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Abstract

This thesis studies irregular stochastic (partial) differential equations arising in fluctu-
ating hydrodynamics or regularization by noise, and homogenization limits thereof.

In the first part, we consider a model for particles on a biological membrane. The
membrane is given by an ultra-violet cutoff of the quasi-planar Helfrich surface, that
is subject to space-time fluctuations. We study the homogenization limits of the Itô
and Stratonovich rough paths lifts of the diffusion in different scaling regimes. As an
outlook on the construction of the diffusion on the Helfrich membrane without cutoff,
we prove convergence of the rescaled surface measures.

Moreover, we study nonlinear approximations of the Dean-Kawasaki SPDE, a model
for the dynamics of the empirical density of independent Brownian particles. We
approximate this highly irregular SPDE such that the physical constraints of the
particle system are preserved and derive weak error estimates. We prove well-posedness
and a comparison principle for a class of nonlinear regularized Dean-Kawasaki equations.

The second part of this thesis deals with the weak well-posedness of multidimensional
singular SDEs with Besov drift in the rough regularity regime and additive stable jump
noise. We first solve the associated fractional parabolic Kolmogorov equation. To
that end, we employ the paracontrolled ansatz and furthermore generalize to irregular
terminal conditions, that are itself paracontrolled.

We then prove existence and uniqueness of a solution to the martingale problem.
Motivated by the equivalence between probabilistic weak solutions of SDEs with
bounded, measurable drift and solutions of the martingale problem, we define a
rough-path-type weak solution concept for singular Lévy diffusions, proving moreover
equivalence to the martingale solution in the Young and rough regime. To this end, we
construct a rough stochastic sewing integral. In particular, we show that canonical
weak solutions are in general non-unique in the rough case. We apply our theory to
construct the Brox diffusion with Lévy noise.

Finally, we combine the theory of periodic homogenization with the solution theory
for singular SDEs with stable noise. For the martingale solution projected onto the
torus, we prove existence of a unique invariant probability measure. We solve the
singular Fokker-Planck equation and prove a strict maximum principle. Furthermore,
we solve the singular resolvent and Poisson equation. Using Kipnis-Varadhan methods,
we prove a central limit theorem and obtain a Brownian motion with constant diffusion
matrix. In the pure stable noise case, we rescale differently and encounter no diffusivity
enhancement. We conclude on the periodic homogenization result for the singular
parabolic PDE via Feynman-Kac formula.
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Zusammenfassung
Diese Arbeit untersucht irreguläre stochastische (partielle) Differentialgleichungen,
die in der fluktuierenden Hydrodynamik oder in der Regularisierung durch Rauschen
auftauchen, sowie Homogenisierungsgrenzwerte diesbezüglich.

Im ersten Teil betrachten wir ein Modell eines Partikels auf einer biologischen Mem-
bran. Die Membran ist gegeben durch den ultra-violetten Cutoff einer quasi-planaren
Helfrich-Fläche, die Raum-Zeit-Fluktuationen ausgesetzt ist. Wir untersuchen den Ho-
mogenisierungsgrenzwert des Itô- und Stratonovich-Lifts der Diffusion in verschiedenen
Skalierungsregimen. Als Ausblick auf die Konstruktion einer Diffusion auf der Helfrich-
Fläche ohne Cutoff, zeigen wir die Konvergenz der reskalierten Oberflächenmaße.

Darüber hinaus betrachten wir nichtlineare Approximationen der Dean-Kawasaki
SPDE, ein Modell für die Dynamik des empirischen Maßes von unabhängigen Brown’-
schen Partikeln. Wir approximieren die irreguläre SPDE so, dass die physikalischen
Eigenschaften des Partikelsystems erhalten bleiben und zeigen die schwachen Konver-
genzabschätzungen. Wir beweisen Wohlgestelltheit und ein Maximumsprinzip für eine
Klasse von nichtlinearen regularisierten Dean-Kawasaki-Gleichungen.

Der zweite Teil der Arbeit befasst sich mit der schwachen Wohlgestelltheit für multi-
dimensionale singuläre SDEs mit Besov-Drift im irregulären Regularitätsregime und
additivem stabilen Rauschen. Wir lösen zunächst die assoziierte fraktionale parabo-
lische Kolmogorov-Gleichung. Dazu nutzen wir den parakontrollierten Ansatz und
verallgemeinern außerdem zu irregulären, selbst parakontrollierten Endbedingungen.

Wir beweisen die Existenz und Eindeutigkeit von Lösungen zum Martingalproblem.
Die Äquivalenz von stochastisch schwachen Lösungen von SDEs mit beschränkten,
messbaren Drifts und Lösungen des Martingaleproblems motiviert uns, ein schwaches
Lösungskonzept für singulare SDEs zu entwickeln und die Äquivalenz zur Martin-
gallösung im Young-Fall sowie im irregulären Regularitätsregime zu zeigen. Dafür
konstruieren wir ein irreguläres stochastisches Integral. Insbesondere zeigen wir, dass
kanonische schwache Lösungen im irregulären Regularitätsregime im Allgemeinen nicht
eindeutig sind. Als Anwendung präsentieren wir die Brox-Diffusion mit Lévy-Rauschen.

Schlussendlich verbinden wir die Theorie der periodischen Homogenisierung mit
der Lösungstheorie für singuläre SDEs. Für die Martingallösung projiziert auf den
Torus können wir die Existenz eines eindeutigen invarianten Maßes beweisen. Wir lösen
die singuläre Fokker-Planck-Gleichung und beweisen ein starkes Maximumsprinzip.
Weiterhin lösen wir die singuläre Resolventengleichung und die Poisson-Gleichung.
Mithilfe der Kipnis-Varadhan-Methode beweisen wir einen zentralen Grenzwertsatz und
erhalten eine Brown’sche Bewegung mit konstanter Kovarianzmatrix. Im rein stabilen
Fall reskalieren wir anders und bemerken, dass es zu keiner Diffusionserweiterung
kommt. Wir schließen auf das periodische Homogenisierungsresultat für die singuläre
parabolische PDE mithilfe der Feynman-Kac-Formel.
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Introduction
Fluctuating hydrodynamics deals with the macroscopic fluctuations of particle systems
in equilibrium (or local equilibrium) thermodynamic models, cf. e.g. [LL59, Spo91,
DZS06, DFVE14, BDSG+15]). The origins of the theory date back to Landau, Lifshitz
[LL59]. At the micro scale one observes a “chaotic” random system of interacting
particles (e.g. in a gas or fluid). Zooming out in the right scaling, structure becomes
apparent in the form of a so-called hydrodynamic limit (the analogue of the law of
large numbers), that is here given by a deterministic PDE. The fluctuations, observed
on a finer scale, around the hydrodynamic limit of the particle system are described
by means of a suitable stochastic partial differential equation (SPDE) with Gaussian
noise (in analogy to the central limit theorem). In the physics literature on fluctuating
hydrodynamics, the Gaussian noise correlations are formally determined by the so-
called fluctuation-dissipation relation (cf. e.g. [DZS06, OSL09]). We refer to the book
[Spo91] for an in-depth analysis of interacting particle systems from the microscopic
to the macroscopic point of view and physical background. The book [KL98] coveres
scaling limits for interacting particle systems in a broader context.
Fluctuating hydrodynamics can moreover be seen as a source for singular SPDEs, that
are mathematically interesing from the well-posedness and numerical point of view. For
numerical schemes for fluctuation hydrodynamic equations we refer to [BUBDB+12] and
the references therein. An example is the Dean-Kawasaki equation ([Dea96, Kaw94])
for the empirical density of particles (i.e. at the microscopic scale), which is a singular
SPDE whose well-posedness is mathematically challenging. Different solution concepts
were developed in recent years in [KLvR19, KLvR20, FG21]. The equation is useful, as
it correctly predicts the law of large numbers, central limit theorem and large deviations
of the particle system, cf. [FG22].
To facilitate a numerical analysis of the equation, we consider a nonlinear approx-
imation of the Dean-Kawasaki equation and prove weak error bounds between our
approximation and the martingale solution from [KLvR19] utilizing duality arguments
à la [Myt96]. Furthermore, we prove well-posedness and a comparison principle for a
class of regularized Dean-Kawasaki equations.
Similar mathematical problems arise in the study of particle-membrane models. These
model interacting particle systems posed on a hypersurface. The motivation comes from
cell biology. The interplay of proteins and curvature of a biological membrane are well-
known to regulate cell functions (cf. e.g. [MG05]), for example in neurobiology in the
context of signal transmisson with neurotransmitters at a postsynapic membrane. The
optimal mathematical model would consider membrane-mediated interactions between
the particles (e.g. proteins) and interactions of the particles with the membrane.
We refer to the article [KGSK20], that studies the modelling perspective. Physical
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investigations (cf. e.g. [NB07]) suggest the biological membrane to behave like a typical
sample of a Gaussian field with a covariance operator given by the linearized Canham-
Helfrich energy (cf. [Can70, Hel73]). The sample paths of such a Gaussian field are
typically non-differentiable, which imposes difficulties for the construction of a diffusion
on that Gaussian hypersurface. Most articles therefore consider the ultra-violet cutoff
of the Helfrich surface (cf. e.g. [NB07, Dun13, DEPS15]). Furthermore, we assume the
membrane to be subject to space-time fluctuations that occur for thermal reasons. Here,
homogenization theory comes into play (cf. the classical monographs [BLP78, PS08]).
The question is whether the effects of the oscillations of the membrane for the diffusion
are averaged out, respectively homogenized, in the limit. [Dun13, DEPS15] already
studied the homogenization limit for the diffusion on the ultra-violet cutoff of the
fluctuating Helfrich membrane. We generalize their results to convergence of the rough
paths lifts of the diffusion. We refer to the book [FH20] for an introduction to rough
paths theory and the articles [KM17, CFK+19] and refereces therein for the connection
to homogenization. Considering different space-time scaling regimes, we prove that an
area correction term in the limit of the Itô and Statonovich lifts appears. Furthermore,
we study the limit of the rescaled surface measure when the ultra-violet cutoff is taken
to infinity, which gives an indication on the limit behaviour for the diffusion on the
rough Helfrich surface.
Regularization by noise is a generic concept to restore well-posedness of certain ill-posed
ODEs or PDEs by adding a random pertubation. The resulting SDEs or SPDEs give
rise to pathwise and probabilistic solution theories.
The ideas underlying regularization by noise for SDEs were first introduced by Zvonkin
[Zvo74] (in one dimension) and Veretennikov [Ver81], who in particular prove strong
well-posedness for multidimensional SDEs with bounded, measurable drift and additive
Brownian noise. In the case of bounded, measurable drift a Girsanov transformation
(cf. e.g. [RY99]) yields probabilistic weak existence of solutions. Pathwise uniqueness
can be established with the so-called Zvonkin transformation, that removes the irregular
drift. Via Yamada-Watanabe arguments (cf. [YW71]) strong existence and uniqueness
follows. [KR05] generalized the strong well-posedness to drifts in Lq([0, T ], Lp(Rd)) for
d
p

+ 2
q
< 1, p, q ⩾ 2. We refer to the monograph [Fla11] and the summary paper [Ges19]

for a detailed overview on the topic of regularization by noise, also in the context of
SPDEs originating in fluid dynamics. Regularization by noise for SPDEs is a recent
and promising development, but so far mostly limited to linear SPDEs and a few other
equations, see e.g. [GP93, Fla11, DPFRV16, GG19, ABLM22, Lan22]. We focus on
SDEs with distributional drift and additive noise. Morally, the rougher the noise, the
more irregular coefficients can be handled, cf. [CG16, HP21].
The noise we consider is an α-stable jump process, which exhibits weaker regularization
compared to the Brownian noise. We assume α > 1 and cover simultaneously the
Brownian noise case, which corresponds to α = 2. Our methods employ a probabilistic
approach towards regularization by noise (cf. the original articles [Fig08, BL08]).
Pathwise approaches à la Catellier and Gubinelli were investigated e.g. in [CG16,
HP21, GG21, Gal22]. However, combining pathwise techniques with probabilistic
methods turned out to be highly beneficial, in particular to tackle critical equations,
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see e.g. [Ger22, GG22]. The tool that made this possible is the stochastic sewing
lemma from [Lê20]. In our setting, we use a combination of rough paths techniques
and probabilistic properties to construct a dynamical weak solution concept for SDEs
with rough drifts. The probabilistic methods are based on the correspondence of a
Markov diffusion with its singular generator via the martingale problem. We refer to
the book [EK86] for an in-depth analysis of the martingale problem.
To define a sufficiently large subset of the domain of the generator, which makes the
martingale problem well-posed, we solve the backward Kolmogorov equation. We
consider singular drifts beyond the so-called Young regime where products with the
distributional drift are well-defined in the classical sense. Therefor we employ the
paracontrolled ansatz of [GIP15]. We furthermore generalize to singular paracontrolled
terminal conditions for the Kolmogorov equation. This is motivated by the observation
that Schauder and commutator estimates for the semigroup of the diffusion process
can be inferred from regularity properties of the solution of the Kolmogorov equation
with singular terminal conditions. This will be relevant for example to “sew” (in the
sense of [Lê20]) additive functionals of the diffusion process with functionals that are
irregular or (paracontrolled by) the drift itelf.
Then, we prove existence and uniqueness of solutions of the singular martingale problem
associated to the SDE with rough drift, extending the articles [DD16, CC18] to the
stable noise case. In addition, we introduce a dynamical weak solution concept
(called “rough weak solutions”) and prove equivalence to the concept of solutions of the
martingale problem. In the Young regularity regime, the problem of well-posed weak
solutions was already tackled in [ABM20, IR22]. In the rough regime, a well-posed
dynamical weak solution concept has so far been an open problem. The canonical
weak solution concept of [ABM20] turns out to allow – even in the one-dimensional
Brownian noise setting – for non-unique solutions in the rough case. For rough weak
solutions we prove a generalized Itô formula.
Finally, we extend the techniques for central limit theorems of additive functionals of
Markov processes from [KV86, KLO12] to singular diffusions in the setting of periodic
coefficients. This yields a periodic homogenization result for the singular fractional
Kolmogorov PDE with oscillating and unbounded drift. Extensions to the setting of
diffusions in random singular environments are conceivable, but left for future research.
Applications to the construction and periodic homogenization for the Brox diffusion
with Lévy noise are outlined.
In the following, we give more details on each chapter.
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Part I. Stochastic analysis of particle and particle-membrane models

Chapter 1: Rough homogenization for diffusions on fluctuating membranes

Sections 1.1 to 1.4 are based on the submitted manuscript [DKP22], that is a joint
work together with Ana Djurdjevac and Nicolas Perkowski. Section 1.5 is based on an
unpublished joint work with Nicolas Perkowski.

The lateral diffusion of particles is crucial for cellular processes, including signal
transmission, cellular organization and the transport of matter (cf. [MP11, MHS14,
LP13, AV95]). Motivated by these applications of diffusion on cell membranes, we
consider the diffusion on a curved domain - a hypersurface S , cf. [Sei97]. The Brownian
motion on the surface, whose generator in local coordinates is the Laplace-Beltrami
operator, provides a simple example of a diffusing particle on a biological surface. In
physics it is known as the overdamped Langevin dynamics on a Helfrich membrane
(cf. [NB07]).
We will restrict our considerations to the classical situation of the so-called “essentially
flat surfaces” S . A standard way of representing the essentially flat surface is the
Monge-gauge parametrization, where we specify the height H of the hypersurface as a
function of the coordinates from the flat base, namely over [0, L]2.
Moreover, these membranes are fluctuating, both in time and space, due to the
spatial microstructure and thermal fluctuations of active proteins. The analysis of the
macroscopic behavior of a laterally diffusive process on surfaces possessing microscopic
space and time scales was derived in [Dun13, DEPS15]. Based on classical methods from
homogenization theory, the authors prove that under the assumption of scale separation
between the characteristic length and time scales of the membrane fluctuations and
the characteristic scale of the diffusing particle, the lateral diffusion process can be
well approximated by a Brownian motion on the plane with constant diffusion tensor
D. In particular, they show that D depends in a highly nonlinear way on the detailed
properties of the surface.
In this chapter, we prove a rough homogenization result for the diffusion on the ultra-
violet cutoff of the Helfrich membrane. Specifically, we extend the results from [Dun13,
DEPS15] by proving the convergence towards a particular lift of the homogenization
limit in rough paths topology for different time-space fluctuation scaling regimes (α, β).
Interestingly, in some regimes, the rough paths lift of (Xε) converges to a non-trivial lift
of the limiting Brownian motion X, in the sense that, additionally, an area correction
to the iterated integrals appears. In different settings, such a phenomenon was also
observed in [LL05, FGL15]. [FGL15, KM16, KM17, CFK+19, GL20, DOP21] already
fruitfully combined rough paths with homogenization techniques.
The underlying model for the surface is based on the Helfrich elasticity membrane
model. We consider random hypersurfaces whose typical paths can be represented as
a graph of a sufficiently smooth field H : [0, L]d × [0,∞) → R, the so-called Monge
gauge parametrization. The classical description of fluid membranes S in equilibrium
state, here in the quasi-planer case modelled by H, is based on the linearized Canham-
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Helfrich free energy (cf. [Can70, Hel73]) given by

E [H] =
1

2

∫
[0,L]2

κ(∆H(x))2 + σ|∇H(x)|2dx

where the constant κ denotes the (bare) bending modulus and σ denotes the sur-
face tension. For more details about the description of fluid lipid membranes, we
refer to [Des15]. The dynamics, that correspond to the formal invariant measure
exp(−E [H])dH, are described by the stochastic partial differential equation (SPDE)

∂tH = −RAH(t) + ξ(t) (0.1)

where AH := −κ∆2H + σ∆H is the restoring force for the free energy associated to
E [S ]. Moreover, the operator R characterizes the effect of nonlocal interactions of the
membrane through the medium. Above, ξ is a Gaussian field, that is white in time
and whose spatial fluctuations have mean zero and covariance operator 2(kBT )R with
Boltzmann constant kB.
In this chapter, we consider the ultra-violet cutoff of H given by

H(x, t) = h(x, ηt) =
∑

0<|k|⩽K̃

ηkt ek(x), (x, t) ∈ T2 × R+, (0.2)

for the Fourier basis (ek)k∈Z2 on the torus T2, independent Ornstein-Uhlenbeck processes
η = (ηk), whose joint dynamics we specify below and a fixed cutoff K̃ ∈ N. Using the
expansion (0.2), we define the Brownian motion X on H, as the diffusion X, for which
(X, η) solves the following system of SDEs

dXt = F (Xt, ηt)dt+
√

2Σ(Xt, ηt)dBt

dηt = −Γηtdt+
√

2ΓΠdWt

with independent standard Brownian motions B,W , explicit smooth coefficients Σ, F ,
that are periodic in x and grow at most linearily in η and symmetric, positive definite
diagonal matrices Π,Γ. The matrices Γ,Π depend on the covariance structure of H
and Σ is the inverse metric tensor. F depends on the curvature of H. The generator
of X is the so-called Laplace-Beltrami operator.
We consider fluctuations of the surface H in space and time. That is, we replace H
by the surface Hε(x, t) := εαH(ε−αx, ε−βt). The corresponding diffusion Xε on Hε is
given by

dXε
t =

1

εα
F

(
Xε
t

εα
, ηεt

)
dt+

√
2Σ

(
Xε
t

εα
, ηεt

)
dBt

dηεt = − 1

εβ
Γηεtdt+

√
2ΓΠ

εβ
dWt.

(0.3)

For a detailed derivation of the system see [Dun13, section 2.3.3].
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Considering space-time scaling regimes (α, β) with only temporal fluctuations, com-
parable spatial and temporal fluctuations and temporal fluctuations twice as fast as
spatial fluctuations, we prove the convergence of the Itô and Stratonovich rough paths
lift of Xε and identify the limit.
As in [Dun13, DEPS15, DOP21], we utilize martingale methods for additive functionals
of Markov processes (cf. [KV86, KLO12]). That is, we identify a stationary, ergodic
Markov process and exploit the solution of the associated Poisson equation for the
generator of that Markov process to rewrite the (in general unbounded) drift term
of Xε. As already observed in [DOP21], for the Stratonovich lift we expect an area
correction to appear if and only if the underlying Markov process is non-reversible.
Indeed, in the regime of comparable spatial and temporal fluctuations ((α, β) = (1, 1))
the underlying Markov process Y ε := ε−1Xε is reversible (for each fixed, stationary
realization of η) and the Stratonovich limit is the usual Stratonovich lift of the Brownian
motion X.
In contrast, in the regime of doubly as fast temporal fluctuations ((α, β) = (1, 2)) an
area correction for the Stratonovich lift appears.
In the regime of purely temporal fluctuations ((α, β) = (0, 1)) the limit is obtained by
averaging over the invariant measure of the Ornstein Uhlenbeck process η. The rough
limit is given by the canonical lift of the Brownian motion since the uniform controlled
variation (UCV) condition is satisfied for (Xε).
Other space-time scaling regimes (α, β) are less interesting, because it turns out that
the regimes (α, β) ∈ {(0, 1), (1, 2), (1, 1)} yield, together with the quenched regime
(α, β) = (1,−∞), the four different limit behaviors, that can occur (cf. [Dun13, Theo-
rem 6.0.1]). It is however worth mentioning, that in the regime α = 1 and β ∈ (2, 3],
the limit for the process (and thus also for the rough paths lift) is open, as certain
Poisson equations might not have solutions (cf. [Dun13, section 6]).
In the quenched regime with deterministic η0, one consideres a non-random periodic
surface H. Thus X is a diffusion with periodic coefficients. Due to the functional
central limit theorem for Itô and Stratonovich rough paths lifts of diffusions with
periodic coefficients proven in [DOP21, section 4.3], the rough paths limit of (Xε) is
known and given by a nontrivial lift of the limiting Brownian motion X.
The chapter is structured as follows. Section 1.1 formally defines the model and the
surface H. We also recall the definition of the space of α-Hölder rough path and the
uniform controlled variation condition. Sections 1.2 to 1.4 treat the scaling regimes
(α, β) ∈ {(0, 1), (1, 2), (1, 1)}. In each case, we prove tightness in γ-Hölder rough path
topology for γ ∈ (1

3
, 1
2
) and derive the rough homogenization limit.

Section 1.5 gives an outlook on the construction of the diffusion on the Helfrich
membrane without ultra-violet cutoff in dimension d = 2. In that section, we assume
the surface to be time-independent and we prove convergence of the rescaled surface
measure to the Lebesgue measure utilizing chaos expansions in Gaussian Hilbert spaces.
This suggests that the appropriately damped diffusion converges, in the limit K̃ →∞
and in local coordinates, to a standard Brownian motion. A proof for the convergence
of the processes is an open problem, that we leave for future research.
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Chapter 2: Weak error bounds for a nonlinear approximation of the Dean-
Kawasaki equation

This chapter is based on an unpublished paper, that is a joint work together with Ana
Djurdjevac and Nicolas Perkowski.

Initially studied in [Dea96] and [Kaw94], the Dean-Kawasaki (DK) equation is a coarse-
grained SPDE model for the empirical measure of N particles following the Langevin
dynamics with pairwise interaction. There has been a huge interest in Dean-Kawasaki-
type models in both physics (e.g. [MT00, VCCK08, GNS+12, DOL+16, DCG+18])
and mathematics (e.g. [DFVE14, CSZ19, FG19, FG21, CF21, FG22]). The equation
arises as a model of diffusions in liquids with correlations among the diffusing particles.
For the physical background we refer to [DFVE14]. A mathematical well-posedness
theory is a challenging problem, cf. [DFVE14, page 6], with partial answers that were
developed in the recent years, see e.g. [KLvR19, KLvR20, FG21]. The equation also
has applications in agend-based modelling, cf. [DCKD22].
The DK equation with pairwise interaction potential W reads

∂tu =
1

2
∆u+

1

α
∇ · (u(∇W ∗ u)) +

1√
α
∇ · (
√
uξ), (0.4)

where ξ denotes space-time white noise and α > 0.
Let (X i)Ni=1 solve the Langevin dynamics with interaction potential W , that is

dX i
t = − 1

N2

N∑
j=1

∇W (X i
t −X

j
t )dt+ dBi

t

for N independent Brownian motions (Bi)Ni=1. The recent papers [KLvR19, KLvR20]
show that equation (0.4) posseses a unique solution to the measure-valued martingale
problem if and only if the parameter α = N for a natural number N and the initial
condition is atomic, that is u0 = 1

N

∑N
i=1 δxi for xi ∈ R. In this case, the empirical

measure µNt := 1
N

∑N
i=1 δXi

t
is the unique solution to (0.4).

For regularized Dean-Kawasaki equations, which means imposing a cutoff on the noise,
well-posedness was investigated in [CSZ19, CSZ20] which establish existence of mild
solutions with high probability. The regularized model is derived from the mollified
empirical densities.
In the pathwise sense, well-posedness for the DK equation (0.4) is an open problem
even in the case without interaction potential, W = 0. The difficulty arises from the
divergence operator at the noise term and due to irregularity of the space-time white
noise ξ, as well as from the product with the square-root of the solution. Even in
dimension d = 1, the equation is supercritical in the language of regularity structures
([Hai14]) and paracontrolled distributions ([GIP15]), which are techniques to tackle
subcritical (and some critical) singular SPDEs. Supercriticality can be infered from
a scaling argument. Heuristically, it means that the regularization induced by the
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Laplacian does not dominate the irregular product with ξ.
Entropy solutions of porous media equations (replacing ∆u by ∆(|u|m−1u) with exponent
m ∈ (1,∞) and a noise

∑
k σ

k(x, u)dBk
t ), which does not include the Dean-Kawasaki

case m = 1, were studied in [DGG19] and in [DG20] (with nonlinear gradient noise).
Using a pathwise approach via rough paths techniques and considering Stratonovich
noise, [FG19] established well-posedness for porus media equations with exponent
m ∈ (0,∞). However, these techniques require highly regular diffusion coefficients σ
in the case of m = 1. The problem of square-root diffusion coefficient was recently
solved in [FG21], where the authors establish existence and uniqueness of stochastic
kinetic solutions to generalized Dean-Kawasaki equations with Stratonovich noise. The
Stratonovich noise enables to obtain a-priori entropy-type estimates on the kinetic
solutions (cf. [FG21, Section 5.1]), which yield the compactness. We refer to [FG21]
for more details on the well-posedness of related equations and the references therein.
Furthermore, the Dean-Kawasaki equation is related to scaling limit for interacting
particle systems, see e.g. [GLP98]. [FG22] show that the Stratonovich DK equation
correctly predicts the large deviation rate function for the non-equilibrium fluctuations
of the zero range process.
From a numerical perspective, the results of [KLvR19, KLvR20] are not stable with
respect to changes in the parameter N . That is, slight changes in N yield an ill-posed
problem and possible large numerical errors. However, simulating the particle system
is computationally expensive for increasing number of particles N , see e.g. [HCD+21,
section 4.4.1]. For large N , it is thus more efficient to discretize the SPDE (0.4), than to
simulate the particle system. Numerical schemes for a class of stochastic porous media
equations where investigated e.g. in [BGV20] and for Dean-Kawasaki-type equations
in [CS22, CF21]. [CS22] introduce a discontinuous Galerkin scheme for the regularized
DK equation that was considered in [CSZ19, CSZ20]. [CF21] consider finite element
and finite difference approximations for (0.4) without interaction (W = 0) and prove
weak error estimates. The weak distance is parametrized by the Sobolev regularity
of the test functions and the rate measured in their distance can be arbitrarily high,
only limited by the numerical error and the error coming from the negative part of the
approximation. However, the authors do not prove positivity for the approximations
(hence the consideration of the negative part). Additionally they impose a strong
assumption ([CF21, Assumption FD4]) on the existence of a lower bound for the
solution of the discrete heat equation.
In this chapter, we consider an approximation of the DK equation (0.4) in the case
of independent particles, that satisfies the physical contraints of the particle system,
i.e. mass preservation and non-negativity. Then, we derive weak error estimates that
relate our approximation with the martingale solution from [KLvR19]. In the classical
theory, one would consider as an approximation the Gaussian fluctuations around the
hydrodynamic limit of the particle system (i.e. the solution of the heat equation),
which are described by a linear SPDE. That leads to a Gaussian approximation of the
empirical measure, which is neither positive nor a probability measure, but achieves
a weak convergence rate of N−3/2. We consider an approximation which respects the
constraints of the particle system. This approximation will be described by a nonlinear
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SPDE, for which well-posedness is also a nontrivial problem. We replace the square
root by a Lipschitz function fδN with diverging Lipschitz constant δ−1

N when δN → 0
and consider a noise cutoff MN →∞. Explicitly, our approximation is given by

duNt =
1

2
∆uNt dt+

1√
N

∑
|k|⩽MN

∇ · (fδN (uNt )ϕk)dB
k
t (0.5)

for independent Brownian motions (Bk)k∈Zd and the Fourier basis (ϕk)k∈Zd on the
torus Td. For regularized DK equations of the form (0.5), the variational theory
(cf. [LR15]) does not apply, as the local monotonicity is violated due to the gradient
noise. Because we consider Itô noise and analytically weak solutions, to later on
compare with the martingale solution of the DK equation from [KLvR19], the theory
from [CSZ19, CSZ20, DG20, FG21] does also not apply for well-posedness of (0.5).
We prove well-posedness for (0.5) through a suitable transformation of the equation
and a combination with a priori energy bounds. Furthermore, we prove a comparison
principle that yields non-negativity of the solution for non-negative initial data and the
conservation of the L1-norm. For (0.5) with optimally tuned parameters δN ,MN , we
can prove a weak error rate of N−1−cd log(N)1/2 with cd = 1/(d+ 2) decreasing in the
dimension d. To derive the estimates, we apply duality arguments (cf. [Myt96]) using
the solution of the Hamilton-Jacobi-Bellman equation. We believe that this approach
is quite powerful and can possibly be generalized to the interaction case.

The chapter is structured as follows. Section 2.1 introduces the nonlinear Dean-
Kawasaki approximation. In Sections 2.2 and 2.3, we prove the well-posedness and a
comparison principle for regularized Dean-Kawasaki-type equations, that in particular
applies for our approximation (0.5). Section 2.4 provides the weak error estimates.

Part II. Regularization by noise for singular Lévy SDEs

Chapter 3: Kolmogorov equations with singular paracontrolled terminal
conditions

The results of this chapter are generalizations of the corresponding results in [KP22,
Sections 2 and 3]. The chapter is based on an unpublished paper with Nicolas Perkowski.

Kolmogorov equations are second order parabolic differential equations. Their connec-
tion with SDEs was already investigated by Kolmogorov in the seminal work [Kol31].
There exist analytic and probabilistic methods to study Kolmogorov equations. We
refer to the books [KZR99, DP04, Kry08, BKRS15] for an overview on Kolmogorov
equations in both finite and infinite dimensional spaces. In the finite dimensional
setting, Kolmogorov equations with bounded and measurable coefficients and uni-
formly elliptic diffusion coefficients can be treated as a special case of the infinite
dimensional Dirichlet form methods of [MR95], see also [KZR99, Section 2.4.1] and
the connection to the martingale problem in [KZR99, Section 6.1.2]. We remain in the
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finite-dimensional setting, but consider distributional drifts in Besov spaces. Besov
spaces play well with the paracontrolled calculus that defines products of distribu-
tions, cf. the Littlewood-Paley theory in [BCD11]. Previous articles that consider
distributional drifts are [FRW03, FIR17], as well as [CC18] in the setting of rougher
distributional drifts. Heat kernel estimates for the solution to the Kolmogorov equation
were established in [ZZ17, PvZ22].
In the article [KP22], that underlies this chapter, the Laplace operator is replaced by
a generalized fractional Laplacian. We extend our previous results from [KP22] to
allow for irregular terminal conditions. That is, we consider the fractional parabolic
Kolmogorov backward equation(

∂t −L α
ν + V · ∇

)
u = f, u(T, ·) = uT ,

on [0, T ] × Rd, where L α
ν generalizes the fractional Laplace operator (−∆)α/2 for

α ∈ (1, 2] and V is a vector-valued Besov drift with negative regularity β ∈ (2−2α
3
, 0),

i.e. V ∈ C([0, T ], (Bβ
∞,∞)d) =: CTC β

Rd for short. Since V is a distribution, we need to
be careful with well-definedness of the product V · ∇u. The regularity obtained from
−(−∆)α/2 suggests that u(t, ·) ∈ C α+β if right-hand side f and terminal condition
uT are regular enough. Therefore we have ∇u(t, ·) ∈ C α+β−1. Since the product
V (t, ·) · ∇u(t, ·) is well-defined if and only if the sum of the regularities of the factors is
strictly positive, we obtain the condition α + 2β − 1 > 0, equivalently β > (1− α)/2.
We call this the Young regime, in analogy to the regularity requirements that are
needed for the construction of the Young integral. However, we go beyond the Young
regime, considering also the so-called rough regime β ∈ (2−2α

3
, 1−α

2
]. In the rough case,

we employ paracontrolled distributions (cf. [GIP15]) to solve the equation. The idea is
to gain some regularity by treating u as a perturbation of the solution of the linearized
equation with additive noise, ∂tw = L α

ν w − V . The techniques work as long as the
nonlinearity V · ∇u is of lower order than the linear operator L α

ν , i.e. for α > 1 or
equivalently (2 − 2α)/3 < (1 − α)/2. The price one has to pay to go beyond the
Young regime is a stronger assumption on V . That is, we assume that certain resonant
products involving V are a priori given. Those play the role of the iterated integrals
in rough paths theory (cf. [FH20]). We then enhance V by that resonant product
component and call the enhancement V .
In [CC18, KP22], only regular terminal conditions were considered, i.e. uT ∈ C α+β

in the Young regime and uT ∈ C 2(α+β)−1 in the rough regime. The right-hand side f
can either be an element of CTL

∞ or f = V i for i = 1, . . . , d. There are techniques
available to treat less regular terminal conditions, cf. [GP17, Section 6]). With the
help of those techniques, one can allow for terminal conditions uT ∈ C (1−γ)α+β in the
Young case and uT ∈ C (2−γ)α+2β−1 in the rough case for γ ∈ [0, 1), obtaining a solution
ut ∈ C α+β for t < T and blow-up γ for t → T . In this chapter, consider moreover
singular paracontrolled right-hand sides f as well as singular paracontrolled terminal
condition uT , which includes all cases mentioned above. Moreover, we can consider
f and uT more generally as elements of Besov spaces C θ

p = Bθ
p,∞ with integrability

parameter p ∈ [1,∞]. Examples for terminal conditions that we cover in the rough

10



Contents

case include the Dirac measure, that is uT = δ0 ∈ C 0
1 , and uT = V (T, ·). To be more

precise, in the rough regime, we assume paracontrolled right-hand sides and terminal
conditions,

f = f ♯ + f ′ 4 V, uT = uT,♯ + uT,′ 4 VT ,

with uT,′, f ′
t ∈ C α+β−1

p and remainders f ♯t ∈ C α+2β−1
p , uT,♯ ∈ C (2−γ)α+2β−1

p for γ ∈ [0, 1).

For f ′
t and f ♯t we also allow a blow-up γ for t→ T . We prove existence and uniqueness

of mild solutions of the Kolmogorov backward equation for singular paracontrolled
data (f, uT ). The paracontrolled solution is an element of the solution space with
blow-up γ at terminal time T . As a byproduct, we prove a new commutator estimate
for the (−L α

ν )-semigroup, cf. Lemma 3.14, that allows to gain not only space regularity,
but also time regularity. Thanks to Lemma 3.14 there is no need for the so-called
“modified paraproduct” from [GP17, Section 6.1]. Moreover, we prove continuity of
the Kolmogorov solution map and a uniform bound for the solutions considered on
subintervals of [0, T ] for bounded sets of terminal conditions and right-hand sides.
The techniques we develop in this chapter are not limited to that particular equation
and can possibly be used to treat other singular PDEs, that can be tackled with the
paracontrolled ansatz.
The chapter is structured as follows. In Section 3.1 we introduce the generalized
fractional Laplacian L α

ν and its semigroup. We prove semigroup and commutator
estimates and relate −L α

ν with the generator of an α-stable Lévy process, a connection
that will become relevant in Chapter 4. In Section 3.2 we introduce the solution spaces
and prove generalized Schauder and commutator estimates thereon. Finally, we solve
the Kolmogorov equation with singular paracontrolled data (f, uT ) in Section 3.3 and
prove continuity of the solution map, as well as a uniform bound for the solutions on
subintervals.

Chapter 4: Weak solution concepts for singular Lévy SDEs

Chapter 4 is based on joint work with Nicolas Perkowski. Section 4.1 relies on [KP22,
Section 4]. Sections 4.2 to 4.5 are based on an unpublished paper together with Nicolas
Perkowski. Section 4.6 is based on [KP22, Section 5].

We solve multidimensional SDEs with distributional drift driven by symmetric α-stable
Lévy processes for α ∈ (1, 2] via the associated (singular) martingale problem using
the solution theory for Kolmogorov backward equations from Chapter 3. We allow for
drifts of regularity β > (2− 2α)/3 and in particular we go beyond the – by now well
understood – Young regime, where the drift must have higher regularity than (1−α)/2.
This generalizes the existing results [DD16] and [CC18] from the Brownian case to the
case of α-stable noise. As an application of our results we construct a Brox diffusion
with Lévy noise. Furthermore, we define a non-canonical weak solution concept for
singular Lévy diffusions and prove its equivalence to martingale solutions in both the
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Young and the rough regime. This turns out to be highly non-trivial in the rough case
and requires to make sense of certain rough stochastic sewing integrals involved. In
particular, we show that the canonical weak solution concept already introduced in
[ABM20], which is well-posed in the Young case, yields non-uniqueness of solutions in
the rough case.
More precisely, Chapter 4 studies the weak well-posedness of SDEs

dXt = V (t,Xt)dt+ dLt, X0 = x ∈ Rd, (0.6)

driven by non-degenerate symmetric α-stable Lévy noise L for α ∈ (1, 2] and with drift
V (t, ·) that is a Besov distribution in the space variable.

The special case where L is a Brownian motion has received lots of attention in recent
years, since such singular diffusions arise as models for stochastic processes in random
media. Examples are random directed polymers [AKQ14, DD16, CSZ17], self-attracting
Brownian motion in a random medium [CC18], or a continuum analogue of Sinai’s
random walk in random environment (Brox diffusion, [Bro86]). Singular diffusions also
arise as “stochastic characteristics” of singular SPDEs, for example the KPZ equation,
cf. [GP17], or the parabolic Anderson model, cf. [CC18].

SDEs with distributional drifts were first considered in [BC01, FRW03] in the one-
dimensional time-homogeneous setting. Of course, for distributional V the point
evaluation V (t,Xt) is not meaningful, so a priori it is not clear how to make sense
of (0.6). The appropriate perspective is not to consider V (t,Xt) at fixed time t, but
rather to work with the integral

∫ t
0
V (s,Xs)ds. The intuition is that, because of small

scale oscillations of X induced by the oscillations of L, we only “see an averaged
version” of V and this gives rise to some regularization, at least for a Brownian motion
or a sufficiently “wild” Lévy jump process. On the other hand we would not expect
any regularization from a Poisson process. In the Brownian case, this intuition can
be made rigorous in different ways. For example via a Zvonkin transform which
removes the drift, cf. [Zvo74, Ver81, BC01, KR05, FGP10, FIR17], by considering the
associated martingale problem and by constructing a domain for the singular generator,
cf. [FRW03, DD16, CC18], or by Dirichlet forms as in [Mat94]. In the one-dimensional
case it is also possible to apply an Itô-McKean construction based on space and time
transformations, cf. [Bro86].

Here we follow the martingale problem approach in the spirit of [DD16, CC18] who
considered the Brownian case. Formally, X solves (0.6) if and only if it solves the
martingale problem for the generator G V = ∂t −L α

ν + V · ∇, where the fractional
Laplacian (−L α

ν ) is the generator of L. That is, for all functions u in the domain
of G V , the process u(t,Xt) − u(0, x) −

∫ t
0
G V u(s,Xs)ds, t ⩾ 0, is a martingale. One

difficulty is that the domain of G V necessarily has a trivial intersection with the set
of smooth functions: If u is smooth, then (∂t − L α

ν )u is smooth as well, while for
non-constant u the product V ·∇u is only a distribution, but not a continuous function.
If we want G V u to be a continuous function, then u has to be non-smooth, so that
(∂t −L α

ν )u is also a distribution which has appropriate cancellations with V · ∇u.

We can find such u by solving the Kolmogorov backward equation for continuous
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right-hand sides and regular terminal conditions, such that G V u = f by construction,
as carried out in Chapter 3.

There have been several results on singular Lévy SDEs in the Young regime in recent
years. [ABM20] consider the time-homogeneous one-dimensional case and construct
weak solutions via a Zvonkin transform. They additionally establish strong uniqueness
and existence by a Yamada-Watanabe type argument, which in particular is restricted
to d = 1. Related to that, but for Hölder continuous drift of regularity at least 1−α/2,
[Pri12] proves pathwise uniqueness in the multidimensional, time-homogeneous case.
Two nearly simultaneous articles, [LZ19] and [dRM19], consider the multidimensional
case (time-homogeneous, respectively time-inhomogeneous) and prove existence and
uniqueness for the martingale problem. They consider V ∈ C([0, T ], Bβ

p,q) for general
p, q (subject to suitable conditions), where for p = q = ∞ they require the Young
regime, β > (1− α)/2. Let us also mention [HL20], who prove pathwise regularization
by noise results for SDEs driven by (very irregular) fractional Lévy noise, based on the
methods of [CG16, HP21].

We treat the multidimensional time-inhomogeneous case with drifts in the rough regime.
However, we concentrate on B∞,∞ Besov spaces and do not consider Bp,q for general
p, q. Reaching the rough regularity regime is important for our main application, the
construction of a “Brox jump diffusion” with α-stable Lévy noise. Here, d = 1 and
V is a typical path of a (periodic) space white noise. So in particular we can only
take β = −1/2 − ε for ε > 0, which is never in the Young regime, not even in the
Brownian case α = 2. We moreover show that the periodic white noise can be enhanced
(in the sense of Chapter 3) and that the mollified resonant products converge almost
surely without renormalization in the sense of subtracting divering constants. We also
indicate, how to adapt our constructions in order to treat non-periodic white noise, or
the gradient of the Brownian sheet in higher dimensions.

The second main contribution of this chapter is the derivation of a well-posed rough weak
solution concept. In the case of bounded and measurable coefficients the equivalence of
probabilitic weak solutions and solutions of the martingale problem is by now classical,
cf. [SV06] (in the Brownian noise case) and [KC11] (in the Lévy noise case). It has so
far been an open problem (in both the Brownian and Lévy noise case), whether these
results can be generalized to distributional drifts in the rough regime. In the Young
regime with time-independent drift [ABM20] introduces a canonical weak solution
concept, replacing the singular drift by the limit of smooth drift terms. The same
concept can be considered in multiple dimensional, with time-depending drift. A
canonical weak solution is a tuple of stochastic processes (X,L) on some probability
base space, such that L is a symmetric α-stable Lévy process and X is given by

X = x+ Z + L, (0.7)

for a continuous drift process Z that is given as a limiting object (in probability)

Z = lim
n→∞

∫ ·

0

V n(r,Xr)dr =: lim
n→∞

Zn
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for smooth V n → V . Furthermore, Z satisfies the following Hölder-type bound: there
exists C > 0, such that for all 0 ⩽ s < t ⩽ T ,

E[|Zt − Zs|2] ⩽ C|t− s|2(α+β)/α. (0.8)

The particular Hölder-regularity in (0.8) originates from the time regularity of the
solution of the Kolmogorov backward equation. This implies that the solution X is a
Dirichlet process and Itô formulas are available.
The recent article [IR22] consideres the multidimensional Brownian noise case and proves
equivalence of martingale solutions and so-called B-solutions from [IR22, Definition
6.2] with B = CTC β

Rd for β ∈ (−1/2, 0), that additionally satisfy the “reinforced local
time property” (cf. [IR22, Definition 6.7]). The reinforced local time property boils
down to stability of the integral ∫ t

0

∇u(s,Xs)dZs, (0.9)

when approximating the drift term by (Zn) and u, the solution of the Kolmogorov
equation, by (un) ⊂ C1,2([0, T ]× Rd).
In the Young case we show that the regularity of the PDE solution, stability of the
PDE solution map and the bound (0.8) together yield stability for the stochastic
integral (0.9) using the stochastic sewing lemma by [Lê20]. However, this fails in the
rough case as the PDE solution is too irregular. In the setting of general dimension,
time-depending drift and α-stable noise for α ∈ (1, 2], we prove that canonical weak
solutions are equivalent to martingale solutions in the Young regime. In the rough case,
we prove that canonical weak solutions are in general non-unique in law. Heuristically,
this comes from the fact that the canonical weak solution does not uniquely determine
the enhancement V of V . In the one-dimensional Brownian case the situation becomes
particularily interesting. While for any smooth approximating sequence (V n) of the
singular drift V , the strong solutions Xn of

dXn
t = V n(t,Xn

t )dt+ dBt

converge in distribution to the same limit, given by the solution of the G V - martingale
problem, it is however not the case that there exists a unique canonical weak solution
in the above sense.
Our approach to obtain a well-posed weak solution concept in the rough regime is to
impose further assumptions that ensure the uniqueness of the extension of the integral
(0.9). To that aim, we use ideas from rough paths theory, specifically the construction
of rough stochastic integrals from [FHL21]. Lifting Z to a rough stochastic integrator
process (Z,ZV ) enables to extend the integral from smooth integrands ∇un in a stable
manner to (para-)controlled integrands ∇u. The lift is chosen in such a way as to
correct for the most irregular terms in the paracontrolled decomposition of ∇u. We
define a rough weak solutions accordingly. That is, we require a weak solution X to
satisfy the conditions of a canonical weak solution and to be furthermore such that
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the iterated integrals ZV are well-defined and satisfy suitable Hölder-moment bounds.
These are not the iterated integrals of Z itself, but ZV formally corresponds to the
resonant product component in the enhancement V . Those Hölder bounds are such that
(Z,ZV ) is a so-called rough stochastic integrator, while the process (∇u(t,Xt)) with
the solution u of the Kolmogorov equation for regular right-hand side, is stochastically
controlled.
The terms “stochastically controlled” and “rough (stochastic) integrator” are motivated
by [FHL21], but our definitions and the integral we construct differ. The difficulty
here does not arise due to a low regularity integrator, but due to a integrand of low
regularity, that is however controlled. Further difficulties arise due to the integrability
issue in the pure stable noise case, which means that we can construct the integral in
L2(P), but possibly not in Lp(P) for p > 2. That means, for a rough weak solution X
we obtain a stable rough stochastic integral∫ t

0

∇u(s,Xs)d(Z,ZV )s (0.10)

in L2(P). For regular integrands the rough stochastic integral (0.10) coincides with the
stochastic integral against Z (0.9). More generally, we construct the rough stochastic
integral

∫ ·
0
ftd(Z,ZA)t, for rough stochastic integrators (Z,ZA) for a given stochastic

process A (formally ZAst =
∫ t
s
As,rdZr) and an integrand f , that is stochastically

controlled by A.
The stability of the rough stochastic integral (0.10) then enables to prove that a rough
weak solution is indeed a solution of the G V -martingale problem, in particular unique.
To prove that a martingale solution is a rough weak solution we need to prove the
existence of the iterated integrals ZV satisfying suitable bounds. We show that the
bounds on ZV are implied by regularity properties and fortunate cancellations between
the solutions of Kolmogorov backward equations for the singular terminal conditions
given by Vr and V 2

r , for r ⩽ T and the enhancement V = (V,V 2), whose existence
follows from Chapter 3.
Chapter 4 is structured as follows. Our main Theorem 4.2 concerning existence and
uniqueness of a solution of the martingale problem is proven in Section 4.1. Section 4.2
introduces our rough weak solution concept, while in Section 4.3 we construct the
general rough stochastic integral. In Section 4.4 we prove in Theorems 4.32 and 4.35
equivalence of the weak solution concepts. Section 4.5 investigates the canonical weak
solution concept. We prove well-posedness in the Young case and the ill-posedness in
the rough case. In Section 4.6 we construct the Brox diffusion with Lévy noise.

Chapter 5: Periodic homogenization for singular SDEs

This chapter is based on an unpublished joint paper with Nicolas Perkowski.

Periodic homogenization decribes the limit procedure from microscopic boundary-value
problems posed on periodic structures to a macroscopic equation. Such periodic media
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are for example composite materials or polymer structures. The theory originated from
engineering purposes in material sciences in the 1970s, cf. [BLP78] and the references
therein. Mathematically, this leads to the study of the limit of periodic operators
with rapidly oscillating coefficients. There exist analytic and probabilistic methods
to determine the limit equation. We refer to the classical works [BLP78, PS08] for
the background on homogenization theory. We employ a probabilistic method using
the Feynman-Kac formula (cf. [Øks03]). Via the Feynman-Kac formula, the periodic
homogenization result for the Kolmogorov PDE with fluctuating and unbounded drift
corresponds to a central limit theorem for the diffusion process.
In this chapter, we generalize the theory of periodic homogenization for SDEs with
additive Brownian noise, respectively stable Lévy noise, from [BLP78], respectively
[Fra07], from the setting of regular coefficients to singular Besov drifts F ∈ (C β(Td))d
for β ∈ ((2− 2α)/3, 0) (Td denotes the d-dimensional torus).
In [BLP78, Section 3.4.2], the periodic drift coefficient is assumed to be C1 with
Hölder-continuous derivative and the periodic diffusion coefficient is assumed to be
symmetric and uniformly elliptic, as well as C2 with Hölder-continuous first derivative
and bounded second derivative. The assumption of uniform ellipticity can be relaxed to
allow for some degeneracy, which was investigated in [HP08] using Malliavin calculus
techniques.
In [Fra07] the multiplicative symmetric α-stable noise case for α ∈ (1, 2) is studied and
the coefficients are assumed to be even more regular, namely C3. The regularity as-
sumptions were relaxed in [HDS18, HDS22], where the authors more generally consider
the periodic homogenization for the generator of an α-stable-like Feller process. In
[HDS22], using a Zvonkin transformation to remove the drift (cf. [Zvo74]), the authors
can consider drifts that are bounded and β-Hölder continuous for β ∈ (1 − α/2, 1).
They also consider a non-linear intensity function σ and therefore a multiplicative noise
term of the form σ(Xt, dL

α
t ), see [HDS22, Equation (2.1)] with an isotropic α-stable

process Lα, whereas in [Fra07] the intensity function σ(x, y) is linear in y.
In the recent article [CCKW21] the authors further generalize the assumption on
the drift coefficient to bounded, measurable drifts and consider the solution of the
martingale problem associated to the SDE. The operator they consider is a Lévy-type
operator that in particular includes all stable Lévy noise generators, symmetric and
non-symmetric. They prove the homogenization result with the corrector method, an
analytical method in homogenization theory, and show that different limit phenomena
occur in the cases α ∈ (0, 1), α = 1, α ∈ (1, 2), α = 2 and α ∈ (2,∞).
With analytical methods, the papers [KPZ19, Ari10, Sch10] deal with Lévy-type oper-
ators with oscillating coefficients for α ∈ (0, 2), but without drift part.
In the mixed jump-diffusion case, [San16] investigates the periodic homogenization for
zero-drift diffusions with small jumps. The homogenized process in this case is also a
Brownian motion.
We focus on the addive α-stable symmetric noise case, where different limit behaviours
occure for α = 2 (the Brownian noise case) and α ∈ (1, 2). Our contribution is the
generalization to distributional drifts, not only in the Young, but also in the rough
regime.
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For the homogenization result, we rely on Kipnis-Varadhan martingale methods
(cf. [KV86] and [KLO12]). Those methods require to solve the Poisson equation
for the generator of the diffusion (or more generally the resolvent equations and im-
posing additional assumption) and to rewrite the additive functional in terms of that
solution and Dynkin’s martingale. Poisson equations for generators of diffusions with
regular coefficients were studied in the classical article [Par98].
Following [KLO12], e generalize those techniques to much less regular drift coefficient.
In particular this includes bounded measurable drifts or distributional drifts in the
Young regime, where classical PDE techniques apply. More interestingly, our theory
applies in the setting of singular drifts such as a typical realization of the periodic
spatial white noise, cf. Remark 5.30. In order to apply the SDE solution theory from
Chapter 4, we restrict to additive noise.
To be more precise, we study the functional central limit theorem for the solution X of
the martingale problem associated to the SDE

dXt = F (Xt)dt+ dLt

with F ∈ (C β(Td))d and a symmetric α-stable process L for α ∈ (1, 2]. The singular
generator L of X is given by

L = −L α
ν + F · ∇.

The first step is to prove existence and uniqueness of an invariant probability measure
π on Td for L with strictly positive Lebesgue density. We achieve this by solving the
singular Fokker-Planck equation with singular initial condition µ ∈ C 0

1 ,

(∂t − L∗)ρt = 0, ρ0 = µ,

with formal Lebesgue adjoint L∗ of L and proving a strict maximum principle on
compacts. Furthermore, we prove spectral gap estimates on the semigroup of the
diffusion projected onto the torus and solve the singular resolvent equation for L. This
enables, through a limiting argument in a Sobolev-type space H 1(π) with respect to
π, to solve the Poisson equation (0.11) with singular right-hand side F − ⟨F ⟩π. Here,
we define ⟨F ⟩π =

∫
Fdπ in a stable manner.

For the homogenization, we distinguish between the cases α = 2 (Brownian noise case)
and α ∈ (1, 2), as the scaling and the limit behaviour differs. In the standard Brownian
noise case, we prove weak convergence(

1√
n

(Xnt − nt⟨F ⟩π)

)
t∈[0,T ]

⇒ (
√
DBt)t∈[0,T ],

where B is a standard Brownian motion and D is the constant diffusion matrix with
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entries

D(i, j) :=

∫
Td

(ei +∇χi(x))(ej +∇χj(x))Tπ(dx),

for i, j = 1, . . . , d and ei denoting the i-th euclidean unit vector. The limit is motivated
by the result from [BLP78, Section 3.4.2]. Furthermore, χ ∈ (L2(π))d solves the Poisson
equation with singular right-hand side F − ⟨F ⟩π:

(−L)χi = F i − ⟨F i⟩π, (0.11)

for i = 1, . . . , d. In the pure Lévy noise case α ∈ (1, 2) we rescale in the α-stable scaling
n−1/α instead of n−1/2. In this scaling we show, that the Dynkin martingale vanishes
and thus we obtain weak convergence towards the stable process itself,(

1

n1/α
(Xnt − nt⟨F ⟩π)

)
t∈[0,T ]

⇒ (Lt)t∈[0,T ].

In particular, compared to the Brownian noise case, there is no diffusivity enhancement
in the limit (analogously to the regular coefficient case, cf. [Fra07]).
The chapter is structured as follows. Preliminaries and the strategy to prove the
central limit theorem are outlined in Section 5.1. In Section 5.2 we solve the singular
Fokker-Planck equation with the paracontrolled approach. The singular resolvent
equation for L is solved in Section 5.3. We show in Section 5.4 existence and uniqueness
of the invariant measure π. Section 5.4 furthermore yields a characterization of the
domain of the generator L in L2(π), cf. Theorem 5.17. In Section 5.5, we solve the
Poisson equation with singular right-hand side F − ⟨F ⟩π. Finally, we prove the CLT
in Section 5.6 and relate to the periodic homogenization result for the parabolic PDE
with oscillating operator Lε = −L α

ν + ε1−αF (ε−1·) · ∇, cf. Corollary 5.27.
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Part I.

