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Abstract

Our environment is rich with statistical regularities, such as a sudden cold gust of wind

indicating a potential change in weather. A combination of theoretical work and empirical

evidence suggests that humans embed this information in an internal representation of the

world. This generative model is used to perform probabilistic inference, which may be

approximated through surprise minimization. This process rests on current beliefs enabling

predictions, with expectation violation amounting to surprise. Through repeated interaction

with the world, beliefs become more accurate and grow more certain over time. Perception

and learning may be accounted for by minimizing surprise of current observations, while

action is proposed to minimize expected surprise of future events. This framework thus

shows promise as a common formulation for different brain functions.

The work presented here adopts information-theoretic quantities of surprise to investi-

gate both perceptual learning and action. We recorded electroencephalography (EEG) of

participants in a somatosensory roving-stimulus paradigm and performed trial-by-trial mod-

eling of cortical dynamics. Bayesian model selection suggests early processing in somatosen-

sory cortices to encode confidence-corrected surprise and subsequently Bayesian surprise.

This suggests the somatosensory system to signal surprise of observations and update a

probabilistic model learning transition probabilities. We also extended this framework to

include audition and vision in a multi-modal roving-stimulus study. Next, we studied action

by investigating a sensitivity to expected Bayesian surprise. Interestingly, this quantity is

also known as information gain and arises as an incentive to reduce uncertainty in the active

inference framework, which can correspond to surprise minimization. In comparing active

inference to a classical reinforcement learning model on the two-step decision-making task,

we provided initial evidence for active inference to better account for human model-based

behaviour. This appeared to relate to participants’ sensitivity to expected Bayesian surprise

and contributed to explaining exploration behaviour not accounted for by the reinforcement

learning model. Overall, our findings provide evidence for information-theoretic surprise as

a model for perceptual learning signals while also guiding human action.
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Zusammenfassung

Unsere Umwelt ist reich an statistischen Regelmäßigkeiten, wie z. B. ein plötzlicher kalter

Windstoß, der einen möglichen Wetterumschwung ankündigt. Eine Kombination aus the-

oretischen Arbeiten und empirischen Erkenntnissen legt nahe, dass der Mensch diese In-

formationen in eine interne Darstellung der Welt einbettet. Dieses generative Modell

wird verwendet, um probabilistische Inferenz durchzuführen, die durch Minimierung von

Überraschungen angenähert werden kann. Der Prozess beruht auf aktuellen Annahmen,

die Vorhersagen ermöglichen, wobei eine Verletzung der Erwartungen einer Überraschung

gleichkommt. Durch wiederholte Interaktion mit der Welt nehmen die Annahmen mit der

Zeit an Genauigkeit und Gewissheit zu. Es wird angenommen, dass Wahrnehmung und

Lernen durch die Minimierung von Überraschungen bei aktuellen Beobachtungen erklärt

werden können, während Handlung erwartete Überraschungen für zukünftige Beobachtun-

gen minimiert. Dieser Rahmen ist daher als gemeinsame Bezeichnung für verschiedene

Gehirnfunktionen vielversprechend.

In der hier vorgestellten Arbeit werden informationstheoretische Größen der Überraschung

verwendet, um sowohl Wahrnehmungslernen als auch Handeln zu untersuchen. Wir haben

die Elektroenzephalographie (EEG) von Teilnehmern in einem somatosensorischen Paradigma

aufgezeichnet und eine trial-by-trial Modellierung der kortikalen Dynamik durchgeführt.

Die Bayes’sche Modellauswahl deutet darauf hin, dass frühe Verarbeitung in den somatosen-

sorischen Kortizes confidence corrected surprise und Bayesian surprise kodiert. Dies legt

nahe, dass das somatosensorische System die Überraschung über Beobachtungen signal-

isiert und ein probabilistisches Modell aktualisiert, welches wiederum Wahrscheinlichkeiten

in Bezug auf Übergänge zwischen Reizen lernt. In einer weiteren multimodalen Roving-

Stimulus-Studie haben wir diesen Rahmen auch auf die auditorische und visuelle Modalität

ausgeweitet. Als Nächstes untersuchten wir Handlungen, indem wir die Empfindlichkeit

gegenüber der erwarteten Bayesian surprise betrachteten. Interessanterweise ist diese in-

formationstheoretische Größe auch als Informationsgewinn bekannt und stellt, im Rahmen

von active inference, einen Anreiz dar, Unsicherheit zu reduzieren. Dies wiederum kann

einer Minimierung der Überraschung entsprechen. Durch den Vergleich von active infer-

ence mit einem klassischen Modell des Verstärkungslernens (reinforcement learning) bei

der zweistufigen Entscheidungsaufgabe konnten wir erste Belege dafür liefern, dass ac-
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tive inference menschliches modellbasiertes Verhalten besser abbildet. Dies scheint mit

der Sensibilität der Teilnehmer gegenüber der erwarteten Bayesian surprise zusammen-

zuhängen und trägt zur Erklärung des Explorationsverhaltens bei, das jedoch nicht vom

reinforcement learning-Modell erklärt werden kann. Insgesamt liefern unsere Ergebnisse

Hinweise für Formulierungen der informationstheoretischen Überraschung als Modell für

Signale wahrnehmungsbasierten Lernens, die auch menschliches Handeln steuern.

ix



List of abbreviations

AP Alternation probability

BOLD Blood-oxygen-level dependent

BS Bayesian surprise

CS Confidence-corrected surprise

DC model Dirichlet-Categorical model

EEG Electroencephalography

fMRI Functional magnetic resonance imaging

HMM Hidden Markov model

MB Model-based

MF Model-free

ms Millisecond

PS Predictive surprise

RL Reinforcement learning

SARSA State-action-reward-state-action (algorithm)

S1 Primary somatosensory cortex

S2 Secondary somatosensory cortex

SP Stimulus probability

TP Transition probability

x



List of original research articles

Study 1

Gijsen*, S., Grundei*, M., Lange, R. T., Ostwald, D., & Blankenburg, F. (2021). Neural

surprise in somatosensory Bayesian learning. PLoS computational biology, 17(2), e1008068.

Study 2
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Chapter 1

Introduction

Humans face significant uncertainty when operating in the world. The brain only has in-

direct access to the environment as it relies on signals arising in the early sensory system,

which has considerable neural noise. Furthermore, it has to deal with fundamental incon-

clusivity such as a 2D image on the retina being an ambiguous projection of a 3D object. A

prominent viewpoint of how our brains overcome such challenges states that we represent

uncertainty and perform probabilistic inference (Knill and Pouget, 2004). Using a gen-

erative model, which includes information about how possible sensory input is caused by

hidden states in the world, the brain is posited to use previous experience and knowledge

of statistical dependencies in the environment to resolve uncertainty. This ultimately fur-

nishes a best guess of the environmental cause of sensory input, with the reliance on prior

knowledge increasing when sensory measurements are less reliable. More specifically, prob-

ability distributions encoding prior beliefs about hidden states, p(s), are combined with

a likelihood describing the probabilities that sensory data is generated by certain states,

p(y|s). These complementary pieces of information may be combined to yield a posterior

belief p(s|y). This inferential process is described by Bayes theorem:

p(s|y) = p(s)p(y|s)
p(y)

where p(y) is the overall probability of observing y across all states s included in the

generative model. Due to the central role Bayes theorem plays in probabilistic inference,

the hypothesis that computation in the brain rests on analogous principles is commonly

referred to as the Bayesian brain hypothesis. Despite a great surge of interest in the previous

two decades, principles underlying the Bayesian brain hypothesis are already found in the

work of Helmholtz, who proposed viewing perception as analysis-by-synthesis (Helmholtz,

1856). Fundamentally, perception is not considered as the recording of raw input, but by

appreciating the faced uncertainties one is naturally led to consider a reliance on prior

knowledge. The act of perception then corresponds to making inferences about the causes
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of input, while learning corresponds to estimating the parameters of the generative model

(Friston, 2005). For a task like learning, it has been thought since at least the work of Hume

to be impossible without prior information, with this knowledge nowadays embedded in No

Free Lunch theorems (Wolpert, 2012). What aspects of human functioning are Bayesian

and to what extent, are open problems relevant to much of contemporary neuroscience.

Nevertheless, a formal account of the encapsulation of prior information in an internal,

generative model and its inversion forms the basis for current widespread views on brain

function.

Once it is assumed that prior knowledge and its integration with new evidence is crucial

to human functioning, it becomes necessary for this knowledge to be optimized so as to

stay synchronized with the environment. This process of aligning the generative model

with novel information has been described as surprise minimization (Friston, 2005) and

it may follow intuitively that selecting the model and its parameters which render new

observations least surprising is an appropriate strategy. As exact Bayesian inference can

be intractable, the brain is often assumed to engage in approximate inference instead (Daw

et al., 2008; Findling et al., 2021). In case belief updates are approximated using variational

inference can the process be shown to correspond to minimizing surprise (Friston et al.,

2006). This suggests a plausible neural framework for probabilistic inference for perception

and learning. By borrowing concepts regarding surprise originating in information theory

(Shannon, 1948), which has close links with probability theory, surprise can be used as

a measure of how informative outcomes are given currently held beliefs. This approach

has been applied in psychology and neuroscience to describe attentional processes (Itti and

Baldi, 2009) and in machine learning (Schmidhuber, 2010). For the study of (perceptual)

learning, various surprise functions (Modirshanechi et al., 2022) have been used to describe

learning behaviour itself (Nevo and Erev, 2012; Schwartenbeck et al., 2015) and model

neural signals (Mars et al., 2008; Kolossa et al., 2015; Amado et al., 2016).

By applying surprise to future potential outcomes, an expectation of surprise may be

computed. As expected surprise corresponds to the estimated mismatch of current be-

liefs with the (future) environment, it can be interpreted as expected information gain

(Schwartenbeck et al., 2013; Friston et al., 2015). In other words, it addresses the question

of ’How much is there to learn?’. Expected surprise has therefore shown up in optimal ex-

ploration strategies by promoting agents to seek and resolve uncertainty (Sun et al., 2011;
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Little and Sommer, 2013). Surprise minimization is thus a perspective that may be used to

describe probabilistic inference in the service of perception and learning on the one hand,

and action on the other. Here we apply information-theoretic surprise quantities to the

empirical study of both perceptual learning and action, which have traditionally been de-

scribed predominantly in a separated fashion and have only recently began to be merged.

By leveraging model comparison methods, we investigate the role of surprise functions 1)

to explain neural learning signals as captured by EEG and 2) to explain human behaviour

on a decision making task.

First, we will briefly review key ideas related to predictive processing in perceptual

learning and a traditional view of action in terms of reinforcement learning. Afterwards, we

describe how information-theoretic views on surprise minimization may be used to bridge

concepts in learning and action using Bayesian and active inference. Finally, the introduc-

tion will present the used experimental paradigms and the modeling approach.

1.1 The brain as a generative model

Under the Bayesian brain hypothesis, the role of prior knowledge is to enable a ’best guess’

of an environmental cause of ambiguous and noisy sensory input. The more accurately prior

knowledge captures the environment, the better resulting inference may be. The specifics

of the context are likely to determine which information may be leveraged. For example,

when considering the temporal domain, environmental structures that change only slowly

over time are better learned across longer time-horizons. This allows for stable knowledge

that is unaffected by short-term noise. One would also expect that this knowledge is innate

or learned early in life, such that it may be continuously exploited thereafter. A well-

known example concerns the biased human visual perception of line orientation. Specifically,

humans are thought to be biased toward cardinal (horizontal and vertical) orientations,

which matches the distribution of line orientations in natural scenes (Girshick et al., 2011).

Furthermore, infant development of inferring visual line orientation starts soon after birth

and continues into early childhood (Siu and Murphy, 2018). Even more generally, the

hierarchical structure of the visual world, a constant across evolutionary time, is thought

to have contributed to the human hierarchical visual system (Lee and Mumford, 2003).

Ultimately, environmental structure may be recoverable from an organism that maintains a

generative model of its environment (Kiebel et al., 2008). Beside statistics which are stable
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over long time frames, prior beliefs should also capture current stimulus statistics. This

has been tested by exposing people to stimulus distributions and observing that reproduced

samples consider estimates of the mean and variance of the empirical distributions (Jazayeri

and Shadlen, 2010). Less explicitly, a representation of uncertainty has been recovered from

neural data (Strange et al., 2005; Bestmann et al., 2008; McGuire et al., 2014; van Bergen

et al., 2015) as well as behaviour on learning (Meyniel et al., 2015; Heilbron and Meyniel,

2019) and decision making tasks (Bland and Schaefer, 2012; van Bergen and Jehee, 2019).

As mentioned, Bayes provides the degree to which prior knowledge should be traded-off

against incoming sensory evidence. This trade-off should depend on how confident we are

about current beliefs and how reliable our observations are. To test the weighting of prior

and incoming information, noise may be manipulated to experimentally trigger changes in

information integration (Mareschal et al., 2013), with basic Bayesian accounts providing

good descriptions of human behaviour (Stocker and Simoncelli, 2006; Vilares et al., 2012;

Wei and Stocker, 2015). In general, the literature suggests a) that humans rely on prior

knowledge as well as b) this information being dynamically weighted against novel evidence.

1.1.1 Bayes and perceptual learning

Given a generative model of the environment, which encodes knowledge about how sensory

inputs result from causes, prediction becomes possible. A theoretical paradigm of predictive

processing has become dominant in many branches of neuroscience, of which the free energy

principle and predictive coding are prominent examples. Generally traced back to similar

starting points as the Bayesian brain hypothesis (Hohwy, 2018), this predictive processing

paradigm frames prediction as a central function of the brain. It allows for a formulation that

leads to approximate Bayesian inference without requiring any knowledge of Bayes theorem.

Indeed, as exact Bayesian inference is often intractable, Bayesian brains may deviate from

strictly Bayes-optimal inference by using approximation and are in theory compatible with

certain probabilistic reasoning errors (Smith et al., 2022). Often, predictions are assumed

to be generated constantly, with resulting errors fulfilling the important role of feedback,

guiding belief updates to lead to better prediction in the future. However, how much weight

should be given to a prediction error in changing prior beliefs? Again, the optimal influence

is provided by Bayes and depends on uncertainty of the prior and the likelihood. As such,

prediction error schemes include precision terms to set the learning rate. This amounts to
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the claim that not only point-estimates are modeled, but also their associated uncertainty.

As predictions are corrected and beliefs become more accurate through iterative interaction,

the world model of an observer should come to more accurately represent the environment.

As we will expand on later, schemes may propose a form of approximate Bayesian inference

through minimizing prediction errors.

The predictive coding scheme constitutes a prominent example and assumes the brain

to contain hierarchies which generate sensory input from higher-level causes (Friston, 2005).

As a consequence, specific roles are assigned to feedforward (or bottom-up) and backward

(or top-down) connections. Top-down connectivity represents the environmental causal

structure, carrying predictions, while bottom-up connections signal resulting prediction

errors. Although a theory such as predictive coding may be grouped under the umbrella of

the Bayesian brain, it is defined through its assumptions that instantiate specific, testable

claims about the brain. As summarized by Gershman (2019), these include a hierarchical,

probabilistic model with a specific approximation family, free energy approximation, and

optimization scheme. The result is that the computational description may be attempted

to be concretely mapped to neuronal populations and their connectivity, allowing for more

specific, testable hypotheses (Bastos et al., 2012).

This framing is attractive as it potentially offers a cohesive description of perception,

learning, and action by applying prediction error minimization to different timescales (Mil-

lidge et al., 2021). Perception then corresponds to inference about latent environmental

states on short timescales and aims to surmise causes of sensory information in the mo-

ment (Bogacz, 2017). Learning may be mapped to dynamics unfolding across experiences

and interactions with the environment relating to adjustments of the world-model (Friston,

2010). Finally, prediction errors may be minimized by sampling data that best aligns with

predictions generated by the subjective model (Friston et al., 2016). There are consequently

two hypothesized pathways of optimizing predictions: changing the input itself by acting

on the external world or adjusting the model internal to the agent.

Especially predictive coding has received considerable attention investigating its relation

to redundancy reduction and efficient coding (Huang and Rao, 2011). Earlier work already

noted that rather than fully transmitting sensory input via forward connections, only re-

laying the part of the data that was not predicted leads to minimum redudancy in neural

signaling (Mumford, 1992). This was initially hypothesized for early sensory processing
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using concepts related to information theory (Attneave, 1954; Barlow et al., 1961), with

Rao and Ballard (1999) providing important initial empirical support concerning visual re-

ceptive field effects. The contemporary and neuroscientific theoretical forms of predictive

coding and free energy minimization still stay close to the concept of minimal redundancy

(Huang and Rao, 2011; Millidge et al., 2021). This is an especially important characteristic

for neuroscience as resource constraints are expected to have selected for highly efficient

algorithms across evolutionary time.

The predictive processing framework has been successfully applied to explain a variety

of phenomena. These include end-stopping (Rao and Ballard, 1999), bistable perception

(where perception oscillates between two interpretations of a constant stimulus; Weilnham-

mer et al. (2017)), as well as perceptual illusions (Watanabe et al., 2018) and repetition

suppression (Auksztulewicz and Friston, 2016). Further, classic learning signals such as the

mismatch negativity and P300 as recorded by electroencephalography (EEG) have been

found to relate to error-signaling and updating dynamics in the perceptual learning domain

(Lieder et al., 2013; Kolossa et al., 2015; Nassar et al., 2019). Similarly, functional MRI

has been used to map brain networks to prediction error signaling (Fouragnan et al., 2018).

The framework also shows promise in aiding the understanding of psychopathology, with

example applications including autism (Van Boxtel and Lu, 2013) and psychosis (Sterzer

et al., 2018). Further, representations of predictions and prediction errors appear to be neu-

rally represented in a segregated manner (Muckli et al., 2015; Kok et al., 2016; Lawrence

et al., 2019). However, studies commonly do not investigate whether alternate models may

also account for the data (Walsh et al., 2020). In sum, despite originating in a perceptual

learning context, the predictive processing paradigm and in particular the predictive coding

implementation has seen widespread application in cognitive computational neuroscience.

1.1.2 Action via reinforcement learning

Implementations of the predictive processing paradigm have some overlap with the field of

reinforcement learning (RL), which has been extensively applied in neuroscience to study

human action and, to a lesser degree, learning. Nevertheless, RL had a different starting

point, which is arguably captured to a significant degree by the reward hypothesis. It

states that goals may be fully specified as the maximization of the expected value of the

cumulative sum of reward (Sutton and Barto, 2018), with reward being a scalar value at
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each time step. Essentially, the reward signal is used to specify what the agent should

achieve without communicating how it should be achieved. The field of RL is nowadays

incredibly broad and populated by a diverse set of ideas, yet the concept of relying on

reward per se is still present in some of the prominent literature (Silver et al., 2021).

In traditional RL accounts, action-selection uses a mapping from states (e.g. locations

in space or game board positions) to actions based on the relative action values, which

correspond to estimated cumulative reward. This information is described in a value func-

tion, which in neuroscience is often modeled to be learned via reward prediction errors.

This process corresponds to updating the estimated value by computing the delta between

this estimate and the actual observed sum of rewards (Rescorla, 1972). Versions of such a

delta-rule have been shown to approximate Bayesian inference for certain problems (Nassar

et al., 2010; Wilson et al., 2013). Distributional reinforcement learning, which estimates a

distribution over reward rather than relying on a single scalar, has been suggested as an

extension to this framework (Bellemare et al., 2017). Despite the novelty of the applica-

tion, promising evidence has already been provided for its neural implementation in humans

(Dabney et al., 2020; Lowet et al., 2020).

Classical accounts of reinforcement learning have been highly influential by providing

accurate models for dopamine neurons as encoding value and prediction error (Schultz,

1998; Schultz et al., 2017). A large body of literature has also provided great insights into

the underlying neurobiology of choice behaviour (Lee et al., 2012) and the associated reward

prediction error computation (Garrison et al., 2013). Additionally, the manner of temporal

discounting has been investigated in many task-settings (Dayan and Niv, 2008), which

describes the manner by which humans downweigh distant rewards compared to near-term

rewards. A further important contribution of RL has investigated the distinction between

model-free and model-based inference (Daw et al., 2005; Gläscher et al., 2010). A model-

based strategy uses knowledge of the environmental structure, for example by considering

possible transitions between states. This information can be used to more accurately assign

value updates to estimates following an action or sequence of actions as well as enable

planning. A model-free algorithm is instead more habitual and does not rely on a task

model. Rather, updating happens by associating selected actions and visited states directly

with obtained rewards. Humans have been suggested to use a combination of model-free and

model-based estimates (Daw et al., 2011), although this is likely to depend on the context

7



(Kool et al., 2016; Castro-Rodrigues et al., 2022). This distinction between strategies has

also been leveraged to investigate psychopathology such as gambling disorder (Wyckmans

et al., 2019) and obsessive-compulsive disorder (Voon et al., 2015).

1.2 Information theoretic concepts to investigate learning and action

Despite conceptual overlap such as prediction errors and approximations to Bayes, RL

has predominantly been used to study choice behaviour, while predictive processing has

been mainly applied to the domains of learning and perception. However, ideas which

spawned from the Bayesian brain hypothesis have the potential to merge these sub-fields

and describe them in a more unified manner. We will introduce concepts originating in

information theory with a focus on surprise, and show how by using these ideas surprise

minimization can be applied across domains. This will in turn enable a description of how

we investigated learning and action using information-theoretic surprise.

Information theory was originally formulated for a communication system and is based

on probability theory, with information closely tied to predictability (Shannon, 1948). If

a stimulus can be predicted, it is said to carry little information. This is also connected

to the concept of minimal redundancy discussed above, which can be equated to minimal

predictability and maximal informativeness (Barlow et al., 1961; Spratling, 2017). The

information content, also called surprisal or simply surprise, can be defined for an event or

observation y ∈ Y . Given a (prior) belief about environmental statistics πt(θ) at time t, the

informational surprise is:

PS(y) = − log

∫

θ
p(y|θ)πt(θ)dθ = − log p(y) (1.1)

where the negative logarithm is taken of the subjective (i.e., estimated) probability of ob-

serving y having marginalized over model parameters. This original definition of Shannon’s

surprise will be referred to as predictive surprise PS(y) so as to dissociate it from alternative

definitions introduced below and to free up the term surprise to refer to the general con-

cept of observations deviating from probabilistic prediction. Equation 1.1 states that if the

probability of observing y is low, the event would be considered surprising and consequently

informative. In essence, this is a probabilistic formulation of a prediction error, although it

is unsigned. A generative model enabling accurate predictions will generate low surprise,
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suggesting an intuitively link between surprise minimization, predictive ability, and a fit

generative model. As discussed, mismatches between predicted and actual sensory input

play an important role in probabilistic inference. Faraji et al. (2018) argue that such errors

of prediction result in puzzlement surprise, concerning the initial realization of an existing

discrepancy between beliefs and observation.

In the context of biology, a potential issue with predictive surprise as puzzlement surprise

is that it is insensitive to confidence. Faraji et al. (2018) make the point that many everyday

events are highly unlikely to occur, such as parking next to a specific car in a large parking

lot, but at least on a experiential level do not seem to instantiate surprise as they are

irrelevant to us. In response, it is hypothesized that surprise also requires a commitment to

a belief. For example, the realization that the car in question belongs to a family member

living abroad may suddenly elicit significant surprise. The authors proposed confidence-

corrected surprise, a quantity which scales with the entropy of the prior. Entropy is another

information-theoretic concept and denotes the expected information or predictive surprise

of observing the outcome of a random event:

H(Y ) = E [PS(Y )]

For the current purpose, we apply it to the belief distribution πt to read out the agent’s

confidence or commitment to a belief, said to correspond to the negative entropy:

−H(πt) =

∫

θ
πt(θ) log πt(θ)dθ

Given a probability distribution, entropy is low if a large portion of the probability mass

is assigned to a small area of the hypothesis space, as prior to further observations the

outcome is highly predictable. The confidence-corrected surprise is then defined as the

Kullback-Leibler divergence (see below) between the agent’s prior and the posterior of a

naive observer, which observed y with an uninformed prior π̂(θ):

CS(y) = KL [πt(θ)||π̂(θ|y)] (1.2)

Confidence-corrected surprise reads out not only the subjective probability of an event,

but also depends on the confidence associated with this estimated probability. When the
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underlying learning model is fixed, modeling neural signals as predictive or confidence-

corrected surprise allows for the investigation whether surprise computation is sensitive to

distributional uncertainty.

We may also define a relative entropy term by taking the Kullback-Leibler divergence

between two probability distributions (Kullback and Leibler, 1951), e.g. the Bayesian prior

πt(θ) and posterior πt+1(θ) (after having observed y):

KL [πt(θ)∥πt+1(θ)] =

∫
πt(θ) log

πt(θ)

πt+1(θ)
dθ (1.3)

This quantity, when applied to a prior and posterior belief distribution, is also known as

Bayesian surprise and can be used to capture the change of the internal generative model

in response to new observations (Itti and Baldi, 2009).

BS(y) = KL [πt(θ)||πt+1(θ)] (1.4)

It is not categorized as an initial form of puzzlement surprise as its computation requires

the agent’s posterior, requiring that beliefs have been updated (Faraji et al., 2018). Con-

sequently, by quantifying the change to the belief distribution in response to new data,

Bayesian surprise is a readout function that enables inference of belief updates of a prob-

abilistic learner. A comparison with puzzlement surprise may be interpreted as a contrast

between signals of model inadequacy and model updating (Figure 1A). Finally, confidence-

corrected surprise can be shown to increase with predictive surprise, Bayesian surprise, and

the negative entropy of πt(θ) (Faraji et al., 2018).

The concept of information as defined by Shannon has received considerable attention

in biology and neuroscience and led to the idea of information as a crucial biological re-

source. This is supported by the observation that animals expend substantial amounts of

energy to both obtain and process information (Laughlin et al., 1998; Laughlin, 2001). The

evolution of these ideas was bootstrapped by the field of cybernetics, which broadly dealt

with systems displaying circular causality or feedback (Wiener, 2019), such as an organism

acting on the world and thereby generating and perceiving new input. Research has ex-

plored analogies between Shannon’s initial communication model and the perception-action

cycle (Klyubin et al., 2004; Lungarella and Sporns, 2006; Klyubin et al., 2008; Tishby and

Polani, 2011). This approach has generated extensions to the RL framework by modeling
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not only expected reward but additionally a sensitivity to informational quantities such as

information-gain (Sun et al., 2011), information processing cost (Tishby and Polani, 2011),

or entropy (Schwartenbeck et al., 2015). In this way, it offers additional incentives beyond

pure reward-maximization which hold the potential promise of giving rise to self-organized

intelligent processing.

The current thesis is concerned with incentives that result from pursuing surprise mini-

mization, which can correspond to Bayesian inference when applying the framework of vari-

ational inference. First, recall that the Bayesian brain hypothesis does not require the brain

to perform exact Bayesian inference, which becomes intractable rather quickly as complexity

increases. Instead, approximate inference may be performed, with schemes falling into one

of two broad categories. On the one hand, Monte Carlo methods are sampling-based and

allow for numerical approximations to probability distributions and stay tractable with a

limited amount of samples (Binder et al., 1993). These algorithms correspond to randomly

picking one hypothesis at a time and evaluating their relative probabilities. The longer this

process is repeated, the closer one’s knowledge approaches the full posterior distribution.

Importance sampling (including particle filters) and Markov chain Monte Carlo are classes

of commonly used algorithms (Hastings, 1970). However, finite samples lead to inferential

biases, some of which are systematic and have been shown to match human errors (Sanborn

and Chater, 2016).

More relevant here and as an alternative to non-parametric sampling methods, inference

may be turned into an optimization problem. In such variational approaches, an approxi-

mation to the posterior p(s|y) is proposed (q(s)) which belongs to a family of distributions.

In order to select q(s), consider the following optimization problem:

q̂(s) = argminq(s)KL [q(s)||p(s|y)] (1.5)

with KL [q(s)||p(s|y)] = 0 if q(s) = p(s|y), that is, if our approximation exactly matches

the true posterior. Note that if the true posterior does not belong to the chosen parametric

family, then this equality cannot be achieved and the approximation will always deviate. At

this point, not much progress has been made because the computation of the KL divergence

requires p(s|y). However, a useful reformulation provides the following relation (Ostwald
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et al., 2014; Blei et al., 2017):

log p(y) = KL [q(s)||p(s|y)]− F [q(s)] (1.6)

F [q(s)] =
∑

s

q(s) log
q(s)

p(y, s)
(1.7)

The second line describes the variational free energy, F [q(s)], which is known as the negative

of the evidence lower bound, a quantity common in machine learning (Bishop and Nasrabadi,

2006). This is due to the log marginal likelihood, log p(y), also being known as model

evidence as it can be used in Bayesian model comparison to score models based on their

probability of having generated the observed data. We cannot optimize the KL divergence

directly, but due to the relation in equation 1.6, minimizing F [q(s)] is equivalent. This

results from log p(y) being independent of q(s) and thus changes in the KL divergence and

F [q(s)] cancel each other out. As free energy is iteratively minimized it thus also maximizes

model evidence while providing an improved approximation q(s) to the true posterior, of

which the error bound depends on the chosen family distribution. Equivalently stated,

minimizing the KL divergence between the variational and posterior distribution would

minimize the free energy and render it a closer approximation to the log model evidence.

Note that we already saw the negative of log p(y) above as predictive surprise and thus

engaging in this optimization problem furnishes free energy as a bound on surprise. This

means that the average surprise is reduced when observing an event for a second time

(Friston, 2010). Computing surprise per se is often intractable, as in realistic scenarios the

state space can get very large (equation 1.1). Approximate inference provides a manner by

which surprise may be estimated at the cost of giving up guarantees of finding exact poste-

rior beliefs. In experimental work, we may also operationalize surprise by assuming simple

generative models for participants and thereby enabling exact inference. As information

is defined using probability theory, if it plays a role in human functioning it can only be

computed using subjective (i.e. estimated) probability distributions. It is this probabilistic

information which is suggested to be encoded in the internal generative model. The applica-

tion of predictive coding as a neuroscientific hypothesis has provided a formal description of

perception as inference by framing predictive coding as approximate Bayesian inference via

variational inference and thereby bringing it under the Bayesian brain hypothesis (Friston,

2005; Millidge et al., 2021).
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For completeness, we note that if no restrictions are placed on the family distribution in

variational inference, then we are still left with an infinite summation or integral. To make

variational inference practical, restrictions are necessary, which will no longer guarantee

that the true posterior can be obtained. A common restriction is called the mean field

approximation, which assumes that the (approximate) posterior factorizes into the product

of the dimensions of state space:

q(s) =
∏

i

qi(si)

Although it generally works well, this approach is a considerable simplification which can

bias inference similar to sampling approaches. As the occurrence of these inferential errors

may be tested, these restrictions are one way through which hypotheses assuming variational

inference in the brain become falsifiable. For the mean-field approximation, trial-order

effects are part of the resulting biases, which have been observed in human behaviour (Daw

et al., 2008; Sanborn and Silva, 2013; Gershman, 2019).

1.2.1 Surprise about the future

Next, we comment on the relevance of information-theoretic quantities related to surprise

when applied to the future and action, moving beyond perception and learning. To re-

state, by integrating prior and novel information, the parameters of the generative model

may be estimated through observation of the world. Action relates to this process in two

fundamental ways. First, action is ultimately served by learning. That is to say, action

is the process by which we interact with the world to attain our goals, which an accurate

generative model can support, simply by providing more reliable information about the en-

vironment and through planning. By applying probabilistic inference to action, the concept

of planning-as-inference emerges (Botvinick and Toussaint, 2012). By including action and

their outcome dynamics in the generative model, an agent may infer on possible conse-

quences and plan how to reach specific future outcomes. This has especially innovated the

field of goal-directed action through the application of partially-observed Markov decision

processes (POMDPs), in which agents may only have access to ambiguous observations

generated by an underlying state, rather than directly observing these states (Kaelbling

et al., 1998). Here, too, the usefulness of the generative model and its inversion is bounded

by how well the model represents the target.
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Second, integrating action and basing it on probabilistic inference provides an appealing

tool, as action may take on a function beyond reward maximization per se. If maintaining

an accurate generative model is crucial, actions which are predicted to bring about highly

informative states or observations may be assigned greater value (Schwartenbeck et al., 2019;

Sajid et al., 2021). This natural exploration strategy can lead to forms of active learning by

seeking out actions that reduce uncertainty, thereby linking back action to serve learning.

Such a process is enabled by explicitly representing uncertainty and by being able to infer

how actions may lead to changes in beliefs. Whereas learning is concerned with adjusting

model parameters to reduce surprise with regard to current observations, action may aim

to reduce surprise of future observations and thereby deals with expected surprise. As

discussed more detailed in the next sections, both learning and action can thus be used to

infer a generative model of the environment.

More concretely, one extension of the Bayesian brain formulation to action selection

features expected Bayesian surprise as a loss function. This gain can be formulated as

follows:

I(a) =
∑

y

p(y|a)KL [p(s|y, a)||p(s|a)] (1.8)

where the agent uses its beliefs about which future observations y result from action a and

weighs their probability by the extent these observations would change the belief distri-

butions as per the KL-divergence, corresponding to Bayesian surprise as described above

(Gershman, 2019). This expectation has been viewed as information gain and its pursuit

by humans has been investigated in psychology (Klayman and Ha, 1987; Nelson, 2005) and

neuroscience (Yang et al., 2016; Mirza et al., 2018) and has been framed as active learning

in machine learning literature, where its used to allow models to query data labels and

explore efficiently (Sun et al., 2011; Houthooft et al., 2016). As uncertainty about environ-

mental statistics is reduced by biasing action toward high Bayesian surprise, more accurate

beliefs are expected to yield lower (predictive) surprise going forward. That is, maximizing

short-term Bayesian surprise can help minimize predictive surprise over a longer period.

The information gain quantity from equation 1.8 also arises in active inference. This

framework is derived from the free energy principle and describes the exploration-exploitation

trade-off through a probabilistic inference approach (Friston et al., 2006, 2016). It presumes
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an agent that maintains a generative model of its environment. Action selection is based

on the idea of surprise minimization, which yields a single expression combining incentives

for exploration and the realization of an agent’s preferences. The resulting quantity, the

expected free energy, evaluates actions based on (predictive) surprise of potential future

observations. For a comprehensive account of how the expected free energy is derived from

the pursuit of surprise minimization please see Friston et al. (2015). The expected free

energy of action a at time t can be expressed as follows:

Gt(a) = −Ep(ot;πt(θ)|at=a) [ln p(ot|C)]
︸ ︷︷ ︸

Extrinsic Value

−Ep(ot;πt(θ)|at=a) [KL (πt(θ)|ot, at = a∥πt(θ))]︸ ︷︷ ︸
Intrinsic Value

(1.9)

= KL (p(ot;πt(θ)|at = a)∥p(ot|C))︸ ︷︷ ︸
Cost

+Ep(πt(θ))

[
H(p(ot|θ̂, at = a))

]

︸ ︷︷ ︸
Expected Ambiguity

(1.10)

where πt(θ) is the belief at time t about statistic θ, for example an outcome probability, with

the first line highlighting the dual imperative. Specifically, the left-handed p(ot|C) denotes

the prior preferences over outcomes and the right-hand side is the expected information

gain term. The prior preference distribution assigns greater probability to more desirable

outcomes and agents are therefore considered to ’expect’ to realize their preferences. Acting

so as to minimize predictive surprise (in expectation) with respect to prior preferences will

then promote behaviour that leads to preference realization. On the other hand, minimizing

predictive surprise of outcomes based on belief distributions of environmental statistics πt(θ)

requires having accurate beliefs. This entails effective learning, which is promoted by seeking

information via maximizing expected Bayesian surprise. As such, the extrinsic value of a

given action measures how likely prior preferences are realized, while intrinsic value scores

the information gain. The second line shows a different rewriting of the expected free

energy. The cost term indicates how close the belief distribution of observations conditional

on action a is to the distribution over prior preferences. Meanwhile, the ambiguity term

captures the entropy H of the observation likelihood under the most likely value of the

probability θ̂, which when minimized promotes actions that are most informative. Indeed,

given that entropy is expected surprise, behaviour that aims to minimize surprise of future

events can be framed as entropy minimization. Practically speaking, uncertainty is often

high in a novel environment and therefore information gain incentives will tend to drive

behaviour. Over time, there will remain less to learn and thus behaviour will shift towards
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realizing prior preferences instead. Following this theoretical introduction, next we will

summarize the empirical literature on surprise relevant to the experimental work of the

thesis.

1.2.2 Surprise in perceptual learning

Attempting to study learning in the absence of explicit behaviour by which internal beliefs

are read out, begs the question of how the learning process can be probed. Here we focus on

the concept of readout functions, which provide quantities hypothesized to be relevant to

the neural learning process. To the extent that humans engage in mismatch computation,

the aforementioned surprise functions can be considered as readout functions to infer on the

underlying learning process as their progression over time is a function of the observations

and the beliefs about task-relevant statistics. Of these, the observations are directly known

to the experimenter, while the evolution of model parameters (i.e., learning) is the process of

interest and depends on the (hypothesized) computational model, which is not only known

but even specified. Thus, the dynamics of surprise across time can be regressed against

neural signals to infer on their relative plausibility as descriptions of neural computation,

as well as allowing for an analysis of the learning model.

EEG provides data with a high temporal resolution which allows for the dissociation of

neural signalling of different computations across time. By comparing the evolution of EEG

signal and readout quantities across time, we may infer on processes related to surprise and

belief updating. Often, Bayesian learning studies focus on specific EEG components, of

which the earlier mismatch negativity (MMN) and later P300 are regarded as most relevant

to surprise computation and Bayesian learning. Of these, the P300 has received the most

attention, with studies showing that subcomponent variability is well described by predic-

tive surprise (Kolossa et al., 2013, 2015; Kopp et al., 2016) and Bayesian surprise (Kolossa

et al., 2015; Mars et al., 2008; Seer et al., 2016). Some studies have investigated the entire

peri-stimulus timewindow (Ostwald et al., 2012; Maheu et al., 2019; Modirshanechi et al.,

2019). Of these, only Modirshanechi et al. (2019) compared multiple surprise functions,

including confidence-corrected surprise, finding that predictive surprise was best decoded

across the trial. Their work also constitutes one of two publications that include anal-

yses of somatosensory data, with Ostwald et al. (2012) finding instead evidence for the
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somatosensory MMN to reflect Bayesian surprise, although no direct surprise comparisons

were included.

Besides surprise readout functions, here we additionally aim to investigate important

characteristics of the underlying model. As further detailed below, these include whether

the model is hierarchical, across which time horizon information is integrated, and which

sequence statistics are learned. The combined investigation of surprise functions and model

characteristics are rare. However, multiple studies inferred on the time horizon of learning

by modeling a forgetting kinetic in combination with a non-hierarchical model. Results indi-

cate local integration of only recent observations (Mars et al., 2008; Ostwald et al., 2012) or

suggest a co-existence of multiple time horizons including global timescales (Kolossa et al.,

2013; Maheu et al., 2019). In terms of sequence statistics, Maheu et al. (2019) provide

evidence for transition probability learning over stimulus or alternation probability alter-

natives, which is in accordance with results of an earlier re-analysis of multiple behavioural

studies on human learning (Meyniel et al., 2016). To the best of our knowledge, no EEG

studies on surprise have attempted to also investigate whether learning happens in a hierar-

chical fashion. Yet, EEG signals have been shown to predict subsequent belief updating in

a manner sensitive to the task context using signed prediction errors as a readout function,

indicating a hierarchical learning model (Nassar et al., 2019). More commonly, the learning

model is inferred by studying decision making. This literature has diverging findings, with

indications for hierarchical (Behrens et al., 2007; Heilbron and Meyniel, 2019) as well as

non-hierarchical learning (Summerfield et al., 2011; Farashahi et al., 2017) being common.

Overall, comprehensive model comparison studies using EEG to investigate surprise are

scarce, which complicates literature synthesis. In particular, different surprise functions

tend to correlate strongly due to the influence of belief inadequacy on belief updating (Li-

akoni et al., 2021). This could lead to a scenario where certain neural signals could be

described to encode either process when a model of each is only compared to a weak base-

line model in absence of the other, which highlights the importance of direct comparisons

within a study. Further, inferring on surprise computation in subjects is likely sensitive to

the learning model and vice versa, seeing as the surprise is a function of the learning model

and the learning model is inferred upon via surprise quantities.
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1.2.3 Active inference for action

Active inference has received considerable theoretical attention (Friston et al., 2006; Fris-

ton, 2012) and has been investigated in simulation-based work showing its ability to solve

learning and decision problems, also in dynamic environments (FitzGerald et al., 2015; Fris-

ton et al., 2015; Marković et al., 2021). Investigations using empirical data attempting to

validate the framework as matching human behaviour have only more recently appeared.

As shown above, expected free energy can be rewritten to include an entropy term, of

which the inclusion was found to guide human decision making over and above pure re-

ward maximization (Schwartenbeck et al., 2015a,b), while implicating a role for midbrain

dopaminergic activity. When model parameters were fitted to human behaviour, these were

found to be predictive of future symptomatology (Smith et al., 2022) and to significantly

correlate across time (Smith et al., 2021). Active inference has also recently been used to

study pathology and the resulting atypical task behaviour in comparisons to healthy con-

trols. These analyses have described alterations in the decision making process in terms of

decision uncertainty (Smith et al., 2021) and action selection precision (Smith et al., 2020)

as well as belief updating proceses, indicated by differences in learning rates (Smith et al.,

2022) and weighting of interoceptive signals (Smith et al., 2020). Finally, by formulating

action selection as combining utility and information objectives, it continues to prescribe

sensible behaviour in the absence of any rewards (Schwartenbeck et al., 2015; Sajid et al.,

2021).

However, whether the resolution to the exploration-exploitation dilemma proposed by

active inference captures human behaviour better than existing models based on RL re-

mains unclear. As discussed, a traditional RL treatment of choice behaviour results in

learned point estimates of (expected) reward without a representation of uncertainty. Nev-

ertheless, the commonly used softmax operation still provides these algorithms with decision

stochasticity, providing a simple yet effective capacity for exploration with a single param-

eter that scales the overall tendency for exploration (Sutton and Barto, 2018). It naturally

leads to more exploration when action values are similar, while a more exploitative strategy

emerges when considerable value differences arise. However, choice stochasticity only yields

random exploration, while the contrasting concept of directed exploration assigns incentives

specifically to uncertain actions. The latter is thereby an intentional process that steers ac-
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tion selection so as to maximize information gain. Humans have been shown to be sensitive

to the information gain associated with observations, for example while reading (Eugster

et al., 2016; Kangassalo et al., 2020). Further, expected information gain of observations

resulting from action provides an accurate description of visual sensing (Itti and Baldi,

2009; Yang et al., 2016; Mirza et al., 2018). However, the extent to which humans engage

in directed exploration by trading off against exploitation in sequential decision making is

less well-understood, with some work not observing this behaviour (Daw et al., 2006). On

the other hand, evidence for such strategies has been found when the value of information

and, by extension, directed exploration has been experimentally manipulated (Wilson et al.,

2014; Dezza et al., 2017; Horvath et al., 2021). While evidence has also been documented

for more naturalistic settings (Schulz et al., 2019; Frank et al., 2009), it is not found consis-

tently (Riefer et al., 2017). The literature contains a diverse set of formulations for directed

exploration incentives, which potentially contributes to the variability of findings.
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Figure 1: An investigation of perceptual learning and action using information
theoretic tools. A) The left-hand side includes a schematic overview of the experimental
approach using EEG signals and action selection. The human participant is thought to
maintain a task model ph(y, s) which is updated across trials. Neural signals captured by
EEG are hypothesized to reflect this process of statistical inference. Further, the task model
is used to perform action selection using the participant’s loss function Lh. Meanwhile, a
computational model pm(y, s) is posited as a candidate representation of the (hidden) human
model ph(y, s) and the associated learning dynamics. Action selection may be simulated
through a combination with a loss function Lm. Beliefs encoded by the candidate model
pm(y, s) may also be passed through a surprise readout function R(y) to yield single-trial
regressors, which may be fitted to the EEG data. Through model fitting we aim to align
pm(y, s) with ph(y, s) and Lm with Lh, while model comparison methods enable inference
of the most appropriate candidate representations of human perceptual learning and action.
The right-hand side provides a mapping of concepts originating in information theory to
the used surprise readout functions of predictive surprise (PS), confidence-corrected sur-
prise (CS), and Bayesian surprise (BS). B) These surprise functions are used to investigate
probabilistic perceptual learning on a ’roving-stimulus’ paradigm by generating single-trial
regressors (Baldeweg et al., 2004). These may be compared against one another in their
ability to explain EEG data. In study 1, the sequence occasionally (p = 0.01) switched
between two recurring regimes, with the fast regime switching between stimulus types more
frequently compared to the slow regime. C) Next, we investigated whether these informa-
tion theoretic (surprise) quantities play a role in human action selection on the two-step
task (Daw et al., 2011). Active inference (AI) posits that human behaviour is sensitive to
expected Bayesian surprise and belief-entropy associated with potential actions to accom-
plish surprise minimization, which is compared to a traditional reinforcement learning (RL)
approach as models for human action selection.
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1.3 Paradigms and modeling

1.3.1 The roving-stimulus paradigm and the two-step task

Surprise and related concepts based on information theory are useful tools to investigate the

Bayesian brain hypothesis. Not only do they play an important role in providing a formal

description of perceptual learning as probabilistic inference, these quantities have allowed for

novel frameworks of action selection. Here we introduce our approach of studying learning

and action in humans using information theoretic measures.

