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Abstract. Control of Boolean networks enables important medical and biological applications. At the core of many approaches is
value percolation, by virtue of its simplicity and ease of implementation. Methods based uniquely on percolation can however miss
many control strategies. We previously introduced a new method which, using the network’s trap spaces, can uncover additional sets
of interventions. In this work we present a highly efficient implementation of this methodology based on Answer Set Programming,
allowing for simple and fast application to biological networks, as illustrated with some cases studies of cell reprogramming.

INTRODUCTION

Control of biological systems presents many interesting applications in the fields of bioengineering and medicine,
for instance in cell reprogramming or drug design [1]. Mathematical modelling can be used to identify potential
targets and help reducing the usually costly and time-consuming experimental testing. Among the different modelling
frameworks, the Boolean formalism stands out for its ability to capture the qualitative behaviour and main features of
biological systems, and its applicability even in cases of limited availability of quantitative details.

In the context of control of biological systems, it is often useful to target a set of relevant observable components,
which capture the significant features of the system attractors, for instance different phenotypes. This approach is
known as target control. Identification of control strategies is in general a complex problem. The core of many
approaches is value percolation, which is a straightforward technique that can be implemented in a computationally
efficient way [2, 3]. However, such approaches might miss many control strategies. Extending these methods using
properties of trap spaces, subspaces of the state space closed for the dynamics, can uncover previously unidentified
control strategies [4]. The implementation proposed in [4], which relies on the enumeration of the possible solutions,
is computationally demanding. Building on works in [3], we present a new, highly efficient implementation of the
methodology developed in [4] using Answer Set Programming (ASP).

CONTROL STRATEGIES

This section provides the definitions required to describe our approach. A Boolean network is a function f : Bn → B
n,

where B= {0,1}. Every x∈B
n is a state of the state space Bn. The set of components of f is denoted by V = {1, ...,n}.

Given a Boolean function, different dynamics can be defined. The asynchronous dynamics, which considers transitions
updating only one component at a time, is often considered in order to capture the possible different time scales of
the system. In this dynamics, represented by the asynchronous state transition graph (STG), an edge exists from x
to y if and only if fi(x) = yi for some i ∈ V and x j = y j for all j �= i. Other dynamics might consider, for example,
the update of all the components (synchronous) or subsets of them (general asynchronous) simultaneously. The long
term dynamics of a system is captured by the attractors, which are terminal strongly connected components of the
STG. In biological systems, steady states (one-state attractors) can be identified with different cell fates or cell types,
and cyclic attractors (attractors with multiple states) with cell cycles or specific cell processes. The asynchronous
dynamics of a Boolean network with two steady states is shown in Figure 1.

Given a state c ∈ B
n and a subset of variables I ⊆V , we define the subspace induced by c and I as the set Σ(I,c) =

{x ∈ B
n | ∀i ∈ I,xi = ci}. The variables in I are called fixed variables. We denote subspaces as states, using the

symbol ∗ for the unfixed variables. A subspace closed for the dynamics is called a trap space. Trap spaces are update-
independent and, by definition, contain at least one attractor. Moreover, in biological systems, minimal trap spaces are
often good approximations for attractors [5]. The system interventions considered in this work consist of fixing certain
variables to certain values. Mathematically, a set of interventions can be represented as a subspace Θ = Σ(I,c) and
the dynamics of the controlled system is identified by the restriction f�Θ : Θ → Θ of f to Θ, defined by ( f�Θ)i(x) = ci

International Conference of Computational Methods in Sciences and Engineering ICCMSE 2021
AIP Conf. Proc. 2611, 110002-1–110002-4; https://doi.org/10.1063/5.0122073

Published by AIP Publishing. 978-0-7354-4247-4/$30.00

110002-1



f (x) =

⎧⎪⎪⎨
⎪⎪⎩

x1x2 ∨ x1x3 ∨ x2x̄3

x1x3 ∨ x̄1x2x̄3

x1x̄4 ∨ x̄2x̄4 ∨ x̄3x̄4

x̄1 ∨ x̄2 ∨ x̄3 ∨ x4

f�Θ1
(x) = (x1x2 ∨ x2, x̄1x2,0,1)

f�Θ2
(x) = (x1x2 ∨ x1x3 ∨ x2x̄3,x1x3 ∨ x̄1x2x̄3,0,1)

