length

greater than zero from j in i in ~G; if j 2
Dþ�!

ðI ; x; iÞnD!ðI ; x; iÞ then there is at least one

edge (h, k) in the path such that (k, h) is an edge in

G.

Proof

(i) By Lemma 4(i), GðI ; xÞ is a subgraph of G. The

conclusion follows from the definition of

D
!ðI ; x; iÞ.

(ii) By Lemma 4(i) and (ii), gGþðI ; xÞ is a subgraph of
~G, hence the first part of the statement. If j is in

Dþ�!
ðI ; x; iÞ but not in D

!ðI ; x; iÞ, then at least one of
the edges (h, k) in the path satisfies

h 2 Dþðx; IðkÞÞnDðx; IðkÞÞ, and we conclude

using Lemma 4(ii). h

4 L-cuttable Boolean networks

In the previous section, we identified conditions on the

implicant maps associated to a given initial state for the

existence of a geodesic in permissive trajectories or in

classical asynchronous trajectories. In presence of a per-

missive geodesic, we observed that conflicts captured by

the implicant map and the associated auxiliary graph can
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prevent the existence of the corresponding asynchronous

geodesic. Here we will define a topological class of net-

works in which such conflicts do not exist. In this case, all

consistent implicant maps are also strongly consistent, and

thus all permissive geodesics exist in the asynchronous

dynamics.

In the following, we say that a component of a network

is linear if it has a single regulator and a single target. In

the next definition we introduce the class of linearly-cut-

table networks, that is, networks that admit a set of linear

components separating all potential regulatory conflicts.

We will show that, for asynchronous dynamics associated

to linearly-cuttable Boolean networks, trap spaces provide

good approximation of attractors; in addition, we will

prove some general reachability properties.

Definition 3 Given a directed graph G on V, a linear cut of

G is a set L � V of linear components such that

(i) every cycle in G contains at least one component of

L,

(ii) every path of length greater than zero in G from a

component with multiple targets to a component

with multiple regulators contains at least a compo-

nent of L.

A linear cut L is minimal if there is no linear cut strictly

included in L.

A Boolean network M ¼ ðV ; f Þ is L-cuttable if L � V is

a linear cut for its interaction graph G.

If a Boolean network is L-cuttable for some L � V , we

say that the network is linearly-cuttable or simply cut-

table for brevity. We will also need the notion of canonical

states. For an L-cuttable network (V, f), a state x 2 BV is L-

canonical if for each i 2 L we have fiðxÞ ¼ xi. That is, a

state x is L-canonical if all components in L are stable in x.

Example 5 The Boolean network f ðx1; x2Þ ¼ ðx2; x1Þ is

cuttable. Taking for instance L ¼ f2g, the state 00 is L-

canonical, and the state 01 is not L-canonical.

Example 6 The Boolean network of Example 3 and

Fig. 1a is not L-cuttable for any subset L of V ¼ f1; 2; 3g:
the path 1 ! 3 in the interaction graph of f from variable 1

(having two targets) to variable 3 (having two regulators)

does not contain any linear variable, hence condition (ii) of

Definition 3 cannot be satisfied.

Remark 1 If G admits a loop, that is, a cycle of length one

i ! i, then by point (i) of Definition 3, i belongs to L. Then

i admits only one regulator and one target, which means

that i ! i is an isolated loop.

Suppose that g is Boolean network with interaction

graph H and f is obtained from g by adding the self-

regulated component i.

(1) If the loop has a negative sign, then the asynchronous

dynamics of f contains two copies of the asyn-

chronous dynamics of g, one contained in the

subspace fxi ¼ 0g and one in the subspace

fxi ¼ 1g. The two copies are connected by transi-

tions along variable i in both directions: for each

state x, there are transitions x ! �xi and �xi ! x. Note

that, in this case, no state is L-canonical.

(2) If the loop has a positive sign, then the asynchronous

dynamics of f consists of the disjoint union of two

graphs that are copies of the asynchronous dynamics

of g, one contained in the trap space fxi ¼ 0g, one in
the trap space fxi ¼ 1g.

These observations allows us to focus the study of cut-

table networks to graphs that do not have any loop, since

the properties are easily transferable to the general case.

Remark 2 Consider a linear cut L and two distinct vertices

i, j in L. Suppose that there is an edge from i to j. Since i is

the unique regulator of j, any cycle containing j must also

contain i, and any path from a component with multiple

targets to a component with multiple regulators containing

j must also contain i. As a consequence, Lnfjg is also a

linear cut for G.

Suppose now that the linear cut L is minimal with

respect to inclusion. If G has no isolated loop, the previous

observation shows that L is an independent set of G, that is,

no pair of vertices in L is connected by an edge.

We now prove properties of implicant maps for net-

works with linear cuts.

Remark 3 Consider x L-canonical and I : J ! f0; 1;HgV
a prime implicant map for x and i 2 J \ L. Since i has only

one regulator j, if j 2 J we must have I jðiÞ ¼ �xjj and

I kðiÞ ¼ H for all k 6¼ j, which gives Dðx; IðiÞÞ ¼ fjg,
WðIðiÞÞ ¼ Vnfjg and rðx; IðiÞÞ ¼ ;.

Lemma 6 Given an L-canonical initial state x in an L-

cuttable network, all prime generalizations of consistent

implicant maps for x are strongly consistent.

Proof Consider a consistent implicant map I 0 and take a

generalisation I of I 0 that is prime. Suppose that I is a

consistent but not strongly consistent implicant map for x,

i.e., there is at least one component i such that

i 2 Dþ�!
ðI ; x; iÞnD!ðI ; x; iÞ. By Proposition 5 (ii), i is part of

a cycle in ~G, with at least one edge (j, k) such that j 2
Dþðx; IðkÞÞnDðx; IðkÞÞ and ðk; jÞ 2 G (at least one edge is

associated to a blocker).

If all edges are associated to blockers, the cycle is also a

cycle in G. By definition of L-cuttable network, this cycle

contains at least one component of L. As x is canonical, the
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components of L have no blockers (Remark 3) and we have

a contradiction.

Thus the cycle contains at least one edge associated to a

direct requirement and another edge (j, k) associated to a

blocker. Take the maximal sub-path p in the cycle that

contains (j, k) and is composed of edges associated to

blockers, and call j0 and k0 the first and last vertex in the

path. Then G contains edges ðj00; j0Þ and ðk0; k00Þ that are not
part of p, and since the path p is associated to blockers,

G contains a path from k0 to j0. That is, the reverse p0 of the
path p is a path in G from a vertex with multiple targets (k0)
to a vertex with multiple regulators (j0). By definition of L-

cuttable network, p0 contains an element of L. Since all

edges of p0 are associated to blockers, this is again in

contradiction with Remark 3. h

By combining the lemma with Propositions 2 and 3, we

derive some corollaries.

Corollary 7 Let (V, f) be a Boolean network that admits a

linear cut L � V and let x be an L -canonical state. If there

exists a permissive geodesic from x to the state y, then there

exists also an asynchronous geodesic from x to y. In

particular:

(i) [x, y] is the minimal trap space containing x if and

only if there exists a maximal geodesic from x to y.

(ii) for all subsets of components J � Dðx; f ðxÞÞ there
exists a path from x to �xJ (in other words, all the

successors of x in the generalized asynchronous

dynamics are reachable from x in the asyn-

chronous dynamics).

(iii) The smallest subspace containing the states that

are reachable from x is a trap space.

(iv) If y is the last vertex of a geodesic starting from

x and fiðzÞ 6¼ zi for some z 2 ½x; y� and i 62 Dðx; yÞ,
then there is a geodesic from x to �yi.

The corollary gives information on the set of states that

are reachable from canonical states in asynchronous

dynamics. It tells us that this set is as large as it can be, as

allowed by the most permissive semantics. For example,

the image f(x) of a canonical state x is reachable from x,

and the farthest state in the minimimal trap space con-

taining x is reachable from x.