Stochastic analysis of particle and
particle-membrane systems
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1. Rough homogenization for
diffusions on fluctuating
membranes

In this chapter, we prove a rough homogenization result for a Brownian particle on a
fluctuating Gaussian hypersurface with covariance given by (the ultra-violet cutoff of)
the Helfrich energy, that will be introduced in detail in Section 1.1 below. Specifically,
we extend the results from [Dun13, DEPS15] by proving the convergence to a particular
lift of the homogenization limit in rough path topology. Considering the time-space
scaling regimes (α, β) ∈ {(0, 1), (1, 2), (1, 1)}, we prove in Sections 1.2 to 1.4 the
convergence of the Itô and Stranonovich rough path lift of the diffusion and identify the
limit. Interestingly, in some regimes, the rough path lift converges to a non-trivial lift
of the limit, in the sense that, additionally, an area correction to the iterated integrals
appears. Sections 1.1 to 1.4 are based on [DKP22].
Section 1.5 yields a first result in the direction of constructing the diffusion on the
Helfrich membrane (not depending on time) when the cutoff diverges to infinity in
dimension d = 2.

1.1. Langevin dynamics on a fluctuating Helfrich
membrane

In order to give a better understanding of the form of the considered system of SDEs,
we introduce the Helfrich elasticity memebrane model in the following. The describtion
of the model is based on [Dun13, Section 2.2], see also [DEPS15, DE88]. Afterwards,
we rigorously define in Definition 1.1 the diffusion X on the membrane H given by the
ultra-violet cutoff of the Helfrich membrane and introduce the oscillating model (1.15).
We also define the Laplace-Beltrami operator, which is the generator of X and gather
properties of the operator and the coefficients.

We consider a random hypersurface that can be represented by a graph of a sufficiently
smooth field H : [0, L]d × [0,∞) → R, the so-called Monge gauge parametrization.
More precisely, we assume that for each t > 0 and every fixed realization of the field,
x 7→ H(x, t) is smooth and periodic with period LH . Without loss of generality, LH = 1.
Furthermore, we assume the existence of a characteristic timescale TH = T , which
describes the observation time of the system. The hypersurface S (t) is given by the
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1. Rough homogenization for diffusions on fluctuating membranes

graph J : [0, 1]d × [0,∞)→ Rd+1 with

J(x, t) = (x,H(x, t)). (1.1)

The metric tensor of S (t) in local coordinates x ∈ Rd is given by

G(x, t) = I +∇H(x, t)⊗∇H(x, t).

We define
|G|(x, t) := detG(x, t) = 1 + |∇H(x, t)|2.

For the physical application we consider dimension d = 2. Nontheless, our results apply
for general dimension d ∈ N. The dimension becomes relevant in Section 1.5 if the
cutoff goes to infinity, as the surface becomes rougher with increasing dimension.
The classical description of fluid membranes S in equilibrium state, here in the quasi-
planer case modelled by H, is based on the Canham [Can70] - Helfrich [Hel73] free
energy

E [H] =
1

2

∫
[0,L]2

(κK2(x) + σ)
√
|G|(x)dx,

with the mean curvature K, the (bare) bending modulus constant κ and the surface
tension σ. We omit the term with Gaussian curvature, since we consider fluctuations
of the membrane which do not change its topology. For small deformations of H, that
is |∇H(x)| ≪ 1, one can interpret K(x) and

√
|G|(x) as an approximation of ∆H(x),

respectively 1 + |∇H(x)|2, so that E [H] can be approximated by

E [H] =
1

2

∫
[0,1]2

κ(∆H(x))2 + σ|∇H(x)|2dx+
σL2

2
.

By possibly changing the constant κ, we absorbed the term κ(∆H(x))2|∇H(x)|2 for
small |∇H(x)|2 into the term κ(∆H(x))2. The constant term can also be omitted. For
more details about description of fluid lipid membranes we refer to [Des15].

The dynamics that correspond to the formal invariant measure exp(−E [H])dH are
described by the stochastic partial differential equation (SPDE)

∂tH = −RAH + ξ, (1.2)

where AH := −κ∆2H + σ∆H is the restoring force for the free energy associated to
E [H]. Moreover, R is the operator that characterizes the effect of nonlocal interactions
of the membrane through the medium. For more details, see [DEPS15, section 4]
or [Dun13, section 2.2], where R is defined as Rf := Λ ∗ f for Λ(x) := (8πλ|x|)−1,
f ∈ L2

per([0, L]2) and λ is the viscosity of the surrounding medium. The last term ξ is
a Gaussian field, that is white in time and whose spatial fluctuations have mean zero
and covariance operator 2(kBT )R with Boltzmann constant kB.
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1.1. Langevin dynamics on a fluctuating Helfrich membrane

Consider the Galerkin-projection of H given by

HK̃(x, t) = h(x, ηt) =
∑

0<|k|⩽K̃

ηkt ek(x), (x, t) ∈ T2 × R+, (1.3)

for the Fourier basis (ek)k∈Z2 on the torus T2 ≃ [0, 1]2, i.e. ek(x) = exp(2πik · x) ∈
C∞(T2), and cutoff K̃ ∈ N. Substituting (1.3) into (1.2), we see that the SPDE
diagonalizes and that the coefficients η = (ηk)|k|⩽K̃ with K := #{k ∈ Z2 | 0 < |k| ⩽ K̃}
are independent Ornstein-Uhlenbeck processes with joint dynamics

dηt = −Γηtdt+
√

2ΓΠdWt,

where W is a K-dimensional complex-valued standard Brownian motion with constraint
W k = W−k, i.e. W = 1√

2
(Re(W ) + i Im(W )) with independent RK-valued Brownian

motions Re(W ), Im(W ), and where Γ,Π are real diagonal matrices, such that ηk = η−k,
which implies that H is real-valued, as H = H.

We consider the membrane H = HK̃ given by the ultra-violet cutoff of the Helfrich
membrane in (1.3) and the cutoff K̃ will be fixed throughout the chapter (except in
the outlook Section 1.5). [Stu10, Lemma 6.25] yields that, without the ultra-violet
cutoff K̃, the surface H is almost surely Hölder-continuous with exponent α < 1 (in
d = 2), but not for α = 1. Due to this irregularity, we can not define a diffusion on H
using classical methods (cf. [Hsu02]). This is the reason why most papers that deal
with the diffusion on H assume a fixed ultra-violet cutoff K̃.

Since we work in the real-valued setting, we identify η with (Re(η), Im(η)) that is a
2K-dimensional real-valued Ornstein-Uhlenbeck process with the above dynamics for
a 2K-dimensional real-valued standard Brownian motion W and with the property
that Re(ηk) = Re(η−k) and Im(ηk) = − Im(η−k). The matrices Γ,Π are symmetric
and positive definite and defined by Γ := diag(Γk), Π = diag(Πk) with

Γk =
κ∗|2πk|4 + σ∗|2πk|2

|2πk|
, Πk =

1

κ∗|2πk|4 + σ∗|2πk|2
(1.4)

where κ∗ = κ/(2kBT ), σ∗ = σ/(2kBT ).

Since the matrices Γ,Π commute, the normal distribution

N(0,Π) =: ρη (1.5)

is the invariant measure for the Ornstein Uhlenbeck process η. Then we have

ρη(dη) = ρηdη =
1√

(2π)2|Π|
exp
(
−1

2
η · Π−1 · η

)
dη, (1.6)

with |Π| := det(Π). We use the same notation ρη for the measure and its density. The
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1. Rough homogenization for diffusions on fluctuating membranes

generator Lη of η is given by

Lη = −Γη · ∇η + ΠΓ : ∇η∇η. (1.7)

Here and later on, we will use the notation

A : ∇x∇xf(x) :=
n∑

i,j=1

Ai,j∂xi∂xjf(x) for A ∈ Rn×n, f ∈ C2(Rn,R), n ∈ N.

The generator Lη is a closed, unbounded operator on L2(ρη) with domain dom(Lη) =
{f ∈ L2(ρη) | Lηf ∈ L2(ρη)}. Observe that, since L ∗

η ρη = 0 for the Lebesgue adjoint
L ∗
η , invariance of ρη, i.e.

⟨Lηf⟩ρη :=

∫
Lηf(x)ρη(x)dx = 0, for all f ∈ dom(Lη),

can be checked easily. Consider the Sobolev-type space

H1(ρη) := {f ∈ dom(Lη) | ∥f∥2H1(ρη)
:= ⟨(−Lη)f, f⟩ρη <∞} (1.8)

for the scalar-product ⟨·, ·⟩ρη in L2(ρη). Furthermore, notice that for the Ornstein-
Uhlenbeck generator Lη, spectral gap estimates hold true. That is, there exists a
constant C > 0, such that

∥f∥2H1(ρη)
= ⟨(−Lη)f, f⟩ρη ⩾ C∥f − ⟨f⟩ρη∥2ρη (1.9)

for any f ∈ H1(ρη) with ⟨f⟩ρη =
∫
f(η)dρη. Indeed, from a simple calculation using

invariance for f 2, it follows that ⟨(−Lη)f, f⟩ρη = ⟨ΠΓ∇ηf,∇ηf⟩ρη . Then (1.9) follows
from minT2 ρη > 0 and the Poincaré-inequality for the Laplacian on the Sobolev space
H1(T2).
In particular, ρη is an ergodic measure for the Ornstein-Uhlenbeck process η. Fur-
thermore, if f is centered under ρη, then P η

t f is centered by invariance and thus (1.9)
applied to P η

t f together with ∂t⟨P η
t f, P

η
t f⟩ρη = 2⟨LηP

η
t f, P

η
t f⟩ρη yields the spectral

gap estimates for the semigroup (P η
t )t⩾0 of the Ornstein-Uhlenbeck process, that is,

∥P η
t f − ⟨f⟩ρη∥L2(ρη) ⩽ e−Ct∥f∥L2(ρη)

for all t ⩾ 0 and f ∈ L2(ρη) (sometimes also called exponential ergodicity).

We will to consider a Brownian motion X on the Helfrich membrane H given in (1.3).
This diffusion will be driven by an independent Brownian motion B. For each fixed
realization of the membrane, X is the Markov process that has in local coordinates the
Laplace-Beltrami operator L H = L as a generator. As we assume the expansion (1.3)
with coefficients η, we obtain a system of SDEs for (X, η) describing the dynamics of
the diffusion X on the membrane H. Following [DEPS15], we define X as follows.
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1.1. Langevin dynamics on a fluctuating Helfrich membrane

Definition 1.1. Let (Ω,F ,P) be a probability space and B a two-dimensional standard
Brownian motion independent of a 2K-dimensional standard Brownian motion W . Let
x0 be a random variable with values in T2 independent of B and W . Let (X, η) be the
solution of the following system of SDEs

dXt = F (Xt, ηt)dt+
√

2Σ(Xt, ηt)dBt, X0 = x0

dηt = −Γηtdt+
√

2ΓΠdWt, η0 ∼ ρη (1.10)

with Σ : T2 × R2K → R2×2
sym, where Σ(x, η) = g−1(x, η) is the inverse of the metric

tensor matrix g(x, η) ∈ R2×2 defined by

g(x, η) := Id +∇xh(x, η)⊗∇xh(x, η) (1.11)

and F : T2 × R2K → T2 with

F (x, η) :=
1√
|g|(x, η)

∇x · (
√
|g|g−1(x, η)). (1.12)

Then we call X a Brownian motion on the Helfrich membrane H given by (1.3) started
in x0.

As shown in [Dun13, Proposition 2.3.1], the solution (X, η) exists and is a Markov
process with generator on smooth, compactly supported test functions f : T2×R2K → R
given by

(L + Lη)f(x, η) =
1√
|g|(x, η)

∇x · (
√
|g|(x, η)Σ(x, η)∇xf(x, η)) + Lηf(x, η)

= F (x, η)∇xf(x, η) + Σ(x, η) : ∇x∇xf(x, η) + Lηf(x, η),

where Lη is the generator of the Ornstein Uhlenbeck process η given with (1.7) and
L is the Laplace-Beltrami operator. Moreover, the proof of [Dun13, Proposition 2.3.1]
provides the following uniform bounds: there exists a constant C1 > 0 such that

|Σ(x, η)|F ⩽ C1, ∀(x, η) ∈ T2 × R2K , (1.13)

where |·|F denotes the Frobenius-norm (or any other equivalent matrix norm) and there
exists a constant C2 > 0 such that

|F (x, η)| ⩽ C2(1 + |η|), ∀(x, η) ∈ T2 × R2K , (1.14)

where |·| denotes the usual euclidean norm.

We are interested in considering fluctuations of the membrane in time (εβ, β ⩾ 0
or β = −∞) and space (εα, α ⩾ 0) with different speeds α, β. More precisely, we
consider instead of H(x, t) the fluctuating surface εαH( x

εα
, t
εβ

) = εαh(ε−αx, ηε−βt),
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1. Rough homogenization for diffusions on fluctuating membranes

which transforms the system of equations (1.10) into

dXε
t =

1

εα
F

(
Xε
t

εα
, ηεt

)
dt+

√
2Σ

(
Xε
t

εα
, ηεt

)
dBt,

dηεt = − 1

εβ
Γηεtdt+

√
2ΓΠ

εβ
dW̃t, ηε0 ∼ ρη. (1.15)

Here we define the Brownian motion W̃t := εβ/2Wε−βt and thus (ηε−βt)t⩾0 = (ηεt )t⩾0.
Since we are only interested in convergence in distribution, we may replace W̃ by W .
We refer to [Dun13, section 2.3.3] for the derivation of the system and the physical
background. Furthermore, note that stationarity and the Gaussian distribution imply
boundedness of all moments of ηεt in ε, t.

In the following, we study the convergence of the Itô and Stratonovich rough path lift
of (Xε) for different speeds α, β as ε→ 0 in γ-Hölder rough path topology. Here, we
briefly recall the definition of a γ-Hölder rough path from [FH20, Definition 2.1], and
for more details we refer the reader to [FH20]. We write Xs,t := Xt−Xs and we define
the triangle

∆T := {(s, t) ∈ [0, T ]2 | s ⩽ t}.

Definition 1.2. For γ ∈ (1/3, 1/2] we call (X,X) ∈ C([0, T ],Rd) × C(∆T ,Rd×d) a
γ-Hölder rough path if:

i) Chen’s relation holds, that is

Xr,t − Xr,s − Xs,t = Xs,u ⊗Xu,t

for all 0 ⩽ r ⩽ s ⩽ t ⩽ T with Xt,t = 0,

ii) the (inhomogeneous) γ-Hölder norms are finite, that is

∥(X,X)∥γ := ∥X∥γ,T + ∥X∥2γ,T := sup
0⩽s<t⩽T

|Xs,t|
|t− s|γ

+ sup
0⩽s<t⩽T

|Xs,t|
|t− s|2γ

<∞.

We denote the nonlinear space of all such γ-Hölder rough paths by Cγ,T equipped with
distance

∥(X1,X1); (X2,X2)∥γ := ∥X1 −X2∥γ,T + ∥X1 − X2∥2γ,T .

Remark 1.3. For a two-dimensional Brownian motion B, the Itô lift (B,BIto), where
BIto(s, t) :=

∫ t
s
Bs,r ⊗ dBr are Itô-integrals, as well as the Stratonovich lift (B,BStrato)

for BStrato(s, t) :=
∫ t
s
Bs,r ⊗ ◦dBr being Stratonovich integrals, are almost surely γ-

Hölder rough path for γ = 1/2 − ε for any ε > 0, cf. [FH20, Chapter 3]. But also
(B, (s, t) 7→ Bs,t + A(t− s)) is a γ-rough path for a matrix A ∈ R2×2 and B = BIto or
B = BStrato. The latter will be the lift of the Brownian motion that we encounter below.
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1.1. Langevin dynamics on a fluctuating Helfrich membrane

We finalize this section by recalling the concept of uniform controlled variations by
Kurtz and Protter ([KP96, Definition 7.5]; here for continuous semimartingales without
the need for stopping times).

Definition 1.4. A sequence (Xε)ε of Rd-valued continuous semi-martingales on [0, T ]
with Xε = M ε + Aε, where M ε is a local martingale and Aε is of finite variation,
satisfies the UCV (Uniformly Controlled Variations) condition if and only if

(
〈
M ε,i

〉
T

)ε and (Var1,[0,T ](A
ε))ε are tight in R, (1.16)

for i = 1, ..., d and Var1,[0,T ](f) := lim|π|→0

∑
s,t∈π|ft − fs| denotes the one-variation of

a function f : [0, T ] → Rd and the limit is taken over all finite partitions π of [0, T ]
with mesh size |π| = maxs,t∈π|t− s| → 0.

Remark 1.5. The tightness (1.16) follows from

max
i=1,...,d

sup
ε

(
E[⟨M ε,i⟩T ] + E[Var1,[0,T ](A

ε)]
)
<∞. (1.17)

Furthermore, we are in the situation in which the (Xε) are defined on the same
probability space.

We state a version of [KP96, Theorem 7.7. and 7.10], that will be repeatedly exploited
in order to prove the distributional convergence of certain Itô integrals.

Proposition 1.6. A sequence (Xε)ε of Rd-valued continuous semi-martingales on [0, T ]
satisfies the UCV condition if and only if for all sequences (Y ε)ε with (Y ε, Xε)⇒ (Y,X)
jointly in distribution in C([0, T ],R2d) and with Y ε integrable against Xε and Y against
X in the Itô sense, it follows that (Y ε, Xε,

∫ ·
0
Y ε
s ⊗ dXε

s ) ⇒ (Y,X,
∫ ·
0
Ys ⊗ dXs) in

distribution in C([0, T ],R2d+d×d).

Let us furthermore state a version of the Kolmogorov criterion for rough paths, [FH20,
Theorem 3.1].

Lemma 1.7. Let (Xε,Xε)ε be a family of γ-Hölder rough path, γ < 1/2. Assume that
for any p > 2, there exist constants C1, C2 > 0 such that,

sup
ε
E[|Xε,i

t −Xε,i
s |p] ⩽ C1|t− s|p/2, ∀s, t ∈ [0, T ] (1.18)

and

sup
ε
E

[∣∣∣∣∫ t

s

Xε,i
s,rdX

ε,j
r

∣∣∣∣p/2] ⩽ C2|t− s|p/2, ∀s, t ∈ ∆T (1.19)

for i, j ∈ {1, ..., d}. Then for any γ′ < 1/2,

sup
ε
E[∥(Xε,Xε)∥pγ′ ] <∞.
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1. Rough homogenization for diffusions on fluctuating membranes

If furthermore supεE[|Xε
0 |] < ∞ holds true, then it follows that (Xε,Xε)ε is tight in

Cγ,T .

Proof. The proof follows from the proof of [FH20, Theorem 3.1] applied to β = 1/2
and γ′ = β − 1/q− ε, ε > 0, using the fact that, according to assumption (1.18), (1.19)
holds for any p > 2. Tightness in Cγ,T then follows utilizing the compact embedding
Cγ′,T ↪→ Cγ,T for γ < γ′.

Below, we use the following convention. The notation a ≲ b shall indicate, that there
exists a constant C > 0, such that a ⩽ Cb. This constant does not depend on the
relevant parameters at hand, unless we indicate the dependence by ≲k if the bound
C = C(k) depends on a parameter k.

1.2. Membrane with purely temporal fluctuations

In this section, we consider the scaling regime α = 0, β = 1 in (1.15) and thus obtain
the slow-fast system,

dXε
t = F (Xε

t , η
ε
t )dt+

√
2Σ(Xε

t , η
ε
t )dB(t),

dηεt = −1

ε
Γηεtdt+

√
2

ε
ΓΠdWt, ηε0 ∼ ρη,

(1.20)

where B and W are independent Brownian motions.

From classical stochastic averaging, see also [DEPS15, Theorem 4], we know that
Xε ⇒ X in distribution in C([0, T ],R2) as ε→ 0. The limit X is the solution of the
averaged system

dXt = F (Xt)dt+

√
2Σ(Xt)dBt,

with

F (x) :=

∫
R2K

F (x, η)ρη(dη), (1.21)

Σ(x) :=

∫
R2K

Σ(x, η)ρη(dη), (1.22)

where the invariant measure ρη(dη) of η is given by (1.6). Utilizing the linear growth
of F in η uniformly in x, cf. (1.14), boundedness of all moments of ηεt in ε, t and
boundedness of Σ, cf. (1.13), we can conclude that (Xε)ε satisfies the UCV condition
(1.17); see below for the detailed proof. Thus, according to Proposition 1.6, the iterated
Itô integrals of Xε will converge to the iterated Itô integrals of the limit X. More
precisely, the following theorem holds:

Theorem 1.8. Let γ < 1/2 and Xε and X be as above. Let Xε
s,t :=

∫ t
s
(Xε

r −Xε
s )⊗dXε

r

and Xs,t :=
∫ t
s
(Xr −Xs)⊗ dXr, where the stochastic integrals are understood in the Itô
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1.2. Membrane with purely temporal fluctuations

sense. Then it follows that

(Xε,Xε)⇒ (X,X) (1.23)

in distribution in γ-Hölder rough path topology.

Proof. We first prove the weak convergence of the iterated integrals (Xε
0,t) in R2×2 for

any t ⩾ 0 and then show tightness of (Xε,Xε) in γ-Hölder rough path topology.
The first aim is to apply Proposition 1.6 and show that the sequence (Xε)ε satisfies
the UCV condition. We have that Xε = Aε +M ε for

Aεt :=

∫ t

0

F (Xε
s , η

ε
s)ds,

M ε
t :=

∫ t

0

√
2Σ(Xε

s , η
ε
s)dBs,

where Aε is of finite variation and M ε is a martingale. For (Xε)ε to satisfy the UCV
condition, we thus have to show the bound (1.17). By boundedness of Σ it is immediate
that the expected quadratic variation of M ε is also uniformly bounded in ε. For the
bound on the total variation of Aε we use that (1.14) holds uniformly in x ∈ T2, such
that:

sup
ε
E
[
Var1,[0,T ](A

ε)
]
≤ sup

ε
E

[ ∫ T

0

|F (Xε
s , η

ε
s)|ds

]
≤ C sup

ε
E

[ ∫ T

0

(1 + |ηεs|)ds
]

= C(1 + E[|η0|])T,

where in the last equality, we used the stationarity of ηε. As we have weak convergence
of (Xε)ε to X in C([0, T ],R2), this implies, according to Proposition 1.6, that we also
have weak convergence of the Itô integrals Xε :=

∫
Xε ⊗ dXε to X :=

∫
X ⊗ dX in

C(∆T ,R2×2).
To prove tightness in γ-Hölder rough path topology for γ < 1/2, we utilize Lemma 1.7.
Here (1.18) follows immediately from the linear growth of F in η and bounded moments
of ηεt in ε, t by stationarity, as well as Burkholder-Davis-Gundy inequality for the
martingale part and boundedness of Σ. Moreover, (1.19) follows from (1.18) and the
estimate

E

[∣∣∣∣∫ t

s

Xε,i
s,rdX

ε,j
r

∣∣∣∣p/2]
≲ E

[∣∣∣∣∫ t

s

Xε,i
s,rdM

ε,j
r

∣∣∣∣p/2]+ E

[∣∣∣∣∫ t

s

Xε,i
s,rdA

ε,j
r

∣∣∣∣p/2]
≲ E

[(∫ t

s

|Xε,i
s,r|2dr

)p/4]
+ E

[(∫ t

s

|Xε,i
s,rF

j(Xε
r , η

ε
r)|dr

)p/2]
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1. Rough homogenization for diffusions on fluctuating membranes

≲

(∫ t

s

E[|Xε,i
s,r|p/2]4/pdr

)p/4
+

(∫ t

s

E[|Xε,i
s,rF

j(Xε
r , η

ε
r)|p/2]2/pdr

)p/2
≲ |t− s|(2×

1
2
+1)× p

4 +

(∫ t

s

E[|Xε,i
s,r|p]1/pE[|F j(Xε

r , η
ε
r)|p]1/pdr

)p/2
≲ |t− s|p/2 +

(∫ t

s

E[|Xε,i
s,r|p]1/pE[(1 + |ηεr |)p]1/pdr

)p/2
≲ |t− s|p/2 +

(∫ t

s

E[|Xε,i
s,r|p]1/pdr

)p/2
≲ |t− s|p/2 + |t− s|p/4+p/2 ≲T |t− s|p/2

using the Burkholder-Davis-Gundy inequality for the martingale part, boundedness of
Σ in the second line and the generalized Minkowski’s inequality for integrals for both
summands in the third line (and the linear growth of F and stationarity of η).
Combining distributional convergence of (Xε,Xε)ε to (X,X) in C(∆T ,Rd+d×d) and
tightness in Cγ,T , we conclude on distributional convergence in γ-Hölder rough path
topology for γ < 1/2.

1.3. Membrane with temporal fluctuations twice as
fast as spatial fluctuations

In this section, we consider the scaling regime α = 1, β = 2 in (1.15), that is, temporal
fluctuations occur twice as fast as spatial ones. We introduce the fast process

Y ε
t :=

Xε
t

ε
mod Z2.

The operation mod Z2 projects onto the torus T2, such that Y ε is a Markov process
with compact state space T2. Then the general SDE system can be written as

dXε
t =

1

ε
F (Y ε

t , η
ε
t )dt+

√
2Σ(Y ε

t , η
ε
t )dBt,

dY ε
t =

1

ε2
F (Y ε

t , η
ε
t )dt+

√
2

ε2
Σ(Y ε

t , η
ε
t )dBt,

dηεt = − 1

ε2
Γηεtdt+

√
2

ε2
ΓΠdWt,

(1.24)

for independent Brownian motions B and W , where B is a two-dimensional and W is
a 2K-dimensional standard Brownian motion.
Utilizing Itô’s formula, one can easily check that on smooth, compactly supported
functions f ∈ C∞

c (T2 × R2K ,R), the infinitesimal generator of the fast process (Y ε, ηε)
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1.3. Membrane with temporal fluctuations twice as fast as spatial fluctuations

is ε−2G , where

G = L0 + Lη (1.25)

for

L0f(y, η) = F (y, η) · ∇yf(y, η) + Σ(y, η) : ∇y∇yf(y, η), (1.26)

which is the generator of Y (for fixed η) and Lη is the generator of the Ornstein-
Uhlenbeck process η, given by (1.7), cf. also [Dun13, section 5.3]. We also write L0(η)
to denote the operator L0 acting on functions f : T2 → R, stressing the dependence
on fixed η ∈ R2K . The reason for introducing the fast process Y ε is that the drift term
of Xε is given as an (unbounded) additive functional of the Markov process (Y ε, ηε).

Moreover, we have the equality in law, (Yt, ηt)t⩾0
d
= (Y ε

ε2t, η
ε
ε2t)t⩾0, where (Y, η) is the

Markov process with generator G .

As shown in [Dun13, Prop. 5.3.1], there exists a unique invariant measure ρ for the
Markov process (Y, η), whose density is the unique, normalized solution of

G ∗ρ = 0, (1.27)

G ∗ being the adjoint operator of G with respect to L2(dydη). As ρ is the unique invariant
measure, it is in particular ergodic for (Y, η). Furthermore, we can extend the semigroup

(P
(Y,η)
t )t⩾0 of the Markov process (Y, η), with P

(Y,η)
t f(y, η) = E[f(Yt, ηt) | (Y0, η0) =

(y, η)] for f ∈ C∞
c (Td ×R2K), uniquely to a strongly continuous contraction semigroup

on L2(ρ) (that is possible by invariance of ρ, cf. [Yos95, Theorem 1, p. 381]) and define
the generator G : dom(G ) ⊂ L2(ρ)→ L2(ρ) with dom(G ) = {u ∈ L2(ρ) | G u ∈ L2(ρ)}
and G u := limt→0 t

−1(P
(Y,η)
t u− u) with limit in L2(ρ).

Let us define

V (η) := 1 +
1

2
|η|2.

Then, according to the proof of [Dun13, Prop. 5.3.1], V is a Lyapunov function for the
fast process (Y ε, ηε) and we have the pointwise spectral-gap-type estimates of the form

|P (Y,η)
t f(y, η)−

∫
fdρ|2 ⩽ Ke−ct|V (η)|2 for all t ⩾ 0, (1.28)

for constants K, c > 0 (not depending on f) and for all f : T2 × R2K → R such that
|f(y, η)| ⩽ V (η), (y, η) ∈ T2×R2K . If we integrate the pointwise inequality (1.28) over
(y, η) with respect to ρ, we obtain the L2(ρ)-spectral-gap-type estimates for all such f ,
assuming V ∈ L2(ρ),

∥P (Y,η)
t f −

∫
fdρ∥2L2(ρ) ⩽ Ke−ct∥V ∥2L2(ρ) for all t ⩾ 0. (1.29)
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1. Rough homogenization for diffusions on fluctuating membranes

We will in particular apply the spectral gap estimates to f = F , which satisfies (1.14).
Let us, similarly as in the previous section, define the H1 space with respect to the
generator G using the symmetric part G S := 1

2
(G + G ⋆), where G ⋆ is the L2(ρ)-adjoint

of G ,

H1(ρ) := {u ∈ dom(G ) | ⟨(−G )u, u⟩ρ = ⟨(−G S)u, u⟩ρ <∞}.

The scalar product in H1(ρ) is given by ⟨f, g⟩H1(ρ) = ⟨(−G S)f, g⟩H1(ρ).
Then, as a consequence of the spectral gap estimates, we can solve the Poisson equation

(−G )u = g (1.30)

explicitly with right-hand side g that has mean zero under ρ, ⟨g⟩ρ = 0, and satisfies |g| ⩽
V with V ∈ L2(ρ). The unique solution u ∈ H1(ρ) is given by u =

∫∞
0
P

(Y,η)
t gdt ∈ L2(ρ).

In fact, for our tightness arguments, we will need a stronger integrability condition on
the solution u and ∇ηu,∇yu, that is given by the following proposition.

Proposition 1.9. Let p ⩾ 2 and let g ∈ C∞(T2 × R2K ,R2) with

|g(y, η)| ⩽ V (η) (1.31)

(i.p. g ∈ Lp(ρ)) and with ⟨g⟩ρ =
∫
T2×R2K g(y, η)ρ(d(y, η)) = 0. Then the Poisson

equation

(−G )u = g

has a unique strong solution u ∈ C∞(T2 × R2K ,R2) with the property that ⟨u⟩ρ = 0.
Moreover, there exists a constant C > 0, such that the solution satisfies |u(y, η)| ⩽
CV (η) and

|∇(y,η)u(y, η)| ⩽ |∇yu(y, η)|+ |∇ηu(y, η)| ⩽ 2CV (η). (1.32)

In particular, it follows that u ∈ W 1,p(ρ) = {u ∈ Lp(ρ) | ∇(y,η)u ∈ Lp(ρ)}.

Proof. The solution u =
∫∞
0
P

(Y,η)
t gdt is smooth, as g is assumed to be smooth, cf.

also [Dun13, Proposition A.3.1]. It satisfies an analogue growth bound as g by the
pointwise spectral gap estimates (1.28) with constant C = K

∫∞
0
e−ctdt ∈ (0,∞), in

particular u ∈ Lp(ρ) for any p ⩾ 1. For the bound on the derivative, we proceed as
in part (e) of the proof of [PV01, Theorem 1]. That is, we apply Sobolev embedding,
the estimate (9.40) from [GT01] and the bound on g and u, such that for p > d+ 2K
(notation: Bx,R = {z ∈ Rd × R2K | |z − x| ⩽ R})

|∇(y,η)u(y, η)| ⩽ C(∥u∥Lp(B(y,η),2) + ∥G u∥Lp(B(y,η),2)) ⩽ 2CV (η).

Notice also that, compared to [PV01], in our situation we have compactness in the y
variable and the bound on g, u and ∇u is uniform in y ∈ Td.
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1.3. Membrane with temporal fluctuations twice as fast as spatial fluctuations

In what follows, we will always assume the system (1.24) starts in stationarity,
i.e. (Y ε

0 , η
ε
0) ∼ ρ. In [DEPS15, Theorem 7] the authors prove the homogenization

result for the process Xε (see also [Dun13, chapter 5]), namely

Xε ⇒
√

2DZ,

where the convergence is in distribution in C([0, T ],R2) for ε → 0, with a standard
two-dimensional Brownian motion Z and

D =

∫
(Id +∇yχ(y, η))TΣ(y, η)(Id +∇yχ(y, η))ρ(dy, dη)

+

∫
∇ηχ(y, η)TΓΠ∇ηχ(y, η)ρ(dy, dη).

Here Id ∈ R2×2 is the identity matrix and χ is the solution of the Poisson equation
(−G )χ = F .

In order to obtain the homogenization result for the rough path lift of the process Xε,
we will use martingale methods (cf. [KLO12, Ch. 2]) applied to the stationary, ergodic
Markov process (Y ε, ηε) started in ρ. In addition we will exploit the decomposition
of the additive functional in terms of Dynkin’s martingale and the boundary term
involving the solution of the Poisson equation (1.30).

To solve the Poisson equation with right-hand side F , we furthermore need that F is
centered with respect to ρ. This was proven in [Dun13, Proposition 5.3.4]. We state
that result in the following lemma.

Lemma 1.10. For F from (1.12) and the invarinat probability measure ρ for G , the
following centering condition holds true∫

T2×R2K

F (y, η)ρ(y, η)d(y, η) = 0. (1.33)

We prove in the following lemma, that the density ρ that solves (1.27) is given by
ρ(y, η) = gη(y)f(η), where f is the density of the normal distribution invariant for η
and g solves the equation (1.34) below.

Lemma 1.11. Let ρ be the probability measure with the density denoted also by ρ,
such that it solves G ∗ρ = 0. Moreover, let gη(y) be the unique solution, satisfying∫
T2 gη(y)dy = 1 and gη(y) ⩾ 0, to the equation

(L ∗
0 + Lη)gη(y) = 0 (1.34)

for the adjoint operator L ∗
0 = L ∗

0 (η) of L0 = L0(η) with respect to L2(dy). Then the
density ρ fulfills the disintegration formula

ρ(y, η) = gη(y)f(η),
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1. Rough homogenization for diffusions on fluctuating membranes

where

f(η) =
1

2π
√
|Π|

exp

(
−1

2
ηTΠ−1η

)
.

In particular, the marginal distribution of ρ in the η-variable is the normal distribution
N(0,Π).

Proof. First we show that the form of the density ρ follows from the disintegration
theorem from measure theory (see for example [DM78, chapter 3, 70 and 71]) and the
invariance of ρ. Let π : R2K ×T2 → R2K , (η, y) 7→ η be the projection and ν := ρ ◦ π−1

the push-forward under ρ. Then the disintegration theorem implies that there exists a
family of measures (µη)η∈R2K on T2, such that:

• η 7→ µη(A) is Borel measurable for each Borel measurable set A ∈ B(T2)

• for every Borel measurable function h : T2 × R2K → R,∫
T2×R2K

h(y, η)ρ(d(y, η)) =

∫
R2K

∫
T2

h(y, η)µη(dy)ν(dη). (1.35)

Since by assumption ρ has a density, which we also denote by ρ, it follows that ν has a
density given by

η 7→
∫
ρ(y, η)dy =: f(η).

Consequently, also µη has a density, namely the conditional density

y 7→ 1{f>0}ρ(y, η)/f(η) =: gη(y).

In order to prove that the marginal distribution ν under ρ is the normal distribution
N(0,Π), consider h ∈ Cb(T2 × RK ,R) with h(y, η) = h(η) not depending on y. Then,
for (Y0, η0) ∼ ρ we have for any t ⩾ 0:

E[h(ηt)] = E[h(Yt, ηt)] =

∫
h(y, η)dρ =

∫
h(η)f(η)dη.

Hence f is given by the density of the N(0,Π) distribution, as this is the unique
invariant distribution for (ηt)t.

It is left to derive the equation (1.34) for the density gη(y). For that we use the
invariance of ρ and write

0 = G ∗ρ = (L ∗
0 + L ∗

η )(gη(y)f(η))

= f(η)L ∗
0 gη(y) + L ∗

η (gη(y)f(η))

= f(η)
(
L ∗

0 gη(y) + Lηgη(y)
)
,
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1.3. Membrane with temporal fluctuations twice as fast as spatial fluctuations

where we used that for any h ∈ C2(R2K ,R),

L ∗
η (h(η)f(η)) = ∇η · (h(η)Γηf(η)) + ΓΠ : ∇η∇η(h(η)f(η))

= h(η)[∇η · (Γηf(η)) + ΓΠ : ∇η∇ηf(η)]

+ f(η)[Γη · ∇ηh(η) + ΓΠ : ∇η∇ηh(η)]

+ 2∇ηh(η) · ΓΠ∇ηf(η)

= h(η)L ∗
η f(η) + f(η)Lηh(η)

+ 2(∇ηh(η) · ΓΠ∇ηf(η) + f(η)Γη · ∇ηh(η))

= h(η)L ∗
η f(η) + f(η)Lηh(η)

= f(η)Lηh(η),

where we added and subtracted the term f(η)Γη ·∇ηh(η) and then used that ∇ηf(η) =
−f(η)Π−1η and L ∗

η f = 0. As f > 0, the above implies the equation (1.34) for gη(y).

The uniqueness of the solution gη(y) in the class of probability densities in the y-
variable follows from the uniqueness of the density ρ solving G ∗ρ = 0. Indeed, let
g1, g2 ∈ C2(R2K × T2,R) be positive such that

∫
T2 g

i(η, y)dy = 1 and they solve

(L ∗
0 + Lη)g

i(η, y) = 0 for i = 1, 2.

Then, setting ρi(η, y) := gi(η, y)f(η) for i = 1, 2, we obtain probability densities of
a probability measure on R2K × T2 solving G ∗ρi = 0 for i = 1, 2. As a consequence,
ρ1 = ρ2 = ρ, which implies g1 = g2.

1.3.1. Determining the limit rough path

In this subsection, we prove convergence of the Itô integrals∫ t

s

(Xε
r −Xε

s )⊗ dXε
r =

(∫ t

s

(Xε,i
r −Xε,i

s )dXε,j
r

)
i,j=1,2

and determine the limit. In order to obtain the limit, we will use a decomposition
of Xε(t) via the solution χ of the Poisson equation Gχ = −F , which exists by
Proposition 1.9. Rewriting the drift term using Itô-formula for χ(Y ε

t , η
ε
t ), we obtain,

1

ε

∫ t

0

F (Y ε
s , η

ε
s)ds = −

(
ε
(
χ(Y ε

t , η
ε
t )− χ(Y ε

0 , η
ε
0)
)
− M̃ ε

t

)
,

where

M̃ ε,i
t := M̃ ε,i

1 (t) + M̃ ε,i
2 (t)

:=

∫ t

0

∇yχ
i(Y ε

s , η
ε
s) ·
√

2Σ(Y ε
s , η

ε
s)dBs +

∫ t

0

∇ηχ
i(Y ε

s , η
ε
s) ·
√

2ΓΠdWs
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1. Rough homogenization for diffusions on fluctuating membranes

for i = 1, 2. As a consequence, we have

Xε
t = Xε

0 + ε (χ (Y ε
0 , η

ε
0)− χ(Y ε

t , η
ε
t )) +M ε

1 (t) +M ε
2 (t), (1.36)

where martingale terms M ε := M ε
1 +M ε

2 are given by

M ε,i
1 (t) :=

∫ t

0

(∇yχ
i(Y ε

s , η
ε
s) + ei) ·

√
2Σ(Y ε

s , η
ε
s)dBs, (1.37)

M ε,i
2 (t) :=

∫ t

0

∇ηχ
i(Y ε

s , η
ε
s) ·
√

2ΓΠdWs, (1.38)

for i = 1, 2. Using the dynamics of Xε, we decompose the iterated integrals for
i, j ∈ {1, 2},∫ t

0

(Xε,i
s −X

ε,i
0 )dXε,j

s =

∫ t

0

(Xε,i
s −X

ε,i
0 )

2∑
l=1

√
2Σ(j, l)(Y ε

s , η
ε
s)dB

l
s (1.39)

+

∫ t

0

(Xε,i
s −X

ε,i
0 )

1

ε
F j(Y ε

s , η
ε
s)ds. (1.40)

The next step is to rewrite the terms (1.39) and (1.40) collecting the vanishing and
non-vanishing terms.

First we consider the term (1.39) and plug in the decomposition (1.36) of Xε. We
obtain ∫ t

0

(Xε,i
s −X

ε,i
0 )

2∑
l=1

√
2Σ(j, l)(Y ε

s , η
ε
s)dB

l
s

= ε

∫ t

0

(χi(Y ε
0 , η

ε
0)− χi(Y ε

s , η
ε
s))

2∑
l=1

√
2Σ(j, l)(Y ε

s , η
ε
s)dB

l
s

+

∫ t

0

M ε,i
s

2∑
l=1

√
2Σj,l(Y ε

s , η
ε
s)dB

l
s

= ε

∫ t

0

(χi(Y ε
0 , η

ε
0)− χi(Y ε

s , η
ε
s))

2∑
l=1

√
2Σ(j, l)(Y ε

s , η
ε
s)dB

l
s

+M ε,i
t

(∫ t

0

2∑
l=1

√
2Σ(j, l)(Y ε

r , η
ε
r)dB

l
r

)

−
∫ t

0

(∫ s

0

2∑
l=1

√
2Σ(j, l)(Y ε

r , η
ε
r)dB

l
r

)
dM ε,i

s

−
〈∫ ·

0

2∑
l=1

√
2Σ(j, l)(Y ε

r , η
ε
r)dB

l
r,M

ε,i

〉
t

. (1.41)
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1.3. Membrane with temporal fluctuations twice as fast as spatial fluctuations

By stationarity of (Y ε, ηε) and the boundedness (1.13) of Σ, we notice that the first
summand in the decomposition (1.41) will converge in L2(P) to zero. Moreover, for the
quadratic variation term, we can argue with the ergodic theorem for (Y, η), [DPZ96,
Theorem 3.3.1], obtaining the convergence in probability

P

(∣∣∣∣〈∫ ·

0

2∑
l=1

√
2Σ(j, l)(Y ε

r , η
ε
r)dB

l
r,M

ε,i

〉
t

− t
∫
ej · 2Σ(ei +∇yχ

i)dρ

∣∣∣∣ > δ

)
= P

(∣∣∣∣∫ t

0

ej · 2Σ(ei +∇yχ
i)(Y ε

s , η
ε
s)ds− t

∫
ej · 2Σ(ei +∇yχ

i)dρ

∣∣∣∣ > δ

)
= P̃

(∣∣∣∣ε2 ∫ ε−2t

0

ej · 2Σ(ei +∇yχ
i)(Ys, ηs)ds− t

∫
ej · 2Σ(ei +∇yχ

i)dρ

∣∣∣∣ > δ

)
→ 0, (1.42)

as ε → 0, for any δ > 0, using that (Y ε
t , η

ε
t )t⩾0

d
= (Yε−2t, ηε−2t)t⩾0, where (Yt, ηt)t⩾0 is

the Markov process with generator G with respect to some base probability measure
P̃. To deduce the convergence of the remaining two martingale terms in (1.41), we will
add them up with the decomposition of the term (1.40) below.

We decompose the term (1.40) in the following way∫ t

0

(Xε,i
s −X

ε,i
0 )

1

ε
F j(Y ε

s , η
ε
s)ds =

∫ t

0

(χi(Y ε
0 , η

ε
0)− χi(Y ε

s , η
ε
s))F

j(Y ε
s , η

ε
s)ds (1.43)

+

∫ t

0

M ε,i
s

1

ε
F j(Y ε

s , η
ε
s)dt. (1.44)

For the first term in (1.43) we again apply the ergodic theorem for (Y, η), yielding the
convergence in probability, analogously as above,∫ t

0

(χi(Y ε
0 , η

ε
0)− χi(Y ε

s , η
ε
s))F

j(Y ε
s , η

ε
s)ds

d
= χi(Y ε

0 , η
ε
0)ε

2

∫ ε−2t

0

F j(Yr, ηr)dr − ε2
∫ ε−2t

0

χiF j(Yr, ηr)dr

→ t(χi(Y ε
0 , η

ε
0)Eρ[F

j]− Eρ[χiF j])

= tEρ[χ
i(−F )j] =: taF (i, j),

where we used that F has mean zero under ρ by Lemma 1.10 and we introduced the
notation Eρ[f ] :=

∫
f(y, η)ρ(y, η)d(y, η).

For the second term (1.44), we apply the integration by parts formula to further rewrite∫ t

0

M ε,i
s ε−1F j (Y ε

s , η
ε
s) ds = M ε,i

t

∫ t

0

ε−1F j(Y ε
s , η

ε
s)ds−

∫ t

0

(∫ s

0

ε−1F j(Y ε
r , η

ε
r)dr

)
dM ε,i

s .

(1.45)
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1. Rough homogenization for diffusions on fluctuating membranes

Let aεF be defined as

aεF (i, j) := ε

∫ t

0

(χi(Y ε
0 , η

ε
0)− χi(Y ε

s , η
ε
s))d

(∫ ·

0

√
2Σ(Y ε, ηε)dB

)j
s

+

∫ t

0

(χi(Y ε
0 , η

ε
0)− χi(Y ε

s , η
ε
s))F

j(Y ε
s , η

ε
s)ds.

Then, using the definition of aεF and summing up the two remaining terms in (1.41)
and the terms in (1.45), we get∫ t

0

(Xε,i
s −X

ε,i
0 )dXε,j

s

= aεF (i, j) +M ε,i
t (Xε,j

t −X
ε,j
0 )−

∫ t

0

(Xε,j
s −X

ε,j
0 )dM ε,i

s

−
〈
M ε,i,

(∫ ·

0

√
2Σ(Y ε

r , η
ε
r)dBr

)j〉
t

. (1.46)

To obtain the limit in distribution, we utilize the convergence of aεF in probability
proven above (with same limit as for the term in (1.43)), the convergence of the
quadratic variation term in (1.42) and Proposition 1.6 for the remaining terms. Then
Slutzky’s lemma ensures that the sum of a random variable converging in distribution
and a random variable converging in probability, converges in distribution to the sum
of the limits. To apply Proposition 1.6, we check that the UCV condition is satisfied
for (M ε,i) and that (M ε,i, Xε,j) ⇒ (X i − X i

0, X
j) jointly in distribution. Here, the

joint convergence is due the decomposition (1.36) and the convergence for the process
by [DEPS15, Theorem 7]. To show the UCV condition, we utilize the stationarity of

(Y, η) and (Y ε
t , η

ε
t )t

d
= (Yε−2t, ηε−2t)t, such that

E[⟨M̃ ε,i⟩t] = t

∫
[(∇yχ

i)T2Σ∇yχ
i + (∇ηχ

i)T2ΓΠ∇ηχ
i]dρ <∞.

Here, the right-hand side is finite due to Proposition 1.9 and boundedness of Σ from
(1.13) and the bound does not depend on ε, such that the UCV condition for (M ε,i)ε
is satisfied.
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1.3. Membrane with temporal fluctuations twice as fast as spatial fluctuations

Altogether, we thus obtain the distributional convergence,∫ t

0

(Xε,i
s −X

ε,i
0 )dXε,j

s = aεF (i, j) +M ε,i
t (Xε,j

t −X
ε,j
0 )−

∫ t

0

(Xε,j
s −X

ε,j
0 )dM ε,i

s

−
〈
M ε,i,

(∫ ·

0

√
2Σ(Y ε

r , η
ε
r)dBr

)j〉
t

⇒ taF (i, j) + (X i
t −X i

0)(X
j
t −X

j
0)−

∫ t

0

(Xj
s −X

j
0)dX i

s

− t
∫
ej · 2Σ(ei +∇yχ

i)dρ

= taF (i, j) + ⟨X i, Xj⟩t − t
∫

(ei +∇yχ
i) · 2Σejdρ

+

∫ t

0

(X i
s −X i

0)dX
j
s .

The arguments can also be generalized to a different base-point s > 0 in the same
manner as for s = 0 above, such that we obtain the weak limit of the iterated integrals
Xε
s,t(i, j), which decomposes in the iterated integrals Xs,t(i, j) of the Brownian motion

X =
√

2DZ plus an area correction term. Furthermore, the joint distributional
convergence of ((Xε

s,t(i, j))i,j=1,2)ε follows from the decomposition (1.46) and joint
distributional convergence of ((M ε,i, Xε,j)i,j=1,2)ε, which relies on joint convergence of
((Xε,i)i=1,2)ε by [DEPS15, Theorem 7].
The following proposition summarizes our findings.

Proposition 1.12. Let (Xε, Y ε, ηε) solve the system (1.24) for (Y ε
0 , η

ε
0) ∼ ρ. Then for

all s, t ∈ ∆T , the iterated Itô-integrals (Xε
s,t) convergence weakly in R2×2 as ε→ 0, i.e.

for i, j ∈ {1, 2},

Xε
s,t(i, j) :=

∫ t

s

Xε,i
s,rdX

ε,j
r ⇒ Xs,t(i, j) + (t− s)

(
⟨X i, Xj⟩1 + ⟨χi, (Gχ)j⟩ρ

−
∫

(ei +∇yχ
i) · 2Σejdρ

)
, (1.47)

where

X =
√

2DZ, Gχ = −F, e1 = (1, 0), e2 = (0, 1),

for a standard two-dimensional Brownian motion Z, Xs,t(i, j) :=
∫ t
s
X i
s,rdX

j
r and

D =

∫
(Id +∇yχ)TΣ(Id +∇yχ)ρ(dy, dη) +

∫
(∇ηχ)TΓΠ∇ηχρ(dy, dη). (1.48)

Corollary 1.13. Let (Xε, Y ε, ηε) be as in Proposition 1.12. Then for all s, t ∈ ∆T

also the iterated Stratonovich integrals (X̃ε
s,t) converge weakly in R2×2 as ε → 0, i.e.
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1. Rough homogenization for diffusions on fluctuating membranes

for i, j ∈ {1, 2},

X̃ε
s,t(i, j) :=

∫ t

s

Xε,i
s,r ◦ dXε,j

r ⇒ X̃s,t(i, j) + (t− s)Ã(i, j), (1.49)

where

X =
√

2DZ, X̃s,t(i, j) :=

∫ t

s

X i
s,r ◦ dXj

r

for a standard two-dimensional Brownian motion Z and D is given by (1.48).
Furthermore, the area correction is given by

Ã(i, j) = ⟨χi,G Aχj⟩ρ +

∫
ei · Σ∇yχ

jdρ−
∫
∇yχ

i · Σejdρ.

for G A := 1
2
(G − G ⋆) with L2(ρ)-adjoint G ⋆ of G .

Proof. Recall the relation between the Itô and Stratonovich integral

X̃ε
0,t(i, j) = Xε

0,t(i, j) +
1

2
⟨Xε,i, Xε,j⟩t.

The ergodic theorem for (Y, η), [DPZ96, Theorem 3.3.1], together with (Y ε
t , η

ε
t )t⩾0

d
=

(Yε−2t, ηε−2t)t⩾0, implies convergence in probability of the quadratic variation:

1

2
⟨Xε,i, Xε,j⟩t =

∫ t

0

ei · Σej(Y ε
s , η

ε
s)ds→ t

∫
ei · Σejdρ.

Thus we obtain, from Proposition 1.12 and Lemma 1.11, the following convergence in
distribution:

X̃ε
0,t(i, j) = Xε

0,t(i, j) +
1

2
⟨Xε,i, Xε,j⟩t

⇒ X0,t(i, j) + t⟨χi, (Gχ)j⟩ρ + ⟨X i, Xj⟩t

− t
∫

(∇yχ
i + ei) · 2Σejdρ+ t

∫
ei · Σejdρ

= X0,t(i, j) +
1

2
⟨X i, Xj⟩t

+ t

(
⟨χi, (Gχ)j⟩ρ +

1

2
⟨X i, Xj⟩1

−
∫
∇yχ

i · 2Σejdρ−
∫
ei · Σejdρ

)
= X̃0,t(i, j) + tÃ(i, j).
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1.3. Membrane with temporal fluctuations twice as fast as spatial fluctuations

The area correction can furthermore be written as

Ã(i, j) = ⟨χi,Gχj⟩ρ +D(i, j)−
∫
∇yχ

i · 2Σejdρ−
∫
ei · Σejdρ

= ⟨χi,G Aχj⟩ρ +

∫
ei · Σ∇yχ

jdρ−
∫
∇yχ

i · Σejdρ,

using that G = G A + G S for G S := 1
2
(G + G ⋆) and G A := 1

2
(G − G ⋆) and that by

[KLO12, section 2.4], we have a correspondence between the quadratic variation of
Dynkin’s martingale M̃ ε and the H 1(ρ)-norm of χ (utilizing again stationarity of
(Y, η)), such that

⟨χi,G Sχj⟩ρ = −⟨χi, χj⟩H1(ρ) = −1

2
E[⟨M̃ ε,i, M̃ ε,j⟩1]

= −
∫

[∇yχ
i · Σ∇yχ

j +∇ηχ
i · ΓΠ∇ηχ

j]dρ.

For a base-point s > 0 we can pursue with an analogue argument.

Remark 1.14. We expect (without proof) that in fact Ã(i, j) = ⟨χi,G Aχj⟩ρ holds
true and that G A is a nontrivial operator, such that the Stratonovich area correction is
truely non-vanishing. The difficulty in verifying this is that the density gη(y) remains
non-explicit. Typically (cf. [DOP21]), the area correction in the Stratonovich case can
be expressed in terms of the asymmetric part of the generator of the underlying Markov
process, which is a non-trivial operator for a non-reversible Markov process.

1.3.2. Tightness

For convergence in distribution of the lift (Xε,Xε) to the respective lift of X, it remains
to prove tightness in the rough path space utilizing Lemma 1.7. We verify the moment
bounds in the next proposition in order to apply the Kolmogorov criterion, Lemma 1.7.

Proposition 1.15. Let (Xε, Y ε, ηε) be as in Proposition 1.12. Then the following
moment bounds hold true for any p ⩾ 2, i, j ∈ {1, 2},

sup
ε
E[|Xε,i

t −Xε,i
s |p] ≲ |t− s|p/2, for s, t ∈ ∆T (1.50)

and

sup
ε
E

[∣∣∣∣∫ t

s

Xε,i
s,rdX

ε,j
r

∣∣∣∣p/2] ≲ |t− s|p/2, for s, t ∈ ∆T . (1.51)

In particular, tightness of (Xε,Xε) in Cγ,T for γ < 1/2 follows.

Proof. Let p ⩾ 2. First, utilizing the growth condition (1.14) on F , finiteness of
moments of η, Burkholder-Davis-Gundy inequality and boundedness of Σ in (1.13), we
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1. Rough homogenization for diffusions on fluctuating membranes

obtain

E[|Xε
t −Xε

s |p] ⩽ E
[∣∣∣∣ε−1

∫ t

s

F (Y ε
s , η

ε
s)ds

∣∣∣∣p]+ E

[∣∣∣∣∫ t

s

√
2Σ(Y ε

s , η
ε
s)dBs

∣∣∣∣p]
≲ ε−p|t− s|p + |t− s|p/2. (1.52)

Secondly, using the representation (1.46), we conclude

E[|Xε,i
t −Xε,i

s |p] ⩽ εpE[|χi(Y ε(t), ηε(t))− χi(Y ε(s), ηε(s))|p] + E[|M ε,i(t)−M ε,i(s)|p],

where the martingale is given by M ε = M ε
1 +M ε

2 with

M ε,i
1 (t) :=

∫ t

0

(∇yχ
i + ei) ·

√
2Σ(Y ε(s), ηε(s))dBs

M ε,i
2 (t) :=

∫ t

0

∇ηχ
i(Y ε(s), ηε(s)) ·

√
2ΓΠdWs.