.
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FIGURE 1. The asynchronous dynamics of the Boolean function f has two attractors A1 = {0001} and A2 = {1110}. The trap
spaces of f containing only attractors in the target subspace P = 00** (teal) are T1 = **01 (red) and T2 = 0001 (the first steady
state, bold red). The control strategies Θ1 = **0* and Θ2 = ***1 percolate to the selected trap space T1.

for all i ∈ I, and ( f�Θ)i(x) = fi(x) for i /∈ I. A control strategy for a target subspace P is considered here as a set of
interventions that fix the value of certain components so that all the attractors of the dynamics belong to P. Formally,
given a Boolean function f and a subspace P ⊆ B

n, a control strategy for P is a subspace Θ ⊆ B
n such that, for any

attractor A of f�Θ , A ⊆ P. The size of a control strategy Θ = Σ(I,c) is defined as the size of I, which denotes the
number of control interventions. In this work, we consider optimal the control strategies with set of interventions that
are minimal with respect to inclusion.

Approaches based solely on value percolation identify a set of interventions as a control strategy if the subspace
obtained after iterative percolation of the interventions subspace is contained in the target subspace. The candidate set
of interventions is taken from the components of the system, allowing the possibility to restrict the interventions only
to a certain subset of components or candidates. Our approach goes a step further and uses trap spaces to identify
new control strategies missed by techniques based solely on percolation. More precisely, it looks for subspaces that
percolate to the so-called selected trap spaces, which are trap spaces containing only attractors belonging to the target
subspace. Leading the system to a selected trap space guarantees that the system will evolve to the desired target.
Moreover, since the dynamics cannot leave a trap space, the control could be released after reaching the trap space
without altering the reachability of the target. This approach is applicable to the different types of updates previously
described. The selected trap spaces for a certain target are identified using the attractors or their approximations via
minimal trap spaces. Given a selected trap space T , any subspace that contains T and percolates to T is a control
strategy for the given target [4]. The main steps of the method are presented in Algorithm 1. For the calculation of the
trap spaces we use the ASP implementation described in [6].

COMPUTATION OF CONTROL STRATEGIES

Despite the efficiency of the percolation step, approaches based on percolation to the target subspace or to the selected
trap spaces might require the exploration of all possible combinations of candidate interventions, whose number grows
exponentially with the number of components of the network. In order to deal with such combinatorial explosion,
Kaminski et al. [3] proposed the use of Answer Set Programming (ASP), a form of declarative programming suitable
for hard combinatorial and optimisation problems. Here we extend the work done in [3], to identify the control
strategies presented in [4].

As basis for our new implementation, we use the encoding presented in [3]. To implement the refined control
strategy identification, we need to impose new conditions to the target subspace, in particular, to allow multiple targets,
as well as to the interventions forming the candidate space, since only subspaces containing a selected trap space
should be considered. Moreover, we also remove unnecessary parameters and redefine the constraints to percolate
either to the target subspace or to one of the selected trap spaces. In the following, we describe the encoding of the
problem for the example shown in Figure 1.

The Boolean function is encoded from the complete disjunctive normal form (DNF), which consists of the disjunc-
tion of its prime implicants. This encoding declares each variable of the network in the literal var and the literal
candidate is instantiated only for the components that we want to consider for the control. Listing 1 shows the
encoding of the Boolean function presented in Figure 1. The four variables (x1, x2, x3, x4) are instantiated (lines 1-2)
and two candidates (x3, x4) are declared (line 3). The literal f represents the update function of each component and
connects it to the clauses of its complete DNF, described by the literals dnf and cl. In this example, the DNF of the
first variable (x2x̄3 ∨x1x3 ∨x1x2) is declared in f(x1,0) (line 5) together with its three clauses dnf(0,0), dnf(0,1)
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Listing 1. Program instance
1 var(x1). var(x2).

2 var(x3). var(x4).

3 candidate(x3). candidate(x4).