Remark 4 In Noual and Sené (2018), a weaker sufficient

condition for (ii) is given. Let (V, f) be a Boolean network,

and let D be its signed interaction graph: the vertex set is

V and, for all i; j 2 V , there is a positive (negative) edge

from i to j if there exists x 2 BV with xi ¼ 0 such that

fjð�xiÞ � fjðxÞ is positive (negative); the presence of both a

positive and a negative edge from i to j is allowed. For all

x 2 BV , let D(x) be the spanning subgraph of D that con-

tains all the positive (negative) edges (i, j) of D such that

xi 6¼ xj (xi ¼ xj). Noual and Sené (2018) (Proposition 2)

proved that (ii) holds whenever the subgraph of D(x) in-

duced by Dðx; f ðxÞÞ has no cycle. Suppose now that x is L-

canonical, and let us prove that this forces D(x) to be

acyclic (and so the condition of Noual and Sené is indeed

weaker than ours). Let i 2 L and j its unique in-neighbor.

Then either fiðyÞ ¼ yj for all y 2 BV or fiðyÞ ¼ :yj for all
y 2 BV . In the first (second) case (j, i) is positive (negative)

and xi ¼ fiðxÞ ¼ yj (xi ¼ fiðxÞ 6¼ yj) since x is L-canonical.

So in both cases, (j, i) is not an edge of D(x), and thus i has

in-degree zero in D(x). Since each cycle of D has a vertex

in L, we deduce that D(x) is acyclic.

Example 7 Consider again the Boolean network of

Examples 2 and 4. The Boolean network is L-cuttable with

L ¼ ;, and the state x ¼ 10 is L-canonical. The implicant

map I defined in Example 4 admits the prime generalisa-

tion I 0 with I 0ð1Þ ¼ HH, I 0ð2Þ ¼ 1H. Since I is consis-

tent, by Lemma 6 I 0 is strongly consistent. In fact,

Dðx; I 0ð1ÞÞ ¼ Dðx; I 0ð2ÞÞ ¼ rðx; I 0ð1ÞÞ ¼ ;,
rðx; I 0ð2ÞÞ ¼ f1g, and the graph Gþðx; I 0Þ admits only

one edge, 2 ! 1. Therefore to construct an asynchronous

geodesic from 10 to 01 one must first update the second

variable, then the first, obtaining the sequence 10, 11, 01.

Example 8 Consider the Boolean network with three

components gðx1; x2; x3Þ ¼ ðx2; x3; x1Þ. It is L-cuttable,

with, for instance, L ¼ f3g. We can view g as an extended

version of the Boolean network f in Example 5, obtained

by adding variable 3 as an intermediate linear variable

between variables 1 and 2 (we discuss linear extensions of

Boolean networks in detail in Sect. 5). For this linear cut,

the state 010 is canonical. The corollary tells us for

instance that the state gð010Þ ¼ 100 is reachable from 010

in the asynchronous dynamics of g, and that so is the

canonical state 101. Note that the state 10 is not reachable

from the state 01 in the asynchronous dynamics of f (while

it is reachable in the generalized asynchronous and in the

most permissive semantics). We can therefore say that the

addition of variable 3, while not changing the interaction

graph substantially, has enriched the reachability properties

of the asynchronous dynamics.

The conclusions of Corollary 7 do not hold for states

that are not canonical: for instance, in the asynchronous

dynamics of the f2g-cuttable Boolean network of Exam-

ple 5 (f ðx1; x2Þ ¼ ðx2; x1Þ) there are no paths from the non-

canonical state 01 to 10, while there are transitions to 00

and 11, so that ½01� ¼ B2. The same example also shows

that point (i) of Definition 3 cannot be relaxed.

Corollary 8 Let (V, f) be a Boolean network that admits a

linear cut L � V.
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(i) The smallest subspace containing an attractor is a

trap space.

(ii) If x is an L -canonical state that belongs to an

attractor A, there is a geodesic from x to �xDðAÞ, and

�xDðAÞ is L -canonical.

The corollary describes a property that all attractors of

linearly-cuttable networks must satisfy: all free variables of

the minimal trap space containing an attractor must oscil-

late in the attractor. This feature becomes particularly

useful when combined with a property that we will prove in

Sect. 4.2, which will give uniqueness of attractors in

minimal trap spaces.

Example 9 Consider the Boolean network defined by

f ðx1; x2; x3; x4; x5; x6; x7Þ ¼ ð:x6; x1;:x2; x3;:x4; x5; x1 ^ x3 ^ x5Þ:

It is easy to see that the asynchronous dynamics of f has a

cyclic attractor A containing the state 1100000, and that

oscillates in all variables except for variable 7. That is, the

set fx 2 B7jx7 ¼ 0g is the minimal subspace [A] containing

A. Since the state 1111111 is a successor of 1111110 in the

asynchronous dynamics, [A] is not a trap space: the mini-

mal trap space containing A is B7. The Boolean network is

in fact not linearly-cuttable: there are edges from 1, 3 and 5

(variables with multiple targets) to 7 (variable with mul-

tiple regulators). Corollary 8 suggests a way to modify the

Boolean network to obtain an attractor that oscillates in all

variables. It states that this can be achieved by adding

linear variables between 1 and 7, 3 and 7 and 5 and 7,

obtaining a network of the form

gðx1; x2; x3; x4; x5; x6; x7; x8; x9; x10Þ
¼ ð:x6; x1;:x2; x3;:x4; x5; x8 ^ x9 ^ x10; x1; x3; x5Þ:

4.1 Reachability of trap spaces from canonical
states

In this section we continue the analysis of reachability

properties from canonical states in the asynchronous

dynamics. We recall that given an initial state x, the min-

imal trap space t containing x contains all states reachable

from x for any updating (i.e. it gives an upper bound on the

distance of reachable states). It is in general very difficult

to deduce further information on the states reachable from

x from the structure of the interaction graph. In this section

we show that the existence of a linear cut guarantees the

reachability of all trap spaces contained in t if x is a

canonical state (Fig. 2).

The full significance of this statement becomes apparent

when we combine it with the result of the next section: we

will see that, in networks with linear cuts, all attractors are

contained in minimal trap spaces. For a canonical initial

condition this means that all the attractors contained in the

minimal trap space containing the initial condition are

reachable. We have therefore a connection between a

structural property of the interaction graph and a reacha-

bility property that is far from trivial.

For the proof of the main result of this section we need

the following straightforward lemma.

Lemma 9 Let (V, f) be a Boolean network and P a geo-

desic from x to y with direction sequence w. Let i 2 Dðx; yÞ
and suppose that G has no edge from i to a vertex that

appears after i in w. Then there exists a geodesic from x to

�yi whose direction sequence is obtained from w by deleting

i.

The idea of the proof of the following theoreom is that,

starting from a canonical state x, we can first reach the

opposite state in the minimal trap space containing x, and

then, using the flexibility given by the intermediate linear

variables, we can undo all changes that took the trajectory

away from a given target trap space.

Fig. 2 Summary of the reachability of trap spaces and attractors.

Given an initial state, all states, and in particular all attractors, that are

not contained in the minimal trap space containing the initial state are

not reachable in any updating semantic. For L-cuttable networks and

L-canonical initial states, all trap spaces and attractors included in the

minimal trap space are reachable
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Theorem 10 Let (V, f) be a Boolean network with inter-

action graph G and L � V a linear cut. Let x be an L -

canonical state and [x, y] be the minimal trap space con-

taining x. For every trap space t � ½x; y� there is a path in

the asynchronous dynamics from x to a state in t of length

at most 2n.

Proof First observe that, if G has a loop, by Remark 1 it

must be an isolated loop. If the loop is negative, by

Remark 1(1) there is nothing to show. If the loop is posi-

tive, then it is sufficient to prove the theorem for the

Boolean network obtained by removing the isolated loop.

Hence we can assume that G has no loops.

Define J ¼ Dðx; tÞ � Dðx; yÞ. By Corollary 7 (i), since

x is canonical, there is a geodesic from x to y. Take z 2
½x; y� such that J � Dðx; zÞ, there is a geodesic P from x to

z and the cardinality of K ¼ Dðz; tÞ is minimal. This set is

non-empty since it contains y. We will show that there is a

path from z to �zK , which belongs to t.