Burkholder-Davis-Gundy and the Minkowski inequality, together with stationarity of
(Y ε, ηε) yield

E[|M ε(t)−M ε(s)|p] ≲ |t− s|p/2
∫
|(∇yχ+ Id)TΣ(∇yχ+ Id) + (∇ηχ)TΓΠ∇ηχ|p/2dρ.

Boundedness of Σ, stated in (1.13), and Proposition 1.9, i.e. ∇yχ+∇ηχ ∈ Lp(ρ) for
any p ⩾ 2, imply finiteness of the expectation on the right-hand side.

Moreover, according to Proposition 1.9, χ satisfies a growth condition in η, which we
use to estimate the boundary term (as well as stationarity of ηε and that η0 has all
moments under ρ, as it is the normal distribution N(0,Π)), obtaining

E[|Xε,i
t −Xε,i

s |p] ≲ εp + |t− s|p/2. (1.53)

By combining the estimates (1.52) and (1.53), using the first one for ε > |t− s|1/2 and
the latter for ε < |t− s|1/2, we conclude

sup
ε∈[0,1]

E[|Xε,i
t −Xε,i

s |p] ≲ |t− s|p/2.

The estimate for the iterated integrals is then immediate by the estimate on the
moments of Xε,j and the decomposition of the iterated integral in (1.46), as well as the
boundedness of the quadratic variation of the martingale M ε,i in Lp/2(ρ) for any p ⩾ 2.
The conclusion on tightness in Cγ,T for γ < 1/2 follows from Lemma 1.7.

1.3.3. Rough homogenization limit

In this subsection, we prove our first main theorem of this chapter.
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1.4. Membrane with comparable spatial and temporal fluctuations

Theorem 1.16 (Itô lift). Let (Xε, Y ε, ηε), X and Xε,X be as in Proposition 1.12.
Then for any γ < 1/2, (Xε,Xε) weakly converges in the γ-Hölder rough paths space as
ε→ 0,

(Xε,Xε)⇒ (X, (s, t) 7→ Xs,t + A(t− s)), (1.54)

with matrix A = (A(i, j))i,j∈{1,2} where

A(i, j) = ⟨χi, (Gχ)j⟩ρ + ⟨X i, Xj⟩1 −
∫

(ei +∇yχ
i) · 2Σejdρ (1.55)

and the solution χ of Gχ = −F .

Proof. From Proposition 1.12 the convergence of the one dimensional distributions
of (Xε,Xε)ε, that is of (Xε

t ) and (Xε
s,t)ε for any 0 ⩽ s < t ⩽ T , follows. By weak

convergence of (Xε), it follows in particular convergence of the finite dimensional
distributions. For the finite dimensional distributions of Xε, we use the same argument
as for the one dimensional distributions. Indeed, for (1.46) above, the convergence
of the part for which we applied the UCV condition is also true in the sense of weak
convergence of processes in C(∆T ,R2×2) by Proposition 1.6 and the remaining terms
converge in probability. Furthermore, Proposition 1.15 yields tightness in the rough
path space Cγ,T for γ < 1/2. Together, we obtain the weak convergence in Cγ,T for
γ < 1/2:

(Xε,Xε)⇒ (X, (s, t) 7→ Xs,t + A(t− s)),

as claimed.

Corollary 1.17 (Stratonovich lift). Let (Xε, Y ε, ηε), X and X̃ε, X̃ be as in Corol-
lary 1.13. Then for any γ < 1/2, we have the weak convergence in the rough path space
Cγ,T ,

(Xε, X̃ε)⇒ (X, (s, t) 7→ X̃s,t + Ã(t− s)), (1.56)

as ε→ 0, where

Ã(i, j) = ⟨χi,G Aχj⟩ρ +

∫
ei · Σ∇yχ

jdρ−
∫
∇yχ

i · Σejdρ, Gχ = −F.

Proof. The proof follows immediately from Corollary 1.13 and Theorem 1.16.

1.4. Membrane with comparable spatial and temporal
fluctuations

In this section we consider the space-time scaling regime for α = β = 1, which means
that we observe spatial and temporal fluctuations of the membrane with comparable
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1. Rough homogenization for diffusions on fluctuating membranes

size. In this case, the general system (1.15) becomes

dXε
t =

1

ε
F (Y ε

t , η
ε
t )dt+

√
2Σ(Y ε

t , η
ε
t )dBt,

dY ε
t =

1

ε2
F (Y ε

t , η
ε
t )dt+

√
2

ε2
Σ(Y ε

t , η
ε
t )dBt,

dηεt = −1

ε
Γηεtdt+

√
2

ε
ΓΠdWt,

(1.57)

where B and W are independent Brownian motions and we define again Y ε :=
ε−1Xε mod Z2.
To determine the limit in this regime, the difficulty is that Y and η now fluctuate at
different scales, which means that, compared to the previous section, we no longer
obtain a generator with fluctuations of the same order for the joint Markov process
(Y ε, ηε), but the generator ε−2L0 + ε−1Lη for L0 = L0(η) from (1.26) and Lη from
(1.7). The idea is to first deduce a quenched result for each fixed environment η and
afterwards average over the invariant measure ρη of η.
Let, for η ∈ R2K ,

ρY (dy, η) := c−1
√
|Σ−1|(y, η)dy

be a probability measure on T2 with normalizing constant c :=
∫
T2

√
|Σ−1|(y, η)dy > 0.

It is straightforward to verify that ρY (·, η) is invariant for L0(η), i.e. ⟨L0(η)f⟩ρY (·,η) = 0
for all f ∈ dom(L0) ⊂ L2(ρY (·, η)), and that

∫
F (y, η)ρY (dy, η) = 0 by the definition

(1.12) of F .
Let now for any η ∈ RK , χ(·, η) ∈ C2(T2,R2) be the unique solution of

L0(η)χ(·, η) = −F (·, η), (1.58)

with
∫
χ(y, η)ρY (dy, η) = 0. Existence of χ follows from the L2(ρY (·, η))-spectral gap

estimates for L0(η) from [Dun13, Lemma A.2.1, Proposition A.2.2]. That is, there
exists a constant λ(η) > 0 such that for all f ∈ L2(ρY (·, η)),

∥P 0
t f − ⟨f⟩ρY (·,η)∥L2(ρY (·,η)) ⩽ e−λ(η)t∥f∥L2(ρY (·,η)),

where (P 0
t )t⩾0 = (P 0

t (η))t⩾0 denotes the semigroup on L2(ρY (·, η)) associated to L0(η).
Furthermore, according to [Dun13, Proposition A.2.2], the solution χ will be smooth in
the η-variable (as F is smooth) and satisfies |∇k

ηχ(y, η)| ⩽ Ck(1 + |η|lk) for k = 0, 1, 2
with lk ⩾ 1 and constant Ck > 0 (since F satisfies such a growth condition with a
possibly different constant Ck).
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1.4. Membrane with comparable spatial and temporal fluctuations

Then, we can decompose the drift part of Xε with the help of χ, yielding

ε−1

∫ t

0

F i(Y ε
s , η

ε
s)ds = ε(χi(Y ε

0 , η
ε
0)− χi(Y ε

t , η
ε
t )) +

√
ε

∫ t

0

∇ηχ
i(Y ε

r , η
ε
r) ·
√

2ΓΠdWr

+

∫ t

0

∇yχ
i(Y ε

r , η
ε
r) ·
√

2Σ(Y ε
r , η

ε
r)dBr

+

∫ t

0

(Lηχ)i(Y ε
s , η

ε
s)ds (1.59)

for i = 1, 2. Plugging (1.59) into the dynamics for Xε, one can deduce that (Xε)
converges in distribution to a Brownian motion with variance 2Dt for the matrix D
given below, plus a constant drift C. This was proven in [Dun13, Theorem 5.2.2],
namely

(Xε
t )t⩾0 ⇒ (tC +

√
2DZt)t⩾0

for a standard Brownian motion Z and where

D =

∫
R2K

∫
T2

(Id +∇yχ)TΣ(Id +∇yχ)ρY (dy, η)ρη(dη)

and

C =

∫
R2K

∫
T2

Lηχ(y, η)ρY (dy, η)ρη(dη).

Indeed, the drift term C arises from the convergence of the last term in (1.59), that is∫ t

0

Lηχ(Y ε
s , η

ε
s)ds→ t

∫∫
Lηχ(y, η)ρY (dy, η)ρη(dη) =: tC (1.60)

in probability, which motivates the ergodic theorem for (Y ε, ηε) in Proposition 1.18
below. In the following, we denote by Eρ[·] integration with respect to a probability
measure ρ on T2 or on R2K .
For completeness, we state the ergodic theorem here, its proof follows from [Dun13,
Lemma A.2.3]. One can also deduce the claim from decomposing the additive functional
in terms of the solution G(·, η) of the Poisson equation (analogously as in (1.59))

L0G(·, η) = b(·, η)− EρY (·,η)[b(·, η)]

for fixed η ∈ R2K (existence follows by the L2(ρY (·, η))-spectral gap estimates on L0(η),
[Dun13, Lemma A.2.1]) and utilizing the ergodic theorem for the Ornstein-Uhlenbeck
process (ηt)t⩾0 started in ρη. The growth assumption on b in the following proposition
is needed to obtain an analogue growth condition on G, such that the martingale term
and the drift part involving LηG in the decomposition vanish in L2(P).

Proposition 1.18. Let b : T2 × R2K → R be such that b(y, ·) ∈ C2(R2K) satisfies the
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1. Rough homogenization for diffusions on fluctuating membranes

growth assumption
|∇k

ηb(y, η)| ≲k 1 + |η|lk (1.61)

for suitable lk ⩾ 1 and all k = 0, 1, 2.
Then the following convergence in probability holds true for ε→ 0:∫ t

0

b(Y ε
s , η

ε
s)ds→ t

∫
EρY (·,η)[b(·, η)]|η=η̃ ρη(dη̃). (1.62)

Remark 1.19. In particular Proposition 1.18 applies for b(·, η̃) := Lηχ(·, η̃), where
Lη and χ are defined by (1.7) and (1.58). This is due to the fact that the derivatives
in η of the solution χ also satisfy a growth condition like (1.61). This was proven in
[Dun13, Proposition A.2.2] using |(∇η)

mF (y, η)| ≲ 1 + |η|qm for some qm ⩾ 0.

1.4.1. Determining the limit rough path

Similarly to Section 1.3.1, we will represent Xε
t via the solution of the Poisson equation

(1.58). More precisely, from (1.59) we obtain

Xε,i
t −X i

0 = ε(χi(Y ε
0 , η

ε
0)− χi(Y ε

t , η
ε
t )) +

√
ε

∫ t

0

(∇ηχ
i(Y ε

r , η
ε
r))

T
√

2ΓΠdWr

+

∫ t

0

(ei +∇yχ
i(Y ε

r , η
ε
r))

T
√

2Σ(Y ε
r , η

ε
r)dBr

+

∫ t

0

(Lηχ)i(Y ε
s , η

ε
s)ds (1.63)

for i = 1, 2. We utilize the decomposition (1.63) to represent the iterated Itô-integrals
as follows for i, j ∈ {1, 2},

Xε
0,t(i, j) =

∫ t

0

(Xε,i
s −X i

0)dX
ε,j
s

=

∫ t

0

(χi(Y ε
0 , η

ε
0)− χi(Y ε

s , η
ε
s))F

j(Y ε
s , η

ε
s)ds (1.64)

+
∑
l=1,2

∫ t

0

ε(χi(Y ε
0 , η

ε
0)− χi(Y ε

s , η
ε
s))
√

2Σ(Y ε
s , η

ε
s)(j, l)dB

l
s (1.65)

+
∑
l=1,2

∫ t

0

√
ε

(∫ s

0

∇ηχ
i(Y ε

r , η
ε
r) ·
√

2ΓΠdWr

)√
2Σ(Y ε

s , η
ε
s)(j, l)dB

l
s (1.66)

+

∫ t

0

ε−1/2

(∫ s

0

∇ηχ
i(Y ε

r , η
ε
r) ·
√

2ΓΠdWr

)
F j(Y ε

s , η
ε
s)ds (1.67)
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+
∑
l=1,2

∫ t

0

(∫ s

0

(ei +∇yχ
i(Y ε

r , η
ε
r)) ·

√
2Σ(Y ε

r , η
ε
r)dBr

+

∫ s

0

(Lηχ)i(Y ε
r , η

ε
r)dr

)√
2Σ(Y ε

s , η
ε
s)(j, l)dB

l
s (1.68)

+

∫ t

0

ε−1

(∫ s

0

(ei +∇yχ
i(Y ε

r , η
ε
r)) ·

√
2Σ(Y ε

r , η
ε
r)dBr

+

∫ s

0

(Lηχ)i(Y ε
r , η

ε
r)dr

)
F j(Y ε

s , η
ε
s)ds. (1.69)

We immediately see that terms (1.65) and (1.66) converge in L2(P) to zero by
Burkholder-Davis-Gundy inequality and the growth conditions on ∇k

ηχ for k = 0, 1
from [Dun13, Proposition A.2.2]. Furthermore, the fourth term (1.67) can be written
using integration by parts as∫ t

0

ε−1/2

(∫ s

0

∇ηχ
i(Y ε

r , η
ε
r) ·
√

2ΓΠdWr

)
F j(Y ε

s , η
ε
s)ds

=

∫ t

0

(∫ s

0

ε1/2∇ηχ
i(Y ε

r , η
ε
r) ·
√

2ΓΠdWr

)
ε−1F j(Y ε

s , η
ε
s)ds

=

∫ t

0

(∫ s

0

ε−1F j(Y ε
s , η

ε
s)ds

)
d

(∫ ·

0

ε1/2∇ηχ
i(Y ε

r , η
ε
r) ·
√

2ΓΠdWr

)
s

+

(∫ t

0

ε−1F j(Y ε
s , η

ε
s)ds

)(∫ t

0

ε1/2∇ηχ
i(Y ε

s , η
ε
s) ·
√

2ΓΠdWs

)
.

Utilizing Proposition 1.6, we deduce that the term (1.67) converges to zero in probability.
Indeed, we have the convergence(

ε−1

∫ ·

0

F j(Y ε
s , η

ε
s)ds,

∫ ·

0

ε1/2∇ηχ
i
√

2ΓΠ(Y ε
s , η

ε
s)dWs

)
⇒
(
(Z̃j

t + tCj)t, 0
)
,

jointly in distribution by the decomposition (1.59) and the arguments from [Dun13,
Theorem 5.2.2]. In the limiting process, Z̃ denotes the Brownian motion with variance
t
∫∫

(∇yχ)T2Σ∇yχdρY dρη. Furthermore, the UCV condition holds for the martingale,
as ∇ηχ ∈ L2(ρY (η)ρη) by the growth condition proven in [Dun13, Proposition A.2.2],
with which the expected quadratic variation can be bounded. Together, this then
yields that (1.67) converges to zero in probability.

Applying Proposition 1.18 for b = χiF j and using that
∫
F (y, η)dρY (dy, η) = 0 by the

definition of F and ρY , we obtain that the first term (1.64) converges in probability to

t

∫∫
χiF jρY (dy, η)ρη(dη) =: taF (i, j).

In order to deal with the remaining terms (1.68) and (1.69), we rewrite them using
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integration by parts or Itô’s formula. For (1.69) we obtain∫ t

0

ε−1

(∫ s

0

(ei +∇yχ
i(Y ε

r , η
ε
r)) ·

√
2Σ(Y ε

r , η
ε
r)dBr

+

∫ s

0

(Lηχ)i(Y ε
r , η

ε
r)dr

)
F j(Y ε

s , η
ε
s)ds

=

(∫ t

0

ε−1F j(Y ε
s , η

ε
s))ds

)(∫ t

0

(ei +∇yχ
i(Y ε

s , η
ε
s)) ·

√
2Σ(Y ε

s , η
ε
s)dBs

+

∫ t

0

(Lηχ)i(Y ε
s , η

ε
s)ds

)
−
∫ t

0

(∫ s

0

ε−1F j(Y ε
r , η

ε
r)dr

)
d

(∫ ·

0

(ei +∇yχ
i(Y ε

r , η
ε
r)) ·

√
2Σ(Y ε

r , η
ε
r)dBr)

+

∫ ·

0

(Lηχ)i(Y ε
r , η

ε
r)dr

)
s

.

According to Itô’s formula for (1.68) we have∫ t

0

(∫ s

0

(ei +∇yχ
i(Y ε

r , η
ε
r)) ·

√
2Σ(Y ε

r , η
ε
r)dBr

+

∫ s

0

(Lηχ)i(Y ε
r , η

ε
r)dr

)
d

(∫ ·

0

√
2Σ(Y ε

r , η
ε
r)dBr

)j
s

=

(∫ t

0

(ei +∇yχ
i(Y ε

s , η
ε
s)) ·

√
2Σ(Y ε

s , η
ε
s)dBs

+

∫ t

0

(Lηχ)i(Y ε
s , η

ε
s)ds

)(∫ t

0

√
2Σ(Y ε

s , η
ε
s)dBs

)j
−
∫ t

0

(∫ s

0

√
2Σ(Y ε

r , η
ε
r)dBr

)j
d

(∫ ·

0

(ei +∇yχ
i(Y ε

r , η
ε
r)) ·

√
2Σ(Y ε

r , η
ε
r)dBr

+

∫ ·

0

(Lηχ)i(Y ε
r , η

ε
r)dr

)
s

−
∫ t

0

(ei +∇yχ
i(Y ε

s , η
ε
s)) · 2Σ(Y ε

s , η
ε
s)ejds.
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By combining the previous two terms, we obtain that overall∫ t

0

Xε,i
s dX

ε,j
s

= aεF (i, j)+Xε,j
t

(∫ t

0

(ei+∇yχ
i(Y ε

r , η
ε
r))·
√

2Σ(Y ε
r , η

ε
r)dBr+

∫ t

0

(Lηχ)i(Y ε
r , η

ε
r)dr

)
−
∫ t

0

Xε,j
s d

(∫ ·

0

(ei +∇yχ
i(Y ε

r , η
ε
r)) ·

√
2Σ(Y ε

r , η
ε
r)dBr +

∫ ·

0

(Lηχ)i(Y ε
r , η

ε
r)dr

)
s

−
∫ t

0

(ei +∇yχ
i(Y ε

r , η
ε
r)) · 2Σ(Y ε

r , η
ε
r)ejdr, (1.70)

where aεF (i, j) denotes the sum of the terms (1.64), (1.65), (1.66) and (1.67), that will
converge in probability to

taF (i, j) = t

∫∫
χiF jρY (dy, η)ρη(dη).

For the stochastic integral and the product term in (1.70), we again apply Proposi-
tion 1.6. Now, we consider the joint distributional convergence of(
Xε,j,

∫ ·

0

(ei +∇yχ
i(Y ε

r , η
ε
r)) ·

√
2Σ(Y ε

r , η
ε
r)dBr +

∫ ·

0

(Lηχ)i(Y ε
r , η

ε
r)dr

)
⇒ (Xj, X i),

which holds true by [Dun13, Theorem 5.2.2] and using that the UCV condition for the
semi-martingales(∫ ·

0

(ei +∇yχ
i(Y ε

r , η
ε
r)) ·

√
2Σ(Y ε

r , η
ε
r)dBr +

∫ ·

0

(Lηχ)i(Y ε
r , η

ε
r)dr

)
ε

holds by boundedness of Σ and the bounds (A.7) and (A.8) of [Dun13, Proposition
A.2.2]. Let us define

ci,j :=

∫∫
(ei +∇yχ

i) · 2ΣejdρY (·, η)dρη.

Then according to Proposition 1.18, the last term in (1.70) (the quadratic variation
term) converges in probability to tci,j. Hence, utilizing Slutzky’s Lemma, we obtain
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the distributional convergence∫ t

0

Xε,i
s dX

ε,j
s

⇒ taF (i, j) +Xj
tX

i
t −

∫ t

0

Xj
sdX

i
s −

t

2
ci,j

= t(aF (i, j)− ci,j + ⟨X i, Xj⟩1) +

∫ t

0

X i
sdX

j
s .

We summarize our findings about the convergence of the iterated Itô integrals, as well
as the iterated Stratonovich integrals, in the next proposition and corollary.

Proposition 1.20. Let (Xε, Y ε, ηε) solve the system (1.57) started in (Y ε
0 , η

ε
0) ∼

ρY (dy, η)ρη(dη), Xε
0 = εY ε

0 . Moreover, let

Xt =
√

2DZt + tC

for a standard two-dimensional Brownian motion Z and

D =

∫∫
(Id +∇yχ(y, η))TΣ(y, η)(Id +∇yχ(y, η))ρY (dy, η)ρη(dη)

and

C =

∫∫
Lηχ(y, η)ρY (dy, η)ρη(dη),

where for each η ∈ RK, χ(·, η) is the solution of L0χ(·, η) = −F (·, η).
Then for all s, t ∈ ∆T , weak convergence of the iterated Itô-integrals (Xε

s,t) in R2×2

holds true, where for i, j ∈ {1, 2},

Xε
s,t(i, j) :=

∫ t

s

Xε,i
s,rdX

ε,j
r

⇒ Xs,t(i, j) + (t− s)
(
⟨X i, Xj⟩1 + ⟨χi,L0χ

j⟩ρY (·,η)ρη

−
∫∫

(ei +∇χi(y, η) · 2Σ(y, η)ejρY (dy, η)ρη(dη)

)
(1.71)

as ε→ 0 with Xs,t(i, j) :=
∫ t
s
X i
s,rdX

j
r .

Corollary 1.21. Let (Xε, Y ε, ηε) be as in Proposition 1.20. Then for all s, t ∈ ∆T ,
weak convergence in R2×2 of the iterated Stratonovich-integrals (X̃ε

s,t) holds true, where
for i, j ∈ {1, 2},

X̃ε
s,t(i, j) :=

∫ t

s

Xε,i
s,r ◦ dXε,j

r ⇒ X̃s,t(i, j) + (t− s)Ã(i, j) (1.72)
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as ε→ 0 with

Xt =
√

2DZt + tC

for a standard two-dimensional Brownian motion Z and X̃s,t(i, j) :=
∫ t
s
X i
s,r ◦ dXj

r .
D,L are defined as in Proposition 1.20. The area correction is given by

Ã(i, j) =

∫∫
ei · Σ∇yχ

j(y, η)ρy(dy, η)ρη(dη)−
∫∫
∇yχ

i(y, η) · Σejρy(dy, η)ρη(dη)

=

∫∫
χi(y, η)F j(y, η)ρy(dy, η)ρη(dη)−

∫∫
F i(y, η)χj(y, η)ρy(dy, η)ρη(dη)

Proof. The corollary follows from Proposition 1.20 with analogue arguments as in
Corollary 1.13. We have that

1

2
⟨Xε,i, Xε,j⟩t =

∫ t

0

ei · Σ(Y ε
s , η

ε
s)ejds

→ t

∫
ei · Σ(y, η)ejρY (dy, η)ρη(dη)

by Proposition 1.18. Furthermore, we have that

X̃ε
0,t(i, j) = Xε

0,t(i, j) +
1

2
⟨Xε,i, Xε,j⟩t

⇒ X0,t(i, j) + t⟨χi, (L0χ)j⟩ρy(·,η)ρη + ⟨X i, Xj⟩t

− t
∫

(∇yχ
i + ei) · 2Σejd(ρy(·, η)ρη) + t

∫
ei · Σejd(ρy(·, η)ρη)

= X0,t(i, j) +
1

2
⟨X i, Xj⟩t

+ t

(
⟨χi, (L0χ)j⟩ρy(·,η)ρη +

1

2
⟨X i, Xj⟩t

−
∫
∇yχ

i · 2Σejd(ρy(·, η)ρη)−
∫
ei · Σejd(ρy(·, η)ρη)

)
= X̃0,t(i, j) + tÃ(i, j).

The area correction can be written as

Ã(i, j) = ⟨χi,L0χ
j⟩ρy(·,η)ρη +D(i, j)−

∫
∇yχ

i · 2Σejd(ρy(·, η)ρη)

−
∫
ei · Σejd(ρy(·, η)ρη)

=

∫
ei · Σ∇yχ

jd(ρy(·, η)ρη)−
∫
∇yχ

i · Σejd(ρy(·, η)ρη),
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using furthermore that

⟨χi,L0χ
j⟩ρy(·,η)ρη = −

∫
∇yχ

i · Σ∇yχ
jd(ρy(·, η)ρη)

by the definition of F and the invariant measure ρy(dy, η) = c−1
√
|Σ(y, η)|dy. By

integrating ∇y by parts and using once more the definition of F and the invariant
measure, we obtain∫

∇yχ
i · Σejd(ρy(·, η)ρη) = −

∫
R2K

∫
T2

χi(y, η)F j(y, η)ρy(dy, η)ρη(dη).

Hence, the claim for Ã follows.

Corollary 1.22. For Ã from Corollary 1.21, it follows that Ã(i, j) = 0 for all i, j = 1, 2.

Proof. Using (−L0)χ = F , we obtain

Ã(i, j) =

∫∫
χi(y, η)F j(y, η)ρy(dy, η)ρη(dη)−

∫∫
F i(y, η)χj(y, η)ρy(dy, η)ρη(dη)

=

∫∫
χi(y, η)(−L0)χ

j(y, η)ρy(dy, η)ρη(dη)

−
∫∫

(−L0)χ
i(y, η)χj(y, η)ρy(dy, η)ρη(dη)

=

∫∫
(−L ⋆

0 )χi(y, η)χj(y, η)ρy(dy, η)ρη(dη)

−
∫∫

(−L0)χ
i(y, η)χj(y, η)ρy(dy, η)ρη(dη)

= 0

and the claim follows as L0 is symmetric with respect to the measure ρy(dy, η)ρη(dη),
that is L ⋆

0 = L0, where L ⋆
0 denotes the adjoint with respect to L2(ρy(dy, η)ρη(dη)).

Remark 1.23. Corollary 1.22 means that for the limit of the Stratonovich integrals
there appears no area correction. This is due to the fact that the underlying Markov
process (Yt)t⩾0, for fixed η ∈ R2K, is reversible when started in ρY (·, η). Equivalently,
the generator L0(η) = L0(η)⋆ is symmetric with respect to L2(ρY (·, η)). This is a
phenomenon that was already observed in previous articles, see also the discussion
in the introduction of [DOP21] about the relation of a vanishing Stratonovich area
correction and an underlying reversible Markov process. [DOP21] conjecture that the
Stratonovich area correction vanishes if and only if the underlying Markov process is
reversible.

Remark 1.24. Via a symmetry argument utilizing the Fourier expansion of the Helfrich
surface H, one can show that the constant limit drift C actually vanishes, C = 0. For
a proof see [Dun13, Proposition 5.2.4].
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1.4.2. Tightness

The tightness is again a consequence of Lemma 1.7, once we have verified the moment
bounds.

Proposition 1.25. Let (Xε, Y ε, ηε) be as in Proposition 1.20. Then the following
moment bounds hold true for any p ⩾ 2, i, j ∈ {1, 2},

sup
ε
E[|Xε,i(t)−Xε,i(s)|p] ≲ |t− s|p/2, s, t ∈ ∆T (1.73)

and

sup
ε
E

[∣∣∣∣∫ t

s

Xε,i
s,rdX

ε,j
r

∣∣∣∣p/2] ≲ |t− s|p/2, s, t ∈ ∆T . (1.74)

In particular, tightness of (Xε,Xε) in Cγ,T for γ < 1/2 follows.

Proof. The arguments are analogous to the proof of Proposition 1.15. For the estimate
on Xε we use, similarly as in Proposition 1.15, a trade-off argument for the drift term
using the decomposition (1.63). For the iterated integrals, we use the bound (1.73) on
Xε and the decomposition (1.70).

1.4.3. Rough homogenization limit

In this subsection, we state our second main theorem, which follows directly from
Proposition 1.20 and Proposition 1.25. The corollary on the Statonovich lift then
follows from the result for the Itô lift (Theorem 1.26), Corollary 1.21 and Corollary 1.22.

Theorem 1.26 (Itô lift). Let (Xε, Y ε, ηε), X and Xε,X be as in Proposition 1.20.
Then for all γ < 1/2, weak convergence in the rough path space Cγ,T of

(Xε,Xε)⇒ (X, (s, t) 7→ Xs,t + A(t− s)) (1.75)

as ε→ 0 follows, where A = (A(i, j))i,j∈{1,2} denotes the matrix with

A(i, j) = ⟨χi,L0χ
j⟩ρY (·,η)ρη + ⟨X i, Xj⟩1

−
∫∫

(ei +∇yχ
i(y, η)) · 2Σ(y, η)ejρY (dy, η)ρη(dη).

(1.76)

Corollary 1.27 (Stratonovich lift). Let (Xε, Y ε, ηε), X and X̃ε, X̃ be as in Corol-
lary 1.21. Then for all γ < 1/2, weak convergence in the rough paths space Cγ,T
of

(Xε, X̃ε)⇒ (X, X̃) (1.77)

as ε→ 0 follows.
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1.5. Outlook – Construction of a diffusion on a rough
Gaussian membrane

This section gives an outlook on work in progress and discusses arising difficulties.
The overall goal is to construct the Brownian motion from the previous section on the
Helfrich membrane (1.3) without ultra-violet cutoff, formally K =∞. Contrary to the
previous sections, there is no averaging or homogenization procedure in this section,
although it would certainly be interesting to study homogenization scaling regimes and
simultaneously considering K →∞.
Below, ε denotes the vanishing inverse cutoff. We moreover assume the surface
T2 ∋ x 7→ H(x) to be time-independent in this section. Classical methods (defining the
associated Laplace-Beltrami operator, cf. [Hsu02]) do not apply due to the roughness
of the Gaussian surface H, that is almost surely γ-Hölder continuous for γ < 1 in
dimension 2 (as was proven in [Stu10, Lemma 6.25]).
After mollifying the surface, that is, considering Hε with cutoff K = ε−1, [Hsu02,
Proposition 3.2.1] yields existence of the diffusion on Hε, whose generator in local
coordinates is given by the Laplace-Beltrami operator

Lε =
1√
|Gε|
∇ · (

√
|Gε|(Gε)−1∇), (1.78)

with metric tensor matrix

Gε(x) =

(
1 + |∂1Hε(x)|2 ∂1H

ε(x)∂2H
ε(x)

∂1H
ε(x)∂2H

ε(x) 1 + |∂2Hε(x)|2
)
. (1.79)

Let |Gε(x)| := 1 + |∇Hε(x)|2. The operator Lε is defined for every fixed realization
of the surface H. Here, Hε is a complex-valued Gaussian field with paths in C∞(T2)
given by

Hε(x) =
∑

0<|k|⩽ε−1

ek(x)Ĥ(k), x ∈ T2

for ek(x) := e2πik·x, k ∈ Z2, where (Ĥ(k))k∈Z2 is a family of centered Gaussians
with E[Ĥ(k)Ĥ(l)] = δk,−l|2πk|−4. The covariance structure, we consider here is a
simplification of the covariance of the Helfrich membrane given by (1.4). Due to

E[∥H∥2W 2,α ] =
∑
k∈Z2

(1 + |k|2)αE[|Ĥ(k)|2] ≲
∑
k∈Z2

|k|2α−4 <∞

for α < 1, one sees that H is almost surely in the fractional Sobolev space W 2,α of
regularity α < 1. Note also that Hε is a stationary Gaussian field, as the covariance
E[Hε(x)Hε(y)] =

∑
|k|⩽ε−1 ek(x− y)|2πk|−4 only depends on x− y.
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Take the surface measure µε on the torus defined by

µε(dx) :=
√
|Gε(x)|dx. (1.80)

One easily sees that the measure µε is invariant for the generator Lε and that the
Dirichlet form of the Markov process Xε with generator Lε is given by

E ε(f, g) = ⟨(Gε)−1∇f,∇g⟩µε =

∫
T2

(Gε(x))−1∇f(x) · ∇g(x)µε(dx)

for smooth test functions f, g.
We aim to make sense out of the limit of the operators Lε, respectively E ε, for ε→ 0.
Below, we justify that it makes sense to consider instead the rescaled Dirichlet form
σ−1
ε E ε for σε →∞ as ε→ 0, which corresponds to the slowed-down process.

A tool called Mosco convergence for Dirichlet forms (for definition, see [Kol06, Definition
2.5]) yields convergence of the Markov semigroup, cf. [Kol06, Theorem 2.6] and [KS03,
section 5]. However proving that the (rescaled) Dirichlet forms above converge in the
Mosco sense using [Kol06, Theorem 3.6], turns out to be nontrivial due to the absence
of uniform lower bounds for the Dirichlet forms. Thus, following this technique, a
convergence result for the processes is not yet in reach.
Another approach for the construction of the diffusion on H might be to use additive
functionals analoguous to the construction of the Liouville Brownian motion from
[Ber15]. However this method does not directly apply to our situation due to the the
arguments in [Ber15] being in the one-dimensional setting.
Nonethless, studying convergence of the surface measures µε for Hε can hint on a
limiting behaviour for the process. Indeed, in this section, we prove that the rescaled
surface measures converge weakly to the Lebesgue measure. This then indicates that
the appropriately rescaled/slowed-down diffusion converges in local coordinates to the
standard Brownian motion. Hence, the slowed-down process is not influenced by the
roughness of surface, while heuristically the non-slowed-down process moves “infinitely
fast”. Our arguments for the convergence of the surface measures utilize the Gaussian
distribution of the surface and Wiener chaos decompositions.
We start by defining the rescaled surface measures νε by

νε(dx) := σ−1
ε µε(dx)

with rescaling constant σ2
ε :=

∑
|k|⩽ε−1|2πk|−2 = E[|∇Hε(x)|2]. The idea is similar to

renormalization by σ2
ε . This means, while (|∇Hε|2)ε diverges, subtracting the diverging

constant σ2
ε and exploiting randomness might lead to a almost sure finite limit for

(|∇Hε|2 − σ2
ε)ε.

Notice that, due to stationarity of Hε, for every x ∈ T2,

|Gε(x)| = |∇Hε(x)|2 + 1
d
= σ2

ε |Z1|2 + σ2
ε |Z2|2 + 1 (1.81)
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for a standard two-dimensional normal random variable Z = (Z1, Z2) ∼ N(0, Id2×2).
Here, independence of Z1 and Z2 follows from

E[∂1H
ε(x)∂2H

ε(x)] =
∑

|k|⩽ε−1

(2πik1)(−2πik2)

|2πk|4
= 0,

which vanishes by antisymmetry of the summands under the substitution k1 ⇝ −k1.
Equipped with these properties, we can derive the following lemma.

Lemma 1.28. The family of finite, positive random measures (νε)ε is tight.

Proof. Consider the compact set KM in the space of finite, positive measures with the
topology of weak convergence of measures,

KM := {µ | µ(T2) ⩽M}.

KM is compact, since any sequence of measures in KM is tight due to compactness of
T2, which implies the weak convergence along a subsequence by Prohorov theorem. To
obtain tightness of (νε), it is thus enough, due Chebyshev’s inequality, to prove the
moment bound supεE[|νε(T2)|] <∞. The bound follows from

E[|νε(T2)|] ⩽ σ−1
ε E[(σ2

ε |Z1|2 + σ2
ε |Z2|2 + 1)1/2]

and

E[(σ2
ε |Z1|2 + σ2

ε |Z2|2 + 1)1/2] ≲ E[|Z|]σε + 1.

Notice that (1.81) implies

E[νε(φ)] = E[σ−1
ε

√
1 + |σεZ|2]

∫
T2

φ(x)dx→ E[|Z|]
∫
T2

φ(x)dx.

This suggests the following convergence of the measures.

Lemma 1.29. For φ ∈ C(T2), the following convergence holds true as ε→ 0,

E

[∣∣∣∣νε(φ)− c
∫
T2

φ(x)dx

∣∣∣∣2]→ 0.

Herein, c = E[
√
|Z|2 + 1] for a standard normal random variable Z = (Z1, Z2) ∼

N(0, Id2×2).

Proof. The proof uses ideas from [GP16, section 3.1]. We write

νε(φ)− c
∫
T2

φ(x)dx = σ−1
ε

∫
T2

φ(x)(
√
|Gε(x)| − σεc)dx
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with |Gε(x)| = |∇Hε(x)|2 + 1, such that

E

[∣∣∣∣νε(φ)− c
∫
T2

φ(x)dx

∣∣∣∣2]
= E

[∣∣∣∣∫
T2

φ(x)(
√
|σ−1
ε ∂1Hε(x)|2 + |σ−1

ε ∂2Hε(x)|2 + 1− c)dx
∣∣∣∣2].

To prove the claim, we use the chaos expansion on the space L2(ρ) with respect to ρ :=

Law(N(0, Id2×2)). We have thatN(0, Id)∼Zε = (Zε
1 , Z

ε
2)

d
= (σ−1

ε ∂1H
ε(x), σ−1

ε ∂2H
ε(x)).

We define

ϕε(Z
ε
1(x), Zε

2(x)) :=
√
|Zε

1(x)|2 + |Zε
2(x)|2 + 1− c

and expand with respect to the Hermite basis (hj)j∈N2 given by hj(y) = hj1(y1)hj2(y2),

y = (y1, y2) ∈ R2 for the Hermite polynomials hn(y) := (−1)ney
2/2∂ny e

−y2/2, n ∈ N,
h0(y) := 1, y ∈ R. Then by [Nua06, Theorem 1.1.1 and Example 1.1.1], we obtain

ϕε(Z
ε
1(x), Zε

2(x)) =
∑
j∈N2

cj(ϕε)hj(Z
ε
1(x), Zε

2(x)) =
∑

j∈N2\{(0,0)}

cj(ϕε)hj(Z
ε
1(x), Zε

2(x))

for the coefficients cj(ϕε) = 1
j!
E[ϕε(Z

ε
1(x), Zε

2(x))hj(Z
ε
1(x), Zε

2(x))] with j! := j1!j2! (the

expectation does not depend on x due to stationarity). Note that our definition of the
Hermite polynomial differs by a factor of 1/n! compared to [Nua06]. We have that
cj(ϕε) = 0 for j = (0, 0), as c = E[ϕε(Z

ε
1(x), Zε

2(x))]. With the expansion of Hε, we
can write for m = 1, 2, k = (k1, k2)

σ−1
ε ∂mH

ε(x) = σ−1
ε

∑
0<|k|⩽ε−1

ek(x)
(2πikm)

|2πk|2
ξ̂(k),

for a white noise ξ (that is, ξ being the centered Gaussian process with E[ξ̂(k)ξ̂(l)] =
δk,−l). Thus hj(Z

ε
1(x), Zε

2(x)) can be understood as a Hermite polynomial of the
variables (⟨ξ, e−k⟩)|k|⩽ε−1 and thus for the projection Πn onto the n-th homogeneous
Wiener chaos generated by ξ (cf. [Nua06, section 1.1.2]), we obtain

hj(Z
ε
1(x), Zε

2(x))

= Πj1

(
(Zε

1(x))j1
)
Πj2

(
(Zε

2(x))j2
)

= σ−(j1+j2)
ε

∑
|k1|,|l1|,...,|kj1 |,|lj2 |⩽ε−1

ek1+···+kj1+l1+···+lj2 (x)
(2πik11) · · · (2πik1j1)(2πil

2
1) · · · (2πil2j2)

|2πk1|2 · · · |2πkj1|2|2πl1|2 · · · |2πlj2|2
×

Πj1(ξ̂(k1) · · · ξ̂(kj1))Πj2(ξ̂(l1) · · · ξ̂(lj2)).
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Hence, with the notation [k1 : kj] := k1 + · · ·+ kj we obtain

⟨ϕε(Zε
1 , Z

ε
2), φ⟩

=
∑

(j1,j2)∈N2\{(0,0)}

cj(ϕε)σ
−(j1+j2)
ε ×

∑
|k1|,|l1|,...,|kj1 |,|lj2 |⩽ε−1

φ̂
(
−([k1 : kj1 ] + [l1 : lj2 ])

)(2πik11) · · · (2πik1j1)(2πil
2
1) · · · (2πil2j2)

|2πk1|2 · · · |2πkj1|2|2πl1|2 · · · |2πlj2|2
×

Πj1(ξ̂(k1) · · · ξ̂(kj1))Πj2(ξ̂(l1) · · · ξ̂(lj2)).

Moreover for the projections, we have with j = (j1, j2), j̃ = (j̃1, j̃2) due to the isometry
of the n-th chaos and L2

s((Td)n) (symmetric L2-functions), that

E[Πj1(ξ̂(k1) · · · ξ̂(kj1))Πj2(ξ̂(l1) · · · ξ̂(lj2))Πj̃1
(ξ̂(k̃1) · · · ξ̂(k̃j1))Πj̃2

(ξ̂(l̃1) · · · ξ̂(l̃j2))]
= E[Πj1(ξ̂(k1) · · · ξ̂(kj1))Πj̃1

(ξ̂(k̃1) · · · ξ̂(k̃j1))] E[Πj2(ξ̂(l1) · · · ξ̂(lj2))Πj̃2
(ξ̂(l̃1) · · · ξ̂(l̃j2))]

= δj,j̃ j1! ⟨e−k1⊗ · · · ⊗ e−kj1 , e−k̃1⊗ · · · ⊗ e−k̃j1 ⟩ j2!⟨e−l1⊗ · · · ⊗ e−lj2 , e−l̃1⊗ · · · ⊗ e−l̃j2 ⟩

= δj,j̃ j1! j2! δk1,−k̃1 · · · δkj1 ,−k̃j1δl1,−l̃1 · · · δlj2 ,−l̃j2 ,

where in the second line, we used independence of ∂1H
ε(x) and ∂2H

ε(x). This yields

E[|⟨ϕε(Zε
1 , Z

ε
2), φ⟩|2]

=
∑

(j1,j2)∈N2\{(0,0)}

|cj(Φε)|2 j1!j2!σ−2(j1+j2)
ε ×

∑
|k1|,|l1|,...,|kj1 |,|lj2 |⩽ε−1

|φ̂(−([k1 : kj1 ] + [l1 : lj2 ]))|2
|2πk11|2 · · · |2πk1j1|

2|2πl21|2 · · · |2πl2j2|
2

|2πk1|4 · · · |2πkj1 |4|2πl1|4 · · · |2πlj2|4
.

The inner sum we estimate as follows, renaming m1 := k1+ · · ·+kj1 + l1+ · · ·+ lj2 ,mi :=
ki, i = 2, . . . , j1,∑

|k1|,|l1|,...,|kj1 |,|lj2 |⩽ε−1

|φ̂(−([k1 : kj1 ] + [l1 : lj2 ]))|2
|2πk11|2 · · · |2πk1j1 |

2|2πl21|2 · · · |2πl2j2|
2

|2πk1|4 · · · |2πkj1|4|2πl1|4 · · · |2πlj2|4

=
∑

m1∈Z2,|m2|,...,|mj1
|⩽ε−1

|l1|,...,|lj2 |⩽ε−1

|φ̂(−m1)|2
|2πm1

2|2 · · · |2πm1
l1
|2|2πl21|2 · · · |2πl2j2|

2

|2πm2|4 · · · |2πmj1 |4|2πl1|4 · · · |2πlj2|4
×

|2π(m1
1 −m1

2 − · · · −m1
l1

)|21|m1−m2−···−ml1
|⩽ε−1

|2π(m1 −m2 − · · · −ml1)|4
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⩽
∑

m1∈Z2,|m2|,...,|mj1
|⩽ε−1

|l1|,...,|lj2 |⩽ε−1

|φ̂(−m1)|2
|2πm1

2|2 · · · |2πm1
l1
|2|2πl21|2 · · · |2πl2j2|

2

|2πm2|4 · · · |2πmj1|4|2πl1|4 · · · |2πlj2|4

= ∥φ∥2L2

( ∑
|k|⩽ε−1

|2πk1|2

|2πk|4

)j1+j2−1

= ∥φ∥2L2

(
σ2
ε

2

)j1+j2−1

.

Furthermore, as (hj(Z)/
√
j!) is an orthonormal basis of L2(Law(Z)), and using again

stationarity, we obtain∑
j=(j1,j2)∈N2\{(0,0)}

|cj(Φε)|2 j! = E[|ϕε(Zε
1(x), Zε

2(x))|2] = E[|
√
|Z|2 + 1− c|2] <∞.

Together, this yields

E[|⟨ϕε(Zε
1 , Z

ε
2), φ⟩|2] ≲ ∥φ∥2L2σ−2

ε → 0.

Proposition 1.30. For the rescaled surface measures (νε), the convergence in distri-
bution to the Lebesgue measure on the torus in the space of finite positive measures
follows:

νε ⇒ cλT2 . (1.82)

Proof. The proof follows from an application of [Wal86, Theorem 6.15] together with
the tightness from Lemma 1.28 and the distributional convergence (even in probability)
of the finite dimensional distributions (νε(φ1), . . . , ν

ε(φn)) to (cλT2(φ1), . . . , cλT2(φn))
for φ1, . . . , φn ∈ C(T2), n ∈ N, by Lemma 1.29.
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2. Weak error bounds for a nonlinear
approximation of the
Dean-Kawasaki equation

In this chapter, we consider suitable approximations of the Dean-Kawasaki (DK)
equation ([Dea96, Kaw94]). The DK equation, without interaction, reads

∂tu =
1

2
∆u+

1√
N
∇ · (
√
uξ), (2.1)

where ξ denotes space-time white noise. The empirical density of N independent
Brownian particles is a solution to the DK equation (in the sense we specify below), if
u0 = 1

N

∑N
i=1 δxi for the Dirac measures δxi in xi. From an SPDE perspective, equation

(2.1) is highly irregular and ill-behaved. In applications, typically N ≫ 1 is large and
simulating directly the particle system is computationally expensive, cf. [HCD+21,
Section 4.4.1]. We thus seek to approximate (2.1) in a way that respects the physical
constraints of the particle system and prove weak error estimates of a desirable rate.
We introduce our nonlinear approximation in Section 2.1 and prove the error estimates in
Section 2.4. In Sections 2.2 and 2.3, we prove well-posedness and a comparison principle
for a class of regularized Dean-Kawasaki SPDEs, that include our approximation. In
particular, non-negativity and mass preservation of the approximation follow.

2.1. Preliminaries and approximations

Consider the particle system of N ∈ N independent standard Brownian motions (X i)Ni=1

projected onto the torus Td = Rd/Zd (with generator being the Laplacian with periodic
boundary conditions) started at X i

0 = xi ∈ Td and its empirical measure

µNt :=
1

N

N∑
i=1

δXi
t
. (2.2)
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2. Weak error bounds for a nonlinear approximation of the Dean-Kawasaki equation

Utilizing Itô’s formula for ⟨µNt , φ⟩ = 1
N

∑N
i=1 φ(X i

t), φ ∈ C∞(Td), one sees that µN

formally solves the Dean-Kawasaki equation without with atomic initial condition,

∂tµ
N =

1

2
∆µN +

1√
N
∇ · (

√
µNξ)

µN0 =
1

N

N∑
i=1

δxi ,

(2.3)

where ξ := (ξj)j=1,...,d with independent space-time white noise processes ξj. A formal
derivation can be found in the original work [Dea96]. As in [KLvR19, Definition
2.1], we will consider the solution to the associated martingale problem. The state
space of the solution process is the space M of probability measures on Td. We
equip M with the topology of weak convergence of probability measures, metrized by
d(π, ν) =

∑
k 2−k(|π(fk)− ν(fk)| ∧ 1) for a dense sequence (fk)k∈N ⊂ C(Td). Here, for

µ ∈M , φ ∈ C(Td), we write µ(φ) = ⟨µ, φ⟩ =
∫
Td φdµ.

Definition 2.1. We call a stochastic process (µNt )t⩾0 on a complete filtered probability
space (Ω,F , (Ft)t⩾0,P) with values in M a solution to (2.3) if for every t ∈ [0, T ] and
for all test functions φ ∈ C∞(Td), the process

t 7→ ⟨µNt , φ⟩ − ⟨µN0 , φ⟩ −
∫ t

0

⟨µNs ,
1

2
∆φ⟩ds

is an (Ft)–adapted martingale with quadratic variation

1

N

∫ ·

0

⟨µNs , |∇φ|2⟩ds. (2.4)

From [KLvR19, Theorem 2.2], it follows in particular that the stated martingale
problem has a unique (in law) solution given by (2.2). Replacing in (2.3), µN0 by
a general initial condition µ0 ∈ M and N by a constant α ∈ R>0 \ N, the authors
moreover prove, that there exists no solution to the equation in the sense of martingale
solutions. In this sense, the result is not very robust with respect to changes of the
parameter N and the equation is not suitable for a stable numerical approximation.
Our goal is to approximate (2.3) in a controlled manner with an equation that has
stability properties and that preserves the physical contraints (positivity and unit
mass).

Our approach is to replace the non-Lipschitz square root function with a Lipschitz
approximation that will depend on a parameter δ and replace the noise by its ultra-
violet cutoff. The parameter δ will influence the order of the approximation and will
be chosen subsequently in the error estimate depending on N . Let for now δ ≡ δN > 0.
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We define the Lipschitz function f ≡ f δ as follows:

f(x) =


1√
δ
x |x| ⩽ δ/2,

smooth δ/2 ⩽ |x| ⩽ δ,

sign(x)
√
|x| |x| ⩾ δ.

(2.5)

The smooth interpolation should be such that f ∈ C1(R) satisfies

∥f ′∥L∞ ≲
1√
δ
, |f ′(x)| ≲ 1√

x
, for all x > 0 (2.6)

and

|f(x)| ≲
√
|x|, |f(x)2 − x| ≲ δ, for all x ⩾ 0. (2.7)

The short-hand notation a ≲ b means that there exists a constant C > 0 (not depending
on the relevant parameters; above the parameters are δ, x), such that the bound a ⩽ Cb
holds. In the case that we want to indicate the dependence of the constant C(d) on a
parameter d, we write a ≲d b.
Any C1 approximation of the square root satisfying those bounds works for our analysis
and a particular example of such a function is given in the following remark.

Remark 2.2 (Example). Consider, for example,

f(x) =


1√
δ
x |x| ⩽ δ/2,

−2
√
δ

δ3
x3 + sign(x) 4

δ
√
δ
x2 − 3

2
√
δ
x+ sign(x)

√
δ
2

δ/2 ⩽ |x| ⩽ δ,

sign(x)
√
|x| |x| ⩾ δ.

(2.8)

One easily varifies that f ∈ C1 and that f satisfies the bounds (2.6) and (2.7).

We denote by µ̃N the solution of the approximated equation

dµ̃Nt =
1

2
∆µ̃Nt dt+

1√
N
∇ · (f(µ̃Nt )dWN

t ),

µ̃N0 = ρN ∗ µN0 ∈ L2(Td),
(2.9)

where (ρN )N is an appropriate approximation of the identity, that we will choose later.
Moreover, the truncated noise (WN

t )t is given by

WN
t (x) :=

∑
0⩽|k|⩽MN

ek(x)Bk
t :=

∑
0⩽|k|⩽MN

exp(2πik · x)Bk
t (2.10)

for x ∈ Td and independent d-dimensional complex-valued Brownian motions (Bk)k∈Zd

(that is, Bk = Bk,1 + iBk,2 for independent Rd-valued Brownian motions Bk,1, Bk,2)
with constraint Bk = B−k, and a truncation parameter MN ∈ N, that will be chosen
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2. Weak error bounds for a nonlinear approximation of the Dean-Kawasaki equation

optimally depending on N for the error estimate.
Well-posedness of equation (2.9), as well as non-negativity of the strong solution and
the preservation of mass property follow from the results of the following two sections.

2.2. Well-posedness for regularized DK-type SPDEs
In this section, we prove well-posedness for the class of SPDEs of the type

∂tut =
1

2
∆ut +∇ · (b(ut)W ϕ

t )

u0 ∈ L2(Td)
(2.11)

under the following assumptions.

Assumption 2.3 (Assumption on the noise). The noise (W ϕ
t )t can be written as

W ϕ
t (x) :=

∑
k∈Zd

ϕk(x)Bk
t

for (ϕk)k ⊂ C1(Td,C) with ϕk = ϕ−k and independent d-dimensional complex-valued
Brownian motions (Bk)k∈Zd with Bk = B−k. Moreover, the expansion is such that

C1 :=
∑
k∈Zd

∥ϕk∥2∞ <∞ and C2 :=
∑
k∈Zd

∥∇ϕk∥2∞ <∞, (2.12)

with supremum norms ∥ϕk∥2∞ := supx∈Td|ϕk(x)|2 = supx∈Td ϕk(x)ϕ−k(x) and ∥∇ϕk∥2∞ :=

supx∈Td

∑d
i=1|∂iϕk(x)|2.

Remark 2.4. An example for a noise expansion satisfying Assumption 2.3 is the
Fourier expansion with cut-off MN ∈ N from (2.10). The summability assumptions,
C1 +C2 <∞, are trivially satisfied due to the finite cut-off. Similar to [FG21, Remark
2.3], we may as well consider a noise

ξa(x) =
∑
k∈Zd

ak exp(2πik · x)Bk,

for a real sequence (ak) ⊂ R with
∑

k∈Zd |k|2a2k <∞, which also satisfies Assumption 2.3.

Assumption 2.5 (Assumption on the diffusion). The diffusion coefficient b ∈ C1(R,R)
has a bounded derivative with bound L > 0,

∥b′∥∞ ⩽ L, (2.13)

and is of linear growth with constant C > 0,

|b(x)|2 ⩽ C2(1 + |x|2), x ∈ R. (2.14)

64



2.2. Well-posedness for regularized DK-type SPDEs

Assumption 2.6 (Assumption on the constants). The parameters from Assump-
tions 2.3 and 2.5 satisfy C1 max(L,C)2 < 1/2.

From Assumption 2.5, it follows that b is Lipschitz with bound L, that is,

|b(x)− b(y)| ≤ L|x− y|, for all x, y ∈ R. (2.15)

In particular, the well-posedness theory of this section applies to the approximated
Dean-Kawasaki equation (2.9). In that case, b = 1√

N
f for the regularized square root

function f from (2.5) with L = C = 1/
√
Nδ and the noise expansion is given with

respect to the Fourier basis (ek)k with cut-off MN ∈ N, so that we have C1 ⩽ (2MN)d

and C2 ⩽ (2MN)d(2πMN)2.
Note that due to the gradient noise term, the local monotonicity condition is violated
for SPDEs of the form (2.11) and standard variational theory cannot be applied directly.
Instead, we transform equation (2.11) (multiplying by (∆− 1)1/2) into an equation for
which the variational theory can be applied. We then conclude on well-posedness for
the original equation using a priori energy bounds.

Remark 2.7. The form of equation (2.11) is similar to the SPDEs studied in [Bec21].
Specifically to the case of “critical unboundedness” from [Bec21, Section 4]. However, a
direct application of their methods to our setting would only yield a probabilistically weak
solution with paths in C([0, T ], H−ε)∩L2([0, T ], H1) for any ε > 0. Still, by a pathwise
uniqueness argument using a priori energy bound, one could in addition show strong
existence and uniqueness of a solution with paths in C([0, T ], H−ε) ∩ L2([0, T ], H1) for
any ε > 0. Instead, in what follows, we directly show the stronger statement about
strong existence and uniqueness of a solution with path in C([0, T ], L2)∩L2([0, T ], H1).

