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Abstract
Recent advancements in deep learning have revolutionized method development in
several scientific fields and beyond. One central application is the extraction of equi-
librium structures and long- timescale kinetics from molecular dynamics simulations,
i.e. the well-known sampling problem. Previous state-of-the art methods employed
a multi-step handcrafted data processing pipeline resulting in Markov state models
(MSM), which can be understood as an approximation of the underlying Koopman
operator. However, this approach demands choosing a set of features characterizing
the molecular structure, methods and their parameters for dimension reduction to
collective variables and clustering, and estimation strategies for MSMs throughout
the processing pipeline. As this requires specific expertise, the approach is ulti-
mately inaccessible to a broader community.
In this thesis we apply deep learning techniques to approximate the Koopman oper-
ator in an end-to-end learning framework by employing the variational approach for
Markov processes (VAMP). Thereby, the framework bypasses the multi-step process
and automates the pipeline while yielding a model similar to a coarse-grained MSM.
We further transfer advanced techniques from the MSM field to the deep learning
framework, making it possible to (i) include experimental evidence into the model
estimation, (ii) enforce reversibility, and (iii) perform coarse-graining. At this stage,
post-analysis tools from MSMs can be borrowed to estimate rates of relevant rare
events. Finally, we extend this approach to decompose a system into its (almost)
independent subsystems and simultaneously estimate dynamical models for each of
them, making it much more data efficient and enabling applications to larger pro-
teins.
Although our results solely focus on protein dynamics, the application to climate,
weather, and ocean currents data is an intriguing possibility with potential to yield
new insights and improve predictive power in these fields.

Keywords: Koopman operator, deep learning, molecular dynamics, neural net-
works, generative models, physical constraints, decomposition
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1. Introduction

Research fields such as climate prediction, fluid dynamics, molecular dynamics, and
drug discovery are confronted with the problem of understanding the thermody-
namics and kinetics of complex systems. Rapid advances in computing power and
simulation techniques allow the generation of extensive simulation data. Therefore,
it is of great interest to develop methods capable to automatically extract the sta-
tistically relevant information.
The difficulties in analyzing such problems arise from the fact that they are typically
observed in a high dimensional space, where the dynamics are nonlinear. Conse-
quently, a wide range of dynamical models have been developed, where the complex
nonlinear dynamics in the observed space are lifted by non-linear functions into a
space where the dynamics become linear. The approach can be summarized by the
following equation:

E[χ1(xt+τ )] = KT
χE[χ0(xt)], (1.1)

where χ1(xt+τ ) and χ0(xt) transform the observed state variable x into a feature
space, where the dynamics are described linearly by the matrix Kχ. The expec-
tation value E is evaluated over time and accounts for stochasticity. By special
choices for the feature transformation the model can be linked to specific methods.
Choosing χ1 = χ0 = x the model describes dynamic mode decomposition (DMD)
[1–3]. Restricting the feature functions to indicator functions, thereby clustering the
observable state into states, Eq. 1.1 describes the propagation of a Markov State
Model (MSM) or equivalently of Ulam’s Galerkin method [4–7]. There, the propa-
gation matrix Kχ encodes the probability to transition between the defined states,
hence called transition matrix.
In general, the equation describes a low rank approximation of the Koopman oper-
ator [8, 9]. In practice, the optimal choices for feature transformation are sought,
which are given by the singular functions of the Koopman operator [9–13]. Therefore,
several methods to approximate these functions in a variational [7, 14–18] approach
were developed, which include dictionary [19, 20], kernel [21–23], and tensor [24, 25]
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1. Introduction

based methods.
Another class of function approximator has recently roused a great deal of excite-
ment: artificial neural networks (NN), which deep learning is based on. Although
invented over 70 years ago [26], its great success started only two decades ago [27–
29]. While the universal approximation theorem [30] was a great theoretical result,
further developments in hardware and software, namely the architecture and train-
ing routines, were necessary to pave the path to its broad application today.
In this thesis we explore the capability of NNs to approximate the singular func-
tions of the Koopman operator and thereby finding optimal choices for the feature
functions for Eq. 1.1. On one hand, the universal approximation theorem promises
that given enough data the true singular functions can be arbitrarily closely approx-
imated. On the other hand, the flexibility of the networks architecture allows to
impose further constraints, e.g. reversibility.
We apply the proposed methods to molecular dynamic (MD) simulations of bio-
molecules, which allow to study the thermodynamics and kinetics at an atomistic
scale [31–35]. As these simulations are often performed in thermal equilibrium with-
out the influence of external forces, the second law of thermodynamics states that
no work can be extracted from such a system. As a consequence, the absolute prob-
ability of observing a transition from a configuration x at time t to point y at time
t + τ must be equal to the reverse transition, a condition called detailed balance.
Hence, no closed loops of probability fluxes can be exploited to extract work; such
systems are said to be statistically reversible. Any model approximating a reversible
system should therefore comply with the detailed balance constraint.
Taking these thermodynamic constraints into account, we develop network architec-
tures which not only allow to enforce reversibility but also facilitate to constrain the
propagation matrix Kχ to be a transition matrix. This empowers the application
of post analysis tools from the MSM field, e.g. finding the most probable folding
paths and folding rates via transition path theory [36–38].
Further developments in the field of MSMs can be transferred to the deep learning
framework. On the one hand, coarse-graining approaches using spectral clustering
allow to study the system on different degrees of detail [39–41]. By constructing a
specific layer, we realize coarse-graining with NNs by still optimizing for the singular
functions of the Koopman operator.
On the other hand, MD simulations can suffer from biases in the underlying classical
force field, where it was shown that incorporating existing experimental information

2



into the model estimation can counteract these biases [42–49]. By changing the
objective of the NN to not exclusively approximate the singular functions of the
Koopman operator but also fulfill the experimental constraints, we adapt the deep
learning framework to the aforementioned methods.
Finally, as the interest shifts to larger proteins, a fundamental problem arises when
approximating the kinetics of the protein from a global perspective. Larger systems
might display localized conformational changes [50] or consist of weakly coupled
or independent subsystems. A global description of the system consists then of
the combination of the description of all subsystems, which implies that the num-
ber of possible global states grows exponentially with the number of subsystems
[51, 52]. Hence, any approach describing the global state explicitly is fundamen-
tally unscalable. The solution to this problem is twofold: first, divide the protein
into Markovian subsystems, each described by their nearly independent Koopman
operators, and second, learn the coupling between them. In this thesis, we present
a framework focusing on the former. Extracting the coupling between the weakly
coupled subsystems might be solved by future work in a consecutive step borrowing
ideas from Olsson & Noé [51]. They treated the global system as an Ising model,
where the states or "spins" of the subsystems are connected via a dynamic graphical
model representing the coupling.
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2. Theory

The theoretical background of this thesis is split into two major sections: the Koop-
man operator and neural networks. The former covers the development of the vari-
ational principle - a summary of the work of Wu et al. [18] - and it also covers the
properties of the Koopman operator in the case of independent systems. The latter
is a compact introduction into the concept of neural networks, how to train and
validate them, how problem specific architectures are developed, and how they can
be used to sample from a probability distribution implicitly given by data.

2.1. Koopman operator

A Markov process of configurations x,y ∈ Rd, which live in a potentially high-
dimensional space, is fully described by its transition density:

P(xt+τ = y|xt = x) = pτ (y|x), (2.1)

which is the probability of transitioning to configuration y at time t+ τ given that
the system was at state x at time t. Based on the transition density the time
evolution of general observable functions χ(x) can be characterized as:

E[χ(xt+τ )|xt = x] = (Kτχ)(x) ,
∫
pτ (y|x)χ(y) dy. (2.2)

The integral operator Kτ is called the Koopman operator and is able to fully describe
the Markovian dynamics [9].
Here, we consider Kτ to be a Hilbert-Schmidt operator from L2

ρ1 = {g|〈g, g〉ρ1 <∞}
to L2

ρ0 = {f |〈f, f〉ρ0 < ∞}, where ρ0 and ρ1 are the empirical distributions of xt
and xt+τ of all transition pairs {(xt,xt+τ )} observed in a time series. The weighted
inner product is defined as 〈f, g〉ρi

=
∫
f(x)g(x)ρi(x) dx.

The Koopman operator is linear but infinite-dimensional and since it is Hilbert-
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2. Theory

Schmidt the following SVD exists:

Kτχ =
∞∑
i=1

σi〈χ, φi〉ρ1ψi, (2.3)

with the singular values σi and the corresponding left and right singular functions
ψi, φi. Due to the orthonormality of the right singular functions it directly follows:

E[φi(xt+τ )] = σiE[ψi(xt)], (2.4)

which shows that the time evolution of a general observable χ ∈ L2
ρ1 , which can be

written as a linear combination of right singular functions χ = ∑∞
i=1 ciφi, is given

by:

E[χ(xt+τ )] =
∞∑
i=1

ciE[φi(xt+τ )]

=
∞∑
i=1

ciσiE[ψi(xt)].

2.1.1. Finite rank approximation

For analysis, it is favorable to consider a finite rank approximation of the true
Koopman operator, which is often justified by choosing a large enough lagtime τ ,
where the essential part of the dynamics becomes finite dimensional.
The optimal approximation of the Koopman operator with the smallest modeling
error in Hilbert-Schmidt norm with dimension k is given by

K̂τχ =
k∑
i=1

σi〈χ, φi〉ρ1ψi, (2.5)

where σi are the k-largest singular values. The first singular component is always
given by (σ1, φ1, ψ1) = (1,1,1) [13].
With the convention of ψ = (ψ1, ..., ψk)T , φ = (φ1, ..., φk)T , and K = diag(σ1, ..., σk)
Eq.2.4 can be written in matrix form:

E[φ(xt+τ )] = KTE[ψ(xt)]. (2.6)

Due to the finite dimension, the space of observables that can be propagated by the
projected operator is restricted to functions that can be written as linear combina-
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2.1. Koopman operator

tions of the right singular functions:

χ1(xt+τ ) = (V−1)Tφ(xt+τ ), (2.7)

where we assume that the functions χ1 are linearly independent and therefore V ∈
Rk×k invertible.
If the result of the propagation should not be written in terms of ψ but in a linear
combination

χ0(xt) = (U−1)Tψ(xt), (2.8)

the propagation reads:

E[χ1(xt+τ )] = (V−1)TE[φ(xt+τ )] (2.9)

= (V−1)TKTE[ψ(xt)] (2.10)

= (V−1)TKTUTE[χ0(xt)] (2.11)

= (UKV−1)TE[χ0(xt)] (2.12)

= KT
χE[χ0(xt)]. (2.13)

The results let us interpret Eq.1.1 as a finite-rank approximation of the Koopman
operator and therefore Kχ is often referred to as Koopman matrix [9, 53].

2.1.2. Variational approach for Markov processes

The previous subsection implies that, if the feature functions χ0,χ1 can span the
left and right singular functions ψ(xt) = UTχ0(xt), they represent an optimal finite-
rank approximation of the Koopman operator. However, there is no recipe how to
construct these feature functions. Eq. 1.1 cannot help us solve this problem, since
taking a regression error would lead to an uninformative model with constant fea-
ture functions.
Subsequently, Wu and Noé proposed a variational approach for Markov processes
(VAMP), where optimal feature functions can be constructed by maximizing the
generalized Rayleigh quotient [13]. Given test functions f and g the k dominant
singular components of a Koopman operator are the solution of the following max-
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2. Theory

imization problem:

k∑
i=1

σri = max
f ,g
Rr[f ,g], (2.14)

s.t. 〈fi, fj〉ρ0 = 1i=j, (2.15)

〈gi, gj〉ρ1 = 1i=j, (2.16)

where r ≥ 1 and the maximal value of Rr, which is called VAMP-r score, is achieved
by the true singular functions fi = ψi and gi = φi defined as:

max
f ,g
Rr[f ,g] = max

f ,g

k∑
i=1
〈fi,Kτgi〉rρ0 (2.17)

=
k∑
i=1
〈ψi,Kτφi〉rρ0 (2.18)

=
k∑
i=1

σri (2.19)

Furthermore, they proved that the approximation error of the low-rank Koopman
operator can be decomposed into an unknown constant part dependent on the true
Koopman operator Kτ and a model dependent part RE, which is called VAMP-E
score:

||K̂τ −Kτ ||2HS = −RE[K, f ,g] + ||Kτ ||2HS (2.20)

withRE[K, f ,g] = 2
k∑
i

Kii〈fi,Kτgi〉ρ0 −
k∑
i,j

KiiKjj〈fi, fj〉ρ0〈gi, gj〉ρ1 . (2.21)

2.1.3. Estimation algorithms

Given T many observations {xt,xt+τ}t=1,..,T and feature functions χ0(xt) and χ1(xt+τ )
we seek to find optimal singular functions f(xt) and g(xt+τ ) which fulfill the or-
thonormality constraint. We make the linear ansatz:

f(xt) = UTχ0(xt) (2.22)

g(xt+τ ) = VTχ1(xt+τ ). (2.23)

8



2.1. Koopman operator

Therefore, the maximization problem Eq. 2.14 translates to:

max
U,V

k∑
i=1

(uTi C01vi)r (2.24)

s.t.UTC00U = I, (2.25)

VTC11V = I, (2.26)

where the covariance matrices are introduced as:

C00 = 1
T

T∑
t=1
χ0(xt)χT0 (xt) (2.27)

C11 = 1
T

T∑
t=1
χ1(xt+τ )χT1 (xt+τ ) (2.28)

C01 = 1
T

T∑
t=1
χ0(xt)χT1 (xt+τ ). (2.29)

An existing algorithm which extracts the optimal choices for U and V is the canon-
ical correlation analysis (CCA), where the SVD of the Koopman matrix K̄ for the
normalized feature functions C−1/2

00 χ0(xt) and C−1/2
11 χ1(xt+τ ) is applied:

K̄ = C−
1
2

00 C01C
− 1

2
11 = ŪKV̄T . (2.30)

The matrix K = diag(K11, ..., Kkk) is then the approximation of the true singular
values σ1, ..., σk. The coefficients to construct the corresponding singular functions
are given by:

U = C−
1
2

00 Ū, (2.31)

V = C−
1
2

11 V̄. (2.32)
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2. Theory

Following, the Koopman matrix for the feature space can be estimated when plug-
ging the result into Eq.2.13:

Kχ = UKV−1 (2.33)

= C−
1
2

00 ŪKV̄TC+ 1
2

11 (2.34)

= C−
1
2

00 K̄C+ 1
2

11 (2.35)

= C−
1
2

00 C−
1
2

00 C01C
− 1

2
11 C+ 1

2
11 (2.36)

= C−1
00 C01. (2.37)

2.1.4. Validation

To evaluate the performance of a trained model, we test its capabilities of predicting
the dynamics of hold-out data to find the right balance between statistical bias and
variance. Therefore, the available data is usually split into train and test set and
the model estimated on the training data is scored on the latter.
Wu et Noé transferred the idea of McGibbon et Pande to utilize the subspace varia-
tional score [54]. There, the consistency between the singular subspaces of training
and test set are measured without the constraint of orthonormality and the score
reads:

Rsubspace
r = ||(UTCtest

00 U)− 1
2 (UTCtest

01 V)(VTCtest
11 V)− 1

2 ||rr, (2.38)

where U and V are estimated on the training set and the correlation matrices on
the test set.
Since the inversion might cause numerical instabilities they propose to utilize the
VAMP-E score instead:

Rsubspace
E = tr[2KUTCtest

01 V−KUTCtest
00 UKVTCtest

11 V]. (2.39)

2.1.5. Connection of transition density and VAMP-E score

The transition density can be estimated from the real Koopman operator as

pτ (y|x) = Kτδy(x) (2.40)

=
∞∑
i=1

σiψi(x)φi(y)ρ1(y) (2.41)

10



2.1. Koopman operator

An approximation of the transition density p̂τ (y|x) is given via the finite dimen-
sional Koopman operator, where we can insert our approximations of the singular
functions:

p̂τ (y|x) = χT0 (x)UKVTχ1(y)ρ1(y) (2.42)

= χT0 (x)Sχ1(y)ρ1(y), (2.43)

where we defined the matrix S = UKVT . For interpretation reasons it is beneficial
to further write out the definition:

S = UKVT (2.44)

= C−
1
2

00 ŪKV̄TC−
1
2

11 (2.45)

= C−
1
2

00 C−
1
2

00 C01C
− 1

2
11 C−

1
2

11 (2.46)

= C−1
00 C01C−1

11 (2.47)

= KχC−1
11 . (2.48)

The equation shows that the matrix S is a combination of the Koopman matrix
Kχ making the transition from χ0(xt) to χ1(xt+τ ) during a time step τ and the
covariance matrix C11 which normalizes the transition density

∫
p̂τ (y|x)dy = 1.

Therefore, the transition density Eq. 2.42 can be interpreted as mapping to state
space χ0(x), a time transition to the feature space of χ1(xt+τ ) = KT

χχ0(x), and a
back mapping to configuration y depending on the similarity of the feature vector
χ1(y) and the propagated one χ1(xt+τ ).
The Koopman matrix Kχ is a mapping from feature space χ0 to χ1 during a time
step τ . However, sometimes a propagation or transition matrix within the feature
space of χ0 during a time step τ is favorable:

E[χ0(xt+τ )] = KT
χ1χ0E[χ1(xt+τ )] (2.49)

= KT
χ1χ0K

T
χE[χ0(xt)] (2.50)

= TTE[χ0(xt)], (2.51)

11



2. Theory

where with the definition of Σ = E[χ1(xt+τ )χ0(xt+τ )] the transition matrix can be
evaluated as:

T = KχKχ1χ0 (2.52)

= KχC−1
11 Σ (2.53)

= SΣ. (2.54)

Finally, the VAMP-E score can be expressed via the matrix S = UKVT by plugging
it into Eq. 2.39:

RE = tr[2STC01 − STC00SC11]. (2.55)

2.1.6. Reversible Koopman operators

In practice, the system of interest is often studied in thermal equilibrium, i.e. for
a simulation no external forces are present. As a consequence the system is purely
driven by thermal energy allowing no work extraction. Therefore, the existence of a
cycle of probability flux is forbidden. With the equilibrium distribution µ(x), this
manifests in the the following equation also called detailed balance:

µ(x)pτ (y|x) = µ(y)pτ (x|y). (2.56)

The probability to observe the transition from configuration x to y is equal to
observe the reverse transition. Here, the probability is given by the product of the
transition density and the equilibrium distribution.
In this case, the Koopman operator becomes self-adjoint, and the singular value
decomposition transfers to an eigendecomposition:

p̂τ (y|x) = ϕT (x)Λϕ(y)µ(y), (2.57)

with ϕi(x) = ψi(x) = φi(x) and the diagonal matrix Λii = σi if the data present is
in equilibrium [55].
However, usually the sampling is not sufficient to achieve equilibrium data. There-
fore, a reweighting scheme can be employed to reweight the empirical to the sta-
tionary distribution µ(y) = w(y)ρ1(y).
This strategy can be adopted to the choice of the feature functions. If we choose

12



2.1. Koopman operator

χ0(x) = χ(x) and χ1(y) = χ(y)w(y), Eq.2.42 translates to:

p̂τ (y|x) = χT (x)UKVTχ(y)w(y)ρ1(y) (2.58)

= χT (x)RΛRTχ(y)µ(y), (2.59)

where R = U = V and the eigenfunctions are ϕ(x) = RTχ(x). Thereby, the matrix
S:

S = RΛRT = ST (2.60)

becomes symmetric and since Σ is likewise symmetric - in fact it is the covariance
matrix in equilibrium - it follows for the transition matrix:

T = Σ−
1
2 S̄Σ

1
2 (2.61)

= Σ−
1
2 (Σ 1

2 SΣ
1
2 )Σ 1

2 , (2.62)

that it is similar to the Hermitian matrix S̄ and has therefore real eigenvalues.
Plugging the expressions for the stationary distribution and transition density into
Eq. 2.56 confirms the reversibility:

µ(x)p̂τ (y|x) = µ(x)χT (x)Sχ(y)µ(y) (2.63)

= µ(x)χT (y)STχ(x)µ(y) (2.64)

= µ(y)χT (y)Sχ(x)µ(x) (2.65)

= µ(y)p̂τ (x|y). (2.66)

2.1.7. Connection Markov state model and Koopman model

For the specific choice of indicator functions as feature functions, the Koopman
model becomes a traditional Markov state model. These indicator functions parti-
tion the configuration space into disjoint subspaces Ai:

χi(x) =

1 if x ∈ Ai

0 otherwise.
(2.67)

In that particular case the covariance matrices C00, C11 become diagonal count
matrices how often each state was visited and C01 counts the transitions between
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2. Theory

the states for all data pairs. As a consequence the Koopman matrix Kχ has non-
negative entries and the rows sum up to one Kχ1 = 1 and is therefore a transition
matrix.
In the special case of a reversible Koopman model with indicator functions, the
matrix S = TΣ−1, where the equilibrium covariance matrix Σ = Π = diag(π) is a
diagonal matrix with the stationary distribution vector on the diagonal. If we choose
the weights to be w(x) = πTΠ−1

ρ χ(x) with Πρ = diag(πρ) being the empirical
distribution vector on the diagonal, the stationary distribution and transition density
are given by their expected expressions:

µ(x) = πTΠ−1
ρ χ(x)ρ(x) (2.68)

p̂τ (y|x) = χ(x)TTΠ−1χ(y)ρ(y)χT (y)Π−1
ρ π (2.69)

= χ(x)TTΠ−1
ρ χ(y)ρ(y)χT (y)Π−1π (2.70)

= χ(x)TTΠ−1
ρ χ(y)ρ(y). (2.71)

Since S is symmetric it follows that:

S = TΠ−1 = Π−1TT (2.72)

⇐⇒ ΠT = TTΠ = (ΠT)T , (2.73)

which is the common condition for a reversible Markov state model.