Since K \ J ¼ ;, for any i 2 K we have zi 6¼ xi and thus

i appears in the direction sequence of P. Let i0; . . .; il�1 be

an enumeration of K as in the direction sequence of P.

We first prove the following property.

(I) There is no 0� p� q� l such that G has an edge

from iq to ip.

Suppose, for a contradiction, that there is 1� p� q� l such

that G has an edge from iq to ip. Since G has no loop we

have p\q. Suppose first that ip has only one regulator.

Since iq is in K and not in J, we have xiq ¼ tiq and since t a

trap space and iq is the unique regulator of ip, we derive

fipðxÞ ¼ xip . Then iq appears before ip in the direction

sequence of P, a contradiction. So ip has at least two reg-

ulators. Since G has a linear cut, ip is the unique target of

iq, and we deduce from Lemma 9 that there is a geodesic

from x to �ziq . Since iq is in K, this contradicts the mini-

mality of K.

Let us prove that there is a geodesic z ¼ z0; z1; . . .; zl ¼
�zK from z to �zK with direction sequence i0; . . .; il�1. We

have to prove that fikðzkÞ 6¼ zkik for 0� k\l. Since t is a trap

space, fjðwÞ ¼ wj 6¼ zj for all j 2 K and w 2 t, therefore it

is sufficient to show that zkj ¼ tj for any regulator j of ik.

We proceed by induction on k. Let j be a regulator of i0.

By (I) we have j 62 K, so z0j ¼ zj ¼ tj. Let 0\k\l and let

j be a regulator of ik. If j 62 K, then zkj ¼ zj ¼ tj by

definition of K. Otherwise, by (I) we have j 2 fi0; . . .; ik�1g
thus zj 6¼ zkj , and we deduce that zkj ¼ tj. h

Example 10 Consider the BN with 8 components defined

by f ðxÞ ¼ ðx8; x8; x7; x5; x6 ^ :x1; x7; x3 _ :x2;:x4Þ. Take

the state x with xi ¼ 0 for i ¼ 1; . . .; 8. One can easily see

that the minimal trap space containing x is B8, either by

observing that, by choosing the right order, all components

can be updated to 1, or using for example one of the

techniques of Klarner et al. (2015), Chevalier et al. (2019)

and Trinh et al. (2022). Observe that f is L-cuttable with

L ¼ f1; 2; 3; 4; 6g, and that x is L-canonical. Theorem 10

then gives that all fixed points are reachable from x.

Example 11 The theorem does not hold if the initial state

is not L-canonical. The Boolean network f ðx1; x2; x3;
x4; x5Þ ¼ ðx3; x4 ^ x5; x1; x1; x2Þ is L-cuttable with

L ¼ f3; 4; 5g. The fixed points of f are 00000, 10110 and

11111.

Consider the state x ¼ 11011, which is not L-canonical

(f ðxÞ3 6¼ x3). The fixed point 11111 is a direct successor for

x in the asynchronous dynamics of f. In addition, 00000 is

reachable from x in the asynchronous dynamics of f via the

path 11011 ! 01011 ! 01001 ! 00001 ! 00000. As a

consequence, the minimal trap space containing x is the full

space B5. Observe that there is no path from 11011 to the

fixed point 10110.

4.2 Minimal trap spaces are good
approximations for attractors

In this section we prove that, in asynchronous dynamics of

linearly-cuttable networks, attractors and minimal trap

spaces are in one-to-one correspondence, thus adding to the

catalogue of structural properties that determine features of

the dynamics. When attractors are confined in minimal trap

spaces, not only is their identification simplified, but also

properties like controllability are easier to study. Although

Boolean models might often not come equipped with a

linear cut, it is easy to extend a model to satisfy the linear

cut property (see Sect. 5) while preserving the structure of

cycles and their signs, meaning that linear cuts can be

useful tools to keep in mind when designing models.

Moreover, known results that can be used to draw

conclusions about the dynamics from the interaction

structure of a Boolean network usually require strong

conditions on the cycles, and mainly concern the existence

and number of attractors (see Richard 2018 for a review of

the main results in this direction). Thanks to the generality

of the assumptions in terms of cyclic structure and

asymptotic dynamics (no restriction is posed on network

motifs or the nature of the attractors), from a theoretical

point of view the results we discuss bring new perspectives

to the study of the relationship between structure and

dynamics.

Theorem 11 Suppose that (V, f) is L -cuttable and A is an

attractor for the asynchronous dynamics of f. Then [A] is a

trap space and, for every x 2 ½A�, there is a geodesic from

x to A.
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We prove not only that an attractor A of a cuttable net-

work can be reached from any state in [A], but also that it

can be reached with the smallest number of steps possible.

We saw in Corollary 8 that, in Boolean networks with

linear cuts, the minimal subspace containing an attractor is

a trap space, and that, from any canonical state in the

attractor, the state at the opposite end of the enclosing trap

space can be reached via a geodesics. It is by exploiting the

existence of such geodesics, showing that we can ‘‘copy’’

the right steps from them, that we build a geodesic from a

generic state in the enclosing trap space to the attractor.

Given two states x, y, we set ½x; y½¼ ½x; y�nfyg.

Lemma 12 Suppose that (V, f) is L -cuttable with L mini-

mal cut, and that the interaction graph of f has no loops.

Let A be an attractor for the asynchronous dynamics of

f. Consider x 2 ½A� and y 2 A, and suppose that y is L -

canonical. Let I be the set of i 2 L with fiðxÞ 6¼ xi ¼ yi.

Suppose that there is no L -canonical state in ½�xI ; y½\A.
Then there is a geodesic from x to y.

Proof We proceed by induction on the Hamming distance

dðx; yÞ ¼ jDðx; yÞj. If dðx; yÞ ¼ 0 there is nothing to prove,

so suppose that dðx; yÞ[ 0. As a first step in the proof, we

show that there is no transition from y towards x involving

a variable that is not in L (point (1)), as this would give a

canonical state in the attractor that is closer to x than

y. Second, using point (1), we prove that from x we can

take a step towards y, using the existence of geodesics in

the attractor. From this, we show that we can apply the

induction hypothesis.

(1) There is no i 2 Dðx; yÞnL such that �yi 2 A.

Suppose, for a contradiction, that z ¼ �yi is in A for

some i 2 Dðx; yÞnL. Let J be the targets j of i such

that j 2 L and fjðzÞ 6¼ zj. Since y is L-canonical and L,

by Remark 2, is an independent set, there is a

geodesic from z to �zJ , which is L-canonical. Suppose,

for a contradiction, that �zJ 62 ½�xI ; y�. Then there is a

component j such that �zJj 6¼ �xIj ¼ yj. Since xk ¼ yk for

all k 2 I, we have j 62 I, thus �zJj 6¼ xj ¼ yj. Since xi 6
¼ yi we have j 6¼ i, thus �xJj 6¼ xj ¼ yj. We deduce that

j 2 J. Since xi ¼ zi 6¼ yi and since y is L-canonical,

we have fjðxÞ ¼ fjðzÞ 6¼ fjðyÞ ¼ yj ¼ xj thus j 2 I, a

contradiction. This proves that �zJ 2 ½�xI ; y�, and since

zi 6¼ yi we have z 2 ½�xI ; y½. Since �zJ is L-canonical

and reachable from y, we have �zJ 2 A and we obtain

a contradiction.

(2) fiðxÞ 6¼ xi for some i 2 Dðx; yÞ.
Suppose not, that is, fiðxÞ ¼ xi for all i 2 Dðx; yÞ.

Since y is L-canonical, by Corollary 8 (ii), there is a

geodesic from y to y0 ¼ �yDðAÞ, and a geodesic P from

y0 to y. Let i be the first component of the direction

sequence of P with xi 6¼ yi. Since x; y 2 ½A�, we have
Dðx; yÞ � DðAÞ, thus this component i exists. Let z be

the state of P with fiðzÞ 6¼ zi.