The setting for the variational theory is defined as follows. For notation and concepts
cf. [LR15]. Consider the Sobolev space V = H1(Td) with V ∗ = H−1(Td) and H =
L2(Td), such that we have the Gelfand triple V ⊂ H ⊂ V ∗. We consider the Laplacian
with periodic boundary conditions, that is, ∆ : V = H1(Td)→ (H1(Td))∗ = V ∗ with
∆u(v) := ⟨∆u, v⟩V ∗,V , u ∈ V ∗, v ∈ V . For the duality pairing, we have ⟨∆u, v⟩V ∗,V =
−⟨∇u,∇v⟩H = −

∫
∇u · ∇v for u, v ∈ V . Equipped with these prerequisites, we define

a solution to the equation (2.11) as follows.

Definition 2.8. Let (Bk)k and (ϕk)k satisfying Assumptions 2.3 and 2.5. We call a
stochastic process (ut)t⩾0 with paths in L2([0, T ], H1(Td)) ∩ C([0, T ], L2(Td)) a (proba-
bilistically strong and analytically weak) solution to equation (2.11) for initial condition
u0 ∈ L2(Td), if for all φ ∈ H1(Td),

⟨ut, φ⟩ = ⟨u0, φ⟩ −
∫ t

0

1

2
⟨∇us,∇φ⟩ds+

∑
k∈Zd

∫ t

0

⟨∇(b(ut)ϕk), φ⟩ · dBk
s

= ⟨u0, φ⟩ −
d∑
i=1

∫ t

0

1

2
⟨∂ius, ∂iφ⟩ds+

d∑
i=1

∑
k∈Zd

∫ t

0

⟨∂i(b(ut)ϕk), φ⟩dBk,i
s . (2.16)
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2. Weak error bounds for a nonlinear approximation of the Dean-Kawasaki equation

First we will show an auxiliary result for the transformed equation that is based on
the variational approach.

Lemma 2.9. Let Assumptions 2.3, 2.5 and 2.6 hold and let v0 ∈ L2(Td).
Then there exists a unique probabilistically strong solution v ∈ L2([0, T ], H1(Td)) ∩
C([0, T ], L2(Td)) of

d⟨vt, φ⟩ = −1

2
⟨∇vt,∇φ⟩dt+

∑
k∈Zd

⟨Gk(vt), φ⟩ · dBk
t , for all φ ∈ H1, (2.17)

where Gk(v) := (1−∆)−1/2∇(b((1−∆)1/2v)ϕk).

Proof. We will check the conditions of [LR15, Section 4] to apply the variational theory.
Existence and uniqueness of the solution then follows form [LR15, Theorem 4.2.4]. Let
G(v)w :=

∑
k∈Zd(1−∆)−1/2∇(b((1−∆)1/2v)ϕk)wk for w ∈ l2(Zd) and v ∈ H1. Using

(2.14), we obtain the following coercivity bound [LR15, Section 4, Assumption (H3)]:

⟨∆v, v⟩V ∗,V + ∥G(v)∥2L2(l2(Zd),H)

= −∥∇v∥2L2 +
∑
k

∥(1−∆)−1/2∇(b((1−∆)1/2v)ϕk)∥2L2

⩽ −∥∇ · v∥2L2 +
∑
k

∥(b((1−∆)1/2v)ϕk)∥2L2

⩽ −∥∇v∥2L2 +
∑
k

∥ϕk∥2∞∥b((1−∆)1/2v)∥2L2

⩽ −∥∇v∥2L2 + C1C
2(1 + ∥(1−∆)1/2v∥2L2)

= (C1C
2 − 1)∥∇v∥2L2 + C1C

2,

by Assumption 2.12. Here, the first inequality follows from the isometry of L2(Td) and
l2(Zd) by the Fourier transform FTd given by FTdf(k) :=

∫
Td e

−2πik·xf(x)dx, such that
for f ∈ L2(Td),

∥(1−∆)−1/2∇f∥2L2(Td) =
∑
k∈Zd

(1 + |2πk|2)−1|2πk|2|FTd(f)(k)|2

⩽
∑
k∈Zd

|FTd(f)(k)|2

= ∥f∥2L2(Td).

Coercivity then follows by Assumption 2.6 on the parameters. The weak monotonicity
condition [LR15, Section 4, Assumption (H2)] follows from an analogue estimate as
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the one above, using the global Lipschitz bound L from (2.13):〈
∆(v1 − v2), v1 − v2

〉
V ∗,V

+ ∥G(v1)−G(v2)∥2L2(l2(Zd),H)

= −∥∇(v1−v2)∥2L2 +
∑
k

∥∥∥(1−∆)−1/2∇
((
b
(
(1−∆)1/2v1t

)
−b
(
(1−∆)1/2v2t

))
ϕk

)∥∥∥2
L2

⩽ −∥∇(v1 − v2)∥2L2 +
∑
k

∥∥(b((1−∆)1/2v1t )− b((1−∆)1/2v2t )
)
ϕk
∥∥2
L2

⩽ −∥∇(v1 − v2)∥2L2 +
∑
k

∥ϕk∥2∞L2∥(1−∆)1/2(v1t − v2t )∥2L2

= −∥∇(v1 − v2)∥2L2 + C1L
2(∥v1t − v2t ∥2L2 + ∥∇(v1t − v2t )∥2L2)

⩽ C1L
2∥v1t − v2t ∥2L2 .

Due to our assumption on the parameters, which implies C1L
2 < 1/2, we thus obtain

the weak monotonicity. The hemicontinuity from [LR15, Section 4, Assumption (H1)]
follows by linearity of the Laplacian. The boundedness [LR15, Section 4, Assumption
(H4)] is trivially satisfied due to continuity, that is, ∥∆u∥V ∗ ⩽ ∥u∥V .

Remark 2.10. Notice that, if u solves (2.16), then v := (1−∆)−1/2u solves (2.17).
As (2.17) has a unique strong solution by [LR15, Theorem 4.2.4], it follows that the
solution to (2.16) is unique.

To prove existence of a solution for (2.16) according to Definition 2.8, we utilize a
priori energy estimates, that is Lemma 2.11 below.
Given the solution v of (2.17), we can define ut := (1−∆)1/2vt. Then it follows that
u ∈ C([0, T ], H−1(Td)) ∩ L2([0, T ], L2(Td)) almost surely and that u is a solution to
the (very weak) equation

d⟨ut, φ⟩ =
1

2
⟨ut,∆φ⟩dt−

∑
k

⟨b(ut)ϕk,∇φ⟩ · dBk
t , for all φ ∈ C∞(Td). (2.18)

Define the orthogonal projection ΠR : H1 → VR with VR := span{er | r ∈ Zd, |r| ⩽ R}
for an orthonormal basis (er)r∈Zd of H1(Td) with er ∈ C∞(Td). Let vR solve (2.17)
with vR0 = ΠRv0 and Gk replaced by GR

k with

GR
k (v) := ΠR(1−∆)−1/2∇

(
b(ΠR(1−∆)1/2v)ϕk

)
, v ∈ H1. (2.19)

That is, vR solves

d⟨vRt , φ⟩ = −1

2
⟨∇vt,∇φ⟩dt+

∑
k∈Zd

⟨GR
k (vt), φ⟩ · dBk

t , for all φ ∈ H1,

vR0 = ΠRv0. (2.20)

Then, as the coefficients for the equation for vR also satisfy the assumptions of [LR15,
Section 4], vR is a strong solution of (2.20). Furthermore, if Assumption 2.6 is satisfied,
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2. Weak error bounds for a nonlinear approximation of the Dean-Kawasaki equation

using [LR15, Theorem 4.2.5] applied for ∥vRT − vT∥2L2 , one can prove the following

estimate for a constant λ̃ > 0,

E[∥vRT − vT∥2L2 ] + λ

∫ T

0

E[∥vRs − vs∥2H1 ]ds

⩽ 2C2CT∥vR0 − v0∥2L2 exp(T λ̃) + C1C
2∥Id−ΠR∥2L(L2)(1 + ∥v∥2L2(Ω×[0,T ],H1)).

The proof of the above estimate is analogous to the proof of Lemma 2.11 below. In
particular, we obtain that vR → v in L2(Ω× [0, T ], H1) for R→∞. Let now

uR := (1−∆)1/2ΠRv
R = ΠR(1−∆)1/2vR. (2.21)

The following lemma proves an energy estimate, that yields tightness of the sequence
of Galerkin-type projected solutions (uR)R.

Lemma 2.11. Let Assumptions 2.3, 2.5 and 2.6 hold. Let u0 ∈ L2(Td) and v0 :=
(1−∆)−1/2u0. Let vR solve (2.20) with initial condition vR0 = ΠRv0. Let uR be defined
as in (2.21). Then, the following energy bound holds true:

E[∥uRt ∥2L2 ] + λ

∫ t

0

E[∥uRs ∥2H1 ]ds ⩽ 2C2C
2t∥u0∥2L2 exp(tλ̃), (2.22)

with λ := 1− C1L
2 > 0 and λ̃ := λ+ C2C

2.

Proof. As er ∈ C∞(Td), it follows that ΠRv
R ∈ C([0, T ], C∞) almost surely and thus

in particular uR ∈ C([0, T ], C∞) almost surely. Furthermore, by the equation (2.20)
for vR, uR solves

⟨uRt , φ⟩ = ⟨uR0 , φ⟩+

∫ t

0

1

2
⟨∆uRs , φ⟩ds+

∑
k

∫ t

0

⟨ΠR∇(b(uRt )ϕk), φ⟩ · dBk
s , ∀φ ∈ C∞(Td).

(2.23)

Due to uR ∈ C([0, T ], C∞), this implies that for x ∈ Td,

uRt (x) = uR0 (x) +

∫ t

0

1

2
∆uRs (x)ds+

∑
k

∫ t

0

ΠR∇(b(uRs )ϕk)(x) · dBk
s .

By applying Itô’s formula to (uRt (x))2, we obtain

d∥uRt ∥2L2 =

∫
d(uRt (x))2dx

= 2

∫
uRt (x)

(
1

2
∆uRt (x)dt+

∑
k

ΠR∇
(
b(uRt (x))ϕm(x)

)
· dBm

t

)
dx

+
∑
k

∫ ∣∣ΠR∇
(
b(uRt (x))ϕm(x)

)∣∣2dxdt.

68



2.2. Well-posedness for regularized DK-type SPDEs

Taking the expectation, the martingale vanishes. Using that ∥ΠRv∥L2 ⩽ ∥v∥L2 and
(2.13), we thus obtain

E[∥uRt ∥2L2 ] ⩽ ∥uR0 ∥2L2−
∫ t

0

E

[ ∫
Td

∇uRs (x)·∇uRs (x)dx

]
ds

+

∫ t

0

∑
k

E[∥b′(uRs )ϕk∇uRs ∥2L2 ]ds+

∫ t

0

∑
k

E[∥b(uRs )∇ϕk∥2L2 ]ds

⩽ ∥uR0 ∥2L2 −
∫ t

0

E[∥∇uRs ∥2L2 ]ds+ C1L
2

∫ t

0

E[∥∇uRs ∥2L2 ]ds

+ C2

∫ t

0

E[∥b(uRs )∥2L2 ]ds. (2.24)

With λ = 1 − C1L
2, we add and subtract λ

∫ t
0
E[∥µRs ∥2L2 ]ds to (2.24). Furthermore,

utilizing the linear growth assumption on b given by (2.14), we obtain

E[∥uRt ∥2L2 ] ⩽ ∥uR0 ∥2L2 − λ
∫ t

0

E[∥uRs ∥2H1 ]ds+ (C2C
2 + λ)

∫ t

0

E[∥uRs ∥2L2 ]ds+ C2C
2t.

(2.25)

Using λ > 0, we thus obtain by Gronwall’s inequality

E[∥uRt ∥2L2 ] ⩽ C2C
2t∥uR0 ∥2L2 exp(tλ̃) (2.26)

for λ̃ = C2C
2 + λ. Hence, plugging (2.26) into (2.25), yields

E[∥uRt ∥2L2 ] + λ

∫ t

0

E[∥uRs ∥2H1 ]ds ⩽ C2C
2t∥uR0 ∥2L2 exp(tλ̃),

which implies (2.22), as ∥uR0 ∥2L2 = ∥ΠRu0∥2L2 ⩽ ∥u0∥2L2 .

Remark 2.12. Once we know that the sequence of mollifications (uR)R converges in
L2([0, T ], H1) almost surely, we can apply Fatou’s lemma and obtain the energy bound
(2.22) for the limit u.

Remark 2.13 (Energy estimate). If we take b = 1√
N
f for the regularized square root

function f given by (2.5), we can improve the energy estimate using that by (2.7),
|f(x)| ≲

√
|x|, in order to estimate the L2-norm of b(uRs ) in (2.24). Utilizing also the

mass conservation property of the solution u, that we later prove in Proposition 2.19,
we then obtain the following a priori energy bound

E[∥ut∥2L2 ] + λ

∫ t

0

E[∥∇us∥2L2 ]ds ≲ ∥u0∥2L2 +
C2

N

∫ t

0

E[∥us∥L1 ]ds

≲ ∥u0∥2L2 +
C2

N
t∥u0∥L1 . (2.27)
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2. Weak error bounds for a nonlinear approximation of the Dean-Kawasaki equation

Theorem 2.14. Let Assumptions 2.3, 2.5 and 2.6 hold and let u0 ∈ L2(Td). Then
there exists a unique solution u with paths in L2([0, T ], H1(Td)) ∩ C([0, T ], L2(Td)) of
the equation (2.11) in the sense of Definition 2.8.

Proof. From Lemma 2.9 it follows that for v0 := (1−∆)−1/2u0 ∈ H1 ⊂ L2, there exists a
unique strong solution v ∈ L2([0, T ], H1)∩C([0, T ], L2) of (2.17). Let ut := (1−∆)1/2vt.
By the regularity of v, we obtain that almost surely

u ∈ L2([0, T ], L2) ∩ C([0, T ], H−1).

Furthermore, from the equation of v, testing against φ ∈ C∞(Td), we obtain that
u solves (2.18). By Lemma 2.11, the Galerkin projected solutions (uR)R satisfy the
energy bound (2.22).

Since L2(Ω× [0, T ], H1)) is reflexive, we thus obtain that (uR)R converges weakly in
L2(Ω× [0, T ], H1)) along a subsequence. As vR → v in L2(Ω× [0, T ], H1) (see above),
it follows that for R→∞,

uR = ΠR(1−∆)1/2vR → (1−∆)1/2v = u

in L2(Ω× [0, T ], L2). Thus, the limit of each such subsequence is given by u and we can
conclude that the whole sequence (uR)R converges to u, weakly in L2(Ω× [0, T ], H1).
In particular, the limit u satisfies

u ∈ L2([0, T ], H1)

almost surely. Due to u ∈ L2([0, T ], H1)∩C([0, T ], H−1) a.s., the mapping t 7→ ut ∈ L2

is almost surely weakly continuous. Since u ∈ L2([0, T ], H1) a.s. and u0 ∈ L2, and
because (2.18) is equivalent to u solving

dut = −1

2
∆utdt+

∑
k

∇[b(ut)ϕk] · dBk
t ∈ (H1)∗ = H−1,

we can apply [LR15, Theorem 4.2.5] to conclude that an Itô formula for d∥ut∥2L2 follows.
Almost sure continuity of the integrals in time then implies almost sure continuity of
the mapping

t 7→ ∥ut∥2L2 . (2.28)

From continuity of (2.28) and continuity of t 7→ ut ∈ L2 in the weak topology follows
that u ∈ C([0, T ], L2) almost surely. Hence, together, we indeed have that u ∈
L2([0, T ], H1) ∩ C([0, T ], L2) almost surely. By the regularity of u and as u solves
(2.18), it follows that u solves (2.16) (for all φ ∈ C∞(Td) and thus, by density for all
φ ∈ H1(Td)). Uniqueness of the solution follows from Remark 2.10.

Remark 2.15. Using the Itô formula for ∥uRt − ut∥2L2 (cf. [LR15, Theorem 4.2.5])
and uR0 = ΠRu0 → u0 in L2, we see that uR → u strongly in L2(Ω × [0, T ], H1) and
that the energy estimate holds true for the limit u.
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Remark 2.16. The regularity, u ∈ C([0, T ], L2) almost surely, will be used to prove
the comparison principle, Theorem 2.17, below.

2.3. A comparison principle for regularized DK-type
SPDEs

In this section we prove a comparison principle for the class of SPDEs (2.11), that will
in particular imply positivity and mass preservation of the solution.

Theorem 2.17. Let Assumptions 2.3 and 2.5 hold. Let the parameters from those
assumptions moreover satisfy 8C1L

2 < 1/2. Furthermore, let u+ and u− be two solutions
of (2.16) with initial conditions u+0 , u

−
0 ∈ L2, respectively, such that u+0 (x) ⩾ u−0 (x) for

λ-almost all x ∈ Td. Then it follows that

(P⊗ λ)
(
u+t ⩾ u−t ∀t ∈ [0, T ]

)
= 1.

Proof. The proof is similar to the proof presented in [DMP93, Theorem 2.1]. The
main idea is an application of Itô’s formula to a suitable C2 approximation of the map
x 7→ max(x, 0)2, applied to the difference of the solutions. More precisely, let for p > 0,
φp ∈ C2(R,R) be defined by

φp(x) := 1[0,∞)(x)

∫ x

0

∫ y

0

[2pz1[0, 1
p
](z) + 21( 1

p
,∞)(z)]dzdy.

Note that φp satisfies

0 ⩽ φ′
p(x) ⩽ 2 max(x, 0) and 0 ⩽ φ′′

p(x) ⩽ 21x⩾0.

Next, we define

Φp(h) :=

∫
Td

φp(h(x))dx.

Let t > 0 and wt := u−t − u+t . Since φp(x) ↑ max(x, 0)2 for p → ∞, by monotone
convergence we conclude that Φp(wt) ↑ ∥max(wt, 0)∥2L2 for p → ∞. Moreover, Φp is
twice Fréchet differentiable and we obtain by the Itô formula from [Par80, Theorem
1.2] that

dΦp(wt) = −1

2
⟨φ′′

p(wt), |∇wt|2⟩dt+
∑
k

〈
φ′
p(wt),∇

(
(b(u−t )− b(u+t ))ϕk

)〉
· dBk

t (2.29)

+
1

2

∑
k

∫ ∣∣∇((b(u−t )− b(u+t ))ϕk
)∣∣2φ′′

p(wt)dxdt. (2.30)

Notice that Φp(w0) = 0, since by assumption w0 ≤ 0 a.e., and that the martingale
term in (2.29) is a indeed a martingale. We can estimate the quadratic variation term
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2. Weak error bounds for a nonlinear approximation of the Dean-Kawasaki equation

(2.30) using Assumption 2.5 on b and the bound on φ′′
p:(

∇
(
(b(u−t )− b(u+t ))ϕk

))2
φ′′
p(wt)

⩽ 2
[(

(b(u−t )− b(u+t ))∇ϕkφ′′
p(wt)

)2
+
(
∇(b(u−t )− b(u+t ))ϕkφ

′′
p(wt)

)2]
⩽ 2

[
L2|wt|2|k|241wt⩾0 + 4∥b′∥2∞|∇wt|2

]
.

Therefore, altogether we obtain

E[ϕp(wt)] ⩽
(

8L2C1 −
1

2

)∫ t

0

E
[
φ′′
p(ws), |∇ws|2

]
ds+ 8L2C2

∫ t

0

E
[
∥max(ws, 0)∥2L2

]
ds

⩽ 8∥b′∥2∞C2

∫ t

0

E
[
∥max(ws, 0)∥2L2

]
ds

due to the assumption 8L2C1 <
1
2
. Taking p→∞ and applying Gronwall’s inequality

yields

E
[
∥max(ws, 0)∥2L2

]
= 0.

Hence, (P⊗ λ)(wt ⩽ 0) = 1 for all t ⩾ 0. By continuity, w ∈ C([0, T ], L2), the claim
follows.

In what follows, we assume on b that b ∈ C1(R) with

b(0) = 0, ∥b′∥∞ ⩽ L, (2.31)

which implies Assumption 2.5 for C = L. Note that Equation (2.31) is satisfied for the
regularized square root f given by (2.5).

Corollary 2.18 (Non-negativity of the solution). Let 8L2C1 <
1
2
and Assumptions

2.3 and (2.31) be satisfied. Let u be a solution of (2.11) with initial condition u0 ⩾ 0
almost everywhere. Then it follows that (P⊗ λ)(ut ⩾ 0 ∀t ∈ [0, T ]) = 1.

Proof. Since b(0) = 0, it follows that the zero function is a solution of (2.11). Then
the claim directly follows from Theorem 2.17.

Proposition 2.19 (Conservation of mass). Let 8L2C1 <
1
2
and Assumptions 2.3 and

(2.31) be satisfied. Let u solve (2.11) with non-negative initial condition u0. Then it
follows that almost surely,

∫
|ut|(x)dx =

∫
|u0|(x)dx.

Proof. Using non-negativity of the solution u obtained by Corollary 2.18 and testing
the equation against φ = 1 ∈ C∞(Td), we have that, for almost all ω ∈ Ω,∫

|ut|(x)dx =

∫
ut(x)dx = ⟨ut, 1⟩ = ⟨u0, 1⟩ =

∫
|u0|(x)dx.
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2.4. Weak error estimate

In this section we estimate the weak error between the martingale solution µN of the
Dean-Kawasaki equation and the strong solution µ̃N of the approximate Dean-Kawasaki
equation (2.9). More precisely, we aim for a bound of the form

|Ẽ[F (µ̃Nt )]− E[F (µNt )]| ≲F,t N−αd ,

for t > 0 and F (µ) := exp(⟨µ, φ⟩), φ ∈ C∞(Td), µ ∈M . Here, E[·] and Ẽ[·] denote
the expectations with respect to Law(µN) = P and Law(µ̃N) = P̃, respectively. In
the following, we ease notation and simply write E instead of Ẽ, but we keep in mind,
that the error compares Law(µN ) and Law(µ̃N ). Due to the factor 1/N in front on the
quadratic variation, a direct estimate shows that the hydrodynamic limit, that is, the
solution ρ of the heat equation

∂tρ =
1

2
∆ρ

achieves a weak rate of αd = 1. Furthermore, for the Gaussian approximation ρ̂ of the
Dean-Kawasaki equation given by the fluctuations of the particle system around the
hydrodynamic limit, that is,

∂tρ̂ =
1

2
∆ρ̂+

1√
N
∇ · (√ρξϕ)

one can prove a weak rate of αd = 3/2. As opposed to the approximation µ̃N , the
Gaussian approximation ρ̂ does not satisfy non-negativity. We prove in Theorem 2.21
that the approximation µ̃N achieves a weak rate αd ∈ (1, 3/2).

Below, Bs
p,q denotes the periodic Besov space of regularity s ∈ R, integrability p ∈ [1,∞]

and summability q ∈ [1,∞), as in [ST87, Section 3.5.1]:

Bs
p,q(Td) := {u ∈ S ′(Td) | ∥(2js∥∆ju∥Lp(Td))j⩾−1∥lq(Zd) <∞} (2.32)

for the space of tempered distributions S ′(Td) and Littlewood-Paley blocks ∆ju =

F−1
Td (ρjFTdu) with Fourier transform FTdf(k) = f̂(k) =

∫
Td f(x)e−2πik·xdx, k ∈ Zd,

and a dyadic partition of unity (ρj)j⩾−1 in the sense of [BCD11, Section 2.2] (cf.
also [ST87, Section 3.4.4]). In the case q = ∞, we rather work with the separable
Besov space, and thus define

Bs
p,∞ = Bs

p,∞(Td) := {u ∈ S ′(Td) | lim
j→∞

2js∥∆ju∥Lp = 0}. (2.33)

We write Bs
p,q = Bs

p,q(Td) for short, as we only work on the torus in this section. Since
we represent the torus as Td = (R/Z)d, we can associate to any distribution u ∈ S ′(Td)
a periodic distribution on Rd given by uR

d
(ϕ) = u(

∑
k∈Zd ϕ(·+ k)). Furthermore, we
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2. Weak error bounds for a nonlinear approximation of the Dean-Kawasaki equation

denote by (Pt)t⩾0 the heat-semigroup on the torus,

Ptφ := F−1
Td (e−t|2π·|

2

FTdφ) (2.34)

for φ ∈ C∞(Td), which may be extended to Besov distributions via Ptu(φ) := u(Ptφ),
φ ∈ C∞(Td), u ∈ Bθ

p,q. We have that Ptu = p(t, ·) ∗ u =
∫
Td p(t, x− y)u(y)dy for the

heat kernel

p(t, x) =
∑
k∈Zd

e2πik·xe−|2πk|2t =
∑
k∈Zd

(4πt)−d/2 exp

(
−|x+ k|2

4t

)
, x ∈ Td,

where the second equality follows from the Poisson summation formula.
In order to obtain a bound for the approximation, that does not depend on the L2(Td)
norm of the initial condition µ̃N0 = ρN ∗ µN0 (as it is the case for the energy estimate
from Remark 2.13), which explodes for N →∞, we prove the entropy estimate (2.35).
The main advantage is that instead of the L2 norm of µ̃N0 , we obtain an estimate
by
∫
µ̃N0 log(µ̃N0 ), which improves the error estimates. To be precise, we have that∫

µ̃N0 log(µ̃N0 ) ≲ log(N), while ∥µ̃N0 ∥2L2 ≲ Nd explodes fast with increasing dimension d,
cf. Remark 2.23 below.
Here and below, we use the short hand notation for space integrals,

∫
µ :=

∫
Td µ(x)dx.

Proposition 2.20 (Entropy estimate). Let µ̃N be solve the approximate Dean-Kawasaki
equation (2.16) with the initial condition µ̃N0 := ρN ∗ µN0 for µN0 := 1

N

∑N
i=1 δxi and let

(ρN )N⩾1 be a mollifying sequence such that µ̃N0 ⩾ 0 and ∥ρN ∗ µN0 ∥L1 = 1. Furthermore,

assume the coercivity condition (2MN )d

Nδ
⩽ 1

2
.

Then the following entropy estimate holds

sup
t∈[0,T ]

E

[ ∫
µ̃Nt log(µ̃Nt )

]
+ λ

∫ T

0

E

[ ∫
|∇µ̃Nt |2

µ̃Nt
1ũNt >0

]
dt

≲
∫
µ̃N0 log(µ̃N0 ) +

Tπ2(2MN)d+2

N
, (2.35)

for λ := 1− (2MN )d

Nδ
.

Proof. We will first prove the bound for the projected solutions (uR) from (2.21) with
uR ∈ C([0, T ], C∞). Utilizing Fatou’s lemma and uR → µ̃N in L2([0, T ], H1) almost
surely by Remark 2.15, we can then conclude on the entropy bound for µ̃N . Here,
uR(x) solves, for x ∈ Td,

uRt (x) = uR0 (x) +

∫ t

0

1

2
∆uRs (x)ds+

∑
k

∫ t

0

ΠR∇
(
f(uRs )ek

)
(x) · dBk

s

with uR0 := ΠRµ̃
N
0 . Then, it follows that uR ⩾ 0 almost surely, as the comparison

principle from the last section holds true for the equation for uR and ∥uRt ∥L1 = ∥uR0 ∥L1

almost surely. Let γ ∈ (0, 1) and gγ(y) := (γ + y) log(γ + y), y ∈ [0,∞). Then g ∈
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2.4. Weak error estimate

C2([0,∞),R) and we can apply Itô’s formula to (γ+uRt (x)) log(γ+uRt (x)) = gγ(uRt (x)),
for x ∈ Td, with (gγ)′(y) = log(γ + y) + 1 and (gγ)′′(y) = 1

γ+y
. After integration over

x, we obtain

d

(∫
(γ + uRt ) log(γ + uRt )

)
t

=

∫
(log(γ + uRt ) + 1)∆(γ + uRt )dt

+
1√
N

∑
|k|⩽MN

∫
(log(γ + uRt ) + 1)ΠR∇(f(uRt )ek)dB

k
t

+
1

N

∑
|k|⩽MN

∫
|ΠR∇(f(uRt )ek)|2

(γ + uRt )
dt

=

∫
log(γ + uRt )∆uRt dt+ dMt +

1

N

∑
|k|⩽MN

∫
|ΠR∇(f(uRt )ek)|2

γ + uRt
dt

= −
∫
|∇uRt |2

γ + uRt
dt+ dMt +

1

N

∑
|k|⩽MN

∫
|ΠR∇(f(uRt )ek)|2

γ + uRt
dt,

where M denotes the local martingale term. Next, we justify thatM is a true martingale
and that we can estimate the quadratic variation term by

1

N

∑
|k|⩽MN

∫ t

0

∫
|ΠR∇(f(uRs )ek)|2

γ + uRs
ds

⩽
1

N

∑
|k|⩽MN

∫ t

0

∫
|∇(f(uRs )ek)|2

γ + uRs
ds+

1

N

∑
|k|⩽MN

∫ t

0

∫
|(ΠR − Id)∇(f(uRs )ek)|2

γ + uRs
ds

≲
tπ2(2MN)d+2

N
+

(2MN)d

δN

∫ t

0

∫
|∇uRs |2

γ + uRs
ds

+
1

Nγ

∑
|k|⩽MN

∫ t

0

∥(ΠR − Id)∇(f(uRs )ek)∥2L2ds.

The above estimate follows from

|∇(f(uRs )ek)|2 ⩽ 2[|f(uRs )|2∥∇ek∥2∞ + |f ′(uRs )∇uRs |2∥ek∥2∞]

and using the properties (2.6) and (2.7) of f . Namely, that |f(u)|2 ≲ u for u ⩾ 0,
|∇ek|2 ⩽ t|2πk|2 and ∥f ′∥2∞ ≲ 1

δ
. The martingale property follows from |f(u)|2 ≲ |u|,
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2. Weak error bounds for a nonlinear approximation of the Dean-Kawasaki equation

since this implies ∑
|k|⩽MN

∫ t

0

E
[∣∣〈log(γ + uRs ) + 1,ΠR∇(f(µ̃Ns )ek)

〉∣∣2]ds
⩽

∑
|k|⩽MN

∫ t

0

E

[∣∣∣∣∫ ΠR(f(uRs )ek)∇uRs
γ + uRs

∣∣∣∣2]ds
⩽

∑
|k|⩽MN

1

γ

∫ t

0

E[∥ΠR(f(uRs )ek)∥2L2∥∇uRs ∥2L2 ]ds

⩽
∑

|k|⩽MN

1

γ

∫ t

0

E[∥f(uRs )ek∥2L2∥∇uRs ∥2L2 ]ds

≲
(2MN)d

γ
∥uR0 ∥L1

∫ t

0

E[∥∇uRs ∥2L2 ]ds <∞.

Together, the above yields the bound

E

[ ∫
(γ + uRt ) log(γ + uRt )

]
+ λ

∫ t

0

E

[ ∫
|∇uRs |2

γ + uRs

]
ds

≲
∫

(γ + uR0 ) log(γ + uR0 ) +
tπ2(2MN)d+2

N

+
1

Nγ

∑
|k|⩽MN

∫ T

0

E[∥(ΠR − Id)∇(f(uRs )ek)∥2L2 ]ds.

Letting R→∞ and using Fatou’s Lemma and uR0 → µ̃N0 in L2, ΠRφ→ φ for φ ∈ L2

and supRE[∥∇uR∥2L2 ] <∞, we thus obtain

E

[ ∫
(γ + µ̃Nt ) log(γ + µ̃Nt )

]
+ λ

∫ t

0

E

[ ∫
|∇µ̃Ns |2

γ + µ̃Ns

]
ds

≲
∫

(γ + µ̃N0 ) log(γ + µ̃N0 ) +
tπ2(2MN)d+2

N
. (2.36)

As [0,∞) ∋ x→ x log(x) is bounded from below, we can apply Fatou’s lemma to the
left-hand side of (2.36), and since |x log(x)| ⩽ x2 + 1 for x ⩾ 0 and ∥µ̃N0 ∥2L2 <∞, we
can apply the dominated convergence theorem to the right-hand side, such that we
obtain for γ → 0,

E

[ ∫
µ̃Nt log(µ̃Nt )

]
+ λ

∫ t

0

E

[ ∫
|∇µ̃Ns |2

µ̃Ns
1µ̃Ns >0

]
ds ≲

∫
µ̃N0 log(µ̃N0 ) +

t(2π)2Md+2
N

N
.

Theorem 2.21. Let µN be the martingale solution of the Dean-Kawasaki equation in
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2.4. Weak error estimate

the sense of Definition 2.1 with initial condition µN0 := 1
N

∑N
i=1 δxi. Let (ρN)N⩾1 be a

mollifying sequence, such that µ̃N0 = ρN ∗ µN0 ⩾ 0,

∥ρN ∗ µN0 − µN0 ∥B−κ
1,∞
≲ N−κ (2.37)

for any κ ∈ (1, 2], ∫
(ρN ∗ µN0 ) log(ρN ∗ µN0 ) ≲d log(N) (2.38)

and ∥ρN ∗ µN0 ∥L1 = 1. Let furthermore
Md

N

Nδ
⩽ 1

2
(coercivity assumption) and let µ̃N be

the solution of the approximate Dean-Kawasaki equation (2.8) with f ∈ C1 as in (2.5)
satifying (2.6)–(2.7) and with initial condition µ̃N0 = ρN ∗ µN0 .
Then for any t > 0, φ ∈ C∞(Td) and F (µ) := exp(⟨µ, φ⟩) for µ ∈M , the following
weak error bound holds:

|E[F (µ̃Nt )]− E[F (µNt )]| ≲φ,t,d N−κ +N−1− 1
d/2+1 +N−1− 1

d+2 (1 + log(N)1/2). (2.39)

Remark 2.22. Considering the functions F (µ) = exp(−⟨µ, φ⟩) for φ ∈ C∞, one could
build an appropriate metric for the topology of weak convergence of probability measures
on M using [EK86, Theorem 3.4.5] and replace the left-hand side of (2.39) by the
distance of µ̃Nt and µNt in this weak metric.

Remark 2.23. Consider ρ ∈ C∞(Td) with
∫
Td ρ(y)dy = 1, such that ρ ⩾ 0 and ρ is

symmetric in the sense that ρ(y) = ρ(−y) for y ∈ Td. Then any mollification (ρN)N
with ρN(x) = ρ(Nx)Nd satisfies the assumptions of the above theorem.
Indeed, by non-negativity of ρ and µN0 = 1

N

∑N
i=1 δxi, we obtain ρ ∗ µN0 ⩾ 0. As∫

Td ρ(y)dy = 1, we see that with Fubini,

∥ρN ∗ µN0 ∥L1 =

∫
Td

∫
Td

ρ(N(x− y))NdµN0 (dy)dx = 1.

Furthermore, we can trivially bound

∥ρN ∗ µN0 ∥L∞ ⩽ Nd∥ρ∥L∞ ≲ Nd.

Hence, we obtain the following bound∫
(ρN ∗ µN0 ) log(ρN ∗ µN0 ) ⩽

∫
(ρN ∗ µN0 ) log(ρN ∗ µN0 )1ρN∗µN0 ⩾1

⩽ ∥ρN ∗ µN0 ∥L1∥log(ρN ∗ µN0 )1ρN∗µN0 ⩾1∥L∞

= ∥log(ρN ∗ µN0 )1ρN∗µN0 ⩾1∥L∞

⩽ log(∥ρN ∗ µN0 ∥L∞)

≲ log(Nd) = d log(N).
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2. Weak error bounds for a nonlinear approximation of the Dean-Kawasaki equation

This is a much better estimate than for the L2 norm of ρN ∗ µN0 , which we can only
bound by Nd.
Furthermore, for h ∈ Bκ

∞,1(Td) ⊂ Bκ
∞,∞(Td), with κ ∈ (1, 2) we have that h ∈ Cκ(Td),

that is h being continuously differentiable with (κ− 1)-Hölder continuous derivative (cf.
[ST87, Theorem in Section 3.5.4, part (ii)]) we can bound, using that the symmetry of
ρ so that

∫
Td ρ(y)ydy = 0,

∥ρN ∗ h− h∥L∞ =

∥∥∥∥∫
Td

ρ(Ny)Nd(h(x− y)− h(x))dy

∥∥∥∥
L∞

=

∥∥∥∥∫
Td

ρ(Ny)Nd(h(x− y)− h(x)− h′(x)y)dy

∥∥∥∥
L∞

=

∥∥∥∥∫ 1

0

∫
Td

ρ(Ny)Ndy(h′(x− λy)− h′(x))dydλ

∥∥∥∥
L∞

⩽
∫
Td

ρ(Ny)Nd|y|1+(κ−1)dy

= N−κ
∫
Td

ρ(y)|y|κdy ≲ N−κ

and analogously for h ∈ C2, we obtain ∥ρN ∗ h− h∥L∞ ≲ N−2. Then, we obtain that,
as ρ is symmetric and by the above estimate (the first inequality follows from duality,
cf. [ST87, Theorem in Section 3.5.6] and [BCD11, Proposition 2.76])

∥ρN ∗µN0 −µN0 ∥B−κ
1,∞
≲ sup

∥h∥Bκ
∞,1

=1

|⟨ρN ∗µN0 −µN0 , h⟩| = sup
∥h∥Bκ

∞,1
=1

|⟨ρN ∗h−h, µN0 ⟩| ≲ N−κ.

Proof of Theorem 2.21. To prove the weak error bound (2.39), we apply a duality
argument as is typically used to prove weak uniqueness, cf. [Myt98]. For that purpose,
let v solve the Hamilton-Jacobi backward equation with initial condition φ ∈ C∞(Td),

∂tvt =
1

2
∆vt +

1

2N
|∇vt|2, v0 = φ. (2.40)

Due to Cole-Hopf transformation, the solution is explicitly given by

vt = − log(Pte
−φ) =: Vtφ,

where (Pt)t⩾0 denotes the heat-semigroup, see (2.34). Note, that Pte
−φ > 0 by to the

strong maximum principle for the heat equation. In particular, v ∈ C([0, T ], C∞(Td))
as φ ∈ C∞(Td). Trivially, we have F (µNt ) = exp(⟨µNt , Vt−tφ⟩). By [KLvR19, Theorem
2.2], µN satisfies, for ϕ ∈ C∞,

⟨µNt , ϕ⟩ = ⟨µ0, ϕ⟩+

∫ t

0

⟨µNs ,
1

2
∆ϕ⟩ds+Mϕ

t , (2.41)

where Mϕ is a martingale with quadratic variation 1
N

∫ ·
0
⟨µNs , |∇ϕ|2⟩ds. Using (2.40)
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2.4. Weak error estimate

and (2.41), we obtain

d
(
exp
(
⟨µNs , Vt−sφ⟩

))
s

= exp(⟨µNs , vt−s⟩)
(
⟨µNs ,−∂svt−s⟩ds+

〈
µNs ,

1

2
∆vt−s +

1

2N
|∇vt−s|2

〉
ds+ dM vt−·

s

)
= exp(⟨µNs , vt−s⟩)dM vt−·

s .

This yields

F (µNt ) = exp(⟨µN0 , Vtφ⟩) +

∫ t

0

exp(⟨µNs , vt−s⟩)dM vt−·
s . (2.42)

Proceeding analogously for µ̃N for which it holds

⟨µ̃Nt , ϕ⟩ = ⟨µ̃N0 , ϕ⟩+
1

2

∫ t

0

⟨µ̃Ns ,∆ϕ⟩ds−
1√
N

∑
|m|⩽MN

∫ t

0

⟨f(µ̃Nt )em,∇ϕ⟩dBk
t (2.43)

and using equation (2.40) for v, we arrive at

d
(
exp(⟨µ̃Ns , Vt−sφ⟩)

)
s

= − 1√
N

∑
|m|⩽MN

exp(⟨µ̃Ns , Vt−sφ⟩)⟨f(µ̃Ns )em,∇Vt−sφ⟩dBm
s (2.44)

+
1

2N
exp(⟨µ̃Ns , Vt−sφ⟩)

( ∑
1⩽|m|⩽MN

|⟨f(µ̃Ns )em,∇Vt−sφ⟩|2 − ⟨µ̃Ns , |∇Vt−sφ|2⟩
)
ds.

If we denote by M̃ vt−· the martingale term in (2.44), we get

F (µ̃Nt ) = exp(⟨µ̃N0 , Vtϕ⟩) + M̃ vt−·
s

+

∫ t

0

1

2N
exp(⟨µ̃Ns , Vt−sφ⟩)×( ∑
1⩽|m|⩽MN

|⟨f(µ̃Ns )em,∇Vt−sφ⟩|2 − ⟨µ̃Ns , |∇Vt−sφ|2⟩
)
ds. (2.45)

Note that M̃ vt−· is indeed a martingale (not only a local martingale). This can be
concluded from the bound |f(u)|2 ⩽ ∥f ′∥2∞|u|2 that implies

∑
|m|⩽MN

∫ t

0

E[|⟨f(µ̃Ns )em,∇vt−s⟩|2]ds ⩽ C1 sup
s∈[0,t]
∥∇vt−s∥2L∞∥f ′∥2∞

∫ t

0

E[∥µ̃Ns ∥2L2 ]ds,

where the right-hand side is finite.
Combining (2.42) and (2.45) and taking the expectation, we obtain for the weak error
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2. Weak error bounds for a nonlinear approximation of the Dean-Kawasaki equation

the bound

|E[F (µ̃Nt )]− E[F (µNt )]|
⩽ |exp(⟨µN0 , Vtφ⟩)− exp(⟨µN0 , Vtφ⟩)|

+
1

2N
E

[ ∫ t

0

exp(⟨µ̃Ns , Vt−sφ⟩)
∣∣∣∣ ∑
1⩽|m|⩽MN

|⟨f(µ̃Ns )em,∇Vt−sφ⟩|2 − ⟨µ̃Ns , |∇Vt−sφ|2⟩
∣∣∣∣ds].
(2.46)

In what follows, we abbreviate Vt−sφ = ψs. Due to the conservation of mass stated in
Proposition 2.19 and since ∥µ̃N0 ∥L1 = 1, we obtain, almost surely,

exp(⟨µ̃Ns , ψs⟩) ⩽ exp(∥µ̃Ns ∥L1∥ψs∥L∞) = exp(∥µ̃N0 ∥L1∥ψs∥L∞) = exp(∥ψs∥L∞) ≲φ 1.

Hence, it is left to estimate the term in the brackets in (2.46). To that aim, we define

Is :=
1

2N

∑
1⩽|m|⩽MN

∫∫
f(µ̃Ns (x))f(µ̃Ns (y))∇ψs(x)∇ψs(y)em(x)e−m(y)dxdy−⟨µ̃Ns , |∇ψs|2⟩.

and let KMN
(x− y) :=

∑
|m|⩽MN

em(x)e−m(y). Next we consider the decomposition

Is =
As + Cs

2N
,

where
As = ⟨f(µ̃Ns )2, |∇ψs|2⟩ − ⟨µ̃Ns , |∇ψs|2⟩ (2.47)

and

Cs =

∫∫
f(µ̃Ns (x))f(µ̃Ns (y))∇ψs(x)∇ψs(y) (KMN

(x− y)− δ(x− y)) dxdy. (2.48)

To estimate A, we use positivity of µ̃N from Corollary 2.18, as well as (2.7), such that
|x− f(x)2| ≲ δ for x ⩾ 0. This implies the following estimate on A:

|As| = |⟨µ̃Ns , |∇ψs|2⟩ − ⟨f(µ̃Ns )2, |∇ψs|2⟩| ≲ δ

∫
|∇ψs|2(x)dx, (2.49)

and thus ∫ t

0

|As|ds ≲ δ∥ψ∥2
L2([0,T ],Ḃ1

2,2)
.
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2.4. Weak error estimate

In order to estimate the term Cs, let g(x) := f(µ̃Ns (x))∇ψs(x) and write:

E[|Cs|] := E

[∣∣∣∣∫ ∫ g(x)(g(x)−KMN
(x− y)(g(y))dxdy

∣∣∣∣]
= E

[∣∣∣∣∫ g(x)((KMN
∗ g)(x)− g(x))dx

∣∣∣∣]
= E

[∣∣∣∣∫ g(x)(K>MN
∗ g)(x)dx

∣∣∣∣],
where K>MN

∗ g(x) :=
∑

|m|>MN
em(x)⟨e−m, g⟩. Using f(x)2 ≲ |x| by (2.7) and

∥µ̃Ns ∥L1 = ∥µ̃N0 ∥L1 = 1 by conservation of mass, we get

E[|Cs|] ⩽ ∥∇ψ∥L∞E[∥f(µ̃Ns )∥L2∥K>MN
∗ g∥L2 ]

⩽ ∥µ̃N0 ∥
1/2

L1 E[∥K>MN
∗ g∥L2 ]

= E[∥K>MN
∗ g∥L2 ]

= E

[( ∑
|m|>MN

|⟨em, g⟩|2
)1/2]

.

We estimate the series of Fourier coefficients as follows∑
|m|>MN

|⟨em, g⟩|2 ⩽M−2
N

∑
|m|>MN

|m|2|ĝ(m)|2

⩽M−2
N ∥g∥

2
H1

≲ ∥ψs∥B2
∞,∞M

−2
N (∥f(µ̃Ns )∥2L2 + ∥f ′(µ̃Ns )∇µ̃Ns 1µ̃Ns >0∥2L2)

≲ ∥ψs∥B2
∞,∞M

−2
N

(
∥µ̃Ns ∥2L1 +

∫
|∇µ̃Ns |2

µ̃Ns
1µ̃Ns >0

)
,

where we used that f(x)2 ≲ |x| and f ′(x)2 ≲ 1
x

for x > 0 by (2.6). Integrating over
time, using the entropy estimates from Proposition 2.20 to bound the second term and
conservation of mass, ∥µ̃Ns ∥L1 = 1, combined with Jensen’s inequality implies∫ t

0

E[|Cs|]ds ≲ψ
1

MN

(
1 + λ−1 tM

d+2
N

N
+ λ−1

∫
µ̃N0 log(µ̃N0 )

)1/2

.
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2. Weak error bounds for a nonlinear approximation of the Dean-Kawasaki equation

The error from the initial condition we estimate with the mean value theorem as follows:

|exp(⟨µ̃N0 , Vtφ⟩)− exp(⟨µN0 , Vtφ⟩)|
⩽ |⟨µ̃N0 − µN0 , Vtφ⟩| exp(∥Vtφ∥L∞∥µ̃N0 ∥L1 + ∥Vtφ∥L∞)

= |⟨µ̃N0 − µN0 , Vtφ⟩| exp(2∥Vtφ∥L∞)

≲φ ∥µ̃N0 − µN0 ∥B−κ
1,∞
∥Vtφ∥Bκ

∞,1

≲φ ∥µ̃N0 − µN0 ∥B−κ
1,∞

≲φ N
−κ,

using also the duality estimate for Besov spaces from [BCD11, Proposition 2.76] (that
also holds true for Besov spaces on the torus). Furthermore, we used that φ ∈ C∞(Td)
and the choice of the mollification (ρN) for the last bound.
Together, we obtain for the weak error:

|E[F (µ̃Nt )]− E[F (µNt )]|
≲t,φ |exp(⟨µ̃N0 , Vtφ⟩)− exp(⟨µN0 , Vtφ⟩)|

+
δ

N
+

1

MNN
+N−1

(
λ−1 tM

d
N

N
+ λ−1M−2

N

∫
µ̃N0 log(µ̃N0 )

)1/2

≲t,φ N
−κ +

δ

N
+

1

MNN
+
M

d/2
N

N3/2
+

(∫
µ̃N0 log(µ̃N0 )

)1/2
MNN

where we used that the coercivity assumption implies λ ⩾ 1/2. By assumption on
(ρN)N≥1, we have ∥µ̃N0 − µN0 ∥B−κ

1,∞
≲ N−κ and

∫
µ̃N0 log(µ̃N0 ) ≲d log(N). Overall, we

obtain

|E[F (µ̃Nt )]− E[F (µNt )]| ≲t,φ,d N−κ +
δ

N
+

1

MNN
+
M

d/2
N

N3/2
+

log(N)1/2

MNN
. (2.50)

The coercivity assumption dictates Md
N ≲ δN . Hence, if we substitute M

d/2
N by (δN)1/2

in the forth term of (2.50), we get

|E[F (µ̃Nt )]− E[F (µNt )]| ≲t,φ,d N−κ +
δ

N
+

1

MNN
+
δ1/2

N
+

log(N)1/2

MNN
. (2.51)

Choosing MN = δ−1/2, together with the coercivity assumption yields δ = N− 1
d/2+1 .

Altogether, we obtain the estimate

|E[F (µ̃Nt )]− E[F (µNt )]| ≲t,φ,d N−κ +N−1− 1
d/2+1 +N−1− 1

d+2 (1 + log(N)1/2).
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3. Kolmogorov equations with
singular paracontrolled terminal
conditions

The purpose of this chapter is to solve the fractional Kolmogorov backward equation

(∂t −L α
ν )u = −V · ∇u+ f, u(T, ·) = uT

for V ∈ CTC β
Rd := C([0, T ], (C β)d), β ∈ ((2− 2α)/3, 0). Here, L α

ν denotes a generaliza-

tion of the fractional Laplacian (−∆)α/2, that we define in Section 3.1 below. The regime
β ∈ ((1−α)/2, 0) corresponds to the so-called Young regime, where the product V ·∇u
is well-defined in the classical sense, while the rough regime, β ∈ ((2−2α)/3, (1−α)/2],
requires tools from paracontrolled analysis (cf. [GIP15]) and the assumption of an en-
hanced drift V (cf. Definition 3.20). This chapter generalizes the PDE solution theory
from [KP22, Section 3] to singular terminal conditions uT , that are paracontrolled by
VT , as well as right-hand sides f , that are paracontrolled by V (cf. Section 3.3).
Section 3.1 is concerned with preliminaries, including the definition of L α

ν and its
semigroup (Pt). In Section 3.2 we define the solution space and prove Schauder and
commutator estimates. Our commutator estimate from Lemma 3.14 allows to gain not
only space regularity, but also time regularity, compared to both summands. Theo-
rem 3.19 and Theorem 3.25 in Section 3.3 prove the existence and uniqueness of mild
solutions in the Young, respectively rough case. Theorem 3.30 shows continuity of
the solution map. Furthermore, Corollary 3.32 proves a uniform bound on solutions
considered on subintervals of [0, T ], that will be employed in Chapter 4.

3.1. Paracontrolled analysis for the generalized
fractional Laplacian

In this section, we introduce some technical ingredients about Besov spaces and para-
products, that we will need in the sequel. Moreover, we collect properties of the
α-stable Lévy process and relate the process with its generator (−L α

ν ), that will also
be relevant for Chapter 4. We study estimates for the generalized fractional Laplacian
and its semigroup, as well as, commutator estimates involving the paraproducts and
the fractional semigroup.
The results (and notation) of this section will be used in all of the following chapters.
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3. Kolmogorov equations with singular paracontrolled terminal conditions

Let (pj)j⩾−1 be a smooth dyadic partition of unity, i.e. a family of functions pj ∈ C∞
c (Rd)

for j ⩾ −1, such that

1.) p−1 and p0 are non-negative radial functions (they just depend on the absolute
value of x ∈ Rd), such that the support of p−1 is contained in a ball and the
support of p0 is contained in an annulus;

2.) pj(x) := p0(2
−jx), x ∈ Rd, j ⩾ 0;

3.)
∑∞

j=−1 pj(x) = 1 for every x ∈ Rd; and

4.) supp(pi) ∩ supp(pj) = ∅ for all |i− j| > 1.

We then define the Besov spaces for p, q ∈ [1,∞],

Bθ
p,q := {u ∈ S ′ : ∥u∥Bθ

p,q
=
∥∥(2jθ∥∆ju∥Lp)j⩾−1

∥∥
ℓq
<∞}, (3.1)

where ∆ju = F−1(pjFu) are the Littlewood-Paley blocks, and the Fourier transform is
defined with the normalization φ̂(y) := Fφ(y) :=

∫
Rd φ(x)e−2πi⟨x,y⟩dx (and F−1φ(x) =

φ̂(−x)); moreover, S are the Schwartz functions and S ′ are the Schwartz distributions.
Let C∞

b = C∞
b (Rd,R) denote the space of bounded and smooth functions with bounded

partial derivatives. For q = ∞, the space Bθ
p,∞ has the unpleasant property that

C∞
b ⊂ Bθ

p,∞ is not dense. Therefore, we rather work with the following space:

Bθ
p,∞ := {u ∈ S ′ | lim

j→∞
2jθ∥∆ju∥Lp = 0}, (3.2)

for which C∞
b is a dense subset (cf. [BCD11, Remark 2.75]). We also use the notation

C θ
Rd := (C θ)d = C θ(Rd,Rd), C θ− :=

⋂
γ<θ C γ and C θ+ =

⋃
γ>θ C γ. Furthermore, we

introduce the notation C θ
p := Bθ

p,∞ for θ ∈ R and p ∈ [1,∞], where C θ := C θ
∞ with

norm denoted by ∥·∥θ := ∥·∥C θ .
For 1 ⩽ p1 ⩽ p2 ⩽ ∞, 1 ⩽ q1 ⩽ q2 ⩽ ∞ and s ∈ R, the Besov space Bs

p1,q1
is

continuously embedded in B
s−d(1/p1−1/p2)
p2,q2 (cf. [BCD11, Proposition 2.71]). Furthermore,

we will use that for u ∈ Bs
p,q and a multi-index n ∈ Nd, ∥∂nu∥

B
s−|n|
p,q
≲ ∥u∥Bs

p,q
, which

follows from the more general multiplier result from [BCD11, Proposition 2.78].
We recall from Bony’s paraproduct theory (cf. [BCD11, Section 2]) that in general
for u ∈ C θ and v ∈ C β with θ, β ∈ R, the product uv := u 4 v + u 5 v + u � v , is
well defined in C min(θ,β,θ+β) if and only if θ + β > 0. Denoting Siu =

∑i−1
j=−1 ∆ju, the

paraproducts are defined as follows

u4 v :=
∑
i⩾−1

Si−1u∆iv, u5 v := v 4 u, u� v :=
∑

|i−j|⩽1

∆iu∆jv.

Here, we use the notation of [MP19, MW17] for the para- and resonant products 4,5
and �.
In estimates we often use the notation a ≲ b, which means, that there exists a constant
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3.1. Paracontrolled analysis for the generalized fractional Laplacian

C > 0, such that a ⩽ Cb. In the case that we want to stress the dependence of the
constant C(d) in the estimate on a parameter d, we write a ≲d b.
The paraproducts satisfy the following estimates for p, p1, p2 ∈ [1,∞] with 1

p
=

min(1, 1
p1

+ 1
p2

) and θ, β ∈ R (cf. [PvZ22, Theorem A.1] and [BCD11, Theorem

2.82, Theorem 2.85])

∥u� v∥C θ+β
p
≲ ∥u∥C θ

p1
∥v∥C β

p2
, if θ + β > 0,

∥u4 v∥C β
p
≲ ∥u∥Lp1∥v∥C β

p2
≲ ∥u∥C θ

p1
∥v∥C β

p2
, if θ > 0,

∥u4 v∥C β+θ
p
≲ ∥u∥C θ

p1
∥v∥C β

p2
, if θ < 0.

(3.3)

So if θ + β > 0, we have ∥uv∥C γ
p
≲ ∥u∥C θ

p1
∥v∥C β

p2
for γ := min(θ, β, θ + β).