2.1.8. Decompostion into independent subsystems

When studying larger molecules with Koopman theory a fundamental problem
arises. The larger system might be constituted of weakly coupled or independent
subsystems [50, 51]. To describe the full system each combination of processes in
the subsystems has to be described and for model estimation observed. However,
with the number of subsystems the number of combinations increases exponentially
leading to an unfeasible demand of data. Therefore, it is of great interest to con-
struct the global model as a combination of independent subsystems.
Given two independent subsystems constituting a global system described by their
transition densities p1

τ (y1|x1) and p2
τ (y2|x2), the global transition density is:

pGτ (y1,y2|x1,x2) = p1
τ (y1|x1) · p2

τ (y2|x2). (2.74)
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2.2. Artificial neural networks

Each subsystem can be described by a Koopman operator propagating observables
χ1(x1) and χ2(x2). The global Koopman operator which describes the propagation
of the product of the individual observables χG(x1,x2) = χ1(x1)χ2(x2) decomposes
into the individual operators:

KGτ χG(x1,x2) =
∫∫

pGτ (y1,y2|x1,x2)χG(x1,x2)dy1dy2 (2.75)

=
∫
p1
τ (y1|x1)χ1(x1)dy1

∫
p2
τ (y2|x2)χ2(x2)dy2 (2.76)

= K1
τχ

1(x1)K2
τχ

2(x2) (2.77)

If we have a finite rank approximation of each operator with k1, k2 singular functions
the constructed global operator reads:

K̂Gτ χG(x1,x2) = K̂1
τχ(x1) K̂2

τχ(x2) (2.78)

=
k1∑
i=1

σ1
i 〈χ1, φ1

i 〉ρ1
1
ψ1
i (x1)

k2∑
j=1

σ2
j 〈χ2, φ2

j〉ρ2
1
ψ2
j (x2) (2.79)

=
k1∑
i=1

k2∑
j=1

σ1
i σ

2
j 〈χ1χ2, φ1

iφ
2
j〉ρG

1
ψ1
i (x1)ψ2

j (x2) (2.80)

=
k1k2∑
l=1

σGl 〈χG, φGl 〉ρG
1
ψGl (x1,x2). (2.81)

This shows that the global singular functions and values are simply the product of
the individual subsystems ψGl = ψ1

iψ
2
j , σGl = σ1

i σ
2
j , and φGl = φ1

iφ
2
j .

This result can be expanded to any number of subsystems, where the global model
can be always constructed as the product of all subsystems.

2.2. Artificial neural networks

This section is meant to introduce the most important concepts in training Artificial
neural networks (NN) - also called deep learning -, which are useful to understand
the later application of approximating the Koopman operator. For a thorough in-
troduction to deep learning I refer the reader to [27].
NNs are a collection of nodes connected by edges which loosely speaking resemble
the neurons of biological brains. Usually, a node estimates a weighted sum of all
the real valued inputs coming from the nodes connected via the edges. It further
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applies some non-linear function to the output, before sending the messages to the
other nodes. However, the intermediate steps and the edges depend on the chosen
architecture. The architecture includes trainable parameters, e.g. the weights in the
sum, which will be adopted during the so called training routine.
The architecture allows to feed in an input vector, e.g. the input coordinates of
the atoms of a molecule, and outputs a transformed vector of possible different size.
Therefore, the NN can be understood as a highly non-linear function.
In order to train the NN to approximate a sought function, e.g. mapping the coordi-
nates at a given time to a specific metastable state, an objective function has to be
defined. The goal of training the NN is to update the parameters of the architecture
to optimize the objective function. It is usually framed as a loss function which
should be minimized.
If the NN represents a differentiable function, the parameters can be updated by
the stochastic gradient descent algorithm. There, a subset of training inputs, called
batch, is chosen and transformed by the NN. The gradient of the objective function
with respect to the parameters are estimated via the backpropagation algorithm
[56]. These are used to update the parameters with a so called optimizer in order to
increase the quality of the function. By only using a subset of the training points for
an update, noise is introduced compared to the gradient of the whole dataset. This
is assumed to provide two advantages. Firstly, by only passing a smaller amount of
data through the network the hardware requirements decrease making it possible to
work on very large data sets.
Secondly, it avoids the model being trapped in local minima during the training.
A standard gradient descent algorithm guarantees solely the convergence to a local
minimum. By estimating the gradients on different subsets of the training data, it
might be that the actual position in the parameter space is a local minimum for the
whole dataset but not for the current subset. Thereby, this particular update allows
the NN to escape the local minimum.
However, the second advantage is still actively discussed by the community, e.g.
others argue that these local minima simply don’t exist, because of the vast param-
eter space [57, 58].
Although the first formulation of NN dates back several decades, the recent successes
are mainly fueled by four different developments: greater computational power, new
non-linear functions, which exhibit better training behaviour [59, 60], more advanced
architectures, which usually exploit some structure in the data known beforehand
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[28, 61–63], and more advanced optimizers [64, 65], which converge faster to the
sought function.

2.2.1. Feed forward neural network

The former mentioned backpropagation algorithm imposes conditions on the archi-
tecture of the NN. Namely, it must be possible to unroll the architecture to a state
where the information flows from the input always forward to the output, called
feed forward NN.
The most simple architecture is the so called fully connected feed forward NN, where
a collection of nodes, called layer, is connected to all the nodes of the next layer.
The layers between the input and output layer are called hidden layers.
The simple architecture allowed the formulation of the universal approximation the-
orem, stating that in principle a one hidden layer NN with arbitrary width and the
sigmoid activation function is sufficient to approximate any non-linear continuous
function to arbitrary precision [30].

2.2.2. Invariances and transferable architectures

The inclusion of structure from the underlying data into the model architecture can
significantly improve the performance of the NN when confronted with limited data.
In the case of a NN classifying protein frames into metastable states, we can exploit
symmetries. Since the classification should be invariant under the rotation and
translation of the whole protein, the output of the NN should be unaffected under
these transformations. A simple solution is to not feed the coordinates of all atoms
into the NN but instead let it act solely on internal coordinates, e.g. distances or
angles. In order to counteract the increase in input features, a cutoff distance can
be introduced or all atoms of a residue can be summarized by a common feature.
Furthermore, information of the same atom or residue type can be fed into the
architecture by sharing the same feature representation.
A nowadays common approach is to represent the molecule or protein as a graph,
where the information flows along the edges between atoms or residues [62]. The
NN represents the function which collects the messages coming from the other edges
and updates the node accordingly. The architecture of graph NN allows to share
parameters between the participating nodes, i.e. using the same NN for all nodes.
This does not only reduce the amount of necessary parameters, when applying it
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to larger molecules. It also enables the transfer of knowledge within the chemical
space when applying it to unseen molecules [66–69].

2.2.3. NN as transformers between probability distributions

Neural networks are not restricted to map given data to some target value. Instead,
they can be trained to map from easily sampled distributions, e.g. Gaussian distri-
butions, to the complex distributions of some data. Thereby, the networks can be
employed to generate new unobserved data points. These generative neural networks
were developed in different flavors [70–73]. They can be even advanced to sampling
from the Boltzmann distribution without the need for training samples [74]. These
models differ by their architecture or how they define the loss function. One way to
design a loss function is to define a metric between probability distributions.
The standard Energy Distance (ED) is a metric between two distributions of random
vectors X and Y, defined as in [75]:

DE(P(X),P(Y)) = E[2||x− y|| − ||x− x′|| − ||y− y′||]. (2.82)

The outcomes x,x′ and y,y′ are independently distributed according to the dis-
tributions of X and Y, respectively. This means, that the ED is only zero, if the
two distributions match. Thus, given a generative network G, which maps from
Gaussian noise ε ∼ N (0,1) to test samples y = G(ε), it can be trained to minimize
the ED to some data distribution X. If the ED approaches zero, the samples drawn
by the network G should be close to samples drawn from the data distribution X
w.r.t. the norm || · ||.
The metric can be expanded to conditional probability distributions [76]:

D , E[DE(P(Xt+τ |xt),P(X̂t+τ |xt)|xt] (2.83)

= E[2||x̂t+τ − xt+τ || − ||x̂t+τ − x̂′t+τ || − ||xt+τ − x′t+τ ||], (2.84)

where the outcomes xt+τ and x′t+τ are distributed according to the transition density
given a starting configuration xt. The outcomes x̂t+τ , x̂′t+τ are independent predic-
tions of the generative model, which are conditioned on the same configuration xt.

18



3. Methods

This chapter contains the methods, which combine the theory of Koopman operators
with deep learning. In general, all methods will include a mapping from configura-
tions xt to a state assignment, which we will call χ(xt). This mapping is either a
composition of several transformations including a neural network or simply given
by one called η.
The chapter starts with the first developed method called VAMPnets, which esti-
mates the most general Koopman model without any further restrains on reversibil-
ity or the transition matrix [77]. To enforce a stochastic transition matrix and enable
the back mapping from state to configuration space, we advanced VAMPnets by in-
troducing a second NN and call it deep MSM. The work further included the possi-
bility to generate new configurations by a generative NN [76]. Since the reversibility
was still unaddressed, our next project focused on deep reversible Koopman models,
where additional trainable parameters model the stationary distribution and transi-
tion matrix explicitly. Thereby, two constraints can be formulated which can ensure
reversibility or a stochastic transition matrix. In principle, by individually turning
on/off the constraints the method allows to build four different classes of models.
However, since two of them were already addressed by VAMPnets and deep MSMs,
we focused on reversible VAMPnets and reversible deep MSMs [78].
To further close the gap between ordinary MSMs and their deep counterpart, we
developed extensions to include experimental evidence in the model estimation by
updating the loss function and to coarse-grain the state space by a specialized net-
work layer [79].
The final method I have worked on is iVAMPnets, where we try to address the un-
scalability of global MSMs to larger proteins due to the exponential growth of states.
The model combines a separation of the input features into local sub-segments and
subsequent parallel VAMPnets, which estimate independent kinetics on these. The
work is as up to today in the revision process.
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3.1. VAMPnets for deep learning of molecular
kinetics

Figure 3.1.: Scheme of the VAMPnet learning architecture. The input pair (xt,xt+τ )
is transformed by the same NN χ(xt) = η(xt) and χ(xt+τ ) = η(xt+τ ).
The Koopman matrix Kχ from Eq. 2.13 propagates the state vector
χ0(xt) = χ(xt) in time to approximate χ1(xt+τ ) = χ(xt+τ ). The NN
can be trained by maximizing either the VAMP-r or VAMP-E score Eq.
2.14, 2.39. The later makes use of the definition of the matrix S, which
in the case of the VAMPnet is simply estimated from data as shown.

VAMPnets are a deep learning framework which aims to build Koopman models
of molecular simulation data [77]. We represent the feature functions by a NN η

mapping from the configuration space xt ∈ Rd into the feature space χ(xt) = η(xt) ∈
Rk. Since the VAMPnet is expected to find metastable states in biomolecules, we
make two important choices:

1. The feature functions use the softmax function as an output activation. Thereby,
each configuration xt will be classified in which metastable state the system is
in.

2. The feature functions are identical χ0(x) = χ1(x) = χ(x) ∀x assuming that
the system is visiting the same metastable states for data at time t and t+ τ .

VAMPnets is not restricted to model molecular kinetics. However, these choices
make it especially fitting for molecular simulations, where similar metastable states
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are expected in the empirically distributions ρ0 and ρ1. The parameters of the NN
can be trained by maximizing either the VAMP-r or VAMP-E score.
In summary, a VAMPnets makes the specific choices for the general Koopman model
(cf. Fig. 3.1):

1. χ0(xt) = χ(xt).

2. χ1(xt+τ ) = χ(xt+τ ).

3. S = UKVT .

The method has shortcomings which will be addressed by methods introduced below.
These include:

1. The Koopman matrix Kχ, which propagates the metastable states in time
is not a stochastic transition matrix. Although the rows are normalized due
to the normalized state assignments Kχ1 = 1, individual entries might be
negative. Therefore, they cannot be interpreted as probabilities and further
analysis tools such as transition path theory (TPT) cannot be applied.

2. Once mapped on the feature space χ(x), it is not possible to map a state back
to a configuration x.

3. The model is not guaranteed to be reversible.

3.2. Deep Markov state model
With the deep Markov state model (deep MSM) we model the transition density
explicitly in a two step process:

p̂τ (y|x) = χ(x)Tq(y; τ) =
k∑
i=1

χi(x)qi(y; τ). (3.1)

Like in VAMPnets, the function χi(x) models the probability how likely a configura-
tion belongs to the state i. Additionally, the function qi(y; τ) models the probability
how likely the system jumps to configuration y given that it was in state i a time
interval τ before.
The transition matrix propagating χ(x) τ in time can be estimated via:

Tij(τ) =
∫

y
qi(y; τ)χj(y)dy, (3.2)
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Figure 3.2.: Scheme of the deep MSM learning architecture. The data pair (xt,xt+τ )
is transformed by two different NN η and γ. The Koopman model is
then defined between χ0(xt) = χ(xt) = η(xt) and χ1(xt+τ ) = γ(xt+τ ).
Consecutively, the Koopman matrix Kχ maps between them and the
model can be trained with the VAMP-E score. The transition ma-
trix T, which propagates the state vector χ(xt) in time, can be esti-
mated by Eq. 3.2. The matrix S is chosen to normalize the probability
q(xt+τ ) = Sγ(xt+τ )ρ1(xt+τ ). qi(xt+τ ) approximates the probability of
how likely the system ends up in the configuration xt+τ at time t + τ ,
given that it was at state i at time t. Given q(xt+τ ) and χ(xt) an esti-
mate for the transition density p̂τ (xt+τ |xt) can be formulated. Thereby,
the model can be alternatively trained by the maximum likelihood that
the observed data pairs are generated by the model. Thereby, it will
approximate the true transition density pτ (xt+τ |xt), which generated
the data during the simulation.

which estimates the expectation value over all possible configurations y of ending in
state j given the system started in state i. Since Tij > 0 ∀i, j and ∑j Tij = 1 ∀i, the
matrix is a real transition matrix, hence the name deep MSM. Therefore, it exists a
stationary vector with π = TTπ, which remains unchanged when propagated. This
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vector can be used to estimate the equilibrium distribution µ(y) as:

µ(y) = πTq(y). (3.3)

This will allow us to address two shortcomings of the VAMPnets model: The matrix
T will be a real transition matrix and the function q(y; τ) allows to sample config-
urations given that the system is in a specific state.
We approximate the function q(y) with a NN γ(y) via:

q(y) = diag(γ̄)−1γ(y)ρ1(y), (3.4)

where ρ1(y) is the empirical distribution of all configurations at t + τ and γ̄i =
Ey∼ρ1 [γi(y)] the expectation value of γi. The latter normalizes the probability dis-
tribution, i.e.

∫
y qi(y)dy = 1. In order to ensure strictly non-negative probabilities

the output of the NN γ must be non-negative, which we ensure by a proper choice
of the activation function, e.g. ReLU [59] or shifted ELU [60].
The model can be either trained by maximizing the likelihood of generating the
observed T data pairs (xt,xt+τ ). The log-likelihood is given by:

LL =
T∑
t=1

ln(χ(xt)Tq(xt+τ )). (3.5)

Alternatively, we can interpret the deep MSM as a Koopman model. When plugging
Eq. 3.4 into Eq. 3.1:

p̂τ (y|x) = χ(x)Tdiag(γ̄)−1γ(y)ρ1(y), (3.6)

we can by comparison with Eq. 2.43 identify that (cf. Fig. 3.2):

1. χ0(x) = χ(x).

2. χ1(y) = γ(y).

3. S = diag(γ̄)−1.

With the above definitions the model can be trained using the VAMP-E score given
in Eq. 2.55. Furthermore, the formula for the transition matrix in Eq. 2.54 agrees
with the definition given in Eq. 3.2.
Despite the advantages over VAMPnets, the model still suffers from some drawbacks
which are mainly connected to the effect of introducing a second NN:
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1. The training process is more challenging because the two networks depend on
each other.

2. Evaluating the model for a different lagtime τ necessitates to retrain the NN
γ.

3. The model does not guarantee reversibility.

Figure 3.3.: Three different learning architectures for the deep MSM model, where
the two mappings χ and γ share a different amount of parameters. (a)
The most general architecture, where χ and γ are completely indepen-
dent parameter wise. (b) The two NN share the network η and differ
only by their last layer χ = χ′ ◦ η, γ = γ ′ ◦ η. (c) The second network
γ builds on the output of χ assuming that the system will most likely
jump to a configuration from the same state γ = γ ′ ◦ χ.

However, the problems arising from the second network can be diminished by the
following observation. The state assignment task of a NN can be seen as a two step
process. Firstly, it has to extract the important features from the given input x until
the last hidden layer, based on which the last layer assigns the configuration to a
specific state. For the task of the second NN γ the feature extraction will similarly
be an important step. Therefore, we propose to share the feature extraction between
the two networks, which means that effectively only one last layer will be added by
introducing the NN γ (cf. Fig. 3.3 b). It is even possible to go one step further.
For estimating the probability qi(y), an important feature might be the probability
to which state the configuration y itself belongs. Following this argument, the in-
dependent layer of γ could be downstream to the state assignment network η (cf.
Fig. 3.3 c).
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Furthermore, since the state assignment task is very similar to VAMPnets we im-
plemented a stable training routine:

1. Train the state assignment χ as a VAMPnet.

2. Train only the γ specific part for a deep MSM.

3. Train both networks at the same time.

3.2.1. Making the deep MSM generative

Figure 3.4.: Architecture scheme for the deep generative MSM. The configuration
xt is again mapped to a state space by χ(xt) = η(xt). The second
network G targets to sample configurations x̂t+τ given the system is at
state i (represented by the unit vector ei) at time t and some Gaus-
sian noise vector ε. This process has to be done twice in order to train
the model by the energy distance Eq. 2.84. By sampling the start-
ing state according to χ(xt), jointly the two NNs aim to sample from
the transition density pτ (xt+τ |xt), which generated the data during the
simulation. The energy distance can be used to train both networks or
only G, where χ is then pretrained as a VAMPnet or deep MSM. The
transition matrix propagating between the state vector χ(xt) and the
generated configurations χ(x̂t+τ ) can be computed by Eq. 3.12.

Up to this point the deep MSM is able to map back to the configurations present
in the data. However, it is not capable to sample new unobserved configurations.
Instead of training a network to approximate the probability distribution qi(y), we
can train a network to generate samples according to the distribution:

y = G(ei, ε), (3.7)
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where the vector ei ∈ Rk is a one-hot encoding of the metastable state and ε is a i.i.d.
random vector with each component sampled from a Gaussian normal distribution
(cf. Fig. 3.4). We call the resulting model deep generative MSM.
Given a trained state assignment χ, the NN G can be optimized minimizing the
Energy Distance Eq. 2.84. During training we approximate the expectation value
as the mean value over a batch. Noticing that E[||xt+τ − x′t+τ ||] is constant with
respect to the model weights and splitting E[2||x̂t+τ − xt+τ ||] = E[||x̂t+τ − xt+τ || +
||x̂′t+τ − xt+τ ||], the loss can be written as:

D = E[||x̂t+τ − xt+τ ||+ ||x̂′t+τ − xt+τ || − ||x̂t+τ − x̂′t+τ ||] + const (3.8)

= E[dt] + const (3.9)

≈ 1
T

∑
t

dt + const, (3.10)

where T is the number of transition pairs (xt,xt+τ ) coming from the data and

dt = ||G(eIt , ε)− xt+τ ||+ ||G(eI′t , ε
′)− xt+τ || − ||G(eIt , ε)−G(eI′t , ε

′)||. (3.11)

The probability distribution of the discrete random variables It, I ′t are defined as
P(It = i) = P(I ′t) = χi(xt).
The generative network G(ei, ε) samples configuration y at time t+τ given that the
system was in a specific state i at time t. Since the states are discrete, the model
G effectively needs to learn only as many functions as metastable states to generate
configurations y. This appears to be the less challenging task compared to a model
which would be directly conditioned on the starting configuration xt.
In order to estimate transition probabilities Tij, we simply compute the expectation
value of the resulting states of independently sampled configurations y given the
system starts in state i:

Tij = Eε[χj(G(ei, ε))]. (3.12)

In principle, both networks G and η can be simultaneously trained for the energy
distance. However, since It, I ′t are discrete valued backpropagating the gradients
with respect to the weights of the network η is not straight forward. We solved this
problem by inspecting the expected loss summing over all possible instances of It
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3.3. Deep reversible Koopman model

and I ′t:

E[dt|xt,xt+τ ] =
∑
i,j

P(It = i)P(I ′t = j)Eε[dt] (3.13)

=
∑
i,j

χi(xt)χj(xt)Eε[dt]. (3.14)

Therefore the gradients of the expected loss with respect to the input to the softmax
functions χi = ηi = exp oi∑

l
exp ol

of the NN η can be estimated as:

∂

∂ok
E[dt|xt,xt+τ ] =

∑
i,j

χi(xt)χj(xt)(1i=k + 1j=k − 2χk(xt)) · Eε[dt] (3.15)

= Eε,It,I′t
[(1It=k + 1I′t=k − 2χk(xt)) · dt]. (3.16)

The loss can be further backpropagated with the normal chain rule to all parameters
of η. The expectation values will be approximated during training by drawing one
instance of It, I ′t, εt, ε′t for each data pair (xt,xt+τ ) in the mini batch and averaging.