Let us prove that i has at least two regulators.

Suppose not. Since i 2 DðAÞ, i has only one regula-

tor, and its regulator j is in DðAÞ. If i 2 L then fiðyÞ ¼
yi since y is L-canonical, and if i 62 L, then, since

xi 6¼ yi, we have fiðyÞ ¼ yi by (1). Since i; j 2 DðAÞ,
we obtain fiðy0Þ ¼ y0i. Since fiðzÞ 6¼ zi ¼ y0i, we have

zj 6¼ y0j and thus j appears before i in the direction

sequence of P. By the choice of i, we have xj ¼ yj
and thus fiðxÞ ¼ fiðyÞ ¼ yi 6¼ xi, which contradicts

our hypothesis. This proves that i has at least two

regulators.

Let P0 be the path from z0 ¼ �zi to y contained in

P. Let J be the set of regulators j of i such that

xj 6¼ yj. We have i 62 J � Dðx; yÞ � DðAÞ. Hence, by
the choice of i, J \ Dðy0; z0Þ ¼ ;, and since

Dðy0; z0Þ;Dðz0; yÞ is a partition of DðAÞ, we have

J � Dðz0; yÞ. Hence �yJ 2 ½z0; y�. By the definition of

J and our hypothesis, we have

fið�yJÞ ¼ fiðxÞ ¼ xi 6¼ yi ¼ �yJi . Since z0i ¼ yi, we

deduce from Corollary 7 (vi) that there is a geodesic

from z0 to �yi, and since �yi is reachable from y, we

have �yi 2 A. Since i has at least two regulators, this

contradicts (1).

By (2) there is a component i with xi 6¼ fiðxÞ ¼ yi. Then

there is a transition from x to z ¼ �xi. Let J be the set of

j 2 L with fjðzÞ 6¼ zj ¼ yj (we have i 62 J since otherwise

i has a negative loop). Let us prove that �zJ 2 ½�xI ; y�.
Take a component j such that �xIj ¼ yj. We have to show

that �zJj ¼ �xIj ¼ yj. We have j 62 I by definition of I, hence

xj ¼ yj. Since, by choice of i, xi 6¼ yi, we have j 6¼ i, so

zj ¼ �xij ¼ xj ¼ yj. Suppose that j is in J, that is, j 2 L and

fjðzÞ 6¼ zj. Since j is not in I, we have fjðxÞ ¼ xj, and i is

therefore the unique regulator of j. Since zi ¼ yi, we have

fjðyÞ ¼ fjðzÞ 6¼ yj, but then y is not L-canonical, a contra-

diction. Hence j is not in J and �zJj ¼ �xIj ¼ yj as wanted.

This proves that �zJ 2 ½�xI ; y� and thus ½�zJ ; y� � ½�xI ; y�.
Hence, by hypothesis, there is no L-canonical state in

½�zJ ; y½\A. Since dðz; yÞ\dðx; yÞ, by induction, there is a

geodesic from z to y and thus also a geodesic from x to y.h

Lemma 13 Suppose that (V, f) is L -cuttable with L mini-

mal cut, and that the interaction graph of f has no loops.

Let A be an attractor for the asynchronous dynamics of

f. Consider x 2 ½A� and y 2 A, and suppose that y is L -

canonical. Let I be the set of i 2 L with fiðxÞ 6¼ xi ¼ yi.

Then there is a geodesic from x to some L -canonical state

a 2 ½�xI ; y� \ A.
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Proof We proceed by induction on dð�xI ; yÞ. Since xi ¼ yi
for all i 2 I, we have x 2 ½�xI ; y�, so if dð�xI ; yÞ ¼ 0 then

x ¼ y and there is nothing to prove. So suppose that

dð�xI ; yÞ[ 0. If there there is no L-canonical state in

½�xI ; y½\A, then, by Lemma 12, there is a geodesic from x to

y, so the lemma holds with a ¼ y. So suppose that there is

an L-canonical state y0 2 ½�xI ; y½\A. Let I0 be the set of i 2 L

with fiðxÞ 6¼ xi ¼ y0i. The idea is to show that �xI
0
and y0 are

strictly closer to each other than �xI and y, so that the

induction hypothesis can be applied.

We have ½�xI0 ; y0� � ½�xI ; y�. Indeed, since y0 2 ½�xI ; y� it is
sufficient to prove that �xI

0 2 ½�xI ; y�. That is, given i such that
�xIi ¼ yi, we have to show that �xI

0
i ¼ �xIi . Since, by definition

of I, we have i 62 I, we just need to show that i is not in I0.

Since y0 is in ½�xI ; y�, we have y0i ¼ yi; as a consequence,

i 2 I0 would imply i 2 I, a contradiction.

We have Dðy; y0ÞnL 6¼ ;. Indeed, let i 2 Dðy; y0Þ. If i 62 L

we are done. So suppose that i 2 L and let j be its regulator.

Since y0; y are L-canonical, fiðy0Þ ¼ y0i 6¼ yi ¼ fiðyÞ thus

y0j 6¼ yj. Since L is a minimal linear cut, by Remark 2 L is

an independent set thus j 62 L and j 2 Dðy; y0ÞnL.
So let i 2 Dðy; y0ÞnL. Since I0; I � L and y0 2 ½�xI ; y� we

have yi 6¼ y0i ¼ �xIi ¼ �xI
0
i , thus i 2 Dð�xI ; yÞnDð�xI0 ; y0Þ. Since

½�xI0 ; y0� � ½�xI ; y� we have Dð�xI0 ; y0Þ � Dð�xI ; yÞ and we

deduce that dð�xI0 ; y0Þ\dð�xI ; yÞ.
Consequently, by induction, there is an L-canonical state

a 2 ½�xI0 ; y0� \ A � ½�xI ; y� \ A such that there is a geodesic

from x to a. This completes the induction. h

Proof of of Thorem 11 The first part is Corollary 8(i).

For the second part, observe first that, by Remark 1, we

can assume that the interaction graph of f has no loops.

Taking any minimal cut contained in L, we can conclude

by applying Lemma 13, after observing that any attractor

of the asynchronous dynamics of f contains at least one

canonical state. h

Remark 5 Theorem 11 shows that each minimal trap

space in a linearly-cuttable network contains only one

attractor in the asynchronous updating. Note that this

attractor is not always equal to the enclosing minimal trap

space as in the most permissive semantics (Paulevé et al.

2020). For example, a Boolean network with at least three

components and interaction graph consisting of a negative

cycle is linearly-cuttable yet the minimal trap space con-

tains states that are not part of the enclosed attractor (see

Remy et al. 2003, for a full characterisation of the

dynamics associated to isolated circuits).

Example 12 Consider again the Boolean network of

Example 10. By Theorems 10 and 11, we can conclude

that all attractors are reachable from x. For the Boolean

network g of Example 9, Theorem 11 gives that the

attractor is reachable from all states via a geodesic.

5 Cuttable extended semantics

Given a Boolean network, we obtain an extended network

by replacing a subset of the interactions with linear com-

ponents. We show that the trap spaces of the original

network are also trap spaces of its extensions, which pro-

vide an over-approximation of the original asynchronous

dynamics. We will focus on cuttable extended networks in

which the additional linear components form a linear cut of

the extended network. Cuttable extensions allow us to

define an execution semantics that takes advantage of the

properties of cuttable networks for any Boolean network.

In many applications to biology, Boolean networks are

abstract models often used in absence of quantitative

knowledge on precise concentrations and kinetic parame-

ters. The non-determinism of the classical asynchronous

semantics accounts for this lack of knowledge by enabling

alternative trajectories corresponding to quantitative dif-

ferences in initial conditions and kinetic parameters.

However, it assumes that a change of the state of a com-

ponent is reflected on all its targets at the same time. The

introduction of intermediate linear components lets us

eliminate this assumption. The alternative trajectories

obtained in the asynchronous dynamics of an extended

network then cover plausible behaviours that may be

missing in the asynchronous dynamics of the original

network.