Next, we collect some facts about α-stable Lévy processes and their generators and
semigroups. For α ∈ (0, 2], a symmetric α-stable Lévy process L is a Lévy process,

that moreover satisfies the scaling property (Lkt)t⩾0
d
= k1/α(Lt)t⩾0 for any k > 0 and

L
d
= −L, where

d
= denotes equality in law. These properties determine the jump

measure µ of L, see [Sat99, Theorem 14.3]. That is, if α ∈ (0, 2), the Lévy jump
measure µ of L is given by

µ(A) := E

[ ∑
0⩽t⩽1

1A(∆Lt)

]
=

∫
S

∫
R+

1A(kξ)
1

k1+α
dkν̃(dξ), A ∈ B(Rd \ {0}), (3.4)

where ν̃ is a finite, symmetric, non-zero measure on the unit sphere S ⊂ Rd. Further-
more, we also define for A ∈ B(Rd \ {0}) and t ⩾ 0 the Poisson random measure

π(A× [0, t]) =
∑
0⩽s⩽t

1A(∆Ls),

with intensity measure dtµ(dy). Denote the compensated Poisson random measure of L
by π̂(dr, dy) := π(dr, dy)−drµ(dy). We refer to the book by Peszat and Zabczyk [PZ07]
for the integration theory against Poisson random measures and for the Burkholder-
Davis-Gundy inequality [PZ07, Lemma 8.21 and 8.22], which we will both use in the
sequel. The generator A of L satisfies C∞

b (Rd) ⊂ dom(A) and is given by

Aφ(x) =

∫
Rd

(
φ(x+ y)− φ(x)− 1{|y|⩽1}(y)∇φ(x) · y

)
µ(dy) for φ ∈ C∞

b (Rd).

(3.5)

If (Pt)t⩾0 denotes the semigroup of L, the convergence t−1(Ptf(x)− f(x))→ Af(x) is
uniform in x ∈ Rd (see [PZ07, Theorem 5.4]).
To derive Schauder estimates for (Pt) it will be easier to work with another representation
of the generator A. For that purpose we first introduce an operator L α

ν via Fourier
analysis, and then we show that it agrees with A.

Definition 3.1. Let α ∈ (0, 2) and let ν be a symmetric (i.e. ν(A) = ν(−A)), finite
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3. Kolmogorov equations with singular paracontrolled terminal conditions

and non-zero measure on the unit sphere S ⊂ Rd. We define the operator L α
ν as

L α
ν F−1φ = F−1(ψανφ) for φ ∈ C∞

b , (3.6)

where ψαν (z) :=
∫
S
|⟨z, ξ⟩|αν(dξ). For α = 2, we set L α

ν := −1
2
∆.

Remark 3.2. If we take ν as a suitable multiple of the Lebesgue measure on the sphere,
then ψαν (z) = |2πz|α and thus L α

ν is the fractional Laplace operator (−∆)α/2.

Lemma 3.3. Let α ∈ (0, 2) and let again ν be a symmetric, finite and non-zero measure
on the unit sphere S ⊂ Rd. Then for φ ∈ C∞

b we have −L α
ν φ = Aφ, where A is

the generator of the symmetric, α-stable Lévy process L with characteristic exponent
E[exp(2πi⟨z, Lt⟩)] = exp(−tψαν (z)). The process L has the jump measure µ as defined
in Equation (3.4), with ν̃ = Cν for some constant C > 0.

Proof. By Fourier inversion, Lt has the density ρt = F−1(exp(−tψαν )) with respect to
the Lebesgue measure (note that ψαν (z) = ψαν (−z)). So for the semigroup (Pt) of L
we have Ptφ(x) =

∫
ρt(y)φ(x+ y)dy with ∂tPtφ|t=0 = F−1(−ψαν φ̂) = −L α

ν φ for any
φ ∈ C∞

b . The identity ν̃ = Cν is shown in the proof of [Sat99, Theorem 14.10].

If α = 2, then the generator of the symmetric, α-stable process coincides with∑
i,j C(i, j)∂xi∂xj for an explicit covariance matrix C (cf. [Sat99, Theorem 14.2]),

that is, the generator of
√

2CB for a standard Brownian motion B. To ease notation,
we consider here C = 1

2
Idd×d and whenever we refer to the case α = 2, we mean the

standard Brownian motion noise case and L α
ν = −1

2
∆.

Assumption 3.4. Throughout the work, we assume that the measure ν from Defini-
tion 3.1 has d-dimensional support, in the sense that the linear span of its support is Rd.
This means that the process L can reach every open set in Rd with positive probability.

An α-stable, symmetric Lévy process, that satisfies Assumption 3.4, we also call non-
degenerate.
So far we defined L α

ν on C∞
b , so in particular on Schwartz functions. But the definition

of L α
ν on Schwartz distributions by duality is problematic, because for α ∈ (0, 2) the

function ψαν has a singularity in 0. This motivates the next proposition.

Proposition 3.5 (Continuity of the operator L α
ν ). Let α ∈ (0, 2]. Then for β ∈ R

and u ∈ C∞
b , p ∈ [1,∞], we have

∥L α
ν u∥C β−α

p
≲ ∥u∥C β

p
.

In particular, L α
ν can be uniquely extended to a continuous operator from C β

p to C β−α
p .

Proof. For j ⩾ 0 it follows from [BCD11, Lemma 2.2] the estimate ∥L α
ν ∆ju∥Lp ≲

2−j(β−α)∥u∥C β
p

. This uses that ψαν is infinitely continuously differentiable in Rd \ {0}
with |∂µψαν (z)| ≲ |z|α−|µ| for a multi-index µ ∈ Nd

0 with |µ| := µ1 + · · ·+ µd ⩽ α and
that ∆ju has a Fourier transform, which is supported in 2jA , where A is the annulus,
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3.1. Paracontrolled analysis for the generalized fractional Laplacian

where p0 is supported. For j = −1 and p = ∞, we use that −L α
ν = A for A as

in Equation (3.5), and therefore

−L α
ν ∆−1u(x) =

∫
Rd

(
∆−1u(x+ y)−∆−1u(x)−∇∆−1u(x) · y1{|y|⩽1}

)
µ(dy)

≲
∫
B(0,1)

∥D2∆−1u∥L∞|y|2µ(dy) + ∥∆−1u∥L∞µ(B(0, 1)c)

≲ ∥u∥β, (3.7)

where B(0, 1) = {|y| ⩽ 1} and the last step follows from the Bernstein inequality
in [BCD11, Lemma 2.1].
For p ∈ [1,∞), we use that −L α

ν ∆−1u = −L α
ν F−1p−1 ∗∆−1u, where p−1 is compactly

supported in a ball, and Young’s inequality, such that

∥−L α
ν ∆−1u∥Lp ⩽ ∥−L α

ν F−1p−1∥L1∥∆−1u∥Lp .

Then, we estimate −L α
ν F−1p−1 as in (3.7):

∥−L α
ν F−1p−1∥L1 ⩽ ∥−L α

ν F−1p−1∥L∞

≲ ∥D2F−1p−1∥L∞

∫
B(0,1)

|y|2µ(dy) + ∥F−1p−1∥L∞µ(B(0, 1)c)

≲ 1.

Remark 3.6. One can show that the operators A and −L α
ν even agree on

⋃
ε>0 C 2+ε.

Indeed, for φ ∈
⋃
ε>0 C 2+ε we have that φ and its partial derivatives up to order 2 are

uniformly continuous, and thus it follows from [PZ07, Theorem 5.4] that Aφ has the
same expression as in (3.5). Then we can use that C∞

b is dense in C 2+ε for all ε > 0
and apply a continuity argument to deduce that Aφ = −L α

ν φ for φ ∈
⋃
ε>0 C 2+ε.

For z ∈ Rd \ {0}, we also have

ψαν (z) = |z|α
∫
S

∣∣∣〈 z|z| , ξ〉∣∣∣αν(dξ) ⩾ |z|α min
|y|=1

∫
S

|⟨y, ξ⟩|αν(dξ),

and by Assumption 3.4 the minimum on the right hand side is strictly positive.
Otherwise, there exists some y0 ̸= 0 with

∫
S
|⟨y0, ξ⟩|αν(dξ) = 0 and this would mean

that the support of ν (and thus also its span) is contained in the orthogonal complement
of span(y0). Therefore, e−ψ

α
ν decays faster than any polynomial at infinity and outside

of 0 it even behaves like a Schwartz function.

Lemma 3.7 (Semigroup estimates). Let ν be a finite, symmetric measure on the sphere
S ⊂ Rd satisfying Assumption 3.4. Let Ptφ := F−1(e−tψ

α
ν φ̂) = ρt ∗ φ, where t > 0,

ρt = F−1e−tψ
α
ν ∈ L1, and φ ∈ C∞

b . Then we have for ϑ ⩾ 0, β ∈ R, p ∈ [1,∞]

∥Ptφ∥C β+ϑ
p
≲ (t−ϑ/α ∨ 1)∥φ∥C β

p
, (3.8)
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3. Kolmogorov equations with singular paracontrolled terminal conditions

and for ϑ ∈ [0, α]

∥(Pt − Id)φ∥C β−ϑ
p
≲ tϑ/α∥φ∥C β

p
. (3.9)

Furthermore, for β ∈ (0, 1), p =∞,

∥(Pt − Id)φ∥L∞ ≲ tβ/α∥φ∥C β . (3.10)

Therefore, if ϑ ⩾ 0, then Pt has a unique extension to a bounded linear operator in
L(C β,C β+ϑ) and this extension satisfies the same bounds.

Proof. In the case θ ∈ [0, α), this follows from [GIP15, Lemma A.5], see also [GIP15,
Lemma A.7], whose generalization to integrability p ∈ [1,∞] is immediate. For the
case ϑ = α in (3.9), we estimate

∥(Pt − Id)φ∥C β−α
p

=

∥∥∥∥∫ t

0

(−L α
ν )Prφdr

∥∥∥∥
C β−α
p

⩽
∫ t

0

∥(−L α
ν )Prφ∥C β−α

p
dr

≲
∫ t

0

∥Prφ∥C β
p
dr ≲ t∥φ∥C β

p

using Proposition 3.5 and (3.8) for ϑ = 0. (3.10) follows from [GIP15, Lemma A.8].

The next three lemmas deal with commutators between the (−L α
ν ) operator, its

semigroup and the paraproduct. The proofs can be found in Appendix A.

Lemma 3.8. Let α ∈ (1, 2], f ∈ C σ
p and g ∈ C ς with σ ∈ (0, 1) and ς ∈ R, p ∈ [1,∞].

Then the commutator for (−L α
ν ) follows:

∥(−L α
ν )(f 4 g)− f 4 (−L α

ν )g∥C σ+ς−α
p

≲ ∥f∥C σ
p
∥g∥C ς .

Lemma 3.9. Let (Pt) be as in Lemma 3.7. Then, for γ < 1, β ∈ R, p ∈ [1,∞] and
ϑ ⩾ −α the following commutator estimate holds true:

∥Pt(u4 v)− u4 Ptv∥C γ+β+ϑ
p

≲ (t−ϑ/α ∨ 1)∥u∥C γ
p
∥v∥C β . (3.11)

Lemma 3.10. Let L α
ν and (Pt)t⩾0 be defined as in Definition 3.1 and Lemma 3.7

and let α ∈ (1, 2]. Let T > 0, σ ∈ (0, 1), ς ∈ R, p ∈ [1,∞] and θ ⩾ 0. Then the
commutator on the operator (−L α

ν )Pt follows:

∥(−L α
ν )Pt(u4 v)− u4 (−L α

ν )Ptv∥C σ+ς−α+θ
p

≲ (t−θ/α ∨ 1)∥u∥C σ
p
∥v∥C ς .
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3.2. Schauder theory and commutator estimates for blow-up spaces

The mild formulation of the Kolmogorov equation is given by

ut = PT−tuT +

∫ T

t

Pr−t(Vr · ∇ur − fr)dr =: PT−tuT + JT (V · ∇u− f)(t). (3.12)

Due to the Schauder estimates, considering a singular terminal condition with uT ∈ C β+
p ,

we obtain that ∥PT−tuT∥Cα+β
p

blows up for t→ T and the blow-up is of order γ ∈ (0, 1).

This motivates the definition of blow-up spaces below, from which we can build the
solution space in the next section.
For γ ∈ (0, 1), T > 0 and T ∈ (0, T ], and a Banach space X, let us define the blow-up
space

M γ

T ,T
X := {u : [T − T , T )→ X | t 7→ (T − t)γut ∈ C([T − T , T ), X)},

with ∥u∥M γ

T ,T
X := supt∈[T−T ,T )(T − t)γ∥ut∥X and M 0

T ,T
X := C([T − T , T ), X). For

T = T , we use the notation M γ
TX := M γ

T,TX. For ϑ ∈ (0, 1], γ ∈ (0, 1), we furthermore
define

Cγ,ϑ

T ,T
X :=

{
u : [T − T , T )→ X

∣∣∣∣ ∥f∥Cγ,ϑ
T X := sup

0⩽s<t<T

(T − t)γ∥ft − fs∥X
|t− s|ϑ

<∞
}

and Cγ,ϑ
T X := Cγ,ϑ

T,TX. Let us also define for ϑ ∈ (0, 1], T ∈ (0, T ], the space of ϑ-Hölder

continuous functions on [T − T , T ] with values in X,

Cϑ
T ,T
X :=

{
u : [T − T , T ]→ X

∣∣∣∣ ∥u∥Cϑ
TX

:= sup
T−T⩽s<t⩽T

∥ut − us∥X
|t− s|ϑ

<∞
}

and Cϑ
TX := Cϑ

T,TX. We set C0,ϑ

T ,T
X := Cϑ([T − T , T ), X).

We have the trivial estimates

∥u∥M γ1
T,T

X ⩽ T
γ1−γ2∥u∥M γ2

T,T
X , ∥u∥

C
γ1,ϑ1
T,T

X
⩽ T

(γ1−γ2)+(ϑ2−ϑ1)∥u∥
C

γ2,ϑ2
T,T

X
(3.13)

for 0 ⩽ γ2 ⩽ γ1 < 1 and 0 < ϑ1 ⩽ ϑ2 ⩽ 1. Moreover, we have that for a subinterval
[T − 2T , T − T ] ⊂ [0, T ] with 0 < T ⩽ T

2
,

∥u∥M 0
T,T−T

X ⩽ T
−γ∥u∥M γ

TX
. (3.14)

3.2. Schauder theory and commutator estimates for
blow-up spaces

In this section, we define the solution space L γ,α+β
T and prove Schauder and commutator

estimates. We conclude the section with interpolation estimates for the solution spaces.
Heuristically, the solution space shall combine maximal space regularity (i.e. α+ β) in
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3. Kolmogorov equations with singular paracontrolled terminal conditions

a time-blow-up space with maximal time regularity (i.e. Lipschitz) in a space of low
space regularity. By interpolation, the solution will then also admit all time and space
regularities “in between”.
Let us thus define for γ ∈ (0, 1) and θ ∈ R, p ∈ [1,∞], the space

L γ,θ
T := M γ

TC θ
p ∩ C

1−γ
T C θ−α

p ∩ Cγ,1
T C θ−α

p . (3.15)

We moreover define for γ = 0,

L 0,θ
T := C1

TC θ−α
p ∩ CTC θ

p , (3.16)

where C1
TX denotes the space of 1-Hölder or Lipschitz functions with values in X.

For T ∈ (0, T ), we define L γ,θ

T ,T
:= M γ

T ,T
C θ
p ∩ C

1−γ
T ,T

C θ−α
p ∩ Cγ,1

T ,T
C θ−α
p .

The spaces L γ,θ
T are Banach spaces equipped with the norm

∥u∥L γ,θ
T

:= ∥u∥M γ
T C θ

p
+ ∥u∥Cγ,1

T C θ−α
p

+ ∥u∥C1−γ
T C θ−α

p

= sup
t∈[0,T )

(T−t)γ∥ut∥C θ
p

+ sup
0⩽s<t<T

(T−t)γ∥ut−us∥C θ−α
p

|t−s|
+ sup

0⩽s<t⩽T

∥ut−us∥C θ−α
p

|t−s|1−γ
.

Notice, that u ∈ L γ,θ
T in particular implies that t 7→ ∥ut∥C θ−α is (1 − γ)-Hölder

continuous at t = T .
The next corollary proves estimates for the semigroup (Pt) of (−L α

ν ) acting on the
spaces L γ,θ

T . We will need the following auxillary lemma. In particular, the lemma can
be applied, to show that the inverse fractional Laplacian improves space regularity by
α (and not only by θ < α). It is a slight generalization of [GIP15, Lemma A.9, (A.1)].
Its proof can be found in Appendix A.

Lemma 3.11. Let σ ∈ R, p ∈ [1,∞], γ ∈ [0, 1), ε ∈ (0, 1) and ς ⩾ 0. Let moreover
f : ∆̊T → S ′, ∆̊T := {(t, r) ∈ [0, T ]2 | t < r}, be such that there exists C > 0 such
that for all j ⩾ −1 and 0 ⩽ t < r ⩽ T , for the Littlewood-Paley blocks holds

∥∆jft,r∥Lp ⩽ C(T − r)−γ min(2−jσ, 2−j(σ+ς+ες)(r − t)−(1+ε)).

Then it follows that for all t ∈ [0, T ]∥∥∥∥∫ T

t

ft,rdr

∥∥∥∥
C σ+ς
p

⩽ [2C max(ε−1, (1− γ)−1)](T − t)−γ. (3.17)

Corollary 3.12 (Schauder estimates). Let (Pt) and ν be as in Lemma 3.7. Let T > 0,

T ∈ (0, T ]. For t ∈ [T − T , T ] we define JTv(t) = JT (v)(t) :=
∫ T
t
Pr−tv(r)dr. Then

we have for β ∈ R, ϑ ∈ [0, α], γ ∈ [ϑ/α, 1],

∥PT−·w∥L γ,β+ϑ

T,T

≲ T
(γα−ϑ)/α∥w∥C β

p
(3.18)
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and for 0 ⩽ γ′ ⩽ γ < 1,

∥JTv∥L γ,β+α

T,T

≲ T
γ−γ′∥v∥

M γ′
T,T

C β
p
. (3.19)

Remark 3.13. Recall the definition of L 0,θ
T and that v ∈ L 0,θ

T does not imply continuity
of t 7→ ∥vt∥C θ

p
at t = T . However, continuity of t 7→ ∥PT−tw∥L 0,β

T ,T

and t 7→ ∥JTv∥L 0,β+α

T,T

at t = T can be inferred from the Schauder estimates and separability of C θ
p (cf. the

definition in (3.2)). Indeed, approximating v in CTC β
p by (vn) ⊂ CTC

∞
b and using

(3.19) yields that ∥JT (v)− JT (vn)∥M 0
T C β+α ≲ ∥v − vn∥CT C β

p
→ 0 and JT (vn) ∈ CTC∞

b

for all n. As the uniform limit of continuous functions is a continuous function, we
obtain that indeed JT (v) ∈ CTC β+α

p , analogously PT−·w ∈ CTC β
p . In particular, conti-

nuity at t = T follows.
Moreover, for w ∈ C β

p follows d
dt
Ptw = (−L α

ν )Ptw in the distributional sense and we
have that (−L α

ν )Ptw ∈ CTC β−α
p . Hence, Ptw and JT (v) are not only Lipschitz contin-

uous in time with values in C β−α
p , respectively C β

p , but also continuously differentiable
in time.
Together, this shows that we can replace L 0,θ

T ,T
in the Schauder estimates, and the fol-

lowing estimates involving the semigroup, by C([T − T , T ],C θ
p ) ∩C1([T − T , T ],C θ−α

p ).

Proof. For (3.18) we only prove the estimate in C1−γ
T ,T

C β+ϑ−α
p and in Cγ,1

T ,T
C β+ϑ−α
p , the

estimate in M γ

T ,T
C β+ϑ
p follows from a direct application of Lemma 3.7.

Therefore we write PT−tw−PT−sw = PT−t(Id−Pt−s)w for T − T ⩽ s < t ⩽ T and use
Lemma 3.7 to conclude

∥PT−tw − PT−sw∥C β+ϑ−α
p

≲ ∥(Id−Pt−s)w∥C β+ϑ−α
p

≲ (t− s)1−ϑ/α∥w∥C β
p

≲ T
(γα−ϑ)/α

(t− s)1−γ∥w∥C β
p

using 0 ⩽ ϑ ⩽ α and γ ⩾ ϑ/α. This controls ∥PT−·w∥C1−γ

T ,T
C β+γ−α
p

. To bound the norm

∥PT−·w∥Cγ,1

T,T
C β+γ−α
p

, we note that

∥PT−tw − PT−sw∥C β+ϑ−α
p

≲ (T − t)−ϑ/α∥(Id−Pt−s)w∥C β−α
p

≲ (T − t)−ϑ/α(t− s)∥w∥C β
p

≲ T
(γα−ϑ)/α

(T − t)−γ(t− s)∥w∥C β
p
.

To estimate the M γ

T ,T
C β+α
p -norm in (3.19), we use Lemma 3.11 with ft,r = Pr−tvr and

σ = β, ς = α, to obtain for t ∈ [T − T , T ]

(T − t)γ∥JTv(t)∥C β+α
p

= (T − t)γ−γ′(T − t)γ′
∥∥∥∥∫ T

t

Pr−tvrdr

∥∥∥∥
C β+α
p

≲ T
γ−γ′∥v∥

M γ′
T,T

C β
p
.
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To prove the bounds on the time regularity in (3.19) we write

JT (v)t − JT (v)s =

∫ t

s

Pr−svrdr − (Pt−s − Id)

(∫ T

t

Pr−tvrdr

)
,

for T − T ⩽ s < t ⩽ T . We can estimate by Lemma 3.7∥∥∥∥∫ t

s

Pr−svrdr

∥∥∥∥
C β
p

⩽
∫ t

s

∥Pr−svr∥C β
p
dr

≲ ∥v∥
M γ′

T,T
C β
p

∫ t

s

|T − r|−γ′dr

≲ ∥v∥
M γ′

T,T
C β
p

(|T − s|1−γ′ − |T − t|1−γ′)

⩽ T
γ−γ′|t− s|1−γ∥v∥

M γ′
T,T

C β
p
,

using that 0 ⩽ γ′ ⩽ γ < 1 and the estimate

|T − t|1−γ′ − |T − s|1−γ′ ⩽ |t− s|1−γ′ ⩽ T
γ−γ′ |t− s|1−γ.

On the other hand, we can also estimate that term by∥∥∥∥∫ t

s

Pr−svrdr

∥∥∥∥
C β
p

≲ ∥v∥
M γ′

T,T
C β
p

∫ t

s

|T − r|−γ′dr

⩽ ∥v∥
M γ′

T,T
C β
p
|T − t|−γ′

∫ t

s

dr

⩽ T
γ−γ′∥v∥

M γ′
T,T

C β
p
|T − t|−γ|t− s|.

Moreover, by Lemma 3.7 for ϑ = α and Lemma 3.11, we obtain that∥∥∥∥(Pt−s − Id)

(∫ T

t

Pr−tvrdr

)∥∥∥∥
C β
p

≲ |t− s|
∥∥∥∥∫ T

t

Pr−tvrdr

∥∥∥∥
C β+α
p

≲ |t− s|∥v∥
M γ′

T,T
C β
p

(T − t)−γ′

≲ |t− s|T γ−γ
′

∥v∥
M γ′

T,T
C β
p

(T − t)−γ,
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and on the other hand we can estimate by Lemma 3.7 for ϑ = (1− γ)α,∥∥∥∥(Pt−s − Id)

(∫ T

t

Pr−tvrdr

)∥∥∥∥
C β
p

≲ |t− s|(α−γα)/α
∥∥∥∥∫ T

t

Pr−tvrdr

∥∥∥∥
C β+α−γα
p

≲ |t− s|(α−γα)/α∥v∥
M γ′

T,T
C β
p

∫ T

t

(T − r)−γ′(t− r)(γα−α)/αdr

≲ |t− s|1−γ∥v∥
M γ′

T,T
C β
p

(T − t)γ−γ′

≲ |t− s|1−γ∥v∥
M γ′

T,T
C β
p
T
γ−γ′

,

where we used that γ > 0 and that γ′ ⩽ γ < 1 (if γ = 0, we can use the previous
estimate instead).

Next, we prove a commutator estimate for the JT -operator and the paraproduct.

Lemma 3.14 (Commutator estimates). Let T > 0 and T ∈ (0, T ] and let ς ∈ R,
σ ∈ (0, 1) and p ∈ [1,∞]. Let α ∈ (1, 2] and γ ∈ [0, 1). Then for u ∈ C σ

p , v ∈ C ς the
following semigroup commutator estimate holds

∥t 7→ PT−t(u4 v)− u4 PT−t(v)∥L γ,σ+ς+γα
T

≲ ∥u∥C σ
p
∥v∥C ς . (3.20)

Furthermore, for g ∈ L γ′,σ

T ,T
with 0 ⩽ γ′ ⩽ γ < 1 and h ∈ CTC ς , we have

∥JT (g 4 h)− g 4 JT (h)∥L γ,σ+ς+α

T,T

≲ T
γ−γ′∥g∥

L γ′,σ
T ,T

∥h∥CT C ς . (3.21)

Remark 3.15. It is known that the commutator for the JT -operator from the lemma
allows for more space regularity than both of its summands. The above commutator
estimate moreover yields a gain in time regularity, i.e. JT (g 4 h) − g 4 JT (h) ∈
C1−γ
T C σ+ς

p ∩ Cγ,1
T C σ+ς

p , provided that g ∈ L γ,σ
T .

Proof. Recall that L γ,σ+ς+γα
T is equipped with the sum of the norms in

M γ
TC σ+ς+αγ

p , C1,γ
T C σ+ς+αγ−α

p and C1−γ
T C σ+ς+αγ−α

p ,

that we need to estimate below.
For (3.20), the estimate in M γ

TC σ+ς+αγ
p follows directly by the semigroup commutator

Lemma 3.9 applied to ϑ = γα. For the estimate in C1,γ
T C σ+ς+αγ−α

p ∩ C1−γ
T C σ+ς+αγ−α

p

95



3. Kolmogorov equations with singular paracontrolled terminal conditions

we write for 0 ⩽ s ⩽ t ⩽ T ,

PT−t(u4 v)− u4 PT−t(v)− (PT−s(u4 v)− u4 PT−s(v))

= (Id−Pt−s)[PT−t(u4 v)− u4 PT−tv]

+ [u4 Pt−sPT−tv − Pt−s(u4 PT−tv)].

The first summand we can estimate by the semigroup estimates (Lemma 3.7) for
Id−Pt−s and the commutator estimate in M γ

TC σ+ς+αγ
p , obtaining

∥(Id−Pt−s)[PT−t(u4 v)− u4 PT−tv]∥C σ+ς+αγ−α
p

≲ |t− s|∥[PT−t(u4 v)− u4 PT−tv]∥C σ+ς+αγ
p

≲ (T − t)−γ|t− s|∥u∥C σ
p
∥v∥C ς .

This gives the estimate in C1,γ
T C σ+ς+α(γ−1)

p . Analogously we can estimate the norm

in C1−γ
T C σ+ς+α(γ−1)

p using the Schauder estimates for Id−Pt−s (obtaining a factor of
|t− s|1−γ) and the commutator in CT ,TC σ+ς

p , i.e.

∥(Id−Pt−s)[PT−t(u4 v)− u4 PT−tv]∥C σ+ς+αγ−α
p

≲ |t− s|1−γ∥[PT−t(u4 v)− u4 PT−tv]∥C σ+ς
p

≲ |t− s|1−γ∥u∥C σ
p
∥v∥C ς .

The second summand can be estimated using the semigroup commutator (Lemma 3.9)
for ϑ = (γ − 1)α ⩾ −α and the semigroup estimate (3.9), such that∥∥Pt−s(u4 PT−tv)− u4 Pt−sPT−tv

∥∥
C σ+ς+αγ−α
p

≲ |t− s|1−γ∥u∥C σ
p
∥PT−tv∥C ς ≲ |t− s|1−γ∥u∥C σ

p
∥v∥C ς .

Using instead the semigroup commutator for ϑ = −α ⩾ −α and again the semigroup
estimate (3.9) yields∥∥Pt−s(u4 PT−tv)− u4 Pt−sPT−tv

∥∥
C σ+ς+αγ−α
p

≲ |t− s|∥u∥C σ
p
∥PT−tv∥C ς+αγ

≲ |t− s|(T − t)−γ∥u∥C σ
p
∥v∥C ς . (3.22)

Together, we obtain (3.20). For (3.21), we first prove that C(g, h) := JT (g 4 h)− g 4
JT (h) ∈M γ

T ,T
C σ+ς+α
p . To that end, we write

C(g, h)t =

∫ T

t

(
Pr−t(gr4hr)−gr4Pr−thr

)
dr+

∫ T

t

(gr−gt)4Pr−thrdr =: I1(t)+I2(t).

To estimate I1, we utilize Lemma 3.11 for ft,r = Pr−t(gr 4 hr) − gr 4 Pr−thr, where
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the assumptions of the lemma are satisfied by the semigroup commutator estimate
(Lemma 3.9). Then, we obtain

∥I1(t)∥C σ+ς+α
p

≲ ∥g∥
M γ′

T,T
C σ
p
∥h∥CT C ς (T − t)−γ′ ≲ T

γ−γ′∥g∥
M γ′

T,T
C σ
p
∥h∥CT C ς (T − t)−γ.

For I2, we apply Lemma 3.11 for ft,r := (gr − gt) 4 Pr−thr. We check the assumptions
on ft,r of that lemma, using the time regularity of g, as well as the paraproduct estimate
(using σ − α < 0) and the semigroup estimates. Then, choosing θ = 0 or θ = (1 + ε)α
for ε ∈ [0, 1], we estimate (the estimate is in fact valid for all θ ⩾ −α)

∥(gr − gt) 4 Pr−thr∥C σ+ς+θ
p

= ∥(gr − gt) 4 Pr−thr∥C (σ−α)+(ς+θ+α)
p

≲ (T − r)−γ′(r − t)−θ/α∥h∥CT C ς∥g∥
Cγ′,1

T,T
C σ−α
p

Applying Lemma 3.11 yields then the estimate for I2:

∥I2(t)∥C σ+ς+α
p

≲ T
γ−γ′∥g∥

Cγ′,1
T,T

C σ−α
p
∥h∥CT C ς

Rd
(T − t)−γ.

Next, we prove the time regularity estimates on the commutator C(g, h). For that, we
write for T − T ⩽ s ⩽ l ⩽ T ,

JT (g 4 h)l − gl 4 JT (h)l − (JT (g 4 h)s − gs 4 JT (h)s)

= −
∫ l

s

Pr−s(gr 4 hr)dr − (Pl−s − Id)

(∫ T

l

Pr−l(gr 4 hr)dr

)
+ gs 4

∫ l

s

Pr−shrdr − gs,l 4
∫ T

l

Pr−lhrdr + gs 4 (Pl−s − Id)

(∫ T

l

Pr−lhrdr

)
= Asl +Bsl + Csl,

where we define

Asl := gs 4
∫ l

s

Pr−shrdr −
∫ l

s

Pr−s(gr 4 hr)dr

and

Bsl := −gs,l 4
∫ T

l

Pr−lhrdr,

where gs,l := gl − gs and

Csl := gs 4 Pl−s

(∫ T

l

Pr−lhrdr

)
− Pl−s

(∫ T

l

Pr−l(gr 4 hr)dr

)
.

We will consider the terms Asl, Bsl and Csl separately and estimate each term in the
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3. Kolmogorov equations with singular paracontrolled terminal conditions

C1−γ
T ,T

C σ+ς-norm and in the Cγ,1

T ,T
C σ+ς-norm.

We start with Bsl, using the time regularity of g, obtaining on the one hand

∥Bsl∥C σ+ς
p

=

∥∥∥∥gs,l 4 ∫ T

l

Pr−lhrdr

∥∥∥∥
C

(σ−α)+(α+ς)
p

≲ ∥g∥
C1−γ′

T,T
C σ−α
p
|l − s|1−γ′

∥∥∥∥∫ T

l

Pr−lhrdr

∥∥∥∥
Cα+ς

≲ |l − s|1−γ′∥g∥
C1−γ′

T,T
C σ−α
p
∥h∥CT C ς

≲ T
γ−γ′|l − s|1−γ∥g∥

C1−γ′
T,T

C σ−α
p
∥h∥CT C ς ,

using σ − α < 0 and Lemma 3.11 for fl,r = Pr−lhr to bound the time integral. On the

other hand, along the same lines, using instead g ∈ Cγ′,1

T ,T
C σ−α
p , we can estimate Bsl by

∥Bsl∥C σ+ς
p
≲ T

γ−γ′∥h∥CT C ς∥g∥
Cγ′,1

T,T
C σ−α
p
|l − s|(T − l)−γ.

For Asl, we use the semigroup commutator (Lemma 3.9) for ϑ = 0, as well as the time
regularity of g, which yields

∥Asl∥C σ+ς
p

=

∥∥∥∥∫ l

s

Pr−s(gr 4 hr)dr − gs 4
∫ l

s

Pr−shrdr

∥∥∥∥
C σ+ς
p

⩽

∥∥∥∥∫ l

s

(Pr−s(gr4hr)−gr4Pr−shr)dr
∥∥∥∥

C σ+ς
p

+

∥∥∥∥∫ l

s

(gr−gs)4Pr−shrdr
∥∥∥∥

C
(σ−α)+(ς+α)
p

⩽ ∥g∥
M γ′

T,T
C σ∥h∥CT C ς

p

∫ l

s

(T − r)−γ′dr + ∥h∥CT C ς∥g∥
C1−γ′

T,T
C σ−α
p

∫ l

s

|r − s|−γ′dr

≲ ∥g∥
L γ′,σ

T ,T

∥h∥CT C ς

(
(T − s)1−γ′ − (T − l)1−γ′ + |l − s|1−γ′

)
≲ ∥g∥

L γ′,σ
T ,T

∥h∥CT C ςT
γ−γ′|l − s|1−γ.

We can also estimate the term Asl by

∥Asl∥C σ+ς
p
⩽ ∥g∥

M γ′
T,T

C σ
p
∥h∥CT C ς

∫ l

s

(T−r)−γ′dr+∥h∥CT C ς∥g∥
Cγ′,1

T,T
C σ−α
p

∫ l

s

(T−r)−γ′dr

≲ (T − l)−γ′|l − s|∥h∥CT C ς

(
∥g∥

M γ′
T,T

C σ
p

+ ∥g∥
Cγ′,1

T,T
C σ−α
p

)
≲ T

γ−γ′
(T − l)−γ|l − s|∥h∥CT C ς∥g∥

L γ′,σ
T ,T

,

using (T − r)−γ ⩽ (T − l)−γ for r ∈ [s, l]. It is left to estimate the term Csl, that we
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first rewrite:

Csl = Pl−s

(∫ T

l

Pr−l(gr 4 hr)dr

)
− gs 4 Pl−s

(∫ T

l

Pr−lhrdr

)
= (Pl−s − Id)

(∫ T

l

Pr−l(gr 4 hr)dr − gs 4
∫ T

l

Pr−lhrdr

)
(3.23)

+ Pl−s

(
gs 4

∫ T

l

Pr−lhrdr

)
− gs 4 Pl−s

(∫ T

l

Pr−lhrdr

)
. (3.24)

To estimate the term in line (3.23), we use Lemma 3.7 and the estimate for I1(l) + I2(l)
from above to obtain∥∥∥∥(Pl−s − Id)

(∫ T

l

(Pr−l(gr 4 hr)− gs 4 Pr−lhr)dr

)∥∥∥∥
C ς+σ+α−α
p

≲ |l − s|
∥∥∥∥∫ T

l

(Pr−l(gr 4 hr)− gs 4 Pr−lhr)dr

∥∥∥∥
C ς+σ+α
p

≲ |l − s|(T − l)−γT γ−γ
′

∥g∥
L γ′,σ

T ,T

∥h∥CT C ς .

The term in line (3.23), we can also estimate differently using Lemma 3.7 and an easier
estimate for I1(l), I2(l) using the semigroup estimates and α(1− γ′) < α to obtain∥∥∥∥(Pl−s − Id)

(∫ T

l

(Pr−l(gr 4 hr)− gs 4 Pr−lhr)dr

)∥∥∥∥
C ς+σ
p

≲ |l − s|1−γ′
∥∥∥∥∫ T

l

(Pr−l(gr 4 hr)− gs 4 Pr−lhr)dr

∥∥∥∥
C

ς+σ+α(1−γ′)
p

≲ |l − s|1−γ′(∥I1(l)∥C ς+σ+α(1−γ′)
p

+ ∥I2(l)∥C ς+σ+α(1−γ′)
p

)

≲ |l − s|1−γ′∥h∥CT C ς

(
[∥g∥

M γ′
T,T

C σ
p

+ ∥g∥
Cγ′,1

T,T
C σ−α
p

]

∫ T

l

(T − r)−γ′(r − l)−1+γ′dr

)
≲ T

γ−γ′ |l − s|1−γ∥h∥CT C ς∥g∥
L γ′,σ

T ,T

∫ 1

0

(1− r)−γ′r−1+γ′dr

≲ T
γ−γ′ |l − s|1−γ∥h∥CT C ς∥g∥

L γ′,σ
T ,T

.

To estimate the term in line (3.24), we use the commutator for Pl−s for ϑ = −α and
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again Lemma 3.11 for fl,r = Pr−lhr, yielding∥∥∥∥Pl−s(gs 4
∫ T

l

Pr−lhrdr

)
− gs 4 Pl−s

(∫ T

l

Pr−lhrdr)

)∥∥∥∥
C σ+ς+α−α
p

≲ |l − s|∥h∥CT C ς∥g∥
M γ′

T,T
C σ
p

(T − s)−γ′
∥∥∥∥∫ T

l

Pr−lhrdr

∥∥∥∥
C ς+α

≲ T
γ−γ′|l − s|∥h∥CT C ς∥g∥

M γ′
T,T

C σ
p

(T − s)−γ.

Applying instead the semigroup commutator for ϑ = −(1− γ′)α yields∥∥∥∥Pl−s(gs 4
∫ T

l

Pr−lhrdr

)
− gs 4 Pl−s

(∫ T

l

Pr−lhrdr)

)∥∥∥∥
C σ+ς
p

≲ |l − s|1−γ′∥g∥
M γ′

T,T
C σ
p

(T − s)−γ′
∥∥∥∥∫ T

l

Pr−lhrdr

∥∥∥∥
C ς+α(1−γ′)

≲ |l − s|1−γ′∥h∥CT C ς∥g∥
M γ′

T,T
C σ
p

(T − s)−γ′(T − l)γ′

≲ T
γ−γ′|l − s|1−γ∥h∥CT C ς∥g∥

M γ′
T,T

C σ
p
,

where to bound the time integral, we used that α(1− γ′) < α and s ⩽ l. Together we
obtain the desired estimates for Csl, which yield together with the estimates for Asl
and Bsl the claim.

Remark 3.16. The proof of the commutator estimate does not apply if we consider
instead of g ∈ L γ,σ

T , a function g ∈M γ
TC σ ∩ C1−γ

T C σ−α. The reason is the estimate
for the term I2 in the above proof, for which we need to employ that g ∈ Cγ,1

T C σ−α.

We conclude this section with interpolation estimates for the spaces L γ,θ
T .

Lemma 3.17 (Interpolation estimates). Let γ ∈ [0, 1), θ ∈ [0, α], p ∈ [1,∞]. Let
moreover v ∈ L γ,θ

T . Then the following estimates hold true:
It follows that for θ ∈ [αγ, α),

∥v∥
C

γ(1−γ),θ/α−γ
T Lp ≲ (T γ(1−γ) ∨ 1)∥v∥L γ,θ

T
. (3.25)

Furthermore, for θ̃ ∈ [0, α], it holds that

∥v∥
C

γ,θ̃/α
T C θ−θ̃

p
≲ ∥v∥L γ,θ

T
(3.26)

and

∥v∥
M

γ(1−θ̃/α)
T C θ−θ̃

p
≲ ∥v∥L γ,θ

T
. (3.27)
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3.2. Schauder theory and commutator estimates for blow-up spaces

If vT ∈ C θ
p and θ̃ ∈ [αγ, α], then the following estimate holds true

∥vt∥C θ−θ̃
p
≲ (T − t)θ̃/α−γ[∥v∥L γ,θ

T
+ ∥vT∥1−θ̃/αC θ

p
] + ∥vT∥C θ−θ̃

p
. (3.28)

Remark 3.18. For γ = 0, θ ∈ (0, 1] and a Banach space X, we recall that C0,θ
T X =

Cθ
TX.

Proof. To prove (3.25) we let 0 ⩽ s ⩽ t ⩽ T and we first assume that (T − t) ⩽ |t− s|.
In that case, we utilize the estimate (3.27) for θ̃ = αγ, such that v ∈ L γ,θ

T implies

v ∈M γ(1−γ)
T C θ−αγ

p and furthermore estimate

∥vt − vs∥Lp ⩽
∑
j

∥∆j(vt − vs)∥Lp ≲
∑

j: 2−j⩽|t−s|1/α
2−j(θ−αγ)(T − t)−γ(1−γ)∥v∥

M
γ(1−γ)
T C θ−αγ

p

+
∑

j: 2−j>|t−s|1/α
2−j(θ−α)|t− s|1−γ∥v∥C1−γ

T C θ−α
p

≲ (T − t)−γ(1−γ)|t− s|θ/α−γ∥v∥
M

γ(1−γ)
T C θ−αγ

p

+ |t− s|θ/α−γ∥v∥C1−γ
T C θ−α

p
,

using that θ > αγ for the convergence of the geometric sum and that θ < α. If
|t− s| ⩽ (T − t), we estimate

∥vt − vs∥Lp ⩽
∑
j

∥∆j(vt − vs)∥Lp ≲
∑

j: 2−j⩽|t−s|1/α
2−jθ(T − t)−γ∥v∥M γ

T C θ
p

+
∑

j: 2−j>|t−s|1/α
2−j(θ−α)|t− s|1−γ∥v∥C1−γ

T C θ−α
p

≲
∑

j: 2−j⩽|t−s|1/α
2−jθ|t− s|−γ∥v∥M γ

T C θ
p

+
∑

j: 2−j>|t−s|1/α
2−j(θ−α)|t− s|1−γ∥v∥C1−γ

T C θ−α
p

≲ |t− s|θ/α−γ∥v∥M γ
T C θ

p
+ |t− s|θ/α−γ∥v∥C1−γ

T C θ−α
p

≲ |t− s|θ/α−γ∥v∥L γ,θ
T
.

Together, we obtain (3.25).
To prove (3.26) and (3.27), we let θ̃ ∈ [0, α]. Then we estimate for s < t,

∥∆j(vt − vs)∥Lp ≲ (T − t)−γ min
(

2−jθ∥v∥M γ
T C θ

p
, 2−j(θ−α)|t− s|∥v∥Cγ,1

T C θ−α
p

)
and for t ∈ [0, T ),

∥∆jvt∥Lp ≲ min(2−jθ(T − t)−γ∥v∥M γ
T C θ

p
, 2−j(θ−α)∥v∥CT C θ−α

p
).
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3. Kolmogorov equations with singular paracontrolled terminal conditions

Thus by interpolation (that is, min(a, b) ⩽ aεb1−ε for a, b ⩾ 0, ε ∈ [0, 1]) and using that
∥v∥CT C θ−α

p
≲ ∥v∥L γ,θ

T
, we obtain

∥∆j(vt − vs)∥Lp ≲ (T − t)−γ2−jθ(1−θ̃/α)2−j(θ−α)θ̃/α|t− s|θ̃/α∥v∥L γ,θ
T

= (T − t)−γ2−j(θ−θ̃)|t− s|θ̃/α∥v∥L γ,θ
T
,

from which (3.26) follows, and

∥∆jvt∥Lp ≲ 2−jθ(1−θ̃/α)(T − t)−γ(1−θ̃/α)∥v∥1−θ̃/α
M γ

T C θ
p

2−j(θ−α)θ̃/α∥v∥θ̃/α
CT C θ−α

p

⩽ 2−j(θ−θ̃)∥v∥L γ,θ
T

(T − t)−γ(1−θ̃/α),

which yields (3.27). Finally, if (T − t) ⩾ 1, then (3.28) follows from (3.27) as

∥vt∥C θ−θ̃
p
≲ ∥v∥L γ,θ

T
(T − t)−γ(1−θ̃/α) ⩽ ∥v∥L γ,θ

T

⩽ (T − t)θ̃/α−γ[∥v∥L γ,θ
T

+ ∥vT∥1−θ̃/α
C θ−θ̃
p

] + ∥vT∥C θ−θ̃
p

using that θ̃/α ⩾ γ. If (T − t) ⩽ 1 , then (3.28) follows from

∥vt∥C θ−θ̃
p
⩽ ∥vt − vT∥C θ−θ̃

p
+ ∥vT∥C θ−θ̃

p

and using that vT ∈ C θ
p , we obtain

∥∆j(vt − vT )∥Lp

≲ min
(

2−jθ(T − t)−γ[∥v∥M γ
T C θ

p
+ ∥vT∥C θ

p
], 2−j(θ−α)(T − t)1−γ∥v∥C1−γ

T C θ−α
p

)
.

By interpolation as above, we thus have

∥∆j(vt − vT )∥Lp ≲ 2−j(θ−θ̃)(T − t)θ̃/α−γ[∥v∥L γ,θ
T

+ ∥vT∥1−θ̃/αC θ
p

],

such that together (3.28) follows.

3.3. Solving the Kolmogorov backward equation

In this section, we develop a concise solution theory that simultaneously treats singular
and non-singular terminal condition for the Kolmogorov backward equation.

We start by solving the Kolmogorov equation in the Young regime, that is β > (1−α)/2.
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3.3. Solving the Kolmogorov backward equation

Theorem 3.19. 1 Let α ∈ (1, 2], β ∈ (1−α
2
, 0) and p ∈ [1,∞]. Let V ∈ CTC β

Rd,
f ∈ CTC β

p and uT ∈ C α+β
p . Then the PDE

∂tu = L α
ν u− V · ∇u+ f, u(T, ·) = uT , (3.29)

has a unique mild solution u ∈ CTC α+β ∩ C1
TC β (i.p. by (3.25), u ∈ C

(α+β)/α
T Lp).

Moreover, the solution map

C α+β
p × CTC β

p × CTC β
Rd ∋ (uT , f, V ) 7→ u ∈ L 0,α+β

T

is continuous.
Furthermore, for a singular terminal conditions uT ∈ C (1−γ)α+β

p for γ ∈ [0, 1), the
solution u is obtained in L γ,α+β

T .

Proof. Let uT ∈ C α+β
p . We first prove, that the solution exists in L γ,α+β

T for any

γ ∈ (0, 1). Then we argue, that u ∈ L 0,α+β
T , and with Remark 3.13 the continuity at

t = T follows.
The proof follows from the Banach fixed point theorem applied to the map

L γ,α+β

T ,T
∋ u 7→ ΦT ,T (u) ∈ L γ,α+β

T ,T
with ΦT ,Tu(t) = PT−tu

T + JT (∇u · V − f)(t),

where JT (v)(t) =
∫ T
t
Pr−tv(r)dr. We show below, that for T ∈ (0, T ] small enough,

the map is a contraction. By the Schauder estimates (Corollary 3.12), we obtain that
t 7→ PT−tu

T ∈ L 0,α+β

T ,T
and JT (f) ∈ L 0,α+β

T ,T
. Furthermore, the Schauder estimates

(Corollary 3.12) and the interpolation estimate (3.27) from Lemma 3.17 yield that for
γ′ ∈ (0, γ) chosen, such that γ = γ′(1− θ/α) for a θ ∈ (0, α + 2β − 1),

∥JT (∇u · V )∥L γ,α+β

T,T

≲ T
γ−γ′∥∇u · V ∥

M γ′
T,T

C β
p

≲ T
γ−γ′∥∇u∥

M γ′
T,T

(Cα+β−1−θ
p )d

∥V ∥CT C β

Rd

≲ T
γ−γ′∥u∥L γ,α+β

T,T

∥V ∥CT C β

Rd
.

Notice that due to the choice of θ the regularity of the resonant product ∇u � V
is strictly positive. Thus, for T ∈ (0, T ] sufficiently small, ΦT ,T is a contraction on
L γ,α+β

T ,T
and we obtain a solution u ∈ L γ,α+β

T ,T
(i.e. the fixed point of the map).

By plugging the solution back in the contraction map and using the interpolation

1The theorem is a generalization of [KP22, Theorem 3.1] to regularity θ = α+ β and integrability
p ∈ [1,∞].
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3. Kolmogorov equations with singular paracontrolled terminal conditions

estimate (3.28) with γ ∈ (0, (α + 2β − 1)/α), we then obtain

∥u∥L 0,α+β

T,T

= ∥ΦT ,T (u)∥L 0,α+β

T,T

≲ ∥PT−·u
T + JT (f)∥L 0,α+β

T,T

+ ∥u∥CT,T Cα+β−γα∥V ∥CT C β

Rd

≲ ∥PT−·u
T + JT (f)∥L 0,α+β

T
+ [∥u∥L γ,α+β

T,T

+ ∥uT∥1−γCα+β
p

+ ∥uT∥Cα+β
p

]∥V ∥CT C β

Rd
.

(3.30)

This implies that indeed u ∈ L 0,α+β

T ,T
and we constructed the solution on [T − T , T ].

Moreover, the choice of T does not depend on the terminal condition uT and therefore
we can iterate the construction of the solution on subintervals [T −kT , T − (k−1)T ] for
k ∈ 1, . . . , n and n ∈ N such that T − nT ⩽ 0. Here, we choose the terminal condition
of the solution on [T − kT , T − (k − 1)T ] equal to the initial value of the solution
constructed in the previous iteration step. We then obtain the solution u ∈ L 0,α+β

T

on [0, T ] by patching the solutions on the subintervals together. Indeed, u is the fixed
point of ΦT,T , due to the semigroup property PtPs = Pt+s for t, s ⩾ 0.
The continuity of the solution map follows from the linearity of the equation, (3.30) and
from Gronwall’s inequality for locally finite measures, cf. [EK86, Appendix, Theorem
5.1] applied to

∥ut∥Cα+β−γα
p

≲
∫ T

t

∥Pr−t(∇ur · Vr)∥Cα+β−γαdr

≲ ∥V ∥CT C β

Rd

∫ T

t

(r − t)γ−1∥ur∥Cα+β−γα
p

dr,

for γ ∈ (0, (α + 2β − 1)/α), if uT = 0, f = 0.

For a terminal condition uT ∈ C (1−γ)α+β
p , the above arguments show that we obtain a

solution in L γ,α+β
T . Notice that the blow-up just occures for the solution on the last

subinterval [T −T , T ]. That is, the solutions on [T − kT , T − (k− 1)T ] for k = 2, . . . , n
have a regular terminal condition in C α+β

p .

Next, we define the space of enhanced distributions and afterwards the solution space
for solving the generator equation with paracontrolled terminal condition and right
hand side in the rough regime β ⩽ 1−α

2
. For that, we define for a Banach space X, the

blow up space

M γ

∆̊T
X = {g : ∆̊T → X | sup

0⩽s<t⩽T
(t− s)γ∥g(s, t)∥X <∞}

for the triangle without diagonal ∆̊T := {(s, t) ∈ [0, T ]2 | s < t}. Below we take
g(s, t) = Pt−s(∂jη

i
t) � ηjs for η ∈ CTC∞

b (Rd,Rd) and i, j ∈ {1, ..., d}.

Definition 3.20 (Enhanced drift). Let T > 0. For β ∈ (2−2α
3
,1−α

2
] and γ ∈ [2β+2α−1

α
, 1),
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3.3. Solving the Kolmogorov backward equation

we define the space of enhanced drifts X β,γ as the closure of

{(η,K(η)) := (η, (P·(∂jη
i) � ηj)i,j=1,...,d) : η ∈ CTC∞

b (Rd,Rd)}

in CTC β+(1−γ)α
Rd ×M γ

∆̊T
C 2β+α−1
Rd×d . We say that V is a lift or an enhancement of V if

V1 = V and we also write V ∈X β,γ identifying V with (V1,V2).
For β ∈ (1−α

2
, 0) and γ ∈ [β−1

α
, 1), we set X β,γ = CTC β+(1−γ)α.

Remark 3.21. For V ∈X β,γ, we assume on the first component V1 ∈ CTC β+α(1−γ).
We think of γ ∼ 1, that is γ < 1, but very close to 1. The assumptions on V in particular
imply by the semigroup estimates, that t 7→ PT−tV

i
T ∈M γ

TC α+β. Furthermore, from

P (∂iV
j)�V i ∈M γ

∆̊T
C 2β+α−1 follows that t 7→ JT (∂iV

j)t�V i
t =

∫ T
t
Pr−t(∂iV

j
r )�V i

t dr ∈
CTC 2β+α−1. Indeed, as γ < 1, we can estimate

sup
t∈[0,T ]

∥JT (∂iV
j)t � V i

t ∥α+2β−1 ⩽ sup
t∈[0,T ]

∫ T

t

∥Pu−t(∂iV j
u ) � V i

t ∥α+2β−1du

⩽ ∥P·(∂iV
j) � V i∥M γ

∆̊T
C 2β+α−1

Rd
sup
t∈[0,T ]

∫ T

t

(u− t)−γdu

≲ ∥P·(∂iV
j) � V i∥M γ

∆̊T
C 2β+α−1

Rd
× T 1−γ,

using that γ < 1. Analogously we obtain that Jr(∂iV
j) � V i ∈ C[0,r]C

α+2β−1 with a
uniform bound in r ∈ (0, T ]. The assumptions on the enhancement will become handy,
as soon as we consider paracontrolled solutions on subintervals of [0, T ].

Remark 3.22. We assume the lower bound on γ to ensure, that the regularity of V ,
respectively the regularity of the resonant products JT (∂iV

j)t � V i
t are negative. That

is, for γ < (2β + 2α− 1)/α, we obtain that JT (∂iV
j)t � V i

t ∈ CTC 2β+(2−γ)α−1 due to
V ∈ CTC β+(1−γ)α with 2β + (2− γ)α− 1 ⩾ 0. In this case, V has enough regularity,
so that the Kolmogorov PDE can be solved with the classical approach. We exclude this
case here, as we explicitly treat the singular case.

Definition 3.23. Let α ∈ (1, 2] and β ∈ (2−2α
3
, 1−α

2
]. Let T > 0 and V ∈ X β,γ′ for

γ′ ∈ [2β+2α−1
α

, 1) and let uT,′ ∈ C α+β−1
p . For γ ∈ (γ′, α

2−α−3β
γ′) and T ∈ (0, T ], we

define the space of paracontrolled distributions Dγ

T ,T
= Dγ,γ′

T ,T
(V , uT,′) as the set of tuples

(u, u′) ∈ L γ′,α+β

T ,T
× (L γ,α+β−1

T ,T
)d, such that

u♯ := u− u′ 4 JT (V )− uT,′ 4 PT−·VT ∈ L γ,2(α+β)−1

T ,T
.

105



3. Kolmogorov equations with singular paracontrolled terminal conditions

We define a metric on Dγ

T ,T
by

dDγ

T ,T
((u, u′), (v, v′)) := ∥u− v∥Dγ

T ,T

:= ∥u− v∥
L γ′,α+β

T,T

+ ∥u′ − v′∥(L γ,α+β−1

T,T
)d + ∥u♯ − v♯∥

L
γ,2(α+β)−1

T,T

.

Then, (Dγ

T ,T
, dDγ

T ,T
) is a complete metric space. If moreover (v, v′) ∈ Dγ,γ′

T ,T
(W , vT,′)

for different data (W , vT,′) ∈ X β,γ′ × C α+β−1
p , then we use the same definition for

∥u− v∥Dγ

T ,T
, despite the fact that (u, u′) and (v, v′) do not live in the same space.