We studied the implicit learning process of environmental statistics using the well-

established roving-stimulus paradigm (Baldeweg et al. (2004); Figure 1B). It features se-

quences of stimuli which alternate between trains of repeated identical stimuli. Upon ob-

servation, the statistics of the generative process that governs alternations and repetitions

of stimulus types is hypothesized to be estimated by participants and summarized in their

internal model. From an experimental perspective, the roving paradigm is attractive as the

generative statistics may be formulated in terms of transitions between stimulus types so

that frequencies of stimulus identity by themselves are uninformative. This allows for the

study of learning independently of the physical properties of stimuli per se. Further, the

transition statistics governing the sequence were altered unbeknownst to the participant

during each run. Specifically, the sequence switched infrequently between two recurring

regimes, which differed in their tendency to repeat or alternate between stimulus types

(Figure 1B). A dynamic rather than static environment calls for sustained learning for the

duration of the sequence rather than only at the start and until an initial estimate has been

formed. It also allows for an analysis of how humans adapt to dynamic contexts, which is

relevant due to the non-stationary human environment and the large variety of theoretical

proposals to deal with partially-observable environmental changes.

The roving paradigm has previously been applied to the study of mismatch signals

(Cowan et al., 1993; Baldeweg et al., 2004), which have traditionally been elicited by pre-

senting a rare ’oddball’ stimulus that differed from a more frequently presented stimulus

(Squires et al., 1975; Näätänen et al., 1978). Various explanations for the generation of

these responses have been proposed. A prominent example is an adaptation-based hypoth-

esis, stating that mismatch signals result from sensory neurons being adapted to different

extents to every stimulus type (May et al., 1999; Jääskeläinen et al., 2004). Meanwhile, a
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change detection perspective posits a change in physical sensory inputs to be the underlying

cause (Schröger and Winkler, 1995). Successive accounts already surmised that a repeti-

tion of a stimulus might lead to a build-up of expectation, which is conceptually closely

related to prediction, and that a rare regularity-breaking stimulus may result in prediction

violation (Winkler and Czigler, 2012). The current approach of the Bayesian brain may

be considered an extension of these initial proposals by allowing for a formal description of

the signals resulting from probabilistic inference based on a generative model. This frame-

work further provides the ability to generate single-trial predictions of neural signals, rather

than perform comparisons on averaged responses. The discussed surprise functions may be

considered formal descriptions of the earlier concepts of expectation violation and model

adjustment (Lieder et al., 2013). Despite the relatively long history and extensive research

work, much remains unknown about mismatch signaling. Consequently, this paradigm was

chosen to further the development and investigation of a surprise-based approach to study

the Bayesian brain in perceptual learning.

As the Bayesian brain hypothesis is commonly posited as a general description of brain

function, its principles are expected to apply across modalities. Moreover, Bayesian infer-

ence can be used to prescribe the optimal integration of information from multiple modalities

and therefore underlies promising candidate models of multi-modal processing (Knill and

Pouget, 2004; Ernst, 2006; Cao et al., 2019). An understanding of the extent to which

mismatch-related computation on roving paradigms is multi-modal and probabilistic in na-

ture is still incomplete (Besle et al., 2005; Butler et al., 2012; Andric et al., 2017). In a

further study we extend upon the aforementioned EEG work by presenting auditory, so-

matosensory, and visual stimuli simultaneously in a roving paradigm. By incorporating

cross-modal dependencies in the stimulus-sequence generation process, we intended to ap-

ply computational modeling of Bayesian learners and surprise computation to investigate

whether mismatch processing is probabilistic and multi-modal in human participants.

Action in a sequential decision making setting has historically been predominantly

approached with the primary goal of reward maximization. As suggested, however, the

Bayesian brain hypothesis can be naturally extended to action selection, enabling a change

to the loss function to include Bayesian surprise or entropy-based incentives. We again

take a well-established paradigm, namely the two-step task (Daw et al. (2011); Figure 1C),

to contrast such an action selection strategy with a classical RL approach. We focus par-
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ticularly on the exploration-exploitation trade-off, relevant to many settings in which it is

beneficial or even necessary (Sajid et al., 2021) to temporarily forego rewards in order to

collect information that enables the formulation of a better action selection strategy. This

tension between maximizing (short-term) reward and learning about the world is often

treated as a problem of balancing these two ingredients and is of interdisciplinary interest,

spanning multiple fields besides neuroscience (Wilson et al., 2021), including psychology

(Cohen et al., 2007) and computer science (Osband et al., 2016; Sutton and Barto, 2018).

The loss function on action proposed by active inference implicates important charac-

teristics relevant to the Bayesian brain hypothesis. First, expected free energy minimization

requires the maintenance of probability distributions (or their sufficient statistics; Friston

et al. (2011)) to derive the entropy or information gain terms. Second, these internal model-

based quantities are hypothesized to influence action selection not only to obtain rewards

but also to shape beliefs, thereby instantiating a method by which action contributes to

the optimization of the generative model. Moreover, this issue concerns a crucial aspect of

the framework, as omitting the information gain incentive (i.e. expected Bayesian surprise)

can reduce active inference to produce behaviour that is hard to dissociate from a purely

reward-maximizing RL agent. We investigated these ideas using similar model-comparison

techniques as used to study perceptual learning with EEG. However, in this case we rely

on action selection itself reading out the internal model, so as to make the use of additional

readout functions redundant. However, from an experimental point of view, the process is

likely to depend on two similar components. Namely, a generative model that is updated

based on action outcomes and a loss function that is minimized via action selection, which

consults learned statistics such as outcome probabilities and their uncertainty. Our focus

is on using model comparison to infer on this loss function and study whether descrip-

tions of human behaviour on the two-step task improve when a surprise-based incentive is

considered.

The two-step task is a sequential decision making task introduced by Daw et al. (2011).

On each trial, two stages need to be sequentially traversed via binary action selection with

the goal of obtaining a reward in the final stage, although some versions require the avoiding

of punishment instead (Lockwood et al., 2020). It was originally designed to disambiguate

between model-free and model-based strategies. The underlying assumption is that model-

based inference utilizes the structural knowledge of the probabilistic transitions between
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the initial and final stage to seek out valuable states. A model-free strategy is insensitive

to this knowledge and only relies on observed stimulus-action mapping. The task has

seen widespread application and therefore has a broad literature available concerning task

behaviour of humans and RL models (Wunderlich et al., 2012; Eppinger et al., 2013; Otto

et al., 2013; Kool et al., 2016; Castro-Rodrigues et al., 2022). Furthermore, it was selected

because the common RL model does not capture all aspects of human task behaviour despite

its adoption (Feher da Silva and Hare, 2020), indicating the importance of considering

alternate models of behaviour.

1.3.2 Modeling

For the study of learning, we differentiate between the probabilistic model and readout

functions. The surprise quantities are used to model neural signals as these are hypothe-

sized to encode probabilistic inference. Although the surprise quantities do not presume a

specific neural implementation in an algorithmic sense, they do assume that the dynamics of

brain function encode concepts of expectation and prediction, as well as their confidence and

updates. A direct comparison of these surprise quantities aims to dissociate (in a spatiotem-

poral manner) between signals underlying their dynamics. Meanwhile, predictive surprise,

Bayesian surprise, and confidence-corrected surprise have been defined as functions of the

underlying model and they thereby read out this model. In this way, they may additionally

be used to investigate the learning process itself. It is this second functionality that we fur-

ther expand on in this section by introducing some characteristics of the generative model

that we investigated. This dual-purpose also relates to the advantage of investigating both

within a study; as learning dynamics estimate the parameters which surprise quantities

read out, inference by experimentalists based on surprise quantities is expected to get more

reliable as the generative model more accurately captures the neural representation. Vice

versa, experimental inference on properties of the generative model may be biased when a

readout function is used that does not correspond well to neural computations.

The roving paradigm features few discrete stimuli which enables a simple conjugate

Bayesian learning model. A Dirichlet-Categorical model effectively tracks counts of the

unique types of observations to infer their emission probabilities. It models the prior over

the hidden state s using a Dirichlet distribution with s1, ..., sM ∼ Dir(α1, ..., αM ) and the

likelihood using the Categorical distribution y ∼ Cat(s1, ..., sM ). As the hidden state s is
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modeled as a discrete distribution over categories it is essentially a static representation,

with st being shared across time for each observation. Nevertheless, changes to the en-

vironmental hidden state may be adapted to by incorporating exponential memory-decay,

with the severity set by a parameter τ ∈ [0, 1]. This results in earlier observations being

increasingly discounted or forgotten, implying a limited timescale of information integra-

tion, for which evidence has been reported repeatedly (Ostwald et al., 2012; Rubin et al.,

2016; Maheu et al., 2019). The forgetting rate sets the balance between being flexible

to environmental change with increased risk of modeling noise (high forgetting) and be-

ing inflexible but resistant to noise (low forgetting). The appropriate level of forgetting is

therefore dependent on the volatility of the current context.

When the environment is cyclical, forgetting and relearning can be a wasteful strategy.

In response to a change in a friend’s mood, rather than forgetting what you have learned

about them, it is better to recognize the new mood and reactivate relevant previously

learned knowledge. Volatility in this scenario concerns the frequency by which switches

between discrete (hidden) states occur. A hierarchical model may infer such switches to

construct and maintain separate beliefs for each environmental regime so that forgetting

is unnecessary and all previous information can be integrated. Hidden Markov models

(HMMs) describe a discrete hidden state s that evolves according to a Markov chain with

transition probabilities p(st|st−1) (Rabiner and Juang, 1986; Ashwood et al., 2022). This can

be described as a matrix A ∈ RK×K , with the number of hidden states usually K > 1. At

each timepoint, an observation is sampled according to the emission probabilities p(ot|st).

Comparing an HMM to a static-state alternative allows for a comparison about which

structure (i.e., flat or hierarchical) the brain defaults to in order to estimate environmental

statistics (Gallistel et al., 2014; Meyniel et al., 2016). This is possible because the distinction

in the representation of the hidden state has important implications for the surprise readout

functions. Recall that the sequence statistics occasionally switched between two possible

regimes. For the Dirichlet-Categorical model, Bayesian and confidence-corrected surprise

are functions of the beliefs about event probabilities per se. Meanwhile for the HMM, these

surprise quantities read out the latent level which assigns probabilities to the two discrete

hidden environmental states. If surprise signalling is found to pertain to these beliefs, we

propose this as evidence in favour of hierarchical inference.
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Early studies often assumed that stimulus-identity frequency is the statistic of interest

(Näätänen et al., 2007). However, this is not always an optimal choice as sequences often

feature transitional structure, such as rain following cloudy rather than sunny weather

or happiness predicting continued happiness rather than despair. To test which sequence

statistics the brain appears most sensitive to, we may consider the following alternatives:

1. Stimulus probability (SP): yt = ot for t = 1, ..., T , thus modeling the stimulus identities

per se without describing any Markov dependencies.

2. Alternation probability (AP): yt = dt for t = 2, ..., T with dt = 1ot ̸=ot−1 being 1 if

the current observation ot differs from ot−1. By capturing alternation and repetition

of stimulus identities, the model is sensitive to a limited form of first-order Markov

dependence.

3. Transition probability (TP): yt = ot for t = 1, ..., T with a set of hidden parameters

s
(i)
1 for each transition from ot−1 = i capturing first-order Markov dependencies (TP1;

Meyniel et al. (2016)). A model can be further extended to include s
(j)
2 for each tran-

sition from ot−2 = j (TP2). As the hidden regimes which govern sequence statistics

differ in terms of their second-order transition probabilities this allows a TP2 model

to capture all dependencies. The regimes may still be dissociated by doing only AP

or TP1 inference, but not by solely relying on SP.

The Dirichlet-Categorical model and HMM can thus estimate different sequence statis-

tics. Whereas an HMM integrates the full history of observations to infer occasional switches

between sets of sequence statistics, the Dirichlet-Categorical model with a static hidden state

has its horizon of information integration set by a free parameter. The resulting estimated

statistics may in turn be used to compute different surprise quantities across time, enabling

model comparison analyses to provide insight into their relative fit to the EEG signals.

For the study of action, one may also differentiate between two components: a proba-

bilistic model and the loss function according to which actions are selected. However, as

the computation of expected free energy relies on (statistics of) probability distributions,

the learning dynamics for active inference agents necessarily differ from those used by the

scalar-based RL model that is commonly used in the two-step task. We were therefore only

able to compare the two approaches in totality, using supplementary analyses and simula-

tions to clarify contributions of probabilistic learning and a surprise-based loss function to

relative model performances.
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Generally, a popular and straightforward model-free reinforcement learning strategy

involves mapping expected return to state-action pairs Q(s, a) through updating Q values

by a prediction error δ, modulated by a learning rate α:

QMF (s, a) = QMF (s, a) + αδ (1.11)

δ = ot −QMF (s, a) (1.12)

For the two-step task, the State-action-reward-state-action (SARSA(λ)) algorithm for Markov

decision processes can be used (Rummery and Niranjan, 1994; Sutton and Barto, 2018).

This introduces an eligibility parameter λ that determines the effect of the final-stage pre-

diction error on the initial-stage action values. It enables a learning process that does not

depend on any structural knowledge of the environment. In order to evaluate the alter-

native strategy of exploiting information about the probabilistic mapping of initial-stage

action aj from the initial-stage state sA to the final-stage states {sB, sC} and consequently

to final-stage actions a2, a model-based approach is formulated:

QMB(sA, aj) = p(sB|sA, aj) max
a2∈AB

QMF (sB, a2) + p(sC |sA, aj) max
a2∈AC

QMF (sC , a2) (1.13)

where AB and AC denote the sets of available actions in the respective final-stage states.

These model-free and model-based Q-value estimates may be combined for initial-stage

actions by running both algorithms in parallel and weighting their contribution using a

parameter w:

Qnet(sA, aj) = wQMB(sA, aj) + (1− w)QMF (sA, aj) (1.14)

Finally, a softmax operator is applied to transform Q-values into a probability distribution

over actions:

p(ap,t = a|sp,t) =
exp(βpQnet(sp,t, a))∑
a′ exp(βpQnet(sp,t, a′))

(1.15)

with the choice randomness controlled by βp at stage p ∈ {1, 2}.

In contrast, active inference agents maintain a generative model of the task and act to

minimize expected free energy via a loss function which includes Bayesian surprise. The
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model includes the estimated transition probabilities (θ1) and outcome probabilities (θ2),

which are together denoted as θ, and takes the following form:

p(ot, s2,t|s1,t, θ) = p(ot|s2,t, θ)p(s2,t|s1,t, θ)p(θ) (1.16)

Note that we focused on outcome probabilities θ2 here for the computation of the expected

free energy (equation 1.9). First, these probabilities drifted for the duration of the exper-

iment and thus required continual learning, while the transition probabilities were fixed.

Further, it was communicated to participants that transition probabilities corresponded to

one of two mirrored structures, which means initial-stage actions provide equal amounts

of information about these probabilities. Action-selection is consequently only sensitive to

information-gain discrepancy regarding outcome probabilities.

To the extent that the resulting information gain is valued relative to reward depends on

the prior preference distribution. This distribution captures the relative attractiveness of

the different observations, with desired outcomes being assigned higher probabilities. The

prior preferences over action outcomes are restricted to a Bernoulli distribution implying

ot = 1 is preferred over ot = 0 (Marković et al., 2021):

P (ot|C) =
1

Z(λ)
eotλe−(1−ot)λ (1.17)

where λ denotes the precision of the prior preferences. In case of zero precision (λ = 0),

there are no preferences, which leads to the singular objective of intrinsic value maximiza-

tion corresponding to pure information gathering about the outcome probabilities. For

higher values of λ, increasingly more weight is assigned to realizing prior preferences, which

becomes prioritized over information gain. In sum, λ is a modulatory parameter governing

explorative and exploitative behaviour.

The active inference model implemented here is model-based so as to link the expected

free energy minimization in the initial-stage of the task to the observations in the final-stage.

For the initial-stage actions, the estimated transition probabilities between stages, θ1, are

used to weigh the expected free energy (eq. 1.9) associated with final-stage actions:

G(aj) = p(sB|sA, aj , θ1)
∑

a2∈AB

G(a2) + p(sC |sA, aj , θ1)
∑

a2∈AC

G(a2) (1.18)
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whereAB andAC are the sets of available actions in the two corresponding final-stage states.

This setup enables an analysis of the contribution of expected Bayesian surprise to initial-

stage action selection per se as well as through comparison with the hybrid reinforcement

learning model.

To estimate probability distributions for the drifting outcome probabilities θ2, we chose

for a simple surprise-based learning rule by adapting an algorithm proposed by Liakoni

et al. (2021). Briefly, to ensure that learning can remain flexible so as to adapt beliefs to

the drifting outcome probabilities of the two-step task, prior information is forgotten in pro-

portion to which it is incompatible with new observations. Specifically, predictive surprise

of the current observation determines the trial-specific rate of forgetting, implemented as a

decay on concentration parameters of a Beta distribution. This allows for the accumulation

of information during periods with steady outcome probabilities, while enabling adaptation

to more volatile changes. Such surprise-mediated learning was compared with alternatives

featuring static forgetting in their ability to capture human behaviour.

1.4 Aim of the thesis

Learning and action, despite traditionally being segregated, may be approached from a

common perspective using probabilistic inference. Specifically, information-theoretic con-

cepts such as surprise appear to be useful theoretical as well as experimental tools and have

enabled formulations of surprise minimization that are hypothesized to underlie the distinct

functions of perception, learning, and action. From an experimental point of view, quantities

of surprise are well suited to be combined with model selection techniques. The experimen-

tal work of the thesis studied both learning (concerning surprise of current observations)

and action (surprise of future observations) in human participants using tasks which are

well-established in their respective domains. In regards to the former, we modeled neural

signals as measured by EEG to infer both on important properties of the generative model

and surprise computations relating to probabilistic belief inadequacy and updating. Using

the roving-stimulus paradigm, we investigated learning of environmental statistics in the

somatosensory system. This modality was chosen for two primary reasons. First, somesthe-

sis is relatively unexplored in the context of Bayesian learning, while it is generally believed

that a similar computational description should be applicable across domains, highlighting

the importance of addressing this gap. Second, the spatial separation of the primary and
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secondary somatosensory cortices allows for effective use of source reconstruction methods,

in contrast to the more densely clustered organisation of the visual and auditory systems.

In terms of the generative model, we compared a hierarchical model in the form of a hidden

Markov model to a simpler, flat Dirichlet-Categorical model, investigated which sequence

statistics are estimated, and inspected the time-horizon of information integration. We read

out the learned statistics using surprise functions, enabling both inference on the underlying

model as well as generating insight into the use and role of surprise computation in the brain.

Specifically, these surprise comparisons allowed for testing whether puzzlement surprise sig-

nalling is sensitive to belief confidence and its dissociation from belief updating dynamics.

This modeling framework was subsequently extended to a tri-modal roving paradigm in

which stimulus sequences also featured cross-modal dependencies. Here we intended to use

Bayesian learners and surprise functions to investigate whether findings extend to the au-

ditory and visual modalities and whether mismatch computation on the roving paradigm

is multi-modal as well as probabilistic. We hypothesized for surprise computation of a

Bayesian learner to accurately model neural signals during sequence learning. Specifically,

we expected for mismatch-related computation to include separate belief inadequacy and

belief updating signals based on a model estimating stimulus transition probabilities. Given

the general and modality-independent nature of probabilistic inference, we hypothesized for

these results to generalize across different senses.

Surprise minimization is not only a useful description for perceptual learning but also

action selection, which we investigated by analysing multiple behavioural datasets of the

widely-adopted two-step task. The paradigm has been largely studied using traditional rein-

forcement learning algorithms estimating reward via single scalars, while research has noted

that these models fail to fully capture important characteristics of human task behaviour.

We compared a common implementation of this approach to a probabilistic learning model

which uses an active inference-based action selection criterion. This strategy computes the

expected Bayesian surprise resulting from possible actions, aiding predictive surprise mini-

mization across longer horizons, thereby naturally providing information gain incentives as

part of expected free energy minimization. In this context, we consider the hypothesis that

human decisions trade off maximizing short-term reward with minimizing uncertainty in

their belief distributions. This intriguing framework still severely lacks empirical validation

using human data, especially in regards to information-gathering. To address this, we com-
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bine model-comparison methods with a model-agnostic approach to investigate to which

extent the considered models capture human behaviour and the contribution of information

gain hereto. We expected for active inference-based agents to provide superior descrip-

tions of model-based behaviour compared to a traditional reinforcement learning approach.

Specifically, this improvement was hypothesized to result from the information gathering

incentive, which is lacking in the pure reward-maximization formulation of RL. In the next

chapter, I will describe the leveraged model comparison methods in more detail. This will

be followed by a brief overview of the results.
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Chapter 2

Summary of empirical studies

2.1 Model fitting and comparison

For the investigation of the described hypotheses, we relied predominantly on model compar-

ison. Following a model fitting procedure to data, this methodology functions as statistical

testing by enabling a comparison between two or more competing models that make differ-

ent assumptions about the data generation process. The data might constitute a timeseries

of neural signals as recorded by EEG or behavioural data on a decision making task. The

quantity of interest is the model evidence p(y|m) for model m and data y, as we want

to be able to compare models in their ability to explain data obtained from participants.

To ameliorate the problem of overfitting, the goodness of model fit needs to be traded-off

against its complexity:

p(y|m) = accuracy(m)− complexity(m) (2.1)

Various quantities have been proposed to this end, including the Akaike information crite-

rion (AIC), Bayesian information criterion (BIC), and the free energy (Penny et al., 2010).

For the analysis of EEG signals, the models were fit using a variational inference algo-

rithm for multiple linear regression (Penny et al., 2003, 2005; Flandin and Penny, 2007).

Regressors, functioning as predictors for the EEG data y, were generated without subject-

specific parameters using a combination of a learning model and surprise functions.

p(y, β, λ) = p(y|β, λ)p(β)p(λ) (2.2)

where β denotes the regression weights and λ the observation noise precisions. The prior

variational distributions were selected via a simulation study aimed to select the probabilis-

tic model that minimizes Type II error under the constraint of minimizing Type I error.

Upon convergence, the algorithm provides an approximation of the posterior parameter

distribution p(β, λ|y) and yields the free energy F as an approximation to the (log) model

evidence. In this case, the model complexity can be rewritten as the KL divergence between

the prior and approximate posterior parameter distributions. For models m = 1...M and

subjects s = 1...S, the overall model evidence given the total data set Y can be obtained

32



as follows:

log p(Y |m) =
S∑

s=1

log p(ys|m), using (2.3)

Fm ≈ log p(Y |m) ≈
S∑

s=1

Fs,m (2.4)

enabling direct comparisons between models by computing differences in free energy (e.g.

F1 − F2 for models m = {1, 2}), corresponding to log Bayes factors (Penny et al., 2010).

For the modeling of behavioural data, various subject-specific parameters had to be

fitted, for which we used a constrained minimization algorithm (L-BFGS-B). The problem of

local minima was ameliorated by performing multiple iterations using random initialization,

using only the iteration that yielded the highest log likelihood for model comparison. To

this end, the Akaike’s information criterion (AIC) and Bayesian information criterion (BIC)

were used:

BIC := k ln(n)− 2 ln(L̂) (2.5)

AIC := 2k − 2 ln(L̂) (2.6)

with k being the number of free parameters in the model, n the amount of trials, and L̂ de-

noting the maximized value of the subject- and model-specific log likelihood function. Thus,

these criteria differ from the free energy by characterising model complexity as a function

of model parameters and, for BIC, the number of data points. Fixed-effects analyses may

be computed similarly by directly comparing sums across subjects.

However, fixed effects analyses implicitly assume that all subjects use the same model.

They are also sensitive to outliers as an extreme value can significantly bias the sum in

equation 2.3. In response, a random effects approach was chosen for group level inference

which has the log model evidences as the only input (Stephan et al., 2009). This procedure

uses a generative model for the data Y and models rm as the frequency of model m in the

population. A Dirichlet prior over rm is used, p(r1, ..., sM |α1, ..., αM ) = Dir(α1, ..., αM ),

where α1, ..., αM correspond to the unobserved counts of model occurrences in the popula-

tion. These α parameters are then optimised to convergence, providing several statistics for

model comparison. First, these parameters can be used to compute the expected frequen-

cies ⟨rm⟩, corresponding to the expected likelihood of obtaining model m for any randomly
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selected subject:

⟨rm⟩ = αm

α1 + ...+ αM
(2.7)

Second, exceedance probabilities express the probability that model m is more likely than

any other tested model given the group data:

ϕm = p(rm > rj |Y ;α) for all j ∈ {1, ...,M |j ̸= m} (2.8)

which have also been extended to correct for differences in model evidences resulting from

chance (protected exceedance probabilities; Rigoux et al. (2014)). This method also enables

so-called family-level analysis, in which models sharing certain features are grouped into

families to infer on diverging features between families (Penny et al., 2010). In this case,

rather than specifying uniform prior α0 parameters across models, they are set equal across

families instead.

2.2 Study 1

Gijsen*, S., Grundei*, M., Lange, R. T., Ostwald, D., & Blankenburg, F. (2021). Neural

surprise in somatosensory Bayesian learning. PLoS computational biology, 17(2), e1008068.

Previous studies have investigated perceptual inference and learning by violating sta-

tistical regularities and have described such processes using surprise functions. Single-trial

EEG signals may be modeled in this manner without the need for behavioural output. The

information-theoretic quantities of predictive surprise (Kolossa et al., 2013, 2015; Kopp

et al., 2016; Maheu et al., 2019; Modirshanechi et al., 2019; Mousavi et al., 2020), Bayesian

surprise (Ostwald et al., 2012; Kolossa et al., 2015; Mars et al., 2008; Seer et al., 2016;

Mousavi et al., 2020), and confidence-corrected surprise (Modirshanechi et al., 2019) have

been previously applied to EEG signals. However, these studies have predominantly relied

on studying single EEG components, rarely include the somatosensory domain, and, cru-

cially, often do not feature direct comparisons of competing formulations of surprise signals.

Here, we implement a stimulus-roving paradigm, in which trains of repeated electrical stim-

ulation alternate between two intensities. This well-established task thereby allows for the

exploration of mismatch responses independent of physical properties of stimuli, which we

leverage to do a comprehensive model-comparison study. Specifically, we adopt a step-wise
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analysis in which we infer on the underlying learning model and subsequently provide a

spatiotemporal account of surprise signatures in both sensor and source space.

By contrasting neural responses to repeated and deviating stimuli, we identify several

mismatch responses across peristimulus time (57, 119, 361ms), each with different linear

dependencies on the recent stimulus history. By modeling single-trial signals in sensor space,

we provide evidence for the use of a non-hierarchical learning model that learns first-order

transition probabilities between stimuli using a local time horizon of integration. Next,

this model was used to infer on surprise computations, with early (65-200ms) dynamics

reflecting confidence-corrected and Bayesian surprise and indications for later (275-375ms)

signals to encode predictive and Bayesian surprise. To perform this analysis in source space,

source reconstruction was performed for early (0-200ms) signals, identifying two dipoles in

both primary (S1) and secondary (S2) somatosensory cortices, which were consequently

used to project single trial EEG data onto. This procedure was supported by finding

sensible mismatch responses using the dipole projections, with the early (57ms) mismatch

response attributed to S1 and the following (119ms) mismatch response found to result

from differences in both S1 and S2 activation. Model comparison in source space identified

the same probabilistic model as was found in sensor space and ascribed strong evidence

to bilateral S2 activation to reflect confidence-corrected surprise from 70ms and suggested

S1 to reflect Bayesian surprise around 140ms. By interpreting these two quantities as

uncertainty-sensitive signals of model inadequacy and model updating respectively, these

results suggest a possible interaction in the somatosensory system that may contribute to

the probabilistic learning of environmental statistics.

2.3 Study 2

Grundei, M., Schröder, P., Gijsen, S., & Blankenburg, F. (Submitted) EEG mismatch

responses in a multi-modal roving stimulus paradigm provide evidence for probabilistic

inference across audition, somatosensation and vision. Human Brain Mapping

In study 1, we combined somatosensory stimulation in a roving stimulus paradigm with

EEG to provide evidence for multiple distinct mismatch responses across peri-stimulus time

with unique dependencies on stimulus histories. Further, we showed that Bayesian learning

models combined with surprise readout functions capture observed neural dynamics well.
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However, mismatch signalling and its representation as surprise-based computation arising

from probabilistic inference has mainly been investigated in uni-modal settings (Näätänen

et al., 1978; Czigler et al., 2006; Lieder et al., 2013; Ostwald et al., 2012; Stefanics et al.,

2014; Naeije et al., 2018). Nevertheless, given that these findings span audition, vision,

and somatosensation, it is suggested for these principles to apply across modalities. Here

we implemented an EEG roving paradigm with simultaneous auditory, somatosensory, and

visual stimulus presentation with cross-modal dependencies underlying stimulus-sequence

generation.

We found uni-modal mismatch responses between 100-200ms post-stimulus for all three

modalities. Using source localization, the responses were found to originate from the re-

spective sensory cortices and shared common frontal sources. A later, frontally-generated

mismatch response (300-350ms) appeared to encode cross-modal mismatch information by

displaying a sensitivity to stimulus predictability conditional on multi-modal stimulus iden-

tities. As per the results of Study 1, we hypothesized a Bayesian learner as a Categorical-

Dirichlet model estimating uni-modal transition probabilities (uni-modal model) or addi-

tionally uni-modal alternation probabilities conditional on the stimulus identities of other

modalities (uni- and cross-modal model), which generated either predictive surprise, Bayesian

surprise, or confidence-corrected surprise. Given that the initial analyses revealed patterns

that may also have been generated by a linear change-detection process which counts stimu-

lus repetitions, we compared such a model of single-trial responses to the family of Bayesian

learners. Bayesian model comparisons preferred the family widely across the spatiotempo-

ral domain, suggesting that probabilistic inference-based accounts are more apt models

of neural signals on a roving paradigm than a traditional change-detection view. Next,

the Bayesian learner modeling cross-modal dependencies was found to outperform pure

uni-modal learning at some electrodes for both the early (∼125ms) and later (∼330ms)

mismatch windows. Finally, surprise functions of Bayesian learners were compared as mod-

els of EEG signals. Moderate evidence was found for confidence-corrected surprise encoding

across many electrodes for the early time window. Meanwhile, the late time window showed

minor indications for Bayesian surprise. In conclusion, models based on probabilistic learn-

ing were found to fit the data better than a change-detection account. Comparisons of

surprise computation per se were not conclusive, yet indicated a similar pattern found in

Study 1, with confidence-corrected surprise preceding Bayesian surprise..
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2.4 Study 3

Gijsen, S., Grundei, M. & Blankenburg, F. Active inference and the two-step task. Scien-

tific Reports 12, 17682 (2022).

The active inference framework, derived from the free energy principle, provides an

integrative extension of surprise minimization to not only underlie perceptual learning but

also action (Friston et al., 2006; Friston, 2012; Schwartenbeck et al., 2015; Smith et al.,

2022). This probabilistic account posits information-seeking incentives to guide human

decision making, corresponding to a sensitivity to information gain in the form of expected

Bayesian surprise regarding environmental statistics. This can lead to directed exploration

behaviour, in which action selection is actively steered toward more uncertain options in

order to facilitate learning. In order to investigate these ideas empirically, we exploit the

two-step task, which requires the traversal of two stages via binary action selection so as to

maximize reward, with reward probabilities drifting over time (Daw et al., 2011). Despite

the task having been widely investigated using traditional reinforcement learning accounts

implementing scalar reward learning in model-free and model-based fashion (Voon et al.,

2015; Wyckmans et al., 2019; Castro-Rodrigues et al., 2022), it has been shown for these

models to not fully capture human behaviour (da Silva and Hare, 2020). We contrast

such an account with probabilistic surprise-based learning and active inference in its ability

to describe human action selection strategies. To this end, we combined computational

modeling and model-agnostic regression analyses of influences on action selection using four

previously published datasets (da Silva and Hare, 2020; Kool et al., 2016; Lockwood et al.,

2020)

Regression analyses revealed considerable differences in action selection behaviour be-

tween datasets. By discerning the influence of knowledge about between-stage transitions

on initial-stage actions, the extent to which behaviour was model-based can be inferred.

Action selection was considerably more model-based on two of the datasets, with model

comparisons assigning strong evidence in favour of active inference (compared to hybrid

reinforcement learning) only for these datasets, while models performed similarly on the re-

maining datasets. The precision of prior preferences determined the reliance on information

gain in action selection for active inference agents. As such, recovered subject-specific preci-
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sion parameters were inspected, which followed a bimodal distribution in all datasets. This

suggested that approximately half of all subjects were sensitive to the information gain in

their action selection. For the datasets which were better described by active inference, cor-

relational analyses indicated that greater information gain sensitivity was related to better

model fits of the active inference model compared to hybrid reinforcement learning. Given

that the two modeling frameworks differed not just with respect to action selection, but

also in terms of their learning methods, this finding suggests a contribution of information

gain sensitivity to model selection results.

To further investigate this topic, we leveraged an observation by da Silva and Hare

(2020), who in their work noted considerable main-effects of transition type in their two-

step task datasets. Common transitions, defined as those which lead participants from

the initial-stage to the final-stage state in line with predictions, increased the frequency by

which participants selected the other initial-stage action two and three trials later. Thus,

subjects showed a tendency to periodically switch between first-stage actions independent

of final-stage outcomes, with the authors suggesting this behaviour to potentially indicate

directed exploration. The subject-specific main-effects of transition type were found to

correlate with the precision parameters, suggesting that information gain sensitivity related

to this behavioural phenomenon. To further investigate the role of this parameter, we

simulated data using the set of subject parameters using stratification based on precision

parameter values. Indeed, information sensitivity produced more pronounced transition

effects. However, these effects were underestimated by the model, even for participants

most sensitive to information gain. This suggests that probabilistic learning using active

inference may improve models of human behaviour on the two-step task via its information

gain incentives, but that it only captures exploration behaviour partially. A discussion of

issues with the used paradigm for the current goals is followed by suggestions for future

empirical validations of the active inference framework.
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Chapter 3

Discussion

The aim of this thesis was to investigate the role of information-theoretic surprise quantities

in learning and action by adopting a probabilistic inference framework. Multiple surprise

quantities have been derived from the concept of Shannon’s information, with originally an

event’s surprise being equated to the information it provides (Shannon, 1948). The compu-

tation uses an agent’s current beliefs, which are assumed to be probabilistic in nature and

therefore are reconcilable with the Bayesian brain hypothesis. Beyond pure information, it

has been hypothesized that surprise signals may also also scaled with the commitment to a

belief, corresponding to negative entropy under confidence-corrected surprise (Faraji et al.,

2018). Alternatively, Bayesian surprise has been proposed to capture how data affects an

agent and may also be interpreted as a belief updating signal (Itti and Baldi, 2009). These

quantities closely relate to the ideas of a predictive brain, with more severe violations of

probabilistic predictions resulting in greater levels of surprise. Further, it has been posited

for the process of surprise minimization to achieve approximate Bayesian inference and to

underlie perception, learning, and action. Despite the distinct aforementioned hypotheses

about surprise, their role in human perceptual learning remains unsettled as direct compar-

isons are lacking, particularly for somatosensation. And while prominent frameworks such

as active inference posit an important role for expected surprise of future outcomes to guide

human action with important implications for exploration behaviour, empirical validation

remains lacking. We contribute to the understanding of surprise across learning and action

by adopting the roving-stimulus paradigm and the two-step task respectively.

Specifically, the roving-stimulus paradigm was used to induce mismatch computations

during somatosensory sequence learning while recording neural dynamics using EEG. We

found multiple mismatch responses across time and electrode-space with differing dependen-

cies on the short-term past of the stimulation sequence. Using single-trial modeling, neural

signals were best explained by a non-hierarchical Bayesian learning model integrating infor-

mation locally to estimate (first-order) stimulus transition probabilities. Spatiotemporally

distinct signatures of surprise computation were observed, with evidence for confidence-
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corrected surprise originating in S2 preceding indications of Bayesian surprise dynamics in

S1. In an extension, we used a tri-modal roving paradigm and replicated the suitability

of transition-based probabilistic inference with confidence-corrected and Bayesian surprise

signatures. Using an information-theoretic description of action selection based on active

inference, we further investigated whether human behaviour on the two-step task was sen-

sitive to expected surprise of future observations in a comparison with a traditional RL

approach. Although multiple datasets did not strongly favour either model, datasets which

displayed more model-based behaviour saw considerably better performance of the active

inference model. The sensitivity to Bayesian surprise, amounting to an information gain

incentive, appeared to contribute to better model fits, yet did not fully capture the observed

exploration behaviour. In sum, we found evidence for signatures of sensitivity to surprise

across the domains of learning and action. First, signatures of surprise computation regard-

ing current observations were observed in EEG signals during perceptual learning which

were informative of the underlying generative model. Second, the inclusion of expected

surprise of future observations in action selection indicates a promising path toward better

models of human decision behaviour.

3.1 Perceptual learning as probabilistic inference

We first provide a succinct and high-level description of the dynamics underlying the

Bayesian learning models to aid the consequent interpretation and discussion of results.

For brevity, we focus here on learning a single probability θ ∈ [0, 1] associated with ob-

serving one of two possible observations yt ∼ {0, 1} at time t, corresponding to a roving-

paradigm with only two stimuli or the outcome of a final-stage action on the two-step

task. This corresponds to a Bernoulli trial with p(yt) = θyt(1− θ)1–yt . Modeling the prior

as Beta-distributed provides a closed-form expression for the posterior and allows us to

represent uncertainty about θ. The Beta-distribution has the additional benefit of easily

interpretable concentration parameters, with α and β keeping count of the amount of y = 0

and y = 1 samples respectively. Note that the Dirichlet-Categorical (DC) model described

in the introduction is a generalization of this Beta-Bernoulli model. Although these models

are likely significantly simpler than those employed by the brain, they displays important

characteristics of Bayesian learning and are well understood (Griffiths and Ghahramani,

2011).
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Observations are integrated with prior beliefs, yielding a posterior estimate of θ, which

in turn is carried forward and forms the new prior belief for the next trial. By initializing

the Beta-distribution as Be(θ;α = 1, β = 1), equal probability to all values of θ is ascribed

with a mean probability estimate of E [θ] = α
α+β = 0.5. In Figure 2A, such a belief over

θ is updated after observing y = 1 and y = 0 sequentially. Afterwards, the mean is still

0.5, but the precision of the distribution has increased: greater probability is assigned to

regions around θ = 0.5 than at the extremes. In other words, θ = 0.5 has become a much

more likely hypothesis than θ = 0.99. Over time, iterative Bayesian learning will converge

to the true θ with increasingly greater confidence as uncertainty is reduced.

When this process is repeated and prior beliefs come to encode more information about

θ, the effect of further observations is diminished. In Figure 2B, again y = 0 and y = 1

are observed respectively, but only after 10 occurrences of both event types are already

integrated. As a result, the two additional samples have a comparatively minor effect on

beliefs due to precise prior knowledge. If θ is not assumed to be static across time, these

dynamics are problematic because beliefs become highly inflexible and unable to adapt to

changes in environmental statistics. Forgetting is a simple kinetic to ensure beliefs remain

flexible, whereby information ‘leaks’ out over time. Effectively, information is integrated

only over a limited time-horizon, which becomes shorter as forgetting becomes more severe.

For a Beta-distributed prior, one solution is to shrink the concentration parameters over

time (Figure 2C,E), thereby increasing the effect of new observations.

In studies 1 and 2, we applied the different surprise readout functions to the current

beliefs at each time step. Predictive surprise depends on the posterior predictive distri-

bution, for which we integrate over the possible values of θ. The quantity therefore does

not directly depend on uncertainty or confidence and is only a function of the currently

estimated p(y). In contrast, confidence-corrected surprise additionally scales with the (neg-

ative) entropy of the distribution over θ. It can therefore be seen to slowly increase over

time, as the distribution becomes more precise (Figure 2D). With forgetting, this effect is

diminished or even absent, as belief entropy stays relatively high. Meanwhile, Bayesian

surprise captures the change in the distribution over θ as a result of observing yt, which

is proportional to the unexpectedness of the event. This quantity will quickly decrease as

each new observation has a smaller effect on beliefs, which can be mediated by leaking

information out of the prior, for example through forgetting. For the hidden Markov model
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(HMM), especially Bayesian surprise and confidence-corrected surprise differ due to the

model’s dynamic, rather than static, hidden state. However, in light of the results we here

forego a comprehensive description of the HMM dynamics and refer to the appendix (Study

1).

Figure 2: Model dynamics. A) The evolution of a uniform Beta-prior as a binary obser-
vation y ∼ {0, 1} is made for yt=0 = 0 and yt=1 = 1 sequentially. B) The same sequential
observations are made given an informed Beta distribution concentrated at θ = 0.5. C) A
forgetting kinetic can reduce the precision of a distribution by leaking out information over
time, indicated by progressively fainter lines. D) The surprise readout functions of predic-
tive surprise PS(yt), Bayesian surprise BS(yt), and confidence-corrected surprise CS(yt)
applied to the initial 50 time steps of beliefs of a Beta-Bernoulli model without (left-side;
τ = 0) and with (right-side; τ = 0.2) forgetting. E) Heatmaps of the posterior probability
of observing ot over time estimated by a Beta-Bernoulli model, without (left-side) and with
(right-side) surprise-based forgetting. Overlaid in grey is the scalar-value of the state-action
pair Q(s, a) as learned via prediction error reinforcement learning. F) The absolute differ-
ence in total expected free energy G between two alternative actions in black (|∆G|), with
red shading indicating the proportion of this difference resulting from the intrinsic term
(|∆Gi|). On the left side, the model features no forgetting and there is a continually re-
duced incentive for exploration. With forgetting (right-side), the incentive for uncertainty
reduction stays a relevant contribution to action-selection.
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Next, we turn to discuss our results. First, these surprise functions were used to infer

on aspects of the underlying subject model. As hypothesized, we found evidence that EEG

signals reflect surprise computation based on probabilistic inference, rather than linear

change detection, matching previous findings in somatosensory learning (Ostwald et al.,

2012). Recent work using uni-modal auditory and visual mismatch paradigms has similarly

suggested probabilistic interpretations (Lieder et al., 2013; Stefanics et al., 2014) rather

than traditional hypotheses including those based on neuronal adaptation (May et al., 1999;

Jääskeläinen et al., 2004) and change detection (Schröger and Winkler, 1995). In the context

of the used paradigm, we interpret this finding to support a probabilistic interpretation of

general brain function. Namely, both studies featured simple tasks intended to maintain

subject attention directed at the stimulation without requiring or explicitly instructing the

learning of sequence statistics. We may therefore be reporting on a default system that is

resorted to, with particularly the early EEG signals likely to correspond to implicit tracking

of environmental statistics (Van Zuijen et al., 2006; Koelsch et al., 2016).