4

5 f(x1 ,0). f(x2 ,1).

6 f(x3 ,2). f(x4 ,3).

7 dnf(0,0). dnf(0,1).

8 dnf(0,2). dnf(1,3).

9 dnf(1,1). dnf(2,4).

10 dnf(2,5). dnf(2,6).

11 dnf(3,7). dnf(3,8).

12 dnf(3,9). dnf(3,10).

13

14 cl(0,x2 ,1). cl(0,x3 ,-1).

15 cl(1,x1 ,1). cl(1,x3 ,1).

16 cl(2,x1 ,1). cl(2,x2 ,1).

17 cl(3,x1 ,-1). cl(3,x2 ,1).

18 cl(3,x3 ,-1). cl(4,x3 ,-1).

19 cl(4,x4 ,-1). cl(5,x2 ,-1).

20 cl(5,x4 ,-1). cl(6,x1 ,1).

21 cl(6,x4 ,-1). cl(7,x4 ,1).

22 cl(8,x3 ,-1). cl(9,x2 ,-1).

23 cl(10,x1 ,-1).

24

25 subs(-1). subs (0). subs (1).

26 goal(-1,x1 ,-1). goal(-1,x2 ,-1).

27 goal(0,x1 ,-1). goal(0,x2 ,-1).

28 goal(0,x3 ,-1). goal(0,x4 ,1).

29 goal(1,x3 ,-1). goal(1,x4 ,1).

30

31 #const maxsize =3.

.

Listing 2. Main program
1 goal(T,S) :- goal(Z,T,S), Z < 0.

2 satisfy(V,W,S) :- f(W,D); dnf(D,C); cl(C,V,S).

3 closure(V,T) :- goal(V,T).

4 closure(V,S*T) :- closure(W,T); satisfy(V,W,S); not goal(V,-S*T).

5 { intv(V,S) : closure(V,S), candidate(V), satisfied(Z), Z < 0 }.

6 { intv(V,S) : goal(Z,V,S), candidate(V), satisfied(Z), Z >=0 }.

7 :- intv(V,1); intv(V,-1).

8 intv(V) :- intv(V,S).

9

10 eval(Z,V,S) :- subs(Z); intv(V,S).

11 free(Z,V,D) :- f(V,D); subs(Z); not intv(V).

12 eval_cl(Z,C,-1) :- cl(C,V,S); eval(Z,V,-S).

13 eval(Z,V, 1) :- free(Z,V,D); eval(Z,W,T) : cl(C,W,T); dnf(D,C).

14 eval(Z,V,-1) :- free(Z,V,D); eval_cl(Z,C,-1) : dnf(D,C).

15

16 not satisfied(Z) :- goal(Z,T,S), not eval(Z,T,S), subs(Z).

17 satisfied(Z) :- eval(Z,T,S) : goal(Z,T,S); subs(Z).

18 0 < { satisfied(Z) : subs(Z) }.

19 :- maxsize >0; maxsize + 1 { intv(X) }.

Algorithm 1 Control strategies for a target subspace P

1: function CONTROLSTRATEGIES( f , P, attr)
2: T ← trapSpaces( f )
3: selTS ← selectedTrapSpaces1(T, P)
4: if attr �= /0 then:
5: selTS ← selTS + selectedTrapSpaces2(T, P, attr)

6: CS ← createCandidatesAndPercolate( f , P, selTS, m)
7: return CS

FIGURE 2. Program instance for the example in Figure 1 (Listing 1). Main program for strategy identification (Listing 2). General
algorithm for control strategy identification via trap spaces (Algorithm 1). The algorithm takes as inputs a Boolean function ( f )
and a target subspace (P) to return a set of control strategies for P. Additionally, it can also take as input the set of attractors of f
or their minimal trap space approximation (attr) and an upper bound on the size of the control strategies (m).

and dnf(0,2) (lines 7-8). The first clause dnf(0,0) corresponds to x2x̄3 and, therefore, is encoded by the literals
cl(0,x2,1) and cl(0,x3,-1) (line 14). Note that the third variable of the literal cl denotes whether the variable is
negated (−1) or not (1). The target subspace and each of the selected trap spaces are encoded in the literal subs (line
25), with a negative identifier for the target subspace and a positive identifier for the selected trap spaces. The fixed
variables of each subspace are denoted in the variable goal (lines 26-29). For instance, the trap space ∗∗01 is declared
in the literal subs(1) and its fixed variables are represented by the literals goal(1,x3,-1) and goal(1,x4,1). Fi-
nally, a constant maxsize, which allows to set an upper bound on the size of the control strategies, is specified in the
problem instance (line 31).