Remark 3.24. The intuition behind the paracontrolled ansatz is as follows. Assume
for simplicitiy regular data (uT , f) ∈ C 2(α+β)−1

p × L 0,α+2β−1
T . Assume also that we

found a solution u ∈ L 0,α+β
T and that we can make sense of the resonant product

∇u � V in such a way that it has its natural regularity CTC 2β+α−1
p , despite the fact

that 2β + α− 1 ⩽ 0. Then we would get that

u♯ : = u−∇u4 JT (V )

= PT−·u
T−JT (f)+JT (∇u5V )+JT (∇u�V )+(JT (∇u4V )−∇u4JT (V ))

is more regular than u. Indeed, by the Schauder estimates for the first four terms and
by the commutator estimate from Lemma 3.14, we obtain that u♯ ∈ L 0,2(α+β)−1

T . This
explains why the paracontrolled ansatz might be justified. The reason why the ansatz is
useful is that it isolates the singular part of u in a paraproduct, that we can handle by
commutator estimates and the assumptions on V .

Our main theorem of this section is the following. We give its proof after the corollary
below.

Theorem 3.25. Let T > 0, α ∈ (1, 2], p ∈ [1,∞] and β ∈ (2−2α
3
, 1−α

2
] and V ∈X β,γ′

for γ′ ∈ [2β+2α−1
α

, 1). Let

f = f ♯ + f ′ 4 V

for f ♯ ∈ L γ′,α+2β−1
T , f ′ ∈ (L γ′,α+β−1

T )d and

uT = uT,♯ + uT,′ 4 VT

for uT,♯ ∈ C (2−γ′)α+2β−1
p , uT,′ ∈ (C α+β−1

p )d.
Then for γ ∈ (γ′, α

2−α−3β
γ′) there exists a unique mild solution (u, u′) ∈ Dγ

T (V , uT,′) of
the singular Kolmogorov backward PDE

G V u = f, u(T, ·) = uT .

Remark 3.26. As L γ̃,θ
T ⊂ L γ′,θ

T and C (2−γ̃)α+2β−1
p ⊂ C (2−γ′)α+2β−1

p for γ̃ ∈ [0, γ′], we

can in particular treat f ♯ ∈ L γ̃,α+2β−1
T , f ′ ∈ L γ̃,α+β−1

T and uT,♯ ∈ C (2−γ̃)α+2β−1
p .
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3.3. Solving the Kolmogorov backward equation

Remark 3.27. Examples for right-hand-sides and terminal conditions, which are
paracontrolled by V , respectively VT , are the following. Clearly we can take as a right-
hand side f = V i, i.e. f ′ = ei for the i-th unit vector ei. Another example would
be f = JT (∇V i) · V for i ∈ {1, . . . , d}, where f ♯ = JT (∇V i) � V + JT (∇V i) 5 V
and f ′ = JT (∇V i). Furthermore, as a terminal condition, we can take uT = V i

T , i.e.
uT,′ = ei.

In the case of uT,′ = 0, the terminal condition can still be irregular, but is such that t 7→
PT−tu

T = PT−tu
T,♯ ∈M γ′

T C 2(α+β)−1
p . As 2α+2β−1

α
⩽ γ′ and thus (2− γ′)α+ 2β − 1 ⩽ 0,

another example for a terminal condition, that can be treated with our approach would
be a distribution uT = uT,♯ ∈ C 0

p . An example would be uT = δ0 ∈ C 0
1 , where δ0

denotes the Dirac measure at x = 0.
In the case of uT,′ = 0 and uT,♯ ∈ C 2(α+β)−1, the terminal condition is sufficiently
regular, such that we can prove, that the solution of the equation is an element of the
solution space without blow-up (provided, that f admits zero blow-up). We define, in
the case of uT,′ = 0 and uT,♯ ∈ C 2(α+β)−1, the paracontrolled solution space as

DT := D0
T = {(u, u′) ∈ L 0,α+β

T ×(L 0,α+β−1
T )d | u♯ := u−u′4JT (V ) ∈ L 0,2(α+β)−1

T }.

Corollary 3.28 (Regular terminal condition). Let T > 0, α ∈ (1, 2], p ∈ [1,∞]
and β ∈ (2−2α

3
, 1−α

2
] and V ∈ X β,γ′ for γ′ ∈ [2β+2α−1

α
, 1). Let f = f ♯ + f ′ 4 V for

f ♯ ∈ L 0,α+2β−1
T and f ′ ∈ L 0,α+β−1

T and let uT = uT,♯ ∈ C 2α+2β−1
p be non-singular.

Then, there exists a unique mild solution u ∈ DT of the generator equation

G V u = f, u(T, ·) = uT .

The proof is deferred to page 112.

Remark 3.29. The proof of the corollary only uses that V = (V, (JT (∂iV
j) � V i)i,j) ∈

CTC β
Rd × CTC 2β+α−1

Rd×d , which is implied by the stronger assumption V ∈ X β,γ′ (cf.
Remark 3.21).

Proof of Theorem 3.25. Let V ∈ X β,γ′ with V1 = V , V2 = (P·(∂iV
j) � V i)i,j for

γ′ ∈ [2β+2α−1
α

, 1). Let T ∈ (0, T ] to be chosen later and γ ∈ (γ′, α
2−α−3β

γ′). Then we
define the contraction mapping as

ϕ = ϕT ,T : Dγ

T ,T
→ Dγ

T ,T
, (u, u′) 7→ (ψ(u),∇u− f ′) (3.31)

for

ψ(u)(t) = PT−tu
T + JT (−f)(t) + JT (∇u · V )(t), t ∈ [T − T , T ]

= PT−·u
T,♯ + JT (−f ♯) + JT (∇u� V ) + JT (V 4∇u)

+ C1(u
T,′, VT ) + C2(−f ′, V ) + C2(∇u, V )

+ (∇u− f ′) 4 JT (V ) + uT,′ 4 PT−·VT , (3.32)
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3. Kolmogorov equations with singular paracontrolled terminal conditions

where we define

∇u� V =
d∑
i=1

∂iu� V i

:=
d∑
i=1

[u′ · (JT (∂iV ) � V i) + C3(u
′, JT (∂iV ), V i) + U ♯ � V i (3.33)

+ uT,′ 4 (PT−·∂iVT � V i) + C3(u
T,′, PT−·∂iVT , V

i)], (3.34)

with U ♯ := ∂iu
♯ + ∂iu

′ 4 JT (V ) + ∂iu
T,′ 4 PT−·VT . The commutators are defined as

follows:

C1(f, g) := PT−·(f 4 g)− f 4 PT−·g, C2(u, v) := JT (u4 v)− u4 JT (v),

where C1 denotes the commutator on the semigroup PT−· and C2 is the commutator
from Lemma 3.14. Furthermore, C3 denotes the commuator from [GIP15, Lemma 2.4],
that is

C3(f, g, h) := (f 4 g) � h− f(g � h).

For the terms in (3.33), we obtain with Remark 3.21, the paraproduct estimates and
[GIP15, Lemma 2.4] using that 3β + 2α− 2 > 0 and 2β + α− 1 ⩽ 0,

∥u′ · (JT (∂iV ) � V i) + C3(u
′, JT (∂iV ), V i) + U ♯ � V i∥

M γ′
T,T

Cα+2β−1

≲ ∥V ∥X β,γ (1 + ∥V ∥X β,γ )[∥u♯∥
M γ′

T,T
C

2(α+β)−1
p

+ ∥u′∥
M γ′

T,T
(Cα+β−1

p )d
]

For the terms in (3.34), we have by the estimate on the paraproduct and the definition
of the enhanced distribution space X β,γ′

∥uT,′ 4 (PT−·∂iVT � V i)∥
M γ′

T,T
C 2β+α−1
p

≲ ∥uT,′∥(Cα+β−1
p )d∥PT−·∂iVT � V i∥

M γ′
T,T

(C 2β+α−1)d

≲ ∥uT,′∥(Cα+β−1
p )d∥V ∥X β,γ′ ,

where we used that α + β − 1 > 0. By the commutator estimate for C3 from [GIP15,
Lemma 2.4] and the estimates for the semigroup to control PT−·∇VT , we obtain

∥C3(u
T,′, PT−·∂iVT , V

i)∥
M γ′

T,T
C 3β+2α−2
p

≲ ∥uT,′∥(Cα+β−1
p )d∥V ∥

2
X β,γ′ ,

using again 2α + 3β − 2 > 0 by the assumption on β.
Define ε := α− αγ′

γ
. Then it follows that ε ∈ (0, 3β + 2α− 2) by the assumption on γ.

Subtracting ε regularity for u′ and u♯, we can estimate the resonant product along the
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3.3. Solving the Kolmogorov backward equation

same lines as above, due to 3β + 2α− 2− ε > 0, obtaining

∥∇u� V ∥
M γ′

T,T
C 2β+α−1
p

≲ ∥V ∥X β,γ′ (1 + ∥V ∥X β,γ′ )
(
∥u♯∥

M γ′
T,T

C
2(α+β)−1−ε
p

+ ∥u′∥
M γ′

T,T
(Cα+β−1−ε

p )d

)
+ ∥V ∥X β,γ′ (1 + ∥V ∥X β,γ′ )∥uT,′∥(Cα+β−1

p )d

≲ ∥V ∥X β,γ′ (1 + ∥V ∥X β,γ′ )[∥(u, u′)∥Dγ

T ,T
+ ∥uT,′∥(Cα+β−1

p )d ]. (3.35)

In (3.35), we moreover used the interpolation bound (3.27) for the norm of u′, that is

∥u′∥
M γ′

T,T
Cα+β−1−ε
p

= ∥u′∥
M

γ(1−ε/α)

T,T
Cα+β−1−ε
p

≲ ∥u′∥L γ,α+β−1

T,T

by the definition of ε, and analogously for u♯. For (u, u′), (v, v′) ∈ Dγ

T ,T
(V , uT,′), this

also implies the Lipschitz bound:

∥∇u� V −∇v � V ∥
M γ′

T,T
C 2β+α−1
p

≲ ∥V ∥X β,γ′ (1 + ∥V ∥X β,γ′ )∥(u, u′)− (v, v′)∥Dγ

T ,T
.

Next, we show that indeed ϕ(u, u′) = (ψ(u),∇u−f ′) ∈ Dγ

T ,T
and that ϕ is a contraction

for small enough T .
Towards the first aim, we note that by (3.32),

ϕ(u, u′)♯ = ψ(u)− (∇u− f ′) 4 JT (V )− uT,′ 4 PT−·VT

= PT−·u
T,♯ + JT (−f ♯) + JT (∇u� V ) + JT (V 4∇u)

+ C1(u
T,′, VT ) + C2(−f ′, V ) + C2(∇u, V ).

By the Schauder estimates, we obtain PT−·u
T,♯ + JT (f ♯) ∈ L γ′,2α+2β−1

T ,T
and

∥JT (∇u� V ) + JT (V 4∇u)∥L γ,2α+2β−1

T,T

≲ T
γ−γ′

[∥∇u� V ∥
M γ′

T,T
Cα+2β−1
p

+ ∥V 4∇u∥
M γ′

T,T
Cα+2β−1
p

]

≲ T
γ−γ′∥V ∥X β,γ′ (1 + ∥V ∥X β,γ′ )∥(u, u′)∥Dγ

T ,T

+ T
γ−γ′∥u∥

L γ′,α+β

T,T

∥V ∥CT C β

Rd

using the estimate for the resonant product from above. Utilizing the commutator
estimate (Lemma 3.14), we obtain

∥C2(∇u, V )∥
L

γ,2(α+β)−1

T,T

≲ T
γ−γ′∥V ∥CT C β

Rd
∥u∥

L γ′,α+β

T,T

≲ T
γ−γ′∥V ∥CT C β

Rd
∥(u, u′)∥Dγ

T ,T
.
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3. Kolmogorov equations with singular paracontrolled terminal conditions

By VT ∈ C β+(1−γ′)α
Rd and uT,′ ∈ (C α+β−1

p )d and the commutator estimate (3.9) for C1

for ϑ = γ′α and α + β − 1 ∈ (0, 1) and again Lemma 3.14 for C2, we have that

∥C1(u
T,′, VT ) + C2(f

′, V )∥
L

γ′,2(α+β)−1

T,T

≲ ∥V ∥
CT C

β+(1−γ′)α
Rd

(∥uT,′∥(Cα+β−1
p )d + ∥f ′∥

L γ′,α+β−1
T

).

Hence, together we obtain ϕ(u, u′)♯ ∈ L γ,2α+2β−1

T ,T
.

Next, we show that ψ(u) ∈ L γ′,α+β

T ,T
.

Define γ′′ := γ′(1 − ε1/α) for a fixed ε1 ∈ (0, (α + β − 1) ∧ (1−γ′)α
2−α−3β

) = (0, (1−γ′)α
2−α−3β

)

and define ε2 := α − αγ
′′

γ
. Then it follows that ε2 ∈ (0, 3β + 2α − 2 + (1 − γ′)α).

Using that V ∈ CTC β+(1−γ′)α
Rd and applying twice the interpolation bound (3.27) (once

for u and once for u♯ and u′), an analogue estimate as for the resonant product
∥JT (∇u� V )∥L γ,2α+2β−1

T
yields that

∥JT (∇u · V )∥
L γ′,β+α

T,T

≲ ∥JT (∇u4 V )∥
L γ′,β+α

T,T

+ ∥JT (∇u5 V +∇u� V )∥
L γ′,2α+β−1

T,T

≲ T
γ′−γ′′

[∥∇u4 V ∥
M γ′′

T,T
C β
p

+ ∥∇u5 V +∇u� V ∥
M γ′′

T,T
Cα+2β−1
p

]

≲ T
γ′−γ′′∥V ∥X β,γ′ (1 + ∥V ∥X β,γ′ )

× [∥u∥
M γ′′

T,T
C

α+β−ε1
p

+ ∥u♯∥
M γ′′

T,T
C

2(α+β)−1−ε2
p

+ ∥u′∥
M γ′′

T,T
(C

α+β−1−ε2
p )d

]

≲ T
γ′−γ′′∥V ∥X β,γ′ (1 + ∥V ∥X β,γ′ )[∥u∥L γ′,α+β

T,T

+ ∥u♯∥
L

γ,2(α+β)−1

T,T

+ ∥u′∥(L γ,α+β−1

T,T
)d ]

= T
γ′−γ′′∥V ∥X β,γ′ (1 + ∥V ∥X β,γ′ )∥u∥Dγ,α+β

T,T

.

Thus, we obtain that

∥ψ(u)∥
L γ′,α+β

T,T

= ∥PT−·u
T + JT (f) + JT (∇u · V )∥

L γ′,α+β

T,T

⩽ ∥PT−·u
T∥

L γ′,α+β

T,T

+ ∥f∥
L γ′,β

T

+ ∥JT (∇u · V )∥
L γ′,α+β

T,T

≲ ∥uT,♯∥
C

(2−γ′)α+2β−1
p

+∥uT,′∥(Cα+β−1
p )d∥V ∥X β,γ′ +∥C1(u

T,′, VT )∥
M γ′

T C 2α+2β−1
p

+ ∥f∥
L γ′,β

T

+ T
γ′−γ′′∥V ∥X β,γ′ (1 + ∥V ∥X β,γ′ )∥u∥Dγ,α+β

T,T

,

which yields in particular ψ(u) ∈ L γ′,α+β

T ,T
. The Gubinelli derivative ϕ(u, u′)′ = ∇u−f ′,
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3.3. Solving the Kolmogorov backward equation

we estimate as follows

∥∇u− f ′∥(L γ,α+β−1

T,T
)d

≲ ∥∇u∥M γ

T ,T
(Cα+β−1

p )d + ∥∇u∥C1−γ

T ,T
(C β−1

p )d + ∥∇u∥Cγ,1

T,T
(C β−1

p )d + ∥f ′∥(L γ,α+β−1

T,T
)d

≲ T
γ−γ′(∥u∥

L γ′,α+β

T,T

+ ∥f ′∥
(L γ′,α+β−1

T,T
)d

)
≲ T

γ−γ′(∥u∥Dγ

T ,T
+ ∥f ′∥

(L γ′,α+β−1

T,T
)d

)
,

where we exploit the fact that γ− γ′ > 0 to obtain a non-trivial factor depending on T .
Together with the estimate for ψ(u) and ϕ(u, u′)♯, this yields ϕ(u, u′) = (ψ(u),∇u−f ′) ∈
Dγ

T ,T
.

The contraction property follows using the above estimates for ψ(u), ϕ(u, u′)♯ and
ϕ(u, u′)′, utilizing linearity of ϕ and ψ (for uT = 0, f = 0), such that

∥(ψ(u),∇u− f ′)− (ψ(v),∇v − f ′)∥Dγ

T ,T

= ∥ψ(u)−ψ(v)∥
L γ′,α+β

T,T

+∥∇u−∇v∥(L γ,α+β−1

T,T
)d +∥ϕ(u, u′)♯−ϕ(v, v′)♯∥L γ,2α+2β−1

T,T

≲ (T
γ−γ′ ∨ T γ

′−γ′′
)∥V ∥X β,γ′ (1 + ∥V ∥X β,γ′ )∥(u, u′)− (v, v′)∥Dγ

T ,T
. (3.36)

Now, we can choose T small enough, such that the implicit constant times the factor

(T
γ−γ′ ∨ T γ

′−γ′′
)∥V ∥X β,γ′ (1 + ∥V ∥X β,γ′ ) is strictly less than 1, such that ϕ = ϕT ,T

is a contraction on the corresponding space Dγ

T ,T
. It is left to show, that we can

obtain a paracontrolled solution in Dγ
T on the whole interval [0, T ]. The solution on

[0, T ] is obtained by patching the solutions on the subintervals of length T together.

Indeed, let inductively u[T−T ,T ] be the solution on the subinterval [T − T , T ] with

terminal condition uT and u[T−kT ,T−(k−1)T ] be the solution on [T − kT , T − (k − 1)T ]

with terminal condition u
[T−kT ,T−(k−1)T ]

T−(k−1)T
= u

[T−(k−1)T ,T−(k−2)T ]

T−(k−1)T
for k = 2, . . . , n and

n ∈ N, such that T − nT ⩽ 0. There is a small subtlety, as we consider the solution on
[T − kT , T − (k − 1)T ], that is paracontrolled by JT (V ) (and not by JT−(k−1)T (V )).
That is, for k = 2, . . . , n, the solution has the paracontrolled structure,

u
[T−kT ,T−(k−1)T ],♯
t

= u
[T−kT ,T−(k−1)T ]
t −(∇u[T−kT ,T−(k−1)T ]

t −f ′
t)4J

T (V )t−uT,′4PT−tVT ∈ L γ,2(α+β)−1

T ,T−(k−1)T

Notice, that for k ⩾ 2, uT,′ 4 PT−tVT ∈ L γ,2(α+β)−1

T ,T−(k−1)T
, so that term can also be seen as

a part of the regular paracontrolled remainder.
By assumption we have that f ♯ ∈ L γ′,α+2β−1

T and f ′ ∈ (L γ′,α+β−1
T )d. This implies by
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(3.14) that

f ♯ ∈M 0
T ,T−(k−1)T

C α+2β−1
p ∩ C1

T ,T−(k−1)T
C 2β−1
p ,

f ′ ∈M 0
T ,T−(k−1)T

(C α+β−1
p )d ∩ C1

T ,T−(k−1)T
(C β−1

p )d

for k = 2, . . . , n. If u[T−T ,T ] denotes the solution on [T − T , T ], then u
[T−T ,T ]
T−T ∈ C α+β

p

and u
[T−T ,T ],♯
T−T ∈ C 2α+2β−1

p . Thus, for the solution on [T − 2T , T − T ] follows

u
[T−2T ,T−T ],♯
T−T = u

[T−2T ,T−T ]
T−T − (∇u[T−2T ,T−T ]

T−T − f ′
T−T ) 4 JT (V )T−T − uT,′ 4 PTV

= u
[T−T ,T ],♯
T−T ∈ C 2α+2β−1

p .

Because we can trivially bound,

sup
t∈[T−2T ,T−T ]

∥PT−T−tu
[T−2T ,T−T ],♯
T−T ∥

C
2(α+β)−1
p

≲ ∥u[T−2T ,T−T ],♯
T−T ∥

C
2(α+β)−1
p

,

there is no blow-up for the solution on [T − 2T , T − T ] at time t = T − T . Hence, the

Banach fixed point argument for the map ϕT ,T−T yields a solution u[T−2T ,T−T ] ∈ D γ̂

T ,T−T
for any small γ̂ > 0. By plugging the solution back in the fixed point map and using
the interpolation estimates (cf. the arguments in the proof of Theorem 3.19 above

and Corollary 3.28 below), we obtain that indeed u[T−2T ,T−T ] ∈ D0
T ,T−T . Proceeding

iteratively, we thus obtain solutions

u[T−kT ,T−(k−1)T ] ∈ D0
T ,T−(k−1)T

for k = 2, . . . , n

and u[T−T ,T ] ∈ Dγ

T ,T−(k−1)T
. Then, the solution u, which is patched together on the

subintervals (ut := u
[T−kT ,T−(k−1)T ]
t for t ∈ [T − kT , T − (k − 1)T ], k = 1, . . . , n), is

indeed a fixed point of the map ϕ = ϕ0,T considered on [0, T ] and an element of Dγ
T .

Proof of Corollary 3.28. By assumption, we have that uT,′ = 0 and uT,♯ = uT ∈
C 2(α+β)−1
p and f ♯, f ′ have no blow-up. By the assumption on V , it follows that

JT (∂iV
j) � V i ∈ CTC α+2β−1 due to γ′ ∈ (0, 1). Furthermore due to uT,′ = 0 the

paraproduct uT,′ 4 PT−·VT in (3.32) vanishes, which previously was the term that
introduced a blow-up of at least γ′ for the solution. Thus, we have that PT−·u

T ∈
CTC 2(α+β)−1. Hence, the arguments from Theorem 3.25 yield a paracontrolled solution
u ∈ Dγ

T for any small γ > 0, i.p. u ∈ L γ,α+β
T . It remains to justify that u ∈ DT . By

the regular terminal condition uT ∈ C 2(α+β)−1
p ⊂ C α+β

p and the interpolation estimate
(3.28), we obtain that

sup
t∈[0,T ]

∥ut∥Cα+β−αγ
p

≲ ∥u∥L γ,α+β
T

+ ∥uT∥1−γCα+β
p

+ ∥uT∥Cα+β−αγ
p
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3.3. Solving the Kolmogorov backward equation

and since u♯T = uT ∈ C 2(α+β)−1
p ,

sup
t∈[0,T ]

∥u♯t∥C 2(α+β)−1−αγ
p

≲ ∥u♯∥
L

γ,2(α+β)−1
T

+ ∥uT∥1−γ
C

2(α+β)−1
p

+ ∥uT∥C 2(α+β)−1−αγ
p

for any small γ > 0. If γ is small enough, that is γ ∈ (0, (3β + 2α − 2)/α), we can
estimate

sup
t∈[0,T ]

∥∇u · V (t)∥β

≲ ∥V ∥X β,γ′ (1 + ∥V ∥X β,γ′ )
(

sup
t∈[0,T ]

∥ut∥Cα+β−αγ
p

+ sup
t∈[0,T ]

∥u♯t∥C 2(α+β)−1−αγ
p

)
. (3.37)

Plugging now the solution u back in the contraction map using the fixed point, i.e.
u = PT−·u

T +JT (∇u ·V ), and (3.37), we can use the Schauder estimates for γ = γ′ = 0,
such that we obtain that indeed u ∈ L 0,α+β

T . By the commutator estimate (3.21) for

γ = γ′ = 0 and u ∈ L 0,α+β
T , we then also obtain that u♯ ∈ L 0,2(α+β)−1

T .

The next theorem proves the continuity of the solution map. The proof is similar to
[KP22, Theorem 3.8], but adapted to the generalized setting for singular paracontrolled
data. There are a few subtleties. First, the space Dγ

T (V, uT,′) depends on V, uT,′.
Furthermore due to the blow-up γ > 0, one cannot simply estimate the norm M γ

TC θ

on the inteval [0, T ] by the sum of the respective blow-up norms on subintervals of
[0, T ]. In the case of regular terminal condition, that splitting issue does not occure,
but we aim for continuity of the solution map in L 0,α+β

T . This we establish by first
proving continuity of the map with values in L γ,α+β

T for any small γ > 0 and conclude
from there together with the interpolation estimates.

Theorem 3.30. In the setting of Theorem 3.25, the solution map

(uT = uT,♯ + uT,′ 4 VT , f = f ♯ + f ′ 4 V, V ) 7→ (u, u♯) ∈ L γ′,α+β
T ×L γ,2(α+β)−1

T ,

is locally Lipschitz continuous, that is,

∥u− v∥
L γ′,α+β

T

+ ∥u♯ − v♯∥
L

γ,2(α+β)−1
T

⩽ C[∥uT,♯ − vT,♯∥
C

(2−γ′)α+2β−1
p

+ ∥uT,′ − vT,′∥(Cα+β−1
p )d

+ ∥f ♯ − g♯∥
L γ′,α+2β−1

T

+ ∥f ′ − g′∥
(L γ′,α+β−1

T )d
+ ∥V −W ∥X β,γ′ ] (3.38)

for a constant C = C(T, ∥V ∥, ∥W ∥, ∥uT∥, ∥vT∥, ∥f∥, ∥g∥) > 0.
Furthermore, in the setting of Corollary 3.28, the solution map

(uT = uT,♯, f = f ♯ + f ′ 4 V, V ) 7→ (u, u♯) ∈ L 0,α+β
T ×L 0,2(α+β)−1

T ,

is locally Lipschitz continuous allowing for an analogue bound (3.38) with γ′ = 0 for
the norms of uT,♯ − vT,♯, f ♯ − g♯, f ′ − g′ and uT,′ = vT,′ = 0.
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3. Kolmogorov equations with singular paracontrolled terminal conditions

Proof. We first prove the continuity in the case of singular paracontrolled data.
Let u be the solution of the PDE for V ∈X β,γ′ , f = f ♯+f ′4V and uT = uT,♯+uT,′4VT
and v the solution corresponding to the data W , g and vT . By the fixed point property
we have ϕ(u, u′) = (u, u′) and ϕ(v, v′) = (v, v′) and thus u′ = ∇u− f ′ and v′ = ∇v− g′.
Hence, we can estimate

∥u′ − v′∥
(L γ′,α+β−1

T )d
≲ ∥u− v∥

L γ′,α+β
T

+ ∥f ′ − g′∥
(L γ′,α+β−1

T )d
. (3.39)

We estimate the terms in (3.38) by itself times a factor less than 1, plus a term depending
on ∥f−g∥, ∥V −W ∥ and ∥uT−vT∥. Here we keep in mind that u ∈ Dγ

T (V, uT,′), whereas
v ∈ Dγ

T (W, vT,′), but we explained the notation of ∥u−v∥Dγ
T

in Definition 3.23. For that
purpose, we estimate the product using re-bracketing like ab− cd = a(b− d) + (a− c)d
and the estimate (3.35) for the product, where γ′′ < γ′,

∥∇u · V −∇v ·W ∥
M γ′′

T C β
p

≲ (1 + ∥W ∥X β,γ′ )∥V ∥X β,γ′∥u− v∥Dγ
T

+ (1 + ∥W ∥X β,γ′ )∥V −W ∥X β,γ′∥v∥Dγ
T

+ ∥V ∥X β,γ′∥u∥Dγ
T
∥V −W ∥X β,γ′

+ C̃(∥V ∥, ∥W ∥, ∥uT,′∥, ∥vT,′∥)
(
∥V −W ∥X β,γ′ + ∥uT,′ − vT,′∥(Cα+β−1

p )d

)
.

(3.40)

Since the solution u can be bounded in terms of uT , f,V by Gronwall’s inequality for
locally finite measures using that γ, γ′ ∈ (0, 1) (cf. [EK86, Appendix, Theorem 5.1]),
and similarly for v, we conclude that

∥∇u · V −∇v ·W ∥
M γ′′

T C β
p

≲
(
(∥V ∥X β,γ′ + ∥v∥Dγ

T
)(1 + ∥W ∥X β,γ′ ) + ∥V ∥X β,γ′∥u∥Dγ

T

)
×(

∥u− v∥Dγ
T

+ ∥V −W ∥X β,γ′

)
+ C̃

(
∥V −W ∥X β,γ′ + ∥uT,′ − vT,′∥(Cα+β−1

p )d

)
≲ C

(
∥u− v∥Dγ

T
+ ∥V −W ∥X β,γ′ + ∥uT,′ − vT,′∥(Cα+β−1

p )d

)
,

where C = C(∥V ∥, ∥W ∥, ∥uT∥, ∥vT∥, ∥f∥, ∥g∥) is a constant, that depends on the
norms of the input data on [0, T ]. Therefore, we obtain by the fixed point and using
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the estimate for ∥ϕ(u, u′)∥
L γ′,α+β

T

from the proof of Theorem 3.25 with γ′′ < γ′,

∥u− v∥
L γ′,α+β

T

≲ ∥uT,♯ − vT,♯∥
C

(2−γ′)α+2β−1
p

+ ∥uT,′ − vT,′∥(Cα+β−1
p )d∥V ∥X β,γ′

+ ∥uT,′∥(Cα+β−1
p )d∥V −W ∥X β,γ′ + ∥f ′∥

(L γ′,α+β−1
T )d

∥V −W ∥X β,γ′

+ ∥f ♯ − g♯∥
L γ′,α+2β−1

T

+ ∥f ′ − g′∥
(L γ′,α+β−1

T )d
∥V ∥X β,γ′

+ T γ
′−γ′′∥∇u · V −∇v ·W ∥

M γ′′
T C β

p
.

Moreover, using the fixed point and the estimate for ∥ϕ(u, u′)♯∥
L

γ,2(α+β)−1
T

, we obtain

∥u♯ − v♯∥
L

γ,2(α+β)−1
T

≲ ∥uT,♯ − vT,♯∥
C

(2−γ′)α+2β−1
p

+ ∥uT,′ − vT,′∥(Cα+β−1
p )d∥V ∥X β,γ′

+ ∥uT,′∥(Cα+β−1
p )d∥V −W ∥X β,γ′ + ∥f ′∥

(L γ′,α+β−1
T )d

∥V −W ∥X β,γ′

+ ∥f ♯ − g♯∥
L γ′,α+2β−1

T

+ ∥f ′ − g′∥
(L γ′,α+β−1

T )d
∥V ∥X β,γ′

+ T γ−γ
′∥∇u · V −∇v ·W ∥

M γ′
T C β

p

+ T γ−γ
′∥V −W ∥X β,γ′∥u∥Dγ

T
+ T γ

′−γ∥V ∥X β,γ′∥u− v∥Dγ
T
. (3.41)

To shorten notation, let us abbreviate the term in (3.38), that we aim to estimate, in
the following by

∥u− v∥γ,α+β := ∥u− v∥
L γ′,α+β

T

+ ∥u♯ − v♯∥
L

γ,2(α+β)−1
T

.

Then overall, using also (3.39), we obtain

∥u− v∥γ,α+β ⩽ C[∥uT,♯ − vT,♯∥
C

(2−γ′)α+2β−1
p

+ ∥uT,′ − vT,′∥(Cα+β−1
p )d

+ ∥f ♯ − g♯∥
L γ′,α+2β−1

T

+ ∥f ′ − g′∥
(L γ′,α+β−1

T )d
+ ∥V −W ∥X β,γ′ ]

+ (T γ−γ
′ ∨ T γ′−γ′′)C∥u− v∥γ,α+β,

where C > 0 is again a (possibly different) constant depending on the norms of the
input data. Assume for the moment that T is small enough so that (T γ−γ

′ ∨ T γ′−γ′′)C
times the implicit constant on the right-hand side is < 1. Then we can take the last
term to the other side and divide by a positive factor, obtaining

∥u− v∥γ,α+β ⩽ C[∥uT,♯ − vT,♯∥
C

(2−γ′)α+2β−1
p

+ ∥uT,′ − vT,′∥(Cα+β−1
p )d

+ ∥f ♯ − g♯∥
L γ′,α+2β−1

T

+ ∥f ′ − g′∥
(L γ′,α+β−1

T )d
+ ∥V −W ∥X β,γ′ ],

(3.42)
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3. Kolmogorov equations with singular paracontrolled terminal conditions

where C = C(T, ∥V ∥, ∥W ∥, ∥uT∥, ∥vT∥, ∥f∥, ∥g∥) > 0 is a constant that depends on
the norms of the input data. Thus, the map (uT , f,V ) 7→ (u, u♯) is locally Lipschitz
continuous, which implies the claim.
If T is such that (T γ−γ

′ ∨ T γ′−γ′′)C times the implicit constant is at least 1, then we
want to apply the estimates above on the subintervals [T − kT , T − (k− 1)T ] of length

T , where T is chosen, such that (T
γ−γ′ ∨T γ

′−γ′′
)C times the implicit constant is strictly

less than 1 and where k = 1, . . . , n for n ∈ N with T −nT ⩽ 0. To obtain the continuity
in Dγ

T , we consider the solutions u[T−kT ,T−(k−1)T ], v[T−kT ,T−(k−1)T ] on the subintervals
[T − kT , T − (k − 1)T ] for k = 1, . . . n, where the terminal condition of the solution

u[T−kT ,T−(k−1)T ] is the initial value of the solution u[T−(k−1)T ,T−(k−2)T ] (analogously for
v), such that, patched together, we obtain the solutions u, v on [0, T ].
Let ε > 0 to be chosen below.
For k = 2, . . . , n, we have that u[T−kT ,T−(k−1)T ], v[T−kT ,T−(k−1)T ] ∈ D0,α+β

T−(k−1)T
(see the

argument in the proof of Theorem 3.25), such that we can estimate

∥u− v∥
M γ′

T Cα+β−εα
p

⩽ T γ
′∥u− v∥M 0

T−T
Cα+β−εα
p

+ ∥u− v∥
M γ′

T,T
Cα+β
p

⩽ T γ
′

n∑
k=2

∥u− v∥M 0
T,T−(k−1)T

Cα+β−εα
p

+ ∥u− v∥
M γ′

T,T
Cα+β
p

. (3.43)

Furthermore, we can estimate for ε ∈ (0, γ′],

∥u− v∥
C1−γ′

T C β
p
⩽ T γ

′−ε∥u− v∥C1−ε

T−T
C β
p

+ ∥u− v∥
C1−γ′

T,T
C β
p

⩽ T γ
′−ε

n∑
k=2

∥u− v∥L ε,β+α

T,T−(k−1)T

+ ∥u− v∥
L γ′,β+α

T,T

. (3.44)

Subtracting the terminal condition for each of the terms with k = 2, . . . , n and applying
the interpolation bound (3.28) for θ = α + β, θ̃ = εα yields for k = 2, . . . , n,

∥(u− uT−(k−1)T )− (v − vT−(k−1)T )∥M 0
T,T−(k−1)T

Cα+β−εα
p

⩽ ∥(u− uT−(k−1)T )− (v − vT−(k−1)T )∥M ε
T ,T−(k−1)T

Cα+β
p

. (3.45)
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3.3. Solving the Kolmogorov backward equation

Together with (3.43), (3.44) and (3.45), this then yields

∥u− v∥
L γ′,α+β−εα

T

≲ T γ
′

n∑
k=2

(
∥(u−uT−(k−1)T )−(v−vT−(k−1)T )∥L 0,α+β−εα

T,T−(k−1)T

+∥uT−(k−1)T−vT−(k−1)T∥Cα+β
p

)
+ ∥u− v∥

L γ′,α+β

T,T

≲ T γ
′

n∑
k=2

(
∥(u−uT−(k−1)T )−(v−vT−(k−1)T )∥L ε,α+β

T,T−(k−1)T

+∥uT−(k−1)T−vT−(k−1)T∥Cα+β
p

)
+ ∥u− v∥

L γ′,α+β

T,T

≲ T γ
′

n∑
k=2

∥u− v∥L ε,α+β

T,T−(k−1)T

+ ∥u− v∥
L γ′,α+β

T,T

, (3.46)

where in the last estimate, we estimated the norm of the terminal conditions by the
norm of the solutions in the previous iteration step.
Analogously, we can argue for u♯ − v♯, obtaining

∥u♯ − v♯∥
L

γ,2(α+β)−1−εα
T

≲ T γ
n∑
k=2

∥u♯ − v♯∥
L

ε,2(α+β)−1

T,T−(k−1)T

+ ∥u♯ − v♯∥
L

γ,2(α+β)−1

T,T

. (3.47)

Now, taking ε := (γ − γ′) ∈ (0, γ′), we can apply the above estimate (3.42) for each of
the terms on the right-hand side of the inequalities (3.46) and (3.47). That is, for each
of the terms for k = 2, . . . , n, we obtain

∥u− v∥L ε,α+β

T,T−(k−1)T

+ ∥u♯ − v♯∥
L

ε,2(α+β)−1

T,T−(k−1)T

≲
1

1−T ε∥V ∥X β,γ′ (1+∥V ∥X β,γ′ )

[
∥uT,♯ − vT,♯∥

C
(2−γ′)α+2β−1
p

+ ∥uT,′ − vT,′∥(Cα+β−1
p )d

+ ∥f ♯ − g♯∥
L γ′,α+2β−1

T

+ ∥f ′ − g′∥
(L γ′,α+β−1

T )d
+ ∥V −W ∥X β,γ′

]
.

This uses that by the choice of ε, T
ε

= T
γ−γ′
⩽ T

γ−γ′∨T γ
′−γ′′

and that u, v ∈ D0,α+β

T−(k−1)T

for k = 2, . . . , n. For k = 1, we replace ε by γ, respectively γ′ for u♯−v♯, and obtain the
estimate (3.42) on the subinterval [T − T , T ]. Together, this then yields the following
estimate on the whole interval [0, T ] (with a possibly different constant C):

∥u− v∥γ,α+β−εα ⩽ C[∥uT,♯ − vT,♯∥
C

(2−γ′)α+2β−1
p

+ ∥uT,′ − vT,′∥(Cα+β−1
p )d

+ ∥f ♯ − g♯∥
L γ′,α+2β−1

T

+ ∥f ′ − g′∥
(L γ′,α+β−1

T )d
+ ∥V −W ∥X β,γ′ ].

(3.48)
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3. Kolmogorov equations with singular paracontrolled terminal conditions

Plugging now u− v back in the contraction map on [0, T ], we can remove the loss εα
in regularity. That is, we can estimate for ε small enough,

∥u− v∥γ,α+β ≲ ∥V ∥X β,γ′ (1 + ∥V ∥X β,γ′ )∥u− v∥γ,α+β−αε
+ C[∥uT,♯ − vT,♯∥

C
(2−γ′)α+2β−1
p

+ ∥uT,′ − vT,′∥(Cα+β−1
p )d

+ ∥f ♯ − g♯∥
L γ′,α+2β−1

T

+ ∥f ′ − g′∥
(L γ′,α+β−1

T )d
+ ∥V −W ∥X β,γ′ ].

Thus the local Lipschitz continuity (3.38) on [0, T ] follows.
In the setting of Corollary 3.28, we obtain from the above, that the Lipschitz estimate
(3.38) holds true with γ′ = 0 for the norms of uT,♯−vT,♯, f ♯−g♯, f ′−g′ and uT,′ = vT,′ = 0
on the right-hand side and any small γ > 0 on the left-hand-side of the estimate.
Similar as in the proof of Corollary 3.28, we can use the fixed point property and the
estimate (3.37) for small enough γ > 0, together with the Schauder estimates and the
interpolation bound (3.28), to obtain that

∥u− v∥L 0,α+β
T

+ ∥u♯ − v♯∥
L

0,2(α+β)−1
T

≲ ∥V ∥X β,γ′ (1 + ∥V ∥X β,γ′ )
(
∥u− v∥L 0,α+β−γα

T
+ ∥u♯ − v♯∥

L
0,2(α+β)−1−γα
T

)
+ C[∥uT,♯−vT,♯∥C 2α+2β−1

p
+∥f ♯−g♯∥L 0,α+2β−1

T
+∥f ′−g′∥(L 0,α+β−1

T )d +∥V −W ∥X β,γ′ ]

≲ ∥V ∥X β,γ′ (1 + ∥V ∥X β,γ′ )×(
∥(u−v)−(uT,♯−vT,♯)∥L 0,α+β−γα

T
+∥(u♯−v♯)−(uT,♯−vT,♯)∥

L
0,2(α+β)−1−γα
T

)
+ C[∥uT,♯−vT,♯∥C 2α+2β−1

p
+∥f ♯−g♯∥L 0,α+2β−1

T
+∥f ′−g′∥(L 0,α+β−1

T )d +∥V −W ∥X β,γ′ ]

≲ ∥V ∥X β,γ′ (1 + ∥V ∥X β,γ′ )
(
∥u− v∥L γ,α+β

T
+ ∥u♯ − v♯∥

L
γ,2(α+β)−1
T

)
+ C[∥uT,♯−vT,♯∥C 2α+2β−1

p
+∥f ♯−g♯∥L 0,α+2β−1

T
+∥f ′−g′∥(L 0,α+β−1

T )d +∥V −W ∥X β,γ′ ].

Notice that, to apply the interpolation bound (3.28) in the last estimate above, we
subtracted the terminal condition uT −vT = uT,♯−vT,♯, so that (u−v)T −(uT −vT ) = 0.
The constant C above changes in each line. Thus together the Lipschitz continuity of
the solution map with values in L 0,α+β

T ×L 0,2(α+β)−1
T follows.

Remark 3.31 (Super-exponential dependency of the Lipschitz constant on V ,W ). The
Lipschitz constant of the solution map on [0, T ] depends super-exponentially on the norms
∥V ∥X β,γ′ , ∥W ∥X β,γ′ . Indeed, to obtain the Lipschitz estimate of the solution map on
[0, T ], we have to apply the estimate in (3.41) on every subinterval [T−(k+1)T , T−kT ],
where we have to choose T small enough so that T

κ
< C−1 for κ = γ − γ′ ∧ γ′ − γ′′

and for the constant C = C(∥V ∥, ∥W ∥, ∥uT∥, ∥vT∥, ∥f∥, ∥g∥). This means that in
(3.42) we have to iterate the estimate at least T/C−κ = TCκ times, and each time
we multiply with the constant C̃ in (3.42), leading roughly speaking to a factor C̃TCκ

.
By doing the analysis more carefully we can show that there is (super-)exponential
dependence only on ∥V ∥, ∥W ∥ and that the Lipschitz constant actually depends linearly
on ∥uT∥, ∥vT∥, ∥f∥, ∥g∥. But the super-exponential dependence on ∥V ∥, ∥W ∥ is inherent
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3.3. Solving the Kolmogorov backward equation

to the problem and we expect that it cannot be significantly improved. By similar
arguments, we also see that the norm of the solution u to the Kolmogorov backward
equation in Theorem 3.25 depends super-exponentially on ∥V ∥.
This will be relevant when we take V random, as in our application of the Brox diffusion
(cf. Section 4.6). If we do not have super-exponential moments for ∥V ∥X β,γ′ , then we
do not know if u has finite moments. And if V is Gaussian, then the second component
of the lift V is a second order polynomial of a Gaussian and therefore it does not have
super-exponential moments.

But note that this only concerns Hölder norms of the Kolmogorov backward equation. If
we are only interested in the Lp norm, p ∈ [1,∞], we can always use the trivial bound
∥u∥Lp ≤ ∥uT∥Lp + T∥f∥Lp, provided that the right-hand side is finite, which holds for
smooth V, f, uT by the stochastic representation (Feynman-Kac) of the Kolmogorov
backward equation, and which extends by approximation to the general setting.

In the following chapters, we consider solutions of the Kolmorov PDE for G V (for fixed
V ) on subintervals [0, r] of [0, T ] for bounded sets of terminal conditions (yr)r∈[0,T ]
and right-hand-sides (f r)r∈[0,T ]. Examples that we encounter are yr ≡ 0, yr = Vr or
yr = JT (∂iV

j)r · V i
r for i, j ∈ {1, . . . , d} and f r ≡ 0 or f r = V i

|[0,r].

The solution ur on [0, r] has the following paracontrolled structure

ur = ur,♯ + (∇ur − f r,′) 4 Jr(V ) + yr,′ 4 Pr−·Vr (3.49)

with

ur,♯ = Pr−·y
r,♯ + Jr(−f ♯) + Jr(∇ur � V ) + Jr(V 4∇ur)

+ C1(y
r,′, Vr) + C2(−f ′, V ) + C2(∇ur, V ),

for the commutators from the proof of Theorem 3.25.
We conclude this chapter by proving a uniform bound for the solutions (ur).

Corollary 3.32. Let T > 0 and V ∈X β,γ′ for β, γ′ as in Theorem 3.25. Let γ ∈ (γ′, 1)
and γ′′ ∈ (0, γ′) be as in the proof of Theorem 3.25. Let (yr = yr,♯ + yr,′ 4 Vr)r∈[0,T ] be
a bounded sequence of singular paracontrolled terminal conditions, that is,

Cy := sup
r∈[0,T ]

[∥yr,♯∥
C

(2−γ′)α+2β−1
p

+ ∥yr,′∥Cα+β−1
p

] <∞.

Let (f r = f r,♯ + f r,′ 4 V )r∈[0,T ] be a sequence of right-hand-sides with

Cf := sup
r∈[0,T ]

[∥f r,♯∥
L γ′,α+2β−1

r
+ ∥f r,′∥

L γ′,α+β−1
r

] <∞.

Let for r ∈ [0, T ], (urt )t∈[0,r] be the solution of the backward Kolmogorov PDE for G V

with terminal condition urr = yr and right-hand side f r.
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Then, the following uniform bound for the solutions (ur) holds true

sup
r∈[0,T ]

[∥ur,♯∥
L

γ,2(α+β)−1
r

+ ∥ur∥
L γ′,α+β

r
]

≲T λ
−1

T ,V

(
sup
r∈[0,T ]

[∥yr,♯∥
C

(2−γ′)α+2β−1
p

+ ∥f r,♯∥
L γ′,α+2β−1

r
]

+ ∥V ∥X β,γ′ sup
r∈[0,T ]

[∥yr,′∥Cα+β−1
p

+ ∥f r,′∥
L γ′,α+β−1

r
]

)
, (3.50)

where λT ,V := 1− (T
γ−γ′ ∨ T γ

′−γ′′
)∥V ∥X β,γ′ (1 + ∥V ∥X β,γ′ ) > 0.

In particular, replacing yr by yr1−yr2 and f r by f r1 −f r2 with analogue bounds, a uniform
Lipschitz bound for the solutions ur1 − ur2 follows.
In the setting of Corollary 3.28, the bound (3.50) holds true with γ = γ′ = 0, under the
assumption, that Cf + Cy <∞ for γ′ = 0.

Remark 3.33. In setting of Theorem 3.19 for β in the Young regime and considering
bounded sets of terminal conditions (yr)r ⊂ C (1−γ)α+β

p and right-hand-sides f r ⊂ L γ,β
r

for γ ∈ [0, 1), an analogue uniform Lipschitz bound for the solutions (ur) on [0, r] holds
true. The proof is similar except much easier.

Proof. The proof follows from Theorem 3.30 replacing T by r and considering paracon-
trolled solutions on [0, r] in the sense of (3.49). Then, by (3.40) and (3.41) from the
proof of Theorem 3.30 for V = W and splitting the interval [0, r] in subintervals of
length T , we obtain for every r ⩽ T ,

∥ur,♯∥
L

γ,2(α+β)−1
r

+ ∥ur∥
L γ′,α+β

r

≲T C(r)λ−1

T ,V

(
sup
r∈[0,T ]

[∥yr,♯∥
C

(2−γ′)α+2β−1
p

+ ∥f r,♯∥
L γ′,α+2β−1

r
]

+ ∥V ∥X β,γ′ sup
r∈[0,T ]

[∥yr,′∥Cα+β−1
p

+ ∥f r,′∥
L γ′,α+β−1

r
]

)
.

The dependence of the constant C(r) on r ⩽ T is as follows: C(r) ≲ r
T
⩽ T

T
. Notice

that the choice of T only depends on ∥V ∥, which is fixed here. Thus we obtain (3.50).
As the solution ur depends linearily on the terminal condition yr and the right-hand
side f r, the uniform Lipschitz bound follows.

Remark 3.34. Let (V m) be such that V m := (V m, (P (∂iV
m,j) � V i)i,j)

m→∞→ V
in X β,γ′. Let (f r), (yr) be as in the corollary. Moreover, let (yr,m) with yr,m =
yr,♯,m + yr,′ 4 V m

r be such that supr∈[0,T ]∥yr,♯,m − yr,♯∥
C

(2−γ′)α+2β−1
p

→ 0 for m → ∞.

Analogously, let (f r,m) with f r,m = f r,♯,m + f r,′ 4 V m and convergence of (f r,♯,m)m. Let
ur and ur,m be the solutions for G V with right-hand side f r and terminal conditions yr
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and yr,m, respectively. Then the proof of the corollary furthermore shows that

sup
r∈[0,T ]

[∥ur,♯ − ur,♯,m∥
L

γ,2(α+β)−1
r

+ ∥ur − ur,m∥
L γ′,α+β

r
]

≲T λ
−1

T ,V

(
sup
r∈[0,T ]

[∥yr,♯ − yr,♯,m∥
C

(2−γ′)α+2β−1
p

+ ∥f r,♯ − f r,♯,m∥
L γ′,α+2β−1

r
]

+ ∥V − V m∥X β,γ′ sup
r∈[0,T ]

[∥yr,′∥Cα+β−1
p

+ ∥f r,′∥
L γ′,α+β−1

r
]
)

→ 0,

for m→∞.
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4. Weak solution concepts for
singular Lévy SDEs

This chapter is devoted to prove existence and uniqueness of weak solutions to singular
SDEs of the form

dXt = V (t,Xt)dt+ dLt, X0 = x ∈ Rd. (4.1)

Herein, L is a symmetric α-stable Lévy process for α ∈ (1, 2], that satisfies the non-
degeneracy Assumption 3.4, and V ∈ X β,γ is an enhanced distribution in the sense
of Definition 3.20 with regularity β ∈ (2−2α

3
, 0). In the case of α = 2, we consider

additive standard Brownian noise L = B. The first notion of a weak solution, that
we introduce in Section 4.1, is the concept of solutions of the martingale problem.
Section 4.1 is based on the results from [KP22, Section 4] and we prove existence and
uniqueness of martingale solutions in Theorem 4.2. In Section 4.2, we develop the
concept of weak rough-path-type solutions (we call them below rough weak solutions),
that are proven to be equivalent to martingale solutions in Theorem 4.18 in the Young
(β ∈ ((1 − α)/2, 0)) and the rough regularity regime (β ∈ ((2 − 2α)/3, (1 − α)/2]).
Theorem 4.18 follows from Theorem 4.35 and Theorem 4.32 in Section 4.4. To show the
equivalence of the solution concepts in the rough regime, we construct in Section 4.3 a
rough stochastic sewing integral. In the Young regime, we introduce canonical weak
solutions and prove equivalence to rough weak solutions in Section 4.5. Moreover, we
prove in Section 4.5 ill-posedness of the canonical weak solution concept in the rough
regime. Section 4.6 is based on the results from [KP22, Section 5] and we apply our
theory to construct the solution of the so-called Brox diffusion with Lévy noise, where
the drift is a typical realization of periodic white noise.

4.1. Solutions of the martingale problem
In this section, we prove in Theorem 4.2 existence and uniqueness of solutions of the
martingale problem associated to the singular SDE (4.1).
Formally, the singular generator of X is given by

G V = ∂t −L α
ν + V · ∇.

In the case of regular drift, this is rigorous in the following sense. If V ∈ CTC∞
b , an

application of Itô’s formula to test functions φ ∈ C1,2
b ([0, T ]× Rd,R) shows that the

generator of the diffusion with drift V is given by G V φ = ∂tφ−L α
ν φ + V · ∇φ and
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the set of those functions is a subset of the domain of the generator. For a definition
and properties of infinitesimal generators of (Markov) semigroups, we refer to [EK86,
Sections 1 and 4]. In the case of distributional drift V , it turns out, that the set of
those test functions has trivial intersection with the domain of the singular generator
(mapping into a space of bounded functions) and is thus not a proper function space
to formulate the martingale problem. However, the set of solutions of the backward
Kolmogorov equations G V u = f , u(T, ·) = uT , for right-hand-sides f ∈ CTC ε and
regular terminal conditions uT ∈ C 2(α+β)−1, whose existence follows from Corollary 3.28,
is a rich enough class of functions to formulte the martingale problem, so that the
martingale problem uniquely determines the law of the solution process.
In the next definition, (Ω,F ) := (D([0, T ],Rd),B(D([0, T ],Rd))) denotes the Sko-
rokhod space with canonical filtration (Ft)t⩾0, i.e. Ft = σ(Xs : s ⩽ t) where (Xt)t⩾0
is the canonical process with Xt = ω(t) for ω ∈ Ω.

Definition 4.1 (Martingale problem). Let α ∈ (1, 2] and β ∈ (2−2α
3
, 0), and let T > 0

and V ∈X β,γ. Then, we call a probability measure P on the Skorokhod space (Ω,F )
a solution of the martingale problem for (G V , δx), if

1.) P(X0 ≡ x) = 1 (i.e. PX0 = δx), and

2.) for all f ∈ CTC ε with ε > 2−α and for all uT ∈ C 3, the process M = (Mt)t∈[0,T ]
is a martingale under P with respect to (Ft), where

Mt = u(t,Xt)− u(0, x)−
∫ t

0

f(s,Xs)ds (4.2)

and where u solves the Kolmogorov backward equation G V u = f with terminal
condition u(T, ·) = uT .

This is a generalization of the classical notion of a weak solution for regular drifts, in
the sense that if V n is a bounded and measurable function, then (Xn

t )t∈[0,T ] is a weak
solution of

dXn
t = V n(t,Xn

t )dt+ dLt, Xn
0 = x, (4.3)

if and only if it solves the martingale problem of Definition 4.1.
The first main theorem of this chapter proves the existence and uniqueness of martingale
solutions.

Theorem 4.2. Let α ∈ (1, 2] and L be a symmetric, α-stable Lévy process, such that
the measure ν satisfies Assumption 3.4. Let T > 0 and β ∈ ((2 − 2α)/3, 0) and let
V ∈X β,γ be as in Definition 3.20. Then for all x ∈ Rd, there exists a unique solution
Q on (Ω,F ) of the martingale problem for (G V , δx). Under Q the canonical process is
a strong Markov process.

To prove the theorem, we first establish an auxiliary lemma based on Cambell’s formula,
with which we can establish moment estimates on the jump martingale in Lemma 4.4
below. It’s proof can be found in Appendix A.
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4.1. Solutions of the martingale problem

Lemma 4.3. Let α ∈ (1, 2) and let π be the Poisson random measure of the α-stable
Lévy process L. We define for a multi-index ω ∈ Nn

0 with n ∈ N:

|ω| := ω1 + 2ω2 + · · ·+ nωn.

For λ ∈ R we furthermore define the following moment generating function:

Φ(λ) := E
[
exp

(∫ t

r

∫
|y|⩽C

λ|y|2π(ds, dy)

)]
.

Then the derivatives of Φ satisfy

Φ(n)(λ) = Φ(λ)
∑

ω∈Nn
0 :|ω|=n

c(n, ω)
n∏
i=1

(
(t− r)

∫
|y|⩽C

|y|2ieλ|y|2µ(dy)

)ωi

(4.4)

for suitable integers c(n, ω). In particular, we have for all C > 0 and t > r:

E
[(∫ t

r

∫
|y|⩽C

|y|2π(ds, dy)

)n]
≲

∑
ω∈Nn

0 :|ω|=n

n∏
i=1

(
(t− r)

∫
|y|⩽C

|y|2iµ(dy)

)ωi

. (4.5)

Lemma 4.4. Let α ∈ (1, 2), let θ ∈ (1, α) and u ∈ CTC θ ∩ Cθ/α
T L∞, and let ρ ∈ 2N.