In the context of probabilistic inference, it remains an open question what sort of (re-

duced) representation of the stimulus statistics the brain estimates (Rubin et al., 2016). We

present evidence for the estimation of transition probabilities, which subsumes both item

frequency and alternation probability learning and is therefore the most general sequence

statistic among the comparison set. This finding of (first-order) Markov dependencies in so-

matosensory learning constitutes an extension from previous reports in audition and vision

(Meyniel et al., 2016; Maheu et al., 2019).

A further unresolved issue regarding the form of Bayesian perceptual learning in hu-

mans concerns the manner by which environmental volatility is handled (Behrens et al.,

2007; Summerfield et al., 2011; Farashahi et al., 2017; Heilbron and Meyniel, 2019). Large

abrupt changes to the sequence statistics were expected to elicit attention, which runs

counter to the intended aim of studying non-conscious, implicit learning. We selected the

two discrete states for stimulus sequence generation in study 1 with this in mind. Results

of the post-experiment questionnaire consistently confirmed that regime switches were not

perceived consciously. Although surprise about higher-level statistics has been reported in

the literature (Gläscher et al., 2010; Iglesias et al., 2013), the similarity of regimes might

explain why we did not find evidence in favour of surprise signalling based on beliefs pertain-

ing to the regimes as modeled by an HMM. Indeed, surprise signals appeared to be based
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on beliefs about stimulus transition probabilities per se as captured by the DC model. Our

results thus suggest for implicit somatosensory learning to proceed non-hierarchically and

to not capture changes in task statistics explicitly, although alternate schemes such as dy-

namic forgetting rates are left to be explored in the future. Furthermore, adaptation to

changes in transition probabilities is still achieved by integrating only local, rather than

global, information via exponential forgetting. Due to the irrelevance of sequence statistics

to perform the instructed task, it is possible that a hierarchical model is not defaulted to due

to its higher complexity and thus greater operational cost. Rather, hierarchical inference of

sequence statistics may only be performed when appropriate and otherwise approximated

using a flat model with forgetting. Although the degree to which sequence learning is hierar-

chical is unclear, local integration is commonly reported (Ostwald et al., 2012; Kolossa et al.,

2013; Rubin et al., 2016; Maheu et al., 2019; Meyniel, 2020), possibly due to the dynamic

character of the natural world. Recent findings suggest another possibility however, with

simple models accurately approximating hierarchical inference by assuming certain forms

of neural noise (Findling et al., 2021). Given resource constraints and selective pressures,

such opportunities are likely to be exploited by organisms whenever possible.

3.1.1 Surprise signatures during learning

Using the model described above, we compared predictive surprise, Bayesian surprise, and

confidence-corrected surprise as models for trial-by-trial EEG signal variation. In both stud-

ies, we found encoding of confidence-corrected surprise starting around 70ms poststimulus

onset, followed by weaker evidence for Bayesian surprise around 140ms. In study 1, these

effects were source-localized to originate in bilateral S2 and contra-lateral S1 respectively.

The relatively stronger effects observed in study 1 might result from the uni-modal approach,

whereas signals arising from different modalities are unlikely to synchronise spatiotempo-

rally. This might be expected to have a lesser effect on higher-level comparisons such as

family-analyses between Bayesian learning and change-detection or between uni-modal and

multi-modal inference, which concern characteristics likely shared across modalities. Mean-

while, specific surprise computations would need to co-occur, or at least not interfere.

Confidence-corrected surprise signals a (probabilistic) mismatch of beliefs with the cur-

rent observation and is scaled by the negative entropy of the belief distribution (Faraji

et al., 2018). This quantity is therefore greater whenever expected surprise is low, corre-
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sponding to a belief distribution with high precision. Confidence of (prior) beliefs has been

shown to affect human perceptual learning (Meyniel et al., 2015; Meyniel and Dehaene,

2017; Meyniel, 2020) and decision making (Boldt et al., 2019; Heilbron and Meyniel, 2019).

The processes of learning and confidence estimation have been seen to be tightly inter-

twined (Meyniel et al., 2015), which fits with a Bayesian learning account. In terms of our

dipole results, sensory areas have previously been found to encode sensory uncertainty (van

Bergen et al., 2015; van Bergen and Jehee, 2019; Walker et al., 2020), but under probabilis-

tic inference may also encode uncertainty of beliefs about environmental statistics such as

transition probabilities. Using fMRI, separate neural correlates of surprise and confidence

of beliefs have been reported (Meyniel, 2020). Although the authors found evidence for

sensory cortices encoding surprise but not confidence, BOLD signal was found to be univer-

sally affected by confidence. Given that we did not investigate for pure confidence signals,

it remains unclear to what extent surprise and confidence are encoded separately.

Confidence, together with surprise, has been suggested to inform belief updating (Igle-

sias et al., 2013; Mathys et al., 2014; Meyniel et al., 2015). While surprise indicates the

inadequacy of beliefs given observations and therefore a need to revise these beliefs, the

magnitude of the update should be inversely related to the confidence associated with the

beliefs. Although we did not explicitly investigate this relationship here, we suspect confi-

dence to play a similar role in somatosensory learning, implied both in the Bayesian learning

models and the encoding of confidence-corrected surprise (Faraji et al., 2018). The idea is

also compatible with the temporal structure of our findings: since confidence-corrected sur-

prise encodes both (predictive) surprise and confidence, it may inform subsequent belief

updates represented by the observed Bayesian surprise dynamics, which has previously also

been reported in somatosensory cortex around 140ms (Ostwald et al., 2012). An equiva-

lent mechanism exists in many traditional reinforcement learning approaches, in which a

point-estimate is updated based on the prediction error (Rescorla, 1972; Sutton and Barto,

2018). Indeed, a positive effect of prediction error on subsequent updates is a consistent

finding in the literature and is considered to be mediated by the dopamine system (Mon-

tague et al., 1996; Schultz, 1998; O’Doherty et al., 2003; Seymour et al., 2004; Nassar et al.,

2010; Rouhani et al., 2018; Rouhani and Niv, 2021). This substantial research field has often

focused on learning in rewarding (or punishing) contexts, rather than sensory, valence-free

learning. In the case of sensory learning, surprise and unsigned prediction errors are also
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observed in sensory cortices as we do here (Kok et al., 2012; Meyniel, 2020), matching

findings regarding mismatch responses in oddball paradigms (Den Ouden et al., 2009; Wa-

congne et al., 2011), including the somatosensory domain (Akatsuka et al., 2007; Ostwald

et al., 2012). Although areas outside of sensory cortices have been implicated in perceptual

model updating (O’Reilly et al., 2013; Meyniel, 2020), the roving paradigms we employed

concerned low-level stimulus features of which the basic statistics may have been encoded

in somatosensory cortex.

This insight might also help commensurate our findings with previous EEG work using

information theoretic quantities as they have tended to focus on the later P300 compo-

nent, with evidence reported for the encoding of predictive surprise (Mars et al., 2008;

Kolossa et al., 2015; Kopp et al., 2016) as well as Bayesian surprise (Kolossa et al., 2015;

Seer et al., 2016). Similarly, studies relying on delta-rule models find the P300 to signal

prediction error (Nassar et al., 2019) or belief updating (Jepma et al., 2016, 2018). The

multitude of studies indicating the P300 to signal these functions may question the current

results indicating such signalling to occur earlier. However, the studies implementing these

information-theoretic quantities often rely on explicit learning or decision making tasks,

rather than studying implicit perceptual learning. As mentioned, post-hoc participant re-

ports suggested learning to proceed mainly unconsciously, which might further support

the interpretation that probabilistic inference was largely restricted to somatosensory cor-

tices. Concurrently, by focusing on earlier sensory signals, we aimed to limit the influence

of resource allocation and attentional orienting responses on analyses, as these functions

have also been attributed to the P300 component (Kok, 2000; Kida et al., 2004; Chennu

et al., 2013). Naturally, undocumented interactions with higher-level areas may still have

occurred in study 1, which were indicated in study 2 where multi-modal dependencies were

encoded primarily in (fronto-)central electrodes, potentially indicating an involvement of

frontal cortex.

Recently, predictive surprise encoding was found in early auditory signals (60-130ms)

over sensory areas using a sequence learning paradigm (Maheu et al., 2019). The authors

interpreted these surprise signals to reflect a habituation process, based on the observation

that they reflected stimulus probabilities without forgetting kinetics (Kandel and Tauc,

1965; Maheu et al., 2019). Given that we observed strong evidence in favour of transition

probability estimation (rather than stimulus probability) and local (rather than global)
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information integration, we suggest current results to reflect a perceptual learning process

instead. Besides the difference in modalities, Maheu et al. (2019) used syllables as stimuli,

potentially shifting surprise computation up the hierarchy to levels dedicated to language

processing (Heilbron et al., 2022). However, a similar auditory paradigm was found to

produce a predictive surprise response around 80-155ms using a transition probability model

(Meyniel, 2020), but this was not compared to a stimulus probability model which might

have shown it to be a similar response as reported in Maheu et al. (2019). In a visual

paradigm dissociating surprise and belief updating, Visalli et al. (2021) also found early

(70-140ms) predictive surprise at electrodes over sensory (occipital) cortex. Contrary to

our design, stimulus identity was not orthogonal to the level of predictive surprise, leading

the authors to interpret their finding as being driven by the physical properties of stimuli

rather than informational content. In short, we are not the first to report early surprise

signals, but provide evidence for a novel interpretation in terms of the encoding of surprise.

Future somatosensory research could benefit from experimentally dissociating surprise and

confidence of beliefs to clarify the nature of our observed sensory signals.

Overall, as direct comparisons between measures of surprise and model updating are

rare, especially in somatosensory EEG data, it is possible that previously reported sensory

error signals may have been of either nature. The currently presented results highlight the

possibility that early somatosensory activity corresponds to both surprise signalling and

model adjustment in a temporally coherent manner. This speaks to the value of information-

theoretic quantities as descriptions of neural signals during perceptual learning.

3.2 Surprise computation for action selection

Study 3 investigated the role of expected future surprise in human behaviour by comparing

a hybrid reinforcement learning model to a probabilistic model relying on active inference

for action selection. Figure 2E includes a high-level comparison of the learning models for

learning the probabilities of action outcomes, such as in the final-stage of the two-step task.

The active inference agent relies on a probability distribution over the outcome probability,

which becomes inflexible over time. Meanwhile, if a forgetting kinetic is included, for

example by leaking prior information proportional to predictive surprise, the beliefs can

be flexibly adapted to drifting task probabilities. In the latter case, the mean of the belief

distribution can closely correspond to a scalar Q-value learned by the reinforcement learning
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agent. While under RL the attractiveness of an action only depends on the outcome-

dependent Q-value, active inference agents are sensitive to the uncertainty of beliefs as well

as the expected outcome. The contribution of the intrinsic or information-gain term to the

total expected free energy over time is displayed in Figure 2F. Although the impact of this

term starts off high, the assumption of a stationary environment tends to reduce the term’s

relevance over time as uncertainty is resolved, resulting in prior preference realization as the

primary determinant of behaviour, which can be approximated by prediction error-learning

in RL. Forgetting presupposes a dynamic environment, which implies a lower-bound on

belief entropy and promotes continuous information-gathering incentives. Environments

with drifting statistics aid in the comparison of these two strategies by calling for forgetting

kinetics (be it naively or via a surprise-based mechanism), leading to a sustained difference

between models.

Questions regarding the participants’ task model precede the manner in which partici-

pants learn task statistics and select actions. This results from their hierarchical relationship

and is likely to be even more important here than when studying perceptual learning. An

important aspect concerns whether participants rely on a task model at all, or whether they

resort to model-free control instead. In their two experiments, da Silva and Hare (2020)

set out specifically to provide intuitive explanations for all aspects of the two-step task.

It is likely that this played an important role for the substantially increased model-based

performance on these tasks compared to the original experiment by Daw et al. (2011) and

later work (Kool et al., 2016; Lockwood et al., 2020), which we replicated to show only

minor levels of model-based influence. It has been demonstrated that humans construct

different internal models depending on the context and instructions (Green et al., 2010).

This was recently shown convincingly for the two-step task specifically (Castro-Rodrigues

et al., 2022), with information about the task structure resulting in considerably more par-

ticipants resorting to model-based inference. Strikingly, this increase was greater than what

was observed due to experience alone, despite the relatively low complexity of the task.

The sensitivity to expected Bayesian surprise in active inference, forming a crucial dif-

ference between the two compared model types, rests on model-based behaviour. As a

result, the ability to differentiate between models may be reduced for participants who are

not model-based or are not pursuing information gain. The models are also differentiated

as a result of the active inference model assuming a probabilistic learning rule. However,
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the task environment was not optimized to infer on such contributions to relative model

fits. It is possible that a changepoint paradigm, in which statistics are occasionally resam-

pled rather than drift continuously, may have aided in model differentiation. As discrete

changepoints call for a temporary, substantial increase in belief uncertainty, they may have

enabled another manner to inspect information gain sensitivity. Additionally, the consid-

eration of different forms of model-free learning is an interesting extension to the current

investigation, for which active inference offers intriguing options. For example, it has been

described how agents may dynamically learn habits over time by adjusting the prior belief

distribution over which policies will be selected (Friston et al., 2016). Such extensions may

improve model-comparison analyses by enabling active inference to better fit behaviour of

participants mainly engaging in model-free strategies. Due to behaviour being significantly

better described by active inference only on two datasets (the ’Magic Carpet’ and ’Space-

ship’ tasks), the upcoming section will focus on analyses using these experiments specifically

unless stated otherwise.

Active inference prescribes a sensitivity to the expected Bayesian surprise associated

with an action, corresponding to the information gain. In the two-step task specifically, a

pursuit of information about the final-stage outcome probabilities may drive behaviour in

addition to obtaining preferred outcomes. The sensitivity to information gain was deter-

mined by the precision of the prior preference distribution. We found that this precision

parameter was correlated to relative model fits and regression-based transition effects. These

relationships as well as simulation analyses indicated that expected information gain under

active inference contributed to the model selection results. It further suggested potential

for such an information incentive to underlie behaviour which the hybrid reinforcement

learning approach is unable to generate, as this model relied solely on random exploration.

A sensitivity to expected Bayesian surprise in human behaviour in addition to ran-

dom exploration would be in general agreement with previous work on the exploration-

exploitation dilemma (Wilson et al., 2014; Gershman, 2018). The current implementation is

based on information theory and active inference, which provides an intuitive framework to

consider the trade-off between realizing preferences and learning by quantifying the amount

of information potential actions are expected to provide. This approach has seen consider-

able support from the field of visual search, where eye movements have been successfully

described as a process resolving uncertainty by considering the information gain associated
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with visual locations (Itti and Baldi, 2009; Yang et al., 2016; Mirza et al., 2018). In more

explicit decision making settings, expected information gain has been shown to accurately

model human exploration behaviour (Nelson, 2005; Markant and Gureckis, 2012; Nelson

et al., 2014; Tsividis et al., 2014). Although this information-based literature has consid-

ered costs of exploration Fu and Gray (2006), our study assesses the value of information in

comparison to (reward) utility. Similar evidence for a sensitivity to expected information

gain has been found in a bandit task by manipulating the availability of reward-information

(Horvath et al., 2021), yet direct comparisons with alternative directed exploration strate-

gies are rare for such contexts. And although theoretical and simulation-based arguments

have been provided for the use of expected information gain to guide exploration (Little

and Sommer, 2013), there are potential limitations. The computation of this quantity is in-

feasible for large state- or action-spaces and therefore approximations have been suggested,

either in terms of the quantity itself (Marković et al., 2021), by imposing additional heuris-

tics that constrain the amount of options considered (Smith et al., 2022), or using function

approximators such as artificial neural networks (Ueltzhöffer, 2018; Fountas et al., 2020).

Given that this is a novel research pursuit, it is unclear how efficient and accurate such

approximations may get. The extent to which approximations by the brain are biased may

relate to the observation made here that active inference only partially captured regression-

based transition effects in the two-step task. An alternate explanation for this imperfect

fit concerns the possibility for participants to use a different learning model to estimate

outcome probabilities, as the expected information gain depends on currently held beliefs.

This is, however, expected to only have marginal relevance due to the relative simplicity of

the task limiting the divergence between different learning strategies.

It is also possible that minimizing expected free energy is not the best available descrip-

tion of directed exploration in humans. In the current two-step task context, this quantity

may be thought of as including an information bonus to certain actions which makes them

more attractive in proportion to the amount of potential information they can provide.

Rather than the expected information gain, previous work has tested alternative bonuses to

promote directed exploration while obtaining reward. These include a fixed ’all-or-nothing’

bonus added to the least-explored option (Wilson et al., 2014), a bonus based on the vari-

ance of the current belief distribution (Daw et al., 2006; Frank et al., 2009), novelty (Krebs

et al., 2009), or a penalty scaling linearly with the amount of times an action has been
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visited (Dezza et al., 2017). The inconsistent results of this literature on whether action

selection is biased toward uncertainty (Wilson et al., 2021) could be argued to relate to the

use of such varied modeling approaches. However, the aforementioned information bonuses

are expected to function relatively similar in simple tasks and inconsistencies may rather be

due to the experimental context. After all, it appears that task instructions are important

for determining the extent to which behaviour is model-based on the two-step task, which

both directly (via model-derived information bonuses) and indirectly (via the amount of

dedicated cognitive effort (Kool et al., 2016)) could impact directed exploration strategies.

Further, not all of the exploration alternatives are formally derived from a framework, but

can appear as ad-hoc heuristics instead. Meanwhile, the currently explored ideas are, via

information theory, linked to the literature on active learning and curiosity and enable the

investigation of a potentially unifying view of surprise minimization.

The field of curiosity is concerned with the endogenous ’question-and-answer’ strategies

humans and other animals appear to employ to learn about the world (Gottlieb et al., 2013;

Gottlieb and Oudeyer, 2018). It suggests that incentives for information may be greatly

beneficial in confronting large, complex environments with sparse rewards; key characteris-

tics which reinforcement learning has grappled with since its conception (Sutton and Barto,

2018). In response, the field has explored intrinsic rewards to move beyond reward maxi-

mization, although these often take the form of handcrafted heuristics or inductive biases

(Mohamed and Jimenez Rezende, 2015; Pathak et al., 2017), similar to the ad-hoc informa-

tion bonuses described above. Meanwhile, curiosity natively emerges out of surprise mini-

mization as implemented in active inference agents, describing behaviour that can naturally

shift between exploration and exploitation. This has implications for environments without

explicit rewards, where active inference has been suggested to continue to learn and display

sensible behaviour (Friston et al., 2016; Sajid et al., 2021). Importantly, humans appear to

effortlessly move between contexts with and without rewards, with potential implications

for child development (Gopnik, 2012; Begus et al., 2016). Although active inference thus

offers a compelling account with a potential for theoretical unification, it is rather modern

RL which has achieved impressive performance in large state- or action-spaces such as in

robotics (Zhu et al., 2020; Hua et al., 2021) and games (Berner et al., 2019; Schrittwieser

et al., 2020). Moving forward, a symbiosis of the fields by combining engineering break-
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throughs made in (Bayesian) RL with design concepts from active inference may continue

to provide fertile ground for understanding action selection algorithms in the brain.

3.3 Role of surprise and uncertainty reduction across functional domains

In studies 1 and 2, analyses of EEG signals provided evidence for probabilistic inference

in a perceptual learning paradigm and for information-theoretic surprise signatures in neu-

ral data. A potential role for such quantities in human action selection was investigated

in study 3 using the active inference framework, with implications for a solution to the

exploration-exploitation dilemma via expected information gain. Generally, our findings

are situated within the theoretical proposition that surprise minimization is a core process

underlying brain function spanning perception, learning, and action. This perspective im-

plies both a widespread involvement of surprise computation across neural systems as well

as a sensitivity to surprise of future outcomes, for which we here discuss different strands

of available evidence. Regarding the role of surprise in learning, much of the reinforcement

learning research is relevant as critical features are shared. For example, learning using

delta-rules can approximate the mean of probability distributions, even for non-stationary

environments (Wilson et al., 2013; Gershman and Niv, 2015). Further, unsigned prediction

errors based on point-estimates tend to be highly correlated with predictive surprise (Sedley

et al., 2016). The literature on surprise and belief updating may take a fully probabilistic

approach or a traditional scalar-based reinforcement learning approach but in the absence

of careful experimentation, results are unlikely to allow for a dissociation between these

approaches.

Despite lacking theoretical specificity, the large body of literature using prediction errors

and delta-rule learning is nevertheless incredibly valuable for the current work as it has

broadly established the explanatory power of prediction and learning based on resulting

errors. Here we leverage this literature and combine it with work which takes a probabilistic

perspective insofar as the discussed mechanisms do not require either a probabilistic or

scalar-based approach. First, there is considerable evidence that surprise interacts with

memory systems (Sinclair and Barense, 2018; Rouhani and Niv, 2021), with surprise signals

correlating with activity in memory-related temporal areas (Loued-Khenissi and Preuschoff,

2020) and the hippocampus (Rouhani and Niv, 2021). The memory-enhancing effect of

surprise is suspected to be mediated by a different system than reward learning (Rouhani
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et al., 2018). It has been proposed that a contribution of surprise to memory proceeds by

structuring events into latent clusters, with high levels of surprise suggesting the need for

memory formation rather than modification due to the incompatibility of new information

with current beliefs (Gershman et al., 2017). This relationship appears related to the role

of surprise in allocating attention and orienting responses by way of determining what in

the environment is worth the opportunity cost of having resources deployed towards (Itti

and Baldi, 2009; Chennu et al., 2013). Further, surprise has been found to effect pupil size,

an effect which appears to be related to the arousal system and to be mediated by the locus

coeruleus (Preuschoff et al., 2011; Joshi and Gold, 2020). Pupil metrics have even been

shown to be informative of trial-by-trail learning (Nassar et al., 2012). These findings have

been synthesized in an information theoretic framework suggesting various pupil dynamics

to correspond to information processing (Zénon, 2019). These examples serve to indicate the

potential widespread applications of surprise to brain function, indicating it may contribute

to important systems beyond learning per se.

Nevertheless, research has mainly focused on the role of surprise in learning from out-

comes (Meyniel et al., 2016), states (Gläscher et al., 2010), and rewards (Daw et al., 2011).

It has been suggested for adaptation to result from surprise exerting a neuromodulatory

effect on plasticity (Gerstner et al., 2018; Barry and Gerstner, 2022), although the exact

implementation remains unverified. Beyond the previously described relationship between

surprise and belief updating, more sophisticated functions have been investigated. This

work builds on the well-documented phenomenon that not only surprise but also sensory

uncertainty is encoded neurally (Strange et al., 2005; Bestmann et al., 2008; Bach and

Dolan, 2012; McGuire et al., 2014; van Bergen and Jehee, 2019) and that this corresponds

to subjectively reported confidence (Geurts et al., 2022) and affects action selection (Best-

mann et al., 2008; van Bergen and Jehee, 2019). In more cognitive settings, error signals

have been shown to modulate learning in a context dependent manner. Similar to the

question of memory segmentation, certain incoming data requires a fundamentally different

response. During learning, highly surprising events may indicate a significant change in

the environment, thereby signalling a need to considerable alter beliefs. In contrast, a rare

outlier event uninformative of underlying dynamics should be ignored, as adaptation to it

would effectively be modeling noise or overfitting. Using such experimental conditions, Nas-

sar et al. (2019) described the EEG P300 as a surprise signal that predicted greater learning
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in the change-point condition and reduced learning in the outlier condition. This is in line

with modeling results suggesting that humans use surprise to perform outlier detection and

determine when not to learn (Liakoni et al., 2022), although this would require this char-

acteristic of the environment itself to be learned or taught. Similarly, it has recently been

shown that quantities based on predictive surprise as well as confidence-corrected surprise

can be used to efficiently infer to what degree beliefs should be updated in environments

with possible discrete changepoints (Faraji et al., 2018; Liakoni et al., 2021). This recent

work connects to the concepts of ambiguity and risk from decision-making literature (Ells-

berg, 1961). Ambiguity refers to uncertainty about the environment that is reducible by

collecting information, while risk is irreducible uncertainty. It has been shown for humans to

be sensitive to the reducibility of uncertainty in their BOLD response using fMRI (Huettel

et al., 2006) and behaviour, for example by investigating which surprising events partic-

ipants do or do not use to update beliefs (Kobayashi and Hsu, 2017). This implies not

only a representation of belief uncertainty, but even beliefs about uncertainty, which can

be described by using hierarchical probabilistic inference (e.g. Bach et al. (2011); Boundy-

Singer et al. (2022)). The apparent consideration of such higher-order concepts in human

behaviour indicates that scalar-based reinforcement learning accounts are likely insufficient

given the omnipresence of uncertainty.

The phenomenon that the functional role of surprise is mediated by uncertainty high-

lights that surprise itself is only part of the story. These examples indicate that uncertainty

can not only guide action selection by biasing behaviour for maximizing information, it can

also guide belief updating by considering factors in the current context such as expected

information and the reducibility of uncertainty. As discussed, if the brain is described to

minimize informational surprise, a consideration of uncertainty is assumed under active in-

ference, which is operationalized as entropy or expected information. Indeed, our findings

suggest a sensitivity of perceptual surprise and model-based behaviour to the entropy of be-

liefs. Interestingly, one way in which surprise and uncertainty appear intertwined are their

overlapping neural systems, together with reward processing. Despite midbrain dopaminer-

gic neurons initially becoming almost synonymous with signalling reward prediction errors

(Schultz, 1998), they have been shown in rodents to be required for value-neutral learning

(Sharpe et al., 2017) and to respond to sensory features (Takahashi et al., 2017). Likewise,

using fMRI in humans these neurons have been suggested to respond to the sensory identity
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of rewards and the content of sensory prediction errors (Howard and Kahnt, 2018; Stalnaker

et al., 2019). Strinkingly, midbrain dopamine neurons have even been shown to signal the

expectation of information (Bromberg-Martin and Hikosaka, 2009) and uncertainty (Fior-

illo et al., 2003). These observations have lead to the hypothesis that the dopamine system

might prescribe value to information itself (Bromberg-Martin et al., 2010; Bromberg-Martin

and Hikosaka, 2011; Kidd and Hayden, 2015), with important implications for exploration

and curiosity. This in turn may relate to findings which indicate surprise may be pleasur-

able in activities such as sports viewing (Antony et al., 2021) and listening to music, where

enjoyment depended on an interaction between predictive surprise and belief entropy (Che-

ung et al., 2019). In the active inference literature, the aforementioned dopamine findings

are thought to result because dopamine may encode precision or confidence about potential

actions (Friston et al., 2014). Specifically, using a biologically plausible variational update

scheme for approximate Bayesian inference (Friston et al., 2013), changes in precision can

be shown to correspond to changes in expected value (i.e. reward in traditional conditioning

paradigms). This means that observations which increase the value of an action also increase

precision. Dopaminergic findings on reward prediction error as well as information-based

processing may both result from precision updating instead (Friston et al., 2015).

Such an view on the centrality of information may, in a relatively natural manner,

be extended to other difficult questions in neuroscience. Zenon et al. (2019) consider the

costs of cognition in terms of the amount of information needed to update beliefs and

propose this quantity corresponds to subjective effort. The prior preferences under active

inference are expectations, which action serves to fulfill. While lower hierarchical levels aim

to conform to the environment, the highest levels encode long-term goals and motivations

with high precision selected for by evolution. This means that surprise minimization aims

to realize these states, lest our expectations are violated. Additionally, information theory

tells us that very precise distributions, such as the expectation to feel satiated, are very

costly to change. Given this prohibitive cost, a surprising state such as being hungry

is therefore suggested to be resolved by eating, rather than changing expectations. This

framework on information-based costs has also been shown to map well to the literature

on task switching and paradigms such as the Stroop task and random dot motion tasks

(Cooper et al., 2015; Zenon et al., 2019). In particular, the application of an information

perspective to reaction times has a long history, with reaction times depending linearly on
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the entropy of the response choice (Hick, 1952; Hyman, 1953). By dissociating predictive

surprise and Bayesian surprise, recent results suggest that these interact to increase reaction

times, indicating that not only belief updating (as suggested by Zenon and colleagues) but

also surprise may be important (Visalli et al., 2019, 2021). However, although participants

may be informed that certain observations are task-irrelevant (and thus should not be

used for belief updating), this does not guarantee lower perceptual levels which are not

task-sensitive to adhere to these instructions. A complete dissociation between surprise

and belief updating is therefore difficult to ensure and continues to constitute an issue,

especially for (lower-level) perceptual learning research. Nevertheless, the assumption of

an inferring brain, with a limited informational capacity and effort to be a function of

informational encoding, appears a suitable model for a variety of phenomena in line with a

bounded rationality process (Tishby et al., 2000).

3.4 Open questions, future directions, and conclusions

This thesis details the use of information theoretic surprise measures to prescribe probabilis-

tic inference to early perceptual signals and exploration behaviour under active inference.

However, various important questions remain unanswered. First, it is unclear how our

results on confidence-corrected surprise as a model for early somatosensory EEG signals

relates to previous work on confidence and surprise. As this quantity was only recently

introduced, not much comparable empirical work has yet been published (Faraji et al.,

2018). Although confidence and predictive surprise have been found to interact in sen-

sory cortex (Cheung et al., 2019), correlates are often investigated separately (Meyniel

and Dehaene, 2017; Meyniel, 2020) and it will be interesting to see further adoption of

confidence-corrected surprise. Meanwhile, our work would have benefited from similar con-

trasts between confidence and surprise to provide a better understanding of what is driving

the currently presented results and to facilitate their interpretation in light of the existing

literature. Further, while we find evidence for signals of prediction violation and belief up-

dating, we did not directly infer on the effect that confidence-corrected surprise signalling

might have exerted on subsequent updating. By including this mechanism explicitly in

a model, this relationship could be further clarified (please see Faraji et al. (2018) for a

simulation-based example). Alternatively, a somatosensory perceptual learning task with

behavioural prompts reading out beliefs might be used to explicitly measure trial-by-trial
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updating. However, this could significantly alter the studied system and instead probe the

P300 generating system as in similar (but not somatosensory) studies (Kolossa et al., 2015;

Kopp et al., 2016; Seer et al., 2016).

From a methodological standpoint, it bears mentioning that studies 1 and 2 include large

amounts of Bayesian model comparisons, without applying any corrections. Although these

analyses do not constitute statistical tests per se, it would be highly beneficial for future

method developments to account for high exceedance probabilities arising due to chance

from a high number of model comparisons. A lack of such methodological sophistication

ultimately limits the conclusively of our results. Further, these studies included simple tasks

to maintain the subjects’ attention on the stimulation, which required judgements about

the identity of stimuli. As such, it is possible that EEG signals of implicit learning are

contaminated by decision-making processes, although we aimed to limit this by focusing on

early dynamics up to 200ms post-stimulus.

While we attempt one of the first empirical validations of expected free energy mini-

mization in human behaviour by focusing on directed exploration, it remains unclear how

alternative action selection loss functions would compare. The comparison with the stan-

dard reinforcement learning model as used in the two-step task literature was considered

important and showed promise of active inference to capture additional behaviour, yet was

not contrasted with other directed exploration strategies. Marković et al. (2021) provide

important simulation-based evidence that active inference can outperform Bayesian rein-

forcement learning alternatives as a model for dynamical bandit tasks. Directly comparing

models is likely to be important going forward to understand whether certain behavioural

effects are uniquely explained by a model like active inference. However, as models be-

come more similar, precise experimental manipulations are necessary to ensure models are

recoverable. The two-step task is unlikely to meet these requirements.

Next, given that reinforcement learning models share key characteristics with proba-

bilistic models and direct comparisons are often lacking or not possible due to experimental

limitations, much evidence is available which is compatible with both approaches. For exam-

ple, there is considerable evidence showing the representation of uncertainty both neurally

(Strange et al., 2005; Bach et al., 2011; Vilares et al., 2012) and behaviourally (Heilbron and

Meyniel, 2019; Boundy-Singer et al., 2022; Geurts et al., 2022), yet behavioural evidence

uniquely in favour of Bayesian reinforcement learning or a free energy minimization approach
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is scarce. Future empirical research might consider including direct comparisons between

these frameworks and focus on important ways in which they differ. An example qualitative

comparison was recently performed in simulation, utilizing dynamic environments and the

omission of rewards to stress certain model characteristics, such as the ability to gener-

ate interesting behaviours despite flat prior preferences or no value function (Sajid et al.,

2021). Further, a dynamic process under active inference by which model-based behaviour

transitions into habitual control is something left unexplored in human behaviour. Habits

have been discussed to be obtained by becoming embedded in the prior beliefs over actions

through repeated execution (Friston et al., 2016) or as Bayesian model averaging over simple

and more complex models (FitzGerald et al., 2014).

Although care was taken to select similar data sets, remaining heterogeneity such as

considerable variation in sample sizes complicate a clear resolution of result discrepancies

between data sets. Finally, analyses were likely complicated by the task choice in two ways.

First, it has been shown that participants have little influence on the average obtained

reward by engaging in model-based control (Kool et al., 2016). This likely explains why

additional exploration behaviour did not yield more reward, which might have reduced

the incentive for information gathering strategies. Second, reward and information were

correlated as subjects only learned about the consequences of chosen actions. In so far as

subjects pursue reward, information tends to be higher for more rewarding actions as they

are sampled more often. Alternate paradigms to decouple reward and information may be

fruitful extensions.

Across all studies, our employed models are likely to be simplifications compared to neu-

ral algorithms, indicated by the uncertainty about how such models may be scaled beyond

small state and action spaces as commonly studied in neuroscience. In addition, many other

candidate model architectures are possible. This is important to consider as model com-

parison only allows for valid conclusions in regard to the included models, which represent

a fraction of total possibilities. However, the compared models capture key properties of

different learning and action strategies, thereby being highly useful in establishing relative

plausibility in a formal manner. Over time, hypothesis space may thus be explored and

illuminated.

To operate efficiently in a dynamic and ambiguous world, it is thought crucial to main-

tain a generative model which includes uncertainty of beliefs. Our studies suggest for sur-
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prise, indicating a mismatch between model and reality, and belief entropy, an informational

measure of uncertainty, to be encoded in neural signals during perceptual learning and that

these quantities may be used in action selection. By relying on information theory, defined

in probabilistic terms, and using Bayesian learning models, these results lend credence to

the idea that the brain maintains a probabilistic representation of sensory information in

the form of probability distributions. These beliefs may be used for prediction, with surprise

of current observations providing a key indicator for the need for model adjustment, in line

with early hypotheses of learning (Rescorla, 1972; Sutton and Barto, 2018). Through a

formalized treatment of probabilistic uncertainty, we report both a neural and behavioural

sensitivity to uncertainty. Regarding the former, this provides evidence for more sophis-

ticated belief-based models of perceptual learning over scalar-based accounts (Parr and

Friston, 2018). With respect to the latter, the reduction of distributional uncertainty might

form an epistemic incentive. This is in accordance with the interpretation that sensory in-

formation is valued as a function of its precision because imprecise information allows for a

lesser reduction in uncertainty (Parr and Friston, 2017). Such a consideration of the primacy

of information gathering (or uncertainty reduction) speaks to recent information-theoretic

and free energy frameworks elaborating on surprise and uncertainty research. Rather than

information- or novelty-based heuristics being added to schemes maximizing reward-based

utility, information gain itself might be assigned utility too. This implies that both ex-

ploration and exploitation are two facets of the same objective, as assumed under active

inference (Pezzulo and Friston, 2019).

We contribute first to the understanding of perceptual learning, particularly in the

understudied domain of somatosensation. We investigated multiple prominent surprise

functions as well as various key characteristics of the learning model in the same study. The

work thereby constitutes an important improvement over the existing literature by better

accounting for interactions between learning and readout functions. Further, we contribute

to the empirical investigation of active inference and the dynamics of its epistemic incentives

via a contrasting anaylsis with an RL approach. As a consequence, we additionally provide

insight into the shortcomings of a popular RL model in capturing human behaviour on the

influential two-step task. Altogether, our results are broadly in line with the hypothesis that

the brain aims to minimize surprise (or free energy as a proxy) about current observations

by adjusting model parameters and surprise of future outcomes by considering the expected
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surprise (i.e. entropy or uncertainty) of potential actions. Despite these important advances,

considerable progress is still required to understand the nature of probabilistic information

processing in the brain.
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its attentional modulation. Neuropsychologia 47 (11), 2272–2281.

Kullback, S. and R. A. Leibler (1951). On information and sufficiency. The annals of mathematical
statistics 22 (1), 79–86.

Laughlin, S. B. (2001). Energy as a constraint on the coding and processing of sensory information.
Current opinion in neurobiology 11 (4), 475–480.

Laughlin, S. B., R. R. de Ruyter van Steveninck, and J. C. Anderson (1998). The metabolic cost of
neural information. Nature neuroscience 1 (1), 36–41.

Lawrence, S. J., E. Formisano, L. Muckli, and F. P. de Lange (2019). Laminar fmri: Applications
for cognitive neuroscience. Neuroimage 197, 785–791.

Lee, D., H. Seo, and M. W. Jung (2012). Neural basis of reinforcement learning and decision making.
Annual review of neuroscience 35, 287.

Lee, T. S. and D. Mumford (2003). Hierarchical bayesian inference in the visual cortex. JOSA
A 20 (7), 1434–1448.

Liakoni, V., M. P. Lehmann, A. Modirshanechi, J. Brea, A. Lutti, W. Gerstner, and K. Preuschoff
(2022). Brain signals of a surprise-actor-critic model: Evidence for multiple learning modules in
human decision making. NeuroImage 246, 118780.

Liakoni, V., A. Modirshanechi, W. Gerstner, and J. Brea (2021). Learning in volatile environments
with the bayes factor surprise. Neural Computation 33 (2), 269–340.

Lieder, F., J. Daunizeau, M. I. Garrido, K. J. Friston, and K. E. Stephan (2013). Modelling trial-
by-trial changes in the mismatch negativity. PLoS computational biology 9 (2), e1002911.

Lieder, F., K. E. Stephan, J. Daunizeau, M. I. Garrido, and K. J. Friston (2013). A neurocomputa-
tional model of the mismatch negativity. PLoS computational biology 9 (11), e1003288.

Little, D. Y. and F. T. Sommer (2013). Learning and exploration in action-perception loops. Fron-
tiers in neural circuits 7, 37.
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Abstract

Tracking statistical regularities of the environment is important for shaping human behavior

and perception. Evidence suggests that the brain learns environmental dependencies using

Bayesian principles. However, much remains unknown about the employed algorithms, for

somesthesis in particular. Here, we describe the cortical dynamics of the somatosensory

learning system to investigate both the form of the generative model as well as its neural sur-

prise signatures. Specifically, we recorded EEG data from 40 participants subjected to a

somatosensory roving-stimulus paradigm and performed single-trial modeling across peri-

stimulus time in both sensor and source space. Our Bayesian model selection procedure

indicates that evoked potentials are best described by a non-hierarchical learning model

that tracks transitions between observations using leaky integration. From around 70ms

post-stimulus onset, secondary somatosensory cortices are found to represent confidence-

corrected surprise as a measure of model inadequacy. Indications of Bayesian surprise

encoding, reflecting model updating, are found in primary somatosensory cortex from

around 140ms. This dissociation is compatible with the idea that early surprise signals may

control subsequent model update rates. In sum, our findings support the hypothesis that

early somatosensory processing reflects Bayesian perceptual learning and contribute to an

understanding of its underlying mechanisms.

Author summary

Our environment features statistical regularities, such as a drop of rain predicting immi-

nent rainfall. Despite the importance for behavior and survival, much remains unknown

about how these dependencies are learned, particularly for somatosensation. As surprise

signalling about novel observations indicates a mismatch between one’s beliefs and the

world, it has been hypothesized that surprise computation plays an important role in per-

ceptual learning. By analyzing EEG data from human participants receiving sequences of

tactile stimulation, we compare different formulations of surprise and investigate the
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employed underlying learning model. Our results indicate that the brain estimates transi-

tions between observations. Furthermore, we identified different signatures of surprise

computation and thereby provide a dissociation of the neural correlates of belief inade-

quacy and belief updating. Specifically, early surprise responses from around 70ms were

found to signal the need for changes to the model, with encoding of its subsequent updat-

ing occurring from around 140ms. These results provide insights into how somatosensory

surprise signals may contribute to the learning of environmental statistics.

Introduction

The world is governed by statistical regularities, such that a single drop of rain on the skin

might predict further tactile sensations through imminent rainfall. The learning of such proba-

bilistic dependencies facilitates adaptive behaviour and ultimately survival. Building on ideas

tracing back to Helmholtz [1], it has been suggested that the brain employs an internal genera-

tive model of the environment which generates predictions of future sensory input. More

recent accounts of perception and perceptual learning, including predictive coding [2, 3] and

the free energy principle [4], propose that these models are continuously updated in light of

new sensory evidence using Bayesian inference. Under such a view, the generative model is

composed of a likelihood function of sensory input given external causes and a prior probabil-

ity distribution over causes [4, 5]. Perception is interpreted as the computation of a posterior

distribution over causes of sensory input and model parameters, while perceptual learning is

seen as the updating of the prior distribution based on the computed posterior [6]. Such a

description of Bayesian perceptual learning has been successfully used to explain aspects of

learning in the auditory [7, 8, 9], visual [10, 11, 12], as well as somatosensory domain [13].

To investigate the underlying neuronal dynamics of perceptual inference, predictions

formed by the brain can be probed by violating statistical regularities. Widely researched

neurobiological markers of regularity violation include EEG components such as the auditory

mismatch negativity (aMMN) and the P300 in response to deviant stimuli following regularity

inducing standard stimuli. As an alternative to the oddball paradigm typically used to elicit

such mismatch responses (MMR’s) [14], the roving-stimulus paradigm features stimulus

sequences that alternate between different trains of repeated identical stimuli [15]. Expecta-

tions are built up across a train of stimuli of variable length and are subsequently violated by

alternating to a different stimulus train. The paradigm thereby allows for the study of MMR’s

based on the sequence history and independently of the physical stimulus properties. Ana-

logues to the aMMN have also been reported for vision [16] and somatosensation (sMMN).

The sMMN was first reported by Kekoni et al. [17] and has since been shown in response to

deviant stimuli with different properties, including spatial location [18, 19, 20, 21, 22, 23, 24,

25, 26], vibrotactile frequency [17, 27, 28, 29], and stimulus duration [30, 31]. Increasing evi-

dence has been reported for an account of the MMN as a reflection of Bayesian perceptual

learning processes for the auditory [8, 32, 33], visual [12, 16], and to a lesser extent the somato-

sensory domain [13]. However, the precise mechanisms remain unknown, as it is unclear

whether the MMN reflects the signaling of the inadequacy of the current beliefs or their adjust-

ment, due to the lack of direct comparisons between these competing accounts.