5.1 Definition and properties

Definition 4 Let M ¼ ðV ; f Þ be a Boolean network with

edges E and L � E � V2 a subset of its interactions.

Consider the Boolean function Eðf ; LÞ : BV[L ! BV[L

defined as follows. For each i 2 V [ L

Eðf ; LÞiðyÞ ¼
fiðpiðyÞÞ if i 2 V ;

yj if i ¼ ðj; kÞ 2 L;

�

where pi : BV[L ! BV is defined for all j 2 V as:

piðyÞj ¼
yðj;iÞ if ðj; iÞ 2 L;
yj otherwise.

�

We call the Boolean network ðV [ L; Eðf ; LÞÞ an extended

network and the L-extension of f.

For an extended network ðV [ L; Eðf ; LÞÞ, we call V the

set of core variables and L the set of extender variables.

We say that an L-extension is cuttable if it is L-cuttable.

We call the E-extension of f its full extension. By con-

struction, the E-extension is cuttable. We will need the
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following additional notations. We write p : BV[L ! BV

for the projection onto BV , and define the map � : BV !
BV[L that ‘‘copies’’ each regulator, once for each of its

target variable:

�kðxÞ ¼
xj if k ¼ ðj; iÞ 2 L;

xk otherwise.

�

Example 13 The Boolean network (V, f) of Examples 3

and 6 and Fig. 1a) can be extended to a cuttable extension

by taking L ¼ fð1; 2Þ; ð1; 3Þg. Note that, while in the

asynchronous dynamics of f there is no path from 000 to

111, in the asynchronous dynamics of the L-extension the

state 11111 is reachable from 00000 via the geodesic that

updates the variables in V [ L the following order: 1,

(1, 2), 2, 3, (1, 3).

Note that x ¼ pð�ðxÞÞ ¼ pið�ðxÞÞ for any i 2 V , and that

if L contains no interaction with target i, then pi ¼ p. We

call the states y 2 V [ L that satisfy �ðpðyÞÞ ¼ y (that is,

states for which the extender variables mirror their regu-

lators) canonical states. Note that, by construction, all

canonical states of an L-extended network are L-canonical.

Aside from the partition of their components into core

and extender variables, extended networks are regular

networks and the notations introduced above, such as

T(i) and R(i), apply as usual. Depending on the context,

extender variables will be referred to as regular variables

(e.g. i 2 ðV [ LÞ) or as a pair of core variables (e.g.

ði; jÞ 2 V2).

Definition 5 Let M ¼ ðV ; f Þ be a Boolean network, x and

y two states of BV , and L a subset of its interactions. We

say that y is L-reachable from x if there is a trajectory from

�ðxÞ to �ðyÞ in the asynchronous dynamics of the L-exten-

sion of M.

This definition of L-reachability allows us to study

reachability in any Boolean network using canonical initial

states in an extended network. Note that the set of states

that are reachable from a non-canonical state can differ

significantly from the set of states that are reachable from

the canonical state that projects to the same core variables.

For instance, consider a Boolean network such that all

components have at least one regulator, and take the full

extension. Then all canonical states are reachable from any

state in which all extender variables differ from their

regulators.

It is worth observing that the elimination of the extender

components from the extended network using the method

described in Naldi et al. (2011) allows to recover the

original network. The asynchronous dynamics of an

extended network is thus an over-approximation of the

original asynchronous dynamics. As consequence, If y is L-

reachable from x, then it is also K-reachable for any K � L.

Example 14 Consider the Boolean network with three

components f ðx1; x2; x3Þ ¼ ð1; x1 ^ ðx2 _ :x3Þ; x2 _ x3Þ. It

has two fixed points, the states a ¼ ð1; 0; 1Þ and

b ¼ ð1; 1; 1Þ. Starting from x ¼ ð0; 0; 0Þ, in the asyn-

chronous dynamics the first component can be updated to

1, followed by the second and the third component, to

reach the fixed point b ¼ ð1; 1; 1Þ (see Fig. 1c). No tra-

jectory leads from (0, 0, 0) to the fixed point a, whereas

a is clearly reachable from (0, 0, 0) in the most permissive

semantics. The network can be extended to a cuttable net-

work using extender variables L ¼ fð2; 2Þ; ð2; 3Þ;
ð3; 2Þ; ð3; 3Þg. In the extended network, the state a is L-

reachable from x, as can be seen for instance using

Theorem 10.

In the following we compare in more detail the reach-

ability properties of the original network and its cut-

table extensions and relate the trap spaces of a Boolean

network (V, f) to the trap spaces of its L-extension.

Observe that the image under � of a subspace ½x; y� � BV

is the subspace �ð½x; y�Þ ¼ ½�ðxÞ; �ðyÞ� with Dð�ðxÞ; �ðyÞÞ ¼
Dðx; yÞ [ I0 where I0 is the subset of extender variables

fðj; iÞ 2 L such that j 2 Dðx; yÞg. By extending the termi-

nology from states to subspaces, we call subspaces of this

form canonical.

Proposition 14 Consider a Boolean network (V, f) and its

L -extension ðV [ L; f LÞ.

(i) If [x, y] is a trap space for f, then �ð½x; y�Þ is a

canonical trap space for f L. If [x, y] is the minimal

trap space containing x, then �ð½x; y�Þ is the minimal
trap space containing �ðxÞ.

(ii) If ½x0; y0� is a trap space for f L, then ½pðx0Þ; pðy0Þ� is
a trap space for f and Dðpðx0Þ; pðy0ÞÞ
¼ Dðx0; y0Þ \ V . If ½x0; y0� is the minimal trap space

containing x0, then ½pðx0Þ; pðy0Þ� is the minimal trap
space containing pðx0Þ.

Proof

(I) The fact that subspaces �ð½x; y�Þ and ½pðx0Þ; pðy0Þ�
are trap spaces is a direct consequence of the

definitions of f L, � and p.
(II) Suppose that [x, y] is minimal, and consider a trap

space ½w0; z0� contained in ½�ðxÞ; �ðyÞ�, that is, such
that Dðw0; z0Þ � Dð�ðxÞ; �ðyÞÞ. We have to show

that ½w0; z0� ¼ ½�ðxÞ; �ðyÞ�. By point (I),

½pðw0Þ; pðz0Þ� is a trap space contained in [x, y],

hence it coincides with [x, y]. As a consequence,

Dðpðw0Þ; pðz0ÞÞ ¼ Dðw0; z0Þ \ V ¼ Dðx; yÞ. Con-

sider ðj; iÞ 2 Dð�ðxÞ; �ðyÞÞ \ L, then j 2 Dðx; yÞ ¼
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Dðpðw0Þ; pðz0ÞÞ by definition. Since ½w0; z0� is a trap
space, by definition of f L we have ðj; iÞ 2 Dðw0; z0Þ.
Hence Dðw0; z0Þ ¼ Dð�ðxÞ; �ðyÞÞ, which concludes.

(III) Suppose now that ½x0; y0� is a minimal trap space

for f L; we show that ½pðx0Þ; pðy0Þ� is minimal.

Consider a trap space [z, t] contained in

½pðx0Þ; pðy0Þ�. Then, by point (I), �ð½z; t�Þ is a trap

space contained in ½x0; y0�, hence coincides with

½x0; y0�. As a consequence, their projections

pð�ð½z; t�ÞÞ ¼ ½z; t� and ½pðx0Þ; pðy0Þ� are equal. h

The proposition states that all trap spaces in extended

networks project to trap spaces for the original network,

and any trap space in the original network gives at least one

trap space in any extension. In addition, if y is a canonical

state in an extended network, that is y ¼ �ðxÞ for some x,

then the minimal trap space containing y is the canonical

extension of the minimal trap space containing x.

Clearly a Boolean network and its extensions do not

necessarily have the same number of trap spaces. Multiple

trap spaces in an extension can project to the same trap

space in the original network. Take for instance the Boo-

lean network f ðx1Þ ¼ x1 and its extension f Lðx1; x2Þ ¼
ðx2; x1Þ with L ¼ ð1; 1Þ. The trap spaces 00 and 0H for f L

project on the same trap space (the fixed point 0). On the

other hand, the mapping between trap spaces described in

the proposition defines a one-to-one correspondence

between minimal trap spaces of a Boolean network and any

of its extensions.