3.3. Deep reversible Koopman model

As we have seen for the deep MSM, we can learn a Koopman model by not only
training for χ0 and χ1, but also making the matrix S trainable. As demonstrated
in Sec. 2.1.6, the matrix S must be symmetric for a reversible model. Furthermore,
the stationary distribution has to be learned on the fly by reweighting the observed
empirical distribution appropriately.
Our proposed reversible model makes the following choices (cf. Fig. 3.5) [78]:

1. χ0(x) = χ(x).

2. χ1(y) = χ(y)χT (y)u.

3. S = ST .

The function χ(x) maps again a configuration x through the softmax function to
a state space. The stationary distribution is modeled by µ(y) = χT (y)uρ1(y),
where the trainable vector u reweights the states defined by χ to the stationary
distribution. In order to make the model reversible, the matrix S is trainable and
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3. Methods

Figure 3.5.: Architecture scheme for the deep reversible Koopman model. The data
pair (xt,xt+τ ) is individually transformed to the state space χ(xt). By
updating χ(xt+τ ) with the weights w(xt+τ ) = χT (xt+τ )u defined by
the trainable instance u, a Koopman model is constructed. With the
additional trainable matrix S an approximation of the transition den-
sity can be constructed. Appropriate constraints on u and S make
the model reversible with respect to the learned stationary distribution
µ(xt+τ ) = χT (xt+τ )uρ1(xt+τ ). Similarly to the deep MSM, the model
can be trained either with the VAMP-E or maximum likelihood score.
The transition matrix T in the state space is given by Eq. 2.54.

symmetric. The final transition density reads then:

pτ (y|x) = χ(x)TSχ(y)µ(y). (3.17)

Two further constraints have to be fulfilled to guarantee a normalized equilibrium
and transition density:

1. Normalization of equilibrium density:
∫
µ(y)dy =

∫
χT (y)ρ1(y)dy u =

χ̄Tu = 1, where χ̄ is the empirical state probability over ρ1(y).

2. Normalization of transition density:∫
p̂τ (y|x)dy = χT (x)S

∫
χ(y)χT (y)ρ1(y)dy u = χT (x)SCττu = 1, if

SCττu = 1 with Cττ =
∫
χ(y)χT (y)ρ1(y)dy. As a result the transition matrix

preserves probability mass T1 = SΣ1 = SCττu = 1.
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3.3. Deep reversible Koopman model

In order to make it a Markov state model, we additionally need that all elements in
the transition matrix are non-negative, which is fulfilled if:

All elements of u,S are non-negative. (3.18)

This last constraint can be switched on or off depending on what kind of model
is favored by the practitioner, a reversible VAMPnet or a reversible deep MSM.
In fact, by ceasing the symmetry constraint of S, the model can be either seen
as an alternative approach of a VAMPnet or a deep MSM, where an additional
reweighting and the Koopman matrix are learned and not estimated from the data.
We could prove that the constructed reversible model is an universal approximator
for reversible Markov processes [78].
As for the deep MSM the model can be trained for two different objectives: The
VAMP-E score or the maximum likelihood.
However, we need to enforce the constraints during training. We will achieve that
by making u and S functions of trainable parameters wu and WS, respectively.
In the case of u the normalization of the equilibrium density is easily fulfilled by
w1 = f(wu):

u = w1

χ̄Tw1
, (3.19)

where f(wu) needs to be an element wise function mapping to non-negative values
in case of a deep reversible MSM, e.g. the ReLU activation function.
If applicable, the symmetry and the non-negativity of S can be similarly enforced:

W1 = f(WS) + f(WT
S), (3.20)

where f has the same properties as above. Furthermore, the normalization of the
transition density needs to be fulfilled SCττu = Sv = 1. In order to keep the
symmetry untouched, we can still update the diagonal of the matrix W1 by values
diag(w2) and normalize the matrix by a factor z:

S = W1/z + diag(w2). (3.21)

(Sv)i = (W1v)i/z + wivi. (3.22)

wi = 1− (W1v)i/z
vi

. (3.23)
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With these choices we normalized the transition density. However, it could be that
elements of S are now negative. To avoid that, we have to choose z appropriately:

0 ≤ (W1)ii/z + (w2)i ∀i (3.24)

z ≥ (W1v)i − (W1)iivi ∀i. (3.25)

An optimal choice would be z = ||W1v − diag(W) � v||inf , where � means an
element wise multiplication. Any function which returns a larger value than the
maximum norm is applicable, although it should be differentiable for gradient based
optimization methods. Any p-norm fulfills these requirements. The higher the order
the closer the value will be to the maximum norm. This is preferable, since with
larger values of z the matrix S will be dominated by its diagonal values and thus
harder to train.
Despite its flexible structure of incorporating contraints for reversibility and a stochas-
tic transition matrix and thereby training for different models, the method has some
drawbacks:

1. The training process is challenging since the trainable parts χ,S,u are inter-
dependent. Therefore, if one of them is stuck in a suboptimal solution, the
others will only be optimal with respect to that. NNs have shown great suc-
cess in avoiding local minima. However, u and S are a parametrized vector or
matrix and not a NN parametrized function and can thus suffer from that.

2. Depending on the choice of activation functions for u and S, the trainable
parts will be updated differently fast.

3. Evaluating the model for a different lagtime τ necessitates to retrain S and u.

The first problem can be mitigated by a smart initialization. Given a state assign-
ment χ trained with a VAMPnet, an optimal u can be estimated from the stationary
vector πT = πTKχ, where Kχ is the Koopman matrix of the VAMPnet:

π =
∫
χ(x)µ(x)dx (3.26)

=
∫
χ(x)χT (x)ρ1(x)dx u (3.27)

= C11u. (3.28)

⇒ u = C−1
11 π, (3.29)
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3.3. Deep reversible Koopman model

where the normalization of the stationary distribution must be still fulfilled by Eq.
3.19. Our preferred training routine can be described as follows:

1. Train the state assignment χ as a VAMPnet.

2. Set u to its optimal value according to the VAMPnet.

3. Train S to its optimal value.

4. Train all three instances at the same time.

In order to tackle problem 2 from above the fourth training step can be updated
to a more elaborate training routine: Trying to keep u and S close to its optimal
values by alternating between training for (χ,u,S) and only training for (u,S).

3.3.1. Incorporate experimental measurements into model
estimation

Further advancements have been proposed for standard MSM estimations. One im-
portant branch is concerned with incorporating existing experimental information
into the model estimation [42–49]. Thereby, these methods aim to overcome sys-
tematic errors in the force field of the simulation, which can improve the estimation
of observables not measured by experiment. This approach can be transferred to
the deep model estimation.
We assume that experiments, such as fluorescence, chemical shift in NMR, and IR
spectroscopy, measure the ensemble average of a scalar observable a. Furthermore,
we make the assumption that we can map each conformation x to an observable
value a(x). According to the ergodic hypothesis, the ensemble average of the ob-
servable equals the time average over a long simulation sampling the equilibrium
distribution. Therefore, the time average value can be estimated by the reversible
deep MSM via:

E[a] ≈
T∑
t=1

µ(xt)a(xt). (3.30)

Due to the bias in the simulation and finite sampling the estimated value might differ
from the experiment. However, if experimental information is available, they can
be incorporated into model estimation and possibly remove the bias. Therefore, we
propose to extent the loss function to additionally match the observables measured
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by experiments:
Ltotal = LMSM +

∑
i

ξi||Oi − E[ai]||2, (3.31)

where Oi is the ensemble average measured by experiment for the ith observable
and LMSM is the score used to train the reversible deep MSM. Each observable can
be weighted by ξi, which encodes uncertainty about the observation [79].
Since LMSM is system and hyperparameter dependent (e.g. number of states, lag
time τ) and the observables can origin from different domains with different units,
a general rule how to choose ξ cannot be defined. However, each experimental
measurement carries an error estimate. The regularization parameters ξi should
therefore be chosen as small as possible that still sufficient many model estimated
observables fall into the standard deviation of the experiment. Thereby, the kinetics
estimation of the VAMP score is disturbed as little as possible.
The same procedure can be applied for available kinetic information through time-
correlation experiments. The expectation value of these time-correlations can be
expressed via the model as:

E[a(t)a(t+ nτ)] ≈
T∑

t1=1
µ(xt1)a(xt1)

T∑
t2=1

pτ (xt2|xt1)a(xt2) (3.32)

= aTX(nτ)a, (3.33)

where a is the average value of the observable within each state and X(nτ) is the
unconditional probability to jump between the states [42]. We express the quantities
via the model parameters as:

ai =
∑
t

a(xt)
χi(xt)µ(xt)∑
t′ χi(xt′)µ(xt′)

, (3.34)

X(nτ) = ΣTn. (3.35)

A third possible observable for an experiment are relaxation timescales ti, which can
be connected to folding rates [79]. These are directly related to the eigenvalues λi
of the transition matrix ti = − log(λi)/τ . Since the optimization of the eigenvalues
would require the estimation of their gradients, which is numerically unstable for the
non-Hermitian transition matrix and not supported by the common deep learning
frameworks, we make use of Eq. 2.61, which shows that T is similar to - and has
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3.4. Coarse-graining with VAMP

therefore the same eigenvalues as - the Hermitian matrix S̄:

S̄ = Σ
1
2 SΣ

1
2 = Σ

1
2 TΣ−

1
2 . (3.36)

Both these observables can be included into the loss function to match experimental
values as shown in Eq. 3.31.

3.4. Coarse-graining with VAMP

Figure 3.6.: Coarse-graining architecture. The state definition of χk(xt) = η(xt)
can be mapped to a coarser representation by a matrix M which maps
each state with some probability to a new state χl(xt) = MTχk(xt). M
is constructed by trainable parameters fulfilling probability constraints
and can be trained for the same losses introduced above. However, in
the case of the deep MSM or the reversible Koopman model consistency
between the two representations regarding the transition density or sta-
tionary distribution should be taken into account. This can be either
achieved by estimating the additional parameters according to these
constraints (Eq. 3.45-3.46), or by retraining them with an updated loss
function (Eq. 3.47). The model is not restricted to one coarse-graining
matrix M, but can be expanded by applying several in succession.

When studying highly complex systems which might exhibit many metastable
states, it can be beneficial to study the system on different levels of resolution, where
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a set of metastable states is grouped into a new metastable state. The assignment
from k metastable states χk(x) to l new metastable states χl(x) with l < k is optimal
in the variational approach, if the feature functions can still span the l leading left
and right singular functions. Therefore, we can still optimize for any VAMP score as
long as the assignment M ∈ Rk×l is differential and fulfills the following constraints
(cf. Fig. 3.6):

χTl (xt) = χTk (xt)M. (3.37)

Mij > 0 ∀ i, j. (3.38)∑
j

Mij = 1 ∀ i. (3.39)

The coarse-graining matrix M can be restraint by choosing trainable parameters
mij so that:

Mij = exp(mij)∑
ν exp(miν)

. (3.40)

In case of the deep MSM and reversible deep MSM it is not sufficient to simply map
the state assignments χk to the finer representation, but new optimal values for ql
or Sl and ul have to be found. However, given a coarse-graining matrix M, the
optimal values can be estimated without the need to retrain them. This is possible
by establishing consistency between the models: The transition probability for the
finer model pk,τ (y|x) != pl,τ (y|x) should be as close as possible to the coarser one.
Additionally, for the reversible model the same is true for the stationary distribution
µk(y) != µl(y).
These conditions result in the following equations:

qk
!= Mql. (3.41)

uk
!= Mul. (3.42)

Sk
!= MSlMT . (3.43)

With the singular value decomposition M = UDVT , the least square solution to
these problems can be found via the pseudoinverse M∗ = VD∗TUT , where D∗ has
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the reciprocal value of every non-zero diagonal element of D:

ql = M∗qk. (3.44)

ul = M∗uk. (3.45)

Sl = M∗SkM∗T . (3.46)

However, since the pseudoinverse represents the least square solution, the resulting
probability distribution might not be normalized. Therefore, a final normalization
has to be executed (cf. Eq. 3.19 for ul, Eq. 3.21 for Sl, and γ̄ l = E[M∗γk] for ql).
Alternatively, the parameters for the coarse representation can be retrained together
with the coarse-graining matrix M. But we propose to add a penalty to the loss if
the consistency is violated, e.g. for the deep MSM:

L = LMSM + ||pk,τ (y|x)− pl,τ (y|x)||2. (3.47)

Independent of which method is used, we want to find the optimal solutions of the
common parameters for both representations k, l. Therefore, we propose to train
for the sum of the two VAMP-scores. Furthermore, the approach is not restricted
to one coarse-grained layer. Instead, several instances can be applied in succession
[79].

3.5. iVAMPnets for decomposing macromolecules
into independent Markovian domains

We aim to describe the system by independent Koopman operators, which will allow
us to construct a global operator, which is unfeasible to estimate directly.
As shown in Sec. 2.1.8 the global Koopman operator decomposes in its independent
subsystem operators if the global feature functions are written as the product of
the individual feature functions χi(xt) of subsystem i. Therefore, we construct the
global feature functions as the Kronecker product, which estimates the product of
all possible combinations:

χG(xt) =
⊗
i

χi(xt). (3.48)
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Figure 3.7.: Scheme of the iVAMPnets architecture for N subsystems with the at-
tention mechanism (cf. Sec. 3.6.2). Two lobes are given for config-
uration pairs xt and xt+τ , where the weights are shared. Firstly, the
input features are element wise weighted Ȳt = A � xt with a mask
A ∈ RD×N , where each subsystem learns its individual weighting. The
mask values can be interpreted as probabilities to which subsystem the
input feature belongs. In order to prevent the subsequent neural net-
work to reverse the effects of the mask, we draw for each input feature
i and subsystem j an independent, normally distributed random vari-
able εij ∼ N (0, σ(1−Aij)). This noise is added to the weighted features
Yt = Ȳt+ε. Thereby, the attention weight linearly interpolates between
input feature and Gaussian noise, i.e., if the attention weight Aij = 1,
Yij carries exclusively the input feature xi, if Aij = 0, Yij is simple Gaus-
sian noise. Afterwards, the transformed feature vector is split for each
individual subsystem Yt = [Y1

t , ...,YN
t ] and passed through the subsys-

tem specific neural network ηi. We call the whole transformation for a
subsystem i χi(xt) = ηi(Yi

t(xt)). The whole model can be trained for
the updated VAMP-E score Eq. 3.56 and the additional independence
constraints Eq. 3.57.

Furthermore, the same construction is applied for the singular functions:

ÛG =
⊗
i

Ui (3.49)

V̂G =
⊗
i

Ui (3.50)

K̂G =
⊗
i

Ki. (3.51)
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If the participating subsystems are independent, the constructed singular functions
are indeed the singular functions of the global system and therefore the following
statements are true:

RG =
∏
i

Ri (3.52)

(ÛG)TCG
00ÛG = 1 (3.53)

(V̂G)TCG
11V̂G = 1 (3.54)

(ÛG)TCG
01V̂G = K̂G. (3.55)

CG represents the correlation matrix in the global feature space and R is a VAMP
score. By these equations it is possible to test if the independence is fulfilled.
The global model can be scored via the validation VAMP-E score 2.39, where we test
how well the constructed operator can predict the dynamics in the global feature
space:

RG
E = tr[2K̂G(ÛG)TCG

01V̂G − K̂G(ÛG)TCG
00ÛGK̂G(V̂G)TCG

11V̂G] (3.56)

This procedure would still require to estimate covariance matrices in the global
space which suffers from the exponential growth. However, as an approximation
it is sufficient to estimate the score and the independence equations only pairwise.
Thereby, it is validated that all global singular functions are indeed independent
σGind which are constructed by at most two singular functions with singular values
smaller than 1: σGind ∈ {σiσj

∏
l /∈{i,j} σl|σl = 1}. As a consequence, we can only

safely propagate observables in the global feature space, which can be written as the
product of two subsystems. However, since the neglected global singular functions
are the product of at least three singular values smaller than 1 their contribution
in Hilbert-Schmidt norm is expected to be minor. Furthermore, it is in principle
possible to validate after the training whether these specific singular functions fulfill
the independence constraints.
Our final idea is to define N state assignments χi and train them simultaneously
for Eq. 3.56, which is evaluated pairwise, and at the same time enforce Eq. 3.52:

LiVAMP = −
∑
i<j

Rij
E +

∑
i<j

||Rij
E −Ri

ER
j
E||

Rij
E

. (3.57)
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We use the remaining Eqs. 3.53 3.54 3.55 for independence to validate the final
trained model (pairwise if needed):

MU = ||(ÛG)TCG
00ÛG − 1|| (3.58)

MV = ||(V̂G)TCG
ττV̂G − 1|| (3.59)

MUV = ||(ÛG)TCG
0τV̂G − K̂G|| (3.60)

MR = |R
G
E −

∏
iRi

E|
RG
E

. (3.61)

3.6. Attention mechanism

Figure 3.8.: Scheme of the possible attention mechanism with noise constraints. (a)
A time independent attention mechanism, where the attention weights
are a vector A of the same size as the input features xt. (b) The atten-
tion weights are estimated by an additional NN A, whose input is given
by xt making it time dependent. For both cases, the resulting weights,
which are normalized along the input dimension, are multiplied element
wise with the input features Ȳt = A � xt. In order to prevent the
subsequent neural network to reverse the effects of the mask, we draw
for each input feature i an independent, normally distributed random
variable εi ∼ N (0, σ(1 − Ai)). This noise is added to the weighted
features Yt = Ȳt + ε. Finally, the whole transformation is given by
χ(xt) = η(Y t(xt)). Thereby, inputs which were scaled down by the
attention weights will not be distinguishable from the noise.

In applications it is of great interest to understand how the NN, which is often
seen as a black box, assigns states. For the application on proteins this translates
to the questions which residues are important for the assignment to metastable
states. There exists two major approaches to extract these information: the post
hoc analysis of the network [80–83], or a simultaneously trained attention mechanism
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[84, 85]. Here, we focus on the latter.
By adding a second trainable part A, acting as a mask, we scale the input features
to the network η by an element wise multiplication χ(xt) = η(A � xt). Due to a
softmax output function of the attention mechanism, its output is an indication how
important the individual input features are.
It is possible to make A(xt) explicitly dependent on the configuration xt. Thereby, it
can be studied which input features are important for that particular configuration.
However, this task requires A to be a more complex function, e.g. represented by a
neural network. If A is not configuration dependent, a trainable vector of the same
size as xt would be sufficient.
In principle, the consecutive neural network η could revert the effects of the attention
mask by rescaling the values back to its former magnitude. Therefore, we propose
to add a weight dependent noise term to the scaled input features η(A � xt + ε),
where εi ∼ N (0, σ(1 − Ai)) is sampled from an independent, normally distributed
random variable with zero mean and standard deviation σ′i = σ(1 − Ai). Thereby,
the attention weight linearly interpolates between input feature and Gaussian noise,
i.e., if the attention weight for the input feature i is large Ai ≈ 1, the added noise is
small εi ≈ 0 and the network η receives a clear signal from xi. However, if Ai ≈ 0,
the ith input to η is dominated by noise. A large value of the tuneable σ will cause
a harder assignment of the importance weights to overcome the noise level.
This attention mechanism can be in principle used with any method presented here.

3.6.1. Attention mechanism for proteins

In order to make the prediction for proteins invariant under rotation and translation,
internal coordinates are often used as input features, e.g. residue distances dij. For
interpretation purposes it is preferable to have importance weights for each residue.
Therefore, we propose to define A in such a way, that it predicts weights Ai for each
residue i, which are normalized along the residue axis. The input to the network η
is scaled as xij = f(dij)AiAj, where f can be an arbitrary function.
In order to smoothen the attention weights along the residue chain, A does not
directly predict the attention weights for each residue but instead predicts values
ā for a window. These are normalized by a softmax function. Furthermore, they
are shared between residues within a window along the chain and the weight for
a residue is constituted by the product of all window weights it falls into Āi =∏
{j|Resi in window j} āj. The size of the windows B and the distance s between them
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Figure 3.9.: Scheme for assigning attention weights along a residue chain of a pro-
tein. Windows of size B are placed along the chain with a step size
of s resulting into W many windows. Each window is assigned with a
normalized attention weight ā. Here a window size of B = 4 and a step
size of s = 2 is chosen. As a consequence the weight of the amino acid
glutamine (Q) is given as the product of the two windows it is part of
Ā(Q) = āj āj+1. The choice of the step size determines how many neigh-
boring amino acids have the exact same weight, which applies here for
the tyrosine (Y). Together with the window size it is regulated how many
residues share parts of their weights. Hence, the serine (S) shares the
weight āj+1 with the previous two amino acids Ā(S) = āj+1āj+2, which
has a smoothing effect on the attention mechanism along the chain.

are hyperparameters (cf. Fig. 3.9).
In order to make the attention weights of the residues sparse, a threshold θ is
introduced Âi = ReLU(Āi − θ) and the resulting weights are normalized across all
residues: Ai = Âi∑

j
Âj
.

3.6.2. iVAMPnets with attention

In the case of iVAMPnets the question to answer by the attention mechanism shifts
to which residues belong to which subsystem. Therefore, slightly changes are neces-
sary. If N is the number of subsystems and D the number of residues, the attention
matrix has the size A ∈ RD×N . Firstly, the attention weights are estimated for each
residue and subsystem as before a1 = [Â1, ..., ÂN ].
Since residues could be negligible for all subsystems, a dummy system is added
which has a constant attention weight c ∈ RD×1 for all residues a2 = [a1, c].
In order to let the subsystem compete for the residues, i.e. the subsystems should fo-
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cus on disjoint subareas, they are normalized along the subsystem axis a3 = a2∑N

n
a2n

.
The final mask can be retrieved by removing the dummy system in a final step
a3 = [A, c̄].