In the context of probabilistic inference, the signalling of a mismatch between predicted

and observed sensory input may be formally described using computational quantities of sur-

prise [6, 34]. By adopting the vocabulary introduced by Faraji et al. [35] surprise can be

grouped into two classes: puzzlement and enlightenment surprise. Puzzlement surprise refers
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to the initial realization of a mismatch between the world and an internal model. Predictive

surprise (PS) captures this concept based on the measure of information as introduced by

Shannon [36]. Specifically, PS considers the belief about the probability of an event such that

the occurrence of a rare event (i.e. an event estimated to have low probability of occurrence) is

more informative and results in greater surprise. Confidence-corrected surprise (CS), as intro-

duced by Faraji et al. [35] extends the concept of puzzlement surprise by additionally consider-

ing belief commitment. It quantifies the idea that surprise elicited by events depends on both

the estimated probability of occurrence as well as the confidence in this estimate, with greater

confidence leading to higher surprise. For example, in order for the percept of a drop of rain

on the skin to be surprising, commitment to a belief about a clear sky may be necessary. The

concept of enlightenment surprise, on the other hand, directly relates to the size of the update

of the world model that may follow initial puzzlement. Bayesian surprise (BS) captures this

notion by quantifying the degree to which an observer adapts their internal generative model

in order to accommodate novel observations [37, 38].

Both predictive surprise [9] and Bayesian surprise [13] have been successfully applied to the

full time-window of peri-stimulus EEG data to model neural surprise signals. However, the

majority of studies have focused on P300 amplitudes, with applications of both predictive sur-

prise [39, 40, 41, 42] and Bayesian surprise [40, 43, 44]. Earlier EEG signals have received less

attention, although the MMN was reported to reflect PS [42]. Furthermore, due to the close

relationship between model updating and prediction violation, only few studies have

attempted to dissociate their signals. Although the use of different surprise functions in princi-

ple allows for a direct comparison of the computations potentially underlying EEG mismatch

responses, such studies remain scarce. Previous research either focused on their spatial identi-

fication using fMRI [11, 45, 46, 47] or temporally specific, late EEG components [40]. Finally,

to the best of our knowledge, only one recent pre-print study compared all three prominent

surprise functions in a reanalysis of existing data, reporting PS to be better decoded across the

entire post stimulus time-window [48].

Despite the successful account of perceptual learning using Bayesian approaches, the frame-

work is broad and much remains unclear about the nature of MMR’s, their description as sur-

prise signals, and the underlying generative models that give rise to them. This is especially the

case for the somatosensory modality, though evidence has been reported for the encoding of

Bayesian surprise using the roving paradigm [13]. The current study expands on this work by

recording EEG responses to a roving paradigm formulated as a generative model with discrete

hidden states. We explore different mismatch responses, including the somatosensory ana-

logue to the MMN, independent of the physical properties of stimuli. Using single-trial model-

ing, we systematically investigate the structure of the generative model employed by the brain.

Having established the most likely probabilistic model, we provide a spatiotemporal descrip-

tion of its different surprise signatures in electrode and source space. As direct comparisons

are scarce, we thus contribute by dissecting the dynamics of multiple aspects of Bayesian com-

putation utilized for somatosensory learning across peri-stimulus time by incorporating them

into one hierarchical analysis.

Materials and methods

Ethics statement

The study was approved by the local ethics committee of the Freie Universität Berlin (internal

reference number: 51/2013) and written informed consent was obtained from all subjects

prior to the experiment.
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Experimental design

Participants. 44 healthy volunteers (18-38 years old, mean age: 26, 28 females, all right-

handed) participated for monetary compensation of 10 Euro per hour or an equivalent in

course credit.

Experimental procedure. In order to study somatosensory mismatch responses and

model them as single-trial surprise signals, we used a roving-stimulus paradigm [15]. Stimuli

were applied in consecutive trains of alternating stimuli based on a probabilistic model (see

below) with an inter-stimulus interval of 750ms (see Fig 1). Trains of stimuli consisted of two

possible stimulation intensities. The first and last stimulus in a train were labeled as a deviant

and standard, respectively. Thus, as opposed to a classic oddball design, the roving paradigm

allows for both stimulus types to function as a standard or deviant.

Adhesive electrodes (GVB-geliMED GmbH, Bad Segeberg, Germany) were attached to the

wrist through which the electrical stimuli with a 0.2ms duration were administered. In order

to account for interpersonal differences in sensory thresholds, the two intensity levels were

determined on a subject basis. The low intensity level (mean 5.05mA ± 1.88) was set in proxim-

ity to the detection threshold yet so that stimuli were clearly perceivable. The high intensity

level (mean 7.16mA ± 1.73) was determined for each subject to be easily distinguishable from

the low intensity level, yet remaining non-painful and below the motor threshold. The catch

stimulus (described below) featured a threefold repetition of the 0.2ms stimulus at an interval

of 50ms and was presented at either the low or high intensity level with equal probability.

Following familiarization with the electrical stimulation, 800 stimuli were administered in

each of 5 experimental runs à 10 minutes. To ensure the subjects maintained attention on the

electrical stimulation, they were instructed to count the number of catch trials (targets). In

order to make the task non-trivial, the probability of the occurrence of a catch stimulus was set

to either 0.01, 0.015, 0.02, 0.025, or 0.03, corresponding to a range of 3-32 trials per run. A sub-

ject received a stimulus sequence corresponding to each catch trial probability only once, with

the order randomized between subjects. Following an experimental run, subjects indicated

their counted number of catch trials and received feedback in the form of the correct amount.

EEG data collection and preprocessing. Data were collected using a 64-channel active

electrode system (ActiveTwo, BioSemi, Amsterdam, Netherlands) at a sampling rate of

2048Hz, with head electrodes placed in accordance to the extended 10-20 system. Individual

electrode positions were digitalized and recorded using an electrode positioning system (zebris

Medical GmbH, Isny, Germany) with respect to three fiducial markers placed on the subject’s

face; left and right preauricular points and the nasion. This approach aided subsequent source

reconstruction analyses.

Preprocessing was performed using SPM12 (Wellcome Trust Centre for Neuroimaging,

Institute for Neurology, University College London, London, UK) and in-house scripts. First,

the data were referenced against the average reference, high-pass filtered (0.01Hz), and down-

sampled to 512Hz. Consequently, eye-blinks were corrected using a topological confound

approach [49] and epoched using a peri-stimulus time interval of -100 to 600ms. All trials were

then visually inspected and removed in case any significant artefacts were deemed to be pres-

ent. The EEG data of four subjects were found to contain excessive noise due to hardware

issues, resulting in their omission from further analyses and leaving 40 subjects. Finally, a low-

pass filter was applied (45Hz). Grand mean somatosensory evoked potentials (SEPs) were cal-

culated for deviant stimuli (‘deviants’) and for the standard stimuli directly preceding a deviant

to balance the number of trials (‘standards’). The preproccesed EEG data was baseline cor-

rected with respect to the pre-stimulus interval of -100 to -5 ms. For the GLM analyses, each

trial of the electrode data was subsequently linearly interpolated into a 32x32 plane for each
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Fig 1. Experimental design and stimulus generation. A) Presentation of experimental stimuli using a roving-stimulus paradigm. Stimuli with two different

intensities are presented. Their role as standard or deviant depends on their respective position within the presentation sequence. B) Graphical model of data-

generating process. Upper row depicts the evolution of states st over time according to a Markov chain. The states emit observations ot (lower row), which themselves

feature second order dependencies on the observation level. C) Average proportion of resulting stimuli train lengths. Higher proportion of shorter trains for the fast

switching regime (R2; red) and more distributed proportion across higher train lengths for the slow switching regime (R1; blue).

https://doi.org/10.1371/journal.pcbi.1008068.g001
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timepoint, resulting in a 32x32x308 image per trial. To allow for the use of random field theory

to control for family-wise errors, the images were smoothed with a 12 by 12 mm full-width

half-maximum (FWHM) Gaussian kernel. Catch trials were omitted for both the ERP and sin-

gle-trial analyses.

Generation of stimuli sequences

A property of generative models that is highly relevant for learning in dynamic environments

is the manner by which they may adapt their estimated statistics in the face of environmental

changes. By incorporating occasional switches between sets of sequence statistics, we aimed to

compare generative models that embody different mechanisms of adapting to such change-

points. Specifically, the sequential presentation of the stimuli originated from a partially

observable probabilistic model for which the hidden state evolved according to a Markov

chain (Fig 1) with 3 states s. The state transition (p(st|st−1)) and emission probabilities p(ot|ot−1,

ot−2, st) of the observations o are listed in Table 1. One of the states was observable as it was

guaranteed to emit a catch trial, while the other two states were latent, resembling fast and

slow switching regimes. As the latter was specified with higher transition probabilities associ-

ated with repeating observations (p(0|00) and p(0|01)) it thus produced longer stimulus

trains on average. For every run, the sequence was initialized by starting either in the slow or

fast switching regime with equal probability (p(s1) = {0.5, 0.5, 0}, with catch probability

being 0) and likewise producing a high or low stimulus with equal probability (p(o1|s1) =

{0.5, 0.5}).

Event-related potentials

To investigate the event-related response to the experimental conditions on the EEG data, the

statistical design was implemented with the general linear model using SPM12. On the first

level, the single-trial data of each participant was subject to a multiple regression approach

with several regressors each coding for a level of an experimental variable: stimulus type (levels:

standard and deviant), train length (levels: 2, 3, 4, 5, >6 stimuli) and a factor of experimental

block as nuisance regressors (levels: block 1-5). An additional GLM with a balanced number of

standard and deviant trials for the regimes (levels: fast and slow switching regime) showed no

effect of regime or interaction of regime and stimulus type. The restricted maximum likeli-

hood estimation implemented in SPM12 yielded β-parameter estimates for each model regres-

sor over (scalp-)space and time which were further analysed at the group level. The second

level consisted of a mass-univariate multiple regression analysis of the individual β scalp-time

images with a design matrix specifying regressors for stimulus type and regime as well as

parametric regressors for train length and block and an additional subject factor. The

Table 1. Data-generating process.

State transition matrix Sampling distribution

R1 R2 R3 p(ot|ot−1, ot−2, st)

R1 0:99 � 1

2
pðcÞ 0:01 � 1

2
pðcÞ p(c) p(0|00) = 0.65, p(0|01) = 0.85, p(0|10) = 0.15, p(0|11) = 0.35

R2 0:01 � 1

2
pðcÞ 0:99 � 1

2
pðcÞ p(c) p(0|00) = 0.3, p(0|01) = 0.75, p(0|10) = 0.25, p(0|11) = 0.7

R3 0:5 � 1

2
pðcÞ 0:5 � 1

2
pðcÞ p(c) p(2) = 1

Left: The state transition matrix. Right: Sampling distribution of the slow switching (R1), fast switching (R2), and

catch-trial regime (R3), emitting low intensity (ot = 0), high intensity (ot = 1), and catch stimuli (ot = 2, with p(c) = p
(ot = 2)). Complementary probabilities are omitted (e.g. p(1|00) = 1 − p(0|00)).

https://doi.org/10.1371/journal.pcbi.1008068.t001
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condition contrasts were then computed by weighted summation of the group level regressors’

β estimates. To control for multiple comparisons, the scalp-time images were corrected with

SPM’s random field theory-based family wise error correction (FWE) [50]. The significant

peaks of the GLM were further inspected by looking at their effect of train length and the cor-

responding β-parameter estimates of each train length were subjected to a linear fit for visuali-

zation purposes.

Distributed source localization

In order to establish the somatosensory system as the driving dipolar generator of the EEG sig-

nals prior to 200ms, we followed a two-stage source reconstruction analysis consisting of a dis-

tributed and an equivalent current dipole (ECD) approach. While we report and model later

EEG components in sensor-space, we refrained from source localizing these, as they most

likely originate from a more distributed network of multiple sources [51, 52]. Furthermore,

the somatosensory system has been shown to be involved in mismatch processing in the time

window prior to 200ms [18, 19, 23, 26, 30, 53].

The distributed source reconstruction algorithm as implemented in SPM12 was used to

determine the sources of the ERP’s on a subject level. Specifically, subject-specific forward

models were created using a 8196 vertex template cortical mesh which was co-registered with

the electrode positions using the three aforementioned fiducial markers. SPM12’s BEM EEG

head model was used to construct the forward model’s lead field. The multiple sparse priors

under group constraints were implemented for the subject-specific source estimates [54, 55].

These were subsequently analyzed at the group level using one-sample t-tests. The yielded sta-

tistical parametric maps were thresholded at the peak level with p< 0.05 after FWE correction.

The anatomical correspondence of the MNI coordinates of the cluster peaks were verified via

cytoarchitectonic references using the SPM Anatomy toolbox. Details of the distributed source

reconstruction can be reviewed in the results section.

Equivalent current dipole fitting & source projection

The results of the distributed source reconstruction were subsequently used to fit ECDs to the

grand average ERP data using the variational Bayes ECD fitting algorithm implemented in

SPM12. The MNI coordinates resulting from the distributed source reconstruction served as

informed location priors with variance of 10mm2 to optimize the location and orientation of

the dipoles for a time-window around the peak of each component of interest (shown in the

results section). For the primary somatosensory cortex (S1), two individual dipoles were fit to

the time windows of the N20 and P50 components, respectively, to differentiate two sources of

early somatosensory processing. Furthermore, a symmetrical dipolar source was fit to the peak

of the N140 component of the evoked response with an informed prior around the secondary

somatosensory cortex. Subsequently, the single trial EEG data of each subject was projected

with the ECD lead fields onto the 4 sources using SPM12, which enabled model selection anal-

yses in source-space.

Trial-by-trial modeling of sensor- and source-space EEG data

Sequential Bayesian learner models for categorical data. To compare Bayesian learners

in terms of their generative models and surprise signals, we specified various probabilistic

models which generate the regressors ultimately fitted to the EEG data. Capitalizing on the

occasional changes to the sequence statistics included in the experimental stimulus generating

model, we assess two approaches to latent state inference. Specifically, a conjugate Dirichlet-

Categorical (DC) model as well as a Hidden Markov Model (HMM) [56] were used for
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modeling categorical data. The DC model is non-hierarchical and does not feature any explicit

detection of the regime-switches. However, it is able to adapt its estimated statistics to account

for sequence change-points by favoring recent observations over those in the past, akin to a

progressive “forgetting” or leaky integration. The model assumes a real-valued, static hidden

state st that is shared across time for each observation emission.

In contrast, the HMM is a hierarchical model for which st is a discrete variable and assumed

to follow a first order Markov Chain, mimicking the data generation process. As such, it con-

tains additional assumptions about the task structure, which allows for flexible adaptation

following a regime-switch by performing inference over a set of discrete hidden states

K (st 2 {1, . . ., K}). The transition dynamics are given by the row-stochastic matrix A 2 RK�K

with aij� 0 and
PK

j¼1
aij ¼ 1:

pðstjst� 1Þ ¼ A, pðsjtjsit� 1
Þ ¼ aij for t ¼ 1; . . . ;T: ð1Þ

Within our two model classes, we differentiate between four probabilistic models. Here, the

aim is to investigate which sequence statistics are estimated by the generative model. In the

case of Stimulus Probability (SP) inference, the model does not capture any Markov depen-

dence: ot solely depends on st. Alternation Probability (AP) inference captures a limited form

of first-order Markov dependency, by estimating the probability of the event of altering obser-

vations dt given the hidden state st and the previous observation ot−1, where dt ¼ 1ot 6¼ot� 1
takes

on the value 1 if the current observation ot differs from ot−1. With Transition Probability (TP1)

inference, the model accounts for full first-order Markov dependence and estimates separate

alternation probabilities depending on ot−1 and st, i.e. p(ot|ot−1, st). Finally, TP1 inference may

be extended (TP2) to also depend on ot−2, and by estimating p(ot|st, ot−1, ot−2) it most closely

resembles the structure underlying the data generation.

Dirichlet-Categorical model. The Dirichlet-Categorical model is a simple Bayesian

observer that counts the observations of each unique type to determine its best guess of their

probability (Eq 5). Its exponential forgetting parameter implements a gradual discounting of

observations the further in the past they occurred (Eq 8). It is part of the Bayesian conjugate

pairs and models the likelihood of the observations using the Categorical distribution with {1,

. . .,M} different possible realizations per sample yt. Given the probability vector s = {s1, . . .,

sM} defined on theM − 1 dimensional simplex SM� 1 with si> 0 and
PM

j¼1
sj ¼ 1, the probabil-

ity mass function of an event is given by

pðyt ¼ jjs1; . . . ; sMÞ ¼ sj ð2Þ

Furthermore, the prior distribution over the hidden state s is given by the Dirichlet distribu-

tion which is parametrized by the probability vector α = {α1, . . ., αM}:

pðs1; . . . ; sMja1; . . . aMÞ ¼
Gð
PM

j¼1
ajÞ

QM
j¼1
GðajÞ

YM

j¼1

saj � 1

j : ð3Þ

Hence, we have a Dirichlet prior with s1, . . ., sM* Dir(α1, . . ., αM) and a Categorical likeli-

hood with y* Cat(s1, . . ., sM). Given a sequence of observations y1, . . ., yt the model then

combines the likelihood evidence with prior beliefs in order to refine posterior estimates over

the latent variable space (derivations of enumerated formulas may be found in the
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supplementary material S1 Appendix):

pðs1; . . . ; sMjy1; . . . ; ytÞ / pðs1; . . . ; sMja1; . . . ; aMÞ
Yt

i¼1

pðyijs1; . . . ; sMÞ

¼
YM

j¼1

s
aj � 1þ

Pt

i¼1
1fyi¼jg

j

ð4Þ

Since the Dirichlet prior and Categorical likelihood pair follow the concept of conjugacy, given

an initial a0 ¼ fa0
1
; . . . ; a0

Mg (set as a hyperparameter) the filtering distribution can be com-

puted:

pðstjy1; . . . ; ytÞ ¼ pðs1; . . . ; sMjy1; . . . ; ytÞ ¼ DirðatÞ with atj ¼ a
0
j þ

Xt

i¼1

1fyi ¼ jg: ð5Þ

Likewise, one can easily obtain the posterior predictive distribution (needed to compute the

predictive surprise readout) by integrating over the space of latent states:

pðyt ¼ xjy1; . . . ; yt� 1Þ ¼

Z

pðyt ¼ xjs1; . . . ; sMÞpðs1; . . . ; sMjy1; . . . ; yt� 1ÞdSM

¼
atx

PM
j¼1
atj

ð6Þ

We can evaluate the likelihood of a specific sequence of events which can be used to iteratively

compute the posterior:

pðy1; . . . ; ytÞ ¼ pðy1Þ
Yt

i¼2

pðyijy1:iÞ ¼
1

M

Yt

i¼2

YM

j¼1

aij
PM

k¼1
aik

ð7Þ

For the evaluation of the posterior distributions, we differentiate between three inference types

which track different statistics of the incoming sequence as described above (for a graphical

model see Fig 2):

1. The stimulus probability (SP) model: yt = ot for t = 1, . . ., T

2. The alternation probability (AP) model: yt = dt for t = 2, . . ., T

3. The transition probability model (TP1 & TP2): yt = ot for t = 1, . . ., T with a set of hidden

parameters sðiÞ1 for each transition from ot−1 = i and sðjÞ2 for each transition from ot−2 = j
respectively

Despite a static latent state representation, the DC model may account for hidden dynamics

by incorporating an exponential memory-decay parameter τ 2 [0, 1] which discounts observa-

tions the further in the past they occurred. Functioning as an exponential forgetting mecha-

nism, it allows for the specification of different timescales of observation integration.

pðstjy1; . . . ; ytÞ ¼ pðs1; . . . ; sMjy1; . . . ; ytÞ ¼ DirðatÞ

with atj ¼ a
0
j þ

Xt

i¼1

e� tðt� iÞ1fyi ¼ jg:
ð8Þ

Hidden Markov model. While the Dirichlet-Categorical model provides a simple yet

expressive conjugate Bayesian model for which analytical posterior expressions exist, it is lim-

ited in the functionality of the latent state s due to its interpretation as the discrete distribution
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over categories. Hidden Markov Models (HMMs), on the other hand, are able to capture the

dynamics of the hidden state with the transition probabilities of a Markov Chain (MC). Given

the hidden state at time t, the categorical observation ot is sampled according to the stochastic

matrix B 2 RM�K , containing the emission probabilities, p(ot|st). The evolution of the discrete

hidden state according to a MC, p(st|st−1), is described by the stochastic matrix A 2 RK�K . The

initial hidden state p(s1) is sampled according to the distribution vector p 2 RK . A, B are both

row stochastic, hence Aij, Bij� 0,
PK

j¼1
Aij ¼ 1 and

PM
j¼1
Bij ¼ 1. The graphical model

described by the HMM setup is thereby specified as depicted in Fig 3.

Fig 2. Dirichlet-Categorical model as a graphical model. Left: The stimulus probability model which tracks the hidden state vector determining the sampling process

of the raw observations. Middle: The alternation probability model which infers the hidden state distribution based on alternations of the observations. Right: The

transition probability model which assumes a different data-generating process based on the previous observations. Hence, it infersM sets of probability vectors αi.

https://doi.org/10.1371/journal.pcbi.1008068.g002

Fig 3. Hidden Markov model as a graphical model. Upper row depicts the evolution of states st according to the transition matrix Aðst Þ. The states emit

observational data (dotted rectangle) according to the probabilities specified in stochastic matrix Bðst Þ which depends on the type of inference. The stimulus

probability model infers the emission probabilities associated with the raw observations ot. The alternation probability model tracks the alternations of

observations with dt ¼ 1ot 6¼ot� 1
. The transition probability model assumes a data-generating process based on previous observations, with et coding for the

transitions between observations.

https://doi.org/10.1371/journal.pcbi.1008068.g003

PLOS COMPUTATIONAL BIOLOGY Surprise in somesthesis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008068 February 2, 2021 10 / 36

https://doi.org/10.1371/journal.pcbi.1008068.g002
https://doi.org/10.1371/journal.pcbi.1008068.g003
https://doi.org/10.1371/journal.pcbi.1008068


Classically, the parameters of this latent variable are inferred using the Expectation-Maxi-

misation (EM) algorithm. Therefore, and in order to derive the factorisation of the joint likeli-

hood p(o1:t, s1:t), the backward and forward probabilities are used in conjunction with the

Baum-Welch algorithm in order to perform the inference procedure (see S1 Appendix).

HMM Implementation. The aim of the HMM was to approximate the data generation

process more closely by using a model capable of learning the regimes over time and perform-

ing latent state inference at each timestep. To this end, prior knowledge was used in its specifi-

cation by fixing the state transition matrix close to its true values (p(st = st−1) = 0.99). The rare

catch trials were removed from the data prior to fitting the HMM and thus their accompa-

nying third regime was omitted, resulting in a two-state HMM. Given that an HMM estimates

emission probabilities of the form p(ot|st) and thus does not capture any additional explicit

dependency on previous observations, the input vector of observations was transformed prior

to fitting the models. For AP and TP inference this equated to re-coding the observation ot to

reflect the specific event that occurred. Specifically, for the AP model the input sequence was

dt ¼ 1ot 6¼ot� 1
, while for TP1 and TP2 a vector of events was used corresponding to the four pos-

sible transitions from ot−1 or eight transitions from ot−2 respectively. Thus, the HMM estimates

two sets (reflecting the two latent states) of emission probabilities which correspond to these

events (yt). Despite this deviation of the fitted models from the underlying data generation

process, the AP and TP models reliably captured R1 and R2 to their capability, with TP2 retriev-

ing the true, but unknown underlying emission probabilities (see S1 Fig). As expected, SP

inference was agnostic to the regimes, while AP and TP inference allowed for the tracking of

the latent state over time (S1 Fig). An example of the filtering posterior may be found in Fig 4.

Surprise readouts. For each of the probabilistic models described above, three different

surprise functions were implemented, forming the predictors for the EEG data: predictive sur-

prise PS(yt), Bayesian surprise BS(yt), and confidence-corrected surprise CS(yt). These may be

Fig 4. Posterior probabilities of the HMM. Comparison of the filtering posterior ĝ tðstÞ ¼ pðstjo1; . . . ; otÞ of the

different HMM inference models for an example sequence. The true, but unknown regimes of the data generation

process are plotted in red. Note that, as the regimes were balanced in terms of stimulus probabilities, SP inference is

not able to capture the underlying regimes and instead attempts to dissociate two states based on empirical differences

in observed stimulus probabilities.

https://doi.org/10.1371/journal.pcbi.1008068.g004
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interpreted as read-out functions of the generative model, signalling a mismatch between the

world and the internal model.

The predictive surprise is defined as the negative logarithm of the posterior predictive dis-

tribution p(yt|st):

PSðytÞ≔ � ln pðytjstÞ ¼ � ln pðytjy1; . . . ; yt� 1Þ: ð9Þ

A posterior that assigns little probability to an event yt will cause high (unit-less) predictive

surprise and as such is a measure of puzzlement surprise. The Bayesian surprise, on the other

hand, quantifies enlightenment surprise and is defined as the Kullback-Leibler (KL) diver-

gence between the posterior pre- and post-update:

BSðytÞ≔ KLðpðst� 1jyt� 1; . . . y1Þkpðstjyt; . . . ; y1ÞÞ ð10Þ

Confidence-corrected surprise is an extended definition of puzzlement surprise which addi-

tionally considers the commitment of the generative model as it is scaled by the negative

entropy of the prior distribution. It is defined as the KL divergence between the informed

prior and posterior distribution of a naive observer, corresponding to an agent with a flat prior

p̂ðstÞ (i.e. all outcomes are equally likely) which observed yt:

CSðytÞ≔ KLðpðstÞkp̂ðstjytÞÞ; ð11Þ

For the DC model, the flat prior p̂ðstÞ can be written as Dir(α1, . . ., αm) with αm = 1 form = 1,

. . .,M. The naive observer posterior p̂ðstjytÞ simply updates the flat prior based on only the

most recent observation yt. Hence, we have p̂ðstjytÞ ¼ Dirða01; . . . ; a0mÞ with âm ¼ 1þ 1yt¼m. A

detailed account of the readout definitions can be found in S1 Appendix.

For the HMM, the surprise readouts are obtained by iteratively computing the posterior

distribution via the Baum-Welch algorithm using the hmmlearn Python package [57]. For

timestep t this entails fitting the HMM for a stimulus sequence o1, . . ., ot which gives a set of

parameter estimates, p̂t; Ât; B̂t and the filtering posterior ĝtðstÞ ¼ pðstjo1; . . . ; otÞ. Predictive,

Bayesian, and confidence-corrected surprise may then be expressed as follows (see S1 Appen-

dix).

PSðotþ1Þ � � ln ðB̂Tt Â
T
t ĝtðstÞÞ ð12Þ

BSðotþ1Þ �
XK

k

ĝtðst ¼ kÞ ln
ĝtðst ¼ kÞ

ĝtþ1ðstþ1 ¼ kÞ
ð13Þ

Following Faraji et al. [35], confidence-corrected surprise may be expressed as a linear com-

bination of predictive surprise, Bayesian surprise, a model commitment term (negative

entropy) C(p(st)), and a data-dependent constant scaling the state space O(t). Here we make

use of this alternative expression of CS in order to facilitate the HMM implementation:

CSðotÞ ¼ BSðotÞ þ PSðotÞ þ CðpðstÞÞ þ lnOðtÞ ð14Þ

Fig 5 shows the regressors for an example sequence of the HMM TP1 and DC TP1 models with

an observation half-life of 95. The PS regressors of both models show greater variability in the

slow switching regime as compared to the fast-switching regime, where repetitions are more

common (and consequently elicit less predictive surprise) while alterations are less common

(and thus elicit greater surprise). As such, the PS regressors differ between regimes as a func-

tion of the estimated transition probabilities. The speed at which models adapt to the changed

statistics depends on the forgetting parameter for the DC model while for the HMM it is
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dependent on the degree to which the regimes have been learned. BS is markedly distinct for

the two models due to the differently modeled hidden state. DC BS features many small

updates during the fast-switching regime, with more irregular, larger updates during the slow-

switching regime, while HMM BS expresses the degree to which an observation produces

changes in the latent state posterior. Finally, HMM CS is scaled by the confidence in the latent

state posterior, tending to greater surprise the more committed the model is to one particular

latent state, and lower surprise otherwise, such as at the end of the example sequence. Mean-

while, due to its static latent state, confidence for DC CS results only from commitment to

beliefs about the estimated transition probabilities between observations themselves, with rare

events causing drops in confidence. Taken together, the HMM regressors ultimately depend

on its posterior over latent states, and while this is absent for the DC, its regressors display dif-

ferences between the two regimes as a function of its integration timescale which in turn allows

it to accommodate its probability estimates to the currently active regime.

In an exploratory analysis, the trial-definitions of the GLM analysis of the individual elec-

trode-time point data were applied to the surprise readout regressors. This allowed for the der-

ivation of model-based predictions for the observed beta-weight dynamics of the ERP GLM.

First, we generated an additional 25000 sequences of 800 observations using the same genera-

tive model used for the subject-specific sequences. The averaged surprise readouts of these

simulated sequences yielded model-derived predictions, which allowed for a visual verification

of the presence of these predictions in the (200) experimental sequences. As each study subject

was exposed to 5 sequences, these sequences were grouped into sets of 5 (yielding 5000 simu-

lated subjects) to mirror the EEG analysis. Besides the HMM, we used the Dirichlet-Categori-

cal models with different values for the forgetting-parameter (‘no forgetting’, long, medium-

length and very short stimulus half-lives) (S2 Fig). To reduce the model-space, only TP1 mod-

els were used for this analysis.

Fig 5. Surprise readouts. A) Example sequence with ot in red, st in black with st = 0 for the slow-switching regime and

st = 1 for the fast switching regime, and the HMM filtering posterior ĝ tðstÞ in between. The rare catch-trials are not

plotted to facilitate a direct comparison between the HMM and DC models. B) The normalized probability estimates

of the HMM TP1 and DC TP1 model with an observation half-life of 95, displaying differences in estimates arising

from different adaptations to regime switches. C,E,G) The z-scored surprise readouts of the HMM TP1 models:

predictive surprise (PS), Bayesian surprise (BS), and confidence-corrected surprise (CS). D,F,H) The z-scored surprise

readouts of the DC TP1 models.

https://doi.org/10.1371/journal.pcbi.1008068.g005
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Model fitting via free-form variational inference algorithm. Each combination of

model class (DC and HMM), inference type (SP, AP, TP1, TP2), and surprise readout function

(PS, BS, CS) yields a stimulus sequence-specific regressor. The same models were used across

subjects and as such the regressors did not include any subject specific parameters. These

regressors, as well as those of a constant null-model, were fitted to the single-trial, event-related

electrode and source activation data. Using a free-form variational inference algorithm for

multiple linear regression [58, 59, 60], we obtained the model evidences allowing for Bayesian

model selection procedures [61], which accounts for the accuracy-complexity trade-off in a

formal and well-established manner [62]. In short, the single-subject, single peri-stimulus time

bin data y 2 Rn�1
for n 2 N trials was modeled in the following form:

pðy; b;lÞ ¼ pðyjb; lÞpðbÞpðlÞ ð15Þ

with b 2 Rp and λ> 0 denoting regression weights and observation noise precisions, respec-

tively. The parameter-conditional distribution of y, p(y|β, λ), is specified in terms of a multi-

variate Gaussian density with expectation parameter Xβ and spherical covariance matrix. The

design matrix X consisted of a constant offset (null-model: X 2 Rn�1) and an additional sur-

prise-model specific regressor in case of the non-null models (X 2 Rn�2
). Both a detailed

description of the algorithm and the test procedure performed on simulated data used to select

the prior parameters for the variational distributions of β and λ may be found in the supple-

mentary material S2 Appendix.

Bayesian model selection. Before modeling single subject, single peri-stimulus time bin

data (y) as described above, the single-trial regressors of all non-null models as well as the data

underwent z-score normalization to allow for the use of the same model estimation procedure

for both sensor and source data. For single subjects, data and regressors corresponding to the

five experimental runs were concatenated prior to fitting. To allow for the possibility that the

brain estimates statistics computed across multiple timescales of integration [9, 63, 64], the for-

getting-parameter τ of the DC model was optimized for each subject, model, and peri-stimulus

time-bin. To this end, DC model regressors were fitted for a logarithmically spaced vector of

101 τ-values on the interval of 0 to 1 and the value of τ that resulted in the highest model evi-

dence was chosen. To penalize the DC model for having one of its parameters optimized, the

degree to which τ optimization on average inflated model evidences was subtracted prior to

the BMS procedure. Specifically, the difference in model evidence between its average for all

parameter-values and the optimized value was computed and subsequently averaged across

post-stimulus timebins, sensors, and subjects. It should be noted that the applied procedure

constitutes a heuristic for the penalization of model complexity while no explicit parameter fit-

ting procedure was implemented within model estimation.

The furnished model evidences were subsequently used for a random-effects analysis as

implemented in SPM12 [61] to determine the models’ relative performance in explaining the

EEG data. In order to combat the phenomenon of model-dilution [65], a hierarchical

approach to family model comparison was applied (for a graphical overview see S3 Fig). This

amounts to a step-wise procedure that leads to data-reduction at subsequent levels. Note that

this procedure is performed for each peri-stimulus time bin and electrode independently

(resulting in 22976 model comparisons per subject). In a first step, the two model classes DC

and HMM were compared against each other and the null-model in a family-wise BMS. A

threshold of exceedance probabilities φ> 0.99 in favour of either the DC or HMM was

applied, so that only whenever there was strong evidence in favour of one of the model classes

over both the alternative and the null-model the following analyses were applied. As the cur-

rent analyses are not statistical tests per se, the thresholding of the data by certain exceedance
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probabilities ultimately constituted an arbitrary choice to reduce data in order to visualize

(and draw conclusions on) effects with certain minimum probabilities within a large model

space. For timepoints with exceedance probabilities above this threshold, a family-wise com-

parison of TP1 and TP2 was performed in order to determine which order of transition proba-

bilities would be used for the second level. Subsequently, either the TP1 or TP2 models were

compared to the SP and AP models. Wherever φ> 0.95 for one of the inference type families,

the third analysis level was called upon. On this final level, surprise read-out functions were

compared for the winning model class and corresponding inference type. The direct compari-

son of read-out models within the winning family allows for the use of protected exceedance

probabilities (which are currently not available for family comparisons), which provide a

robust alternative to inflated exceedance probabilities [66]. The step-wise procedure allows for

spatio-temporal inference on particular read-out functions for which there is evidence for a

belonging model class and inference type, facilitating the interpretation of the results. The

hierarchical ordering thus moves from general to specific principles: the model class and infer-

ence type determine the probability estimates of the model, which are finally read out through

surprise computation. While this procedure provides a plausible and interpretable approach to

our model comparison, it should be noted that it constitutes an arbitrary choice in order to

reduce data and model space and must be interpreted with caution. As a supplementary analy-

sis, we performed non-hierarchical (factorial) family comparison analysis (S4 Fig) which

groups the entire model space into the respective families for each family comparison without

step-wise data reduction. The same procedure was used for the EEG sensor and source data.

To inspect the values of the forgetting-parameter τ that best fit the dipole data, subject spe-

cific free energy values were averaged across the timebins with surprise readout effects of inter-

est for the corresponding dipoles. These were summed across subjects to yield the group log

model evidence for each tested value of τ, which were subsequently compared against each

other.

Model recovery study. A simulation model recovery study was performed to investigate

the ability to recover the models given the sequence data, model fitting procedure, and model

comparison scheme. To this end, data was generated for n = 4000 (corresponding to the five

concatenated experimental runs) by sampling from a GLM y* N(Xβ, σ2 In), after which

model selection was performed. For the null-model, the design-matrix only comprised a col-

umn of ones. For all non-null models, an additional column of the z-normalized regressor was

added. We set the true, but unknown β2 parameter to 1, while varying σ2, which function as

the signal and noise of the data respectively. Given the z-scoring of the data, the β1 parameter

responsible for the offset is largely inconsequential and thus not further discussed. The model

fitting procedure was identical to the procedure described in the supplementary material used

for the EEG analyses (S2 Appendix).

For each noise level, we generated 40 data sets (corresponding to the number of subjects) to

apply our random-effects analyses. This process was repeated 100 times for each of the differ-

ent comparisons: null model vs DC model vs HMM (C1), DC TP1 vs TP2 (C2), DC SP vs AP

vs TP1 (C3), and DC TP1 PS vs BS vs CS (C4). Family and model retrieval using exceedance

probabilities worked well across all levels (S5 Fig), with a bias to the null model as signal-to-

noise decreases. By inspecting the posterior expected values of β2 and λ−1 which resulted from

fitting the model regressors to the EEG data, an estimate of the signal-to-noise ratio that is rep-

resentative of the experimental work can be obtained. By applying the thresholds of φ> 0.99,

φ> 0.95, φ> 0.95, and ~φ > 0:95 across the four comparisons respectively and subsequently

inspecting the winning families and models at σ2 = 750 (i.e., an SNR of 1/750), no false posi-

tives were observed. For C1 and C4, recovery was successful for all true, but unknown models

in all of the 100 instances. While for C2 and to a lesser extent C3, concerning the families of
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estimated sequence statistics, false negatives were observed only when confidence-corrected

surprise was used to generate data. For C2, this led to false negatives in 67 (TP1 CS) and 55

(TP2 CS) percent of cases, while for C3 28 (SP CS), 0 (AP CS), and 33 (TP1 CS) percent false

negatives were observed. Each set of 40 data sets was generated with the same true, but

unknown model. Due to the limited cognitive flexibility afforded by the distractor task, we did

not expect large variability in the models used across subjects. Nevertheless, if this assumption

is incorrect these simulations potentially overestimate the recoverability of the different

models.

Results

Behavioural results and event-related potentials

Participants showed consistent performance in counting the amount of catch trials during

each experimental run, indicating their ability to maintain their attention on the stimuli

(robust linear regression of presented with reported targets: slope = 0.96, p< 0.001, R2 = 0.93).

Upon questioning during the debriefing, no subjects reported explicit awareness of switching

regimes during the experiment.

An initial analysis was performed to confirm our paradigm elicited the typical somatosen-

sory responses. Fig 6B shows the average SEP waveforms for contralateral (C4, C6, CP4, CP6)

somatosensory electrodes with the expected evoked potentials, i.e. N20, P50, N140 and P300

resulting from stimulation of the left wrist. The corresponding topographic maps (Fig 6C) con-

firm the right lateralized voltage distribution of the somatosensory EEG components on the

scalp. The EEG responses to stimulus mismatch were identified by subtracting the deviant

from the standard trials (deviants-standards), thereby obtaining a difference wave for each

electrode (see Fig 6D). The scalp topography of the peak differences between standards and

deviants within predefined windows of interest indicates mismatch responses over somatosen-

sory electrodes (Fig 6E).

To test for statistical differences in the EEG signatures of mismatch processing we con-

trasted standard and deviant trials with the general linear model. Three main clusters reached

significance after performing family-wise error correction for multiple comparisons. The

topographies of resulting F-values are depicted in Fig 7. The earliest significant difference

between standard and deviant trials can be observed around 60ms post-stimulus (peak at

57ms, closest electrode CP4, pFWE = 0.002, F = 27.21, Z = 5.07), followed by a stronger effect of

the hypothesized N140 component around 120ms which will be referred to as the N140 mis-

match response (N140 MMR, peak at 119ms, closest electrode: FC4, pFWE = 0.001, F = 29.56,

Z = 5.29). A third time window of a very strong and elongated difference effect starting around

250ms to 400ms post-stimulus which corresponds to the hypothesized P300 MMR (peak at

361ms, closest electrode: Cz, pFWE < 0.001, F = 72.25).

The inspection of the β-parameter estimates at the reported GLM cluster peaks (illustrated

in Fig 7) indicates that stimulus train length, i.e. the number of standard stimuli that precede a

deviant stimulus, has differentiable effects on the size of EEG responses to standard and devi-

ant stimuli. Both the N140 and P300 MMR effects are found to be parametrically modulated

by train length as indicated by a significant linear relationship between β-estimates and train

length. Specifically, the N140 MMR effect is reciprocally modulated by stimulus type, such that

responses to standards are more positive for higher train lengths (F-statistic vs. constant

model: 5.45, p = 0.021) while deviant responses become more negative (F-statistic vs. constant

model: 5.07, p = 0.026). The parametric effect on the P300 MMR is entirely driven by the effect

on deviant stimuli (F-statistic vs. constant model: 20.7, p< 0.001), with no effect of train
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Fig 6. Event-related potentials. (A) Grand average SEP of all 64 electrodes. (B) Average SEP across electrodes C4, C6, CP4, CP6 (contralateral to stimulation). Grey

bars indicate time windows around the standard somatosensory ERP components (13-23ms; 35-55ms; 110-150ms; 270-310ms). (C) ERP scalp topographies

corresponding to the time windows in B. (D) Grand average ERP of the mismatch response obtained by subtraction of standard from deviant trials of 64 electrodes.

Grey bars indicate windows around peaks which were identified within pre-specified time windows of interest around somatosensory ERP or expected mismatch

response components (13-18ms; 45-65ms; 107-147ms; 207-247ms 269-319ms; 337-377ms). (E) ERP scalp topographies corresponding to the time windows in D).

https://doi.org/10.1371/journal.pcbi.1008068.g006

PLOS COMPUTATIONAL BIOLOGY Surprise in somesthesis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008068 February 2, 2021 17 / 36

https://doi.org/10.1371/journal.pcbi.1008068.g006
https://doi.org/10.1371/journal.pcbi.1008068


length on the response to standard stimuli (p> 0.05). For the early 60ms cluster no effect was

found on either standard or deviant stimuli.

Source reconstruction

The distributed source reconstruction resulted in significant clusters at the locations of pri-

mary and secondary somatosensory cortex (Fig 8A, with details specified in the corresponding

table). The resulting anatomical locations were subsequently used as priors to fit four equiva-

lent current dipoles (Fig 8B, with details specified in corresponding table). Two dipoles were

used to model S1 activity at time points around the N20 and the P50 components while an

additional symmetric pair captured bilateral S2 activity around the N140 component. The

moment posteriors of the S2 dipoles end up not strictly symmetric due to the soft symmetry

constraints used by the SPM procedure [67].

To establish the plausibility of the somatosensory dipole model the EEG data was projected

onto the four ECD’s and the grand average source ERP was computed across subjects for stan-

dard and deviant trials. The resulting waveforms, shown in Fig 9, show a neurobiologically

plausible spatiotemporal evolution: the two S1 dipoles reflect the early activity of the respective

N20 and P50 components while the S2 dipoles become subsequently active and show strongest

activity in right (i.e. contralateral) S2. The average response to standards and deviants within

time windows around the significant MMR’s in sensor space (around 57ms and 119ms; see

Fig 7) were compared with simple paired t-tests. The S1P50 dipole shows a significant differ-

ence at both time windows (at 57ms p = 0.006, t = 2.94; at 119ms p = 0.009, t = 2.75; bonferroni

corrected) and can be suspected to be the origin of the effect at 57ms as well as contribute to

Fig 7. Statistical parametric maps of mismatch responses. Top row: Topographical F maps resulting from contrasting standard and deviant conditions averaged

across the times of significant clusters: 57ms (A), 119ms (B) and 361ms (C). Bottom row: Corresponding beta parameter estimates of the significant peaks with

deviants in red and standards in blue. Asterisks indicate significant linear fits (p< 0.05). Head depiction on the bottom right shows the orientation of the

topographic maps.

https://doi.org/10.1371/journal.pcbi.1008068.g007
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the 119ms MMR while the right S2 dipole is mainly driving the strong 119ms effect (p = 0.001,

t = 3.44; bonferroni corrected).