Let moreover π̂ be the compensated Poisson random measure of the α-stable Lévy
process L. Then we have, uniformly in 0 ⩽ r ⩽ t ⩽ T :

E

[∣∣∣∣∫ t

r

∫
Rd

(
(u(t,Xs− + y)− u(t,Xs−))− (u(s,Xs− + y)− u(s,Xs−))

)
π̂(ds, dy)

∣∣∣∣ρ]
≲ |t− r|ρθ/α.

Proof. To abbreviate the notation we write ∆yu(s, x) := u(s, x+ y)− u(s, x). By the
Burkholder-Davis-Gundy inequality together with [PZ07, Lemma 8.21] we get for any
ρ ⩾ 1 and for C > 0 to be chosen later

E
[∣∣∣∣∫ t

r

∫
Rd

(∆yu(t,Xs−)−∆yu(s,Xs−))π̂(ds, dy)

∣∣∣∣ρ]
≲ E

[∣∣∣∣∫ t

r

∫
Rd

(∆yu(t,Xs−)−∆yu(s,Xs−))2π(ds, dy)

∣∣∣∣ρ/2
]

≲ E

[∣∣∣∣∫ t

r

∫
|y|⩽C

(∆yu(t,Xs−)−∆yu(s,Xs−))2π(ds, dy)

∣∣∣∣ρ/2
]

+ E

[∣∣∣∣∫ t

r

∫
|y|>C

(∆yu(t,Xs−)−∆yu(s,Xs−))2π(ds, dy)

∣∣∣∣ρ/2
]
. (4.6)
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4. Weak solution concepts for singular Lévy SDEs

Since π is a positive measure, the second term on the right hand side is bounded by

E

[∣∣∣∣∫ t

r

∫
|y|>C

(∆yu(t,Xs−)−∆yu(s,Xs−))2π(ds, dy)

∣∣∣∣ρ/2
]

≲ |t− r|ρθ/α∥u∥ρ
C

θ
α
T L∞

E

[∣∣∣∣∫ t

r

∫
|y|>C

π(ds, dy)

∣∣∣∣ρ/2
]
.

The integral inside the expectation is a Poisson distributed random variable with
the parameter (t − r)µ({y : |y| > C}) ≃ (t − r)C−α. This motivates the choice
C = (t− r)1/α, for which this term is of the claimed order. For the first term on the
right hand side of (4.6), we estimate by the mean value theorem and using the time
regularity of ∇u:

E

[∣∣∣∣∫ t

r

∫
|y|⩽C

(∆yu(t,Xs−)−∆yu(s,Xs−))2π(ds, dy)

∣∣∣∣ρ/2
]

≲ |t− r|ρ(θ−1)/α∥∇u∥ρ
C

(θ−1)/α
T L∞

E

[∣∣∣∣∫ t

r

∫
|y|⩽C

|y|2π(ds, dy)

∣∣∣∣ρ/2
]
.

Now by Lemma 4.3 and by the choice C = (t− r)1/α, we obtain

E

[(∫ t

r

∫
|y|⩽C

|y|2π(ds, dy)

)ρ/2]
≲

∑
ω∈Nn

0 :|ω|=ρ/2

ρ/2∏
i=1

(
(t− r)

∫
|y|⩽C

|y|2iµ(dy)

)ωi

≲ |t− r|ρ/α,

where we used that
∫
|y|⩽C |y|

kµ(dy) ≃ Ck−α for k ⩾ 2. Together this yields for any
ρ ∈ 2N,

E
[∣∣∣∣∫ t

r

∫
Rd

(∆yu(t,Xs−)−∆yu(s,Xs−))π̂(ds, dy)

∣∣∣∣ρ]
≲ |t− r|ρθ/α + |t− r|ρ(θ−1)/α|t− r|ρ/α

≃ |t− r|ρθ/α.

Corollary 4.5. In the setting of Theorem 4.2, let (V n)n∈N ⊂ CTC
∞
b (Rd,Rd) be a

smooth approximation with (V n,K(V n))→ V in X β,γ. Let (Xn
t )t∈[0,T ] be the strong

solution of the SDE

dXn
t = V n(t,Xn

t )dt+ dLt, X0 = x ∈ Rd.

Let1 θ = α + β and ρ ∈ 2N.

1In [KP22], the result was proven for θ < α+ β, with θ being the regularity of the PDE solution
from [KP22, section 3]. Due to Corollary 3.28, we can indeed generalize to θ = α+ β.
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4.1. Solutions of the martingale problem

Then, there exists N ∈ N, such that uniformly in 0 ⩽ r ⩽ t ⩽ T :

sup
n⩾N

E

[∣∣∣∣∫ t

r

V n(s,Xn
s )ds

∣∣∣∣ρ] ≲ |t− r|θρ/α. (4.7)

Proof. 2 To prove the claim, we apply Corollary 3.32 and use the time regularity θ/α
with θ = α + β of the solution of the Kolmogorov backward equation with right-hand
side V .
Let N ∈ N be large enough, such that supn⩾N∥V n∥X β,γ′ ⩽ 2∥V ∥X β,γ′ .
Let t ∈ (0, T ] and consider the solution un,t ∈ CtC∞

b (Rd,Rd) of the system of equations

G V n

un,t,i = V n,i, un,t,i(t, ·) = 0, for i = 1, ..., d,

whose existence follows from Corollary 3.28 and which converges by the continuity
of the solution map (and the interpolation bound (3.25)) in CtC θ ∩ Cθ/α

t L∞ to the
solution ut,i ∈ Dt of

G V ut,i = V i, ut,i(t, ·) = 0, for i = 1, ..., d.

By the uniform bound on the solutions un,t from Corollary 3.32 in t ∈ [0, T ] and the
choice of N follows that,

sup
n⩾N,t∈[0,T ]

∥un,t∥CtC θ
Rd

+ ∥un,t∥
C

θ/α
t L∞

Rd
<∞. (4.8)

Let now first α ∈ (1, 2). Then we apply Itô’s formula to un,t(t,Xn
t )− un,t(r,Xn

r ) and
we use that Xn solves the SDE with drift V n and that G V n

un = V n to obtain∫ t

r

V n(s,Xn
s )ds = un,t(t,Xn

t )− un,t(r,Xn
r )

+

∫ t

r

∫
Rd

(
un,t(s,Xn

s− + y)− un,t(s,Xn
s−)
)
π̂(ds, dy).

As un,t(t) = 0 and by (4.8) we obtain

|un,t(t,Xn
t )− un,t(r,Xn

r )| = |un,t(t,Xn
r )− un,t(r,Xn

r )| ⩽ |t− r|θ/α∥ut∥
C

θ/α
t L∞ .

2We simplified the proof compared to [KP22] by an application of Corollary 3.32.
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4. Weak solution concepts for singular Lévy SDEs

Using once more that un,t(t) = 0, we obtain from Lemma 4.4:

E

[∣∣∣∣∫ t

r

∫
Rd\{0}

(
un,t(s,Xn

s− + y)− un,t(s,Xn
s−)
)
π̂(ds, dy)

∣∣∣∣ρ]
= E

[∣∣∣∣∫ t

r

∫
Rd\{0}

(
un,t(s,Xn

s−+y)−un,t(s,Xn
s−)−(un,t(t,Xn

s−+y)−un,t(t,Xn
s−))

)
π̂(ds,dy)

∣∣∣∣ρ]
≲ |t− r|θρ/α,

so (4.7) holds for α ∈ (1, 2). For α = 2 the argument is essentially the same, except
much easier: then we only have to replace the jump martingale∫ t

r

∫
Rd

(
un,t(s,Xn

s− + y)− un,t(s,Xn
s−)
)
π̂(ds, dy)

by
∫ t
r
∇un,t(s,Xn

s )dBs and apply the Burkholder-Davis-Gundy inequality.

Proof of Theorem 4.2. Let (V n)n∈N ⊂ CTC
∞
b (Rd,Rd) be such that (V n,K(V n))→ V

in X β,γ and let Xn be the unique strong solution of the SDE

dXn
t = V n(t,Xn

t )dt+ dLt, Xn
0 = x. (4.9)

To prove the existence of a solution of the martingale problem for (G V , δx) we follow
the usual strategy: we show tightness of (Xn)n∈N, and then we show that every limit
point solves the martingale problem for (G V , δx). Moreover, we prove that the solution
to that martingale problem is unique in law, and therefore (Xn) converges weakly. The
limit equals the solution of the martingale problem.

Step 1: Tightness of (PX
n
) on D([0, T ],Rd).

We apply (4.7) from Corollary 4.5 for ρ = 2, so that 2(α + β)/α > 1, which shows
that the drift term An :=

∫ ·
0
V n(s,Xn

s )ds satisfies Kolmogorov’s tightness criterion.
Therefore, (An) is tight in C([0, T ],Rd) and thus in particular C-tight in D([0, T ],Rd)
(meaning that every limit point is continuous). By [JS03, Corollary VI.3.33], we thus
obtain the tightness of the tuple (An, L) and of Xn = x+ An + L.

Step 2: Any weak limit solves the martingale problem for (G V , δx).
We consider a weakly convergent subsequence, also denoted by (PX

n
), and we write

Q for its limit. Let X be the canonical process on D([0, T ],Rd) and let En[·] (resp.
EQ[·]) denote integration w.r.t. PX

n
(resp. Q). Let f ∈ CTC ε and uT ∈ C 3, and let

(fn)n∈N ⊂ CTC
∞
b be such that fn converges to f in CTC ε. Let un be the solution of

G V n
un = fn with terminal condition un(T, ·) = uT . Since fn and V n are smooth we

have un ∈ C1,2
b ([0, T ]× Rd) and un is a strong solution of the Kolmogorov backward

equation. We can thus apply Ito’s formula for càdlàg processes to un(t,Xt) under the
measure PXn and obtain as the operators −L α

ν and A from (3.5) agree on C∞
b (and in
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4.1. Solutions of the martingale problem

fact unt ∈ C∞
b ), that in the jump case α ∈ (1, 2)

Mn
t := un(t,Xt)− un(0, x)−

∫ t

0

fn(s,Xs)ds (4.10)

= un(t,Xt)− un(0, x)−
∫ t

0

G V n

un(s,Xs)ds (4.11)

=

∫ t

0

∫
Rd

(
un(r,Xr− + y)− un(r,Xr−)

)
π̂(dr, dy) (4.12)

is a martingale in the canonical filtration. Indeed, Mn is a local martingale because it
is a stochastic integral against a compensated Poisson random measure, and it is a true
martingale because un(s,Xs− + y)− un(s,Xs−) is square-integrable w.r.t. P⊗ dr ⊗ µ,
where we use the boundedness of un for the big jump part and the boundedness of ∇un
for the small jump part. In the Brownian case (α = 2) we have Mn =

∫ ·
0
∇un(s,Xn

s )dBs,
which is a martingale because ∇un is bounded.

Let now u be the solution to G V u = f with terminal condition u(T ) = uT . By the

continuity of the solution map, (un) converges to u in the spaces CTC θ and C
θ/α
T L∞

for θ = α + β. We show that (Mt)t∈[0,T ] is a martingale under Q, where

Mt = u(t,Xt)− u(0, x)−
∫ t

0

f(s,Xs)ds. (4.13)

For that purpose let 0 ⩽ r ⩽ t ⩽ T and let F : D([0, r],Rd)→ R be continuous and
bounded. Since Mn is a martingale under PX

n
, we have

En[(Mn
t −Mn

r )F ((Xu)u⩽r)] = 0. (4.14)

We define for x ∈ D := D([0, T ],Rd),

Mn
r,t(x) :=

(
un(t, x(t))− un(r, x(r))−

∫ t

r

fn(u, x(u))du

)
,

and Mr,t(x) analogously with un, fn replaced by u, f . Let Mn
t (x) := Mn

0,t(x) and
Mt(x) := M0,t(x). We aim to send n → ∞ in (4.14). Therefore, observe that
supx∈D|Mn

t (x) − Mt(x)| → 0 for n → ∞, because (un, fn) converges to (u, f) in
CTCb×CTCb ⊂ CTC θ×CTC ε. Thus, we obtain, by boundedness of F , that

lim
n→∞

En[Mr,tF ((Xu)u⩽r)] = 0.

Now, by [JS03, Proposition VI.2.1], we know that the map D ∋ x 7→
∫ t
0
f(s, x(s))ds is

continuous w.r.t. the J1-topology and it is bounded by boundedness of f . Moreover, if
we know that Q(∆Xt = ∆Xr = 0) = 1, then by [JS03, Proposition VI.3.14] and since
Xn → X in distribution in D, we have that Xn

t → Xt and Xn
r → Xr in distribution.

129



4. Weak solution concepts for singular Lévy SDEs

Together, this gives (as R ∋ y 7→ u(t, y)− u(r, y) is continuous and bounded)

0 = lim
n→∞

En[Mt,rF ((Xu)u∈[0,T ])] = EQ[Mt,rF ((Xu)u∈[0,T ])],

and since 0 ⩽ r ⩽ t ⩽ T and F were arbitrary, we obtain that Q solves the martingale
problem for (G V , δx). So it remains to show that indeed Q(∆Xt = ∆Xr = 0) = 1.
Since the map C([0, T ],Rd)×D ∋ (x, y) 7→ x+ y ∈ D is continuous by [JS03, Section
VI.1b, Proposition VI.1.23] and since (An, L) is tight by Step 1, we obtain (possibly
along a further subsequence)

X ← Xn = x+

∫ ·

0

V n(s,Xn
s )ds+ L→ x+ A+ L in distribution in D,

where A denotes the continuous limit of the drift term. Hence we conclude

Q(∆Xt = ∆Xr = 0) = P(∆Lt = ∆Lr = 0) = 1.

Step 3: Uniqueness for the martingale problem and strong Markov property.
Let Q1 and Q2 be two solutions of the martingale problem for G V with the same initial
distribution µ = QX0

1 = QX0
2 . Let f ∈ CTC ε and let u be the solution of G V u = f ,

u(T ) = 0. Then we obtain for i = 1, 2,∫
Rd

u(0, x)µ(dx) = EQi

[
u(T,XT )−

∫ T

0

f(s,Xs)ds

]
= −EQi

[∫ T

0

f(s,Xs)ds

]
.

Thus, we have for all f ∈ CTC ε

EQ1

[∫ T

0

f(s,Xs)ds

]
= EQ2

[∫ T

0

f(s,Xs)ds

]
.

Therefore, QXt
1 = QXt

2 for all t ∈ [0, T ], that is, the one dimensional marginal distribu-
tions of Q1 and Q2 agree. Indeed, this follows by taking fδ(s, x) = δ−1hδ(s)g(x) for
hδ ≃ 1[t,t+δ] and g ∈ C ε and letting δ → 0. Now [EK86, Theorem 4.4.3] shows that
Q1 = Q2 and that under the solution Q to the martingale problem for (G V , δx) the
canonical process is a strong Markov process.

Remark 4.6. To solve the martingale problem, we only used that there exists a sequence
(V n) with V n ∈ CT (C∞

b )d and (V n, (JT (∂iV
n,j) � V n,i)i,j)→ (V, (JT (∂iV

j) � V i)i,j) ∈
CTC β

Rd × CTC 2β+α−1
Rd×d , which is implied by the stronger assumption V ∈ X β,γ′. This

follows, because we only need to consider solutions of the Kolmogorov equation with
regular terminal conditions, cf. Remark 3.29, to solve the martingale problem.
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4.2. Weak rough-path-type solutions

4.2. Weak rough-path-type solutions
In this section, we introduce our rough weak solution concept in Definition 4.10 and
state the second main Theorem 4.18, that proves equivalence of rough weak solutions
and martingale solutions from the previous section. The proof of Theorem 4.18 follows
from Theorem 4.32 and Theorem 4.35 in Section 4.4. We furthermore state the
stochastic sewing lemma from [Lê20]. An application of the stochastic sewing lemma
yields in Lemma 4.15 existence of the stochastic integral of f(t,Xt), for regular enough
functions f , against the drift Z of the diffusion X. Moreover, we define a class K ϑ of
processes in Definition 4.16, which are processes with a certain regularity requirement,
that will be used in Section 4.4.
Let us start by stating the stochastic sewing lemma from [Lê20, Theorem 2.1].

Lemma 4.7 (Stochastic sewing lemma). Let (Ω,F , (Ft)t∈[0,T ],P) be a complete prob-
ability space. Let (Ξs,t)0⩽s⩽t⩽T be a two-parameter stochastic process with values in
Rd, that is adapted (Ξs,t being Ft-measurable for s ⩽ t) and L2(P)-integrable. Let
δΞs,u,t := Ξst − Ξsu − Ξut, 0 ⩽ s ⩽ u ⩽ t ⩽ T . Suppose that there are constants
Γ1,Γ2, ε1, ε2 > 0, such that for all 0 ⩽ s ⩽ u ⩽ t ⩽ T ,

∥E[δΞs,u,t | Fs]∥L2(P) ⩽ Γ1|t− s|1+ε1 , ∥δΞs,u,t∥L2(P) ⩽ Γ2|t− s|
1
2
+ε2 . (4.15)

Then, there exists a unique (up to modifications) stochastic process (It)t∈[0,T ] :=
(It(Ξ))t∈[0,T ] with values in Rd satisfying the following properties

� I0 = 0, (It)t∈[0,T ] is (Ft)-adapted and L2(P)-integrable and

� there exist constants C1 = C(ε1), C2 = C(ε2) > 0, such that for all 0 ⩽ s ⩽ t ⩽ T ,

∥It − Is − Ξs,t∥L2(P) ⩽ C1Γ1|t− s|1+ε1 + C2Γ2|t− s|
1
2
+ε2 ,

∥E[It − Is − Ξs,t | Fs]∥L2(P) ⩽ C1Γ1|t− s|1+ε1 . (4.16)

Furthermore, for every t ∈ [0, T ] and any partition Π = {0 = t0 < t1 < · · · < tN = T},
the Riemann sums IΠt =

∑N−1
i=0 Ξti,ti+1

converge to It in L
2(P) for vanishing mesh size

|Π| := maxi|ti+1 − ti| → 0.

Remark 4.8. We can apply the stochastic sewing lemma to a germ Ξst := fsYst =
fs(Yt−Ys) for stochastic processes (ft), (Yt). Then, typically the constants Γ1,Γ2 depend
linearily on the Hölder-type moment bounds of the stochastic processes f and Y . The
bounds from Lemma 4.7 then imply that sup0⩽s<t⩽T∥It− Is−Ξs,t∥L2(P)|t− s|−(1/2+ε2) ≲
T 1/2+ε1−ε2Γ1 + Γ2 (assuming ε2 ∈ (0, 1/2)), which yields the stability of the stochastic
sewing integral.

Next, we define a (rough) weak solution to the singular SDE

dXt = V (t,Xt)dt+ dLt, X0 = x ∈ Rd (4.17)
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for an enhanced Besov drift V ∈X β,γ with β ∈ (2−2α
3
, 0) and γ ∈ [2β+2α−1

α
, 1) in the

rough case, respectively γ ∈ (1−β
α
, 1) in the Young case (cf. Definition 3.20).

In the case of (locally) bounded drifts V the equivalence of solutions to the martingale
problem and weak solutions is known by [SV06, Theorem 8.1.1] in the Brownian noise
case and by [KC11, Theorem 1.1] in the Lévy noise setting. The first attempt to define
weak solutions in the singular drift case, is to replace the singular drift by the limit
Z of the drift terms

∫ ·
0
V n(t,Xt)dt for a smooth sequence (V n) approximating V . In

this way, one obtains a canonical weak solution concept. In the Young case, this yields
a well-posed solution concept (if moreover requiring regularity bounds on the drift
Z). However, it turns out that canonical weak solutions are in general non-unique in
the rough regime (cf. Section 4.5 below). In this section, we thus adapt the canonical
weak solution concept, imposing additional assumptions to ensure well-posedness.
The idea for a (rough) weak solution is to impose rough-paths-type assumptions on
certain iterated integrals ZV , that formally correspont to the resonant component in
the enhancement V . This motivates Definition 4.10 below.
Let us introduce the notation

K (η1, η2) := [∆̊T ∋ (s, t) 7→ Pt−s∂jη
i
1(t) � ηj2(s)],

for η1, η2 ∈ CTC∞
b (Rd,Rd) and ∆̊T := {(s, t) ∈ [0, T ]2 | s < t}.

Let ∆T := {(s, t) ∈ [0, T ]2 | s ⩽ t}.
Moreover, for a sequence (am,n)m,n∈N in a Banach space X, for which the convergence

lim
m→∞

lim
n→∞

am,n = a = lim
n→∞

lim
m→∞

am,n

holds, we use the short-hand notation am,n → a for m,n→∞ or limm,n→∞ am,n = a.

Assumption 4.9. In the following, we will assume that for V = (V,V2) ∈X β,γ, there
exists a sequence (V n) ⊂ CT (C∞

b )d, such that

(V n,K (V n, V m))→ V = (V,V2) in X β,γ (4.18)

for n,m→∞, i.e. that the mixed resonant products (K (V n, V m)) converge to V2.

Whenever we write V ∈X β,γ in this section and Section 4.4, we mean that additionally
Assumption 4.9 is satisfied. Assumption 4.9 implies in particular that K (V n, V )→ V2

for n→∞.

Furthermore, we call a filtered probability space (Ω,F , (F )t∈[0,T ],P) a stochastic basis,
if (Ω,F , (F )t∈[0,T ],P) is complete and the filtration (Ft) is right-continuous. We call
a process L a (Ft)-Lévy process, if L is adapted to (Ft) with L0 = 0, Lt − Ls being

independent of Fs and Lt − Ls
d
= Lt−s for all 0 ⩽ s < t ⩽ T . As before, we call an

α-stable Lévy process non-degenerate, if Assumption 3.4 is satisfied.
In the following, we use the notation Zst = Zs,t = Zt − Zs, s ⩽ t, for the increment
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4.2. Weak rough-path-type solutions

of a stochastic process (Zt) and Es[·] := E[· | Fs] for the conditional expectation.
A stochastic process (Ξst)(s,t)∈∆T

indexed by ∆T we call adapted to (Ft) if Ξst is
Ft-measurable for all (s, t) ∈ ∆T . For p ∈ [2,∞], m ∈ N and an adapted Rm-valued
stochastic process (Ξst)(s,t)∈∆T

indexed by ∆T , we define for θ ∈ (0, 1),

∥Ξ∥θ,p := sup
(s,t)∈∆T

∥Ξst∥Lp(P,Rm)

|t− s|θ
, ∥Ξ | F∥θ,p := sup

(s,t)∈∆T

∥Es[Ξst]∥Lp(P,Rm)

|t− s|θ
. (4.19)

If (Zt)t∈[0,T ] is an adapted process indexed by [0, T ], we use the same notation (4.19)
for Ξst = Zst = Zt − Zs.

Definition 4.10 (Rough weak solution). Let V ∈ X β,γ for β ∈ (2−2α
3
, 0) (with

γ ∈ [2β+2α−1
α

, 1) in the rough case, respectively γ ∈ [1−β
α
, 1) in the Young case). Let

x ∈ Rd. We call a triple (X,L,ZV ) a weak solution to the SDE (4.17) starting at
X0 = x ∈ Rd, if there exists a stochastic basis (Ω,F , (Ft)t⩾0,P), such that L is an
α-stable symmetric non-degenerate (Ft)-Lévy process and almost surely

X = x+ Z + L,

where Z is a continuous and (Ft)-adapted process with the property that

∥Z∥α+β
α
,2 + ∥Z | F∥α+β

α
,∞ <∞. (4.20)

Moreover (ZVst)(s,t)∈∆T
is a continuous, (Ft)-adapted, Rd×d-valued stochastic process

indexed by ∆T with

∥ZV ∥α+β
α
,2 + ∥ZV | F∥ 2α+2β−1

α
,∞ <∞. (4.21)

Furthermore, Z and ZV are given as follows. There exists a sequence (V n) ⊂ CT (C∞
b )d

with (V n,K (V m, V n))→ (V,V2) in X β,γ for m,n→∞ with the following properties:

1.) Zn :=
∫ ·
0
V n(s,Xs)ds converges to Z in the sense that

lim
n→∞

[∥Zn − Z∥α+β
α
,2 + ∥Zn − Z | F∥α+β

α
,∞] = 0 (4.22)

and

2.) Zm,nst = (Zm,nst (i, j))i,j =
(∫ t

s
[JT (∂iV

m,j)(r,Xr)− JT (∂iV
m,j)(s,Xs)]dZ

n,i
r

)
i,j

con-

verges to ZV in the sense that

lim
m,n→∞

[∥Zm,n − ZV ∥α+β
α
,2 + ∥Zm,n − ZV | F∥ 2α+2β−1

α
,∞] = 0. (4.23)

We also call X a (rough) weak solution, if there exists a stochastic basis, an α-stable
symmetric non-degenerate Lévy process L and a stochastic process ZV , such that
(X,L,ZV ) is a rough weak solution.
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4. Weak solution concepts for singular Lévy SDEs

Remark 4.11 (Notation). We also use the following abbreviations. Let

Zm,nst (i, j) =

∫ t

s

JT (∂iV
m,j)(r,Xr)dZ

n,i
r − JT (∂iV

m,j)(s,Xs)Z
n,i
st

=: Am,n
st (i, j)− JT (∂iV

m,j)(s,Xs)Z
n,i
st .

Let furthermore Ai
st := limm,n→∞(Am,n

st (i, j))j=1,...,d =: limm,n→∞Am,n,i
st for i = 1, . . . , d.

Here, the convergence with respect to ∥·∥α+β
α
,2 follows from the convergences 1.) and

2.) and JT (∂iV
m,j) → JT (∂iV

j) in CTL
∞. Moreover, (Am,n)m,n,A satisfy the same

bounds as Z, that is (4.20).
We write ZV,ist := limm,n→∞(Zm,nst (i, j))j=1,...,d =: limm,n→∞ Zm,n,ist for i = 1, . . . , d. And

for fixed m ∈ N, we define Am,∞,i
st :=

∫ t
s
JT (∂iV

m)(r,Xr)dZ
i
r, and analogously we define

Zm,∞,i
st :=

∫ t
s
[JT (∂iV

m)(r,Xr)− JT (∂iV
m)(s,Xs)]dZ

i
r.

Remark 4.12 (X is a Dirichlet process). By the L2-moment bound on Z from (4.20),
Z has zero quadratic variation as 2(α+β)/α > 1 (but Z is not necessarily of finite one-
variation). Thus, X = x+Z+L is a Dirichlet process, i.e. the sum of a local martingale
and a zero quadratic variation process, cf. [CJMS06, Definition 2.4]. In particular, for
F ∈ C1,2

b ([0, T ] × Rd,R), the Itô-formula for F (t,Xt) from [CJMS06, Theorem 3.1]
(which can be extended to time depending F , that are C1 in time) holds. Notice that
in our case X is not only a weak Dirichlet process, but a Dirichlet process and Z is
continuous. Thus in the Itô-formula the terms involving the quadratic variation and
the pure jump part of Z vanish. In particular, the stochastic integral

∫ ·
0
∇F (s,Xs) · dZs

is the limit, in probability, of the classical Riemann sums.

Remark 4.13 (Stochastic integrals against Z and well-definedness of Am,n,Am,∞).
For any f = ∂iF for F ∈ C1,2

b ([0, T ]× Rd,R), we have that the integral
∫ t
0
f(s,Xs)dZ

i
s

for i = 1, . . . , d, t ⩽ T , is defined via Itô’s formula as the limit of the classical Riemann
sums ∑

s,r∈Π

f(s,Xs)(Z
i
r − Zi

s) (4.24)

for partitions Π of [0, t] with mesh-size |Π| → 0, cf. Remark 4.12. Thus, in par-
ticular, for fixed m ∈ N, Am,∞

0,t (i, j) is defined as the limit of the Riemann sums∑
s,r∈Π J

T (∂iV
m,j)(s,Xs)Z

i
s,r, analogously for Am,n

0,t (i, j).
Thanks to Lemma 4.15 below and the moment bounds (4.20) of Z, existence of the

L2(P)-limit of the sums (4.24) can even be shown for f ∈ Cθ/α
T L∞∩CTC θ for θ ∈ (0, 1)

with (θ + α + β)/α > 1.
In particular, the stability of the stochastic sewing integral yields that, for fixed m ∈ N,
limn→∞Am,n

st = Am,∞
st in L2(P), uniformly in (s, t) ∈ ∆T .

In the Young case, we can take f = JT (∂iV
j) ∈ C(α+β−1)/α

T L∞ ∩ CTC α+β−1, that is
θ = α + β − 1, which satisfies the assumptions of Lemma 4.15. Thus, existence of the
integral Ast(i, j) follows. In the rough case, the regularity of f = JT (∂iV

j) does not
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4.2. Weak rough-path-type solutions

suffice to take the limit in (4.24), because 2(α + β)− 1 ⩽ α if β ⩽ (1− α)/2. Thus,
the bounds (4.21) on ZV and the convergence in 2.) are non-trivial assumptions in the
rough case.

Remark 4.14 (One and all sequences (V n)). If (X,L,ZV ) is a weak solution and
V ∈ X β,γ, then the convergences in 1.) and 2.) are true for all sequences (V n) with
(V n,K (V n, V m))→ V in X β,γ. This means, that (Zn), (Zm,n) converge and the limit
is the same for any such sequence (V n). Indeed, this will follow from the equivalence
proof of the solution concepts below (specifically Theorem 4.35).

The following lemma is an application of Lemma 4.7, cf. the discussion in Remark 4.13.
Lemma 4.15 will moreover be used to prove (together with Theorem 4.18 and Propo-
sition 4.33 below), that in the Young case rough weak solutions are equivalent to
canonical weak solutions, defined in Section 4.5.

Lemma 4.15. Let (X,L,ZV ) be a weak solution and let f ∈ C
θ/α
T L∞ ∩ CTC θ for

θ ∈ (0, 1) with (θ + α + β)/α > 1. Let i ∈ {1, . . . , d}.
Then, for every t ∈ [0, T ], the stochastic sewing integral

I(f, Z)t := lim
|Π|→0

∑
s,r∈Π

f(s,Xs)(Z
i
r − Zi

s) ∈ L2(P)

for finite partitions Π of [0, t] with |Π| = maxs,r∈Π|r−s| → 0, is well-defined and allows
for the bound,

∥I(f, Z)t − I(f, Z)s − f(s,Xs)Z
i
s,t∥L2(P)

≲ ∥f∥CTL∞∥Z∥α+β
α
,2|t− s|

(α+β)/α

+ ∥f∥
C

θ/α
T L∞∩CT C θ∥Z∥θα+β

α
,2
∥Z | F∥α+β

α
,∞|t− s|

(θ+α+β)/α.

In particular, for β ∈ (1−α
2
, 0) (Young regime), the existence of the integral A0,t =(∫ t

0
JT (∂iV

j)(s,Xs)dZ
i
s

)
i,j
∈ L2(P,Rd×d), t ∈ [0, T ] and the bound ∥ZV ∥(α+β)/α,2 <∞,

as well as the convergence ∥Zm,n − ZV ∥α+β
α
,2 → 0 in 2.) follow. Furthermore, the

convergence ∥Zm,n − ZV | F∥ 2α+2β−1
α

,2 → 0 follows.

Proof. We apply the stochastic sewing lemma, Lemma 4.7, to the germ

Ξst = f(s,Xs)(Z
i
t − Zi

s).

We have that

δΞsrt = Ξst − Ξsr − Ξrt = [f(r,Xr)− f(s,Xs)]Z
i
rt.

To prove the bound on the expectation in the stochastic sewing lemma, we will use the
trivial estimate |f(r,Xr)− f(s,Xs)| ⩽ 2∥f∥CTL∞ ≲ 2∥f∥CT C θ as θ > 0 and the bound
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4. Weak solution concepts for singular Lévy SDEs

on Z from (4.20), such that

E[|δΞsrt|2] ⩽ ∥f∥2CTL∞E[|Zi
rt|2] ⩽ ∥f∥2CT C θ∥Z∥2α+β

α
,2
|t− s|2(α+β)/α

with (α+β)/α > 1/2. For bound on the conditional expectation, we utilize the bounds
(4.20) on Z and the time and space regularity of f , such that

|f(r,Xr)− f(s,Xs)| ⩽ |f(r,Xr)− f(s,Xr)|+ |f(s,Xs)− f(s,Xr)|
≲ ∥f∥

C
θ/α
T L∞|r − s|θ/α + ∥f∥CT C θ |Xr −Xs|θ

≲ ∥f∥
C

θ/α
T L∞∩CT C θ [|r − s|θ/α + |Xr −Xs|θ],

where we used that the norm in C θ is equivalent to the norm in the Hölder space
Cθ
b of bounded, θ-Hölder continuous functions for θ ∈ (0, 1) (cf. [BCD11, Section 2.7,

Examples]). Hence, with |Xr −Xs| ⩽ |Zr − Zs|+ |Lr − Ls|, we can estimate

E[|Es[δΞsrt]|2]
= E[|Es[f(r,Xr)− f(s,Xs))Er[Z

i
rt]]|2]

⩽ E[Es[|f(r,Xr)− f(s,Xs)||Er[Zi
rt]|]2]

⩽ ∥Er[Zi
rt]∥2L∞(P)E[Es[|f(r,Xr)− f(s,Xs)|]2]

≲ ∥Z | F∥2α+β
α
,∞|t− r|

2(α+β)/α∥f∥2
C

θ/α
T L∞∩CT C θ

×(
|r − s|2θ/α + E[|Zr − Zs|2θ] + E[Es[|Lr − Ls|θ]2]

)
≲T ∥Z | F∥2α+β

α
,∞∥Z∥

2θ
α+β
α
,2
∥f∥2

C
θ/α
T L∞∩CT C θ

|t− s|2(θ+α+β)/α

In the last estimate above, we used stationarity, scaling and independence of the
increment Lr − Ls of Fs for s ⩽ r, such that almost surely

Es[|Lr − Ls|θ] = E[|Lr − Ls|θ] = |r − s|θ/αE[|L1|θ] ≲ |r − s|θ/α

and the expectation is finite due to θ < α. Furthermore, as θ ∈ (0, 1), we used above
Jensen’s inequality and the following estimate on Z:

E[|Zr − Zs|2θ] ⩽ E[|Zr − Zs|2]θ ⩽ ∥Z∥2θα+β
α
,2
|r − s|2θ(α+β)/α ≲T ∥Z∥2θα+β

α
,2
|r − s|2θ/α.

Due to (θ + α + β)/α > 1, Lemma 4.7 applies and yields the bound for I(f, Z).

In the Young case, β > (1 − α)/2, we can take f = JT (∂iV
j) ∈ C

(α+β−1)/α
T L∞ ∩

CTC α+β−1 with (2α + 2β − 1)/α > 1, which yields existence of the integral I(Ξ)t =
A0,t(i, j). Let I(Ξm,n) be the sewing integral with germ

Ξm,n
sr = JT (∂iV

m,j)(s,Xs)(Z
n,i
r − Zn,i

s )

and let fm := JT (∂iV
m,j). By the Schauder and interpolation estimates we furthermore
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4.2. Weak rough-path-type solutions

have that fm → f in L 0,α+β−1
T and in C

(α+β−1)/α
T L∞ ∩ CTC α+β−1.

Let ZVst = Ast − Ξst = I(Ξ)st − Ξst. Then, Lemma 4.7 yields that ∥ZV ∥α+β
α
,2 <∞ and

∥ZV | F∥ 2α+2β−1
α

,2 <∞. The stability of the sewing integral implies the convergence

∥Zm,n − ZV ∥α+β
α
,2 → 0, since by the estimates above we obtain for (s, t) ∈ ∆T that

∥Zm,nst − ZVst∥L2

⩽ ∥I(Ξm,n)st − Ξm,n
s,t − (I(Ξ)st − Ξs,t)∥L2

≲T |t− s|(α+β)/α
(

sup
n
∥Zn | F∥α+β

α
,∞∥Z∥

θ
α+β
α
,2
∥fm − f∥L 0,α+β−1

T

+ ∥Zn − Z | F∥α+β
α
,∞∥Z∥

θ
α+β
α
,2
∥f∥L 0,α+β−1

T

+ ∥fm − f∥L 0,α+β−1
T

sup
n
∥Zn∥α+β

α
,2

+ ∥f∥L 0,α+β−1
T

∥Zn − Z∥α+β
α
,2

)
→ 0

for n,m→∞. Analogously we can show that ∥Zm,n − ZV | F∥ 2α+2β−1
α

,2 → 0.

Let V = (V,V2) ∈ X β,γ and let (X,L,ZV ) be a weak solution. Then, the proof of
Theorem 4.35 below shows the following representations of Z and A (and thus of ZV ):

Es[Z
i
s,t] = Es[u

t,i(t,Xt)− ut,i(s,Xs)] and Es[As,t(i, j)] = Es[v
t,i,j(t,Xt)− vt,i,j(s,Xs)]

for the solutions ut = (ut,i)i=1,...,d, v
t = (vt,i,j)i,j=1,...,d of the backward PDEs

G V ut,i = V i, ut,i(t, ·) = 0. (4.25)

and

G V vt,i,j = JT (∂iV
j) · V i

= V2(i, j) + JT (∂iV
j) 4 V i + JT (∂iV

j) 5 V i, vt,i,j(t, ·) = 0. (4.26)

Let for i ∈ {1, . . . , d}, vt,i := (vt,i,j)j=1,...,d.
Together with the bound ∥ZV | F∥ 2α+2β−1

α
,∞ < ∞ from (4.21), this motivates the

definition of the class of processes K ϑ = K ϑ(V ).

Definition 4.16 (Class K ϑ). Let β ∈ (2−2α
3
, 0), V ∈ X β,γ and ϑ ∈ ((α + β)/α, 1].

Let for t ∈ (0, T ], vt be the solution of the PDE (4.26) and ut be the solution of (4.25).
An adapted càdlàg stochastic process (Xt)t∈[0,T ] is said to be of class K ϑ(V ) if for all
i = 1, . . . , d:

∥Es[(vt,i(t,Xt)− vt,i(s,Xs))− JT (∂iV )(s,Xs)(u
t,i(t,Xt)− ut,i(s,Xs))]∥(L∞(P))d

≲ |t− s|ϑ. (4.27)
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4. Weak solution concepts for singular Lévy SDEs

Remark 4.17. Using vt,i,j, ut,i ∈ C(α+β)/α
t L∞ with norm uniformly bounded for t ∈

[0, T ] by Corollary 3.32, a trivial estimate yields (4.27) for ϑ = (α + β)/α. We are
interested in the case ϑ > (α + β)/α.

As an intermediate step in the equivalence proof of the solution concepts we will prove
in Proposition 4.33 that the martingale solution for G V is a process of class K ϑ(V )
for ϑ = (2α + 2β − 1)/α.
Let us now state our second main theorem of this chapter. The proof follows directly
from Theorems 4.32 and 4.35 in Section 4.4.

Theorem 4.18. Let α ∈ (1, 2], β ∈ (2−2α
3
, 0) and V ∈ X β,γ. Let x ∈ Rd. Then, X

is a (rough) weak solution in the sense of Definition 4.10 if and only if X solves the
(G V , δx)-martingale problem. In particular, (rough) weak solutions are unique in law.

To prove Theorem 4.18, it turns out that for a weak solution X we need to make sense
out of the limit of the stochastic integrals∫ t

0

∇um(s,Xs) · dZs =
d∑
i=1

∫ t

0

∂iu
m(s,Xs)dZ

i
s,

as m→∞, where um ∈ C1,2
b ([0, T ]× Rd) with um → u and u solving the Kolmogorov

backward equation (for regular data f, uT ). In the rough regime, ∂iu won’t have enough
regularity, such that we can define the integral of ∂iu(s,Xs) against Z in a stable
manner utilizing Lemma 4.15. Indeed, a regularity counting argument yields that the
time regularity of ∂iu, i.e. ∂iu ∈ C(α+β−1)/α

T L∞, together with the (α + β)/α-Hölder
regularity of Z in L2(P) sum up to (2α + 2β − 1)/α ⩽ 1 for β ⩽ (1− α)/2. The idea
is thus to enhance Z by ZV from Definition 4.10 in order to correct for the irregular
terms in ∂iu and to define the stable rough stochastic integral∫ t

0

∇u(s,Xs) · d(Z,ZV ) =
d∑
i=1

∫ t

0

∂iu(s,Xs)d(Zi,ZV,i)s.

For regular integrands ∇um the stochastic integral against Z and the rough stochastic
integral against (Z,ZV ) coincide. This motivates the general theory in the next section.

4.3. A rough stochastic sewing integral
In this section, we construct in Theorem 4.24 a rough stochastic integral using the
stochastic sewing Lemma 4.7. The theory is inspired by [FHL21]. Nonetheless, the
results from [FHL21] do not apply in our setting and our rough stochastic integral
differs from the one constructed there. Instead of considering a γ-rough paths as an
integrator, we consider a lifted stochastic process (Z,ZA) with bounds with respect
to the semi-norms ∥·∥θ,2 and ∥· | F∥θ,∞, cf. (4.19). The Hölder exponent σ of Z is
assumed to satisfy σ > 1/2, since this is the case for the drift term Z in the section
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4.3. A rough stochastic sewing integral

above. However, the integrand is rough, but stochastically controlled by a given
stochastic process A. We construct the integral in L2(P), but replacing 2 by p ⩾ 2 in
the bounds below, we could more generally construct the integral in Lp(P). We will not
bother doing so, as we aim for the situation where the integrand is given by a ϑ-Hölder
function of the α-stable process for ϑ ∈ (0, α/2), which lacks arbitrarily high moments,
i.e. E[|L1|2ϑ] <∞ as 2ϑ < α, but we may not necessarily have E[|L1|pϑ] <∞ for p > 2.
Let us start with the definition of stochastically controlled processes. Let here and
below, (Ω,F , (Ft)t∈[0,T ],P) be a complete filtered probability space.

Definition 4.19 (Stochastically controlled processes). Let (At)t∈[0,T ] be an Rd-valued
adapted stochastic process with A ∈ CTL

∞(P,Rd). We call an adapted stochastic
process (ft, f

′
t)t∈[0,T ] with (f, f ′) ∈ CTL∞(P)× CTL∞(P,Rd) stochastically controlled

by A, if for ς, ς ′ ∈ (0, 1) the following bounds hold true

∥f∥ς,2 + ∥f ′∥ς′,2 <∞

and the remainder (Rf
st)(s,t)∈∆T

defined by

Rf
st := fst − f ′

s · Ast,

satisfies

∥Rf∥ς+ς′,2 <∞.

The remainder is then an adapted process indexed by ∆T . We denote the space of
all such (f, f ′), that are stochastically controlled by A by Dς,ς′

T (A) and we define the
complete norm

∥f − g∥
Dς,ς′

T (A)
:= sup

t∈[0,T ]
[∥(f − g)t∥L∞(P) + ∥(f ′ − g′)t∥L∞(P,Rd)]

+ ∥f − g∥ς,2 + ∥f ′ − g′∥ς′,2 + ∥Rf −Rg∥ς+ς′,2.

Remark 4.20. In particular, as f ′ ∈ CTL∞(P,Rd), the bounds on f and f ′ imply the
following bound on A: ∥A∥ς,2 <∞.

Definition 4.21 (Rough stochastic integrator). Let (At)t∈[0,T ] be an adapted Rd-valued
stochastic process, which satisfies A ∈ CTL∞(P,Rd) and ∥A∥ς,2 < ∞ for ς ∈ (0, 1).
Let σ ∈ (1/2, 1). Then we call (Z,ZA) a rough integrator, if (Zt)t∈[0,T ], (ZAst)(s,t)∈∆T

are adapted stochastic processes with Z being R-valued and ZA being Rd-valued, such
that Z0 = 0 and for all 0 ⩽ s ⩽ l ⩽ t ⩽ T , the following algebraic relation holds

ZAst = ZAsl + ZAlt + AslZlt.
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4. Weak solution concepts for singular Lévy SDEs

Furthermore the following Hölder-type moment bounds hold:

∥(Z,ZA)∥Rσ
T (A) := ∥Z∥σ,2 + ∥Z | F∥σ,∞ + ∥ZA∥σ,2 + ∥ZA | F∥σ+ς,∞ <∞.

We call the space of stochastic processes, that are rough integrators Rσ
T (A). Equipped

with the norm

∥((Z,ZA)− (W,WA))∥Rσ
T (A) := ∥Z −W∥σ,2 + ∥Z −W | F∥σ,∞

+ ∥ZA −WA∥σ,2 + ∥ZA −WA | F∥σ+ς,∞

the space becomes a Banach space.

Remark 4.22. We refer to [FH20] for the connection to rough paths. The space of
rough stochastic integrators is a vector space, because the algebraic relation here is
linear. Furthermore, we assume that Z0 = 0 to obtain a norm.

Remark 4.23. We can relax the boundedness assumption on the process A. Instead we
can assume that A is such that, there exists C > 0, such that for all 0 ⩽ s ⩽ l ⩽ t ⩽ T ,
∥AslZlt∥L2 ⩽ C|t− s|σ. Then, in principle the choice A = Z would be possible, because
∥ZslZlt∥2L2 ⩽ 1

2
[∥Zsl∥2L2 + ∥Zlt∥2L2 ] ⩽ ∥Z∥2σ,2|t − s|2σ. But if A = Z, then ς = σ

with 2σ > 1 and the assumptions on ZA are superfluous, as the iterated integrals of
Z can be sewed due to σ > 1/2. To be precise, Lemma 4.7 would yield the bound
∥ZA∥σ,2 + ∥ZA | F∥σ+ς,2 <∞, but not ∥ZA | F∥σ+ς,∞ <∞.

Theorem 4.24. Let (At)t∈[0,T ] be an adapted Rd-valued stochastic process with A ∈
CTL

∞(P,Rd) and let f be stochastically controlled by A. Let (Z,ZA) be a rough
integrator. Let the parameters be such that

σ + ς ′ + ς > 1.

Then for t ∈ (0, T ], the rough stochatic sewing integral

I(f, Z)t :=

∫ t

0

fsd(Z,ZA)s = lim
|Π|→0

∑
r,l∈Π

[frZrl + f ′
r · ZArl],

exists in L2(P), where the limit ranges over partitions Π of [0, t] with mesh size |Π| → 0.
Moreover, the following Lipschitz bound holds:

sup
(s,t)∈∆T

∥I(f, Z)s,t∥L2(P)

|t− s|σ
≲ ∥f∥

Dς,ς′
T (A)

∥(Z,ZA)∥Rσ
T (A).

Furthermore, if σ + ς > 1, then the rough stochastic integral I(f, Z)t almost surely
agrees with the integral Ĩ(f, Z)t = lim|Π|→0

∑
r,l∈Π frZrl ∈ L2(P).

Proof. Define for r < s, Ξrs := frZrs + f ′
r · ZArs. Then we have that for r < l < s, by
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4.3. A rough stochastic sewing integral

the algebraic relation of Z,ZA and the definition of the remainder R = Rf ,

δΞr,l,s = Ξrs − Ξrl − Ξls = −Rr,lZl,s − f ′
r,l · ZAl,s.

To apply the stochastic sewing Lemma 4.7, we need to show the bounds on the
expectation and conditional expectation. We start with the bound on the expectation.
As σ > 1/2 it suffices to trivially estimate the L2-norm using

sup
r,l∈∆T

∥Rr,l∥L∞ ⩽ 2 sup
t∈[0,T ]

[∥ft∥L∞(P) + ∥f ′
t∥L∞(P,Rd)∥At∥L∞(P,Rd)] <∞,

such that

E[|δΞr,l,s|2]1/2 ≲ sup
r,l∈∆T

∥Rr,l∥L∞∥Zl,s∥L2 + sup
t∈[0,T ]

∥f ′
t∥L∞(P,Rd)∥ZAl,s∥L2

≲ ∥f∥
Dς,ς′

T (A)
∥(Z,ZA)∥Rσ

T (A)|s− r|σ.

For the conditional expectation, we have

E[|Er[δΞr,l,s]|2] ⩽ E
[
Er[|Rr,lEl[Zl,s]|]2

]
+ E

[
Er[|f ′

r,l · El[ZAl,s]|]2
]

⩽ ∥Rr,l∥2L2(P)∥El[Zl,s]∥2L∞ + ∥f ′
r,l∥2L2(P,Rd)∥El[Z

A
l,s]∥2L∞(P,Rd)

⩽ ∥f∥
Dς,ς′

T (A)
∥(Z,ZA)∥Rσ

T (A)|s− r|2(ς
′+σ+ς),

with ς ′ +σ+ ς > 1 by assumption. Thus Lemma 4.7 applies for the existence of I(f, Z)t,
t ∈ [0, T ]. The prescribed Lipschitz bound follows from the bound on ∥I(f, Z)st−Ξst∥L2

from Lemma 4.7 and ∥Ξst∥L2 ⩽ ∥f∥
Dς,ς′

T (A)
[∥Z∥σ,2 + ∥ZA∥σ,2]|t− s|σ.

If σ + ς > 1, then by the uniqueness of the stochastic sewing integral Ĩ(f, Z)t =
lim|Π|→0

∑
r<l∈Π frZrl ∈ L2(P), we obtain that Ĩ(f, Z)t = I(f, Z)t almost surely. In-

deed, this uses that I satisfies the bounds for the germ Ξ̃st = fsZst of Ĩ, that is

∥I(f, Z)st − fsZst∥L2 ⩽ ∥I(f, Z)st∥L2 + ∥fsZst∥L2 ≲ |t− s|σ,

with σ > 1/2 and using the bound of I(f, Z) from Lemma 4.7,

∥Es[I(f, Z)s,t − fsZst]∥L2 ⩽ ∥Es[I(f, Z)s,t − fsZst − f ′
sZAst]∥L2 + ∥Es[f ′

sZAst]∥L2

⩽ ∥Es[I(f, Z)s,t − fsZst − f ′
sZAst]∥L2 + ∥Es[f ′

sZAst]∥L∞

≲ |t− s|σ+ς ,

where σ + ς > 1 by assumption.
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4. Weak solution concepts for singular Lévy SDEs

4.4. Equivalence of weak solution concepts
In this section, we prove in Theorems 4.32 and 4.35 that the weak solution concept
from Definition 4.10 yields an equivalent notion of solution to the martingale solutions.
Furthermore, we show in Theorem 4.36 an extension of Itôs formula for rough weak
solutions.
To prove that a weak solution solves the martingale problem we employ the stability of
the rough stochastic integral, which extends the integral against Z for regular integrands
f(s,Xs), i.e. for f ∈ C1,2

b , to paracontrolled integrands:

DT (V )×RT (V ) ∋ (u, (Z,ZV )) 7→
∫ t

0

∇u(s,Xs) · d(Z,ZV )s ∈ L2(P). (4.28)

Above we define

RT (V ) :=
d×
i=1

R(α+β)/α
T (Ai),

for Ai = (JT (∂iV )(t,Xt))t∈[0,T ] and Rσ
T (A) from Definition 4.21 in Section 4.3. DT (V )

denotes the space of paracontrolled distributions from Corollary 3.28, we recall its
definition below.
To obtain stability of the rough integral (4.28), we apply Theorem 4.24 to f =
(∂iu(t,Xt))t∈[0,T ] and the rough integrator (Zi,ZV,i) that is given by the definition of a
weak solution (Definition 4.10), for i = 1, . . . , d.
Lemma 4.29 below shows that, if u ∈ DT (V ), then (∂iu(t,Xt)) is stochastically
controlled by (Ait) = (JT (∂iV )(t,Xt)) for ς = ς ′ = (α+ β− 1)/α. The following lemma
verifies that (Zi,ZV,i) is a rough stochastic integrator in the sense of Definition 4.21.

Lemma 4.25. Let β ∈ (2−2α
3
, 0) and V ∈ X β,γ. Let (X,L,ZV ) be a weak solution.

Then, (Z,ZV ) ∈ RT (V ), i.e. (Zi,ZV,i) ∈ R(α+β)/α
T (Ai) for Ai = (JT (∂iV )(t,Xt))t∈[0,T ]

and i = 1, . . . , d. Moreover, the following convergence holds for n,m→∞

∥(Zn,Zm,n)− (Z,ZV )∥RT (V ) → 0.

Remark 4.26. Notice that we use the notation ∥(Zn,Zm,n)− (Z,ZV )∥RT (V ) despite
the fact, that (Zn,Zm,n) and (Z,ZV ) do not live in the same space. The notation means
that the four semi-norms in Definition 4.21 converge.

Proof. Let i = 1, . . . , d. To prove that (Zi,ZV,i) is a rough integrator, notice that
for Ai = limn,m→∞ Am,n,i the following additivity holds: Ai

st = Ai
sl + Ai

lt (using that

additivity holds for Am,n,i). Thus for ZV,ist = Ai
st − JT (∂iV )(s,Xs)Z

i
st, we obtain the

algebraic relation

ZV,ist = ZV,isl + ZV,ilt + [JT (∂iV )(l, Xl)− JT (∂iV )(s,Xs)]Z
i
lt.

Furthermore, (4.20) and (4.21) yield the bounds on Zi and ZV,i and hence (Zi,ZV,i) ∈

142



4.4. Equivalence of weak solution concepts

RT (V i). We have that Zm,n,ist = Am,n,i
st − JT (∂iV

m)(s,Xs)Z
n,i
st . Due to bounds (4.20)

and (4.21) and the convergence in 2.), it follows that (Zn,i,Zm,n,i) ∈ RT (V m,i) :=

R(α+β)/α
T ((JT (∂iV

m)(t,Xt))t). The convergence with respect to ∥·∥RT (V ) follows directly
from the convergence in 2.).

Remark 4.27. For a stochastic process Z satisfying the bounds (4.20), there is in
general no unique choice for ZA, such that (Z,ZA) is a rough integrator. But if Z
is given by a weak solution (X,L,ZV ), i.e. given by Z = X − x − L, and A =
(JT (∂iV )(t,Xt))t∈[0,T ], then there is a unique choice for ZV such that (Z,ZV ) ∈ RT (V ).
This follows from the fact, that for each fixed n ∈ N and An = (JT (∂iV

n)(t,Xt))t∈[0,T ],
there is a unique choice for ZAn

such that (Z,ZAn
) ∈ RT (V n) given by ZAn

st = Zn,∞st =
An,∞
st − JT (∂iV

n)(s,Xs)Zst, where (V n) is the smooth sequence from Definition 4.10.
By the convergence in 2.), it follows that Zn,∞st → Zst in L2(P), which yields that the
unique choice ZV is given by ZVst = Ast − JT (∂iV )(s,Xs)Zst. This is the same story as
for geometric rough paths.

To prove that (∂iu(t,Xt))t is stochastically controlled by A = (JT (∂iV )(t,Xt))t, we
will need the following auxillary lemma, which is also of independent interest. Its
proof only relies on regularity properties of the solution of the Kolmogorov backward
equation. The lemma proves the bound (4.29) on the time-space differences of the
paracontrolled remainder. The proof of the lemma can be found in Appendix A.

Lemma 4.28. Let α ∈ (1, 2], β ∈ (2−2α
3
, 0), V ∈X β,γ and

u ∈ DT (V ) =
{

(u, u′) ∈ L 0,α+β
T ×L 0,α+β−1

T

∣∣ u♯ := u− u′ 4 JT (V ) ∈ L 0,2(α+β)−1
T

}
.