3.7. Validation

After training a model, it is important to test its capability to perform on unseen
data. As long as the new data is drawn from the same probability distribution as
the training data, there should not be a significant drop in performance. However,
since the available data is limited the model might overfit to the data seen during
training, hindering its performance on the hold out data. Therefore, a common
approach is to split the available data threefold: training, validation, and test set.
The training data is used to optimize for the parameters of the model. The valida-
tion set might be used to optimize for hyperparameters, e.g. architecture or as a
stopping criteria to prevent the model to overfit. The test set solely serves as a final
performance check of the model [86, 87].
For validation and testing the VAMP-E or any VAMP-r validation score might be
used.

3.7.1. Chapman-Kolmogorov equation

Instead of testing the model on the variational principle, two other tests have been
established for Markov state models. Both of them origin from the Chapman-
Kolmogorov (CK) equation, which can be exploited to test the Markovian assump-
tion. It states, that if the Markovian property holds:

T(nτ) = Tn(τ), (3.62)

for any n > 1, where T(τ ′) indicates the transition matrix estimated at lag time τ ′.
The equation formalizes the fact, that estimating the probability to jump between
states i, j at a lag time nτ should result in the the same probability as estimating
the transition probabilities at lag time τ and calculating the probability to end in
state j within n jumps starting in state i while being ignorant which intermediate
states are visited.
Since we have limited data and any Markovian model of MD can be only approxi-
mate [12, 88], Eq. 3.62 can only be fulfilled within statistical uncertainty.
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The final procedure involves defining a base time lag τmsm, where the model is
expected to be approximately Markovian, and computing the transition matrix
T(τmsm). During the estimation of the transition matrix T(nτmsm) for different
n the definition of states χ(xt) remains fixed. However, q for the deep MSM and u
and S for the reversible methods are retrained for each time lag.
By using different data splits in a cross-validation setting an statistical error can be
estimated to test the CK-equation [89].

3.7.2. Implied timescales

In order to find a good candidate for τmsm the second test was established. By
plugging the eigenvalue decomposition into the CK-Eq. 3.62, a lag time dependence
of the eigenvalues λi of the transition matrix can be established:

|λi(τ)| = exp
(−τ
ti

)
(3.63)

The eigenvalues decay with a characteristic timescale ti [90].
Since the timescales should be independent of the chosen lag time, we can choose
τmsm, where the timescales are approximately constant with respect to the lag time.
Afterwards, we can proceed with the CK-test.

3.7.3. Eigenfunctions of the Markov state model

Since T is a transition matrix as known from an ordinary Markov state model,
we can study the eigenfunctions of it to learn about its metastable sets and the
processes connecting them [12]. The relaxation times are given by the timescales
defined above. The corresponding eigenfunctions ϕ(x) can be computed as:

ϕ(x) = Rχ(x), (3.64)

where R are the right eigenvectors of T. These eigenfunctions and eigenvalues are
only guaranteed to be real for the reversible deep MSM.
In the case of a VAMPnet, the state vector is propagated by the Koopman matrix
Kχ and the same analysis can be conducted for it.
The Koopman matrix Kχ is given by:

Kχ = C−1
00 C01 = UKV−1. (3.65)
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If the left and right singular functions are equal U = V, they coincide with the
eigenfunctions and the singular values equal the eigenvalues. Banisch and Koltai
[91] connect the singular functions to coherent sets. Meaning that, if the singular
functions are equal, the coherent set remains unchanged within a time step, i.e. it
is a metastable set.
This is in particular the case if the underlying process is reversible and the data
present in equilibrium. So if the system is simulated in thermal equilibrium and
sampled close to the equilibrium distribution, real eigenfunctions and eigenvalues
are expected independent of the chosen model.
The presented results in the next chapters have been published as part of the men-
tioned papers. Here, they are recollected to bring them into a common context and
outline the differences and applicability of the proposed methods.
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4. Vampnets: Deep learning of
molecular kinetics

The results for the VAMPnet method have been published in:

Andreas Mardt, Luca Pasquali, Hao Wu, and Frank Noé. "Vampnets: Deep
learning of molecular kinetics". Nature Communications , 9:5, 2018. DOI:
10.1038/s41467-017-02388-1.

Part of the text and illustrations have been adopted unchanged or only slightly
changed to fit into this context. Reprinted from the stated paper with the permission
of Springer Nature.
Andreas Mardt and Luca Pasquali contributed equally to this work. In particular the
contributions of the authors were as follows: Hao Wu and Frank Noé conceived the
project and developed the theory. Andreas Mardt implemented the model. Andreas
Mardt and Luca Pasquali performed research. They both trained the models, and
analyzed them by visualizing the data. All contributors wrote the paper.
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4. Vampnets: Deep learning of molecular kinetics

4.1. Results

Overview We use VAMPnets to learn molecular kinetics from simulation data of a
range of model systems. We will first apply it to benchmark systems where reference
solutions are well established. However, to show the outperforming or competitive
performance on a larger system we conducted a comparison of our method with
standard MSM analysis on the NTL9 dataset [92].

4.1.1. Asymmetric double well potential

We first model the kinetics of a bistable one-dimensional process, simulated by
Brownian dynamics (cf. Sec. 4.2.4) in an asymmetric double-well potential (Fig.
4.1 a). A trajectory of 50, 000 time steps is generated. Three-layer VAMPnets are
set up with 1-5-10-5 nodes representing χ(xt) = η(xt). The single input node of η
is given by the current and time-lagged mean-free x coordinate of the system, i.e.
xt−µ1 and xt+τ −µ2, where µ1 and µ2 are the respective means, and τ = 1 is used.
The network maps to five softmax output nodes that we will refer to as states, as
the network performs a fuzzy discretization by mapping the input configurations to
the output activations. The network is trained by using the VAMP-2 score with the
four largest singular values.
The network learns to place the output states in a way to resolve the transition

region best (Fig. 4.1 b), which is known to be important for the accuracy of a Markov
state model [12, 88]. This placement minimizes the Koopman approximation error,
as seen by comparing the dominant Koopman eigenfunction (Eq. 3.64) with a direct
numerical approximation of the true eigenfunction obtained by a transition matrix
computed for a direct uniform 200-state discretization of the x axis – see [12] for
details. The implied timescale and Chapman-Kolmogorov tests (Eqs. 3.63 and 3.62)
confirm that the kinetic model learned by the VAMPnet successfully predicts the
long-time kinetics (Fig. 4.1 c, d).

4.1.2. Protein folding model

While the first example was one-dimensional we now test if VAMPnets are able
to learn reaction coordinates that are nonlinear functions of a multi-dimensional
configuration space. For this, we simulate a 100, 000 time step Brownian dynamics
trajectory (Eq. 4.2) using the simple protein folding model defined by the potential
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4.1. Results

Figure 4.1.: Approximation of the slow
transition in a bistable po-
tential. (a) Potential energy
function U(x) = x4−6x2+2x.
(b) Eigenvector of the slow-
est process calculated by di-
rect numerical approximation
(black) and approximated by
a VAMPnet with five output
nodes (red). Activation of
the five softmax output nodes
define the state membership
probabilities (blue). (c) Re-
laxation timescales computed
from the Koopman model
using the VAMPnet trans-
formation. (d) Chapman-
Kolmogorov test comparing
long-time predictions of the
Koopman model estimated at
τ = 1 and estimates at longer
lag times. Panels (c) and (d)
report 95% confidence inter-
val error bars over 100 train-
ing runs.

energy function (Fig. 4.2 a):

U(r) =

−2.5 (r − 3)2 r < 3

0.5 (r − 3)3 − (r − 3)2 r ≥ 3

The system has a five-dimensional configuration space, x ∈ R5, however the energy
only depends on the norm of the vector r = |x|. While small values of r are
energetically favorable, large values of r are entropically favorable as the number of
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Figure 4.2.: VAMPnet model of a simple
protein folding model. (a)
Potential energy as a func-
tion of the radial position
r. (b) Eigenvector of the
slowest process calculated by
direct numerical approxima-
tion on the radial position r
(black) and approximated by
the neural network build on
the 5D-coordinates with two
output nodes with τ = 10
(red). Reported here is the
mean and one standard devi-
ation for the neural network
over 100 runs. Activation of
the two softmax output nodes
define the state membership
probabilities (blue). (c) Re-
laxation timescales computed
from the Koopman model us-
ing the neural network trans-
formation. (d) Chapman-
Kolmogorov test comparing
long-time predictions of the
Koopman model estimated at
τ = 10 and estimates at
longer lag times.

configurations available on a five-dimensional hypersphere grows dramatically with
r. Thus, the dynamics are bistable along the reaction coordinate r. Four-layer NN
with 5-32-16-8-2 nodes was employed and trained to maximize the VAMP-2 score
involving the largest nontrivial singular value.

The two output nodes successfully identify the folded and the unfolded states,
and use intermediate memberships for the intersecting transition region (Fig. 4.2
b). The network excellently approximates the Koopman eigenfunction of the folding
process, as apparent from the comparison of the values of the network eigenfunction
computed by Eq. (3.64) with the eigenvector computed from a high-resolution MSM
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built on the r coordinate (Fig. 4.2 b). This demonstrates that the network can learn
the nonlinear reaction coordinate mapping r = |x| based only on maximizing the
variational score Eq. 2.14. Furthermore, the implied timescales and the CK-test
indicate that the network model predicts the long-time kinetics almost perfectly
(Fig. 4.2 c, d).

4.1.3. Alanine dipeptide

As a next level, VAMPnets are used to learn the kinetics of alanine dipeptide from
simulation data. It is known that the φ and ψ backbone torsion angles are the
most important reaction coordinates that separate the metastable states of alanine
dipeptide, however, our networks only receive Cartesian coordinates as an input,
and are thus forced to learn both the nonlinear transformation to the torsion angle
space and an optimal cluster discretization within this space, in order to obtain an
accurate kinetic model.

A 250 nanosecond MD trajectory generated in Ref. [93] (MD setup described
there) serves as a dataset. The solute coordinates were stored every picosecond,
resulting in 250, 000 configurations that are all aligned on the first frame using
minimal RMSD fit to remove global translation and rotation. The NN uses the three-
dimensional coordinates of the 10 heavy atoms as input, (x1, y1, z1, ..., x10, y10, z10),
and the network is trained using time lag τ = 40 ps. Different numbers of output
states and layer depths are considered.

A VAMPnet with six output states learns a discretization in six metastable sets
corresponding to the free energy minima of the φ/ψ space (Fig. 4.3 b). The implied
timescales indicate that given the coordinate transformation found by the network,
the two slowest timescales are converged at lag time τ = 50 ps or larger (Fig. 4.3
c). Thus we estimated a Koopman model at τ = 50 ps, whose Markov transition
probability matrix is depicted in Fig. 4.3 d. Note that transition probabilities
between state pairs 1 ↔ 4 and 2 ↔ 3 are important for the correct kinetics at τ =
50 ps, but the actual trajectories typically pass via the directly adjacent intermediate
states. The model performs excellently in the CK-Test (Fig. 4.3 e).
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Figure 4.3.: VAMPnet kinetic model of ala-
nine dipeptide.
(a) Structure of alanine dipeptide.
The main coordinates describing
the slow transitions are the back-
bone torsion angles φ and ψ, how-
ever the neural network inputs are
only the Cartesian coordinates of
heavy atoms.
(b) Assignment of all simulated
molecular coordinates, plotted as
a function of φ and ψ, to the six
softmax output states. Color cor-
responds to activation of the re-
spective output neuron, indicat-
ing the membership probability to
the associated metastable state.
(c) Relaxation timescales com-
puted from the Koopman model
using the neural network transfor-
mation.
(d) Representation of the tran-
sition probabilities matrix of the
Koopman model; transitions with
a probability lower than 0.5%
have been omitted.
(e) Chapman-Kolmogorov test
comparing long-time predictions
of the Koopman model estimated
at τ = 50 ps and estimates at
longer lag times. Panels (c) and
(e) report 95% confidence interval
error bars over 100 training runs
excluding failed runs (see text).
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Figure 4.4.: Training success rate in alanine
dipeptide VAMPnets with six
output states as a function of hy-
perparameters. Training success
rate is defined as the fraction of
optimizations of the network to
find all three slow processes (see
text for details).
(a) Training success rate in a five-
layer network as a function of the
lag time τ and the number of op-
timization epochs.
(b) Training success rate at lag
time τ = 8 ps and after 100
epochs as a function of the net-
work depth.

4.1.4. Choice of lag time, network depth and number of output
states

We studied the success probability of optimizing a VAMPnet with six output states
as a function of the lag time τ by conducting 200 optimization runs. Success was
defined as resolving the three slowest processes by finding three slowest timescale
higher than 0.2, 0.4 and 1 ns, respectively. Note that the results shown in Fig. 4.3
are reported for successful runs in this definition. There is a range of τ values from
4 to 32 picoseconds where the training succeeds with a significant probability (Fig.
4.4 a). However, even in this range the success rate is still below 40 %, which is
mainly due to the fact that many runs fail to find the rarely occurring third-slowest
process that corresponds to the ψ transition of the positive φ range (Fig. 4.3 b,
state 5 and 6).

The breakdown of optimization success for small and large lag times can be most
easily explained by the eigenvalue decomposition of Markov propagators [12]. When
the lag time exceeds the timescale of a process, the amplitude of this process becomes
negligible, making it hard to fit given noisy data. At short lag times, many processes
have large eigenvalues, which increases the search space of the neural network and
appears to increase the probability of getting stuck in suboptimal maxima of the
training score.
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4. Vampnets: Deep learning of molecular kinetics

We have also studied the success probability, as defined above, as a function of
network depth. Deeper networks can represent more complex functions. Also, since
the networks defined here reduce the input dimension to the output dimension by a
constant factor per layer, deeper networks perform a less radical dimension reduction
per layer (cf. Sec. 4.2). On the other hand, deeper networks are more difficult to
train. As seen in Fig. 4.4 b, a high success rate is found for four to seven layers.
Next, we studied the dependency of the network-based discretization as a function

Figure 4.5.: Kinetic model of alanine dipeptide as a function of the number of output
states. (a-c) Assignment of input coordinates, plotted as a function of
φ and ψ, to two, three, and eight output states. Color corresponds to
activation of the respective output neuron, indicating the membership
probability to this state (cf. Fig. 4.3 b). (d) Comparison of VAMPnet
and MSM performance as a function of the number of output states
/ MSM states. Mean VAMP-2 score and 95% confidence interval from
100 runs are shown. (e) Mean squared values of the four largest singular
values that make up the VAMPnets score plotted in panel (d).

of the number of output nodes (Fig. 4.5 a-c). With two output states, the network
separates the state space at the slowest transition between negative and positive
values of the φ angle (Fig. 4.5 a). The result with three output nodes keeps the
same separation and additionally distinguishes between the α and β regions of the
Ramachandran plot, i.e. small and large values of the ψ angle (Fig. 4.5 b). For
higher number of output states, finer discretizations and smaller interconversion
timescales are found, until the network starts discretizing the transition regions,
such as the two transition states between the α and β regions along the ψ angle
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(Fig. 4.5 c). We chose the lag time depending on the number of output nodes of the
network, using τ = 200 ps for two output nodes, τ = 60 ps for three output nodes,
and τ = 1 ps for eight output nodes.
A network output with k softmax neurons describes a (k−1)-dimensional feature

space as the softmax normalization removes one degree of freedom. Thus, to resolve
k−1 relaxation timescales, at least k output nodes or metastable states are required.
However, the network quality can improve when given more degrees of freedom in
order to approximate the dominant singular functions accurately. Indeed, the best
scores using k = 4 singular values (3 nontrivial singular values) are achieved when
using at least six output states that separate each of the six metastable states in
the Ramachandran plane (Fig. 4.5 d-e).
For comparison, we investigated how a standard MSM would perform as a func-

tion of the number of states (Fig. 4.5 d). For a fair comparison, the MSMs also used
Cartesian coordinates as an input, but then employed a state-of-the-art procedure
using a kinetic map transformation that preserves 95% of the cumulative kinetic
variance [94], followed by k-means clustering, where the parameter k is varied. It
is seen that the MSM VAMP-2 scores obtained by this procedure is significantly
worse than by VAMPnets when less than 20 states are employed. Clearly, MSMs
will succeed when sufficiently many states are used, but in order to obtain an inter-
pretable model those states must again be coarse-grained onto a fewer-state model,
while VAMPnets directly produce an accurate model with few-states.

4.1.5. VAMPnets learn to transform Cartesian to torsion
coordinates

The results above indicate that the VAMPnet has implicitly learned the feature
transformation from Cartesian coordinates to backbone torsions. In order to probe
this ability more explicitly, we trained a network with 30-10-3-3-2-6 layers, i.e. in-
cluding a bottleneck of two nodes before the output layer. We find that the activation
of the two bottleneck nodes correlates excellently with the φ and ψ torsion angles
that were not presented to the network (Pearson correlation coefficients of 0.95 and
0.92, respectively, Fig. 4.6 a, b). To visualize the internal representation that the
network learns, we color data samples depending on the free energy minima in the
φ/ψ space they belong to (Fig. 4.6 c), and then show where these samples end up
in the space of the bottleneck node activations (Fig. 4.6 d). It is apparent that the
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Figure 4.6.: Network with a bottleneck of two nodes implicitly learns the trans-
formation from heavy atom positions to φ and ψ torsion angles. (a,
b) Correlation of torsion angles and the activations of the bottleneck
nodes. Pearson correlation coefficient (pcc) is shown above. (c) Sam-
ples plotted as a function of φ and ψ angles, colored according to six
clusters found by a optimized network with six output states and no
bottleneck. (d) Samples with same colors, plotted on the activations of
the bottleneck nodes.

network learns a representation of the Ramachandran plot – The four free energy
minima at small φ values (αR and β areas) are represented as contiguous clusters
with the correct connectivity, and are well separated from states with large φ values
(αL area). The network fails to separate the two substates in the large φ value range
well, which explains the frequent failure to find the corresponding transition process
and the third-largest relaxation timescale.
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4.1.6. NTL9 Protein folding dynamics

In order to proceed to a higher-dimensional problem, we analyze the kinetics of an
all-atom protein folding simulation of the NTL9 protein generated by the Anton
supercomputer [92]. A five-layer VAMPnet was trained at lag time τ = 10 ns using
111, 000 time steps, uniformly sampled from a 1.11 ms trajectory. Since NTL9 is
folding and unfolding, there is no unique reference structure to align Cartesian
coordinates to – hence we use internal coordinates as a network input. We computed
the nearest-neighbor heavy-atom distance, dij for all non-redundant pairs of residues
i and j and transformed them into contact maps using the definition cij = exp(−dij),
resulting in 666 input nodes.
Again, the network performs a hierarchical decomposition of the molecular con-

figuration space when increasing the number of output nodes. Fig. 4.7 a shows
the decomposition of state space for two and five output nodes, and the corre-
sponding mean contact maps and state probabilities. With two output nodes, the
network finds the folded and unfolded state that are separated by the slowest tran-
sition process (Fig. 4.7 a, middle row). With five output states, the folded state
is decomposed into a stable and well-defined fully folded substate and a less stable,
more flexible substate that is missing some of the tertiary contacts compared to the
fully folded substate. The unfolded substate decomposes into three substates, one
of them largely unstructured, a second one with residual structure, thus forming a
folding intermediate, and a mis-folded state with an entirely different fold including
a non-native β-sheet.
The relaxation timescales found by a five-state VAMPnet model are en par with

those found by a 40-state MSM using state-of-the-art estimation methods (Fig.
4.7 b-c). However, the fact that only five states are required in the VAMPnet
model makes it easier to interpret and analyze. Additionally, the CK-test indicates
excellent agreement between long-time predictions and direct estimates.

4.2. Methods

4.2.1. Neural network structure

Each network lobe in Fig. 3.1 has a number of input nodes given by the data
dimension. According to the VAMP variational principle, the output dimension
must be at least equal to the number of Koopman singular functions that we want
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to approximate, i.e. equal to k used in the score function Eq. 2.19. In most
applications, the number of input nodes exceeds the number of output nodes, i.e.
the network conducts a dimension reduction. Here, we keep the dimension reduction
from layer i with ni nodes to layer i+ 1 with ni+1 nodes constant:

ni
ni+1

=
(
nin

nout

)1/d
(4.1)

where d is the network depth, i.e. the number of layers excluding the input layer.
Thus, the network structure is fixed by nout and d. We tested different values for d
ranging from 2 to 11; For alanine dipeptide, Fig. 4.4 b reports the results in terms of
the training success rate described in the results section. Networks have a number
of parameters that ranges between 100 and 400000, most of which are between the
first and second layer due to the rapid dimension reduction of the network. To avoid
overfitting, we use dropout during training [61], and select hyper-parameters using
the VAMP-2 validation score.