Single trial modeling

We previously established the presence of mismatch responses in sensor space and confirmed

their origin in the somatosensory system by modeling the early EEG components in source

space. Subsequently, we investigated the temporal and spatial surprise signatures with trial-by-

trial modeling of electrode and source data.

Modeling in sensor space. For large time windows at almost all electrodes there is strong

evidence in favor of the DC model class (φ> 0.99), while the HMM model class does not

exceed thresholding anywhere, therefore excluding HMM models from further analyses

(Fig 10A). The corresponding threshold of expected posterior probabilities to arrive at compa-

rable results lies around hri> 0.75 (see S6 Fig). To verify that this result was not merely due to

an insufficient penalization of the DC models, the analysis was repeated with τ = 0. Thus,

Fig 8. EEG source model. (A) Statistical results of distributed source reconstruction. Red: 18-25ms, Green: 35-45ms, Blue: 110-160ms. Below: Table with

corresponding detailed data of the clusters. (B) Location and orientation of fitted equivalent current dipoles. Red: S1 (N20), Green: S1 (P50), Blue: bilateral S2. Below:

Table with their corresponding values.

https://doi.org/10.1371/journal.pcbi.1008068.g008
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under this setting, all instances of the DC model had perfect, global integration similar to the

HMM models. Likewise, no results above the threshold were found for the HMM model class

(S7 Fig). Next, to ensure that the superiority of the DC model did not solely result from the

additionally modeled catch trials, the HMM was compared with a DC model which did not

capture these trials. This DC model still consistently outperformed the HMM, though it should

be noted that the evidence for such a reduced DC model over the HMM is less pronounced

(S6B Fig). For the DC model, TP1 is found to outperform TP2 (φ> 0.95, roughly correspond-

ing to hri> 0.7), excluding TP2 for the second and third level analyses. In the following step,

TP1 clearly performed better than SP and AP at almost all electrodes and time points (see Fig

10B and 10C; φ> 0.95, roughly corresponding to hri> 0.7). Thus, the following section pres-

ents the random-effects Bayesian model selection results of the readout functions of the

Dirichlet-Categorical TP1 model (shown in Fig 10D).

Fig 9. Grand average waveforms of EEG dipole projections. Standards and deviants were contrasted within time windows of interest informed by the GLM in

the results section. �p< 0.05; ��p< 0.01; Bonferroni corrected.

https://doi.org/10.1371/journal.pcbi.1008068.g009
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Fig 10. Modeling results. Exceedance probabilities (φ) resulting from the random-effects family-wise model comparison. (A) Dirichlet-

Categorical (DC) model, Hidden Markov Model (HMM) and null model family comparison, thresholded at φ> 0.99 and applied for

data reduction at all further levels. (B) Family comparison within the winning DC family, thresholded at φ> 0.95: first and second order

transition probability models (TP1, TP2). (C) Family comparison within the winning DC family, thresholded at φ> 0.95: first order

transition probability (TP1), alternation probability (AP) and stimulus probability (SP) models and applied at the final level. (D)

Unthresholded protected exceedance probabilities (~φ) resulting from model comparison of surprise models within the winning DC TP1

family: Large discrete topographies show the electrode clusters of predictive surprise (PS) in red, Bayesian surprise (BS) in green and

confidence-corrected surprise (CS) in blue. White asterisks indicate ~φ > 0:95 of single electrodes. Small continuous topographies

display the converged variational expectation parametermβ. This parameter may be interpreted as a β weight in regression, indicating

the strength and directionality of the weight on the model regressor that maximizes the regressor’s fit to the EEG data (see S2 Appendix).

https://doi.org/10.1371/journal.pcbi.1008068.g010
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The scalp topographies depict the winning readout functions of the DC TP1 model at differ-

ent time windows. Given the difference in temporal dynamics of faster, early (<200 ms) and

slower, late (e.g. P300) EEG components, different time windows were applied for averaging.

Early clusters were identified by averaging protected exceedance probabilities over 10ms win-

dows and using a minimum cluster size of two electrodes, while 50ms time windows were

applied for averaging across later time windows with a minimum cluster size of four. The

resulting clusters indicate that from around 70ms on, early surprise effects represented by con-

fidence corrected surprise (CS) best explain the EEG data on contralateral and subsequently

ipsilateral electrodes up to around 200ms. As demarcated in the plot, the early CS clusters

include electrodes with ~φ > 0:95, which is indicative of a strong effect. A weaker cluster of

Bayesian surprise (BS) is apparent at centro-posterior electrodes between 140-200ms of which

the peak electrodes around 150ms show ~φ between 0.8 and 0.95. As such, the mid-latency BS

effect is less strong than the earlier CS clusters and can only provide indications. At the time

windows of the P300 around 300 and 350ms, similar centro-posterior electrodes represent

weak Bayesian surprise (peak ~φ around 0.75) and predictive surprise (PS) clusters (peak ~φ
around 0.72), respectively. The mid-latency BS cluster is temporally in accordance with the

putative N140 MMR while the late two clusters of BS and PS might be interpreted as indicative

of a P300 MMR. However, especially the weak late clusters do not provide clear evidence in

favour of a specific surprise readout function.

We note that the DC TP1 vs TP2 comparison in Fig 10B has few results prior to 200ms. This

appears to fit with the model recovery study indicating that the least recoverable families are

DC TP1 and TP2 in case of CS and the observation that CS is a winning surprise model for

early time bins. In response, we conducted an additional family comparison between SP, AP,

and TP encompassing both TP1 and TP2 (see S7 Fig). Clearly, more electrodes and time points

with φ> 0.95 can be observed in the early time window, suggesting that early effects are driven

by TP inference but that for empirical data, we are unable to convincingly resolve TP1 and TP2

for CS computation. Furthermore, it should be noted that our step-wise model comparison

approach constitutes a reasonable, yet arbitrary choice to create summary statistics of our data

set and a large model space. In an additional analysis, we performed a non-hierarchical model

comparison which grouped the entire model space in the respective families of interest without

step-wise data reduction. These results (S4 Fig) broadly replicate the findings from the hierar-

chical approach across the levels and likewise indicate that the order of transition probability

(TP1 and TP2) can not be resolved in early time windows.

Modeling in source space. The topographic distribution of the effects of confidence-cor-

rected surprise seem to indicate an early contribution of secondary somatosensory cortex from

around 70ms on that starts contra- and extends ipsilaterally while the weaker BS cluster

emerges around the time of the N140 MMR. In order to further investigate this observation

and examine the spatial origins of the surprise clusters, we fit our models to the single trial

dipole data and used the same hierarchical Bayesian model selection approach as for the sen-

sor-space analysis described in the Materials and Methods section. Results for the source activ-

ity were highly similar, with clear results in favour of the DC and TP1 model families at

thresholds of φ> 0.99 and φ> 0.95, respectively. Consequently, the surprise readout functions

of the DC TP1 model were subjected to BMS. The results depicted in Fig 11 support the inter-

pretation of an early onset of CS in secondary somatosensory cortex (~φ > 0:95) and allocate

the later onset BS cluster in electrode space to primary somatosensory cortex (~φ ranging from

around 0.7 to 0.9). However, as is also apparent in electrode space, this mid-latency BS effect is

weak and can only provide an indication.

Leaky integration. We inspected the τ-parameter values that resulted in the highest group

log model evidence for the reported dipole effects (Fig 11). All three considered clusters
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indicate a local timescale of integration, with the best-fitting parameter values resulting in a

stimulus half-life of * 105 and * 87 for the confidence-corrected surprise effects at 75-120ms

and 75-166ms respectively, and a half-life of * 26 observations for the Bayesian surprise effect

at 143-157ms. Using the single-subject peaks, τ was found to significantly differ from 0 (i.e., no

Fig 11. Modeling results in source space with best fitting forgetting-parameter values. Red: Predictive surprise (PS), Green: Bayesian surprise (BS), Blue:

Confidence-corrected surprise (CS) A) Colored areas depict protected exceedance probabilities (~φ) of the surprise readout functions of the Dirichlet-Categorical TP1

model within the dipoles S1P50, right S2 (RS2) and left S2 (LS2) using alpha blending. In grey shaded areas the DC model family shows φ< 0.99 or the TP1 model

family φ< 0.95. The S1N20 dipole was omitted in the visualization as no model is observed above this threshold. Magenta horizontal lines indicate ~φ ¼ 0:95. Line

plots above each dipole plot show the respective mean percent variance explained of the models in dotted rectangles ± standard error. B) The group log model evidence

(GLME) values corresponding to the stimulus half-lives for forgetting-parameter τ, after averaging the timebins inside the dotted-rectangles (S1P50: 145-191ms; RS2:

68-143ms; LS2: 76-168ms). The grey lines indicate a difference of 20 GLME from the peak, indicating very strong evidence in favour of the peak half-life value

compared to values below this threshold.

https://doi.org/10.1371/journal.pcbi.1008068.g011
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forgetting) for the BS effect in S1 (p< 0.001) and CS in RS2 (p< 0.05), but not in LS2

(p = 0.06). Paired t-tests revealed no significant difference in τ underlying the three effects

(p> 0.05).

Discussion

In this study, we used a roving paradigm to identify EEG mismatch responses independent of

stimulus identity. The early MMR effects were source localized to the somatosensory system

and the N140 and P300 MMR’s show differential linear dependence on stimulus train lengths

for standard and deviant stimuli. Using computational modelling, EEG signals were best

described using a non-hierarchical Bayesian learner performing transition probability infer-

ence. Furthermore, we provide evidence for an early representation of confidence-corrected

surprise localized to bilateral S2 and weak indications for subsequent Bayesian surprise encod-

ing in S1. These computations were shown to use a local, rather than global, timescale of

integration.

We report a significant somatosensory mismatch response around three distinct post-stim-

ulus time-points: 57ms, 119ms, and 361ms. These will be referred to as sMMR’s as opposed to

MMN since the effects at 57ms and 361ms are not negativities and our experimental protocol

included an explicit attentional focus on the stimulation. The MMN was originally defined to

be a pre-attentive effect and while attention to the stimulus does not seem to influence the

MMN in the visual domain [68], we don’t address a potential independence of attention here.

Nevertheless, the reported sMMR effects integrate well with previous findings on the somato-

sensory MMN (sMMN). Our 119ms effect is in line with the timing of the most commonly

reported sMMN as a modulation of the N140 component between 100-250ms [17, 21, 22, 23,

24, 25, 26, 27, 28, 29, 30, 31]. However, some studies additionally describe a modulation of

multiple somatosensory components [17 18, 19, 24], similar to our three distinct sMMR

effects. The electrode positions reported in sMMN studies show a large variability of fronto-

central and parietal electrodes. These discrepancies might be driven by the differences in stim-

ulation sites (different fingers and hand) and deviant definitions (vibrotactile frequencies,

stimulation site, stimulation duration). Here, we present significant effects around C4 and FC4

electrodes for the 57 and 119ms time-points, respectively, indicating EEG generators within

the contralateral somatosensory system. This implication is in line with intracranial EEG

recordings of the somatosensory cortex during oddball tasks [24, 30]. In accordance with pre-

vious MEG studies using source localization [21, 22], our source space analysis suggests the

early MMR effects to originate from contralateral primary and secondary somatosensory cor-

tex (cS1 and cS2, respectively), with the earliest MMR (at 57ms) localized to cS1 followed by a

combined response of S1 and S2. While evidence exists for a role of S2 in the early phase of

mismatch processing [26], the evolution from an initial MMR generated by S1 to an additional

involvement of S2 in the mid-latency MMR, as indicated by our findings, is consistent with

the sequential activation of the somatosensory hierarchy in general tactile stimulus processing

[69, 70, 71]. Finally, the third sMMR effect at 361ms is in accordance with a large body of evi-

dence showing a modulation of the P300 component by mismatch processing [72, 73, 74]. The

P300 in response to oddball tasks likely reflects a modality unspecific effect, dependent on

task-related resource allocation [75, 76, 77, 78, 79] and contingent on attentional engagement

[29].

In addition to three spatiotemporally distinct sMMR effects, we further show their differen-

tial modulation by the length of standard stimulus trains preceding the deviant stimulus. This

finding supports the interpretation that distinct mechanisms underlie the generation of the

different sMMR’s. The earliest effect around 57ms is not affected by train length, possibly
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reflecting a basic change detection mechanism that signals a deviation from previous input

regardless of statistical regularities. The mid-latency MMR around 119ms, on the other hand,

shows a significant linear dependence on stimulus train length for both deviant and standard

stimuli. Longer train lengths result in parametrically stronger negative responses to deviant sti-

muli while responses to standard stimuli are increasingly reduced. This effect is in accordance

with repetition suppression effects reported for the MMN [80, 81] which have been shown to

be dependent on sequence statistics and are interpreted to reflect perceptual learning [82, 83].

While it has been indicated that the number of preceding standards can also enhance the

sMMN [26], no previous studies show comparable effects to our parametric modulation of the

mid-latency sMMR. The reciprocal effect of repetition for standard and deviant stimuli shown

here indicate early perceptual learning mechanics in the somatosensory system, likely originat-

ing from S2 in interaction with S1. In contrast, later mismatch processing reflected by the

sMMR at 361ms only shows a linear dependence of deviant stimuli on train length, while the

response to standards remains constant. This is in line with the interpretation that perceptual

learning in the P300 reflects a recruitment of attention in response to environmental changes,

possibly accompanied by updates to this attentional-control system [41].

In addition to average-based ERP analyses, single-trial brain potentials in response to

sequential input can provide a unique window into the mechanisms underlying probabilistic

inference in the brain. Here, we investigated the learning of statistical regularities using differ-

ent Bayesian learner models with single-trial surprise regressors. Partitioning the model space

allowed us to infer on distinguishing features between the model families using Bayesian

model selection (BMS). The first comparison concerned the form of hidden state representa-

tion: In order for a learner to adequately adapt one’s beliefs in the face of changes to environ-

mental statistics, more recent observations may be favored over past ones without modeling

hidden state dynamics (Dirichlet-Categorical model; DC), or different sets of statistics may be

estimated for a discretized latent state (Hidden Markov Model; HMM). Our comparison of

these two learning approaches provides strong evidence for the DC model class over the

HMM for the large majority of electrodes and post-stimulus time. The superiority of the DC

model was found to be irrespective of the inclusion of leaky integration to the DC model, indi-

cating the advantage of a non-hierarchical model in explaining the EEG data. It is noteworthy

that part of the strength of the DC model depended on the modelling of the catch trial,

although a reduced DC model still outperformed the HMM. Participants were neither aware

of the existence of the hidden states in the data generation process, nor was their dissociation

or any tracking of sequence statistics required to perform the behavioural task. As such, the

early EEG signals studied here are likely to reflect a form of non-conscious, implicit learning

of environmental statistics [84, 85, 86]. However, it is possible that the brain implements dif-

ferent learning algorithms in different environments, resorting to more complex ones only

when the situation demands it. As the discrete hidden states produced relatively similar obser-

vation sequences, more noticeable transitions between hidden states may provide an environ-

ment with greater incentive to implement a more complex model to track these states, which

might have yielded different results. Indeed, humans seem to assume different generative

models in different contexts, possibly depending on task instructions [87]. This may in part

explain why evidence has been provided for the use of both hierarchical [88, 89] and non-hier-

archical models [90, 91]. Nevertheless, it has been suggested that the brain displays a sensitivity

to latent causes in low-level learning contexts [92], which might indicate the relevance of other

factors. For example, it is possible the currently tested HMM may be too constrained and a

simpler, more general changepoint-detection model [89] may have performed better. By omit-

ting instructions to learn the task-irrelevant statistics, our study potentially avoids the issue of

invoking a certain generative model. We might therefore report on a ‘default’ model of the
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brain used to non-consciously infer environmental statistics. The sort of computations (relat-

ing to surprise and belief updating) and learning models we consider might be viewed in light

of theories such as predictive coding and the free energy principle for which preliminary work

suggests implementational plausibility (e.g. [93]). The computation models tested in the cur-

rent study do not provide a biophysically plausible manner by which the brain acquires the

estimated transition probabilities and subsequent surprise quantities. Rather, the models serve

to identify qualities that a future successful biophysically plausible algorithm should exhibit.

In order to investigate which statistics are estimated by the brain during the learning of cat-

egorical sequential inputs, we compared three models within the DC model family that use dif-

ferent sequence properties to perform inference on future observations: stimulus probability

(SP), alternation probability (AP), and transition probability (TP) inference. The TP model

subsumes SP and AP models and is thus more general by maintaining a larger hypothesis

space. Our results show that the TP model family clearly outperformed the SP and AP families,

suggesting that the brain captures sequence dependencies by tracking transitions between

types of observations for future inference. We thereby provide further evidence for an imple-

mentation of a minimal transition probability model in the brain as recently concluded from

the analysis of several perceptual learning studies [94], extending it to include somesthesis.

Additionally, we expand upon previous studies by comparing a first order TP model (TP1),

capturing transitions between stimuli conditional only on the previous observation, with a sec-

ond order TP model (TP2), which tracks transitions conditional on the past two observations.

Our results suggest that the additional complexity of the second order dependencies contained

in our stimulus sequence were not captured by the brain, although we were not able to con-

vincingly show this for early CS computation. Nevertheless, the brain may resort to alternative,

more compressed representations [95].

The BMS analyses of the partitioned model space suggests that the brain’s processing of the

stimulus sequences is best described by a Bayesian learner with a static hidden state (akin to

the DC model) which estimates first-order transition probabilities (TP1). Within the DC-TP1

model family, we compared the surprise quantifications themselves as the readout functions

for the estimated statistics of the Bayesian learner: predictive surprise (PS), Bayesian surprise

(BS), and confidence-corrected surprise (CS). The results indicate that the first surprise effect

is represented by CS from around 70ms over contralateral somatosensory electrodes which

extends bilaterally and dissipates around 200ms. BS is found as a second, weaker centro-poste-

rior electrode cluster of surprise between 140-180ms. As proposed by Faraji et al. [35], CS is a

fast-computable measure of surprise in the sense that it may be computed before model updat-

ing occurs. In contrast, as BS describes the degree of belief updating, which requires the poste-

rior belief distribution, it is expected to be represented only during the update step or later. As

such, the temporal evolution of the observed CS and BS effects is in accordance with the

computational implications of these surprise measures. Specifically, our study provides sup-

port for the hypothesis that the representation of CS, as a measure of puzzlement surprise, pre-

cedes model updating and may serve to control update rates. While PS is also a fast-

computable puzzlement surprise measure and (similarly to CS) is scaled by the subjective

probability of an observation, CS additionally depends on the confidence of the learner, read

out as the (negative) entropy of the model. Evidence for a sensitivity to confidence of prior

knowledge in humans has been reported in a variety of tasks and modalities [96, 97, 98]. This

further speaks to the possibility that CS informs belief updating, as confidence has been sug-

gested to modulate belief updating for other modalities in the literature [99, 100] and is explic-

itly captured in terms of belief precision by other promising Bayesian models [101, 102, 103].

We suspect that, similarly, confidence concerns the influence of new observations on current

beliefs in somatosensation. However, as this was not explicitly modelled and investigated in
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the current work we were not able to test it directly. Furthermore, as the state transition proba-

bility between regimes was fixed in the current study, it is not well suited to address the effects

of the volatility of the environment on belief updating. Future work might focus on the inter-

play of environmental volatility and confidence in their effects on the integration of novel

observations. It is important to note that one may also be confident about novel sensory evi-

dence (e.g. due to low noise) which may result in larger model updates [104]. This aspect of

confidence, however, lies outside the scope of the current work.

Our source reconstruction analyses attributed the early CS effects to the bilateral S2 dipoles,

which is in accordance with the timing of S2 activation reported in the literature [69, 70, 71].

This finding suggests that the secondary somatosensory cortex may be involved in represent-

ing confidence about the internal model. The BS effect around 140ms was less pronounced in

source space only peaking at ~φ of 0.89 and was localized to S1. Despite the weak evidence for

this BS representation around a 140ms somatosensory MMR, its timing matches prior work

using modeling of Bayesian surprise signals in the somatosensory system [13]. Generally, our

findings are in accordance with previous accounts of perceptual learning in the somatosensory

system [105]. In sum, these results suggest that the secondary somatosensory cortex may repre-

sent confidence about the internal model and compute early surprise responses, potentially

controlling the rate of model updating. Signatures of such belief updating, were found around

the time of the N140 somatosensory response and were localized to S1. Together, these effects

might be interpreted as a possible interaction between S1 and S2 that could be responsible for

both a signaling of the inadequacy of the current beliefs and their subsequent updating.

In an attempt to relate the surprise readouts to the mismatch responses, we averaged sur-

prise regressors to obtain model-based predictions for the standard-deviant contrasts. First, all

TP1 models except HMM CS predict the existence of an MMR, i.e., a difference in the averaged

response between standard and deviant trials. Second, for multiple models an increase in train

length leads to reduced surprise to standards and increased surprise to deviants. The CS read-

out is scaled by PS and BS, as well as by belief commitment, which increases for standards and

decreases for deviants. This counteracting effect of belief commitment and the surprise terms

can lead to independence of CS and train length when responses are averaged, manifesting in

the current sequences only for standard trials. As the early MMR was found to be independent

of train length, this indicates a possibility for a potential relation between these results. The

intermediate MMR roughly temporally co-occurs with a simultaneous representation of BS

and CS in S1 and S2. The dependence of the mid-latency MMR on train-length for both stan-

dards and deviants and the encoding of belief inadequacy and updating quantities is suggestive

of convergent support in favor of a perceptual learning response which involves both somato-

sensory cortices. DC BS is however not the only model which predicts this dependence,

highlighting the reduced ability to distinguish between models by averaging trials. At the P300

MMR it was found that only the response to deviants is dependent on train length. The aver-

aged response of DC CS is most compatible with this ERP, however, this is unlikely to be mean-

ingful as the model was not found to fit the single-trial EEG data well around this time. It is

noteworthy that belief updating as described by DC BS, which is best describing the EEG data

around that time, does not accurately predict the ERP dynamics of the P300, which matches

the relative weakness of the BS effect in the single-trial EEG analysis. While a role of the P300

response in Bayesian updating has previously been reported [13, 40], the currently presented

P300 dynamics may better be captured by alternate accounts, such as a reflection of an updat-

ing process of the attention allocating mechanism as suggested by Kopp and Lange [106].

Our implementation of the Dirichlet-Categorical model incorporates a memory-decay

parameter τ that exponentially discounts observations in the past. The τ-values for the win-

ning models of our BMS analyses that best fit the data for the surprise effects of interest
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indicate relatively short integration windows for both CS and BS with stimulus half-lives of

approximately 95 and 26 observations, respectively. This suggests that, within our experimen-

tal setup, the brain uses local sequence information to infer upcoming observations rather

than global integration, for which all previous observations are considered. For a sub-optimal

inference model with a static hidden state representation, the incorporation of leaky observa-

tion integration on a more local scale can serve as an approximation to optimal inference

resorting to dynamic latent state representation and can thereby capture a belief about a

changing environment [94].

Given a very large timescale, BS converges to zero as the divergence between prior and pos-

terior distributions decreases over time, imposing an upper bound on the timescale. Mean-

while, for PS and CS it tends to lead to more accurate estimates of p(yt|st) as more observations

are considered. However, given the regime switches in our data generation process, a trade-off

exists where a timescale that is too large prevents flexible adaptation following such a switch.

In the current context, the timescales are local enough where the estimated statistics are able to

be adapted in response to regime switches (with a switch occurring every 100 stimuli on aver-

age). Especially CS shows a large range of τ-values producing similarly high model evidence

due to the high correlation between regressors. In sum, it is possible that the same timescale is

used for the computation of both the CS and BS signals, as the differences in optimal τ-values

between clusters were not found to be significant. This interpretation is most intuitively com-

patible with the hypothesis that the early surprise signals may control later belief updating sig-

nals. Although the uncertainty regarding the exact half-lives is in line with the large variability

found in the literature, local over global integration is consistently reported [9, 13, 39, 48, 94,

95]. Given a fixed inter-stimulus interval of 750ms, a horizon of 95 and 26 observations may

be equated to a half-life timescale of approximately 71 to 20 seconds, with regime switches

expected to occur every 75 seconds.

Some considerations of the current study deserve mention. First, the behavioural task

required participants to make a decision about the identity of the stimulus so as to identify tar-

get (catch) trials. Thus, one may wonder to what extent the results contain conscious decision

making signals, rather than implicit, non-conscious learning activity. However, decision mak-

ing-related signals are described to occur relatively late in the trial [107, 108] and we assume to

largely avoid them here by focusing on early signals prior to 200ms. Secondly, a large model

space of both hierarchical as well as non-hierarchical Bayesian learners exists. As such, it is

possible that the brain resorts to some hierarchical representation different from the ones

tested here. We chose to use an HMM as it closely resembled the underlying data structure,

offers the optimal solution for a discrete state environment, and contributes to the field as it

has seen only limited application for probabilistic perceptual learning. Furthermore, some lim-

itations might concern the stepwise model comparison intended to yield interpretable results

by allowing inference on the generative model giving rise to surprise signatures. A reduction

of both data and model space is not a standard procedure in Bayesian model comparison and

we stress that we do not provide a methodological validation of this approach. Nevertheless,

we argue that this scheme capitalizes on the hierarchical structure of the model space, provide

model recoverability simulations, and present similar results using a standard factorial family

comparison to support that the main conclusions are not dependent on the exact model com-

parison approach. The analyses performed here include a large number of independent Bayes-

ian model comparisons (as is not uncommon in neuroimaging), yet no corrections are

applied. While the resulting exceedance probabilities are reported here only above a given

threshold, these model comparisons do not constitute statistical tests per se, as they do not pro-

vide a mapping from the data to binary outcomes. It follows that the analyses do not suffer

from a classical multiple testing problem, which can be addressed using the control of multiple
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testing error rates (e.g. the control of the family-wise error rate for fMRI inference based on

random field theory). Nevertheless, it would be valuable for methodological advances to con-

sider the possibility of randomly occurring high exceedance probabilities given a large number

of independent model comparisons. A multilevel scheme which adjusts priors over models,

rather than the current ubiquitous use of flat priors, may be developed as a satisfactory

approach [109, 110, 111]. As the current method is agnostic to the large number of model

comparisons we need to stress that we only report preliminary evidence.

In conclusion, we show that signals of early somatosensory processing can be accounted for

by (surprise) signatures of Bayesian perceptual learning. The system appears to capture a chang-

ing environment using a static latent state model that integrates evidence on a local, rather than

global, timescale and estimates transition probabilities of observations using first order depen-

dencies. In turn, we provide evidence that the estimated statistics are used to compute a variety

of surprise signatures in response to new observations, including both puzzlement surprise

scaled by confidence (CS) in secondary somatosensory cortex and weak indications for enlight-

enment surprise (i.e. model updating; BS) in primary somatosensory cortex.

Supporting information

S1 Appendix. Bayesian learner models. In this supplementary text we provide the derivations

for the presented equations of the compared Bayesian learner models.

(PDF)

S2 Appendix. A free-form variational inference algorithm for general linear models with

spherical error covariance matrix. In this supplementary text we present the algorithm used

to approximate log model evidence for subsequent Bayesian model comparison.

(PDF)

S1 Fig. Estimated emission probabilities and latent regime inference of the hidden Markov

model. (A) The average emission probabilities of the stimulus probability (SP), alternation

probability (AP), and transition probability (TP) hidden Markov model (HMM) for both

states (s) at the final timestep of each sequence. For TP2, a comparison is provided of the emis-

sion probabilities used for data generation and the average, normalized emission probabilities

estimated by the HMM. Error bars represent the standard error of the mean. (B) Correlating

the true regimes and filtering posterior over time confirms that AP and TP inference allow for

the tracking of the fast and slow-switching regimes, while SP inference does not capture the

necessary dependencies due to the regimes being balanced in terms of stimulus probabilities.

(TIF)

S2 Fig. Model-derived predictions for standard and deviant stimuli. Averaged surprise

readouts using either the (left) 25000 total sequences or (right) 200 sequences administered to

the participants elicited for standard and deviant stimuli following a certain amount of repeat-

ing stimuli (train length). The model-derived predictions are relatively well-preserved in the

smaller data-set. Only first-order transition probability models are plotted. Error bars indicate

standard deviations. The used stimulus half-lives of 95 and 26 are representative of the winning

models in the single-trial EEG analysis. DC: Dirichlet-Categorical model; HMM: Hidden Mar-

kov Model; PS: Predictive surprise; BS: Bayesian surprise; CS: Confidence-corrected surprise;

No F: model without forgetting (i.e. perfect integration); HL: stimulus half-life.

(TIF)

S3 Fig. Schematic of the hierarchical approach to family-wise Bayesian model selection.

First level (depicted in the top row): The 12 DC models and the 12 HMM models were
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grouped into their corresponding model class family and compared via BMS against each

other and an offset Null-Model. Second level (lower row, left rectangle): Within the DC model

class, the two transition probability models TP1 and TP2 were grouped into families and the

winner of the BMS was used for the comparison against the other two inference type models

(Stimulus Probability (SP) and Alternation Probability (AP)). Third Level (lower row, middle

rectangle): The surprise readouts of the DC TP1 model were subjected to BMS and the result-

ing exceedance probabilities are reported in the main results. Thresholding of the model class

families and inference types was again applied at successive levels leading to data reduction.

(TIF)

S4 Fig. Non-hierarchical family-wise Bayesian model selection. Exceedance probabilities (φ)

resulting from the RFX family model comparison by investigating the full model space in each

comparison. A) Family comparison of the first order transition probability (TP1), second

order transition probability (TP2), alternation probability (AP; no above-threshold results with

φ> 0.95) and stimulus probability (SP) models; thresholded at φ> 0.95. B) Unthresholded

family comparison of surprise models. Large discrete topographies show the electrode clusters

of predictive surprise (PS) in red, Bayesian surprise (BS) in green and confidence-corrected

surprise (CS) in blue. White asterisks indicate φ> 0.95. Small continuous topographies display

the converged variational expectation parameter (mβ).
(TIF)

S5 Fig. Model recovery study. A model recovery study was performed using simulated data.

Subplots (A-D) show the average exceedance probabilities (shading represents standard devia-

tions) of 100 random-effects Bayesian model selection analyses under different signal-to-noise

ratios. This was performed for (A) Null Model vs DC Model vs HMM families, (B) DC TP1 vs

TP2 families, (C) DC SP vs AP vs TP1 families, and (D) DC TP1 PS, BS, and CS models. Note-

worthy is that the instances of reduced differentiability for (B) and (C) occurred only when the

true, but unknown model was confidence-corrected surprise. (E) An estimate of the signal-to-

noise of the experimental single-trial EEG analyses by inspecting the ratio of the expected pos-

terior estimates of the model fitting procedure for β2 and λ−1.

(TIF)

S6 Fig. Expected posterior probabilities of hierarchical Bayesian model-selection. Expected

posterior probabilities (hri) resulting from family model comparisons. A) Dirichlet-Categori-

cal (DC) model, Hidden Markov Model (HMM) and Null model family comparison, thre-

sholded at hri> 0.75. B) Family comparison within the winning DC family, thresholded at hri
> 0.7: first and second order transition probability models (TP1, TP2). C) Family comparison

within the winning DC family, thresholded at hri> 0.7: first order transition probability

(TP1), alternation probability (AP) and stimulus probability (SP) models.

(TIF)

S7 Fig. Additional random effects family-wise comparisons. (A) Comparison of the model

families: Null model, Dirichlet-Categorical model (DC) with tau = 0 (i.e. no forgetting and no

penalization) and Hidden Markov Model (HMM). (B) Comparison of the model families: Null

model, DC without modelling the catch trials and HMM. (C) Comparison of the model fami-

lies: Null model, DC with and DC without modelling the catch trials. (D) Comparison of the

model families within the DC model: Stimulus probability model (SP), alternation probability

model (AP) and transition probability model family (TP) subsuming first and second order

TP models in one family. Exceedance probabilities (φ) are plotted for all comparisons.

(TIF)
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Abstract 
The human brain is constantly subjected to a multi-modal stream of probabilistic 

sensory inputs. EEG signatures, such as the mismatch negativity (MMN) and the P3, 

can give valuable insight into neuronal probabilistic inference. Although reported for 

different modalities, mismatch responses have largely been studied in isolation, with 

a strong focus on the auditory MMN. To investigate the extent to which early and late 

mismatch responses across modalities represent comparable signatures of uni- and 

cross-modal probabilistic inference in the hierarchically structured cortex, we recorded 

EEG from 32 participants undergoing a novel tri-modal roving stimulus paradigm. The 

employed sequences consisted of high and low intensity stimuli in the auditory, 

somatosensory and visual modalities and were governed by uni-modal transition 

probabilities and cross-modal conditional dependencies. We found modality specific 

signatures of MMN (~100-200ms) in all three modalities, which were source localized 

to the respective sensory cortices and shared right lateralized pre-frontal sources. 

Additionally, we identified a cross-modal signature of mismatch processing in the P3a 

time range (~300-350ms), for which a common network with frontal dominance was 

found. Across modalities, the mismatch responses showed highly comparable 

parametric effects of stimulus train length, which were driven by standard and deviant 

response modulations in opposite directions. Strikingly, the P3a responses across 

modalities were increased for mispredicted compared to predicted and unpredictable 

stimuli, suggesting sensitivity to cross-modal predictive information. Finally, model 

comparisons indicated that the observed single trial dynamics were best captured by 

Bayesian learning models tracking uni-modal stimulus transitions as well as cross-

modal conditional dependencies. 
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Introduction 
Humans inhabit a highly structured environment governed by complex regularities. 

The brain is subjected to such environmental regularities by a multi-modal stream of 

sensory inputs ultimately constructing a perceptual representation of the world. The 

sensory system is thought to capitalize on statistical regularities to efficiently guide 

interaction with the world enabling anticipation and rapid detection of sensory changes 

(Gregory 1980; Bregman 1994; Friston 2005; Winkler 2009; Frost 2015; Dehaene 

2015).  

Neuronal responses to deviations from sensory regularities can be valuable 

windows into the brain’s processing of statistical properties of the environment and 

corresponding sensory predictions. The presentation of rare deviant sounds within a 

sequence of repeating standard sounds induces well known mismatch responses 

(MMRs) that can be recorded with electroencephalography (EEG), such as the 

mismatch negativity (MMN; Näätänen 1978; Näätänen 2007) and the P3 (or P300; 

Sutton 1965; Squires 1975; Polich 2007). The MMN is defined as a negative EEG 

component resulting from subtraction of standard from deviant trials between ~100-

200ms post-stimulus. Although the MMN has primarily been researched in the auditory 

modality, similar early mismatch components have been reported for other sensory 

modalities, including the visual (Pazo-Alvarez 2003; Kimura 2011; Stefanics 2014) 

and, to a lesser extent, the somatosensory modality (Kekoni 1997; Hu 2013; Andersen 

2019). The P3 is a later positive going component in response to novelty between 200-

600ms around central electrodes, which has been described for the auditory, 

somatosensory and visual modalities and is known for its modality independent 

characteristics (Escera 2000; Friedman 2001; Knight 1998; Schroeger 1996; Polich 

2007). 

Despite being one of the most well-studied EEG components, the neuronal 

generation of the MMN remains subject of ongoing debate (Näätänen 2005; May 2010; 

Garrido 2009b). Two prominent but opposing accounts cast the MMN as adaptation-

based or memory-based, respectively. Adaptation based accounts argue that the 

observed differences between standard and deviant responses primarily result from 

neuronal attenuation leading to stimulus specific adaptation (SSA; May 2004; 

Jääskiläinen 2004; May 1999). In animals, SSA has been shown to result in response 

patterns similar to the MMN (Ulanovsky 2003; 2004) and simulation work suggests 
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that different types of MMN-like responses can be reproduced by pure adaptation 

models (May 2010). However, it remains unclear if the full range of MMN 

characteristics can be explained by adaptation alone (Garrido 2009b; Fitzgerald 2020; 

Wacongne 2012). The memory-based view, on the other hand, suggests that the MMN 

is a marker of change detection based on sensory memory trace formation (Näätänen 

1990; 1992; 2005). The memory trace stores local information on stimulus regularity 

and compares it to incoming sensory inputs that may signal changes in the current 

sensory stream.  

While largely neglected by previous interpretations of the MMN, it is becoming 

increasingly clear that key empirical features of mismatch responses concern stimulus 

predictability rather than stimulus change per se. The MMN has been reported in 

response to abstract rule violations (Paavilainen 2013), unexpected stimulus 

repetitions (Alain 1999; Horvath 2004; Macdonald 2011) and unexpected stimulus 

omissions (Yabe 1997; Hughes 2001; Salisbury 2012 Wacongne 2011; Heilbron 

2018). Similar characteristics have been reported for P3 MMRs (Duncan 2009; Prete 

2022) and both MMN and P3 responses have been shown to increase for unexpected 

compared to expected deviants (Sussman 1998; 2005; Schroeger 2015). Insights 

concerning the predictive nature of mismatch responses have led to further 

development of the memory-based account of MMN generation into the model-

adjustment hypothesis (Winkler 2007). This view assumes a perceptual model that is 

informed by previous stimulus exposure and continually predicts incoming sensory 

inputs. The model is updated whenever inputs diverge from current predictions, and 

the MMN is hypothesized to constitute a marker of such divergence.  

The model-adjustment hypothesis is in line with the increasingly influential view 

that the brain is engaging in perceptual inference to anticipate future sensory inputs 

(Helmholtz 1856; Gregory 1980; Friston 2005). Related theories regard the brain as 

an inference engine and come with neuronal implementation schemes that accomplish 

probabilistic (Bayesian) inference in a neurologically plausible manner (Friston 2005; 

2010; Bastos 2012). Process theories such as predictive coding assume that the brain 

maintains a generative model of its environment which is continuously updated by 

comparing incoming sensory information with model predictions on different levels of 

hierarchical cortical organization (Rao 1999; Winkler 2012; Friston 2005; 2010). 

Differential influences of SSA and change detection on the MMN are proposed to result 

from the same underlying process of prediction error minimization, mediated by 
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different post-synaptic changes to (predicted) sensory inputs (Garrido 2008; 2009a; 

Auksztulewicz 2016). As such, the theory has the potential to unify previously 

opposing theories of MMN generation (Garrido 2008; 2009a; 2009b) while accounting 

for its key empirical features (Wacongne 2012; Heilbron 2018). 

With regards to the proposed universal nature of predictive accounts of brain 

function, reports of comparable mismatch responses across different modalities are of 

particular interest. So far, mismatch signals have been primarily studied in isolation, 

with a strong focus on the auditory system. However, key properties of the auditory 

MMN, such as omission responses and modulations by predictability, have also been 

reported for the visual (Czigler 2006; Kok 2014) and the somatosensory MMN (Naeije 

2018; Andersen 2019), and modelling studies in all three modalities suggest that 

mismatch responses may reflect signatures of Bayesian learning (Lieder 2013; Maheu 

2019; Stefanics 2018; Ostwald 2012; Gijsen 2021). While studies directly investigating 

mismatch signals in response to multi-modal sensory inputs are rare, previous 

research indicates a ubiquitous role for cross-modal probabilistic learning. The brain 

tends to automatically integrate auditory, somatosensory and visual stimuli during 

sequence processing (Bresciani 2006; 2008; Frost 2015) and cross-modal perceptual 

associations can influence statistical learning of sequence regularities (Andric 2008; 

Parmentier 2011), modulate mismatch responses (Besle 2005; Butler 2012; Zhao 

2015; Kiat 2018; Friedel 2020) and influence subsequent uni-modal processing in 

various ways (Shams 2011). Recent advances in modelling Bayesian causal inference 

suggest that the main computational stages of multi-modal inference evolve along a 

multisensory hierarchy involving early sensory segregation followed by mid-latency 

sensory fusion and late Bayesian causal inference (Rohe 2015; 2019; Cao 2019). 

However, the extent to which the MMN and P3 reflect these stages and should be 

considered sensory specific signatures of regularity violation or the result of modality 

independent computations in an underlying predictive network is not fully understood.  

The current study aimed to investigate the commonalities and differences 

between mismatch responses in different modalities in a single experiment and to 

elucidate in how far they reflect local, uni-modal or global, cross-modal computations. 

To this end, we employed a roving stimulus paradigm, in which auditory, 

somatosensory and visual stimuli were simultaneously presented in a probabilistic tri-

modal stimulus stream.  
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Typically, MMRs are studied with the oddball paradigm, in which rarely 

presented “oddball” stimuli deviate from frequently presented standard stimuli in some 

physical feature, such as sound pitch or stimulus intensity. The roving stimulus 

paradigm, on the other hand, defines deviants and standards in terms of their local 

sequence position, while their frequency of occurrence across the sequence is equal 

(Cowan 1993; Baldeweg 2004). The deviant is defined as the first stimulus that breaks 

a train of repeating (standard) stimuli. With repetition, the deviant subsequently 

becomes the new standard, defining a train of stimulus repetitions. Thus, the roving 

stimulus paradigm is an excellent tool to experimentally induce mismatch responses, 

while controlling for differences in physical stimulus features. 

Based on a probabilistic model, we generated sequences of high and low 

intensity stimuli that were governed by uni-modal transition probabilities as well as 

cross-modal conditional dependencies. This allowed us to test to what extent early 

and late mismatch responses are sensitive to local and global violations of statistical 

regularities and to draw conclusions regarding their potential role in cross-modal 

hierarchical inference. Specifically, we extracted the MMN and P3 MMRs for each 

modality and investigated their modality specific and modality general response 

properties regarding stimulus repetition and change, as well as their sensitivity to 

cross-modal predictive information. Further, we used source localization to investigate 

modality specific and modality general neuronal generators of mismatch responses. 

Finally, we complemented our average-based analyses with single-trial modelling to 

investigate if signatures of uni-modal and cross-modal Bayesian inference can 

account for trial-to-trial fluctuations in the MMN and P3 amplitudes. 

 
Materials and Methods 
 

Participants underwent a novel multi-modal version of the roving stimulus paradigm. 

Our paradigm, depicted in figure 1, consisted of simultaneously presented auditory 

(A), somatosensory (S) and visual (V) stimuli, which each alternated between two 

different intensity levels (‘low’ and ‘high’). The tri-modal stimulus sequences originated 

from a single probabilistic model (described in the section Probabilistic sequence 

generation), resulting in different combinations of low and high stimuli across the three 

modalities in each trial. 
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Figure 1: Experimental paradigm. Participants were seated in front of a screen and received sequences of 

simultaneously presented bilateral auditory beep stimuli (green), somatosensory electrical pulse stimuli (purple) 

and visual flash stimuli (orange) each at either low or high intensity. On consecutive trials, stimuli within each 

modality either repeated the previous stimulus intensity of that modality (standard) or alternated to the other 

intensity (deviant). This created tri-modal roving stimulus sequences, where the repetition/alternation probability in 

each modality was determined by a single probabilistic model (see Probabilistic sequence generation). In 1% of 

trials (catch trials) the fixation cross changed to one of the three letters A, T or V, interrupting the stimulus sequence. 

The letter prompted participants to indicate whether the last auditory (letter A), somatosensory (letter T for “tactile”) 

or visual (letter V) stimulus, respectively, was of high or low intensity. Responses were given with a left or right foot 

pedal press using the right foot. 

 
Participants 
34 healthy volunteers (19-43 years old, mean age: 26, 22 females, all right-handed), 

recruited from the student body of the Freie Universität Berlin and the general public, 

participated for monetary compensation or an equivalent in course credit. The study 

was approved by the local ethics committee of the Freie Universität Berlin and written 

informed consent was obtained from all participants prior to the experiment. 