The main program for control strategy identification is shown in Listing 2. The first difference from the original im-
plementation in [3] is the generation of the candidate interventions. Our approach only considers candidate subspaces
containing the selected trap space they percolate to. This condition is stated in line 6 and makes sure that for every
chosen intv(V,S) there exists a subspace(Z), Z > 1, reached by percolation, with a goal(Z,V,S) that fixes the
same variable V to the same value S. Interventions for direct percolation are generated in lines 1-5. Line 7 prevents
that two contradictory interventions are chosen and line 8 creates an auxiliary literal to denote the variables that have
been chosen in the control strategy. The effect of the interventions is represented in the literals eval(Z,V,S) and
free(Z,V,D), which contain for each target subspace the values of the variables fixed by the chosen interventions.
The percolating effect is captured in lines 12-14 where each clause of the DNF is evaluated and fixed, when needed,
according to the literals eval and free. Different from the original implementation, in order to ensure that a candi-
date subspace is a control strategy, it is required that at least one subspace constraint is satisfied (line 18). To do so, we
introduce the variable satisfied, which captures the subspaces that have been reached by the percolation process
(lines 16-17). Moreover, a limitation on the number of interventions (size of the control strategy) is added (line 19).

We compare the performance of the ASP implementation to the implementation proposed in [4] with three case
studies, two of them also discussed in [4]. We chose networks in a range of sizes modelling cell fate decision systems
since cell fate reprogramming is particularly interesting for applications, for example, to induce apoptosis in cancer
cells. Therefore, the target chosen for the control in each network is the subspace defined by the apoptotic phenotype.
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TABLE I. Benchmarks of the different implementations. Time original and Time ASP refer to the calculation of control strategies 
based on percolation to selected trap spaces, for the implementation presented in [4] and with the ASP encoding proposed here re-
spectively, while Time ASP* includes also percolation to the target subspace. Running times are expressed in seconds and obtained 
with a desktops 8-processor computer, Intel®CoreTM i7-2600 CPU at 3.40GHz, 16GB memory. The ASP program is solved using 
clingo [10]. The columns V , E, Vi and Vr indicate the number of components, interactions among components, input components 
and readout components of each network respectively. All implementations use as a target the subspace corresponding to the 
apoptotic phenotype. The table also includes the number of selected trap spaces for each target and the time for their computation 
and the number of control strategies up to size 4 obtained by the complete ASP implementation (ASP*). The components fixed in 
the target subspace (readouts) were excluded from the candidate interventions.

We investigated other target subspaces, obtaining comparable results in terms of efficiency (results not shown).
The results of the benchmarks are summarised in Table I. The ASP implementation does significantly better in 

all the analysed networks, independently of their size or complexity. In addition to the results shown in the table, 
the ASP implementation was run for all possible upper bounds on the sizes of the control strategies. The largest 
minimal control strategy identified has size 5, 6 and 10 for the networks Cellfate, MAPK and T-LGL respectively. 
The running times appear to stabilise around 0.5, 9.7 and 280 seconds respectively. This is a notable difference 
from the previous implementation, where the running times are always increasing with the upper bound, making the 
computation feasible only for small control strategies.

CONCLUSION

We presented a new, more efficient implementation in Answer Set Programming of the control strategy 
identification method developed in [4], that makes this more sophisticated approach accessible for application. It 
would be interest-ing to investigate its scalability with respect to the network size or the complexity of the update 
functions. We expect the latter to be a limiting factor due to the necessary computation of prime implicants.

Our results show that ASP with its flexibility and strength in solving combinatorial problems is well-suited to tackle 
implementation of intricate approaches to Boolean network control.
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