4.2.2. Neural network hyperparameters

Hyper-parameters include the regularization factors for the weights of the fully con-
nected and the softmax layer, the dropout probabilities for each layer, the batch-size,
and the learning rate for the Adam algorithm. Since a grid search in the joint param-
eter space would have been too computationally expensive, each hyper-parameter
was optimized using the VAMP-2 validation score while keeping the other hyper-
parameters constant. We started with the regularization factors due to their large
effect on the training performance, and observed optimal performance for a factor
of 10−7 for the fully connected hidden layers and 10−8 for the output layer; regular-
ization factors higher than 10−4 frequently led to training failure. Subsequently, we
tested the dropout probabilities with values ranging from 0 to 50 % and found 10 %
dropout in the first two hidden layers and no dropout otherwise to perform well.
The results did not strongly depend on the training batch size, however, more train-
ing iterations are necessary for large batches, while small batches exhibit stronger
fluctuations in the training score. We found a batch-size of 4000 to be a good com-
promise, with tested values ranging between 100 and 16000. The optimal learning
rate strongly depends on the network topology (e.g. the number of hidden layers
and the number of output nodes). In order to adapt the learning rate, we started
from an arbitrary rate of 0.05. If no improvement on the validation VAMP-2 score
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was observed over 10 training iterations, the learning rate was reduced by a factor of
10. This scheme led to better convergence of the training and validation scores and
better kinetic model validation compared to using a high learning rate throughout.
The time lag between the input pairs of configurations was selected depending on

the number of output nodes of the network: larger lag times are better at isolating
the slowest processes, and thus are more suitable with a small number of output
nodes. The procedure of choosing network structure and lag time is thus as follows:
First, the number of output nodes k and the hidden layers are selected, which
determines the network structure as described above. Then, a lag time is chosen in
which the largest k singular values (corresponding to the n − 1 slowest processes)
can be trained consistently.

4.2.3. VAMPnet training and validation

We pre-trained the network by minimizing the negative VAMP-1 score during the
first third of the total number of epochs, and subsequently optimize the network with
VAMP-2 optimization. In order to ensure robustness of the results, we performed
100 network optimization runs for each problem. In each run, the dataset was
shuffled and randomly split into 90%/10% for training and validation, respectively.
To exclude outliers, we then discarded the best 5% and the worst 5% of results.
Hyperparameter optimization was done using the validation score averaged over the
remaining runs. Figures report training or validation mean and 95% confidence
intervals.

4.2.4. Brownian dynamics simulations

The asymmetric double well and the protein folding toy model are simulated by
over-damped Langevin dynamics in a potential energy function U(x), also known
as Brownian dynamics, using an forward Euler integration scheme. The position xt
is propagated by time step ∆t via:

xt+∆t = xt −∆t∇U(x)
kT

+
√

2∆tDwt, (4.2)

where D is the diffusion constant and kT is the Boltzmann constant and tempera-
ture. Here, dimensionless units are used and D = 1, kT = 1. The elements of the
random vector wt are sampled from a normal distribution with zero mean and unit
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variance.

Code availability TICA, k-means and MSM analyses were conducted with PyEMMA
version 2.4, freely available at pyemma.org. VAMPnets are implemented using the
freely available packages keras [95] with tensorflow-gpu [96] as a backend. The code
can be obtained at https://github.com/markovmodel/deeptime. A newer code
version is implemented with PyTorch [97] in the deeptime package [98].

Data availability Data for NTL9 can be requested from the autors of [92]. Data for
all other examples is available at https://github.com/markovmodel/deeptime.

4.3. Discussion

We have introduced a deep learning framework for molecular kinetics, called VAMP-
net. Data-driven learning of molecular kinetics is usually done by shallow learning
structures, such as TICA and MSMs. However, the processing pipeline, typically
consisting of featurization, dimension reduction, MSM estimation and MSM coarse-
graining is, in principle, a hand-crafted deep learning structure. Here we propose
to replace the entire pipeline by a deep neural network that learns optimal feature
transformations, dimension reduction and, if desired, maps the MD time-steps to a
fuzzy clustering. The key to optimize the network is the variational approach for
Markov processes which defines scores by which learning structures can be optimized
to learn models of both equilibrium and non-equilibrium MD.
Although MSM-based kinetic modeling has been refined over more than a decade,

VAMPnets perform competitively or superior in our examples. In particular, they
perform extremely well in the Chapman-Kolmogorov test that validates the long-
time prediction of the model. VAMPnets have a number of advantages over models
based on MSM pipelines: (i) They may be overall more optimal, because featuriza-
tion, dimension reduction and clustering are not explicitly separate processing steps.
(ii) When using softmax output nodes, the VAMPnet performs a fuzzy clustering
of the MD structures fed into the network and constructs a fuzzy MSM, which is
readily interpretable in terms of transition probabilities between metastable states.
In contrast to other MSM coarse-graining techniques it is thus not necessary to
accept reduction in model quality in order to obtain a few-state MSM, but such a
coarse-grained model is seamlessly learned within the same learning structure. (iii)

58

http://pyemma.org
https://github.com/markovmodel/deeptime
https://deeptime-ml.github.io/latest/notebooks/vampnets.html
https://github.com/markovmodel/deeptime


4.3. Discussion

VAMPnets require less expertise to train than an MSM-based processing pipelines,
and the formulation of the molecular kinetics as a neural network learning problem
enables us to exploit an arsenal of highly developed and optimized tools in learn-
ing softwares such as tensorflow, theano, PyTorch, or keras. Despite their benefits,
VAMPnets still miss many of the benefits that come with extensions developed for
MSM approach. This includes multi-ensemble Markov models that are superior to
single-conventional MSMs in terms of sampling rare events by combining data from
multiple ensembles [99–104], Augmented Markov models that combine simulation
data with experimental observation data [43], and statistical error estimators devel-
oped for MSMs [105–107]. Since these methods explicitly use the MSM likelihood,
it is currently unclear, how they could be implemented in a deep learning structure
such as a VAMPnet. Extending VAMPnets towards these special capabilities is a
challenge for future studies.
Finally, a remaining concern is that the optimization of VAMPnets can get stuck in

suboptimal local maxima. In other applications of network-based learning, a working
knowledge has been established which type of network implementation and learning
algorithm are most suitable for robust and reproducible learning. For example, it is
conceivable that the VAMPnet lobes may benefit from convolutional filters [108] or
different types of transfer functions. Suitably chosen convolutions, as in [109] may
also lead to learned feature transformations that are transferable within a given class
of molecules.
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Figure 4.7.: VAMPnet results of NTL9 folding kinetics. (a) Hierarchical decomposi-
tion of the NTL9 protein state space by a network with two and five out-
put nodes. Mean contact maps are shown for all MD samples grouped by
the network, along with the fraction of samples in that group. 3D struc-
tures are shown for the five-state decomposition, residues involved in α-
helices or β-sheets in the folded state are colored identically across the
different states. (b) Relaxation timescales computed from the Koopman
model approximated using the transformation applied by a neural net-
work with five output nodes. (c) Relaxation timescales from a Markov
state model computed from a TICA transformation of the contact maps,
followed by k-means clustering with k = 40. (d) Chapman-Kolmogorov
test comparing long-time predictions of the Koopman model estimated
at τ = 320 ns and estimates at longer lag times. Panels (b), (c) and (d)
report 95% confidence interval error bars over 100 training runs.
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5. Deep Generative Markov State
Models

The results for the deep MSM method have been published in the following pro-
ceedings of the Neurips 2018 conference:

Hao Wu, Andreas Mardt, Luca Pasquali, and Frank Noé. "Deep Generative
Markov State Models". Advances in Neural Information Processing Systems ,
31, 2018. URL: https://papers.nips.cc/.

Part of the text and illustrations have been adopted unchanged or only slightly
changed to fit into this context. Reprinted from the stated paper with the permission
of Curran Associates, Inc..
Hao Wu, Andreas Mardt, and Luca Pasquali contributed equally to this work. In
particular the contributions of the authors were as follows: Hao Wu and Frank
Noé conceived the project and developed the theory. Andreas Mardt and Luca
Pasquali conducted the research, where Andreas Mardt focused on the Prinz and
alanine example with the whole dataset and Luca Pasquali on the alanine example
removing data and try to recover the distributions. All contributors wrote the paper.
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5. Deep Generative Markov State Models

5.1. Results

Overview Below we establish our framework by applying it to two well-defined
benchmark systems that exhibit metastable stochastic dynamics. We validate the
stationary distribution and kinetics by computing χ(x), q(y), the stationary dis-
tribution µ(y) and the relaxation times ti(τ) and comparing them with reference
solutions. We will also test the abilities of a deep generative MSM to generate
physically valid molecular configurations.

5.1.1. Diffusion in Prinz potential

We first apply our framework to the time-discretized diffusion process xt+∆t =
−∆t∇V (xt) +

√
2∆tω̇t with ∆t = 0.01 in the Prinz potential V (xt) introduced

in [12] (Fig. 5.1 a). For this system we know exact results for benchmarking: the
stationary distribution and relaxation timescales (black lines in Fig. 5.1 b, c) and
the transition density (Fig. 5.1 d). We simulate trajectories of lengths 250, 000
and 125, 000 time steps for training and validation, respectively. For all methods,
we repeat the data generation and model estimation process 10 times and compute
mean and standard deviations for all quantities of interest, which thus represent the
mean and variance of the estimators.
The functions χ, γ and G are represented with densely connected neural networks.

The details of the architecture and the training procedure can be found in the
methods section.
We compare the deep MSMs and deep generative MSMs with standard MSMs

using four or ten states obtained with k-means clustering. Note that standard
MSMs do not directly operate on configuration space. When using an MSM, the
transition density (Eq. 3.1) is thus simulated by:

xt
χ(xt)−→ i

∼Ti,∗−→ j
∼ρj(y)−→ xt+τ , (5.1)

i.e., we find the cluster i associated with a configuration xt, which is deterministic
for regular MSMs, then sample the cluster j at the next time-step, and sample from
the conditional distribution of configurations in cluster j to generate xt+τ .
Both deep MSMs trained with the maximum likelihood (ML) method and stan-

dard MSMs can reproduce the stationary distribution within statistical uncertainty
(Fig. 5.1 b). For long lag times τ , all methods converge from below to the correct
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5.1. Results

Figure 5.1.: Performance of deep versus standard MSMs for diffusion in the Prinz
Potential. (a) Potential energy as a function of position x. (b) Station-
ary distribution estimates of all methods with the exact distribution
(black). (c) Implied timescales of the Prinz potential compared to the
real ones (black line). (d) True transition density and approximations
using maximum likelihood (ML) deep MSM, four and ten state MSMs.
(e) KL-divergence of the stationary and transition distributions with
respect to the true ones for all presented methods (also deep generative
MSM).

relaxation timescales (Fig. 5.1 c), as expected from theory [12, 110]. When using
equally many states (here: four), the deep MSM has a much lower bias in the re-
laxation timescales than the standard MSM. This is expected from approximation
theory, as the deep MSMs represents the four metastable states with a meaningful,
smooth membership functions χ(xt), while the four-state MSM cuts the member-
ships hard at boundaries with low sample density. When increasing the number of
metastable states, the bias of all estimators will reduce. An MSM with ten states is
needed to perform approximately equal to a four-state deep MSM (Fig. 5.1 c). All
subsequent analyses use a lag time of τ = 5.
The deep MSM generates a transition density that is very similar to the exact

density, while the MSM transition densities are coarse-grained by virtue of the fact
that χ(xt) performs a hard clustering in an MSM (Fig. 5.1 d). This impression
is confirmed when computing the Kullback-Leibler divergence of the distributions
(Fig. 5.1 e).
Encouraged by the accurate results of deep MSMs, we now train deep generative

MSMs, either by training both the χ = η and G networks by minimizing the energy
distance (ED), or by taking χ from a ML-trained deep MSM and only training the
G network by minimizing the energy distance (ML-ED). The stationary densities,
relaxation timescales and transition densities can still be approximated in these
settings, although the deep generative MSMs exhibit larger statistical fluctuations
than the deep MSMs (Fig. 5.2). ML-ED appears to perform slightly better than ED
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5. Deep Generative Markov State Models

Figure 5.2.: Performance of deep generative MSMs for diffusion in the Prinz Po-
tential. Comparison between exact reference (black), deep generative
MSMs estimated using only energy distance (ED) or combined ML-ED
training. (a) Stationary distribution. (b-d) Transition densities. (e)
Relaxation timescales.

alone, likely because reusing χ from the ML training makes the problem of training
the generator easier.
For a one-dimensional example like the Prinz potential, learning a generative

model does not provide any added value, as the distributions can be well approxi-
mated by the empirical distributions. The fact that we can still get approximately
correct results for stationary, kinetics and dynamical properties encourages us to
use deep generative MSMs for a higher-dimensional example, where the generation
of configurations is a hard problem.

5.1.2. Alanine dipeptide

We use explicit-solvent MD simulations of alanine dipeptide as a second example.
Our aim is to learn stationary and kinetic properties, but especially to learn a gener-
ative model that generates genuinely novel but physically meaningful configurations.
One 250 ns trajectory with a storage interval of 1 ps is used and split 80%/20% for
training and validation – see [77] for details of the simulation setup. We characterize
all structures by the three-dimensional Cartesian coordinates of the heavy atoms,
resulting in a 30 dimensional configuration space. While we do not have exact re-
sults for alanine dipeptide, the system is small enough and well enough sampled,
such that high-quality estimates of stationary and kinetic properties can be obtained
from a very fine MSM [12]. We therefore define an MSM built on 400 equally sized
grid areas in the (φ, ψ)-plane as a reference at a lag time of τ = 25 ps that has been
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5.1. Results

Figure 5.3.: Performance of deep MSMs and deep generative MSMs versus standard
MSMs on the alanine dipeptide simulation trajectory. (a) Data distri-
bution and stationary distributions from reference MSM, deep MSM,
and deep generative MSM. (b) State classification by deep MSM (c)
Relaxation timescales.

validated by established methods [12].
Neural network and training details are again found at the git repository and in

the methods section.
For comparison with deep MSMs, we build two standard MSMs following a state

of the art protocol: we transform input configurations with a kinetic map preserving
95% of the cumulative kinetic variance [94], followed by k-means clustering, where
k = 6 and k = 100 are used.
Deep MSMs trained with ML method approximate the stationary distribution

very well (Fig. 5.3 a). The reference MSM assigns a slightly lower weight to the
lowest-populated state 6, but otherwise the data, reference distribution and deep
MSM distribution are visually indistinguishable. The relaxation timescales esti-
mated by a six-state deep MSM are significantly better than with six-state standard
MSMs. MSMs with 100 states have a similar performance as the deep MSMs but
this comes at the cost of a model with a much larger latent space.
Finally, we test deep generative MSMs for alanine dipeptide where χ is trained

with the ML method and the generator is then trained using ED (ML-ED). The
stationary distribution generated by simulating the model recursively results in a
stationary distribution which is very similar to the reference distribution in states
1-4 with small φ values (Fig. 5.3 a). States number 5 and 6 with large φ values are
captured, but their shapes and weights are somewhat distorted (Fig. 5.3 a). The
one-step transition densities predicted by the generator are high quality for all states
(Fig. 5.4), thus the differences observed for the stationary distribution must come
from small errors made in the transitions between metastable states that are very
rarely observed for states 5 and 6. These rare events result in poor training data for
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5. Deep Generative Markov State Models

the generator. However, the deep generative MSM approximates the kinetics well
within the uncertainty that is mostly due to estimator variance (Fig. 5.3 c).

Figure 5.4.: Conditional transition distributions for alanine dipeptide starting from
different metastable states. The starting distribution are sampled from
the empirical distribution in the yellow region around the red point.
(a) Distribution sampled from the MD simulation. (b) Distribution
generated by the deep generative MSM.

Now we ask whether deep generative MSMs can sample valid structures in the 30-
dimensional configuration space, i.e., if the placement of atoms is physically mean-
ingful. As we generate configurations in Cartesian space, we first check if the internal
coordinates are physically viable by comparing all bond lengths and angles between
real MD data and generated trajectories (Fig. 5.5). The true bond lengths and
angles are almost perfectly Gaussian distributed, and we thus normalize them by
shifting each distribution to a mean of 0 and scaling it to have standard deviation 1,
which results in all reference distributions to collapse to a normal distribution (Fig.
5.5 a, c). We normalize the generated distribution with the mean and standard
distribution of the true data. Although there are clear differences (Fig. 5.5 b, d),
these distributions are very encouraging. Bonds and angles are very stiff degrees
of freedom, and the fact that most differences in mean and standard deviation are
small when compared to the true fluctuation width means that the generated struc-
tures are close to physically accurate and could be refined by little additional MD
simulation effort.
Finally, we perform an experiment to test whether the deep generative MSM is

able to generate genuinely new configurations that do exist for alanine dipeptide
but have not been seen in the training data. In other words, can the generator “ex-
trapolate” in a meaningful way? This is a fundamental question, because simulating
MD is exorbitantly expensive, with each simulation time step being computationally
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5.2. Methods

Figure 5.5.: (a, b) Normalized bond and (c, d) angle distributions of alanine dipep-
tide compared to Gaussian normal distribution (black). (a, c) True
MD data. (b, d) Data from trajectories generated by deep generative
MSMs.

expensive but progressing time only of the order of 10−15 seconds, while often total
simulation timescales of 10−3 seconds or longer are needed. A deep generative MSM
that makes leaps of length τ – orders of magnitude larger than the MD simulation
time-step – and has even a small chance of generating new and meaningful struc-
tures would be extremely valuable to discover new states and thereby accelerate MD
sampling.
To test this ability, we conduct six experiments, in each of which we remove all

data belonging to one of the six metastable states of alanine dipeptide (Fig. 5.6
a). We train a deep generative MSM with each of these datasets separately, and
simulate it to predict the stationary distribution (Fig. 5.6 b). While the generated
stationary distributions are skewed and the shape of the distribution in the (φ, ψ)
range with missing-data are not quantitatively predicted, the deep generative MSMs
do indeed predict configurations where no training data was present (Fig. 5.6 b).
Surprisingly, the quality of most of these configurations is high (Fig. 5.6 c). While
the structures of the two low-populated states 5-6 do not look realistic, each of the
metastable states 1-4 are generated with high quality, as shown by the overlap of a
real MD structure and the 100 most similar generated structures (Fig. 5.6 c).

5.2. Methods

Network architecture and training procedure All neural networks representing
the functions χ = η, γ and G for the Prinz potential are using 64 nodes in all
4 hidden layers and batch normalization after each layer [63]. Rectified linear ac-
tivation functions (ReLUs) are used, except for the output layer of η which uses
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5. Deep Generative Markov State Models

Figure 5.6.: Deep generative MSMs can generate physically realistic structures in
areas that were not included in the training data. (a) Distribution of
training data. (b) Generated stationary distribution. (c) Representa-
tive “real” molecular configuration (from MD simulation) in each of the
metastable states (sticks and balls), and the 100 closest configurations
generated by the deep generative MSM (lines).

softmax and the output layer of G which has a linear activation function. Both η
and γ have 4 output nodes, and G receives a four-dimensional 1-hot-encoding of
the metastable state plus a four-dimensional noise vector as inputs. Optimization
is done using Adam [111], with early stopping checking if the validation score is not
increasing over 5 epochs. The learning rate for the training of η, γ is λ = 10−3, and
for G λ = 10−5 with a batchsize of 100. We are using a time-lag of τ = 5 frames.
For alanine dipeptide, η and γ consist both of 3 residual blocks [112] built of 3

layers all having 100 nodes, with exponential linear units (ELUs) [60], and batch
normalization for each layer. The output layer has 6 output nodes, where η uses
a softmax activation function and γ a RELU [65], respectively. In order to find
all slow processes, it was necessary to pre-train η with the VAMPnet method [77].
The generator G uses 6 noise inputs and a six-dimensional 1-hot-encoding of the
metastable state and the ML-ED scheme. Networks are trained with Adam until
the validation score converges with a learning rate of λ = 10−5 for η, γ using 8000
as batchsize and λ = 10−4 for G using 1500 frames for a batch. All subsequent
analyses that use a fixed lag time employ τ = 1 ps.

Code availability The networks were implemented using PyTorch [97] and tensor-
flow [96]. For the full code and all details about the neural network architecture,
hyper-parameters and training algorithm, please refer to
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https://github.com/markovmodel/deep_gen_msm.

5.3. Discussion
In conclusion, deep MSMs provide high-quality models of the stationary and kinetic
properties for stochastic dynamical systems such as MD simulations. In contrast
to other high-quality models such as VAMPnets, the resulting model is truly prob-
abilistic and can thus be physically interpreted and be used in a Bayesian frame-
work. For the first time, it was shown that generating dynamical trajectories in a
30-dimensional molecular configuration space results in sampling of physically real-
istic molecular structures. While alanine dipeptide is a small system compared to
proteins and other macromolecules that are of biological interest, our results demon-
strate that efficient sampling of new molecular structures is possible with generative
dynamic models, and improved methods can be built upon this. Future methods will
especially need to address the difficulties of generating valid configurations in low-
probability regimes, and it is likely that the energy distance used here for generator
training needs to be revisited to achieve this goal.

Acknowledgements This work was funded by the European Research Commis-
sion (ERC CoG “ScaleCell”), Deutsche Forschungsgemeinschaft (CRC 1114/A04,
Transregio 186/A12, NO 825/4–1, Dynlon P8), and the “1000-Talent Program of
Young Scientists in China”.
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6. Deep reversible Koopman model

The results for the deep reversible Koopman models have been published in the
Proceedings of Machine Learning Research as part of the Mathematical Scientific
Machine Learning conference 2020:

Andreas Mardt, Luca Pasquali, Frank Noé, and Hao Wu. "Deep learning
Markov and Koopman models with physical constraints". Mathematical and
Scientific Machine Learning , 107:451-475, PMLR, 2020. URL:
http://proceedings.mlr.press/v107/mardt20a.html.