Corollary 15 There is a one-to-one correspondence

between the minimal minimal trap spaces of a Boolean

network and the minimal trap spaces of any of its

extensions.

Remark 6 Minimal trap spaces in extended networks are

always canonical. Every trap space t in an extended net-

work contains the canonical trap space �ðpðtÞÞ.

We now focus our study on cuttable extensions. As

stated above, the full extension is always cuttable, but other

cuttable extensions often exist in practice. Following the

definition of cuttable networks, these more conservative

cuttable extensions can be obtained by extending only

interactions (i, j) such that jTðiÞj[ 1 and jRðjÞj[ 1 as well

as one interaction for each cycle which remains unex-

tended. The following properties build on the previous

results obtained on cuttable networks and can be applied to

any cuttable extension.

Proposition 16 Let M be a Boolean network and L a

subset of its interactions defining a cuttable extension.

(i) If there is a trajectory from x to y in the

generalized asynchronous dynamics of M, then

y is L -reachable from x.

(ii) Given a state x and t the minimal trap space

containing x, all trap spaces contained in t are L -

reachable from x.

(iii) There is a one-to-one correspondence between the

minimal trap spaces of M and the attractors in the

asynchronous dynamics of its L -extension.

Proof

(i) It is sufficient to show that, if �xJ is a successor of

x in the generalized asynchronous dynamics of M,

then �xJ is L-reachable from x. By definition of

extended network we have, for all i 2 J,

Eðf ; LÞið�ðxÞÞ ¼ fiðxÞ 6¼ xi ¼ �iðxÞ, and �ðxÞJ is a

successor of �ðxÞ in the generalized asynchronous

dynamics of the extended network. By Corol-

lary 7(ii), �ðxÞJ is reachable from �ðxÞ in the

asynchronous dynamics of the extended network.

Since �ðxÞJ and �ð�xJÞ coincide on the core

variables and �ð�xJÞ is canonical, �ð�xJÞ can be

reached from �ðxÞJ . Combining the two paths we

have that �ð�xJÞ is reachable from �ðxÞ.
(ii) Consider a trap space t0 contained in t. By Propo-

sition 14, �ðt0Þ is a trap space contained in �ðtÞ, and
�ðtÞ is the minimal trap space containing �ðxÞ.
Theorem 10 then gives that �ðt0Þ is reachable from
�ðxÞ in the extended network, that is, there exists

y 2 �ðt0Þ such that there is a path from �ðxÞ to y in

the asynchronous dynamics of the extended net-

work. In addition, we can assume that y is

canonical, that is, �ðpðyÞÞ ¼ y. Then pðyÞ is in t0

is L-reachable from from x.

(iii) Consequence of Theorem 11 and Corollary 15. h

Example 15 A cuttable extension can be obtained from the

TCR signaling network of Fig. 3 by adding 23 linear

variables extending the interaction highlighted in bold. For

instance all regulations with target PAGCsk need to be

considered in the extension as it has several regulators and

they all have multiple targets. On the contrary, the regu-

lation of LCK by PAGCsk does not need to be extended as

PAGCsk has a single target and all of its incoming regu-

lations are already considered.
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5.2 Relation to single threshold refinements

Multi-valued networks are commonly used to refine the

behaviour of some components of a Boolean network.

They can account for some semi-quantitative knowledge,

for instance by tracking different amounts of a component

that are required to affect its different targets, or by

encoding the existence of some specific condition leading

to a higher production or a higher activity level for some

target. To account for all these effects, multi-valued

refinements can take many forms and involve complex

modifications to the logical rules (Chaouiya et al. 2003).

Here we introduce single threshold networks, a subset of

multi-valued networks that adds different thresholds to the

interactions but retains the same logical rules as the Boo-

lean network. Such refinements are solely defined by a

Boolean network and a mapping associating a single multi-

valued threshold to each interaction of the network.

We start by setting some notation and definitions. Given

a Boolean network M ¼ ðV; f Þ with V ¼ f1; . . .; ng, we

call any s : V2 ! N� a threshold map for M. For each

i 2 V , we then define the value mi and the mapping Xi :

NV ! BV such that:

mi ¼ maxðf1g [ fsði; jÞ j j 2 TðiÞgÞ;
XiðxÞj ¼ 1ðxj 	 sðj; iÞÞ for each j 2 V;

where 1ðPÞ equals 1 when the statement P is true, and 0

otherwise. We call @ ¼
Q

i2V ½0;mi� the multi-valued space

of ðM; sÞ. For each component i, we denote by ei the ele-

ment of @ with component i equal to 1 and all other

components equal to 0. In addition, we define the mapping

q : BV ! @ such that for each component i 2 V ,

qðxÞi ¼ mi � xi.

Definition 6 Given a Boolean network M ¼ ðV; f Þ and a

threshold map s for M, the function

Rðf ; sÞ : @ ! @
Rðf ; sÞi ¼ qi 
 f 
 Xi for all i 2 V

is called the s-refinement of M. The multi-valued network

M ¼ ð@;Rðf ; sÞÞ is a single threshold refinement of M.

As is customary for multi-valued networks we consider

dynamics that allow for asynchronous stepwise transitions

that point in the direction defined by the multi-valued

function. That is, we define the asynchronous dynamics of

M as the graph with vertex set @ and edge set fðx; xþ
eeiÞ j x 2 @; i 2 Dðx;Rðf ; sÞðxÞÞ; e ¼ signðRðf ; sÞiðxÞ
�xiÞg.

Proposition 17 Let M be a Boolean network and s a

threshold map for M. If there exists a transition x ! �xi in

the asynchronous dynamics of M and there is no transition

�xi ! x, then there is a trajectory from qðxÞ to qð�xiÞ in the

asynchronous dynamics of the s -refinement of M.

Proof Define yr ¼ qðxÞ þ erei for all r ¼ 0; . . .;mi, where

e ¼ signðRðf ; sÞiðxÞ � xiÞ. We have y0 ¼ qðxÞ and

ym
i ¼ qð�xiÞ. In addition, XiðyrÞj ¼ xj for all j 6¼ i, and since

fiðxÞ ¼ fið�xiÞ we get Rðf ; sÞiðyrÞ ¼ mi � fiðxÞ for all r, and
there is a transition yr ! yrþ1 for all r ¼ 0; . . .;mi � 1. h

The interaction graph G of a Boolean network M ¼
ðV; f Þ can be endowed with a label function S : E !
Pðf�1; 1gÞ that assigns signs to edges. For an edge (j, i) in

E and s 2 f�1; 1g, we have s 2 Sððj; iÞÞ if there exists a

state x 2 BV such that ðfið�xjÞ � fiðxÞÞð�xjj � xjÞ ¼ s. Propo-

sition 17 then gives the following corollary.

Corollary 18 Let M ¼ ðV ; f Þ be a Boolean network and

suppose that the interaction graph of f has no loops with

Fig. 3 Cuttable extension of a biological model. The interaction graph

of the TCR signaling network studied in Klamt et al. (2006) has 40

components and 58 interactions. Grey nodes denote existing linear

components. Bold edges need to be extended to obtain a

cuttable extension
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negative sign. If there is a path from x to y in the asyn-

chronous dynamics, then there is a path from qðxÞ to qðyÞ
in the asynchronous dynamics of all single threshold

refinements of M.

For some single threshold refinements of Boolean net-

works with negative loops in the interaction graph, the

asynchronous dynamics can contain oscillations at inter-

mediate levels and fail to capture the Boolean dynamics.