 

Experimental Setup          
Each trial consisted of three bilateral stimuli (A, S and V) that were presented 

simultaneously by triggering three instantaneous outputs of a data acquisition card 

(National Instruments Corporation, Austin, Texas, USA) every 1150ms (inter-stimulus 

interval).  
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Auditory stimuli were presented via in-ear headphones (JBL, Los Angeles, 

California, USA) to both ears and consisted of sinusoidal waves of 500Hz and 100ms 

duration that were modulated by two different amplitudes. The amplitudes were 

individually adjusted with the participants to obtain two clearly distinguishable 

intensities (mean of the low intensity stimulus: 81.43 ± 1.22 𝑑𝑑𝑑𝑑 ; mean of the high 

intensity stimulus: 93.02 ± 0.98 𝑑𝑑𝑑𝑑). 

Somatosensory stimuli were administered with two DS5 isolated bipolar 

constant current stimulators (Digitimer Limited, Welwyn Garden City, Hertfordshire, 

UK) via adhesive electrodes (GVB-geliMED GmbH, Bad Segeberg, Germany) 

attached to the wrists of both arms. The stimuli consisted of electrical rectangular 

pulses of 0.2ms duration. To account for interpersonal differences in sensory 

thresholds, the two intensity levels used in the experiment were determined on an 

individual basis. The low intensity level (mean: 3.97 ± 0.84𝑚𝑚𝑚𝑚) was set in proximity to 

the detection threshold yet high enough to be clearly perceivable (and judged to be 

the same intensity on both sides). The high intensity level (mean: 6.47 ± 1.33𝑚𝑚𝑚𝑚) was 

determined for each participant to be easily distinguishable from the low intensity level 

yet remaining non-painful and below the motor threshold.  

Visual stimuli were presented via light emitting diodes (LEDs) and transmitted 

through optical fiber cables mounted vertically centered to both sides of a monitor. The 

visual flashes consisted of rectangular waves of 100ms duration that were modulated 

by two different amplitudes (low intensity stimulus: 2.65 𝑉𝑉 ; high intensity stimulus: 

10 𝑉𝑉) that were determined to be clearly perceivable and distinguishable prior to the 

experiment. Participants were seated at a distance of about 60cm to the screen such 

that the LED’s were placed within the visual field at a visual angle of about 67 degrees. 

In each of 6 experimental runs of 11.5 minutes, a sequence of 600 stimulus 

combinations was presented. To ensure that participants maintained attention 

throughout the experiment and to encourage monitoring of all three stimulation 

modalities, participants were instructed to respond to occasional catch trials (target 

questions) via foot pedals. In six trials randomly placed within each run the fixation 

cross changed to one of the letters A, T or V followed by a question mark. This 

prompted participants to report if the most recent stimulus (directly before appearance 

of the letter) in the auditory (letter A), somatosensory (letter T for “tactile”) or visual 

(letter V) modality was presented with low or high intensity. The right foot was used to 
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press either a left or a right pedal, and the pedal assignment (left=low/right=high or 

left=high/right=low) was counterbalanced across participants. 

 

Probabilistic sequence generation 
Each of the three sensory modalities (A, S, V) were presented as binary (low/high) 

stimulus sequences originating from a common probabilistic model. The model 

consists of a state 𝑠𝑠 at time 𝑡𝑡 evolving according to a Markov chain (𝑝𝑝(𝑠𝑠𝑡𝑡|𝑠𝑠𝑡𝑡−1)) with 

each state deterministically emitting a combination of three binary observations 

conditional on the preceding observation combination 

(𝑝𝑝(𝑜𝑜𝐴𝐴,𝑡𝑡 , 𝑜𝑜𝑆𝑆,𝑡𝑡 , 𝑜𝑜𝑉𝑉,𝑡𝑡|𝑜𝑜𝐴𝐴,𝑡𝑡−1, 𝑜𝑜𝑆𝑆,𝑡𝑡−1, 𝑜𝑜𝑉𝑉,𝑡𝑡−1)). For example, a transition expressed as [100|000] 

indicates a unimodal auditory change ( 𝑜𝑜𝐴𝐴,𝑡𝑡 = 1, 𝑜𝑜𝐴𝐴,𝑡𝑡−1 = 0 ) with repeating 

somatosensory and visual modalities (𝑜𝑜𝑆𝑆,𝑡𝑡 = 𝑜𝑜𝑆𝑆,𝑡𝑡−1 = 0 and 𝑜𝑜𝑉𝑉,𝑡𝑡 = 𝑜𝑜𝑉𝑉,𝑡𝑡−1 = 0). For each 

stimulus modality, in each state, the other two modalities form either congruent 

observations ([00] and [11]), or incongruent observations ([01] and [10]), which was 

used to manipulate the predictability of transitions in the sequences in different runs 

of the experiment.  

Three types of stimulus sequences, depicted in figure 2 were generated with 

different probability settings. The settings determine the transition probabilities within 

each modality given the arrangement of the other two modalities (i.e. either congruent 

or incongruent). One setting defines lower change probability if the other two 

modalities are congruent (e.g. for any change in modality A from 𝑡𝑡 − 1 to 𝑡𝑡, S and V 

were congruent with 𝑝𝑝(100|000) = 𝑝𝑝(000|100) = 𝑝𝑝(111|011) = 𝑝𝑝(011|111) = 0.025 

and S and V were incongruent with 𝑝𝑝(101|001) = 𝑝𝑝(001|101) = 𝑝𝑝(110|010) =

𝑝𝑝(010|110) = 0.15). The second setting defines lower change probability if the other 

two modalities are incongruent (e.g. for any change in modality A from 𝑡𝑡 − 1 to 𝑡𝑡, S 

and V were incongruent with 𝑝𝑝(101|001) = 𝑝𝑝(001|101) = 𝑝𝑝(110|010) =

𝑝𝑝(010|110) = 0.025 and S and V were congruent with 𝑝𝑝(100|000) = 𝑝𝑝(000|100) =

𝑝𝑝(111|011) = 𝑝𝑝(011|111) = 0.15). The third setting defines equal change probability 

if the other two modalities are congruent or incongruent (e.g. for any change in 

modality A from 𝑡𝑡 − 1 to 𝑡𝑡, S and V were congruent with 𝑝𝑝(100|000) = 𝑝𝑝(000|100) =

𝑝𝑝(111|011) = 𝑝𝑝(011|111) = 0.0875 and S and V were incongruent with 𝑝𝑝(101|001) =

𝑝𝑝(001|101) = 𝑝𝑝(110|010) = 𝑝𝑝(010|110) = 0.0875). 
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In each of 6 experimental runs the stimulus sequence was defined by one of 

the three different probability settings. Each probability setting was used twice during 

the experiment and the order of the 6 different sequences was randomized. 

Participants were unaware of the sequence probabilities and any learning of sequence 

probabilities was considered to be implicit and task irrelevant. 

Following the nomenclature suggested by Arnal and Giraud (2012), the 

resulting stimulus transitions for each modality within the different sequences can be 

defined as being either predicted (here higher change probability conditional on 

congruency/incongruency), mispredicted (here lower change probability conditional on 

congruency/incongruency) or unpredictable (here equal change probability). For each 

modality, repetitions are more likely (𝑝𝑝 = 0.825) than changes (𝑝𝑝 = 0.175) regardless 

of the type of probability setting and stimulus, resulting in classic roving standard 

sequences for each modality (mean stimulus train length: 5, mean range of train 

length: 2-34 stimuli). 

 
Figure 2: Probabilistic sequence generation. A) Schematic of state transition matrix. Colors depict transitions in 

the respective modality which were assigned specific transition probabilities: Green=auditory, 
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purple=somatosensory, orange=visual, light-gray=tri-modal repetition, white=multi-modal change (set to zero). B) 

Visualization of states (s) evolving according to a Markov chain emitting tri-modal binary outcomes. C) Probability 

settings of stimulus sequences. Left column: Sequences. Right column: Averaged empirical change probabilities 

across all sequences. Top: Transition probabilities determine that for each modality a change is unlikely (p=0.025) 

if the other two modalities are congruent (and likely if they are incongruent; p=0.15). Middle: Transition probabilities 

determine that for each modality a change is likely (p=0.15) if the other two modalities are congruent (and unlikely 

if they are incongruent; p=0.025). Bottom: Transition probabilities determine that for each modality a change is 

equally likely (p=0.0875) if the other two modalities are congruent or incongruent. D) Averaged empirical change 

probabilities for predictability conditions. 

 

EEG data collection and preprocessing 
Data was collected using a 64-channel active electrode EEG system (ActiveTwo, 

BioSemi, Amsterdam, Netherlands) at a sampling rate of 2048Hz, with head 

electrodes placed in accordance with the extended 10-20 system. Individual electrode 

positions were recorded using an electrode positioning system (zebris Medical GmbH, 

Isny, Germany).  

Preprocessing of the EEG data was performed using SPM12 (Wellcome Trust 

Centre for Neuroimaging, Institute for Neurology, University College London, London, 

UK) and in-house MATLAB scripts (MathWorks, Natick, Massachusetts, USA). First, 

the data was referenced against the average reference, high-pass filtered (0.01Hz), 

and downsampled to 512Hz. Subsequently, eye-blinks were corrected using a 

topographical confound approach (Berg 1994; Ille 2002) and epoched using a peri-

stimulus time interval of -100 to 1050ms. All trials were visually inspected and 

artefactual data removed. Likewise, catch trials were omitted for all further analyses. 

Furthermore, the EEG data of two consecutive participants were found to contain 

excessive noise due to hardware issues, resulting in their exclusion from further 

analyses and leaving data of 32 participants. Finally, a low-pass filter was applied 

(45Hz) and the preprocessed EEG data was baseline corrected with respect to the 

pre-stimulus interval of -100 to -5ms. To use the general linear model (GLM) 

implementation of SPM, the electrode data of each participant was linearly interpolated 

into a 32x32 grid for each time point, resulting in one three-dimensional image (with 

dimensions 32x32x590) per trial. These images were then spatially smoothed with a 

12x12mm full-width half-maximum (FWHM) Gaussian kernel to meet the requirements 

of random field theory, which the SPM software uses to control the family wise error 

rate. 
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Event-related responses and statistical analysis 
First, to extract basic mismatch response signals of each modality from the EEG data, 

we contrasted standard and deviant trials of each modality with paired t-tests corrected 

for multiple comparisons by using cluster-based permutation tests implemented in 

fieldtrip (Maris 2007). Two time windows of interest were defined based on the 

literature (Duncan 2009) to search for earlier negative clusters between 50-300ms, 

corresponding to the mismatch negativity, and later positive clusters between 200-

600ms, corresponding to the P3. Clusters were defined as adjacent electrodes with a 

cluster defining threshold of 𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05.  

For further analyses, GLMs were set up as implemented in SPM12, which 

allows defining conditions on the single trial level. To test for effects of stimulus 

repetitions on standards, deviants and mismatch responses (deviants minus 

standards), a TrainLength model was defined that consisted of 45 regressors: an 

intercept regressor, 36 regressors coding for the repetition train length (trials binned 

into 1, 2, 3, 4-5, 6-8, >8 repetitions) for standards (i.e. the position of the standard in 

the current train) and deviants (i.e. the number of standards preceding the deviant) in 

each modality, as well as 4 global standard and 4 global deviant regressors. The global 

regressors captured the train length (1, 2, 3, >3 repetitions) of standards and deviants 

regardless of their modality, meaning that trials in which standards occurred in all three 

modalities were coded as global standards, whereas trials in which a deviant occurred 

in any of the three modalities were coded as global deviants.  

To test for the implicit effect of cross-modal predictability based on the different 

conditional probability setting in the sequence, a Predictability model was defined that 

consisted of 37 regressors: an intercept regressor and 18 regressors coding standards 

and deviants of each modality for each of the three conditions described above: 

unpredictable (trials originate from sequences with no conditional dependence 

between modalities), predicted (trials originate from sequences with conditional 

dependence; trials defined by change being likely), mispredicted (trials originate from 

sequences with conditional dependence; trials defined by change being unlikely). On 

the single-participant level, these were coded for congruent and incongruent trials 

separately resulting in 36 regressors. 

Finally, a P3-Conjunction model was specified that consisted of 7 regressors: 

an intercept regressor and 6 regressors coding all standards and deviants for each of 
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the three modalities. This model was used to apply SPM’s second level conjunction 

analysis, contrasting standards and deviants across modalities in search of common 

P3 effects across modalities.  

Each GLM was estimated on the single-trial data of each participant using 

restricted maximum likelihood estimation. This yielded 𝛽𝛽-parameter estimates for each 

model regressor over (scalp-) space and time, which were subsequently analyzed at 

the group level. Second level analyses consisted of a mass-univariate multiple 

regression analysis of the individual 𝛽𝛽  scalp-time images with a design matrix 

specifying regressors for each condition of interest as well as a subject factor. Second 

level beta estimates were contrasted for statistical inference and multiple comparison 

correction was achieved with SPM’s random field theory-based FWE correction (Kilner 

2005). 

 

Source localization 
To investigate the most likely underlying neuronal sources for the mismatch negativity 

and P3 mismatch response we applied distributed source reconstruction as 

implemented in SPM12 to the ERP data. For each participant, the MMN of each 

modality (auditory, somatosensory, visual) was source localized within a time window 

of 100-200ms. For the P3, the average MMR at 330ms was chosen for source 

localization as this time point showed the strongest overlap of P3 responses between 

modalities (based on the results of the P3 conjunction contrast).  

Participant-specific forward models were created using an 8196-vertex 

template cortical mesh co-registered with the individual electrode positions via fiducial 

markers. An EEG head model based on the boundary element method (BEM) was 

used to construct the forward model’s lead field. For the participant-specific source 

estimates, multiple sparse priors under group constraints were applied. The source 

estimates were subsequently analyzed at the group level using the GLM implemented 

in SPM12. Second-level contrasts consisted of one-sample t-tests for each modality 

as well as (global) conjunction contrasts across modalities. The resulting statistical 

parametric maps were thresholded at the peak level with p<0.05 after FWE correction. 

The anatomical correspondence of the MNI coordinates of the cluster peaks were 

identified via cytoarchitectonic references using the SPM Anatomy toolbox (Eickhoff 

2005).  
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Single-trial modelling of EEG data 
In addition to the analysis of event-related potentials, the study aimed to compare 

different computational strategies of sequence processing potentially underlying 

neuronal generation of mismatch responses. To this end, we generated regressors 

from different Bayesian learning (BL) models as well as a train length dependent 

change detection (TLCD) model making different predictions for the single-trial EEG 

data.  

Theories on MMN generation hypothesize adaptation and memory-trace 

dependent change detection to contribute to the MMN. With prior repetition of stimuli, 

the response to standard stimuli tends to decrease while the response to deviant 

stimuli tends to increase. We defined the TLCD model to reflect such reciprocal 

dynamics of responses to stimulus repetition and change without invoking 

assumptions of probabilistic inference. The model is defined for each modality 

separately and tracks the stimulus train lengths 𝑐𝑐 for a given modality by counting 

stimulus repetitions: 𝑐𝑐𝑡𝑡 = 𝑑𝑑𝑡𝑡(𝑐𝑐𝑡𝑡−1 + 𝑑𝑑𝑡𝑡 ), where 𝑑𝑑𝑡𝑡 = 1𝑜𝑜𝑡𝑡=𝑜𝑜𝑡𝑡−1  takes on the value 1 

whenever the current observation 𝑜𝑜𝑡𝑡 is a repetition of the previous observation 𝑜𝑜𝑡𝑡−1 

and 𝑑𝑑𝑡𝑡 = 0 resets the current train length to zero. To form single-trial predictors of the 

EEG data, the model outputs values that increase linearly with train length and have 

opposite signs for standards and deviants: 

 
In addition to the TLCD model, different BL models were created to contrast the 

static train length based TLCD model with dynamic generative models tracking 

transition probabilities. The BL models consist of conjugate Dirichlet-Categorical 

models estimating probabilities of observations read out by three different surprise 

functions: Bayesian surprise (BS), Predictive surprise (PS) and confidence-corrected 

surprise (CS).  

BS quantifies the degree to which an observer adapts their generative model 

to incorporate new observations (Itti 2009; Baldi 2010) and is defined as the Kullback-

Leibler (KL) divergence between the belief distribution prior and posterior to the 

update: 𝐵𝐵𝐵𝐵(𝑦𝑦𝑡𝑡) = 𝐾𝐾𝐾𝐾(𝑝𝑝(𝑠𝑠𝑡𝑡−1|𝑦𝑦𝑡𝑡−1, … ,𝑦𝑦1)||𝑝𝑝(𝑠𝑠𝑡𝑡|𝑦𝑦𝑡𝑡 , … ,𝑦𝑦1)). PS is based on Shannon’s 

(1948) definition of information and defined as the negative logarithm of the posterior 
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predictive distribution, assigning high surprise to observed events 𝑦𝑦𝑡𝑡  with low 

estimated probability of occurrence: 𝑃𝑃𝑃𝑃(𝑦𝑦𝑡𝑡) = − 𝑙𝑙𝑙𝑙 𝑝𝑝(𝑦𝑦𝑡𝑡|𝑠𝑠𝑡𝑡)  = − 𝑙𝑙𝑙𝑙  𝑝𝑝(𝑦𝑦𝑡𝑡|𝑦𝑦𝑡𝑡−1, … ,𝑦𝑦1). 

CS additionally considers the commitment of the generative model and scales with the 

negative entropy of the prior distribution (Faraji 2018). It is defined as the KL 

divergence between the (informed) prior distribution at the current time step and a flat 

prior distribution 𝑝̂𝑝(𝑠𝑠𝑡𝑡)  updated with the most recent event 𝑦𝑦𝑡𝑡 : 𝐶𝐶𝐶𝐶(𝑦𝑦𝑡𝑡) =

𝐾𝐾𝐾𝐾(𝑝𝑝(𝑠𝑠𝑡𝑡)||𝑝̂𝑝(𝑠𝑠𝑡𝑡|𝑦𝑦𝑡𝑡))).  

Following Faraji et al. (2018) surprise quantifications can be categorized as 

puzzlement or enlightenment surprise. While puzzlement refers to the mismatch 

between sensory input and internal model belief, closely related to the concept of 

prediction error, enlightenment refers to the update of beliefs to incorporate new 

sensory input. In the current study we were interested in a quantification of the model 

inadequacy by means of an unsigned prediction error as reflected by surprise. As 

such, throughout the manuscript, with prediction error we do not refer to the specific 

term of (signed) reward prediction error as used for example in reinforcement learning 

but rather use it to refer to the signaling of prediction mismatch. While both PS and CS 

are instances of puzzlement surprise, CS is additionally scaled by belief commitment 

and quantifies the concept that a low-probability event is more surprising if 

commitment to the belief (of this estimate) is high. BS, on the other hand, is an instance 

of enlightenment surprise and is considered a measure of the update to the generative 

model resulting from new incoming observations.  

A detailed description of the Bayesian observer, its transition probability version 

as well as the surprise read-out functions can be found in our previous work on 

somatosensory mismatch responses (Gijsen 2021). Here, we will primarily provide a 

brief description of the specifics of two implementations of Dirichlet-Categorical 

observer models, a uni- and a cross-modal model. Both observer models receive 

stimulus sequences (of one respective modality) as input and iteratively update a set 

of parameters with each new incoming observation. In each iteration the estimated 

parameters are read out by the surprise functions (BS, PS and CS) to produce an 

output which is subsequently used as a predictor for the EEG data.  

For each modality, the uni-modal Dirichlet-Categorical model considers a binary 

sequence with two possible stimulus identities (low and high) estimating transition 

probabilities with 𝑦𝑦𝑡𝑡 = 𝑜𝑜𝑡𝑡 for 𝑡𝑡 = 1, … ,𝑇𝑇 with a set of hidden parameters 𝑠𝑠(𝑖𝑖) for each 
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possible transition from 𝑜𝑜𝑡𝑡−1 = 𝑖𝑖. This uni-modal model does not capture any cross-

modal dependencies in the sequence (i.e. the alternation and repetition probabilities 

conditional on the tri-modal stimulus configuration). Therefore, we defined a cross-

modal Dirichlet-Categorical model to address the question whether the conditional 

dependencies were used by the brain during sequence processing for prediction of 

stimulus change. The dependencies in the sequence were independent of stimulus 

identity but provide information about the probability of repetition or alternation (𝑑𝑑𝑡𝑡) 

conditional on the congruency of the other modalities. The cross-modal model thus 

estimates alternation probabilities ( 𝑦𝑦𝑡𝑡 = 𝑑𝑑𝑡𝑡  for 𝑡𝑡 = 2, … ,𝑇𝑇 ) with a set of hidden 

parameters 𝑠𝑠(𝑖𝑖) when other modalities are incongruent and 𝑠𝑠(𝑐𝑐) when other modalities 

are congruent. Therefore, while the uni-modal model learns the probability of stimulus 

transitions within modality, the cross-modal model learns the probability of stimulus 

alternations within modality conditional on the congruency of the other modalities. As 

such, the cross-modal model provides a minimal implementation of a Bayesian 

observer that captures the cross-modal dependencies in the sequences.  

        

Model fitting procedure 

The technical details of the model fitting and subsequent Bayesian model selection 

procedures are identical to Gijsen et al. (2021) where the interested reader is kindly 

referred to for further information. First, the stimulus sequence-specific regressor of 

each model was obtained for each participant. After z-score normalization, the 

regressors were fitted to the single-trial, event-related electrode data using a free-form 

variational inference algorithm for multiple linear regression (Flandin 2007; Penny 

2005; Penny 2003). The obtained model-evidence maps were subsequently subjected 

to the Bayesian model selection (BMS) procedure implemented in SPM12 (Stephan 

2009) to draw inferences across participants with well-established handling of the 

accuracy-complexity trade-off (Woolrich 2012). 

In total, 8 regression models were fit: A null model (offset only), a TLCD 

regression model and, for each of the three surprise read-out functions, one regression 

model including only the uni-modal regressors and one additionally including the 

cross-modal regressors. The purely uni-modal regression model will be called UM and 

the regression model including uni-modal and, additionally, cross-modal regressors 

will be called UCM. The design matrix of the TLCD regression model consisted of 4 
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regressors, an offset and the predicted parametric change responses for each of the 

three modality sequences (auditory, somatosensory, visual). Similarly, the design 

matrix of the UM regression model consisted of 4 regressors, an offset and the surprise 

responses of the uni-modal model for each of the three modalities. The UCM 

regression model was identical to the UM regression model but with an additional three 

regressors containing the cross-modal surprise responses for each modality. 

Therefore, the UCM regression model is more complex and only gets assigned higher 

model evidence than the reduced UM regression model only if the additional 

regressors contribute significantly to a better model fit (Stephan 2009). 

To allow for the possibility of different timescales of stimulus integration (Maheu 

2019; Ossmy 2013; Runyan 2017), the integration parameter 𝜏𝜏  of the Dirichlet-

Categorical model was optimised for each model, participant and peri-stimulus time-

bin before model selection. To this end, model regressors were fit for a range of 11 

tau parameter configurations ([0, 0.001, 0.0015, 0.002, 0.003, 0.005, 0.01, 0.02, 0.05, 

0.1, 0.2]) corresponding to integration windows with a 0.5 stimulus weighting at (half-

life of) [600, 462, 346, 231, 138, 69, 34, 13, 6, 3] stimuli, of which the parameter with 

the best model-evidence was chosen.  

 

Bayesian model comparison 

The estimated model-evidence maps were used to evaluate the models’ relative 

performance across participants via family-wise Bayesian model selection (Penny 

2010). The model space was partitioned into three types of families to draw inference 

on different aspects of the involved models. Given that the literature provides some 

evidence for each of the three surprise read-out functions (BS, PS, CS) to capture 

some aspect of EEG mismatch responses, we included all of them in the family wise 

comparisons to avoid biasing the comparison of different BL models.  

The first model comparison considered the full space of Bayesian learning 

models as a single family (BL family) and compared it to the TLCD model (TLCD 

family) and the null model (NULL family). Since the BL models had their tau parameter 

optimized, which was not possible for the TLCD model, we applied the same 

penalization method used in our previous study (Gijsen 2021). The degree to which 

the optimization on average inflated model evidence was subtracted from the BL 

models prior to BMS. Specifically, for all parameter values, the difference between the 
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average model evidence and that of the optimized parameter was computed and 

averaged across post-stimulus time bins, electrodes and participants.  

Subsequent analyses grouped the different BL models into separate families: 

The second comparison grouped the BL models into two families of uni-modal (UM) 

and cross-modal (UCM) models, as well as the null model, to test which electrodes 

and time points showed influences of uni- versus multi-modal processing. The third 

comparison grouped the BL models into three surprise families and the null model, to 

test whether the observed MMRs were best captured by predictive surprise (PS), 

Bayesian surprise (BS) or confidence-corrected surprise (CS). 

 

Results 
   

Behavioral results  

Participants showed consistent performance in responding to the catch trials during 

each experimental run, indicating their ability to globally maintain their attention to the 

tri-modal stimulus stream. Of the 85.5% responses made in time, 75.3% were correct 

with an average reaction time of 1.4 ± 0.25𝑠𝑠.  

     

Event-related potentials 
 
Uni-modal mismatch responses    

Cluster based permutation tests confirmed the presence of early modality specific 

MMN components as well as later P3 MMRs for all three modalities. Both early and 

late MMRs showed a modulation by the number of stimulus repetitions, the details of 

which will be described in the following sections. 

 

Auditory MMRs 

The MMN, as the classic mismatch response, has originally been studied in the 

auditory modality and is commonly described as the ERP difference wave calculated 

by subtraction of standard trials from deviant trials (deviants-standards). This 

difference wave typically shows a negative deflection at fronto-central electrodes and 

corresponding positivity at temporo-parietal sites, ranging from around 100-250ms 

(Näätänen 1978; Näätänen 1979; Näätänen 2007). Correspondingly, we find a 
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significant negative fronto-central auditory MMN cluster between 80-200ms (figure 

3A). Within the MMN cluster, deviants appear to deflect from the standard ERP around 

the peak of the auditory N1 component and reach their maximum difference around 

the peak of the subsequent P2 component. In the later time window, we observe 

positive MMRs at central electrodes between 200-400ms, corresponding to a P3 

modulation, as well as beyond 400ms at progressively more posterior electrodes.  

Within early and late auditory MMR clusters, the response to both standards 

and deviants was modulated by the number of standard repetitions. The auditory 

system is known to be sensitive to stimulus repetitions, particularly within the roving 

standard paradigm (Ulanovsky 2003; 2004; Cowan 1993; Baldeweg 2004). Therefore, 

we hypothesised a gradual increase of the auditory response to standard stimuli 

around the time of the MMN, known as repetition positivity (Baldeweg 2004; Baldeweg 

2006; Haenschel 2005) as well as reciprocal negative modulation of the corresponding 

deviant response (Näätänen 2007; Bendixen 2007). Together, these effects should 

result in a gradual increase of the MMN amplitude with stimulus repetition. Indeed, 

linear contrasts applied to the GLM beta parameter estimates of the TrainLength 

model revealed that the MMN increases with the repetition of standards before a 

deviant was presented (94-200ms, cluster 𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.001). This effect was driven by a 

negative linear modulation of the deviant response (98-200ms, cluster 𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.001) as 

well as a repetition positivity effect on the standards (111-172ms, cluster 𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.001). 

Similarly, the later P3 MMR increased with standard repetitions (200-600ms, cluster 

𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.001) and this effect was driven by an increase of deviant responses (200-

600ms, cluster 𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓 <0.001) and a decrease of standard responses (205-359ms, 

cluster 𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.001). Given the temporal difference between standard (around 200-

350ms) and deviant (200-600ms) train length effects, the parametric modulation of the 

late MMR beyond 350ms seems to be primarily driven by the increase in deviant 

responses. 
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Figure 3. Mismatch responses. Panels A-C show MMRs of auditory (A), somatosensory (B) and visual (C) 

modalities. Within panels: Left: MMN. Right: P3 MMR. Gray dots (top) and gray boxes (bottom) indicate significant 

MMR electrodes and time points with 𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05. Top row: MMR scalp topographies (deviants-standards). Bottom 

row: Grand average ERPs (left panels) and beta parameter estimates of significant linear contrast clusters (right 

panels). Colored bars depict six beta parameter estimates of the TrainLength GLM (1, 2, 3, 4-5, 6-8, >8 repetitions) 
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averaged across electrodes within linear contrast clusters. Asterisks indicate significance of the linear contrast 

(𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05). 

 

Somatosensory MMRs 

We hypothesized somatosensory MMRs to consist of early bilateral (fronto-) temporal 

negativities, resulting primarily from increased N140 components (Kekoni 1997), with 

a corresponding central positivity extending into a later central P3 component.  

After an early mismatch effect starting at ~50ms at fronto-central electrodes, a 

more pronounced bilateral temporal cluster emerged that extended from ~90-190ms 

and can be considered the somatosensory equivalent of the auditory MMN (figure 3B). 

A reversed positive central component can be observed at the time of the 

somatosensory MMN (sMMN) and throughout the entire later time window (200-

600ms) at which point it can be considered a putative P3 MMR.  

Early and late somatosensory MMRs were significantly modulated by stimulus 

repetition. Bilateral electrodes within the sMMN cluster show an increase of the sMMN 

amplitude with repetition (123-166ms, cluster 𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05). This effect was driven by an 

increase of deviant negativity (135-188ms, cluster 𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05) in combination with a 

positivisation of the standard (86-188ms, cluster 𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05). Similarly, the later P3 

MMR increases with repetition of standards (200-600ms, cluster 𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05), mutually 

driven by increasing deviant responses (221-600ms, cluster 𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓 <0.05) and 

decreasing standard responses (200-600ms, cluster 𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05). 

 

Visual MMRs 

We hypothesized visual MMRs to present as an early MMN at occipital to parieto-

temporal electrodes and a later P3 component at central electrodes. Although less 

pronounced than its auditory and somatosensory counterparts, we indeed observed a 

negative visual mismatch component that developed from occipital to parieto-temporal 

electrodes between ~130-200ms (figure 3C). In the later time window, we found a 

central positive component between ~300-600ms, corresponding to a P3 MMR.  

Within the significant visual MMN (vMMN) cluster, the linear contrast testing for 

repetition effects did not reach significance when correcting clusters for multiple 

comparisons (𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓>0.05). However, it is worth noting that some electrodes in this 

cluster seemed to show a similar pattern of response increases and decreases as in 
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the auditory and somatosensory modality, which became apparent at more lenient 

thresholds. The vMMN tended to become more negative with repetition of standards 

(143-148ms, peak 𝑝𝑝𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 <0.005), with opposite tendencies of deviant negative 

increase (143-148ms, peak 𝑝𝑝𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢<0.05) and standard decrease (193-215ms, peak 

𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05). Thus, although we cannot conclude a modulation by standard repetition 

of the vMMN with any certainty, the observed beta parameters are in principle 

compatible with the effects observed in the auditory and somatosensory modalities 

(please see the discussion for potential reasons for the reduced vMMN in our data).  

Within the P3 MMR cluster, on the other hand, we find significant clusters of 

linear increase of the MMR (375-600ms, cluster 𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05), again constituted by an 

increase in deviant responses (410-549ms, cluster 𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓 <0.05) and concomitant 

decrease in standard responses (316-600ms, cluster 𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05). 

 

Cross-modal P3 effects 

In search of a common P3 effect to deviant stimuli, we created conjunctions of the 

deviants>standards contrasts across the auditory, somatosensory and visual 

modalities. The conjunction revealed a common significant cluster starting at ~300ms 

(cluster 𝑝𝑝𝑓𝑓𝑤𝑤𝑤𝑤<0.05) that comprised anterior central effects around 300-350ms followed 

by more posterior effects from 400-600ms (figure 4A).  

To investigate the modulation of the P3 MMR by predictability we used two-way 

ANOVAs with the three-level factor modality (auditory, somatosensory, visual) and the 

three-level factor predictability condition (predicted, mispredicted, unpredictable). 

Separate ANOVAs were applied to deviants and standards. We hypothesized that the 

cross-modal P3 MMR might be sensitive to multisensory predictive information in the 

sequence, as the P3 has been shown to be sensitive to global sequence statistics 

(Wancongne 2011; Bekinschtein 2009) and to be modulated by stimulus predictability 

(Ritter 1999; Sussman 2003; Horvath 2008; Horvath 2012; Max 2015; Prete 2022). 

Indeed, within the common P3 cluster, both deviants (299-313ms, peak 𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05) 

and standards (316-332ms, peak 𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05) show significant differences between 

predictability conditions. No significant interaction of predictability condition with 

modality was observed. 

Post-hoc t-tests were applied to the peak beta estimates to investigate the 

differences between the three pairs of conditions. For the ANOVA concerning the 
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deviant trials, post-hoc t-tests show a significant difference for mispredicted>predicted 

(t=14.667; p<0.001, Bonferroni corrected), mispredicted>unpredictable (t=14.76; 

p<0.001, Bonferroni corrected) and no significant difference between 

unpredictable>predicted conditions (t=0.01; p>0.05). Similarly, for the ANOVA 

concerning the standard trials, post-hoc t-tests show that there is a significant 

difference for mispredicted>predicted (t=10.67; p<0.001, Bonferroni corrected), 

mispredicted>unpredictable (t=6.87; p<0.001, Bonferroni corrected) and 

unpredictable>predicted conditions (t=3.83; p<0.001, Bonferroni corrected).  

Taken together, this result suggests that stimuli which were mispredicted based 

on the predictive multisensory configuration resulted in increased responses within the 

common P3 cluster compared to predicted or unpredictable stimuli, regardless of their 

role as standards or deviants in the current stimulus train.  

For completeness, we also tested the effect of predictability in the earlier MMN 

cluster, but we did not observe any significant modulations here (results not shown).  

 
Figure 4. Cross-modal P3 effects. A) T-Maps of the conjunction of deviant>standard contrasts across the 

auditory, somatosensory and visual modalities. B) Beta estimates averaged across electrodes within significant 

clusters with peak 𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05, resulting from two-way ANOVAs testing for differences between unpredictable, 

predicted and mispredicted deviants (red) and standards (blue). 
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Source localization 
The source reconstruction analysis resulted in significant clusters of activation for each 

modality’s MMN as well as the P3 MMR. The results are depicted in figure 5 and 

cytoarchitectonic references are described in table 1.  

For each modality, the MMN was localized to source activations in the 

respective modality’s sensory cortex and frontal cortex. Source localization of the 

auditory MMN shows the strongest activation in bilateral superior temporal areas 

(𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05; left cluster: peak t=6.20; right cluster: peak t=7.64) corresponding to 

auditory cortex and in inferior temporal areas (𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05; left cluster: peak t=5.63; right 

cluster: peak t=5.60). The somatosensory MMN shows highest source activation in 

postcentral gyrus (𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05; left cluster: peak t=5.22; right cluster: peak t=4.92) 

corresponding to primary somatosensory cortex. Similarly, the visual MMN shows 

highest source activation in the occipital cortex (𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05; left cluster: peak t=6.18; 

right cluster: peak t=5.17), around the occipital pole, corresponding to visual areas 

(V1-V4). Lowering the threshold to 𝑝𝑝𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢<0.001 (only shown in table 1) suggests 

additional activation of hierarchically higher sensory areas such as secondary 

somatosensory cortex for the sMMN (𝑝𝑝𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢<0.001; left cluster: peak t=4.21; right 

cluster: peak t=5.01) and lateral occipital cortex (fusiform gyrus) for vMMN (part of the 

primary visual cluster). In addition to the sensory regions, common frontal sources with 

dominance on the right hemisphere were identified using a conjunction analysis for 

the MMN of all three modalities. In particular, significant common source activations 

were found in the right inferior frontal gyrus (𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05; cluster: peak t=3.15) and right 

middle frontal gyrus (𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓0.05; cluster: peak t=2.89). Additional significant common 

sources include frontal pole (𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05; left cluster: peak t=2.56; right cluster: peak 

t=2.28), left inferior temporal gyrus (𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05; cluster: peak t=2.52) and right inferior 

parietal lobe (𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05; cluster: peak t=2.85). 

 For the late P3 MMR a wide range of sources was expected to contribute to the 

EEG signal (Linden 2005; Sabeti 2016). To identify those that underlie the P3 MMR 

common to all modalities, we used a conjunction analysis. Significant clusters were 

found primarily in anterior cingulate cortex (𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05; cluster: peak t=4.34) and 

bilateral (pre-)frontal cortex (𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05; left inferior frontal gyrus cluster: peak t=3.57; 

left superior frontal gyrus cluster: peak t=3.13; left middle frontal gyrus cluster: peak 

t=2.87; left frontal pole cluster: peak t=3.31; right inferior frontal gyrus cluster: peak 
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t=3.45; right middle frontal gyrus cluster: peak t=3.0; right frontal pole cluster: peak 

t=3.57). Additional significant sources were found in left inferior temporal gyrus 

(𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05; cluster: peak t=3.21), left and right lateral occipital cortex (𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05; left 

cluster: peak t=2.99; right cluster: peak t=3.45) and right precentral gyrus (𝑝𝑝𝑓𝑓𝑓𝑓𝑒𝑒<0.05; 

cluster: peak t=2.64). 

 

 
Figure 5. Source localisation. Top row: significant sources (𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05) for the auditory (purple), somatosensory 

(green) and visual (orange) MMNs as well as their conjunction (yellow). Bottom row: significant sources (𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05) 

for the conjunction (yellow) of the P3 MMR in the auditory, somatosensory and visual modalities. 

 
Table 1. Source localization and cytoarchitectonic reference. 

Contrast hemi- 
sphere 

cytoarchitecture (probability) MNI coord. at 
cytoarch. 

t statistics at 
cytoarch. (p-value) 

aMMN left Auditory areas: 
TE 4 (67.3%) 
TE 3 (15.1%) 
TE 1 (50.7%) 

 
-52 -26 0 
-59.8 -17.6 5.4 
-50.3 -19.2 5.8  

 
6.2 (𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05) 
4.81 (𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05) 
4.05 (𝑝𝑝𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢<0.001) 
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aMMN right Auditory areas: 
TE 4 (54.1%) 
TE 3 (33.6%) 
TE 1 (61.9%) 

 
-56 -26 0 
-64.2 -16.4 5 
53 -10.1 3.8 

 
7.64 (𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05) 
5.85 (𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05) 
3.53 (𝑝𝑝𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢<0.001) 

sMMN left Somatosensory areas: 
3b [S1] (31.4%) 
OP4 [S2] (38.6%) 
OP1 [S2] (16%) 

 
-15.7 -33.7 68.6 
-65 -14.8 20.1 

 
4.8 (𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05) 
3.72 (𝑝𝑝𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢<0.001) 

sMMN right Somatosensory areas: 
3b [S1] (40.3%) 
OP4 [S2] (prob. 46.9%) 
OP1 [S2] (prob. 9.1%) 

 
13.3 -33.7 68.2 
66.5 -10.6 20.9 

 
4.76 (𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05) 
3.51 (𝑝𝑝𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢<0.001) 

vMMN left Visual areas: 
hOc1 [V1] (84.6%) 
hOc2 [V2] (11.1%) 
hOc4v [V4] (51%) 
hOc3v [V3] (24.6%) 
FG4 (89.5%) 

 
-10 -100 0 
 
-30 -87.9 -11.7 
 
-43.5 -49.4 -13.3 

 
6.18 (𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05) 
 
5.51 (𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05) 
 
3.83 (𝑝𝑝𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢<0.001) 

vMMN right Visual areas: 
hOc1 [V1] (86.4%) 
hOc2 [V2] (11%) 
hOc3 [V3] (43.7%) 
hOc4 [V4] (23.8%) 
FG4 (59.8%) 

 
20 -100 -4 
 
34.4 -88.7 -7.7 
 
50.3 -42.5 -18.8 

 
5.17 (𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05) 
 
4.7 (𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05) 
 
3.82 (𝑝𝑝𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢<0.001) 

MMN 
con- 
junction 

left Frontal pole (28%) 
Inferior temporal gyrus (49%) 

-14 62 8 
-50 -24 -28 

2.56 (𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05) 
2.52 (𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05) 

MMN 
con- 
junction 

right Middle frontal gyrus (36%) 
Inferior frontal gyrus (53%) 
Frontal pole (65%) 
Inferior parietal lobe (46.8%) 

42 28 30 
53 27.6 17.3 
30 42 32 
62 -14 24 

2.89 (𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05) 
2.96 (𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05) 
2.28 (𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05) 
2.85 (𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05) 

P3 
con- 
junction 

(left) Anterior cingulate gyrus  
(51%) 

-6 14 36 4.34 (𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05) 

P3 
con- 
junction 

left Frontal pole (74%) 
Inferior frontal gyrus (35%) 
Middle frontal gyrus (78%) 
Superior frontal gyrus (43%) 
Inferior temporal gyrus (34%) 
Lateral occipital [hOc4la] (81%) 

-34 44 20 
52 26 18 
-44 30 32 
-22 12 60 
-48 -44 -24 
-46 -80 -8 

3.31 (𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05) 
2.74 (𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05) 
2.87 (𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05) 
3.13 (𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05) 
3.21 (𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05) 
2.99 (𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05) 
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P3 
con- 
junction 

right Frontal pole (86%) 
Inferior frontal gyrus (39.5%) 
Middle frontal gyrus (38%) 
Precentral gyrus [4a] (19%) 
Lateral occipital cortex [hOc5] 
(55%) 

45 42 10 
52 26 18 
36 2 54 
6 -32 64 
56 -62 0 

3.57 (𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05) 
3.45 (𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05) 
3.0 (𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05) 
2.64 (𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05) 
3.45 (𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓<0.05) 

 
Single-trial modelling 
As described in the previous sections, the responses of standards and deviants show 

specific sensitivity to (1) stimulus repetition and (2) cross-modal conditional probability. 

To investigate the computational principles underlying these response profiles 8 

different models capturing various learning strategies were fit to the single-trial EEG 

data and compared via family-wise Bayesian model selection. A summary of the 

modelling results is depicted in figure 6. 

The first model comparison aimed to further investigate observation (1) and the 

question whether the observed parametric modulation of standard and deviant EEG 

responses merely reflects a combination of neuronal adaptation and change detection 

dynamics or if the observed response patterns are indicative of an underlying 

generative model engaged in probabilistic inference. To this end, we ran family wise 

Bayesian model selection which is schematically depicted in figure 6A. The first 

comparison concerned the train length dependent change detection model (TLCD), a 

model family containing all Bayesian learning models, and a null model. In the fronto-

central, temporal, occipital and central electrodes showing MMN and P3 effects, the 

model comparison shows strong evidence in favor of the BL model family with an 

exceedance probability 𝜑𝜑 > 0.95  from ~70ms onward. On the other hand, the TLCD 

model did not exceed 𝜑𝜑 > 0.95 for any electrode or time point. Therefore, the TLCD 

model was disregarded at this point, and we focussed further investigation on the 

different BL models. 

The second comparison set out to investigate observation (2) and evaluate the 

contribution of stimulus alternation tracking conditional on multi-modal configurations 

beyond uni-modal transition probability inference. Within the electrodes and time-

points with sufficient evidence for Bayesian learning signatures (as established by the 

first model comparison), a comparison of a purely uni-modal model family with a cross-

modally informed model family (UCM) was performed. Those electrodes and time-

points where the additional inclusion of cross-modal regressors (UCM models) 
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provided better model fits than purely uni-modal models are highlighted in figure 6B 

and C. The UCM family outperforms the UM family at central and fronto-central 

electrodes at ~100-400ms (with 𝜑𝜑 > 0.95).  

Inspection of the beta estimates of auditory, somatosensory and visual 

regressors of the UCM regression models shows that the beta maps of the uni-modal 

predictors of the model resemble the ERP mismatch topographies of the respective 

modalities (depicted in figure 6C). The cross-modal predictor, on the other hand, rather 

shows (fronto-)central activations which appear to resemble frontal aspects of the 

respective auditory, somatosensory and visual MMRs.  