Part of the text and illustrations have been adopted unchanged or only slightly
changed to fit into this context. Reprinted from the stated paper with the permission
of PMLR.
Andreas Mardt is the single first author. In particular the contributions of the
authors were as follows: Hao Wu and Frank Noé conceived the project and developed
the theory. Andreas Mardt conducted the main research, where Luca Pasquali
helped running experiments. All contributors wrote the paper.
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6. Deep reversible Koopman model

6.1. Results

Symmetrized VAMPnet (SymVAMPnet)

We compare our reversible models to a previously proposed model [113, 114],
which estimates a VAMPnet but additionally enforces reversibility by symmetrizing
the correlation matrices entering the VAMP score as follows:

C00 = 1
2(E[χ(xt)χ(xt)T ] + E[χ(xt+τ )χ(xt+τ )T ]),

C01 = 1
2(E[χ(xt)χ(xt+τ )T ] + E[χ(xt+τ )χ(xt)T ]),

C11 = C00.

In the limit of a long equilibrium simulation, this model is asymptotically unbiased,
but it can be subject to a strong bias in the case of short simulations starting from
a non-equilibrium distribution, which is the main application scenario of Markov
modeling (cf. [114])

Overview Below we demonstrate our model by applying it to a time-discretized
one-dimensional diffusion process xt+∆t = −∆t∇V (xt) +

√
2∆tωt in the Prinz po-

tential V (x) [12] (Fig. 6.1 a and same as in Sec. 5.1.1) with time step ∆t = 0.001
and ωt being standard normal random variables. When generating training data we
save the state x every five timesteps. The neural network η representing χ has one
input node, receiving the current value of the x coordinate. We validate that when
enforcing the nonnegativity (Eq. 3.18) and reversibility (Eq. 2.60) constraints, our
models will result in a valid transition matrix and real eigenvalues respectively, even
in the case of poorly sampled data. Furthermore, we show that our reversible mod-
els give unbiased results for implied timescales and equilibrium probabilities even
when using non-equilibrium data for training, while a simple symmetrization of the
correlation matrices (SymVAMPnet) does not. Finally, we study the ability of the
proposed methods to approximate the exact eigenfunctions of the test system. We
focus on the 1-D toy model system to demonstrate the performance of the estimator
for a system where exact solutions are available. However, to show the outperform-
ing or competitive performance on a larger system we conducted a comparison of
our method with standard MSM analysis on the NTL9 dataset [92] (cf. Sec. 6.1.4).
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6.1. Results

Figure 6.1.: Demonstration of incorporation of physical constraints: reversibility and
non-negativity. The eigenvalues and the distribution of elements of the
transition matrix T for the RevDMSM and of Kχ for an unconstrained
VAMPnet are shown trained on poorly sampled training data. (a) Po-
tential energy profile of the Prinz model (b) Imaginary and real part
of the eigenvalues of a model estimated with non-reversible VAMPnets
and a RevDMSM. (c) Entries of the matrix T of these two models.

6.1.1. Reversible VAMPnets and reversible deep MSMs obtain
transition matrices with real eigenvalues and nonnegative
entries

To simulate an insufficiently sampled example, we created 1000 trajectories of 1
time step with the starting distribution as stated in Sec. 6.2 for training, validation,
and test set, respectively. We train a regular VAMPnet and a reversible deep MSM
(RevDMSM) on the training data with an early stopping given by the performance
on the validation set and estimate the resulting Koopman matrix for the VAMPnet
and the transition matrix for the RevDMSM on the test set with a fixed number of
output nodes k = 4. Fig. 6.1 b) shows the resulting eigenvalues of these matrices
and Fig. 6.1 c) the distribution of the entries. Using the non-reversible VAMP-
net, the poor sampling leads to complex eigenvalues and negative entries for the
Koopman matrix. Thus, we not only obtain a non-reversible model, but the Koop-
man matrix also does not correspond to a valid transition matrix. The RevDMSM
model does not suffer from these shortcomings, nevertheless the constraints imposed
on the model result in slightly lower eigenvalues, which can be expected since the
constraints hinder the ability to approximate the eigenfunctions of the Koopman
operator.
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6.1.2. Reversible VAMPnets converge to unbiased timescales
and state probabilities for biased training data

In furtherance of showing the necessity of new methods compared to the already
introduced SymVAMPnets, we demonstrate the shortcomings of it in the case of
systematically biased training data in Fig. 6.2. We restrict ourself to only compare
the performance with reversible VAMPnets (RevVAMPnets), since both methods
result in a reversible Koopman model. Thereby, a special focus lies on how well
the two methods approximate the stationary probability of the four main states
([(−∞,−.5], [−0.5, 0.], [0., .5], [.5,∞)]) and the estimated values for the timescales
of the dynamical system. We use as benchmark the Prinz potential, using as training
data a varying number of trajectories with fixed length of 11 frames, and a single
trajectory with a varying number of frames; we chose a fixed length of 11 frames
in order to estimate the timescales at τ = 10. We test the convergence over an
increasing number of trajectories of the two models using 102, 103, 104 trajectories,
respectively. This mimics the case of systematically biased training data, since the
simulations are started from a non-equilibrium distribution, which results in training
data sampled from a distribution different from the equilibrium distribution even in
the case of infinitely many simulations. We also vary the trajectory length between
2·103, 104, 5·104 frames, respectively. The true values of the timescales are numerical
approximations by a transition matrix computed for a direct uniform 1000-state
discretization of the x-axis for 2 · 107 frames [12], while the true state probabilities
were calculated directly from the analytical expression of the potential.

The test of convergence in trajectory length shows how both methods converge to
the true values of the system’s timescales and state probabilities, as it is expected
when the training data distribution converges to the stationary distribution (Fig. 6.2
a-d). The test of convergence in trajectory numbers shows how the RevVAMPnets
method is able to approximate the real state probabilities and timescale values
already with a small number of short trajectories within statistical uncertainty,
and converges to a value consistently close to the real one when the number of
trajectories used as training data increases; we did not observe this behavior for
the SymVAMPnets, as this method is unable to recover the true dynamics and
equilibrium distribution of the system when working with a heavily biased sampling
(Fig. 6.2 e-h), which results in a first timescale nearly a factor 3 too low.
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Figure 6.2.: Reversible VAMPnets converge to unbiased equilibrium probabilities
from biased data. Comparison of building a Koopman model with
a RevVAMPnet (left column) and SymVAMPnets (right column) on
the Prinz potential dataset with a varying number of trajectories of
11 frames each starting from an off-equilibrium distribution (a-d), and
varying length of a single trajectory (e-h). Depicted is the state prob-
ability to be in the four intervals ([−1,−.5], [−.5, 0], [0, .5], [.5, 1]) and
the three slowest timescales as the mean over the lag times [6, 8, 10],
where the horizontal black line marks the true value (bottom). Errors
are estimated over 5 runs as two sigma intervals.
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Figure 6.3.: Estimating the three slowest eigenfunction on the Prinz dataset with a
RevVAMPnet, a SymVAMPnet, and a RevDMSM. a, c, e) Comparison
of the eigenfunction estimated on one long trajectory. b, d, f) Compar-
ison for many short trajectories having an off-equilibrium starting point
distribution. Errors are estimated over 5 runs as two sigma intervals.

6.1.3. Approximation of the true eigenfunctions

Finally, we compare the approximation quality of the three slowest non-trivial eigen-
functions for the Prinz potential for the RevVAMPnet, the RevDMSM, and the
SymVAMPnet (Fig. 6.3). The data from the analysis before is reused of a single
trajectory of length 50,000 frames, and of 10,000 trajectories 11 frames each. We
compare the eigenfunctions against a numerical approximation of the true eigenfunc-
tions by a transition matrix computed for a direct uniform 1,000-state discretization
of the x-axis for 2 · 107 frames as before [12].
The RevVAMPnet is approximating accurately the true eigenfunctions for all set-

tings. In particular, it is able to recover the eigenfunctions remarkably even in the
case of the biased data. The SymVAMPnet results are consistent with previous ob-
servations: the approximation of the first two eigenfunctions of the non-equilibrium
data (Fig. 6.3 b, d) are strongly biased, resulting in the underestimation of the im-
plied timescales. The constraints in the case of the RevDMSM lead to less smoothly
changing eigenfunctions and therefore less accurate approximations. In the case of
the long trajectory, both the SymVAMPnet and the RevDMSM exhibit a stepwise
behavior of the eigenfunctions, as they tend to result in a harder assignment of
states χ. Note that for SymVAMPnet this can be alleviated by avoiding a softmax
clustering in the last layer and rather directly mapping onto the eigenfunctions [113].
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6.2. Methods

MSM 5 MSM 100 RevVAMPnet RevDMSM
VAMP-E 4.2± 0.3 4.86± 0.01 4.92± 0.01 4.93± 0.01

Timescale 1 0.14± 0.09 0.73± 0.09 0.405± 0.004 0.424± 0.005
Timescale 2 0.3± 0.1 0.83± 0.05 0.56± 0.07 0.50± 0.01
Timescale 3 0.6± 0.4 1.6± 0.3 1.4± 0.4 1.2± 0.2
Timescale 4 10± 4 16± 2 12± 3 13± 1

Table 6.1.: Comparison of the proposed models against ordinary MSM estimation on
the NTL9 dataset. Reported is the VAMP-E score at a lag time of τ =
10 ns and the timescales in µs as the mean and the standard deviation
over 5 runs. Our methods are outperforming the MSM estimation for
the same number of states and exhibit a competitive performance to the
100 state MSM while keeping the model easily interpretable.

6.1.4. Performance on a larger system

In order to show that the proposed methods outperform or equally perform com-
pared to the standard pipeline of MSM analysis of protein simulations (time-lagged
independent component analysis (TICA) as dimension reduction followed by kmeans
clustering and a reversible MSM estimation [115, 116]) we applied our methods with
5 output nodes and the MSM estimation with 5 and 100 cluster centers on the NTL9
dataset [92], where the minimal residue distances acted as input features (as in [77]).
We compare the VAMP-E score and the estimated 4 highest timescales. The results
show that our methods outperform the 5 state MSM and exhibit a competitive
performance to the 100 state MSM. However, our methods have the advantages of
yielding an easily interpretable model (cf. Tab. 6.1).

6.2. Methods

Code availability The methods were implemented using Keras [95] with tensorflow
[96] as a backend. For the full code and details about the neural network architecture,
hyper-parameters and training routine, please refer to
https://github.com/markovmodel/deep_rev_msm.
Unless otherwise noted, we used the adam optimizer [111], a batch-size of 5000,

and a six-layer-deep neural network with a constant width of 100 nodes for η.

Data availability As training data we use either a single simulation trajectory of
variable length, or a varying number of short trajectories with fixed length (see
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6. Deep reversible Koopman model

above). Non-equilibrium data are sampled from a starting distribution with proba-
bilities [15%, 70%, 9%, 6%] to start at the points [−0.75+x1,−.25+x2, .25+x3, .75+
x4] where xi are independent random variables sampled from a Gaussian distribution
with zero mean and standard deviation 0.15.

6.3. Discussion
We have introduced an end-to-end deep learning framework for molecular kinet-
ics that allows us to learn high-quality Markov models with physical constraints
such as reversibility and non-negativity of the learned transition matrix. The pro-
posed method is generally applicable for reversible/non-reversible Markov State and
Koopman models depending on which constraints are enforced, thus it can be seen
as an extension and generalization of previous models such as VAMPnets and deep
MSMs. Additionally, the optimization for the state classification and the reversible
transition matrix are not explicitly separate processing steps compared to [113].
The proposed method is able to estimate dynamical and stationary properties even
from highly biased data and gives state of the art results when studying the slow
processes and stationary characteristics of a small toy model.
Despite these advantages, a remaining concern is the optimization procedure,

which requires a good balance when fitting the three trainable units at the same
time. However, we are confident that the used protocol of first fixing χ and resetting
u to optimal values according to a non-reversible Koopman model during the training
process establishes a reproduceable procedure.
Furthermore, we expect that the maximum likelihood formulation of the proposed

method allows us to develop deep learning variants of multi-ensemble MSMs ([99–
104]) that alleviate rare event sampling, and augmented MSMs [117] that incorporate
experimental data into the model estimation.

Acknowledgements This work was funded by the European Research Commission
(ERC CoG “ScaleCell”), Deutsche Forschungsgemeinschaft (CRC 1114/A04, Tran-
sregio 186/A12, NO 825/4– 1, Dynlon P8), MATH+ excellence cluster (Project
EF1-2), and the “1000-Talent Program of Young Scientists in China”. Part of this
research was performed while the author was visiting the Institute for Pure and Ap-
plied Mathematics (IPAM), which is supported by the National Science Foundation
(Grant No. DMS-1440415).
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The results for the coarse-graining and experimental constraints have been published
in the following paper:

Andreas Mardt and Frank Noé. "Progress in deep Markov State Modeling:
Coarse graining and experimental data restraints". The Journal of Chemical
Physics , 155:214106, 2021. DOI: 10.1063/5.0064668.

Part of the text and illustrations have been adopted unchanged or only slightly
changed to fit into this context. Reproduced from the stated paper, with the per-
mission of AIP Publishing.
Andreas Mardt is the single first author. In particular the contributions of the au-
thors were as follows: Andreas Mardt and Frank Noé conceived the project and
developed the theory. Andreas Mardt conducted the research. Both contributors
wrote the paper.
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Figure 7.1.: Incorporating constraints on the matrix T to enforce a reversible model
in the regime of poorly sampled systems. (a) Folded structure of villin
(b) Imaginary and real part of the spectrum and (c) entries of the
transition matrix T of the RevDMSM and for the Koopman matrix Kχ

of the non-reversible VAMPnet with a skip of 100 frames and 10 states
(1 frame = τ = 20 ns).

7.1. Results

Overview Below we demonstrate how a reversible deep MSM (RevDMSM) can
be applied and expanded by our proposed methods to the villin dataset provided
by [92] (folded structure Fig. 7.1 a). The input for η representing χ is exp(−d),
where d is the minimal heavy atom distance between all residues [77]. Firstly, we
will study the ability of the method to guarantee a reversible MSM and compare
the result against a VAMPnet in a low data regime. Afterwards, we will build an
hierarchical model and applying our proposed attention mechanism to it. Based on
this, we study folding and unfolding rates via transition path theory. Finally, we
will look at the effects of including ground truth observables into the training.

7.1.1. Obtaining real eigenvalues and positive entries in the
transition matrix via a RevDMSM

To simulate an insufficient sampled example, we used a skip of 100 frames (1 frame
= 20 ns) and 10 output nodes. We train a regular VAMPnet and a RevDMSM on
the training data with an early stopping given by the performance on the valida-
tion set and estimate the resulting transition matrix on the test set at a time-lag
of τ = 20 ns. The eigenvalues of the transition matrix are always real for the
RevDMSM, whereas in the case of the Koopman matrix for a VAMPnet pairwise
complex eigenvalues may occur (7.1 b). Furthermore, the distribution of the entries
demonstrate how the RevDMSM in contrast to the VAMPnet guarantees values be-
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tween 0 and 1, which can be interpreted as probabilities (7.1 c). The insufficient
sampling leads in the case of the VAMPnet to a non-reversible model, where the
Koopman matrix is not a stochastic matrix. The RevDMSM model does not suffer
from these shortcomings, nevertheless the constraints imposed on the model result
in slightly lower eigenvalues, which can be expected since the constraints impair the
ability to approximate the eigenfunctions of the underlying operator.

7.1.2. Building an MSM and testing its validity for a VAMPnet
and a RevDMSM

Based on the same data as above but with a skip of 25 frames (1 frame = τ = 5 ns),
we built an MSM with 4 output nodes using a RevDMSM and a VAMPnet, respec-
tively. By inspecting the state network connected by their transition probabilities
we observe again negative transition probabilities for the VAMPnet (red arrows Fig.
7.2 b). However, the implied timescale and the CK test confirm the ability of both
models to predict the long-time kinetics. Furthermore, the models agree upon the
timescales within the 70th percentile estimated over 10 runs and discover similar
metastable states, where 10 aligned representative structures are depicted next to
each state (Fig. 7.2 a, b). Although each model uses different trained state assign-
ments χ they both identify a folded state (F), an unfolded state (U), a partially
folded state (PF), and a misfolded state (M) characterized by a helix including the
amino acids 20LEU and 21PRO which form a coil in the folded state.

7.1.3. Building an hierarchical model with an interpretable
attention mechanism

In order to demonstrate the application of an hierarchical model we coarse-grain a
4-state RevDMSM to a 3-state and consecutively to a 2-state model. Additionally,
we incorporate an attention mechanism into the architecture, where the attention
weights are time dependent (cf. Fig. 3.8). After training the 4-state model at τ =
50 ns we train the coarse-graining matrices with the VAMP-E score consecutively
with the pseudoinverse method. Finally, we simultaneously update u and S from
the 4-state model and the two coarse-graining matrices to maximize the sum of the
VAMP-E scores of all three models.
For the estimation of the implied timescales of all models it is sufficient to exclu-

sively retrain u and S from the 4-state model to optimize the sum of the individual
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Figure 7.2.: Comparison of building an MSM with non-reversible VAMPnets and
RevDMSM with a skip of 25 frames (1 frame = 5 ns) and 4 states.
State network of the RevDMSM model (a) and VAMPnet (b), the size
of a state corresponds to the stationary distribution, the arrows are the
transition rates of the T or Kχ matrix, respectively (red arrows indi-
cate negative entries). Additionally, 10 representative structures aligned
according to their secondary structure are shown next to the states. Al-
though trained independently both feature functions identify a folded
state (F), and unfolded state (U), a partially folded state (PF), and a
misfolded state (M). Model validation through the implied timescales of
the (c) RevDMSM and (e) VAMPnets model and the CK-test (d) and
(f) at a base model estimated at τMSM = 50 ns. Errors are estimated
over 10 runs.
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7.1. Results

Figure 7.3.: Hierarchical model from 4 to 3 to 2 states with additional attention
analysis. The top row shows the implied timescales for each model
where the slowest timescales are conserved when coarse-grained. Be-
low, the network graph is depicted where each node represents a state:
folded (F), unfolded (U), partially folded (PF), and misfolded (M). The
connections between the nodes represent how the states contribute to
the coarser representation, where the probability of belonging to the
coarse-grained state is attached to it (probabilities < 1% are omitted).
Additionally, a graphical representation of the matrices M are depicted
beside it (white-low, red-high probability). For each state the most
likely configuration is shown, where the color indicates the attention
weight learned during training (white-low red-high attention).
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scores. The 3- and 2-state model conserve both the highest timescales as expected
(Fig. 7.3 top row). Thereby, the 2-state model, where the unfolded state is missing,
indicates that the slowest timescale is not connected to the folding process. Instead,
the state of the unfolded structure appears in the 3-state model emphasizing the
nature of folding of the second timescale.

Below the timescales we depict a graphical representation of the hierarchical
model, where each node represents a state, where the same nomenclature is used
as above. The connections between the nodes represent the coarse-graining matrix,
where the numbers encode the probability that the state belongs to the coarse-
grained state (connections with a probability less than 1% are not displayed). For
reasons of clarity we added additionally visual representations of the matrices be-
side it, where the color encodes the probability (white-low, red-high). There, it
becomes evident that the coarse-grain matrices have a very sparse structure. The
large values seem to be in agreement with the observation in [78] that RevDMSMs
tend to rather hard assignments of states. However, the hard assignment supports
the interpretation of an hierarchical model.

Next to the nodes we added visualization of the structures of villin with the
highest probability for that particular state. There, the hierarchical splitting is
visible: structure elements of the higher model hierarchy are preserved in the lower
level.

Furthermore, we depict the attention weight of each residue in the color scheme
of the structures (red-high, white-low). It is worth mentioning, that the attention
mechanism needs to highlight areas which are important to distinguish all four
metastable states. This implies that the absence of a specific secondary structure
could be important and therefore highlighted.

Remarkably, our attention mechanism detects 13ARG as important for the folded
structure (F), which we found aligns well with the folding process (Sec. 7.1.6). The
misfolded state (M) shows high attention at the amino acids 20LEU and 21PRO
being part of a helix which form a coil in the folded state. The last residues of the
chain seem to be bad descriptors for the dynamics which seems reasonable due to
their more flexible nature.

In general, the network assigns high attention mainly to regions where states have
themselves secondary structure or where they lack the structure other states have,
e.g. the middle helix of the folded state.
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7.1. Results

Figure 7.4.: Estimating the two slowest eigenfunctions with a RevDMSM on the
villin dataset with a skip of 25 frames (τ = 50 ns) and 4 states. (a),
(b) Eigenfunctions against frames ordered by their eigenfunction value
(fake trajectory along the process). (c), (d) The ratio of formed native
contacts with a mean window over 30 frames is plotted against the
same x-axis, where the color encodes the value of the eigenfunction.
Representative structures for three regions are shown.

7.1.4. Approximation of the leading eigenfunctions via a
RevDMSM

Driven by the observation that the slowest process might not be the folding process,
we test the ability of the above RevDMSM to approximate the two slowest eigen-
functions of the 4 state model of villin employing Eq. 3.64. In order to visualize
the process, the frames are ordered by their eigenfunction value (Fig. 7.4 a, b) and
plotted against the ratio of how many native contacts are formed (Fig. 7.4 c, d).
We define residues being in contact, which are at least two amino acids apart in the
chain and closer than 0.45 nm with respect to their closest heavy atoms. In favor of
a smoother result, we apply a mean window over 30 frames. For both eigenfunctions
10 aligned representative structures for three regions along the process are shown.
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7. Coarse-graining and experimental constraints

The results confirm that the slowest eigenfunction is not the folding process [118].
Instead, the analysis reveals a process from the misfolded via the unfolded to the
folded structure. However, the second slowest process represents the expected fold-
ing process from folded to unfolded.