Example 16 Consider the Boolean network ðf1; 2g; f Þ with
f ðx1; x2Þ ¼ ð:x1; x1Þ. The map s : f1; 2g2 ! N� defined by

sð1; 1Þ ¼ 1, sð1; 2Þ ¼ 2, sð2; 1Þ ¼ sð2; 2Þ ¼ 0 is a thresh-

old map for f. The associated s-refinement is given by

@ ¼ f0; 1; 2g � f0; 1g,Rðf ; sÞ1ðy1; y2Þ ¼ 2f1ð1ðy1 	 1Þ; 1Þ,
Rðf ; sÞ2ðy1; y2Þ ¼ f2ð1ðy1 	 2Þ; 1Þ, so that (0, 0) and (0, 1)

are mapped to (2, 0), (1, 0) and (1, 1) are mapped to (0, 0),

and (2, 0) and (2, 1) are mapped to (0, 1). There is a

transition from (0, 0) to (1, 0) in the Boolean asynchronous

dynamics, but there is no trajectory from qð0; 0Þ ¼ ð0; 0Þ to
qð1; 0Þ ¼ ð2; 0Þ in the multi-valued asynchronous

dynamics.

We now want to study the ability of linear extensions of

a Boolean network f to capture behaviours of single

threshold refinements of f. We will show that to each path

found in single threshold refinements corresponds a path in

the asynchronous dynamics of a full extension. To for-

malize this, we will use the notion of L-reachability that we

introduced in the previous section, and we will need an

auxiliary function C which associates, to each multi-valued

state of a refinement, a set of Boolean states in the extended

network (to be more precise, a subspace of the state space

of the extended network).

The mapping defined by C works as follows. In the

multi-valued space, the multi-valued variable j 2 V deter-

mines possible values for component j in BV[L as well as

for linear variables that have j has their unique regulator.

For a variable (j, k) in L, in order to determine whether a

component is ‘‘on’’ or ‘‘off’’, the value of its regulator is

compared against the associated threshold sðj; kÞ. For a

variable j outside L, extreme values, 0 and mj, are mapped

to 0 and 1 respectively, whereas intermediate values leave

component j in the extended network ‘‘undefined’’ (they

are mapped to H). This flexibility allows us to easily derive

the existence of the desired paths in the dynamics of the

extended network (Corollary 20) by combining paths cor-

responding to transitions in single threshold refinements

(Proposition 19).

Definition 7 Let M ¼ ðV ; f Þ be a Boolean network, L � E

a subset of its interactions, ML ¼ ðV [ L; Eðf ; LÞÞ the

associated extension. Let s be a threshold map for M, with

@ the associated multi-valued space. We define the map-

ping C : @ ! f0; 1;HgV[L as follows:

CðxÞi ¼

0 if i 2 V and xi ¼ 0;
H if i 2 V and 0\xi\mi;
1 if i 2 V and xi ¼ mi;

1ðxj 	 sðj; kÞÞ if i ¼ ðj; kÞ 2 L:

8

>

>

<

>

>

:

for all x 2 @ and i 2 V [ L.

If x 2 BV is a state of the Boolean network, then

CðqðxÞÞ ¼ �ðxÞ.

Proposition 19 Let M ¼ ðV; f Þ be a Boolean network,

ð@;Rðf ; sÞÞ the single threshold refinement of M associated

to a threshold map s and ðV [ E; Eðf ;EÞÞ the full extension
of M. If there is a transition x ! y in the asynchronous

dynamics of Rðf ; sÞ, then for each state z 2 CðxÞ there is a
geodesic from z to at least one state z0 2 CðyÞ in the

asynchronous dynamics of Eðf ;EÞ.

Proof Let i be the only component such that xi 6¼ yi. We

call v ¼ fiðXiðxÞÞ the Boolean target value of i at XiðxÞ. We

have xi 6¼ Rðf ; sÞiðxÞ ¼ mi � v. Take a state z 2 CðxÞ. For
each regulator j of i we have piðzÞj ¼ zðj;iÞ ¼ XiðxÞj, hence
Eðf ;EÞiðzÞ ¼ fiðpiðzÞÞ ¼ fiðXiðxÞÞ ¼ v.

By definition of C, CiðyÞ 2 fv;Hg. Note that CðxÞ and
CðyÞ can differ only in component i and in linear

components associated to edges with regulator i. Call w 2
CðyÞ 2 BV[E the unique state such that wi ¼ v and

Dðz;wÞ � fig [ fði; kÞ j k 2 TðiÞg. We will show that

there is a geodesic from z to w.

As the extended network is a full extension, all targets of

i in the interaction graph of Eðf ;EÞ are in E. Let U ¼
Dðz;wÞnfig ¼ Dðz;wÞ \ E be the set of targets of i that

differ in w and z. For each e ¼ ði; kÞ 2 U, we have

1ðxi 	 sði; kÞÞ ¼ ze 6¼ we ¼ 1ðyi 	 sði; kÞÞ ¼ v.

If zi ¼ v then there is a geodesic from z to w that consists

in updating all components of U (this is possible in any

order). If zi 6¼ v then since Eðf ;EÞiðzÞ ¼ v there is a

transition z ! �zi, followed by a similar geodesic from �zi to

w. h

Corollary 20 Consider a Boolean network (V, f) and x, y

Boolean states. If there exists a threshold map s such that

qðyÞ is reachable from qðxÞ in the asynchronous dynamics

of Rðf ; sÞ, then y is E -reachable from x.

Note that in Proposition 19 and Corollary 20, we only

considered the full extension. Whether the conclusions

hold for any cuttable extension remains an open question.

Example 17 Consider the Boolean network in Exam-

ple 14, and a single threshold multi-valued refinement that

‘‘separates’’ the thresholds of the regulations 2 ! 2 and

2 ! 3. That is, take m1 ¼ 1, m2 ¼ 2, m3 ¼ 1, sð1; 2Þ ¼
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sð2; 3Þ ¼ sð3; 2Þ ¼ sð3; 3Þ ¼ 1 and sð2; 2Þ ¼ 2. The

resulting s-refinement is Rðf ; sÞ ¼ ð1; 2 1ðx1 	 1Þð
^ð1ðx2 	 2Þ _ 1ðx3\1ÞÞÞ; 1ðx2 	 1Þ ^ 1ðx3 	 1ÞÞ.

The refinement admits a trajectory from (0, 0, 0) to the

fixed point (1, 0, 1). In fact, a linear extension of the

Boolean network with extender variable set L ¼ ð2; 2Þf g is

also sufficient to give the L-reachability of (1, 0, 1) from

(0, 0, 0) (see Fig. 1c).

6 Discussion

To reflect the lack of kinetic knowledge often associated

with biological networks, the classical asynchronous

semantics explores all possible alternative trajectories

where a single component is updated in each transition.

The generalized asynchronous semantics accounts for

possible partial or total synchronism in updates. The binary

nature of activity levels on the other hand implies that a

change of the activity level of a single component simul-

taneously affects all its target components. In many net-

works, the effect of a component on different targets

involves different mechanisms with their own kinetics and

even sometimes different implicit intermediates. In case of

competition (such as the inconsistent feedback loop in

Fig. 1a), the classical semantics then fail to capture some

plausible behaviours. Multi-valued networks could be used

to define separate thresholds for different targets, but would

require either additional knowledge for all interactions or

the identification of some key interactions that would

benefit from a refinement. The most permissive semantics

uses transitory states to address this issue and reproduces

the behaviour of all multi-valued refinements, but also

introduces undesired non monotonic behaviours. For

example, a component in the increasing state can act in

succession as inactive, then active, then inactive again for

one of its targets as illustrated in Fig. 1b. While such

behaviours could be interpreted as stochastic effects in the

neighbourhood of an activation threshold, they can often be

considered as artefacts. Here, we focused on single

threshold refinements, a small subset of multi-valued

refinements that enable threshold separation while pre-

serving the original Boolean functions (thus without

introducing non monotonic behaviours). The extension of

individual interactions with linear components can be used

to emulate such refinements in absence of knowledge on

the threshold values and within the established framework

of asynchronous Boolean networks. While the cuttable ex-

tended semantics is not a minimal abstraction for single

threshold refinements, it provides a stricter over-approxi-

mation than the most permissive semantics for this class of

networks, which can be particularly interesting from a

modeling perspective.