The third comparison concerned the three surprise measures used as read-out 

functions for the probabilistic models. Overall, the family comparison does not show 

overwhelming evidence for any specific surprise function as only few electrodes reach 

exceedance probabilities of 𝜑𝜑 > 0.95. Nevertheless, a tendency of the MMN and the 

P3 to reflect different surprise dynamics can be observed. Although around the time 

of the MMN, only some electrodes show 𝜑𝜑 > 0.95 in favour of confidence-corrected 

surprise, inspection of the topographies without 𝜑𝜑 thresholding (as depicted in figure 

6C) shows CS to be dominant throughout the spatio-temporal range of the MMN (as 

suggested by higher EPs compared to BS and PS). On the other hand, at the time of 

the P3, Bayesian surprise appears to be the dominant surprise computation with 

multiple (fronto-) central electrodes showing 𝜑𝜑 > 0.95 . Overall, the surprise 

comparison provides some evidence for a reflection of CS dynamics in the earlier 

mismatch signals around the time of the MMNs and suggests a tendency of the P3 to 

reflect BS dynamics. 

In a final analysis, the optimal observation integration parameter 𝜏𝜏  was 

inspected. For each modality, the significant MMN clusters of the ERP analyses were 

used to inspect the optimal integration window of the regression models. For the UM 

regression model, highly similar optimal integration parameters were found within the 

electrodes and time-points of the different MMN clusters with no significant difference 

between the modalities. The optimal integration parameters were found to correspond 

to windows of stimulus integration with a half-life of (50% weighting at) around 5 to 20 

stimuli. The same range of stimulus integration was found for the UCM regression 

model. Overall, confidence-corrected surprise models tended to have higher 
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integration windows (~10-20 stimuli) compared to Bayesian surprise models (~5-10 

stimuli). 

 
Figure 6. Modelling results. A) Schematic overview of models. Model comparison 1 (light-gray box, dashed 

contour): Null model family (NULL), train length dependent change detection model family (TLCD) and Bayesian 

learning model family (BL). Comparison 2 (gray box, dotted contour): Uni-modal regression model family (UM), 

cross-modal regression model family (UCM). Comparison 3 (dark-gray box, line contour): Read-out model family 

comparison of predictive surprise family (PS), Bayesian surprise family (BS) and confidence-corrected surprise 

family (CS). B) Results of comparison 1 and 2 shown for all electrodes and post-stimulus time points. Color depicts 

exceedance probability (EP) 𝜑𝜑 > 0.95. Light-blue=BL>TLCD, pink=UCM>UM. C) Topography of modeling results 

at time windows of MMN (top row) and P3 (bottom row). Left column: Results of comparison 1 (same colors as (B), 

depicting 𝜑𝜑 > 0.95). Middle column: Results of comparison 3. EPs between 0.33 and 1 of the three surprise 

functions are represented by a continuous 3-dimensional RGB scale (red=predictive surprise (PS); 

green=Bayesian surprise (BS); blue=confidence-corrected surprise (CS)). Right column: Beta estimates of the 

model regressors of the UCM model (regressors: A=auditory; S=somatosensory; V=visual; CM=cross-modal; 

UM=uni-modal) for CS read-out models (top) and BS read-out models (bottom).  

 

Discussion 
 
The present study set out to compare mismatch signals in response to tri-modal 

sequence processing in the auditory, somatosensory and visual modalities and to 

investigate influences of predictive cross-modal information. We found comparable but 

modality specific signatures of MMN-like early mismatch processing between 100-

200ms in all three modalities, which were source localized to their respective sensory 

specific cortices and shared right lateralized frontal sources. An additional cross-modal 
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signature of mismatch processing was found in the P3 MMR for which a common 

network with frontal dominance was identified. With exception of the visual MMN, both 

mismatch signals (MMN and P3) show parametric modulation by stimulus train length 

driven by reciprocal tendencies of standards and deviants across modalities. 

Strikingly, standard and deviant responses within the cross-modal P3 cluster were 

sensitive to predictive information carried by the tri-modal stimulus configuration. 

Comparisons of computational models indicated that Bayesian learning models, 

tracking transitions between observations, captured the observed dynamics of single-

trial responses to the roving stimulus sequences better than a static model reflecting 

train length dependent change detection. Moreover, a BL model which additionally 

captured cross-modal conditional dependence of stimulus alternation outperformed a 

purely uni-modal BL model primarily at central electrodes. The comparison of different 

read-out functions for the BL models provides tentative evidence that the early MMN 

may reflect dynamics of confidence-corrected surprise whereas later P3 MMRs seem 

to reflect dynamics of Bayesian surprise. 

 

Modality specific mismatch signatures in response to tri-modal roving stimuli  
By using a novel tri-modal roving stimulus sequence originating from an underlying 

Markov process of state transitions, we were able to elicit and extract unique EEG 

signatures in each of the three sensory modalities (auditory, somatosensory and 

visual).  

Of the EEG mismatch signatures, the auditory MMN is one of the most widely 

researched responses to deviation from an established stimulus regularity (Näätänen 

1978; Winkler 2009). Contrasting responses to standard and deviant stimuli of the 

auditory sequence in the current study resulted in the expected fronto-central MMN 

signature with more negative responses to deviants compared to standards. The 

extent of the MMN might suggest an underlying negative mismatch component as 

proposed by Näätänen (2005), which drives a more negative going ERP around the 

N1, extending beyond the P2 component. Such post-N1 effects of the MMN have been 

suggested as markers of a “genuine” mismatch component in contrast to confounds 

by stimulus properties modulating auditory ERP components (Näätänen 2007) and 

might speak against pure N1 adaptation (as suggested by May 2004; Jääskiläinen 

2004; May 1999).  
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The somatosensory equivalent to the auditory MMN (sMMN) reported in the 

current study shows negative polarity at bilateral temporal electrodes and 

corresponding central positivity. The sMMN likely reflects an enhanced N140 

component, as suggested by Kekoni et al. (1997). However, most previous sMMN 

studies used oddball paradigms where some critical discussion revolves around the 

distinction of the sMMN from an N140 modulation by stimulus properties alone. Here, 

we report an sMMN around the N140 which can be assumed to be independent of 

stimulus confounds due to the reversed roles of standard and deviant stimuli in the 

roving paradigm. Although several previous studies have reported somatosensory 

mismatch responses, conflicting evidence exists regarding the exact components that 

may constitute an equivalent to the auditory MMN. Some studies report a more fronto-

centrally oriented negativity (Kekoni 1997; Spackman 2007; 2010; Shen 2018) or 

observed such pronounced central positivity that they were led to conclude that it is in 

fact the central positivity that should be considered the somatosensory equivalent of 

the aMMN (Shinozaki 1998; Akatsuka 2005). However, some evidence appears to 

converge on a temporally centred negativity with corresponding central positivity as 

the primary sMMN around 140ms (Ostwald 2012; Gijsen 2021). 

 While the auditory and somatosensory MMN’s in the current study were found 

to be highly comparable in their signal strength, their hypothesized counterpart in the 

visual modality showed a comparatively weaker response. Nevertheless, we found a 

significant visual MMN (vMMN) at occipital electrodes extending to temporal 

electrodes within a time window of 100-200ms post stimulus, with corresponding 

(fronto-)central positivity. This observation is in line with previous research reporting 

posterior (Urakawa 2010; Kimura 2010; Clery 2013) and temporal (Hesenfeld 2003; 

Kuldkepp 2013) patterns of vMMN with corresponding central positivity (Czigler 2006; 

Cleary 2013; File 2017). 

 

Neuronal generators of MMN signatures 
Source reconstruction analyses were used to identify underlying neuronal generators 

of the modality specific MMN signatures. Interestingly, for each sensory modality, we 

found generators in the primary and higher order sensory cortices as well as additional 

frontal generators in inferior frontal gyrus (IFG) and middle frontal gyrus (MFG). 

The sensory specific neuronal sources underlying the auditory MMN were 

identified as bilateral auditory cortex with a dominance in hierarchically higher auditory 
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areas. With an additional modality independent contribution of right lateralized frontal 

sources, this set of neuronal generators identified for the aMMN is in line with previous 

research suggesting primary auditory cortex and higher auditory areas in superior 

temporal sulcus (STG) as well as right IFG as underlying the aMMN (Opitz 2002; 

Molholm 2005; Näätänen 2005; Garrido 2008; Garrido 2009a) with consideration of 

an additional frontal generator in MFG (Deouell 2007).  

The sources underlying the sMMN were identified in the current study as 

primary (S1) and secondary (S2) somatosensory cortices with additional frontal 

generators in right IFG and MFG. This finding is in accordance with previous research 

showing a combined response of S1 and S2 to underlie the sMMN (Akatsuka 2007a; 

2007b; Spackman 2010; Butler 2012; Ostwald 2012; Naeije 2016; 2018; Andersen 

2019; Gijsen 2021) in combination with involvement of (inferior) frontal regions (Huang 

2005; Ostwald 2012; Allen 2016; Fardo 2017; Downar 2000). 

For the visual modality, we identified sources in visual areas (V1-V4) and 

additional frontal activations in IFG and MFG as the neuronal generators underlying 

the vMMN. Previous studies have shown similar combinations of visual and prefrontal 

areas (Yucel 2007; Kimura 2010; 2011; 2012; Urakawa 2010) and have particularly 

highlighted the IFG as a frontal generator of the vMMN (Downar 2000; Hedge 2015). 

Similarly, an fMRI study of perceptual sequence learning in the visual system has 

shown right lateralized prefrontal activation in addition to activations in visual cortex in 

response to regularity violations (Huettel 2002). Yet another study has suggested a 

role for right prefrontal areas in interaction with hierarchically lower visual areas for the 

prediction of visual events (Kimura 2012), all in line with our results. 

Overall, our finding of inferior and middle frontal sources for the MMN in all three 

modalities provides further evidence for a modality independent role for these 

generators as previously suggested by Downar et al. (2000). As such, these modality-

independent frontal generators might reflect higher stages of a predictive hierarchy 

working across modalities in interaction with lower modality specific regions, as 

previously suggested primarily for the auditory modality (Garrido 2009b). 

 

Modulation of the MMN by stimulus repetition 
An important feature of the MMN which theories of its generation have aimed to 

account for is its sensitivity to stimulus repetition. The MMN is known to increase with 

prior repetition of standards (Sams 1983; Näätänen 1992; Imada 1993; Javitt 1998). 
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Correspondingly, in the current study we find a significant increase of auditory and 

somatosensory MMN with the length of the preceding stimulus train as well as a 

comparable tendency for the visual MMN. Moreover, we show that this increase was 

driven by a reciprocal negative modulation of deviant and positive modulation of 

standard responses, suggesting a combined influence of repetition dependent change 

detection and dynamics akin to stimulus adaptation.  

The observed positive modulation of standard responses, particularly in the 

auditory modality, is in line with the repetition positivity account of Baldeweg and 

colleagues (2004; 2006; 2007; Haenschel 2005). In the auditory modality, repetition 

positivity has been isolated as a positive slow wave that accounts for repetition-

dependent increases of auditory ERPs up to the P2 component (Haenschel 2005). 

With regards to its functional role, it has been argued to reflect auditory sensory 

memory trace formation (Baldeweg 2004; Costa-Faidella 2011a; Costa-Faidella 

2011b). Interestingly, MMN studies using the oddball paradigm often report an 

increasing MMN with standard repetition without further dissecting the contributions 

from standard and deviant dynamics. A contribution of the standard repetition positivity 

appears to be particularly dominant in roving stimulus paradigms (Cooper 2013), 

potentially because a memory trace of the standard stimulus identity must be re-

established after each change of roles for standard and deviant stimuli. It has even 

been suggested that the memory trace dynamics of the standard observed in response 

to roving oddball sequences might in fact be the primary driver of train length effects 

on MMN amplitudes (Baldeweg 2004; Haenschel 2005; Costa-Faidella 2011a; Costa-

Faidella 2011b). Importantly, although some evidence exists to suggest an additional 

role for train length dependent deviant modulation also in roving paradigms (Cowan 

1993; Haenschel 2005), a dissection of combined standard and deviant contributions 

as performed here is rarely described. 

Similar to the aMMN, we found the sMMN to be modulated by stimulus 

repetition. An early repetition positivity effect in the responses to standards was 

observed prior to 100ms indicating comparable sensory adaptation dynamics as 

described for the aMMN. Subsequently, the negative deviant and sMMN responses 

increase with repetition around the N140 (i.e., around the sMMN peak). While 

somatosensory deviant responses have previously been shown to decrease with 

increasing stimulus probability (Akatsuka 2007), only few other studies have reported 

sensitivity of the sMMN to stimulus repetition. Interestingly, in our previous study on 
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somatosensory MMRs (Gijsen 2021) we report the same reciprocal pattern found 

here: Negative modulation of the deviant and positive modulation of the standard 

response which result in an increase of the sMMN amplitude with stimulus train length.  

In the visual modality, a comparable train length effect to auditory and 

somatosensory modalities was observed but did not reach statistical significance in 

the vMMN time window. Given the overall weaker response in the current study for 

vMMN this might not be surprising. Moreover, discussions about the repetition 

modulation of vMMN responses are often based on findings concerning the auditory 

system rather than direct findings in the visual modality. While sensory adaptation to 

stimulus repetition is generally found throughout the visual system (e.g. Grill-Spector 

2006; Clifford 2007) it is rarely directly reported in visual MMN studies (but see 

Kremláček 2016). Overall, the visual MMN literature seems to suggest that the vMMN 

may be a rather unstable phenomenon. In fact, by controlling for confounding effects, 

one study has called the existence of the vMMN for low level features such as the 

ones used here into question entirely (Male 2020). The vMMN appears to show a 

much less pronounced spatiotemporal pattern than auditory and somatosensory 

equivalents, which is reflected in larger variance in the reported topographies and time 

windows in studies investigating vMMN (but see Limitations for a discussion of 

alternative explanations regarding the current study).  

 

MMN as a signature of predictive processing 
Recent research supports the view that Bayesian perceptual learning mechanisms 

underlie the generation of mismatch responses such as the MMN (Friston 2005; 2010; 

Garrido 2009b). Given the proposal of Bayesian inference and predictive processing 

as universal principles of perception and perceptual learning in the brain (Friston 2005; 

2010), comparable mismatch responses are expected to be found across sensory 

modalities. Evidence for the predictive nature of mismatch responses, akin to key 

findings from the auditory modality, is for instance given by studies showing 

somatosensory (Naeije 2018; Andersen 2019) and visual (Czigler 2006; Kok 2014) 

MMN in response to predicted but omitted stimuli. Moreover, Ostwald et al. (2012) and 

Gijsen et al. (2021) have shown that single trial somatosensory MMN and P3 MMRs 

can be accounted for in terms of surprise signatures of Bayesian inference models 

tracking stimulus transitions. Similarly, the vMMN has been described as a signature 
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of predictive processing (Kimura 2011; Stefanics 2014), signaling prediction error 

instead of basic change detection (Stefanics 2018).  

Correspondingly, we found comparable mismatch signatures in auditory, 

somatosensory and visual modalities. The train length effects observed in our study 

across modalities have previously been related to predictive processing. Repetition 

positivity in the auditory modality has been interpreted as a reflection of repetition 

suppression, resulting from fulfilled prediction (Aukstulewicz 2016; Baldeweg 2006, 

2007; Costa-Faidella 2011a; Costa-Faidella 2011b). A corresponding negative 

modulation of deviant responses on the other hand, would signal a failure to suppress 

prediction error after violation of the regularity established by the current stimulus train. 

Under such a view, longer trains of repetitions lead to higher precision in the probability 

estimate which in turn results in a scaling of the prediction error in response to 

prediction violation (Friston 2005; 2009; Aukstulewicz 2016). In line with these 

hypotheses, Garrido and colleagues (2008; 2009a) used dynamic causal modelling 

(DCM) to show that the MMN elicited in a roving stimulus paradigm is best explained 

by the combined dynamics of auditory adaptation and model adjustment. Their 

network, proposed to underlie MMN generation, was set up as an implementation of 

hierarchical predictive processing involving bottom-up signals from auditory cortex and 

top-down modulations by inferior frontal cortex. Similarly, another DCM study 

proposed a predictive coding model of pain processing in response to somatosensory 

oddball sequences, highlighting the role of inferior frontal cortex in top-down 

modulations of somatosensory potentials (Fardo 2017). As we find involvement of 

such modality specific sensory and modality independent frontal areas for MMN 

responses across modalities, our results suggest comparable roles for these sources 

in a predictive hierarchy. 

 

P3 mismatch responses reflect cross-modal processing 
In addition to the modality specific MMN responses, deviants in all three modalities 

elicited a late positive mismatch component in the P3 time window. Despite differences 

in the exact latency and extent of this response between modalities, we identified a 

common mismatch cluster from 300-350ms in central electrodes, followed by a slightly 

more posterior cluster extending from 400-600ms. Particularly the earlier cluster may 

correspond to the well-known P3a response, which peaks at around 300ms after 

change-onset at (fronto-)central electrodes and is thought to be elicited regardless of 
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sensory modality (Escera 2000; Friedman 2001; Knight 1998; Schroeger 1996; Polich 

2007).  

The P3a is closely related to the MMN as they are both elicited during active 

and passive perception of repeated stimuli interrupted by infrequent stimulus 

deviations (Polich 2007; Schroeger 2015). While the P3a has been initially related to 

attentional switches to task-irrelevant but salient stimulus features (Escera 2000; 

Friedman 2001; Polich 2007), more recent accounts suggest that the MMN and P3a 

might reflect two stages of a predictive hierarchy, each representing (potentially 

differentiable) prediction error responses (Wacongne 2011; Schroeger 2015). Similar 

to the MMN, P3 responses are known to be modulated by stimulus probability 

(Duncan-Johnson 1977) and can be elicited by unexpected stimulus repetitions 

(Squires 1976; Duncan 2009) and omissions of predicted sound stimuli (Sutton 1967; 

Prete 2022), which provides compelling evidence for a role of the P3 in predictive 

processing. Similar to the MMN responses described above, we found the individual 

P3 MMR responses in all three modalities to show reciprocal modulations of standards 

and deviants by stimulus repetition, which has previously only been reported for the 

auditory modality (Bendixen 2007). This sensitivity to stimulus repetition of mismatch 

responses in early and late time-windows has been interpreted in terms of regularity 

and rule extraction in the auditory modality (Bendixen 2007) and is in line with an 

account of repetition suppression over and above early sensory adaptation. 

The MMN and P3 MMR have been shown to be differentially modulated by 

higher order predictability. The P3 is reduced by the presentation of visual cues 

preceding an auditory deviant, while the MMN is not affected by the same top-down 

predictability (Ritter 1999; Sussman 2003; Horvath 2012). Similarly, explicit top-down 

knowledge of sequence regularities has been shown to reduce the P3, while leaving 

the MMN unaffected (Max 2015). It has thus been suggested that the P3 reflects a 

higher-level deviance detection system concerned with the significance of the stimulus 

in providing new information for the system (Horvath 2008). Interestingly, a recent 

study investigating mismatch responses to different auditory features showed that 

while the MMN response in an earlier (classical) time window was generally affected 

by regularity violations, only the later response (P3 range) contained information about 

the specific features that were violated (An 2021). Furthermore, computational studies 

indicate that P3 responses reflect specific quantities of unexpectedness as well as 

updates to a prior belief (Jepma 2017; Kolossa 2015).  

Page 36 of 54

John Wiley & Sons, Inc.

Human Brain Mapping

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Overall, current research provides evidence for the view that the MMN reflects 

prediction errors at earlier hierarchical stages, primarily concerned with more local 

regularity extraction, whereas P3 responses reflect more global rule violations which 

require a certain level of abstraction and information integration (Wacongne 2011; 

Bekinschtein 2009; Winkler 2005). Our findings of a sensitivity of the P3 response to 

cross-modal predictive information carried by the multi-modal configuration of the 

stimulus sequence further supports such a view. Across modalities, we found an 

increased P3 response to mispredicted compared to predicted or unpredictable 

stimuli, regardless of their role as standards or deviants. Generally, the P3 deviant 

response in the current study likely reflects a (unsigned) prediction error to a local 

regularity established by stimulus repetition. However, increased P3 responses to 

mispredicted stimuli indicate additional violations of global, cross-modal predictions 

which are extracted from multi-modal context information. 

The observed pattern suggests influences of precision weighting on prediction 

errors (Friston 2009). In case of both predicted and mispredicted stimuli, the cross-

modal predictive context allows for more precise predictions (i.e. high prior precision) 

than in case of the unpredictable stimuli (low prior precision). Under such an 

interpretation the precision for mispredicted deviants is high, resulting in a pronounced 

prediction error response. Since the precision for predicted deviants is also high, the 

resulting prediction error response is low because the stimulus was suppressed. Even 

though the size of prediction error to unpredictable deviants could generally be 

expected in between those of predicted and mispredicted deviants, the observed 

response is low (similar to that of a predicted deviant), because the prior precision in 

this context is low. This interpretation is in line with the fact that no significant difference 

was found between predicted and unpredictable deviants. A similar modulation of 

multi-modal predictability is found for the P3 response to standards. However, 

interestingly, in case of the standards, the response to predicted stimuli is significantly 

lower than to unpredictable stimuli. This difference between standards and deviants 

could be due to the fact that deviants are generally surprising, even if they are more 

predictable in terms of their cross-modal configuration. Standards, on the other hand, 

are generally predicted to occur (high precision) which might result in a pronounced 

suppression of prediction error in case they are additionally cross-modally predicted. 

The interpretation of the common P3 cluster as a cross-modal P3a response 

sensitive to multi-modal predictive information is further supported by our source 
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localization results, which particularly indicate prefrontal regions such as the medial 

frontal, inferior frontal and anterior cingulate cortex as sources of the P3 MMR. 

Although notoriously diverse, previous research on P3 sources has identified a fronto-

parietal network of generators, particularly highlighting the role of prefrontal and 

anterior cingulate regions in generating the P3 novelty response (P3a) (Linden 2005; 

Polich 2007), whereas parietal regions are presumed to be more involved in task-

related P3b responses. The identified sources have been shown to be involved in a 

fronto-parietal network relevant for the supra-modal processing of stimulus transitions 

and deviance detection (Downar 2000; Huang 2005). Similarly, a fronto-parietal 

attention network (Corbetta 2002) has been shown to be involved in oddball 

processing in the auditory and visual modalities (Kim 2014). The network consists of 

two functionally and anatomically distinct parts which closely interact (Vossel 2014). 

While the dorsal part of the network is believed to be involved in the allocation of top-

down, endogenous attention (e.g. triggered by predictive information), the ventral part 

is involved in bottom-up, exogenous attention allocation and thus, processing of 

unexpected stimuli. Importantly, it has been shown that this network operates supra-

modally to facilitate processing of information from multi-modal events (Macaluso 

2005; 2010). Thus, the predictive information in the multi-modal sequences presented 

in the current study may be processed in such a fronto-parietal network to aid the 

perception of multi-modal stimulus streams. Future research would benefit from 

studies further investigating such multi-modal probabilistic sequences with higher 

spatial resolution to inform these proposed interpretations.  

 

Modelling single-trial EEG responses as signatures of Bayesian inference 
Given the results of the average- and GLM-based EEG analyses, we aimed to test if 

the observed modulations of standards, deviants and MMRs by local (train length) and 

global (cross-modal predictability) sequence properties could be captured by 

signatures of Bayesian inference. To this end, we compared a simple train length 

dependent change detection (TLCD) model to families of Bayesian learning (BL) 

models capturing different aspects of the sequence statistics. In light of the literature 

discussed above we hypothesized that BL models would outperform the TLCD model 

in explaining the recorded mismatch responses. 

Overall, the BL models outperformed the static TLCD model in all electrodes in 

the MMN and P3 clusters indicating that these responses reflect dynamics beyond the 
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basic repetition effects observed in the ERP analyses. This result provides evidence 

to suggest that the MMN and P3 MMR capture the trial-to-trial dynamics of Bayesian 

inference and are thus markers of probabilistic sequence processing in the brain.  

Within the family of BL models, we found that a cross-modally informed model 

(UCM), tracking cross-modal conditional dependencies between modalities in addition 

to uni-modal transitions, outperformed a purely uni-modal transition probability model 

(UM) at central electrodes within an early and a late time-window. The cross-modal 

effects in the late time-window are directly in line with the sensitivity of the P3 cluster 

to cross-modal predictability discussed above and support an interpretation of P3 

mismatch responses to reflect signatures of cross-modal Bayesian inference. Given 

that cross-modal learning was not explicitly instructed or task-relevant, the results are 

compatible with the view that the brain is sensitive to cross-modal information by 

default (Ghazanfanar 2006; Driver 2008) and that processing multi-modal information 

might be appropriately captured by Bayesian inference (Kording 2007; Shams 2022). 

Interestingly, however, an earlier cross-modal effect was found prior to 300ms which 

was not reflected in the GLM results, suggesting that potential modulations of MMN 

signatures by predictability manifest in the dynamics of single trial surprise signals but 

not in significant mean differences between predictability conditions. Since the earlier 

cross-modal effect observed in the modelling results was primarily confined to central 

and fronto-central electrodes it may be related to activity of the frontal generators of 

the MMN. As discussed above, the frontal cortex is assumed to be involved in MMN 

generation (Deouell 2007) in interaction with hierarchically lower sensory sources and 

has been hypothesized to form top-down predictions about incoming sensory stimuli 

(Garrido 2008; 2009a, 2009b). This assumption is further supported by our source 

reconstruction results which show modality independent frontal generators in addition 

to sensory specific regions to underlie the MMN in auditory, somatosensory and visual 

modalities.  

Regarding the surprise read-out functions of the BL models, we find a slight 

dominance of confidence-corrected surprise (CS) in earlier mismatch signatures prior 

to 200ms, while the late clusters tend to reflect Bayesian surprise (BS). This is well in 

line with our previous study performed in the somatosensory modality (Gijsen 2021) 

and other studies have similarly reported a reflection of BS in P3 mismatch responses 

(Ostwald 2012; Kolossa 2015; Mars 2008; Seer 2016). Given their differences in 

reading out the probability estimates of the Bayesian observer, the different surprise 
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signatures in the MMN and P3 MMR might provide some insight into their respective 

computational roles. CS has been categorized as an instantiation of puzzlement 

surprise (Faraji 2018) reflecting a mismatch between sensory input and internal model 

belief which is additionally scaled by belief commitment. Low-probability events are 

thus more surprising if commitment to the belief (of this estimate) is high. BS reflects 

incorporation of new information, quantifying an update to the generative model and 

has been categorized as enlightenment surprise (Faraji 2018). Accordingly, the MMN 

may be considered a marker of prediction error scaled by belief commitment, whereas 

the P3 may reflect the subsequent update of the predictive model. 

 

Limitations  

Although we gained valuable insights into the commonalities and differences between 

mismatch responses in different modalities, our study faces certain limitations in its 

implementation and scope. First, although reports of weak vMMN responses can be 

found in the literature, an alternative explanation may lie in the stimulation protocol 

used in the current study. Our visual stimuli consisted of bilateral flash stimuli with two 

different intensities, which were presented in the periphery of the visual field. Since, to 

our knowledge, no other study has used visual flash stimuli to elicit vMMN, our results 

are not directly comparable to previous research. Moreover, due to the retinotopic 

organisation of the visual cortex (Sereno 1995; Horton 1991), a “far peripheral” 

placement (i.e. >60 degrees; Strassburger 2011) of the LED’s results in the activation 

of (primary) visual areas folded deep inside the cortex, in the calcarine sulcus between 

the hemispheres. It is therefore possible that the visual mismatch responses were not 

weaker per se but were merely harder to detect by means of EEG. 

Further, our results concerning the comparison of the surprise read-out 

functions provide some indications of the computational roles for early and late MMRs, 

which are in line with previous research. However, it should be noted that the current 

study was not specifically designed to investigate their (nuanced) differences. The 

inclusion of three read-out functions primarily served the purpose of avoiding bias in 

the comparison of the Bayesian learning models by prior choice of the read-out. To 

this end, the most prominent surprise read-out functions used in the literature were 

included. Research would benefit from future studies specifically designed to compare 

different surprise measures without the manipulation of other aspects of the underlying 
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models. A valuable overview and suggested experiments for that purpose have been 

recently provided by Modirshanechi et al. (2022).  

 

Conclusion 

With the current study we provide evidence for modality specific and modality 

independent aspects of mismatch responses in audition, somatosensation and vision 

resulting from a simultaneous stream of tri-modal roving stimulus sequences. Our 

results suggest that responses to stimulus transitions in all three modalities are based 

on an interaction of hierarchically lower, modality specific areas with hierarchically 

higher, modality independent frontal areas. We show that similar dynamics underlie 

these mismatch responses which likely reflect predictive processing and Bayesian 

inference on uni-modal and multi-modal sensory input streams. 
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Experimental paradigm. Participants were seated in front of a screen and received sequences of 
simultaneously presented bilateral auditory beep stimuli (green), somatosensory electrical pulse stimuli 

(purple) and visual flash stimuli (orange) each at either low or high intensity. On consecutive trials, stimuli 
within each modality either repeated the previous stimulus intensity of that modality (standard) or 

alternated to the other intensity (deviant). This created tri-modal roving stimulus sequences, where the 
repetition/alternation probability in each modality was determined by a single probabilistic model (see 

Probabilistic sequence generation). In 1% of trials (catch trials) the fixation cross changed to one of the 
three letters A, T or V, interrupting the stimulus sequence. The letter prompted participants to indicate 
whether the last auditory (letter A), somatosensory (letter T for “tactile”) or visual (letter V) stimulus, 

respectively, was of high or low intensity. Responses were given with a left or right foot pedal press using 
the right foot. 
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Probabilistic sequence generation. A) Schematic of state transition matrix. Colors depict transitions in the 
respective modality which were assigned specific transition probabilities: Green=auditory, 

purple=somatosensory, orange=visual, light-gray=tri-modal repetition, white=multi-modal change (set to 
zero). B) Visualization of states (s) evolving according to a Markov chain emitting tri-modal binary 

outcomes. C) Probability settings of stimulus sequences. Left column: Sequences. Right column: Averaged 
empirical change probabilities across all sequences. Top: Transition probabilities determine that for each 
modality a change is unlikely (p=0.025) if the other two modalities are congruent (and likely if they are 

incongruent; p=0.15). Middle: Transition probabilities determine that for each modality a change is likely 
(p=0.15) if the other two modalities are congruent (and unlikely if they are incongruent; p=0.025). Bottom: 
Transition probabilities determine that for each modality a change is equally likely (p=0.0875) if the other 
two modalities are congruent or incongruent. D) Averaged empirical change probabilities for predictability 

conditions. 
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Mismatch responses. Panels A-C show MMRs of auditory (A), somatosensory (B) and visual (C) modalities. 
Within panels: Left: MMN. Right: P3 MMR. Gray dots (top) and gray boxes (bottom) indicate significant MMR 

electrodes and time points with p_fwe<0.05. Top row: MMR scalp topographies (deviants-standards). 
Bottom row: Grand average ERPs (left panels) and beta parameter estimates of significant linear contrast 

clusters (right panels). Colored bars depict six beta parameter estimates of the TrainLength GLM (1, 2, 3, 4-
5, 6-8, >8 repetitions) averaged across electrodes within linear contrast clusters. Asterisks indicate 

significance of the linear contrast (p_fwe<0.05). 
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Cross-modal P3 effects. A) T-Maps of the conjunction of deviant>standard contrasts across the auditory, 
somatosensory and visual modalities. B) Beta estimates averaged across electrodes within significant 

clusters with peak p_fwe<0.05, resulting from two-way ANOVAs testing for differences between 
unpredictable, predicted and mispredicted deviants (red) and standards (blue). 
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Source localisation. Top row: significant sources (p_fwe<0.05) for the auditory (purple), somatosensory 
(green) and visual (orange) MMNs as well as their conjunction (yellow). Bottom row: significant sources 

(p_fwe<0.05) for the conjunction (yellow) of the P3 MMR in the auditory, somatosensory and visual 
modalities. 
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Modelling results. A) Schematic overview of models. Model comparison 1 (light-gray box, dashed contour): 
Null model family (NULL), train length dependent change detection model family (TLCD) and Bayesian 

learning model family (BL). Comparison 2 (gray box, dotted contour): Uni-modal regression model family 
(UM), cross-modal regression model family (UCM). Comparison 3 (dark-gray box, line contour): Read-out 
model family comparison of predictive surprise family (PS), Bayesian surprise family (BS) and confidence-

corrected surprise family (CS). B) Results of comparison 1 and 2 shown for all electrodes and post-stimulus 
time points. Color depicts exceedance probability (EP) φ>0.95. Light-blue=BL>TLCD, pink=UCM>UM. C) 
Topography of modeling results at time windows of MMN (top row) and P3 (bottom row). Left column: 

Results of comparison 1 (same colors as (B), depicting φ>0.95). Middle column: Results of comparison 3. 
EPs between 0.33 and 1 of the three surprise functions are represented by a continuous 3-dimensional RGB 

scale (red=predictive surprise (PS); green=Bayesian surprise (BS); blue=confidence-corrected surprise 
(CS)). Right column: Beta estimates of the model regressors of the UCM model (regressors: A=auditory; 

S=somatosensory; V=visual; CM=cross-modal; UM=uni-modal) for CS read-out models (top) and BS read-
out models (bottom). 
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Active inference and the two‑step 
task
Sam Gijsen1,2*, Miro Grundei1,2 & Felix Blankenburg1,2

Sequential decision problems distill important challenges frequently faced by humans. Through 
repeated interactions with an uncertain world, unknown statistics need to be learned while balancing 
exploration and exploitation. Reinforcement learning is a prominent method for modeling such 
behaviour, with a prevalent application being the two-step task. However, recent studies indicate that 
the standard reinforcement learning model sometimes describes features of human task behaviour 
inaccurately and incompletely. We investigated whether active inference, a framework proposing a 
trade-off to the exploration-exploitation dilemma, could better describe human behaviour. Therefore, 
we re-analysed four publicly available datasets of the two-step task, performed Bayesian model 
selection, and compared behavioural model predictions. Two datasets, which revealed more model-
based inference and behaviour indicative of directed exploration, were better described by active 
inference, while the models scored similarly for the remaining datasets. Learning using probability 
distributions appears to contribute to the improved model fits. Further, approximately half of all 
participants showed sensitivity to information gain as formulated under active inference, although 
behavioural exploration effects were not fully captured. These results contribute to the empirical 
validation of active inference as a model of human behaviour and the study of alternative models for 
the influential two-step task.

Sequential decision problems capture an important essence of the challenges regularly encountered by humans. 
Although the environmental structure and statistics often cannot be observed directly, they may be inferred 
through repeated interactions. Especially in case of a dynamically changing environment, a host of strategies have 
been proposed to underlie human decision making. Reinforcement learning is eminently cast as pursuing the 
long-term maximization of scalar reward1. This approach can either be model-free or model-based. A model-free 
approach states that action-selection proceeds based on the extent to which an action has been reinforced in the 
past. However, such a strategy ignores available knowledge about the environmental structure and is difficult to 
reconcile with goal-directed actions, consequently failing to capture important aspects of human behaviour2. 
In contrast, a model-based strategy is able to exploit structural knowledge in pursuit of goals and is therefore 
capable of predicting action outcomes.

The two-step task provides a prominent example of the application of reinforcement learning to the study of 
human decision-making3. The task requires the sequential traversal of two stages via binary action selection to 
accumulate rewards or avoid punishment. Specifically, the task was designed to disambiguate between model-free 
and model-based strategies. Model-based inference uses the probabilistic transition between the stages to steer 
itself towards lucrative states, while a model-free approach foregoes such transition-based planning and instead 
only relies on observed stimulus-action mapping. The two-step task has been highly influential and has seen 
widespread adoption, including the study of pathology such as obsessive-compulsive disorder4 and gambling 
disorder5. This research has generally used the hybrid reinforcement learning model as introduced by Daw et al.3, 
which combines independent model-free and model-based strategies. However, it has been shown that not all 
aspects of human behaviour on the two-step task are captured by this commonly-used reinforcement learning 
model6. Furthermore, it has been argued that the hybrid model may mischaracterise model-free behaviour as 
model-based7, or vice versa6,8.

Sequential decision problems additionally invoke the exploration-exploitation trade-off. Do we choose an 
option that is well-understood and known to be rewarding? Or should we risk foregoing this immediate reward so 
as to learn more about alternatives and in doing so potentially find an even more rewarding option? This conflict 
has been a prominent area of research in psychology9, neuroscience10,11, and computer science1,12. Exploration 
behaviour can result from stochasticity in action selection, randomizing choice rather than deterministically 
choosing the most rewarding action (random exploration). Additionally, action-values may not be purely reward-
based but can receive an additional information bonus, biasing actions toward uncertain options (directed 
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exploration). Directed exploration therefore describes an intentional process to minimize information discrep-
ancies between options, which has so far only been observed in a subset of studies on human behaviour11,13–15. 
It has been a particularly powerful descriptor of behaviour in the domain of visual sensing, in which efficient 
exploration is likely the primary goal16–18. However, as directed exploration is not part of the hybrid reinforce-
ment learning model, its potential role in the two-step task has not received much attention. Given that the 
two-step task features outcome-probabilities that drift over time, a model-based approach may benefit from an 
information gathering mechanism to promote exploration and discover rewarding actions. This begs the ques-
tion whether further variance in behavioural data may be explained by modeling directed exploration dynamics.

Active inference has been proposed in neuroscience as a framework for describing the exploration-exploita-
tion trade-off19. Derived from the free energy principle20, active inference leverages the concept of a generative 
model that is iteratively optimized and allows for planning and decision making21. By taking a probabilistic infer-
ence approach, it is closely related to the Bayesian-brain hypothesis22,23. Action selection is cast as a minimization 
of expected free energy, which combines terms for both the realization of an agent’s preferences and exploration. 
Under active inference, exploration results from seeking information gain, for which the generative model is 
used to infer the degree to which actions and their resulting observations may change belief distributions. Such 
a choice bias promotes directed exploration until the agent gains confidence in its understanding of its environ-
ment. At that point, further observations have a diminished impact on beliefs and the realization of preferences 
becomes a more dominant determinant of behaviour.

Active inference has a body of theoretical work24,25 and has been studied in-silico26–28. However, empirical 
validation based on human-behaviour has only recently started to emerge. For example, active inference was 
used to characterise atypical choice behaviour in individuals with substance use disorder29,30 and various other 
psychopathology31,32. Furthermore, model parameters fitted to human behaviour have been shown to correlate 
across time33 and to potentially hold predictive power of future symptomatology30. Congruent with active infer-
ence predictions, human choice behaviour has also been shown to not merely be a function of reward or utility, 
but also entropy maximization34,35. Nevertheless, it is unclear whether a central feature of the framework, namely 
its proposed resolution to the exploration-exploitation dilemma, is able to capture human behaviour better than 
existing models in a variety of task settings. This is an important aspect of the framework, given that without the 
information-gain incentive, especially on simpler tasks, active inference can reduce to generate highly similar 
behaviour as a purely reward-maximizing reinforcement learning agent.

In the current study, we leverage the widely studied two-step task to investigate the suitability of active 
inference as a description of human choice behaviour. To this end, we use four publicly available datasets. We 
compare the behavioural predictions of active inference to those of the hybrid reinforcement learning model 
and perform Bayesian model selection analyses. By doing so, we contribute to the emerging, empirical study of 
active inference as well as investigate an alternative model for behaviour on the two-step task.

Methods
Participants and behavioural task.  We studied human behavioural data in the two-step task originally 
designed by Daw et al.3. In this paradigm, participants first choose from two available initial-stage actions, each 
of which is uniquely associated with a likely (p = 0.7) and unlikely (p = 0.3) state transition to one of two final-
stage states. There, another decision needs to be made between two final-stage actions, which yields a binary 
outcome. The outcome probability for each second-stage action follows an independent Gaussian random walk 
(Fig. 1).

The two-step task was initially designed to disambiguate between model-free and model-based strategies. A 
pure model-free strategy solely relies on learning from observed stimulus-action mapping. In contrast, model-
based reasoning may use the known latent structure of transitions between initial-stage actions and final-stage 
states. The two-step task allows for the distinction between these two strategies by means of model comparison 
as well as analyses of averaged responses. The latter relies on the insight that model-free inference will lead to 
a greater probability to repeat an initial-stage action if it lead to the preferred outcome on the previous trial, 
independent of transition type. Model-based inference, in contrast, exploits the knowledge of state transitions 
and tends to repeat this initial-stage action only following a common transition. In case of a rare transition, the 
agent becomes more likely to switch to the other initial-stage action so as to increase its probability to access the 
promising, final-stage action.

The data was obtained from four publicly available datasets. These datasets were selected due to their similar 
task structure. First, 197 subjects participated in the online ’Daw two-step task’ by Kool et al.36. Two further 
datasets were made available by da Silva and Hare6. These “Magic Carpet” (n = 24) and “Spaceship” (n = 21) 
experiments focused on providing intuitive and thorough instructions regarding all aspects of the task. Finally, 
the “Shock” dataset by Lockwood et al.37 consists of 36 participants and differs from the aforementioned three 
experiments by using future electric shocks (or their absence) as the binary outcome rather than a monetary 
reward (or its absence). In addition, this study features two conditions in which participants are told the electric 
shocks will either be delivered to themselves (’self ’ condition) or another, anonymous participant (’other’ condi-
tion). Finally, it used different parameters for the Gaussian random walk ( µ = 0 , σ = 0.2 , reflecting boundaries 
at [0, 1]) than the other datasets ( µ = 0 , σ = 0.025 , reflecting boundaries at [0.25, 0.75]). All participants were 
explicitly told about the task structure and received training on the task prior to data-collection. Please refer to 
the original manuscripts for full experimental descriptions.

Logistic regression analyses.  Miller et al.38 introduced and verified a logistic regression analysis of ini-
tial-stage choice behaviour based on behaviour, transitions, and outcomes on multiple preceding trials in the 
two-step task. The method thereby allows for insight into how the local history of these factors influences deci-



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:17682  | https://doi.org/10.1038/s41598-022-21766-4

www.nature.com/scientificreports/

sion making without relying on a computational model. Here we adopt this analysis to describe behaviour across 
datasets and to validate model predictions of behaviour. The analysis was shown to alleviate issues of the original 
regression analyses introduced by Daw et al.3,38, which only considered the previous trial, by providing more 
accurate descriptions of behaviour and being less sensitive to learning rates. da Silva and Hare6 used a variation 
of this method to describe aspects of behaviour that are not visible in case only the previous trial is considered 
and showed the shortcoming of the hybrid reinforcement learning model in capturing this behaviour. Specifi-
cally, da Silva and Hare6 model the final-stage outcome in trial t as ot = +1 for positive outcomes (monetary 
rewards or absence of shocks) and ot = −1 otherwise (shocks or absence of monetary rewards), while transi-
tions are coded as τt = +1 for common transitions and τt = −1 for rare transitions. The dependent variable y is 
the initial-stage action (i.e., which of the two stimuli was chosen) on trial t ′ , coded as −1 and +1. Then, for each 
trial t of the T = 4 preceding trials, xt denotes the initial-stage choice made on that trial. This yields the follow-
ing regression model:

where the β-coefficients indicate the influence of variables in trial t ′ − t on the initial-stage choice in trial t ′ : βt′−t
0  

quantifies the influence of the initial-stage choice, βt′−t
o  quantifies the effect of observation, βt′−t

τ  quantifies the 
effect of transition, and βt′−t

o×τ  quantifies the interaction between observation and interaction. The model was fit for 
each participant separately using Scikit-learn39. To apply the analysis to the computational models and mitigate 
the randomness of choice selection, each participant’s maximum likelihood parameters were used to simulate 
model behaviour 20 times. The resulting regression coefficients were averaged across iterations.