7.1.5. Estimation of folding rates

We can study via transition-path-theory (TPT) the folding and unfolding rates of
the system. We built a three state RevDMSM, where χ was trained at a time-lag of
τ = 5 ns and u and S retrained at a lag-time of τMSM = 100 ns, where the timescales
were converged. The model has to be constituted of at least three states because
the folding process is the second slowest timescale in the villin trajectory. Given the
model we estimate from the transition matrix T the mean first passage time with
the PyEMMA package [115] for the folding and unfolding process:

τfolding = (3.0± 0.3) µs, (7.1)

τunfolding = (1.0± 0.1) µs, (7.2)

where the error is given via the standard deviations over 10 runs. Lindorff-Larsson
et al.[92] report a folding rate of (2.8± 0.5) µs and unfolding rate of (0.9± 0.2) µs
which is in perfect agreement with our findings, although they utilize a handcrafted
definition of states and simply measure the average lifetime of the folded and un-
folded state and the transition time as the average of all events in the trajectory
[92].

7.1.6. Estimating deep MSMs with experimental restraints

In order to mimic the situation of having ground truth values preferably from an
experiment but biased simulation data for model estimation, we treat expectation
values from the whole long simulation as ground truth. However, we imitate the
situation of a simulation which overestimates transition energy barriers compared to
the ground truth by removing three fourth of folding and unfolding events from the
full trajectory. We detect these events by inspecting the sign changes of the second
slowest eigenfunction (Sec. 7.2.4).
Since we perturbed by our data modification the folding/unfolding process, we

focus on observables related to it. Some of them serve as additional information for
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Figure 7.5.: Estimating observables with biased data and comparing estimates be-
tween models incorporating some of them into the training routine (or-
ange, green, red) and a model incorporating none (blue). The data
is biased by removing folding/unfolding events from the trajectory to
simulate a probable higher transition barrier originating from possible
erroneous force fields. The true values (dashed black line), ideally from
an experiment, were estimated from a model trained on the whole un-
biased data set. (a) two slowest timescales, where process I transitions
between misfolded and folded (Fig. 7.4) and process II is the perturbed
folding process, which was used for the red model as training observ-
able. Therefore, the better approximation of that process is expected.
(b) state probabilities (state I (folded), II (misfolded), III (unfolded),
compare Fig. 7.3 for representations) and therefore a stationary observ-
able, which was not used during training. However, using the expec-
tation value of the contact 1LEU-13ARG being formed improves the
estimation of the stationary properties (orange, red). (c) folding and
unfolding rates estimated via the transition path theory not used for
training, where incorporating the timescale or the autocorrelations of
the contact 1LEU-13ARG staying formed or unformed improves the es-
timation significantly (red and green). The error bars indicate the 70th
percentile.
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training (cf. Sec. 3.3.1), the others as a validation set to compare the performance
on them:

1. The kinetics via the implied timescales (ITS) of the two slowest processes.

2. The stationary distribution of three predefined states.

3. The folding and unfolding rates via TPT analysis.

4. The expectation value (EV) of contact 1LEU-13ARG being formed.

5. The autocorrelation (AC) of the contact 1LEU-13ARG staying formed or un-
formed.

The contact 1LEU-13ARG is chosen because it correlates well with the folding eigen-
function and could be possibly experimentally observed by attaching fluorescence
labels and conducting an fluorescence correlation experiment. Although identifying
contacts accessible to experiments needs the expertise of an experimentalist, we only
made the present choices to illustrate the effect of incorporating such constraints on
the estimates of the mentioned observables. A contact is said to be formed if the
minimal residue distance is shorter than 0.45 nm:

at =

1 if d(t)1-13 < 0.45 nm

0 otherwise
(7.3)

The three predefined states origin from the classification of the model from Sec.
7.1.5 (State I (folded), II (misfolded), III (unfolded)). The observation of the contact
not being formed is simply bt = 1− at.
Both models, with (further called observable model) or without (ordinary model)

additional observable, take the same data splitting and the same pretrained VAMP-
net as a starting point. Afterwards both are trained as described above except for
the modified loss function with the same time-lag values as above. The factor in
front of the observable loss is always ξ = 10 for the results presented here. We
rotate the observable used for training and report the results in Fig. 7.5. Error bars
indicate the 70th percentile over 10 training runs. It can be seen that the second
timescale is confidentially overestimated by the ordinary model (blue) as intended,
which has a direct effect on the folding and unfolding rates. Furthermore, the sta-
tionary distribution of the three states is affected, which implies that estimates of
expectation values cannot be trusted.
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Building an observable model (orange) including the expectation of the contact
being formed improves the estimation of the stationary distribution overall (Fig. 7.5
b). However, there is no positive effect on the estimation of the kinetics.

Taking both autocorrelations of the contact staying formed and unformed as ob-
servables, the observations change (green). It improves the estimates on both sta-
tionary and kinetic properties, respectively. Whereas a good performance on the
kinetics might be expected, the reason for the positive impact on the stationary dis-
tribution becomes only obvious by studying the properties of the autocorrelations.
The difference between the two unnormalized autocorrelations is given by the ex-
pectation value of the contact (cf. Sec. 7.2.1). Therefore, if both autocorrelations
are matched, the expectation value should be matched, which has a positive effect
on the state probabilities as seen above.

Motivated by these findings we tried to match the second implied timescale and
the expectation value along training (red). Here, all observables are matched the
best.

7.2. Methods

7.2.1. Matching two dependent time correlations

Given a microscopic observable a1 and defining a2 = 1 − a1, the expectation value
of a2 is:

E[a2] = E[1− a1] = 1− E[a1]. (7.4)

Therefore, it is of no use to match both expectation values E[a1],E[a2]. However,
if we inspect the time correlation:

E[a2(t)a2(t+ τ)] = E[(1− a1(t))(1− a1(t+ τ))] (7.5)

= 1− E[a1(t)]− E[a1(t+ τ)] (7.6)

+ E[a1(t)a1(t+ τ)],

it is obvious that matching both time correlations is equivalent to matching one
time correlation and the corresponding expectation value.
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7.2.2. Connection between timescales and folding/unfolding
rates

Given experimental rates (time interval per event) for folding ron and unfolding roff
it can be described as a two state (folded and unfolded) Markov process with a
transition matrix T or equivalently by the rate matrix K. Due to the conservation
of probability the eigenvalues of the rate matrix are given by λ(K) = [0,−ron−roff].
The transition matrix and rate matrix are connected by [119]:

T(τ) = exp(Kτ). (7.7)

The eigenvalues of T are [1, λ], where λ is the eigenvalue corresponding to the
folding process. Via the trace the connection between eigenvalue λ and the rates is
recognizable:

tr(T) = 1 + λ = tr(exp(Kτ)) = 1 + exp(−τ(ron + roff))

⇒ λ = exp(−τ(ron + roff)), (7.8)

which can be extended to the corresponding timescale t = 1
ron+roff

.

7.2.3. Pretraining the VAMPnet

Mardt et al.[77] propose a pretraining of the VAMPnet with a symmetrized VAMP-
loss in order to achieve a more crisp assignment of the states. Since there is no clear
motivation about this particular procedure, we modified the pretraining by adding
to the VAMP-2 score the term tr(C00) which will maximize the eigenvalues of the
matrix and therefore favors harder state assignments. The updated loss changes to
the following:

L = −VAMP-2− ξtr(C00), (7.9)

where ξ balances the two terms and can be set to zero during the following un-
perturbed training phase. Thereby, we give a clear motivation that the additional
term pushes the network into a more favorable region during training.
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Figure 7.6.: Example of the classification based on the 2nd eigenfunction of the
trajectory into the three possible classes: folding (orange), unfolding
(green) and staying within a metastable set (red). As we showed in Sec.
7.1.4, the 2nd eigenfunction can be connected to the folding process.
Based on the classification we removed 75 % of the detected transitions
of both directions.

7.2.4. Data manipulation routine for the observable model

We seek to mimic the situation where in a simulation the transition barrier is overes-
timated by the force field compared to a ground truth situation such as a real world
experiment. Therefore, we take a long simulation as ground truth and perturb the
biased simulation by only removing a fraction of observed transitions.
In order to define a transition we make use of the estimated eigenfunction con-

nected to folding on the long unperturbed trajectory. We define the two metastable
sets (folded and unfolded) as configurations which lie within ≈ 10 % of the maxi-
mum and minimum of the eigenfunction (Fig. 7.6 black lines). A transition is then
defined as a sign change of the eigenfunction starting from one metastable state to
the other. Thereby, we found 80 folding (orange) and unfolding (green) events which
are connected by simulation parts where the system remains in one metastable state
(red). The perturbed training data are all the trajectory parts which remain within
a metastable set and 25 % of the detected transitions.

Code availability The methods were implemented using PyTorch [97]. For the full
code and details about the neural network architecture, hyperparameters and train-
ing routine, please refer to https://github.com/markovmodel/deepmsm. In general,
we used the Adam optimizer [111], a batchsize of 10000, and a 6 layer deep neural
network with a constant width of 100 nodes with the ELU activation function for
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η. When using an attention network it has the same architecture as η except of
the output size and a window size of 4 motivated by the fact that the shortest beta
strands and a helix turn is about four residues long.
The whole simulation data is randomly split threefold into 70% training, 20% val-

idation and 10% test set data. The validation data is used to tune hyperparameters
and enact an early stopping mechanism. The results are reported for the test set.

Data availability The data that support the findings of this study are available
from Lindorff-Larsen et al.[92]. Restrictions apply to the availability of these data,
which were used under license for this study. Data are available from the authors
upon reasonable request and with the permission of Lindorff-Larsen et al.[92].

7.3. Discussion

Here we extend the previously proposed reversible deep MSMs[78] by adding fea-
tures well established for traditional MSMs: the coarse-graining of Markov states to
a fewer-state MSM, and the inclusion of experimental restrains into the MSM esti-
mation process. We apply these methods to the study various aspects of the villin
headpiece miniprotein kinetics. We exploit the fact that RevDMSMs are faithful
probability models and apply transition path theory to study mean first passage
times of the folding and unfolding event, where our result coincides with the previ-
ously published results [92]. Furthermore, we established an approach how experi-
mental data can be incorporated into the model estimation and how it can possibly
compensate for biases in the underlying force fields. In addition, the coarse-graining
method proved valuable in constructing hierarchical models, which give rise to eas-
ily interpretable states and allow to study the system on different levels of detail.
Finally, we demonstrated how an attention mechanism can draw the attention to
residues being important for the classification of the dynamics. Thereby, it could be
a valuable tool for practitioners to find targets for mutations to be studied.
Despite these benefits, it remains an open challenge to develop specialized net-

work architectures for protein dynamics analysis, especially the attention network
could profit from an architecture where parameters are shared among residues. Fur-
thermore, the inclusion of real experimental observables remains a task for future
studies, where the method would need to prove its capabilities to counteract biases
of the simulation due to the underlying force field.
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The results for the iVAMPnets project have still to be reviewed:

Andreas Mardt, Tim Hempel, Cecilia Clementi, and Frank Noé. "Deep learning
to decompose macromolecules into independent Markovian domains". bioRxiv,
DOI: 10.1101/2022.03.30.486366.

Part of the text and illustrations have been adopted unchanged or only slightly
changed to fit into this context.
Andreas Mardt and Tim Hempel contributed equally to this work. In particular
the contributions of the authors were as follows: Andreas Mardt, Tim Hempel,
Cecilia Clementi, and Frank Noé conceived the project. Andreas Mardt developed
the theory. Tim Hempel developed test systems. Andreas Mardt and Tim Hempel
performed research. All contributors wrote the paper.
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Figure 8.1.: The iVAMP concept as visualized by modeling dynamics of a protein
that has two independent, flexible regions separated by a rigid barrel.
iVAMPnets learn an assignment of the C- (blue/top) and N-termini
(green/bottom) into independent subsystems from molecular dynamics
trajectories (left panel). Subsequently, the folding/unfolding dynamics
of either terminus is modeled with a VAMPnet, disregarding the state
of the other terminus (right panel).

8.1. Results

Overview A new fundamental problem arises from the increasing interest for large
protein systems: Growing numbers of possibly metastable states necessitate ever
larger amounts of MD sampling to gather sufficient statistics, a vicious cycle con-
sidering that large systems are also harder to sample. However, large systems might
display localized conformational changes [50] or consist of weakly-coupled or inde-
pendent subsystems (cf. Fig. 8.1), a notion which can be exploited to reduce the
necessary sampling. Since a global state is a combination of the individual states
of all subsystems, the number of global states grows exponentially with the number
of subsystems [51, 52]. Therefore, a method aiming at describing the global states
explicitly is fundamentally unscalable. A solution to this problem thus needs to
address two separate issues: (a) dividing the protein system into Markovian sub-
systems and (b) learning the coupling between them. Olsson & Noé [51] addressed
this challenge, in particular (b), by a dynamic graphical model treating the global
system as an Ising model, where the states or “spins” of the subsystems are coupled.
In comparison, Hempel et al. [52] addressed (a) by approximating the global system
dynamics as a set of independent (uncoupled) Markov models (termed Independent
Markov decomposition, IMD). They furthermore propose a pairwise independence
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score of features, which allows to detect nearly uncoupled regions where independent
Markov state models can be estimated subsequently.
In this manuscript, we present a joint IMD and VAMP approach (termed inde-

pendent VAMPnets, or shorthand iVAMPnets) that aims at solving issue (a) by
generalizing IMD to neural network basis functions. iVAMPnets are an integrated
end-to-end learning approach that decomposes the global dynamics into weakly cou-
pled subsystems with a subsystem-membership matrix, and estimates a VAMPnet
for each of these subsystems for a simplified, subsequent analysis. Please compare
Fig. 8.1 for a conceptual overview. In comparison to previous implementations of
IMD, our approach autonomously decouples independent subsystems and accounts
for dynamics that is hidden in non-linear functions of the input features.

8.1.1. Toy model with 2 independent subsystems

We first demonstrate that iVAMPnets are capable of decomposing a dynamical
system into its independent Markovian subsystems based on observed trajectory
data using an exactly decomposable benchmark model.
Akin to the protein illustrated in Fig. 8.1, we define a system that consists of two

independent subsystems with two and three states, respectively. It is modeled by
two transition matrices with the corresponding number of states. We subsequently
sample a discrete trajectory with each matrix (100k steps) [98]. The global state is
defined as a combination of these discrete states. The discrete subsystem states are
now interpreted as the hidden states of hidden Markov models [120] that emit to sep-
arate, subsystem-specific dimensions of a 2D space. The output of each subsystem
is modeled with Gaussian noise N(µi, σ̃) ∈ R that is specific to the state that the
system is in, specified by the mean µi, and a constant σ̃. The two state subsystem
therefore describes a jump process between Gaussian basins along the x-axis and
the three state along the y-axis, respectively (Fig. 8.2 a). These variables compare
to collective variables of the green (x) and blue (y) system depicted in Fig. 8.1.
Please note that while in this toy system the relevant slow collective variables are
known, iVAMPnets are generally capable of finding them (cf. Sec. 10D hypercube
toy model and Synaptotagmin-C2A).
We now explain how we apply iVAMPnets. Since the generative toy model con-

sists of perfectly independent subsystems and the pair already describes the global
system, our method can simply be optimized for the global VAMP-E score (Eq.
3.56) without the need for any further constraints. We train a model with a two
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Figure 8.2.: Hidden Markov state model as a toy example for independent subsys-
tems: (a) 2 subsystems with 2 and 3 states emit independently to an
x and y axis, respectively. The corresponding 2D space embeds all 6
global states. (b) The learned mask shows that each subsystem focuses
on one input dimension. (c) The estimated subsystem transition matri-
ces are compared with the ground truth. (d) Subsystem eigenfunctions
and corresponding eigenvalues as found by iVAMPnets. Independent
processes are recovered from the 2D data. Here, it is not necessary to
enforce any independence constraint. (e) The 6 global eigenfunctions
supplied with their eigenvalues revealing the 4 independent processes
and the 2 resulting mixed product processes. Eigenvalues of the latter
are computed from the product of independent process eigenvalues.
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and three state subsystem at a lag time τ = 1 frame (cf. Fig. 3.7).
Once trained, iVAMPnets yield a model of the dynamics in each of the identified

subsystems. As expected, we find that the estimated transition matrices for both
subsystems closely agree with the ground truth (Fig. 8.2 c). To additionally assess
the slow subsystem dynamics in more detail, we borrow concepts from MSM analysis
and conduct an eigenvalue decomposition of the iVAMPnet models (cf. Sec. 3.7.3).
The analysis of the eigenfunctions demonstrates that, by construction, the system

exhibits one independent process along the x-axis (λ1 = 0.9) and two along the y-
axis (λ2 = 0.887 and λ4 = 0.663) (Fig. 8.2 d).
In contrast, we note that in the picture of global states, two additional processes

would appear as a result of mixing the independent processes (cf. Fig. 8.2 e),
which makes the combined dynamical model more challenging to analyze, whereas
the iVAMPnet analysis remains straightforward and simple. Besides the dynamical
models, our iVAMPnet yields assignments between input features and subsystems.
We find that the method correctly identifies the two state system as the x-axis and
the three states as the y-axis feature, respectively (Fig. 8.2 b).

8.1.2. 10D hypercube toy model

In a next step we test the iVAMPnet approach with ten 2-state subsystems, which
corresponds to 1024 global states (Fig. 8.3 a, b). As before, the dynamics is gener-
ated by ten independent Hidden Markov state models with unique timescales. The
system is split into five pairs of subsystems, and the two coordinates governing the
transition dynamics of each pair are rotated in order to make it more difficult to
separate them (Fig. 8.3 a). Additionally, we make the learning problem harder by
adding ten noise dimensions such that the global system lives on a 10-dimensional
hypercube embedded in a 20 dimensional space.
Although the subsystems are perfectly independent, we will estimate iVAMPnets

with the VAMP-E score in a pairwise fashion, thereby avoiding to estimate expen-
sively large correlation matrices in C ∈ R1024×1024. As this is only justified if all
systems are independent, we additionally enforce Eq. 3.52 during training by min-
imizing Eq. 3.57 and thereby rule out that any two subsystems approximate the
same process.
The iVAMPnet estimation yields subsystem models which, as common in MSM

analysis, can be validated by testing whether their implied relaxation timescales are
converged in the model lag time τ . We find that the implied timescales learned by
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the iVAMPnet are indeed converged and accurately reproduce the ground truth (Fig.
8.3 d). We note that in addition to the timescales of the individual subsystems that
are identified by the iVAMPnet, a global model would also contain all timescales
that result from products of eigenvalues, resulting in a total of 1024 timescales (1023
when excluding the stationary timescale). Thus, the iVAMPnet analysis provides
a much simpler and more concise model than a global MSM or VAMPnet would.
Furthermore, the subsystem assignment mask indicates that the method correctly
assigns high importance weight to two input features for each model (Fig. 8.3 c).
Therefore, the method proves its capability of decomposing a noisy, high dimensional
global system into its independent sub-processes in a data efficient way.

8.1.3. Synaptotagmin-C2A

Finally, we test iVAMPnets on an all-atom protein system, where we use the atten-
tion mechanism described in Sec. 3.6.2 with inter residue distances as input features.
In comparison to our toy examples, we expect the underlying global dynamics to be
only approximately decomposable into independent subsystems. Our test system
is the C2A domain of synaptotagmin that was described by our group previously
[123]; it plays a crucial role in the regulation of neurotransmitter release [124]. It
was shown to consist of approximately uncoupled subsystems containing the calcium
binding region (CBR) and the C78 loop, respectively [52].
First, we attempted to model the protein with a global model, i.e., with a single

(regular) VAMPnet. However, this approach failed because there were not enough
simulation statistics to estimate a reversibly connected transition model between all
global metastable states, resulting in diverging implied timescales (cf. Fig. 8.4).
This is exactly the scenario where iVAMPnets should provide an advantage, by only
relying on locally rather than globally converged transition statistics.
Next, we train iVAMPnets to seek two subsystems of 8 states each at a lag time of

τ = 10 ns where we enforce constraint 3.52 to find uncoupled subsystems. By taking
xij = wiwj exp(−dij) as input features where dij is the minimal heavy atom distance
between residue i, j we ensure that our results are translationally and rotationally
invariant (cf. Sec. 3.6.1).
The trained iVAMPnet identifies one subsystem comprising all three CBR loops

(CBR-1, CBR-2, CBR-3; Fig. 8.5 a). The second subsystem consists not only of
the aforementioned C78 loop but also of the loop connecting beta sheets 3 and 4
[125] (termed C34 henceforth). When mapping the residue positions on the protein
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Figure 8.3.: Hidden Markov State model with 1024 global states building a 10D hy-
percube embedded in a 20D space.(a) The hypercube is composed of
ten independent 2 state subsystems. A pair of 2 subsystems always lives
in a common rotated 2D-manifold. Therefore, two subsystems need
the same input features to be well approximated. Here, the pairwise
VAMP-E score is maximized and the independence constraint Eq. 3.52
is enforced. (b) 2D depiction of the hypercube in an orthographic pro-
jection [121, 122], where the global system can jump freely between
all 1024 vertices, and the ten 2-state models retrieved from it by the
iVAMPnet. (c) Learned mask shows that for each subsystem, the net-
work assigns 2 highly important input features which are shared with
exactly one other subsystem, mirroring the rotated input space. Noise
dimensions (x10-x19) are assigned low importance values. (d) Implied
timescales of all 10 subsystems learned by our method (dots) approxi-
mate the underlying true timescales (lines).
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Figure 8.4.: Failed global implied timescales test with a classical VAMPNet of synap-
totagmin with 8 output nodes. Since the model resolves processes
which are not connected, the eigenvalues are ≈ 1, making the implied
timescales estimation numerical unstable. It indicates that the amount
of data is insufficient to build a global model. The model has no at-
tention mechanism, but utilizes otherwise the same hyperparameters as
the ones used in iVAMPNets.

structure it becomes obvious that the two subsystems are physically well separated
(Fig. 8.5 a), supporting the conclusion that both regions are only weakly coupled
[52].
The implied timescales of both systems are approximately constant in the model

lag time τ . Most timescales are in the range of 1− 10 µs, with the exception of one
much slower process with a 100 µs relaxation time found in the first subsystem (Fig.
8.5 b), which has not been found previously. Analysis of the structural changes
governing this process reveals that it involves an orchestrated transition of all CBR
loops (Fig. 8.5 c). Such a process could however not be resolved by the previous
study [123] as the CBR was modeled as individual loops. The process of the second
system involves a simultaneous movement of the C78 and C34 loops (Fig. 8.5 c).
We note that when analyzing the root mean squared fluctuation (RMSF) of the

two subsystems, we find when considering only frames residing in the metastable
state of the first subsystem comparably low fluctuations for the residues modeled
by it, but higher RMSF in the other subsystem residues (Fig. 8.6). In other words,
knowing the structure of one iVAMPnet subsystem does not allow one to predict the
structure of the other subsystem, supporting the Markov independence assumption
employed here.
Although estimating a global VAMPnet model for synaptotagmin was not feasible

given the sparse data sample, iVAMPnets use the same data efficiently and estimate
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Figure 8.5.: iVAMPnets of synaptotagmin-C2A with 2 subsystems and 8 states each.
a) Importance values of the trainable mask depicted as color-coded pro-
tein secondary structure, indicating assignment to subsystem I (II) in
green (blue). b) Implied timescales of the 2 subsystems with a 90%
percentile over 20 runs. c) Superposed representative structures of
both extrema of the slowest resolved eigenfunctions of each subsystem
(residues not assigned a high importance value or not showing significant
movement are omitted for clarity). The slowest process of subsystem
1 changes between green and gray structures showing an orchestrated
movement of full Calcium Binding Region (CBR1, CBR2, and CBR3).
The slowest process of the second subsystem occurs between the blue
and gray structures and describes a combined movement of C78 and
C34.
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Figure 8.6.: Comparison of root mean square fluctuation (RMSF) in the two sub-
systems. We draw representative structures of minimum and maximum
of the first singular functions of both sub-systems and compute the
RMSF for each sub-system. We find that as expected, the RMSF is
lower in areas that was modeled by the respective sub-model, i.e. CBR-
i for subsystem 0 and C78 and C34 for subsystem 1.

a statistically valid dynamical model. This result is especially striking because the
iVAMPnet approach also simplifies the subsequent task of interpreting models by
separating dynamically independent protein domains.