As a tool to study asynchronous trajectories we intro-

duced implicant maps representing dependencies and

conflicts controlling the possible change of value of the

components compared to a specific initial state. These

implicant maps correspond to classes of subgraphs in the

implicant graph used for the identification of trap spaces

(stable motifs, see Zañudo and Albert 2013) or equivalently

in the Petri net unfolding of the Boolean net-

work (Chaouiya et al. 2011). We say that an implicant map

is weakly consistent if it describes a set of satisfiable

(complete and non-circular) dependencies. In absence of

any weakly consistent map containing a given component,

we know that there is no trajectory (in any semantics) in

which the value of this component can be modified. This

strong requirement is consistent with our observation that

the maximal weakly consistent maps correspond to the

smallest trap spaces containing the initial state. This weak

consistency solely relies on dependencies and ignores the

competition between components. In permissive trajecto-

ries this limitation is ignored and all components included

in a weakly consistent map can be updated in a geodesic

(following a partial order defined by the dependencies).

However these competitions can play a role in asyn-

chronous trajectories, where some of these components can

only be updated after much longer trajectories, if ever. A

weakly consistent implicant map is strongly consistent in

absence of competition between its components. This

stronger consistency property is both necessary and suffi-

cient for the existence of asynchronous geodesics.

As the direct requirements and competitions described

by implicant maps are associated to interactions in the

interaction graph, the consistency constraints correspond to

undirected cycles in the interaction graph. We further

observed that a linear component mirroring its unique

regulator in the initial state can be used to relax such

competitions. This led us to study the dynamical properties

of cuttable networks, a structural class of Boolean networks

in which a set of linear components cover all feedback

loops and paths from any component with multiple targets

to any component with multiple regulators. Our observa-

tions suggest that these two structural conditions corre-

spond to different types of competitions. On one hand, the

linear extension of feedback loops seems to be associated

to the synchronized update of multiple components, as

illustrated in Fig. 1d. It is thus required and could be suf-

ficient to reproduce the generalized asynchronous trajec-

tories. On the other hand, the linear extension of paths

connecting a component with multiple targets to a com-

ponent with multiple regulators could be related to

threshold separation in feedforward loops. We observed

strong similarities between the trajectories recovered

through the extension of feedforward loops and in single

threshold refinements as illustrated in Fig. 1a, c. These two
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associations are consistent with the fact that the extended

dynamics reproduces the reachability properties obtained

in both the generalized asynchronous and all single

threshold refinements. Further work is needed to clarify the

role of feedback loops, feedforward loops, and other paths

from components with multiple targets to components with

multiple regulators in the dynamical properties of cut-

table networks to elucidate whether the structural condi-

tions for linear cuts could then be further generalized.

We have implemented the linear extension of Boolean

networks in the bioLQM software (Naldi 2018), enabling

the use of the extended semantics in existing software tools

supporting the classical asynchronous semantics. Note that

efficient analysis based on trap spaces does not require this

explicit extension and can be performed directly on the

original Boolean networks using existing implementations

of trap spaces identification in PyBoolNet (Klarner et al.

2017), BioLQM or Trappist (Trinh et al. 2022).

As shown by Klarner et al. (2015), prime implicants

provide a compact and complete representation of the

implicant graph enabling the identification of sets of

implicants that cooperatively define a trap space as the

solutions of a constraint solving problem. We plan to adapt

this approach to the identification of implicant maps with

the desired consistency level. The identification of

strongly-consistent maps can be used as a proof of reach-

ability in the asynchronous semantics, while the identifi-

cation of weakly consistent maps can be used to pinpoint

specific competitions that need to be relaxed to enable this

reachability. Beyond the general question of reachability,

this approach would provide valuable hints to assess the

biological relevance of the corresponding extended tra-

jectories. Note that this type of reasoning can only be used

to formally validate a reachability property: if the compe-

titions can not be realistically relaxed, then more complex

trajectories to the target of interest may still exist.

7 Conclusion

In this paper we study the reachability properties of

dynamical Boolean networks, and in particular the reach-

ability of a subspace from a specific initial state. This

question is known to be PSPACE-complete in the classical

asynchronous semantics, however abstract interpretation

approaches provide efficient solutions in some cases

(Paulevé et al. 2012, 2020). Furthermore, this problem is

polynomial for monotonic networks in the recently pro-

posed most permissive semantics (Paulevé et al. 2020).

This novel semantics extends the classical asynchronous

semantics by adding intermediate activity levels explicitly

accounting for the absence of information on the regulation

thresholds. This approach enables the simulation of

relevant behaviours missed by the standard asynchronous

dynamics. The most permissive semantics can, on the other

hand, also introduce some artefactual behaviours and

should thus be considered as an over-approximation. This

work starts with the characterisation of different structural

conditions for individual transitions in asynchronous and

permissive trajectories and leads to the identification of a

class of Boolean networks and initial states for which these

semantics have the same geodesics. These networks have a

simple structural characterization: they are networks whose

interaction graph admits a linear cut. We could show that

trap spaces (also called stable motifs or symbolic steady

states, see Zañudo and Albert 2013; Klarner et al. 2014)

always provide a precise characterization of all attractors in

cuttable networks, and that their reachability solely

depends on the minimal trap space containing the initial

state (Fig. 2). These results are strong improvements

compared to the general case where trap spaces lack such

formal guarantees, even if they are often considered as

good estimators in practice. These results are similar to the

properties of the most permissive dynamics but here they

do not rely on intermediate activity levels that could induce

known artefactual behaviours.

We then proposed an extended semantics based on lin-

ear extensions of Boolean networks. This type of extension

can be interpreted as the explicit representation of hidden

delays or threshold effects, and thus carries a natural bio-

logical justification. As trap spaces of the original network

are also trap spaces of their extensions, the properties of

cuttable networks (reachability of trap spaces and config-

uration of attractors) can then be applied directly to any

Boolean network without explicitly constructing a cut-

table extension. The reachability properties of this exten-

ded semantics provide an interesting middle ground

between the asynchronous semantics and the most per-

missive semantics, as it recovers realistic trajectories

missing in the former and excludes some artefactual

behaviours of the latter (see Fig. 4). The reachability of

trap spaces in the cuttable extension semantics has the

same polynomial complexity as in the most permissive;

however, the reachability of transient subspaces remains to

be investigated. It is currently unclear if all permissive

trajectories which are not captured by this new semantics

are associated to non-monotonicity (and could be consid-

ered as artefacts) or if some relevant trajectories (to tran-

sient states) might also missing. Similarly, while the most

permissive semantics capture all possible behaviours of

multi-valued refinements, the ability of our extended

semantics to reproduce behaviours emerging in multi-val-

ued refinements has been only partially explored. We have

shown that refinements that rely on a unique threshold per

regulation can be captured by full extensions; however this
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condition does not fully characterize the emerging

behaviours.

The strength of Boolean networks lies in their simple,

parameter-free formulation. However, their ability to deal

with lack of detailed kinetic information is also at the core

of their intrinsic limitations. Although the parameter

uncertainty can partially be encoded by resorting to non-

deterministic semantics, many potential fine-grained

behaviours that depend on specific parameter scenarios are

inevitably inaccessible when relying to logical rules alone.

The most permissive semantics provide an important step

to ensure that all possible parameters are indeed captured,

and can thus be used to formally rule out reachability

properties which are structurally impossible for any set of

parameters. However, it also increases the number of

artefactual trajectories in the system. Implicant maps pro-

vide the groundwork to formally identify trajectories which

remain realistic for any set of parameters or for parameters

matching well-characterized conditions. These maps can be

constructed for direct trajectories (geodesics) in the per-

missive or extended semantics as shown here and could be

naturally extended to trajectories where all components are

updated at most twice, which can be required for the

reachability of some trap spaces. However, it would not

scale to arbitrarily complex trajectories, which remain in a

gray area. We could imagine combining these approaches

to annotate any reachability property as formally impossi-

ble, unlikely, realistic or formally guaranteed.
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