Computational modeling.  In order to investigate the role of directed exploration on the two-step task, 
two families of models were implemented. A description of transition probability learning is followed by the 
common reinforcement learning approach and by a probabilistic framework implementing active inference with 
information-gain incentives. Parameters of both models are fit to participant behaviour and relative model per-
formance is analysed via Bayesian model comparison. The initial-stage had only one state sA (green in Fig. 1), 
while the final-stage had two possible states: sB and sC (pink and blue in Fig. 1). Each state had two actions, 
denoted aA and aB . On trial t, the initial-stage state is denoted by s1,t and the final-stage state s2,t , and similarly 
actions by a1,t in the initial-stage and a2,t in the final-stage. Outcomes ot refer to the binary, final-stage observa-
tions, consisting of the absence or presence of a monetary reward or a future electric shock depending on the 
dataset. As these only occur in the final-stage, they are always zero in the initial-stage.

Transition learning.  The transition structure p(s2,t |s1,t , a1,t) specifies how the two available initial-stage actions 
may transition the agent from s1,t to s2,t . As each dataset included a familiarization and training phase prior 
to the start of the experiment, participants were aware that the transition probabilities of initial-stage actions 
were mirrored and could either be p(sB|sA, aA) = p(sC |sA, aB) = 0.7 or p(sB|sA, aA) = p(sC |sA, aB) = 0.3 (with 
p(sB|sA, aA) = 1− p(sC |sA, aA) and p(sB|sA, aB) = 1− p(sC |sA, aB) ). Consequently, which initial-stage action 
commonly led to which final-stage state was unknown at the start of the task and thus had to be inferred. Here, 
we model this transition learning similar to previous studies, by having agents count transitions and on each 
trial choose the most likely transition structure based on the observed frequencies. The three options included 

(1)log

(
p(yt = +1)

p(yt = −1)

)
=

T∑

t=1

βt′−t
0 xt′−t + βt′−t

o ot′−txt′−t + βt′−t
τ τt′−txt′−t + βt′−t

o×τ ot′−tτt′−txt′−t

Figure 1.   A graphical abstraction of the two-step task. Each trial always starts in the same (here, green) initial 
state sA where participants choose between two green options. Each option is associated with a common and 
rare transition to one of two final-stage states. The green option aA here has a 0.7 probability to move the 
participant to the pink sB final state (common transition), and a 0.3 probability to transition to the blue sC 
final stage (rare transition). The transition probabilities for the green option aB are the opposite of those of aA . 
Both final-stage states have two further options to choose from (pink aA vs. aB and blue aA vs. aB ), which are 
associated with a binary outcome probability, each drifting independently over time The exact stimuli vary 
between studies.
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the two possible true structures described above as well as flat (p = 0.5) transition probabilities3,6,36. This simple 
strategy settles on the correct solution after only a few trials and allows for the use of identical transition learn-
ing between the active inference and model-based reinforcement learning models. More sophisticated methods 
would have a limited contribution as the correct solution is found quickly and does not change across the experi-
ment. As the identity of the states could be directly observed in all studies, the agents also have access to this 
information without the need for inference.

Hybrid reinforcement learning.  The hybrid reinforcement learning model combines the action evaluations of 
model-free and model-based algorithms. The model was introduced by Daw et  al.3, who used it to quantify 
the relative contributions of these two strategies to behaviour. Both strategies map state-action pairs to their 
expected discounted future return, captured by Q(s, a). The model-free strategy corresponds to the State-action-
reward-state-action (SARSA(� )) algorithm40, which updates the value of state-action pairs s, a at stage p = {1, 2} 
as follows:

where δ is the outcome prediction error, α ( α1 or α2 depending on the stage) is the learning rate, and � is the eli-
gibility parameter, modulating the effect of the final-stage prediction error on the values of initial-stage actions. 
Due to there not being an outcome on the initial-stage, the prediction error for this stage depends on the value 
of the selected final-stage action. The final-stage prediction error depends on the outcome ot and thus the  
Q− values for both stages are updated at the final stage, using the following errors:

The model-based algorithm differs from the model-free approach by using knowledge about the transitions 
between initial-stage actions and final-stage states. Final-stage actions are evaluated directly from prediction 
errors as in model-free learning, however, the value of each initial-stage action aj depends on its probabilistic 
mapping to final-stage states (and thereby to final-stage actions).

where AB and AC are the sets of available actions in the respective final-stage states ( sB and sC respectively).
The Q-values of the model-free and model-based algorithms are combined according to the weighting para 

meter w:

Note that there is no need to weigh model-free and model-based estimates for final-stage choices as the algo-
rithms do not differ there. Furthermore, the hybrid model includes pure model-free and model-based inference 
as special cases for w = 0 and w = 1 , respectively. Next, an action is selected using a softmax operator:

where ρ is a commonly included parameter modeling initial-stage response stickiness and rep(a′) is 1 if a is the 
initial-stage action that was chosen in the last trial and 0 otherwise36, and β is the inverse temperature parameter 
that controls the randomness of the action selection. Separate β1 and β2 parameters are fitted for each stage to 
allow for different levels of choice randomness.

Active inference.  Active inference agents rely on a generative model of the task. The estimated transition prob-
abilities (denoted by θ1 ) and outcome probabilities ( θ2 ; please see below) are together denoted as θ , with the 
generative model taking the following form:

In the current study we focus on information-gain incentives of final-stage outcome probabilities θ2 and omit 
state inference incentives from active inference due to the static transition probabilities θ1 and observable state 
identity. Note that if it is assumed for participants following training to be aware that the transition structure is 
one of two mirrored options (p = [0.3 0.7] or p = [0.7 0.3]), then both initial-stage actions provide equal amounts 
of information about transition probabilities. As a result, action-selection will only be sensitive to information 
discrepancies about outcome probabilities.

Under active inference, agents resolve the exploration-exploitation dilemma by basing action selection on 
a single expression. Actions are more probable to be selected if they minimise expected surprise about future 
observations21, that is, if they minimise expected free energy. This quantity can be expressed in variety of ways, 
with an intuitive decomposition featuring extrinsic and intrinsic value terms21:

(2)QMF(s, a) = QMF(s, a)+ αpδp,t�p,t(s, a)

(3)δp,t = ot + QMF

(
sp+1,t , ap+1,t

)
− QMF(sp,t , ap,t)

(4)δ1,t = QMF(s2,t , a2,t)− QMF(s1,t , a1,t)

(5)δ2,t = ot − QMF(s2,t , a2,t)

(6)QMB(sA, aj) = p(sB|sA, aj) max
a2∈AB

QMF(sB, a2)+ p(sC |sA, aj) max
a2∈AC

QMF(sC , a2)

(7)Qnet(sA, aj) = wQMB(sA, aj)+ (1− w)QMF(sA, aj)

(8)p(ap,t = a|sp,t) =
exp(βpQnet(sp,t , a)+ ρ × rep(a))∑
a′ exp(βpQnet(sp,t , a′)+ ρ × rep(a′))

(9)p(ot , s2,t |s1,t , θ) = p(ot |s2,t , θ)p(s2,t |s1,t , θ)p(θ)
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where p(ot |C) denote the prior preferences over outcomes and DKL is the Kullback-Leibler divergence, here 
between beliefs πt(θ2) about final-stage outcome probabilities θ2 before (prior) and after (posterior) hypotheti-
cally observing an outcome resulting from action selection. p(ot;πt(θ2)|a) can be understood as the distribution 
obtained from p(ot |θ2, a)πt(θ2) once θ2 has been marginalised out, noting that πt(θ2|a) = πt(θ2) by construction. 
For a given action, the extrinsic value term is a measure of how likely prior preferences are to be attained, while 
the intrinsic value term quantifies the expected information gain. The formulation above suffices for final-stage 
action selection, however, for the initial-stage the action-dependent state transitions need to be accounted for. 
As state inference was not included, this leads to the simplified setting wherein both prior preference realization 
and information-gain is limited to the final-stage actions. For a multi-step policy, we formulate the computation 
of the expected free energy for an initial-stage action aj . G(aj) depends on the probabilistic mapping of the action 
to final-stage states s2 and, by extension, the final-stage actions that are available in these states. Specifically, the 
estimated action-specific transition probabilities are multiplied by the expected free energy of the associated 
final-stage actions:

where AB and AC are the sets of available actions in the corresponding final-stage states ( sB and sC respectively).
The prior preferences capture the relative attractiveness of the different outcomes, with desired outcomes 

being assigned higher probabilities. Here we constrain the prior preferences regarding action outcomes to a 
Bernoulli distribution implying ot = 1 is preferred over ot = 0 following Marković et al.27:

The �-parameter specifies the precision of the prior preferences. For � = 0 (i.e., zero precision), the outcomes 
are valued equally and the agent will thus only maximize intrinsic value, corresponding to pure information gath-
ering about the outcome probabilities encoded by πt(θ2) . As � increases, the agent will value information-gain 
less and focus more on realizing prior preferences, thereby becoming increasingly risk-seeking. This precision 
parameter thus balances exploratory and exploitative behaviour.

Previous studies have modeled a tendency for participants to repeat initial-stage actions independent of the 
outcome36. Such behaviour may be modelled under active inference as a habit, which we here assume to be static 
across the experiment for simplicity, again constrained to a Bernoulli distribution:

with precision parameter κ and Ea(a) always set to zero for final-stage actions. Action selection at stage p = {1, 2} 
may then proceed by applying a softmax operation ( σ ) to the expected free energies, together with the habitual 
bias:

with γp functioning as an inverse temperature parameter, controlling the stochasticity of action selection. As in 
the hybrid model, two separate γ parameters are fit to participant data, allowing for different levels of random-
ness in initial- and final-stage action selection.

Finally, previous studies on multi-armed bandit tasks have found evidence for a bias in prior outcome 
probabilities41. To capture any such biases and their effects on action selection, the mean ( E[π0(θ2)] = α0

α0+β0
 ) 

of the prior Beta distribution is included as a free parameter in the model fitting procedure (please see below).
Next, we describe the learning rule of observations for the active inference models. This necessarily deviates 

from the hybrid reinforcement learning model as the aforementioned computations require probability distribu-
tions, rather than point estimates. Note that this only concerns the learning of final-stage outcome probabilities, 
as transition learning is shared across all models as detailed above. Liakoni et al.42 introduced surprise-based 
learning algorithms for changepoint paradigms that feature occasional resampling of the environmental statistics. 
We will briefly describe one such algorithm and subsequently modify it to better suit the current environment 
with drifting parameters.

For brevity, references to s and a have their subscripts dropped as they will generally refer to the final-stage. 
Wherever the initial-stage state or actions are concerned, these will be explicitly denoted by s1 and a1 . This process 
of observation emission corresponds to sampling from a Bernoulli distribution parameterized by an expectation 
θ2,a for each final-stage action, encoding the probability of observing ot = 0 or ot = 1 . A Bayesian agent requires 
a prior distribution over the estimated θ2 probabilities, for which conjugate Beta priors are appropriate:

In such a setting, Bayesian inference corresponds to the following simple update rules for the parameters of 
the Beta distributions:

(10)
Gt(a) = − Ep(ot ;πt (θ2)|at=a)

[
ln p(ot |C)

]
︸ ︷︷ ︸

Extrinsic Value

−Ep(ot ;πt (θ2)|at=a)[DKL(πt(θ2)|ot , at = a�πt(θ2))]︸ ︷︷ ︸
Intrinsic Value

(11)G(aj) = p(sB|sA, aj , θ1)
∑

a2∈AB

G(a2)+ p(sC |sA, aj , θ1)
∑

a2∈AC

G(a2)

(12)P(ot |C) =
1

Z(�)
eot�e−(1−ot )�.

(13)Ea(aj) =
1

Z(κ)
e
δat−1,aj κe

−(1−δat−1,aj )κ

(14)p(ap,t) = σ
[
−γpG(ap,t)+ Ea

]

(15)p(θ2) =

2∏

s=1

2∏

a=1

Be(αs,a,βs,a)
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with δ being the Kronecker delta, which is 1 if both variables are equal, and 0 otherwise. However, such updat-
ing will quickly lead to inflexible beliefs, making it unsuited for dynamic environments. Liakoni et al.42 propose 
an updating scheme based on the Bayes-factor surprise SBF≥ 0 , a ratio between the subjective probability of an 
observation under the current beliefs and prior beliefs. Together with a prior belief of the volatility of the envi-
ronment, ν∈ [0, 1] , this surprise quantity enables a simple learning rule that moves the current belief distribution 
over final-stage outcome probabilities πt(θ2) closer to the uninformed prior beliefs π0(θ2) (here: Be(α0,β0) ) based 
on the degree to which current observations are more likely under these prior parameters. This is achieved by 
scaling concentration parameters with a surprise-modulated adaptation rate χ∈ [0, 1] . The rate for the current 
trial χt may be computed as follows:

where m ≥ 0 depends on volatility v and modulates the effect of surprise on learning and p(ot;π(θ2)) refers to the 
subjective probability of observing ot under the belief π(θ2) , which is easily computed using the Beta-parameters 
α and β . Liakoni et al.42 continue to derive the following update rules for the Beta-distributions:

Effectively, surprising events shrink the concentration parameters of πt(θ2) towards those of π0(θ2) , caus-
ing previous observations to be forgotten and thereby increasing the effect current observations have on the 
belief distribution, enabling flexible learning. In the current drift paradigm we are not interested in weighing 
between a changepoint or continuation, but rather the degree to which the generative probability has diffused 
and is thereby incompatible with currently held beliefs. This discrepancy between beliefs and the world can be 
quantified by predictive surprise ( PS(ot)≥ 0 ), which has a significant relevance in behavioural and imaging 
neuroscience43–46 as well as active inference19. The influence of surprise on beliefs may then be mediated by a 
prior volatility parameter νPS∈ [0, 1]:

The update rules for the parameters corresponding to sampled actions then remain similar:

where l indicates a learning rate that may be fitted per participant and thus does not have to equate to 1. As 
probabilistic learning models are understudied in the context of the current paradigm, we also consider the 
possibility that beliefs decay independent of observations, akin to static forgetting. This may apply to beliefs of 
sampled actions, instead of or in addition to surprise-based learning, and unsampled actions, where it signals a 
gradual loss of confidence in beliefs about unexplored options, independently of PS(ot):

(16)αs,a = αs,a + δat ,aot

(17)βs,a = βs,a + δat ,a(1− ot)

(18)χt = χ(SBF ,m)

(19)χ(S,m) =
mS

1+mS

(20)
SBF =

p(ot;π0(θ2))

p(ot;πt(θ2))

m =
ν

1− ν

(21)p(ot;πt(θ2)) =

{
αs,a,t

αs,a,t+βs,a,t
if ot = 0

βs,a,t
αs,a,t+βs,a,t

if ot = 1

(22)αs,a,t = (1− χt)αs,a,t−1 + χtα0 + δat ,aot

(23)βs,a,t = (1− χt)βs,a,t−1 + χtβ0 + δat ,a(1− ot)

(24)χt = χ(PS,m)

(25)χ(S,m) =
mS

1+mS

(26)PS = − ln p(ot;πt(θ2))

(27)m =
νPS

1− νPS

(28)αs,a,t = (1− χt)αs,a,t−1 + δat ,aot l

(29)βs,a,t = (1− χt)βs,a,t−1 + δat ,a(1− ot)l
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where ν indicates a prior volatility parameter, with separate parameters ν = {νSD , νUD} for sampled and unsam-
pled actions respectively. Here, beliefs are assumed to decay back to the prior distributions over time rather than 
shrinking to zero, as very small concentration parameters may lead to computational instability.

We formulate variations of the learning model that allow for surprise-based learning, static forgetting imple-
mented as decay of concentration parameters, or both (Fig. 2). The rates of these mechanisms are governed by 
free volatility parameters. The resulting model-based hypotheses may be compared via model-comparison. Many 
further model variants may be hypothesized, including the possibility of ’shared’ parameters between forgetting 
and surprise-learning. We limit the analysis to a smaller amount of models for two reasons. First, the binary 
reward structure of the task was deemed likely to provide insufficiently detailed behavioural data to dissociate 
large numbers of highly similar models. Second, the current work aims to understand the explanatory power 
of active inference in the two-step task, rather than an exhaustive study of underlying learning dynamics. A 
comparison between potential key features of learning (decay and surprise-based learning) was performed to 
approximate an adequate level of flexibility to enable inference on the action-selection level. Hereby we intend 
to ameliorate the impact of potential complex interactions between learning dynamics and action-selection on 
model fitting.

Model fitting and model comparison.  In order to fit the free parameters of the computational models to the 
participant choice data we used a constrained minimization algorithm (’L-BFGS-B’ as implemented in Scipy47). 
To mediate the problem of local optima, the optimization was ran 25 times for each participant with different 
(uniformly) randomized initializations for all parameters. The iteration that yielded the highest log likelihood 
was used for the model comparison procedures.

Fixed-effects model comparisons were performed using the Akaike’s Information Critria (AIC) and Bayesian 
Information Criteria (BIC).

with k being the number of free parameters in the model, n the amount of trials, and L̂ denoting the maximized 
value of the subject- and model-specific log likelihood function. These approximations of log model evidence 
were then subjected to random-effects Bayesian model selection as implemented in SPM ( spm_BMS.m ; Wellcome 
Trust Centre for Neuroimaging, Institute for Neurology, University College London, London, UK). This algorithm 
yields model-specific exceedance probabilities, representing the probability that the model has a higher frequency 
than the other included models on the group-level. The method additionally provides protected exceedance 
probabilities, which are more conservative by accounting for the possibility that apparent differences in model 
frequencies arise due to chance48. Models that share certain characteristics may be grouped into ’families’, and 
the subsequent comparison of families rather than individual models allows for inference on the contribution 
of these characteristics to the model fit49. This analysis is implemented in SPM’s spm_compare_families.m , for 
which we set priors to be equal across families rather than models (“F-unity” priors). As protected exceedance 
probabilities are not available for family-level inference, we present exceedance probabilities for these analyses.

To investigate the strengths and shortcomings of models in their ability to describe participant data, the 
models were used to simulate behaviour on the two-step task. The subject-specific parameters that maximized 
the log likelihood, as described above, were used to simulate action selection on the two-step task for 20 inde-
pendent runs. Identical logistic regression analyses were then applied to this synthetic choice data, of which the 
resulting beta-coefficients allow for a comparison to the participant-derived coefficients. For �-parameter reli-
ability analyses, these synthethic datasets were subsequently subjected to the parameter-fitting procedure. The 
recovered �-parameters were then compared with the parameter values fitted to the subject’s actual choice data.

(30)αs,a,t = (1− ν)αs,a,t−1 + να0

(31)βs,a,t = (1− ν)βs,a,t−1 + νβ0

(32)BIC := k ln(n)− 2 ln(L̂)

(33)AIC := 2k − 2 ln(L̂)

Figure 2.   Graphic summary of learning models. Four variants of the learning model are compared, 
differentiated by their forgetting kinetics with associated prior volatility parameters ν . The NUD and NSD 
models omit decay of concentration parameters of beliefs for unsampled and sampled actions respectively 
(corresponding to νUD = 0 and νSD = 0 ), while the NPS model excludes surprise-based learning ( νPS = 0 ). The 
more complex Full model incorporates all three learning dynamics.
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Results
Logistic regression analyses.  By inspecting the regression coefficients resulting from the logistic regres-
sion analyses, considerable differences in participant behaviour were observed across the datasets (Fig. 3). Most 
notably, behaviour in the Magic Carpet and Spaceship paradigms showed a greater outcome-transition interac-
tion, a proxy of model-based inference. They additionally showed larger main effects of transition: small positive 
coefficients for the previous trial, with larger negative coefficients for behaviour two and three trials back. This 
indicates that common transitions lead participants to actively switch to the other initial-stage action independ-
ent of trial outcomes, potentially indicating information-seeking behaviour6. These effects were largely absent in 
the remaining datasets. Main effects of outcome were relatively small in the Magic Carpet and Spaceship tasks, 
while the intercept terms were comparable across all included datasets.

Comparing hybrid reinforcement learning and active inference.  The hybrid reinforcement learn-
ing (Hybrid-RL) model and the active inference model were compared in their ability to explain participant 
choice data via Bayesian model selection. To do so independently of the variations of the probabilistic learning 
model displayed in Fig. 2, these were clustered into a family and compared against a family containing only the 
Hybrid-RL model. The active inference family was found to describe single-trial participant behaviour better 
for the Magic Carpet and Spaceship datasets (both exceedance probabilities φ > 0.99 ), with consistent results 
between AIC (expected posterior probabilities of �rAI � = [0.86, 0.89] respectively) and BIC ( �rAI � = [0.82, 0.87] 
respectively) (Fig. 4A,C). For the other datasets, the metrics did not agree on the best performing family. Using 
AIC, the Online and Shock datasets slightly favoured Hybrid-RL ( �rRL� = [0.57, 0.50, 0.59] ), while the active 
inference family scored better using BIC ( �rAI � = [0.68, 0.66, 0.65]).

The different learning models were subsequently compared against one another (Fig. 4B,D). In multiple 
cases, there was ambiguity about the best scoring model. For the Magic Carpet and Spaceship datasets, only 
AIC provided strong evidence for a model: the “Full”-variant with both belief decay and surprise-based learn-
ing (protected exceedance probabilities φ̃ = [0.98, 0.98] respectively). Using BIC, model scores were distributed 
across the Full, NSD, and NPS model variants. For the Online and Shock datasets, the simpler ’NSD’-model which 
omits decay of concentration parameters for the sampled action tended to score highest. However, this was only 
clearly the case for the Online dataset, with φ̃ > 0.99 using both AIC and BIC. Expected posterior probabilities 
were quite widely distributed over the Full, NSD, and NPS variants. This was also found for the Shock dataset, 
indicating that the best fitting learning model differed across subjects. As the Online dataset contained more 
subjects, exceedance probabilities were still high due to greater confidence a majority of subjects used the NSD 
variant. The NUD variant, omitting decay of concentration parameters of unsampled actions, scored poorly 
across all datasets and metrics. This indicates the importance for a decay of concentration parameters of beliefs 
about unsampled actions, likely to appropriately capture the behavioural flexibility observed in participants. 
Overall, a dissociation between learning models was incomplete.

Simulation analysis.  To gain insight into the extent to which the models capture participant behaviour, we 
simulated model behaviour on the two-step task. The maximum likelihood parameter estimates were used and 
the resulting synthetic datasets were submitted to the logistic regression analyses (Fig. 5A). The Full model was 
used for the Magic Carpet and Spaceship datasets, while the NSD variant was chosen for the Online and Shock 

Figure 3.   Logistic regression analyses. Regression analysis of first-stage actions based on the previous four 
trials. (A) Regression coefficients for the intercept, main effects of outcome and transition, and outcome-
transition interaction only on the preceding trial across the different datasets. (B–F) Each subplot shows the 
coefficients for one dataset on all four preceding trials.



9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:17682  | https://doi.org/10.1038/s41598-022-21766-4

www.nature.com/scientificreports/

datasets. On the Magic Carpet and Spaceship datasets, the active inference model appears to better capture the 
strong interaction between outcome and transition type, while it is underestimated by the Hybrid-RL model. 
The active inference model displays minor main effects of transition, although not to the extent that they are pre-
sent in the participant data, while being absent in the Hybrid-RL model. For the Online and Shock datasets, the 
smaller interaction terms and close-to-zero interaction terms are reproduced by both models. The main-effects 
of outcome are reproduced by the Hybrid-RL model, but not by active inference.

Correlation analyses.  To follow up on the differences between the model families, we inspected potential 
contributions to differences in model fit. Specifically, as regression analyses suggest that behavioural datasets 
which are better explained by active inference show both greater model-based inference as well as potential 
directed exploration, we investigated which of these correlated with relative model fit. We additionally compute 
correlations between the �-parameter and the main-effects of transition to understand whether this averaged-
based metric indeed tends to be greater for subjects sensitive to information-gain as identified by a low �-param-
eter.

The correlation analyses between single-subject relative model fits and the interaction term between out-
come and transition type (as a proxy for model-based inference) were positive and larger for the Magic Carpet 
(Pearson’s r = 0.71 , p < 0.001 ) and the Spaceship ( r = 0.63 , p = 0.002 ) datasets (Table 1). For the Online and 
Shock (Other, Self) datasets, correlation coefficients were lower ( r = [0.19, 0.18, 0.08] , p = [0.009, 0.29, 0.63] 
respectively). As the �-parameter was not normally distributed, we adopt two common approaches. First, we 
offset the data such that the lowest value was 1, allowing for a log-transformation of the data and computing 
Pearson’s r ( rp ). Second, we used the data without transformation to compute the non-parametric, rank-based 
correlation measure Spearman’s r ( rs ). Repeating the aforementioned analyses for the �-parameter and relative 
model fit, a similar contrast between datasets appeared. Modest correlations were observed in the Magic Car-
pet ( rp = −0.35, p = 0.09 , rs = −0.14, p = 0.51 ) and Spaceship ( rp = −0.45, p = 0.04 , rs = −0.40, p = 0.07 ) 
datasets. Meanwhile, the correlations were smaller for the Online and Shock datasets ( rp = [0.10, 0.18, 0.08] , 
p = [0.16, 0.29, 0.66] and rs = [0.09, 0.11,−0.10] , p = [0.26, 0.53, 0.56] , respectively). The correlations between the 
�-parameter and the transition-coefficients were again somewhat larger for the Magic Carpet ( rp = 0.29, p = 0.16 , 
rs = 0.26, p = 0.23 ) and Spaceship ( rp = 0.55, p = 0.01 , rs = 0.34, p = 0.13 ) tasks, compared to the Online and 
Shock datasets ( rp = [0.14,−0.08,−0.07] , p = [0.06, 0.63, 0.70] and rs = [0.09, 0.07,−0.17] , p = [0.23, 0.70, 0.33] , 
respectively).

Figure 4.   Bayesian model comparison. (A,C) Expected posterior probabilities resulting from the Bayesian 
Model Comparison between the RLf  family containing the hybrid-reinforcement learning model and the AIf  
family, containing the active inference models with varying learning dynamics (see Fig. 2) using AIC (A) and 
BIC (C). φ indicates the exceedance probability in favour of the best-scoring family. (B,D) Expected posterior 
probabilities for the different learning models contained within the AIf  family. φ̃  indicates the protected 
exceedance probability of the best-scoring model.
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Evidence for directed exploration.  Next, the role of the �-parameter was further investigated. The distri-
bution of parameter values resulting from the maximum-likelihood procedure is displayed in Fig. 5C. In every 
dataset, a bimodal distribution was found, with a majority of participants having a �-parameter of smaller than 
one or close to the upper bound of ten (Fig. 5C). To analyse the effect of the �-parameter on the main-effect of 
transition in the regression analysis directly, participants were stratified into two groups: a low � group ( � < 1.5 ) 
and a high � group ( � > 1.5 ). The associated model parameters were subsequently used to simulate group-
specific behaviour on the two-step task. The low � group displayed moderately stronger transition effects than 
the high � group (Fig. 5B). Nevertheless, even this low � group did not exhibit transition effects to the extent that 
these were observed in behavioural participant data.

In an exploratory analysis, we compared whether task performance in terms of average obtained 
reward differed between the low and high � groups. A Welch’s t-test was used due to unequal 

Figure 5.   Simulation analyses. (A) The Hybrid-RL (Left) and active inference (Right) models were used to 
simulate behaviour on the two-step task using the maximum-likelihood parameters for each participant. The 
resulting data were subjected to the same logistic regression analyses as the participant data of Fig. 3. (B) Data 
was simulated for participants with low (Left) and high (Right) values of � separately. The coefficients resulting 
from the logistic regression are plotted per group. (C) The recovered values of the �-parameter per dataset, 
displaying highly bimodal distributions. (D) A comparison of true but unknown �-parameter values and the 
recovered values. Each datapoint depicts one participant.
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variances and sample sizes for some datasets. The high � group obtained slightly more reward on most data-
sets ([+ 11.9%, + 4.0%, + 1.3%, − 0.5%, + 3.3%] for the Magic Carpet, Spaceship, Online, Shock (Self ) 
and Shock (Other) datasets respectively), with uncorrected p < 0.05 for the Magic Carpet dataset 
( t(p) = [−2.28(0.03),−0.49(0.47),−1.04(0.29), 0.12(0.91),−0.94(0.35)]).

Finally, we verified that the �-parameter could be accurately recovered given the constellation of model 
parameters as identified in the participant sample. Synthetic choice data was repeatedly generated using the 
set of parameters of every subject, which subsequently underwent parameter fitting. The results of this recov-
ery analysis for the �-parameter is displayed in Fig. 5D. Correlations between true and recovered parameter 
values were high for both the Magic Carpet ( rp = 0.85, p < 0.0001, rs = 0.90, p < 0.0001 ) and Spaceship tasks 
( rp = 0.74, p = 0.0001, rs = 0.60, p = 0.004 ). Parameter values were often recovered accurately for low values 
of � , although especially in the Spaceship dataset this was not successful for all participants. Many of the high �
-parameter values were underestimated, which likely stems from increases in � having diminished effects. As � 
increases past values of approximately 3, the expected free energy is already heavily biased towards preference 
maximization. For example, due to the linear scaling an increase in � from 0.1 to 0.5 is comparable in size to 
an increase from 2 to 10. The large upper bound on � of 10 was to ensure a pure preference-realization strategy 
could be captured by the model-fitting procedure and not due to the idea that variations in large � values would 
meaningfully change behaviour. Overall, for most participants, the �-parameter could be recovered successfully, 
although with considerably noise and inaccuracy for multiple subjects.

Discussion
In this paper, we collected and analysed datasets of human participants performing the two-step task and com-
pared the explanatory power of the active inference framework to that of the standard hybrid reinforcement 
learning (Hybrid-RL) model. Logistic regression analyses revealed marked differences in initial-stage choice 
behaviour of participants between datasets, with two datasets exhibiting markedly greater model-based inference. 
Bayesian model comparison indicated that only these two datasets were significantly better described by active 
inference. The degree to which participants used model-based inference was found to strongly correlate with 
the relative performance of the models, while the exploration-exploitation parameter � showed only a small to 
moderate relationship. Model simulations indicated that the probabilistic learning underlying active inference 
likely contributed to the better model fits and that exploration behaviour of subjects was better captured by active 
inference, albeit only partially. This was the case even when analysing only those subjects who were classified as 
most strongly pursuing directed exploration.

The Magic Carpet and Spaceship datasets featured comparatively small effects of outcome yet stronger effects 
of both transition type and the interaction of outcome and transition type. This replicates the results reported 
by da Silva and Hare6, suggesting a greater degree of model-based inference in these datasets compared to the 
Online and Shock tasks. The Shock study37 provided thorough instructions to participants, as did the Online 
study36. However, neither provided detailed explanations for all aspects of the task, such as transition type. da 
Silva and Hare6 argued that providing intuitive reasons for task dynamics aided participants in adopting a more 
accurate model of the task. This is plausible as task knowledge is known to be able to influence the task model50, 
with direct comparisons having been performed for the two-step task specifically51. Although the current work 
does not aim to explain why behaviour differed between tasks, we recover a similar behavioural discrepancy.

By partitioning model space, we were able to compare the Hybrid-RL model to active inference independent 
of the specific learning model. The discrepancy between datasets also persisted on this level, as we showed strong 
evidence in favour of active inference for the Magic Carpet and Spaceship datasets, yet there was no consensus 
between AIC and BIC for the Shock and Online datasets. As BIC penalizes models for their complexity more 
than AIC does, a lack of consensus implies that the additional parameters in the active inference models did not 
sufficiently increase the fit of the model. As such, additional caution is warranted when inspecting the comparison 
of the individual active inference models for the Shock and Online datasets.

Overall, we were unable to convincingly dissociate between learning models, indicated by the lack of con-
sensus between metrics. Nevertheless, on the Magic Carpet and Spaceship tasks, the more complex, full model 
scored well using AIC, combining both decay and surprise-based learning for chosen actions. A trend was 
observed where a simpler model without decay of concentration parameters for sampled actions scored best for 

Table 1.   Correlation analyses. Correlation coefficients and uncorrected, associated p values. Due to � not 
being normally distributed, both Pearson’s r using log-transformed data (left) and Spearman’s r (right) using 
untransformed data are presented for its analyses. βt′−1

o×τ  : regression beta-coefficient for the interaction between 
outcome and transition type for the preceding trial, �L̂ : difference in values of maximized log likelihood 
function for the Hybrid-RL and best fitting active inference model, βt′−2,3

τ  : beta-coefficient encoding the main 
effect of transition type at the second and third previous trials. Significant values are in [bold].

Paradigm corr(βt
′−1
o×τ  , �L̂ ), (p) corr(� , �L̂ ), (p) corr(� , βt

′−2,3
τ  ), (p)

Magic Carpet 0.71 (< 0.001) − 0.35 (0.09)/− 0.14 (0.51) 0.29 (0.16)/0.26 (0.23)

Spaceship 0.63 (0.002) − 0.45 (0.04)/− 0.40 (0.07) 0.55 (0.01)/0.34 (0.13)

Online 0.19 (0.009) 0.10 (0.16)/0.09 (0.26) 0.14 (0.06)/0.09 (0.23)

Shock (Self) 0.18 (0.29) 0.18 (0.29)/0.11 (0.53) − 0.08 (0.63)/0.07 (0.70)

Shock (Other) 0.08 (0.63) 0.08 (0.66)/− 0.10 (0.56) − 0.07 (0.70)/− 0.17 (0.33)
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the Online and Shock datasets. This model only uses surprise-based learning to update beliefs about outcomes 
of chosen actions, although a model with only decay and without surprise-based learning scored similarly. These 
results suggest that learning dynamics are the result of only decay or surprise-based learning, but not both. The 
high protected exceedance probabilities but low posterior probabilities for the Online dataset likely result from 
the large amount of participants. This combination suggests a very high probability that a model without decay is 
most prevalent in the sample, yet behaviour of many participants is best described by other models. A consistent 
finding, however, is the very low scoring of the model without decay of beliefs about unsampled actions. This 
may highlight an important distinction between the learning rule based on probability distributions and the 
Hybrid-RL model. Using probabilistic learning, sampling an action increases the concentration parameters of 
a belief distribution, often equated to increases in confidence52. In absence of a decay or forgetting mechanism, 
these higher concentration parameters impede flexible behaviour when an action is revisited at a later time and 
appears rewarding. Thus, the poor scores of this model imply the use of such a decay mechanism by participants 
in the Magic Carpet and Spaceship tasks. Due to the lower scoring of active inference in the remaining datasets, 
it could alternatively indicate that rather than using belief distributions, participant behaviour on the Online and 
Shock datasets is best described as learning point estimates (such as Q-values in reinforcement learning), which 
intrinsically allow for continued flexible behaviour. Nevertheless, forgetting mechanisms are commonplace in 
cognitive and neuroscience46,53,54 and have been previously shown to improve model fits on the two-step task55,56.

To gain insight into what drives the relative model scores, we simulated behaviour using the Hybrid-RL 
and best fitting active inference models. The strong positive interactions between outcome and transition type 
observed with the Magic Carpet and Spaceship tasks were reproduced by the active inference model, but not the 
Hybrid-RL model. This interaction has generally been interpreted to show model-based inference3, but using 
the current analyses by Miller et al.38 shows the progression of this term over trials and thereby reveals further 
information about the learning dynamics. Besides the strength of the interaction, its relative and diminished 
influence on preceding trials shows the sensitivity of beliefs to the history of observed outcomes. As such, it is 
mainly interpreted as a reflection of underlying learning dynamics rather than a function of action selection. 
The ability to capture this interaction term accurately thus further shows promise for the role of probability 
distributions to model learning on the two-step task, displaying a better description of behaviour than the 
Q-value learning strategy of the Hybrid-RL model. This finding fits with the general idea underlying the Bayes-
ian brain hypothesis23. However, this advantage does not extend to the Online and Shock datasets, as the weaker 
interaction-terms are reproduced by both models.

The main effects of outcome have been interpreted as a proxy of model-free inference3. These effects, which 
are especially prevalent on the Online and Shock datasets, are not captured by the active inference model as 
the underlying learning rule we used is purely model-based. This discrepancy between human behaviour and 
active inference simulations likely contributes to the lower active inference scores on the model comparison 
analyses for these two datasets. Although active inference often receives a (generative) model-based treatment 
in the literature21,57,58 and is therefore the focus of the current work, the framework is not incompatible with 
multi-system theories (such as the co-existence of separate model-free and model-based inference under the 
Hybrid-RL model). For example, active inference as implemented here could be used in conjunction with algo-
rithms more similar to the model-free part of the Hybrid-RL model, which may be implemented as a form of 
habitual behaviour19. This could form the basis of interesting future extensions and may lead to a model better 
able to account for the distinct behaviour observed across datasets. Nevertheless, such an approach may only 
yield marginal improvements for the datasets investigated here. First, behaviour in the Online and Shock datasets 
does not reveal strong main effects of transition type and are thus unlikely to benefit from modelling directed 
exploration via expected free energy. Second, main effects of outcome are minor on the Magic Carpet and Space-
ship tasks, which are thus unlikely to feature significant model-free behavioural components. Taken together, the 
simulation analyses thus far appear to confirm the model comparison analyses which indicated only the Magic 
Carpet and Spaceship datasets to be better described by active inference.

A critical component of active inference is its formulation of the exploration-exploitation trade-off. The 
studies by da Silva and Hare6 included post-hoc reports of subjects, which included descriptions of intentionally 
visiting a specific final-stage state multiple times, before actively aiming for the other state. These reports are 
congruent with the observed transition effects and the authors proposed this may indicate directed exploration 
behaviour. The main effects of transition type observed on the Magic Carpet and Spaceship datasets are con-
siderably weaker in the active inference simulations. For the active inference model to provide a behavioural 
description that is incompatible with a pure reward driven strategy, sufficient weight needs to be assigned to the 
information gathering term. This was found for approximately half of all subjects, suggesting that sensitivity to 
information gain was common. Although necessary, it is not a sufficient condition to produce significant effects 
of transition-type. For example, small learning rates, as well as small decay rates, diminish the effect of new 
observations on beliefs and thereby also decrease the information gain term of the expected free energy. Thus, 
noticeable transition-type effects also require observations to be able to significantly impact beliefs under cur-
rent model assumptions. By performing the simulation analyses for subjects assigned a low or high �-parameter 
separately, we show that this parameter does contribute to the main-effects of transition when using participant 
parameters, although the stratification of the datasets leads to small sample sizes. The correlation analyses sup-
port this, as participants with greater transition effects tend to be assigned lower � values. In addition, these 
lower parameter values appear associated with relatively better model fits for active inference. However, the 
correlations are small-to-moderate in strength and even the simulations for the low �-parameter group still do 
not fully capture the transition effects seen in the behavioural data. It is important to note that the two-step task 
was not specifically designed to disambiguate directed exploration strategies. Participants in the low � group did 
not obtain more reward, probably due to the little influence agents have on the obtained rewards as shown by 
Kool et al.36. Ultimately, as per the exploration-exploitation trade-off, exploration is only worthwhile if sacrificed 
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short-term reward can be recouped by utilizing obtained information via different action selection strategies. 
In sum, active inference as implemented here likely does not provide a full description of observed exploration 
behaviour, although surrogate tasks should be considered.

Alternative specifications for an information-bonus have been considered by previous research. Compared 
to computing the expected Kullback-Leibler divergence, simpler accounts include an ’all-or-nothing’ bonus, in 
which the least-explored option receives a fixed information bonus59. Others have modelled directed exploration 
by scaling the information-bonus linearly by using a count of the number of times an option has been selected15. 
More sophisticated strategies are time-horizon dependent60, a further possible extension to the current active 
inference implementation already discussed in the literature61. Another possibility altogether is the existence of 
distinct exploration and exploitation states, rather than a weighted trade-off that is computed on a single-trial 
basis11.

An important issue for studying exploration is the coupling of reward and information. In many paradigms, 
including the two-step task, participants receive only outcome information about the selected action. To the 
extent that participants act to obtain rewards, more rewarding actions naturally tend to be sampled more often, 
thus correlating how much information participants have about an option and how rewarding it is59. Research-
ers have attempted to manipulate the value of either strategy using ideas such as forced sampling15 and periodic 
introductions of novel options62. Additionally, Horvath et al.63 modeled a bandit-task using an approach similar 
to active inference, but withheld reward-information on a subset of trials. This allowed for a demonstration 
of human sensitivity to an information-bonus computed as the expected Kullback-Leibler divergence. As the 
two-step task was designed for the disambiguation of model-free and model-based inference, the resulting lack 
of decoupling between reward and information may have interfered with identifying a directed exploration 
strategy due to its correlation with a reward-maximization strategy. The level of noise in the parameter recovery 
supports this interpretation.

Some considerations of the current work deserve mention. First, due to interactions between learning and 
action selection processes, it is possible active inference would explain exploration behaviour better when com-
bined with a different learning algorithm than ours. This may be the case directly with respect to the employed 
learning rule, for example by using a hierarchical model that estimates environmental volatility. It could, however, 
also be a function of the (misconstrued) task model, on which directed exploration relies to predict informa-
tion gain. Secondly, the current study implements active inference by specifying expected free energy as the loss 
function for action selection. Over time, the scope of active inference in the literature has been extended to also 
include learning and inference schemes, often based on message-passing implementations64. Although we focused 
on final-stage outcomes to stay close to the two-step task literature, the exploration of more expansive applications 
of the framework may be considered in the future, including potential information-gain incentives for inference 
about the transition structure. Future research might also extend its scope beyond directed exploration incen-
tives to explore dynamic habitual control via learned, rather than static, habits, which might allow for an active 
inference-based analogue to model-free inference. Moreover, the Hybrid-RL model learns point estimates and 
active inference uses probability distributions, preventing direct comparisons of action selection strategies on 
this task. This complicates the interpretation of relative model fits as these may result from differences in either 
learning or action selection. Nevertheless, we aimed to mediate this issue by using additional logistic regression 
analyses instead of relying only on model comparisons. Overall, the aim to investigate the applicability of active 
inference in describing data not specifically recorded for this purpose using diverse datasets did complicate 
drawing certain conclusions. As such, the heterogeneity of the datasets is difficult to fully account in part due 
to considerable differences in sample sizes. The analyses presented here should thus be regarded as a proof-of-
principle to steer future work testing the empirical validation of active inference.

To conclude, we replicated results by da Silva and Hare6 and extended on behavioural discrepancies between 
datasets of the two-step task. Participants in the Magic Carpet and Spaceship datasets not only appeared to 
perform more model-based inference, but also showed more volatile learning dynamics and greater transi-
tion effects, which indicate the use of directed exploration strategies. These two datasets were better described 
by an active inference model than a Hybrid-RL model, while the models scored similarly for the Online and 
Shock datasets. For the Magic Carpet and Spaceship datasets, the use of a learning model based on probability 
distributions appeared to contribute to the better model fits and captured behaviour better than the Hybrid-RL 
model. For such a model, a decay mechanism for beliefs about unsampled options was found to be important. 
Model parameters indicated that approximately half of all subjects were sensitive to information gain of actions. 
However, active inference was only partly able to capture the observed transition effects, and thus likely did not 
provide a full account of exploration behaviour.

Data availability
The datasets analysed during the current study were previously made available by Kool et al.36 (github.com/wkool/
tradeoffs), Lockwood et al.37 (osf.io/3stp9/files), and da Silva and Hare6 (github.com/carolfs/muddled_models).

Code availability
The modeling code used in this work is available at github.com/SamGijsen/AI2step.
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