8.1.4. Counterexample and post-training independence
assessment

Finally, we conducted an experiment on the villin dataset [92] as a negative example.
Small proteins such as villin are typically cooperative, i.e., the slowest processes re-
lated to folding involve all residues. Thus, these processes cannot be resolved when
decomposing the system into several subsystems. If studied by a VAMPnet, the
folding is recovered as the second slowest process. The slowest process describes a
transition between a mis-folded and the folded state [118]. However, the majority
of residues is involved in both of these processes making them ideal candidates for
global processes. Thus, these processes cannot be resolved when decomposing the
system into several subsystems.
For the analysis the same hyperparameters are used as for synaptotagmin but we
choose only 2 states per subsystem. The resolved processes resemble a localized
folding of either the left or right helix of the folded structure in each subsystem
(Fig. 8.7). However, the implied timescales are not converged expressing a non-
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Markovian behavior. The results imply that the network makes a compromise of
learning nearly independent processes and approximating slow processes. Since the
independence is strongly enforced the processes are badly approximated resulting
in poor implied timescales. In order to interpret the iVAMPNets of villin, we have
correlated their eigenfunctions with the ones of a standard, global VAMPNet (Fig.
8.8). We find that the process found by subsystem 1 has the highest Pearson cor-
relation (r = −0.79) with the 2nd global process, which corresponds to peptide
folding. However, the second subsystem cannot be clearly assigned to a global pro-
cess. These results are not surprising since the poor implied timescales and the other
independent scores (Tab. 8.1) reveal that the independence approximation does not
hold in this example, i.e., the system expresses dynamics on the global level that
are not or only poorly approximated by the described iVAMPNets.

8.1.5. Testing statistical independence of the learned dynamical
subsystems

To assess the validity of an estimated subsystem assignment, we evaluate the con-
straints that were not enforced during training (Eq. 3.58-3.60) as post-training
independence score. Low values for MU and MV imply that the constructed left
and right singular functions ÛG, V̂G are indeed valid candidates for singular func-
tions in the global state space. A small value for MUV indicates that the kinetics
in the global state space is well predicted by the Kronecker product of subsystem
models. They are computed for all test systems and presented in Tab. 8.1. Out
of the tested systems only villin cannot be split into independent parts (all scores
> 0.1). In comparison, the toy models and synaptotagmin can be decomposed into
statistically uncoupled subsystems (all scores < 0.01). The slightly increased values
for synaptotagmin suggest that its subsystems might be weakly coupled.

8.2. Methods

Code availability The iVAMPnets architecture, which is implemented using Py-
Torch [97], is depicted in Fig. 3.7. The details for the training routine, choice of
hyper-parameters, and network architecture can be found in our GitHub repository.
In general, we employ the Adam [111] optimizer with a batch size of 10000. We
choose fully connected feed forward neural networks with 3 or 5 hidden layers with
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8. iVAMPnets

MU MV MUV MR

Toy 2 0.0058(3) 0.0059(4) 0.0055(3) 0.0002(1)
Toy 10 0.0039(2) 0.0039(3) 0.0046(3) 0.00045(5)
Syt 0.0067(5) 0.0067(5) 0.0070(5) 0.0015(9)
Villin 0.135(3) 0.136(4) 0.149(3) 0.002(1)

Table 8.1.: Post-training independence validation. The scores in columns 1-3 ( MU ,
MV , MUV , cf. Eq. 3.58- 3.60) are computed from independence con-
straints that were not enforced during the training. The score in the last
column (MR) is used during the training and shown for reference. The
three post-training validation scoresMU ,MV , andMUV indicate that the
final subsystems of both toy examples and synaptotagmin are indeed in-
dependent, whereas the scores for villin strictly oppose this conjunction.
The indicated errors are standard deviations over 10 different runs.
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Figure 8.7.: Counter example to iVAMPNets using villin, trained with the indepen-
dence constraint Eq. 3.52. (a) Subsystem assignment, i.e., masked
importance values, are shown as color code on the folded structure. (b)
Implied timescales of the 2 subsystems, the black dotted lines are ref-
erence timescales of a global model trained with a standard VAMPnet.
(c) 20 representative structures of both extrema of the slowest resolved
eigenfunctions for both subsystems. The processes tend to approximate
formation of the N- and C-terminal helices, respectively.
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Figure 8.8.: Interpreting the processes found by the iVAMPnets for villin by corre-
lating them with the global processes found with a standard VAMPnet.
Shown are the processes with the highest correlation plotted against
each other. The first subsystem correlates with the second global pro-
cess, which relates to peptide folding. The second subsystem can-
not clearly assigned to a global process. However, the product of the
two eigenfunctions exhibits significant correlation with the third global
eigenfunction.

a width of 30 or 100 nodes and the ELU [60] activation function for the toy models
and the proteins, respectively.

Data availability The code that implements the presented models and reproduces
the presented results can be found in our GitHub repository. The molecular dynam-
ics data set of synaptotagmin C2A is available upon request. Restrictions apply to
the availability of the villin data set, which were used under license for this study.
Data are available from the authors upon reasonable request and with the permission
of Lindorff-Larsen et al. [92].

8.3. Discussion
We have proposed a deep learning framework, iVAMPnet, that learns from trajectory
data to decompose a complex dynamical system into subsystems which behave as
approximately independent Markov models. Thereby, iVAMPnet is an end-to-end
learning framework that points a way out of the exponentially growing demand for
simulation data that is required to sample increasingly large biomolecular complexes.
Specifically, we have developed and demonstrated iVAMPnets for molecular dy-

namics, but the approach is, in principle, also applicable to different application
areas, such as fluid dynamics. Of course the specific implementation, such as the
representation of the input vectors xt and the neural network architecture of the
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χ-functions, depend on the application and will have to be tailored to suit new
applications.
We now have a hierarchy of increasingly powerful models ranging from MSMs over

VAMPnets to iVAMPnets: MSMs always consist of (1) a state space decomposition
and (2) a Markovian transition matrix governing the dynamics between these states.
VAMPnets provide a deep learning framework for MSMs, and additionally (3) learn
the collective coordinates in which the state space discretization (1) is best made.
iVAMPnets additionally learn (4) a physical separation of the molecular system
into subsystems, each of which has its own slow coordinates, Markov states, and
transition matrix.
We have demonstrated that iVAMPNets are a powerful multiscale learning method

that succeeds in finding and modeling molecular subsystems when these subsystems
indeed evolve statistically independently. Additionally, iVAMPnets are capable of
learning from high dimensional MD data. To prove that point, we have demonstrated
that the synaptotagmin C2A domain is decomposable into two almost independent
Markov state models. Importantly, we have shown that this dynamical decompo-
sition of synaptotagmin C2A succeeds while an attempt to model the system with
a global VAMPnet fails due to poor sampling. This is a direct demonstration that
iVAMPnets are statistically more efficient than VAMPnets, MSMs or other global-
state models and may indeed scale to much larger systems.
We note, however, that iVAMPnets do not learn how the subsystems are coupled,

and are therefore, in their current form, only applicable to molecular systems that
consist of uncoupled or weakly coupled subsystems. Following up on Ref. [51] and
introducing coupling parameters that describe how the learned MSMs are coupled,
is subject to ongoing research.
Besides the usual hyperparameter choices in deep learning approaches, iVAMP-

nets require the specification of the number of sought subsystems. This choice can be
guided by training iVAMPnets for different numbers of subsystems and then inter-
rogating the independence scores (Eq. 3.58-3.61) to choose a decomposition where
statistical independence is optimal. Furthermore, this choice can be guided by the
number of structural domains or by using the network-based approach presented in
Ref. [52].
iVAMPnets can be improved and further developed in multiple ways, e.g. by

employing more advanced network architectures, e.g. graph neural networks, where
parameters could be shared across subsystems. This might result in higher quality
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models and a greater robustness against the hyperparameter choice.
In summary, iVAMPnets pave a possible path for modeling the kinetics of large

biological systems in a data-efficient and interpretable manner.
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9. Summary and Perspective

This thesis shows how Koopman theory and deep learning can be combined to
produce a robust data-driven framework to approximate the dynamics of complex
systems, in specific the long-time dynamics of molecular processes. The proposed
methods are based on the variational approach for Markov Processes [18] and allow
the approximation of the Koopman operator while incorporating different levels of
physical constraints. The methods are validated by applying them to toy models,
and they are further tested into real world molecular systems.

Summary The most general method presented is the VAMPnet, where the dynam-
ics are approximated by feature state assignments in conjunction with the Koopman
matrix. We applied the method to systems ranging from small toymodels to protein
folding, where the results are competitive or even outperform state-of-the art Markov
modeling approaches. It can further be used to approximate both non-reversible and
non-stationary processes. Despite being a powerful method, it has several shortcom-
ings: there exists no back-mapping from the state space to the configuration space
since it does not explicitly model the transition density; the Koopman matrix cannot
be interpreted as a real transition matrix, restricting the post-analysis tools; and it
does not necessarily yield a reversible model even if the underlying data generating
process is reversible. However, even with these shortcomings, VAMPnets has proven
crucial as a pretraining step for more advanced models.
The first two shortcomings are alleviated by constructing an additional transition
matrix for the state space and by modeling the transition density explicitly, we
called this method deep MSM. It can be further enhanced by adding a genera-
tive model producing new unseen configurations. The method is suitable mainly
for non-reversible systems, where subsequent analysis tools demand true transition
probabilities, e.g. transition path theory. Our applications to a small molecule shows
that deep MSMs manage to model the kinetics with similar accuracy but with far
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less states compared to an ordinary Markov modeling approach, thus staying eas-
ily interpretable. Furthermore, the generated molecule structures exhibit physically
accurate bond and angle distributions.
The last shortcoming is addressed by parameterizing the stationary distribution and
the transition matrix, which allows reversibility to be enforced. The constraints in
the parametrization can be adapted to not only mimic the previous methods, but
also build a reversible VAMPnet or reversible deep MSM. By applying it to a small
toy model, we showed that, even in the case of highly biased data, our method is
able to recover the ground truth. When applied to protein-folding and compared to
ordinary MSMs, our model achieves comparable results with far less states.
The architecture of deep reversible MSM further allows to include experimental ev-
idence as constraints. By updating the loss function to incorporate experimental
measurements, we showed for a large peptide that the method is able to counter
an artificial bias stemming from the simulation. Moreover, we transferred the idea
of coarse-graining from MSMs to the deep learning of Koopman models. This is
achieved by incorporating an additional coarse-graining layer, which is applicable to
all of the previous methods. Applied to the same large peptide, we demonstrated
how the coarse-graining facilitates the analysis at different degrees of resolution.
The interpretation of the model can be further simplified by the proposed attention
mechanism, which marks the dynamical important residues of each particular state.
The final method presented paves the way to solve the fundamental scaling problem
in MD by building independent VAMPnets. Instead of modeling the global states
directly, the method constructs the global states and operator as the product of its
independent subsystem states and operators. At the same time it partitions the
input features via a trainable mask into independent regions that are easily inter-
pretable. The applications ranged from toy systems composed by many independent
subsystems up to a protein, namely the C2A domain of synaptotagmin, where we
were able to identify two independent regions. We showed that the proposed scores
are able to indicate independence and that the method is more data efficient than
a standard global VAMPnet.

Critic and current problems Despite the success of the presented methods, they
still have to prove advantageous when faced with much larger systems. For instance,
in the example of synaptotagmin, the available data is too sparse to build a global
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model; only by employing iVAMPnets can we approximate the long-time dynamics.
However, if the system of interest cannot be decomposed into independent subsys-
tems, the application of iVAMPnets is also ruled out. Moreover, if the system is
composed of coupled subsystems, the method can only be a part of a final solution,
since it misses the possibility to model coupling. This will be the task of future
work and might include trainable coupling parameters as presented in Olsson and
Noé [51].
Another issue with iVAMPnets current implementation is the lack of capability to
include constraints on the transition matrix or reversibility. This is not a complex
task because one only needs to modify the independence constraints. However, these
have to be implemented individually for each method; a task left for future work.
Another concern regards the deep generative MSM, which approximates the sam-
pling from the transition density. The main issue with this approach is the need
for simulation data at the training stage, which might render the trained generative
model obsolete. However, it might turn out beneficial if it predicts samples that
are likely according to the Boltzmann distribution but stem from an unobserved
subspace of the configuration space. This would allow to start new simulations from
these regions and accelerate the exploration of the phase space.
However, this requires that the model has some physical intuition where these re-
gions might be. This knowledge would need to be acquired and transferred from
the same system with different simulation conditions or even from other systems.
Alternative models, which try to generate unseen data, comprise the Boltzmann
generators [74] or coarse-graining MD approaches [126]. The first manages in prin-
ciple to approximate the Boltzmann distribution without training data but neglect
the dynamics. The second can accelerate the sampling of the dynamics but needs
sufficient training data. However, it is more straightforward how to make it trans-
ferable and therefore predictive.
Finally, although we showed that the inclusion of artificial experimental evidence
can improve the accuracy of predicted observables, we did not show the benefits
when confronted with real experimental values and true simulation biases stemming
from the underlying force field. There, the usefulness of this approach remains to
be proven.
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Possible improvements The application of more advanced architectures for the
common neural network η has the greatest potential to improve the model estima-
tion for all methods. The recent developments in neural network architecture such
as new activation functions (ELU [60]) and structures (residual blocks [112]) has
increased the success rates of VAMPnets to nearly 100 % from the stated 40 % in
the paper. Furthermore, smart initialization strategies can help significantly. In the
case of deep MSMs, it turned out crucial to initialize the biases of the last layer of
γ with a positive value, so that the mean value of each entry is invertible (necessary
for the computation of the training score).
Another recent discovery of the so called double descent [127] questions the use of
early stopping in the presented methods. They observed that a model might first
overfit the training data - letting the validation loss increase and the early stopping
therefore end the training - before it descents a second time and starts to generalize
much better on the validation set. An extended optimizer [128] has shown to ac-
celerate the second descent most rapidly compared to other regularization schemes
[129]. Therefore, a possible improvement would be to remove the early stopping and
apply this optimizer.
When applying the methods to proteins a natural choice of advanced architecture
are graph neural networks (GNN), which resemble the graph structure of molecules
[62, 66, 130]. Instead of modeling each atom individually, a node could represent
a whole amino acid and the attached features might be the amino type and the
position in the residue chain. In this case, the features would be assembled to mes-
sages passing between the nodes, which might additionally depend on the distance
between the two involved amino acids or the orientation of the side chains. Finally,
these incoming messages would be collected to update the node features. The mes-
sage creation and node updating is usually performed by neural networks, where
the parameters are shared between the different nodes or even between molecules.
Thereby, the whole architecture is very parameter efficient and possibly transferable
across chemical space [66]. When applying these to VAMPnets, the GNN would
output features for each amino acid based on which a final system specific layer
could assign states. The GNN could be shared across a set of proteins hoping to
find universal features for the description of the dynamics of amino acids. Training
a VAMPnet for a new protein would then only involve the optimization of a last
layer to assign states based on the features extracted for each amino acid.
While this transferable approach needs to be validated by future work, the applica-
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tion of GNNs will be definitely beneficial in the context of larger proteins. In these
cases the number of parameters of a fully connected feed forward network (used in
all the presented work here) would scale quadratically with the number of residues
making it unscalable (assuming amino acid distances as inputs). Instead, since the
parameters are shared across all residues for GNNs, the number of parameters re-
mains constant with increasing residue numbers.
Finally, another possible extension for the reversible Koopman model could include
the multi-ensemble Markov model approach, where kinetic models are built taking
into account the information of simulations with different bias potentials or at differ-
ent temperatures, allowing a faster exploration of the configuration space [131]. The
state assignment χ(xt) would be shared across the ensemble, but the reweighting for
the stationary distribution of the ensemble would need to follow the updated Boltz-
mann distribution, which is modified by temperature changes or biasing potentials.
The transition matrix similarly to the ordinary MSM approach would need to be
trained individually. Thereby, possible processes happening on timescales inaccessi-
ble by simulations at normal conditions become feasible while all the collected data
can be exploited for model estimation.
The applications in this thesis are solely in protein dynamics, although the meth-
ods are not restricted to them. Possible applications to other complex dynamical
systems, such as climate, weather, or ocean currents systems, are intriguing and
can yield new insights and improve predictive power in these fields. However, I
see especially great potential within the protein dynamics domain, since it enables
the automatic building of high quality models within a high-throughput screen-
ing framework of drug candidates with MD. This might ultimately turn out to be a
crucial step in accelerating the process of drug discovery and in making it less costly.
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A. Zusammenfassung
In meiner Dissertation habe ich gezeigt wie Techniken des Deep Learnings benutzt
werden können um die Kinetik von biomolekularen Prozessen zu modelieren. Hier-
bei nutzen wir den variationellen Ansatz für Markov Prozesse (VAMP) um mit Hilfe
von neuronalen Netzen die Singulärfunktionen des Koopman-Operators zu approx-
imieren. Dies erlaubt uns den schrittweisen Prozess zur Schätzung eines Markov
State Models (MSM) durch einen automatischen Ansatz zu ersetzen. Darauf auf-
bauend haben wir fortgeschrittene Techniken des MSM Bauens in die Welt der
neuronalen Netzwerke transferiert. Wir haben demonstriert, (i) wie experimentelle
Evidenz in die Modellschätzung einfliessen kann und systematischen Bias der Sim-
ulation ausbalanzieren kann, (ii) wie die Architektur des Neuronalen Netzwerkes
angepasst werden kann, um einen reversiblen Operator zu schätzen, (iii) wie ein hi-
erarchisches Model durch das Einführen von Coarse-Graining Layern möglich wird,
(iv) wie ein Model trainiert werden kann um unabhängige Subsysteme zu finden und
deren Dynamik zu schätzen, was im Falle der (beinahen) Unabhängigkeit zu einer
deutlichen Dateneffizienz führen kann.
Zum Schluss meiner Arbeit spreche ich ausstehende Probleme an. Diese umfassen
die Anwendung von spezialisierten Netzwerkarchitekturen, die mit deutlich weniger
Parametern qualitativ hochwertige Modelle versprechen und Transferierbarkeit er-
möglichen. Des Weiteren steht es aus, den reversiblen Ansatz auf die Zerlegung
in unabhängige Systeme auszuweiten. Ferner fehlt die Möglichkeit schwache Kop-
plung zwischen den Systemen explizit zu modelieren. Zuletzt empfehle ich den Mul-
tiensemble Ansatz für MSMs auf die reversiblen Koopman Modelle anzuwenden,
wodurch es möglich wird Daten aus Simulation mit verschiedenen Bias-Potentialen
oder unterschiedlichen Temperaturen zusammenzuführen.
Ich bin überzeugt, dass die aufgezeigten Methoden helfen können automatisch kinetis-
che Modelle zu schätzen, wodurch sie in einem Screening-Prozess für die Medika-
mentenentwicklung einsetzbar sind. Ferner bin ich überzeugt, dass sie sich auch für
die Anwendung auf klimatische, ozeanische und athmosphärische Daten eignen und
neue Erkenntnisse hervorbringen können.
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