Then, we have the following time-space Hölder bound:

|∂iu(r, x)− ∂iu(s, y)−∇u(s, y) · (JT (∂iV )(r, x)− JT (∂iV )(s, y))|
≲ ∥u∥DT (V )(1 + ∥V ∥X β,γ )[|r − s|(2(α+β)−2)/α + |x− y|2(α+β)−2], (4.29)

for i = 1, . . . , d.

Lemma 4.29. Let β ∈ ((2 − 2α)/3, (1 − α)/2], α ∈ (1, 2]. Let u ∈ DT (V ) and
let (X,L,ZV ) be a weak solution. Then, for every i = 1, . . . , d, (∂iu(t,Xt))t∈[0,T ] is
stochastically controlled by (JT (∂iV )(t,Xt))t∈[0,T ] with ς = ς ′ = (α + β − 1)/α.

Remark 4.30. In the pure stable noise case, α ∈ (1, 2), the proof of Lemma 4.29 does
not apply for β ∈ ((1−α)/2, 0) (i.e. in the Young case), while for α = 2, the statement
of the lemma is also valid in the Young regime. The reason is the integrability issue
for the α-stable process. Indeed, in the proof we need that 4(α + β)− 4 < α, that is
β < (4 − 3α)/4. If α < 2 and β ⩽ (1 − α)/2, then in particular β < (4 − 3α)/4.
However, the latter doesn’t need to be satisfied in the Young regime, unless α < 4/3.
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4. Weak solution concepts for singular Lévy SDEs

Proof of Lemma 4.29. By Lemma 4.28, we obtain that

|Rst| := |∂iu(t,Xt)− ∂iu(s,Xs)−∇us · [JT (∂iV )(t,Xt)− JT (∂iV )(s,Xs)]|
≲ ∥u∥DT

(1 + ∥V ∥X β,γ )[|t− s|(2(α+β)−2)/α + |Xt −Xs|2(α+β)−2]. (4.30)

Using the triangle inequality and u ∈ L 0,α+β
T as well as Lemma 3.17, we can bound

E[|∂iu(t,Xt)− ∂iu(s,Xs)|2]
≲ ∥∂iu∥2C(α+β−1)/α

T L∞|t− s|
2(α+β−1)/α + ∥∂iu∥2CT Cα+β−1E[|Xt −Xs|2(α+β−1)]

≲T ∥u∥2DT (V )|t− s|2(α+β−1)/α,

and the same bound is also valid for ∇u. In the last estimate above, we used that due
to the bound (4.20) on Z in L2,

E[|Xt −Xs|2(α+β−1)]

⩽ E[|Zt − Zs|2(α+β−1)] + E[|Lt − Ls|2(α+β−1)]

⩽ E[|Zt − Zs|2](α+β−1) + E[|Lt − Ls|2(α+β−1)]

⩽ ∥Z∥2(α+β−1)
α+β
α
,2
|t− s|2(α+β)(α+β−1)/α + |t− s|2(α+β−1)/αE[|L1|2(α+β−1)]

≲T |t− s|2(α+β−1)/α,

due to Jensen’s inequality with α + β − 1 ∈ (0, 1) and due to (Lt − Ls)
d
= (t− s)1/αL1

for s ⩽ t, and 2(α+ β − 1) < α, such that E[|L1|2(α+β−1)] <∞. For the remainder, we
employ the bound (4.30) to obtain

E[|Rst|2] ≲ ∥u∥2DT

(
|t− s|(4(α+β)−4)/α + E[|Xt −Xs|4(α+β)−4]

)
≲T ∥u∥2DT

|t− s|4ς/α,

using an analogoue argument to estimate E[|Xt −Xs|4(α+β)−4] as above, where now
E[|L1|4(α+β)−4] < ∞ since 4(α + β) − 4 < α in the case of α < 2, as β ⩽ (1 − α)/2.
In the case of α = 2, we have all moments on the Brownian motion B1 = L1.
Thus, we obtain that (∂iu(t,Xt))t is stochastically controlled by (JT (∂iV )(t,Xt))t with
ς = ς ′ = (α + β − 1)/α and (∂iu)′ = ∇u.

Proposition 4.31. Let β ∈ (2−2α
3
, 1−α

2
] and V ∈ X β,γ. Let (X,L,ZV ) be a weak

solution.
Then for all 0 ⩽ t ⩽ T and for (Z,ZV ) ∈ RT (V ) given by Definition 4.10 and for
u ∈ DT (V ), the rough stochastic integral∫ t

0

∇u(s,Xs) · d(Z,ZV )s :=
d∑
i=1

lim
|Π|→0

∑
r,l∈Π

[∂iu(r,Xr)Z
i
rl +∇u(r,Xr) · ZV,irl ] ∈ L2(P),
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4.4. Equivalence of weak solution concepts

where the limit ranges over all partitions Π of [0, t] ⊂ [0, T ] with mesh-size |Π| :=
maxr,s∈Π|r − s| → 0, is well-defined and allows for the bound∥∥∥∥∫ t

s

∇u(r,Xr) · d(Z,ZV )r

∥∥∥∥
L2(P)

≲T |t− s|(α+β)/α∥u∥DT (V )∥(Z,ZV )∥RT (V ).

In particular, for the sequence (V n) from Definition 4.10 and (Zn,Zm,n), (Z,Zm,∞) ∈
Rσ
T (V m) and for a sequence (um)m ⊂ DT (V m) with ∥um − u∥DT (V ) → 0, it follows,

that almost surely∫ t

0

∇um(r,Xr) · d(Zn,Zm,n)r =

∫ t

0

∇um(r,Xr) · dZn
r ,∫ t

0

∇um(r,Xr) · d(Z,Zm,∞)r =

∫ t

0

∇um(r,Xr) · dZr,

where the stochastic integrals on the right-hand side are defined as the L2(P)-limit of
the classical Riemann sums. And the following convergence in L2(P), uniformly in
t ∈ [0, T ], holds for n,m→∞, respectively m→∞,∫ t

0

∇um(r,Xr) · d(Zn,Zm,n)r →
∫ t

0

∇u(r,Xr) · d(Z,ZV )r,∫ t

0

∇um(r,Xr) · d(Z,Zm,∞)r →
∫ t

0

∇u(r,Xr) · d(Z,ZV )r.

Proof. Recall that um is paracontrolled by JT (V m) (i.e. um ∈ DT (V m)),

Zm,n,ist =

∫ t

s

[JT (∂iV
m)(r,Xr)− JT (∂iV

m)(s,Xs)]dZ
n,i
r and

Zm,∞,i
st =

∫ t

s

[JT (∂iV
m)(r,Xr)− JT (∂iV

m)(s,Xs)]dZ
i
r.

Then the proof follows from Theorem 4.24, Lemma 4.29 and Lemma 4.25.

Proposition 4.31 extendes the stochastic integral to the stable rough stochastic integral,
which finally enables to prove the following theorem.

Theorem 4.32. Let V ∈ X β,γ and β ∈ ((2 − 2α)/3, 0). Let (X,L,ZV ) be a weak
solution, starting at x ∈ Rd. Then X solves the martingale problem for the generator
G V , starting at x ∈ Rd.

Proof. Let f ∈ CTC ε, ε > 2 − α, uT ∈ C 3 and u be the solution of G V u = f ,
u(T, ·) = uT . Let (X,L,ZV ) be a weak solution starting at x on the stochastic basis
(Ω,F , (Ft),P). Then the goal is to show that the process (Mt)t∈[0,T ] with

Mt = u(t,Xt)− u(0, x)−
∫ t

0

f(s,Xs)ds (4.31)
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4. Weak solution concepts for singular Lévy SDEs

is a martingale with respect to (FX
t ) ⊂ (Ft) under P, where FX

t := σ(Xs | s ⩽ t) is
the canonical filtration. Because X is a weak solution, there exists a sequence (V n) ⊂
CT (C∞

b )d satisfying (V n,K (V m, V n))→ V in X β,γ and such that the convergences
from 1.), 2.) from Definition 4.10 hold. Consider the solution un of G V n

un = f ,
un(T, ·) = uT , which converges to u in DT (V ) by the continuity of the solution map
from Theorem 3.30. Then as un ∈ C1,2

b ([0, T ]×Rd) and X is a Dirichlet process, we can
apply the Itô formula from [CJMS06, Theorem 3.1] to un(t,Xt) (see also Remark 4.12),
such that for n ∈ N,

un(t,Xt)− un(0, x)

=

∫ t

0

(∂t −L α
ν )un(s,Xs)ds+

∫ t

0

∇un(s,Xs) · dZs +Mn
t

=

∫ t

0

f(s,Xs)ds+Mn
t

+

(∫ t

0

∇un(s,Xs) · dZs −
∫ t

0

∇un(s,Xs) · V n(s,Xs)ds

)
, (4.32)

where we furthermore used the equation for un and abbreviate the martingale, in the
case α ∈ (1, 2), by

Mn
t :=

∫ t

0

∫
Rd\{0}

(un(s,Xs− + y)− un(s,Xs−))π̂(ds, dy). (4.33)

In the Brownian noise case, α = 2, we have that Mn
t =

∫ t
0
∇un(s,Xs) · dBs. It

follows that Mn is a (Ft)-martingale (cf. the argument in the proof of Theorem 4.2)
and it is (FX

t )-adapted by (4.31). Thus Mn is a (FX
t )-martingale. We claim that

(Mn)n converges in L2(P), uniformly in t ∈ [0, T ], to a martingale M̃ given by the
expression (4.33) for un replaced by u. Indeed, this uses the Burkholder-Davis-Gundy-
type inequality from [PZ07, Lemma 8.21] and an analogoue argument as in the proof
of Lemma 4.4.
Since un → u in CTL

∞, we thus obtain that the process M in (4.31) is a martingale
with M = M̃ , provided that the remainder in (4.32) vanishes in L2(P). That is, for
Zn =

∫ ·
0
V n(s,Xs)ds, we claim that when n→∞,

sup
t∈[0,T ]

∥∥∥∥∫ t

0

∇un(s,Xs−) · dZn
t −

∫ t

0

∇un(s,Xs−) · dZs
∥∥∥∥
L2(P)

→ 0. (4.34)

The stochastic integrals are given by the limit of the classical Riemann sums in L2(P).
If β > (1− α)/2 (i.e. in the Young case), the convergence follows from the stability of
the stochastic sewing integral from Lemma 4.15 applied for f = ∂iu and using only
that ∥Zn − Z∥α+β

α
,2 → 0, ∥Zn − Z | F∥α+β

α
,∞ → 0 and un → u in DT (V ). Thus, in

the Young case, the remainder vanishes.
If β ∈ ((2− 2α)/3, (1−α)/2], then an application of Proposition 4.31 yields (4.34).
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In what follows, we prove the reverse implication: a martingale solution is a (rough)
weak solution in the sense of Definition 4.10. The first step is to prove that a martingale
solution is of class K ϑ for ϑ = (2(α+ β)− 1)/α, cf. Definition 4.16. With that, the
bound on ZV in (4.21) follows after identifying Z and A with the respective solutions
ut, vt of the backward PDEs in (4.25), (4.26). The latter will be established in the
following proposition.

Proposition 4.33. Let V ∈ X β,γ for β ∈ ((2− 2α)/3, 0). Let X be the solution of
the martingale problem for the generator G V , starting at x ∈ Rd. Then X is of class
K ϑ(V ) (cf. Definition 4.16) for ϑ = (2(α + β)− 1)/α.

Remark 4.34. For a martingale solution X, we prove below that

ZV,ist :=

∫ t

s

[JT (∂iV )(r,Xr)− JT (∂iV )(s,Xs)]dZ
i
s

= vt,i(t,Xt)− vt,i(s,Xs)− JT (∂iV )(s,Xs)(u
t,i(t,Xt)− ut,i(s,Xs)) +M i

st (4.35)

for a martingale differences M i
st and the solutions vt,i, ut,i from (4.26), (4.25). Then,

Proposition 4.33 shows ∥ZV | F∥ϑ,∞ < ∞ for ϑ = (2(α + β) − 1)/α. It remains
open, if one can prove the bound ∥ZV ∥ϑ,2 < ∞, which is a stronger bound than
∥ZV ∥(α+β)/α,2 <∞ (the latter can be inferred from the time regularity of vt, ut).
It is not straightforward to adjust the proof of Proposition 4.33 to show ∥ZV ∥ϑ,2 <∞.
Indeed, the proof exploits the conditional expectation in two ways. On the one hand, it
removes the martingale differences, for which the estimates would be more involved. On
the other hand, the conditional expectation enables to use the Markov property of X and
thus to transform the problem into a question on Schauder and commutator estimates
for the semigroup (Ts,r)s⩽r of X. In the proof below, we infer those estimates on
(Ts,r)s⩽r from regularity properties of the solutions of the generator PDE with singular
terminal conditons from Chapter 3.

Proof of Proposition 4.33. Let 0 ⩽ s < t ⩽ T . By Theorem 4.18 the martingale
solution X for G V is a strong Markov process. Replacing vt,i by the solution vn,i

of G (V,V2)vn,i = JT (∂iV ) · V n,i, vn,i(t, ·) = 0 and ut,i by un,i with G (V,V2)un,i = V n,i,
un,i(t, ·) = 0 and rewriting the conditional expectation in (4.27) with the semigroup
(Tr,l)0⩽r⩽l⩽T of the (time-inhomogeneous) Markov process X, we obtain

Es[v
t,i(t,Xt)− vt,i(s,Xs)− JT (∂iV )(s,Xs)(u

t,i(t,Xt)− ut,i(s,Xs))]

= lim
n→∞

Es[v
n,i(t,Xt)−vn,i(s,Xs)−JT (∂iV )(s,Xs)(u

n,i(t,Xt)−un,i(s,Xs))] (4.36)

= lim
n→∞

Es

[ ∫ t

s

(JT (∂iV )(r,Xr)− JT (∂iV )(s,Xs)) · V n,i(r,Xr)dr

]
(4.37)

= lim
n→∞

∫ t

s

Ts,r(J
T (∂iV ) · V n,i)r(Xs)− JT (∂iV )(s,Xs)Ts,r(V

n,i
r )(Xs)dr
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= lim
n→∞

∫ t

s

Ts,r(J
T (∂iV ) · V n,i)r(Xs)− JT (∂iV )(r,Xs)Ts,r(V

n,i
r )(Xs)dr

+ lim
n→∞

∫ t

s

(JT (∂iV )(s,Xs)− JT (∂iV )(r,Xs))Ts,rV
n,i
r (Xs)dr

=

∫ t

s

wr,is (Xs)− JT (∂iV )(r,Xs)y
r,i
s (Xs)dr (4.38)

+

∫ t

s

(JT (∂iV )(s,Xs)− JT (∂iV )(r,Xs))y
r,i
s (Xs)dr. (4.39)

The convergence above is in L∞(P), uniformly in s, t. The convergence in (4.36) follows
from supt∈[0,T ]∥vn,i−vt,i∥CtL∞

Rd
→ 0 and supt∈[0,T ]∥un,i−ut,i∥CtL∞ → 0 by Corollary 3.32

(taking f t,n = V n,i
|[0,t] and yn,t = un,i(t, ·) = 0). For the equality (4.37), we used that X

solves the martingale problem for G V , such that

un,i(t,Xt)− un,i(s,Xs) =

∫ t

s

V n,i(r,Xr)dr +Mn,i
r,t ,

for martingale differences Mn,i
r,t , that vanishes after taking the conditional expectation,

analogously for vn,i. Moreover, yr, wr are defined as follows. Let

Ts,rV
n,i
r =: yr,n,is , Ts,r(J

T (∂iV ) · V n,i
r ) =: wr,n,is , s ∈ [0, r]. (4.40)

Then we have that yr,n,i solves G V yr,n,i = 0 with singular terminal condition yn,rr = V n,i
r

at time r and wr,n,i = (wr,n,i,j)j=1,...,d solves G V wn,r,i,j = 0 with wr,n,i,jr = JT (∂iV
j)r ·V n,i

r .
By the continuity of the PDE solution map (Theorem 3.30), we conclude that

(yr,n,i, yr,n,i,♯)→ (yr,i, yr,i,♯),

(wr,n,i,j, wr,n,i,j,♯)→ (wr,i,j, wr,i,j,♯) ∈ L γ,α+β
r ×L γ,2(α+β)−1

r ,

for n → ∞, where yr,i, wr,i solve G V yr,i = 0, G V wr,i,j = 0 with terminal conditions
yrr = V i

r , respectively wr,i,jr = JT (∂iV
j)r · V i

r , and γ ∈ (0, 1). The convergence is
uniform in r ∈ [0, T ] by Corollary 3.32. In particular, it follows that yr,n,i → yr,i and
wr,n,i,j → wr,i,j in M γ

r L
∞, uniformly in r ∈ [0, T ], which implies the convergence of the

integrals (4.38) and (4.39) in L∞(P), uniformly in 0 ⩽ s < t ⩽ T .
Our goal is now to estimate both integrals (4.38) and (4.39) in L∞(P) by |t− s|ϑ.
To estimate the integral (4.38), we apply again Corollary 3.32 for the solutions (yr,i),
(wr,i,j). The uniform bound from the corollary together with the interpolation bound
(3.27) from Lemma 3.17 for θ̃ = α + βγ−1 (note β(1− γ−1) > 0) , θ = α + β and the
embedding C (1−γ′)α ↪→ L∞ yield that

sup
r∈[0,T ]

∥yr,i∥
M

−β/α
r L∞ ≲ sup

r∈[0,T ]
∥yr,i∥

M
−β/α
r C β(1−γ−1) ≲ sup

r∈[0,T ]
∥yr,i∥L γ,α+β

r
≲T,V 1.
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Thus, we obtain∥∥∥∥∫ t

s

(JT (∂iV )s − JT (∂iV )r)y
r,i
s dr

∥∥∥∥
L∞

≲ sup
r∈[0,T ]

∥yr,i∥
M

−β/α
r L∞∥JT (∂iV )∥

C
(α+β−1)/α
T L∞

Rd

∫ t

s

|r − s|(α+2β−1)/αdr

≲T ∥V ∥CT C β

Rd
|t− s|(2α+2β−1)/α

= ∥V ∥CT C β

Rd
|t− s|ϑ,

using that 2α + 2β − 1 > 0 and JT (∂iV ) ∈ C(α+β−1)/α
T L∞

Rd .
To estimate the term in (4.39), we use cancellations between the solution wr,i and yr,i.
For the argument, we need to distinguish between the cases β ∈ ((1 − α)/2, 0) and
β ∈ ((2− 2α)/3, (1− α)/2].

First, we consider the Young case, β ∈ ((1−α)/2, 0). Then, we have that α+2β−1 > 0.
We can write the difference of the solutions as follows:

wr,is − JT (∂iV )ry
r,i
s

= [Pr−s(J
T (∂iV )r · V i

r )− JT (∂iV )r · Pr−sV i
r ]

+ Jrs (∇wr,i · V )− Jrs (∇yr,i · V )

= (Pr−s − Id)(JT (∂iV )r � V i
r + JT (∂iV )r 5 V i

r ) (4.41)

− JT (∂iV )r � (Pr−s − Id)V i
r + JT (∂iV )r 5 (Pr−s − Id)V i

r (4.42)

+ [Pr−s(J
T (∂iV )r 4 V i

r )− JT (∂iV )r 4 Pr−sV
i
r ] (4.43)

+ Jrs (∇wr,i · V )− JT (∂iV )rJ
r
s (∇yr,i · V ). (4.44)

Above and below we use the notation J tr(v) := J t(v)r = J t(v)(r, ·) for r ⩽ t. The term
in (4.41), we estimate with the semigroup estimate (3.10) from Lemma 3.7, using that
α + 2β − 1 ∈ (0, 1),

∥(Pr−s − Id)(JT (∂iV )r � V i
r + JT (∂iV )r 5 V i

r )∥L∞
Rd

≲ |r − s|(α+2β−1)/α∥JT (∂iV )r � V i
r + JT (∂iV )r 5 V i

r )∥Cα+2β−1

Rd

≲ |r − s|(α+2β−1)/α∥V ∥2
CT C β

Rd
.

The terms in (4.42), we also estimate with the semigroup and Schauder estimates using
that V ∈ CT (C β+(1−γ′)α)d for γ′ ∈ [(1 − β)/α, 1) and again that α + 2β − 1 ∈ (0, 1]
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and the embedding C (1−γ′)α ↪→ L∞,

∥JT (∂iV )r 5 (Pr−s − Id)V i
r ∥L∞

≲ ∥JT (∂iV )r 5 (Pr−s − Id)V i
r ∥C (1−γ′)α

Rd

≲ ∥JT (∂iV )r∥C (2−γ′)α+β−1

Rd
∥(Pr−s − Id)V i

r ∥C−(α+β−1)

≲ ∥V ∥CT (C β+(1−γ′)α)d|r − s|
(α+2β−1)/α∥V ∥CT (C β)d .

The argument for the �-product is analogous. Moreover, the term in (4.43) equals the
semigroup commutator from Lemma 3.9 and using that α + 2β − 1 < α, we obtain

∥[Pr−s(JT (∂iV )r 4 V i
r )− JT (∂iV )r 4 Pr−sV

i
r ]∥L∞

≲ ∥[Pr−s(JT (∂iV )r 4 V i
r )− JT (∂iV )r 4 Pr−sV

i
r ]∥

C
(1−γ′)α
Rd

≲ |r − s|(α+2β−1)/α∥V ∥CT (C β+(1−γ′)α)d∥V ∥CT (C β)d .

For the last term (4.44), we give the argument for the term involving yr,i and the
argument for the term with wr,i is analogue. We decompose

Jrs (∇yr,i · V ) = Jrs (∇yr,i � V +∇yr,i 5 V ) +∇yr,is 4 Jrs (V )

+ [Jrs (∇yr,i 4 V )−∇yr,is 4 Jrs (V )].

Due to the interpolation bound (3.27), we obtain that ∇yr,i ∈M (1−β)/α
r C

(1−β)( α
γ′−1)

Rd ↪→
M (1−β)/α

r L∞
Rd as γ′ < 1 ⩽ α. This yields together with Corollary 3.12 that

∥∇yr,is 4 Jrs (V )∥L∞
Rd
≲ ∥∇yr,i∥

M
(1−β)/α
r L∞

Rd
|r − s|(β−1)/α∥Jrs (V )∥L∞

Rd

≲ ∥∇yr,i∥
M

(1−β)/α
r L∞

Rd
|r − s|(β−1)/α∥Jrs (V )∥

C
(1−γ′)α
Rd

≲ |r − s|(α+2β−1)/α∥∇yr,i∥
M

(1−β)/α
r L∞

Rd
∥V ∥

CT C
β+(1−γ′)α
Rd

. (4.45)

Corollary 3.12 furthermore yields that Jr(∇yr,i � V ) ∈ L γ,2β+α−1+(2−γ′)α
r using that

V ∈ CT (C β+(1−γ′)α)d, which implies by the interpolation bound (3.28) and Jrr (v) = 0

that Jr(∇yr,i � V ) ∈ C(2β+α−1+(2−γ′)α−γα)/α
r L∞ (and analogously for the 5-product).

Thus, as Jrr (v) = 0 and 2− γ′ − γ > 0 as γ ∈ (0, 1), γ′ ∈ (0, 1) , we obtain that

∥Jrs (∇yr,i � V +∇yr,i 5 V )∥L∞ ≲ |r − s|(α+2β−1)/α∥yr,i∥L γ,α+β
r

∥V ∥CT (C β+(1−γ′)α)d .

Due to the commutator Lemma 3.14, we obtain that

[Jr(∇yr,i 4 V )−∇yr,i 4 Jr(V )] ∈ L γ,2β+α−1+(2−γ′)α
r
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and by an interpolation argument as above we thus find

∥Jrs (∇yr,i 4 V )−∇yr,is 4 Jrs (V )∥L∞ ≲ |r − s|(α+2β−1)/α∥yr,i∥L γ,α+β
r

∥V ∥CT (C β+(1−γ′)α)d .

Together, we obtain for the term (4.44):

∥JT (∂iV )rJ
r
s (∇yr,i · V )∥L∞ ≲ |r − s|(α+2β−1)/α∥yr∥L γ,α+β

r
∥V ∥2

CT (C β+(1−γ′)α)d
.

Together with the uniform bound of the norm of yr, wr from Corollary 3.32 the above
estimates yield ∫ t

s

∥wr,is − JT (∂iV )ry
r,i
s ∥L∞

Rd
dr ≲ |t− s|(2α+2β−1)/α,

which, together with the estimate for the integral (4.38) yields the claim in the Young
case.

If β ∈ ((2− 2α)/3, (1− α)/2], we need to estimate the integral (4.39) differently. In
order to rewrite the difference of the solutions wr,is − JT (∂iV )yr,is in a way so that we
can prove the claimed bound, we first specify the paracontrolled structure of yr, wr.
The terminal condition of wr,i has the paracontrolled structure

wr,i,jr = JT (∂iV
j)r · V i

r = JT (∂iV
j)r � V i

r + JT (∂iV
j)r 5 V i

r + JT (∂iV
j)r 4 V i

r

=: wR,♯,j + wR,′,j 4 Vr

with wR,♯,j ∈ C (2−γ′)α+2β−1 (due to V ∈ CTC β+(1−γ′)α
Rd ) and wR,′,j = JT (∂iV

j)rei ∈
C α+β−1
Rd (ei denoting the i-th unit vector). By Theorem 3.25, the solution has the

following paracontrolled structure

wr,i,js = wr,♯,i,js +∇wr,i,js 4 Jr(V )s + JT (∂iV
j)rei 4 Pr−sVr (4.46)

with wr,♯,i,j ∈ L γ,2(α+β)−1
r . Then, again by the interpolation estimate (3.27) applied for

θ = θ̃ = 2α + 2β − 1 ∈ (0, α), since β ⩽ (1− α)/2, and for θ = θ̃ = α + β − 1 ∈ (0, α)
we obtain together with Corollary 3.32 the uniform bound

sup
r∈[0,T ]

[∥wr,♯,i∥
M

(1−α−2β)/α
r L∞

Rd
+ ∥∇wr,i∥

M
(1−β)/α
r L∞

Rd×d
]

≲ sup
r∈[0,T ]

[∥wr,♯,i∥
(L

γ,2(α+β)−1
r )d

+ ∥wr,i∥(L γ,α+β
r )d ] ≲T,V 1. (4.47)

Thus, using an estimate as for (4.45), we can estimate

∥∇wr,i,js 4 Jr(V )s∥L∞ ≲ |r − s|(α+2β−1)/α∥V ∥
CT C

β+(1−γ′)α
Rd

sup
r∈[0,T ]

∥∇wr,i∥
M

(1−β)/α
r L∞

Rd×d
.

(4.48)

151



4. Weak solution concepts for singular Lévy SDEs

Furthermore, (4.47) implies that∫ t

s

∥wr,♯,i,js ∥L∞dr ≲ sup
r∈[0,T ]

∥wr,♯,i∥
M

(1−α−2β)/α
r L∞

Rd

∫ t

s

|r − s|(2β+α−1)/αdr

≲ |t− s|(2α+2β−1)/α sup
r∈[0,T ]

∥wr,♯,i∥
M

(1−α−2β)/α
r L∞

Rd
, (4.49)

since (2α + 2β − 1)/α > 0.
Moreover, for the solution yr,i from above, we have the paracontrolled structure

yr,is = yr,♯,is + ei 4 Pr−sVr +∇yr,is 4 Jr(V )s.

The bounds (4.48), (4.49) hold analogously for ∇wi,j, wr,♯,i,j replaced by ∇yr,i, yr,i,♯.
Furthermore, the interpolation estimate (3.27) (again for θ = α+ β, θ̃ = 2α+ 2β− 1 ∈
(0, α) as β ⩽ (1− α)/2) yields that

sup
r∈[0,T ]

[∥yr,i∥
M

(1−α−2β)/α
r C−(α+β−1) + ∥yr,♯,i∥

M
(1−α−2β)/α
r L∞ ] ≲T,V 1.

With the latter bound, we can estimate,

∥JT (∂iV )r � yr,is + JT (∂iV )r 5 yr,is ∥L∞
Rd

≲ ∥JT (∂iV )r � yr,is + JT (∂iV )r 5 yr,is ∥C (1−γ)α

Rd

≲ ∥JT (∂iV )r∥(Cα+β+(1−γ′)α−1)d∥y
r,i
s ∥C−(α+β−1)

≲ |r − s|(2β+α−1)/α∥yr,i∥
M

(1−α−2β)/α
r C−(α+β−1)∥V ∥CT (C β+(1−γ′)α)d .

Using the paracontrolled structure of the solutions wr,i,j, yr,i, we obtain for j = 1, . . . , d,

wr,i,js − JT (∂iV
j)r 4 yr,is

= wr,♯,i,js + JT (∂iV
j)r 4 yr,♯,is + JT (∂iV

j)r 4 (∇yr,i 4 Jr(V ))s

+ (∇wr,i,j 4 Jr(V ))s. (4.50)

Finally, we can estimate the integral (4.39) using the bounds derived above and (4.50):∥∥∥∥(∫ t

s

(wr,i,js − JT (∂iV
j)r · yr,is )dr

)
j

∥∥∥∥
L∞
Rd

⩽

∥∥∥∥(∫ t

s

(wr,i,js − JT (∂iV
j)r 4 yr,is )dr

)
j

∥∥∥∥
L∞
Rd

+

∥∥∥∥(∫ t

s

[JT (∂iV
j)r � yr,is + JT (∂iV

j)r 5 yr,is ]dr

)
j

∥∥∥∥
L∞
Rd
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⩽

∥∥∥∥∫ t

s

wr,♯,is dr

∥∥∥∥
L∞
Rd

+ ∥JT (∂iV )∥L∞
Rd

∥∥∥∥∫ t

s

yr,♯,is dr

∥∥∥∥
L∞

+ ∥JT (∂iV )∥L∞
Rd

∥∥∥∥∫ t

s

(∇yr,i 4 Jr(V ))sdr

∥∥∥∥
L∞

+

∥∥∥∥(∫ t

s

(∇wr,i,j 4 Jr(V ))sdr

)
j

∥∥∥∥
L∞
Rd

+

∥∥∥∥(∫ t

s

[JT (∂iV
j)r � yr,is + JT (∂iV

j)r 5 yr,is ]dr

)
j

∥∥∥∥
L∞
Rd

≲ |t− s|ϑ sup
r∈[0,T ]

[
∥wr,i∥(L γ,α+β

r )d + ∥wr,i,♯∥
(L

γ,2(α+β)−1
r )d

+ ∥V ∥X β,γ′ (∥yr,i∥L γ,α+β
r

+ ∥yr,i,♯∥
L

γ,2(α+β)−1
r

)
]
. (4.51)

In the last estimate, we used also that ϑ = (2α + 2β − 1)/α > 0. Together with the
bound for (4.38), this yields the claim in the rough case.

Theorem 4.35. Let V ∈X β,γ for β ∈ ((2− 2α)/3, 0). Let X be the solution of the
martingale problem for the generator G V , starting at x ∈ Rd.
Then, there exists a stochastic basis (Ω,F , (Ft),P) and an α-stable symmtric non-
degenerate (Ft)-Lévy process L, such that (X,L,ZV ) is a weak solution starting at
x ∈ Rd. Furthermore, the following representations for Z = X − x− L and ZV follow
for (s, t) ∈ ∆T

Zst = Es[u
t(t,Xt)− ut(s,Xs)],

ZV,ist = Es[v
t,i(t,Xt)− vt,i(s,Xs)− JT (∂iV )(s,Xs)(u

t,i(t,Xt)− ut,i(s,Xs))]

almost surely, for the solutions vt,i, ut,i from (4.26), (4.25).

Proof. Let (V n) ⊂ CTC
∞
b (Rd,Rd) with (V n,K (V n, V m))→ V in X β,γ for n,m→∞

(existence by Assumption 4.9). Let X be the solution of the (G V , δx)-martingale
problem. Let, as in the proof of Theorem 4.2, Xn be the strong solution of

Xn = x+

∫ ·

0

V n(s,Xn
s )ds+ L =: x+ Zn,n + L

and let for l,m, n ∈ N,

Zm,n
t :=

∫ t

0

V m(s,Xn
s )ds, t ∈ [0, T ]

Zl,m,nst :=

(∫ t

s

[JT (∂iV
j,l)(r,Xn

r )− JT (∂iV
j,l)(s,Xn

s )]dZi,m,n
r

)
i,j

, (s, t) ∈ ∆T .

Theorem 4.2 proves the distributional convergence (Xn, Zn,n)⇒ (X,Z), where Z is a
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continuous process. Let ut,m,n = (ut,m,n,i)i=1,...,d and vt,l,m,n = (vt,l,m,n,i,j)i,j=1,...,d solve

G V n

ut,m,n,i = V m,i, G V n

vt,l,m,n,i,j = JT (∂iV
l,j) · V m,i

with zero terminal condition at time t ∈ [0, T ]. By convergence of the mixed resonant
products, i.e. (V n,K (V n, V m))→ V in X β,γ , and by continuity of the PDE solution
map (Theorem 3.30), we obtain that ut,m,n,i → ut,i and vt,l,m,n,i,j → vt,i,j in Dt, where
ut, vt solve the PDEs (4.25), (4.26). An application of Itô’s formula (cf. in the proof of
Theorem 4.2) then yields the representations

Zm,n
st = ut,m,n(t,Xn

t )− ut,m,n(s,Xn
s ) +Mut,m,n

st (4.52)

for the martingale differences Mut,m,n

st defined as in (4.10) with un replaced by ut,m,n

(respectively Mut,m,n

st :=
∫ t
s
∇ut,m,n(r,Xn

r )dBr in the case α = 2) and

Zl,m,nst (i, j) = vt,l,m,n,i,j(t,Xn
t )− vt,l,m,n,i,j(s,Xn

s )

− JT (∂iV
j,l)(s,Xn

s )
(
ut,m,n,i(t,Xn

t )− ut,m,n,i(s,Xn
s )
)

+M l,m,n
st (i, j) (4.53)

for the martingale differences defined by

M l,m,n
st (i, j) := M vt,l,m,n

st − JT (∂iV
j,l)(s,Xn

s )Mut,m,n

st . (4.54)

Notice that Es[M
l,m,n
st ] = 0. By convergence of the PDE solutions, we obtain that for

all large enough l,m, n,

sup
t∈[0,T ]

[∥ut,m,n∥Dd
t

+ ∥vt,l,m,n∥Dd×d
t

] ⩽ 2 sup
t∈[0,T ]

[∥ut∥Dd
t

+ ∥vt∥Dd×d
t

] <∞, (4.55)

where the right-hand side is finite due to Corollary 3.32.
By (4.55), JT (∂iV

j) ∈ CTL∞ and Lemma 4.4 applied to both Mut,m,n

st ,M vt,l,m,n

st we can
estimate ∥(s, t) 7→ M l,m,n

st ∥(α+β)/α,p for p ∈ 2N. Together with Corollary 4.5 we thus
obtain, for any p ∈ 2N the following uniform bound for large enough l, n,m:

sup
l,m,n

[∥Zm,n∥(α+β)/α,p + ∥Zl,m,n∥(α+β)/α,p] <∞. (4.56)

Kolmogorov’s continuity criterion, (4.56) yields tightness of the laws of the processes
(Zm,n,Zl,m,n)l,m,n on C(∆T ,Rd+d×d). Furthermore, the uniform bound

sup
m,n
∥Zm,n | F∥(α+β)/α,∞ <∞ (4.57)

follows from the representation (4.52) and ut,m,n(t,Xn
t ) = 0 = ut,m,n(t,Xn

s ) and thus
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4.4. Equivalence of weak solution concepts

for m,n large enough,

∥Es[Zm,n
st ]∥L∞(P) ⩽ sup

t∈[0,T ]
∥ut,m,n∥

C
(α+β)/α
t L∞

Rd
|t− s|(α+β)/α

⩽ 2 sup
t∈[0,T ]

∥ut∥(L 0,α+β
t )d |t− s|

(α+β)/α

and the L 0,α+β
t -norm of ut is bounded in t ∈ [0, T ] due to Corollary 3.32. By Proposi-

tion 4.33, X is of class K ϑ. The bound from that proposition applied to the solutions
ut,m,n, vt,l,m,n yields together with (4.55), that for large enough l,m, n

sup
l,m,n
∥Zl,m,n | F∥(2(α+β)−1)/α,∞ <∞. (4.58)

By tightness of (Zm,n,Zl,m,n)l,m,n, uniqueness of the limit, since X is the unique solution
of the martingale problem (cf. Theorem 4.2), and continuity of (Z,ZV ) we can thus
deduce the distributional convergence

(Zm,n,Zl,m,n, L)
l,m,n→∞

=⇒ (Z,ZV , L) in C(∆T ,Rd+d×d)×D([0, T ],Rd).

Hence, we obtain the distributional convergence

(Xn, Zm,n,Zl,m,n)
l,m,n→∞

=⇒ (X,Z,ZV ) in D([0, T ],Rd)× C(∆T ,Rd+d×d)

as Xn = x+ Zn,n + L, i.e. Xn is given by a continuous map of (Zn,n, L) (using [JS03,
Proposition VI.1.23]).
An application of Skorokhods representation theorem (cf. [Bil99, Theorem 6.7]) then
yields that there exists a probability space (Ω,F ,P) and random variables

(Y n,Wm,n,Wl,m,n)l,m,n and (Y,W,W)

on (Ω,F ,P) with Law((Y n,Wm,n,Wl,m,n)) = Law((Xn, Zm,n,Zl,m,n)) for l,m, n ∈ N
and Law((Y,W,W)) = Law((X,Z,ZV )), such that the convergence

(Y n,Wm,n,Wl,m,n)
l,m,n→∞−→ (Y,W,W) (4.59)

holds almost surely with respect to the topology on D([0, T ],Rd) × C(∆T ,Rd+d×d)
(i.e. J1-topology on the Skorokhod space and uniform topology on the space of continuous
functions on ∆T ).
We define the filtration as the completion of the canonical filtration of Y , (Ft) :=
(F Y

t ) ⊂ F . The filtration is right-continuous, since Y is càdlàg and by construction
complete. It follows that L := Y − x−W is an α-stable symmetric non-degenerate
(F (Y,W )

t )-Lévy process, because Law(X,Z) = Law(Y,W ). Below, we show that W is
the almost sure limit of (F Y

t )-adapted processes (Wm)m. This then implies, using also
completeness of the filtration, that L is (F Y

t )-measurable and thus also a (F Y
t )-Lévy

process.
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4. Weak solution concepts for singular Lévy SDEs

Moreover, we have that 0 = Zm,n −
∫ ·
0
V m(r,Xn

r )dr
d
= Wm,n −

∫ ·
0
V m(r, Y n

r )dr. This
implies that Wm,n =

∫ ·
0
V m(r, Y n

r )dr almost surely. Analogously, we deduce the

representation Wl,m,n
st (i, j) =

∫ t
s
[JT (∂iV

j,l)(r, Y n
r )−JT (∂iV

j,l)(s, Y n
s )]dW i,m,n

r . Let Wm,
Wl,m be defined analogously with Y n replaced by Y . This yields the represenations
(4.52), (4.53) for Wm,n,Wl,m,n. By almost sure convergence of (4.59), letting first
n→∞, we obtain that for (s, t) ∈ ∆T ,

Wst = ut(t, Yt)− ut(s, Ys) +Mut

st ,

Wm
st = ut,m(t, Yt)− ut,m(s, Ys) +Mut,m

st ,

and

Wst(i, j) = vt,i,j(t, Yt)− vt,i,j(s, Ys)
− JT (∂iV

j,l)(s, Ys)
(
ut,i(t, Yt)− ut,i(s, Ys)

)
+M vt,i,j

st − JT (∂iV
j,l)(s, Ys)M

ut,i

st ,

and

Wl,m
st (i, j) = vt,l,m,i,j(t, Yt)− vt,l,m,i,j(s, Ys)

− JT (∂iV
j,l)(s, Ys)

(
ut,m,i(t, Yt)− ut,m,i(s, Ys)

)
+M vt,l,m,i,j

st − JT (∂iV
j,l)(s, Ys)M

ut,m,i

st .

Herein, we used that convergence in the J1-topology implies in particular convergence
Lebesgue almost everywhere in [0, T ] and that Y almost surely does not jump at fixed
times t (cf. in the proof of Theorem 4.2). The differences Mut

st ,M
ut,m

st ,M vt

st ,M
vt,l,m

st are
defined analogously as above and ut,m = (ut,m,i)i=1,...,d and vt,l,m = (vt,l,m,i,j)i,j=1,...,d

solve

G V ut,m,i = V m,i, G V vt,l,m,i,j = JT (∂iV
l,j) · V m,i

with zero terminal condition at t ∈ [0, T ].

It remains to prove that for l,m→∞

∥Wm −W∥(α+β)/α,2 + ∥Wm −W | F∥(α+β)/α,∞ → 0 (4.60)

and

∥Wl,m −W∥(α+β)/α,2 + ∥Wl,m −W | F∥(2(α+β)−1)/α,∞ → 0. (4.61)

The bounds (4.20), (4.21) for the limits W,W then follow from the convergences (4.60)
and (4.61) and the uniform bounds (4.56), (4.57) and (4.58) above.
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4.4. Equivalence of weak solution concepts

The proof of Corollary 4.5 shows the bound

∥Wm −W∥(α+β)/α,2 + ∥Wm −W | F∥(α+β)/α,∞ ≲ sup
t∈[0,T ]

∥ut,m − ut∥(L 0,α+β
t )d .

The right-hand side vanishes if m → ∞ by the uniform Lipschitz continuity from
Corollary 3.32 (cf. also Remark 3.34). Together this yields (4.60). Analogously, we
can argue for the convergence of ∥Wl,m −W∥(α+β)/α,2, using Corollary 3.32 and that

∥Wl,m −W∥(α+β)/α,2 ≲ sup
t∈[0,T ]

[∥vt,l,m − vt∥(L 0,α+β
t )d×d + ∥V ∥CT C β

Rd
∥ut,m − ut∥(L 0,α+β

t )d ].

Moreover, the estimate (4.51) from the proof of Proposition 4.33 yields the bound

∥Wl,m −W | F∥(2(α+β)−1)/α,∞

≲ sup
r∈[0,T ]

[
∥wr,l,m − wr∥(L γ,α+β

r )d×d + ∥wr,l,m,♯ − wr,♯∥
(L

γ,2(α+β)−1
r )d×d

+ ∥V ∥X β,γ′ (∥yr,m − yr∥(L γ,α+β
r )d + ∥yr,m − yr∥

(L
γ,2(α+β)−1
r )d

)
]
,

where wr = (wr,i,j)i,j denotes the solution of G V wr,i,j = 0 with terminal condition
wr,i,jr = JT (∂iV

j)r · V i
r at time r and yr = (wr,i)i denotes the solution of G V yr,i = 0

with yr,ir = V i
r . The right-hand side vanishes by the uniform Lipschitz bound from

Corollary 3.32. Thus, together (4.61) follows. Finally, we can of course rename
(Y,W,W) as (X,Z,ZV ).

The following theorem generalizes Itô’s formula for rough weak solutions X.

Theorem 4.36. Let V ∈X β,γ for β ∈ (2−2α
3
, 0) and let (X,L,ZV ) be a weak solution

started in x ∈ Rd. Let u ∈ DT be such that v := (∂t −L α
ν )u is paracontrolled by V in

the sense that v = v♯ + v′ 4 V with v♯ ∈ CTC (2−γ)α+2β−1 and v′ ∈ CTC α+β−1
Rd and such

that u ∈ C1([0, T ],C β) (i.e. continuously differentiable in time with values in C β).
Then, if α ∈ (1, 2), the following Itô-formula holds true:

u(t,Xt) = u(0, x) +

∫ t

0

(∂s −L α
ν )u(s,Xs)ds+

∫ t

0

∇u(s,Xs) · d(Z,ZV )s

+

∫ t

0

∫
Rd\{0}

[u(s,Xs− + y)− u(s,Xs−)]π̂(ds, dy),

where Z = X − x − L and π̂ denotes the compensated Poisson random measure of
L. If α = 2 and L = B for a Brownian motion B, the martingale is replaced by∫ t
0
∇u(s,Xs) · dBs. In the formula above,

∫ t
0
(∂s−L α

ν )u(s,Xs)ds is defined as the limit

of
(∫ t

0
(∂s −L α

ν )un(s,Xs)ds
)
n
in L2(P) for the smooth mollifications (un = Pn−1u)n.

Remark 4.37. The assumptions on u are satisfied for solutions u of Kolmogorov
backward equations with regular terminal conditions uT ∈ C 2α+2β−1 and right-hand
sides f ∈ CTL∞ (cf. also Remark 3.13).

157



4. Weak solution concepts for singular Lévy SDEs

Proof of Theorem 4.36. We give the proof in the case α ∈ (1, 2), α = 2 is similar. Since
u ∈ C1([0, T ],C β) the mollification satisfies for n ∈ N,

unt = Pn−1ut ∈ C1([0, T ], C∞
b )

In particular, un ∈ C1,2
b ([0, T ]× Rd) and applying [CJMS06, Theorem 3.1] to un(t,Xt)

yields

un(t,Xt) = un(0, x) +

∫ t

0

(∂s −L α
ν )un(s,Xs)ds+

∫ t

0

∇un(s,Xs) · dZs

+

∫ t

0

∫
Rd\{0}

[un(s,Xs− + y)− un(s,Xs−)]π̂(ds, dy).

Due to convergence of the mollifications un → u in L 0,α+β
T and analogue arguments as

for Lemma 4.4 (with Burkholder-Davis-Gundy inequality and separating in large and
small jumps), we obtain that the π̂-martingales converge in L2(P) to the one with un

replaced by u.
By Theorem 4.24 it follows that almost surely,∫ t

0

∇un(s,Xs) · dZs =

∫ t

0

∇un(s,Xs) · d(Z,ZV )s.

The stability of the rough stochastic integral from Proposition 4.31 for the rough
stochastic integral yields convergence of the integrals if (un, u′) → (u, u′) in DT (V ).
The latter follows from the convergence of the mollification un → u in L 0,α+β

T and

un,♯ = un − u′ 4 JT (V )

= Pn−1u♯ +
(
Pn−1 [u′ 4 JT (V )]− u′ 4 Pn−1JT (V )

)
→ u♯

in L 0,2(α+β)−1
T due to Lemma 3.7, the semigroup commutator (Lemma 3.9) and

Lemma 3.11. It remains to show that the additive functional∫ t

0

(∂s −L α
ν )un(s,Xs)ds

converges in L2(P). For r ∈ [0, T ] we have by assumption for vr := (∂r −L α
ν )ur, that

vr = v♯r + v′r 4 Vr,

for v♯r ∈ C (2−γ)α+2β−1 and v′r ∈ C α+β−1. Thus vr is an admissible terminal condition
(in the sense of Theorem 3.25) for solving the Kolmogorov equation on [0, r] with
paracontrolled terminal condition vr.
By Theorem 4.32, X is a martingale solution and in particular a strong Markov process.
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4.5. Ill-posedness of the canonical weak solution concept in the rough regime

Denote again by (Ts,r)0⩽s⩽r⩽T its semigroup. Utilizing the ideas of [Lê20, section 3],
we define,

Ξs,t :=

∫ t

s

Ts,rvr(Xs)dr.

We let ys := Ts,rvr for s ∈ [0, r]. Then y is a mild solution of the Kolmogorov equation
with terminal condition vr.
We apply the stochastic sewing Lemma 4.7 to Ξ. Therefore, we write for s ⩽ u ⩽ t,

Ξs,u,t = Ξs,t − Ξs,u − Ξu,t =

∫ t

u

[Ts,rvr(Xs)− Tu,rvr(Xu)]dr

Due to the Markov property of X, we see that Es[Ξs,u,t] = 0. It is left to estimate

∥Ξs,u,t∥L2(P). To this end, we use that y = T·,rvr ∈M−β/α
r L∞ with a uniform bound in

r ∈ [0, T ] due to Corollary 3.32 and the interpolation estimate (3.27) from Lemma 3.17,
such that we can estimate,

∥yu∥L∞ = ∥Tu,rvr∥L∞ ≲ |r − u|β/α sup
r∈[0,T ]

∥y∥
M

−β/α
r L∞

and thus it follows that

∥Ξs,u,t∥L2(P) ≲ |t− u|1+β/α = |t− u|(α+β)/α,

with (α + β)/α > 1/2. Thus the stochastic sewing lemma applies and we obtain
existence of the integral IXt (v) := lim|Π|→0

∑
s,t∈Π Ξs,t ∈ L2(P). Furthermore, if we

consider vn := (∂t −L α
ν )un, we obtain that IXt (vn) → IXt (v) due to stability of the

stochastic sewing integral and continuity of the Kolmogorov solution map. The last
step is then to see that almost surely IXt (vn) =

∫ t
0
vn(s,Xs)ds. Indeed, this can be

deduced from uniqueness of the stochastic sewing integral and Es[v
n
r (Xr)] = Ts,rv

n
r (Xs)

as vnr ∈ Cb (cf. also [Lê20, Proposition 3.7]).

4.5. Ill-posedness of the canonical weak solution
concept in the rough regime

Below, we introduce so-called canonical weak solutions. We prove in Corollary 4.42,
that in the Young case the canonical weak solution concept is well-posed (and equivalent
to martingale solutions). We finalize by proving in Theorem 4.44 that canonical weak
solutions are in general non-unique. We construct a counterexample, that justifies the
latter.
We start by defining the concept of canonical weak solutions.

Definition 4.38 (Canonical weak solution). Let α ∈ (1, 2], V ∈ CTC β
Rd for β ∈

(2−2α
3
, 0). Let x ∈ Rd. We call a tuple (X,L) a canonical weak solution starting at
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4. Weak solution concepts for singular Lévy SDEs

X0 = x ∈ Rd, if there exists a stochastic basis (Ω,F , (Ft)t⩾0,P), such that L is an
α-stable symmetric non-degenerate (Ft)-Lévy process and almost surely

X = x+ Z + L,

where Z is an (Ft)-adapted, continuous process with

∥Z∥(α+β)/α,2 + ∥Z | F∥(α+β)/α,∞ <∞.

Moreover there exists a sequence (V n) ⊂ CTC
∞
b with V n → V in CTC β, such that

lim
n→∞

∫ ·

0

V n(s,Xs)ds = Z, (4.62)

with convergence in L2(P), uniformly in [0, T ].

Remark 4.39. The definition of canonical weak solutions is similar to [ABM20,
Definition 2.1]. The difference is the assumption that ∥Z | F∥(α+β)/α,∞ <∞. However,
boths bounds on Z are natural to assume and motivated by Corollary 4.5.

Remark 4.40 (One-dimensional, time-homogeneous case with α = 2). In this case,
for any approximation (V n) of V , the weak limit of the strong solutions (Xn) with

dXn
t = V n(Xn

t )dt+ dBt

is the same and given by the solution of the G V -martingale problem. The one-
dimensional case is special in this sense. The above is true, because in d = 1 the resonant
products (JT (∂xV

n)�V n) converge to the same limit for any approximation (V n). This
can be seen with Leibniz rule considering ((−∆)−1(∂xV

n) �V n)n = (J∞(∂xV
n) �V n)n.

Indeed, we have with vn, such that V n = ∂xv
n

lim
n→∞

(−∆)−1(∂xV
n) � V n = −1

2
lim
n→∞

∂x(v
n � vn) = −1

2
∂x(v � v)

using that (−∆x)
−1(∂xV

n) = −vn and vn � vn → v � v as products of functions.
Notice moreover that this does not imply, that the limit of the mixed resonant products
((−∆)−1(∂xV

n) � V )n is uniquely determined. In fact in the rough case the latter limit
is in general not unique (cf. Lemma 4.43 below). This fact will imply that, even in
the one-dimensional case, a weak solution in the sense of Definition 4.38 is in general
non-unique in law.

Remark 4.41 (One and all sequences (V n)). One may ask, if requiring the convergence
(4.62) to hold for all (instead of one) approximating sequences (V n) renders the solution
concept well-posed. Though, if we require (4.62) to hold for all such sequences (V n), then
in the rough case the solution of the G V -martingale problem won’t be a solution. This
follows also from the fact that the limit of the mixed resonant products is non-unique.
Thus, we would expect non-existence of solutions in the rough case. Hence, requiring
(4.62) to hold for all such sequences (V n) makes the definition too restrictive.
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The results from the previous section imply the following corollary.

Corollary 4.42. Let β ∈ ((1−α)/2, 0) (Young regime) and V ∈ CTC β. Then, X is a
solution of the (G V , δx)-martingale problem if and only if X is a canonical weak solution
starting at x ∈ Rd. In particular, the canonical weak solution concept is well-posed in
the Young regime.

Proof. If X is a martingale solution, then X is a canonical weak solution by The-
orem 4.35, since a weak solution in the sense of Definition 4.10 is in particular a
canonical weak solution. For the reverse implication, notice that (4.62) and the as-

sumption Z ∈ C
(α+β)/α
T L2(P) imply that ∥Zn − Z∥θ,2 → 0 for any θ < (α + β)/α.

Then, Lemma 4.15 and the arguments in the proof of Theorem 4.32 for β in the Young
regime (that do not use the bounds (4.21) on ZV and the convergence 2.)) imply that
X is a solution of the (G V , δx)-martingale problem.

If β ⩽ 1−α
2

, we show that the solution concept from Definition 4.38 is ill-posed. The
idea is as follows. We construct two different lifts of V with two different solutions
of the respective Kolmogorov backward equations, which yields two different weak
solutions X in law. The next lemma proves the existence of such desired lifts. We give
its proof after the proof of Theorem 4.44.

Lemma 4.43. Let d = 1 and α = 2. Let (Pt)t⩾0 be the heat semigroup, that is Ptf =
F−1(exp( t

2
|2π·|2)f̂). Then, there exists V ∈ CTC β and two sequences (V n) ⊂ CTC

∞
b ,

(W n) ⊂ CTC
∞
b such that V n → V ∈ CTC β and W n → V ∈ CTC β and such that

JT (∂xV
n) � V → V2 and JT (∂xW

n) � V → W2 in CTC 2β+1, where V2 = W2 +C for a
constant C ̸= 0.

Theorem 4.44. Let β ⩽ 1−α
2

and V ∈ CTC β
Rd. Then, canonical weak solutions in the

sense of Definition 4.38 are in general non-unique in law.

Proof of Theorem 4.44. We construct two solutions that are not equal in law. To that
end, we let d = 1, α = 2. By Lemma 4.43, there exists V ∈ CTC β and two sequences
(V n,i) for i = 1, 2 with (V n,1, JT (∂xV

n,1) �V )→ (V,V2) and (V n,2, JT (∂xV
n,2) �V )→

(V,W2) in CTC β × CTC 2β+α−1 and V2 = W2 + C for C ̸= 0.
Let u be the solution of G (V,V2)u = V with u(T, ·) = 0 and ũ be the solution of
G (V,W2)ũ = V , ũ(T, ·) = 0. Then, it follows that

ũ(t, y) = u(t, y − (T − t)C), (t, y) ∈ [0, T ]× R.

In particular, there exists (s, x) ∈ [0, T ) × R, such that u(s, x) ̸= ũ(s, x) (otherwise
u is constant, which is a contradiction, as V ≠ 0). Consider the shifted solutions
v(t, x) := u(t+ s, x) and ṽ(t, x) := ũ(t+ s, x), (t, x) ∈ [0, T ]× R. Then we have that
v(0, x) ̸= ṽ(0, x).
Let X1 be the solution of the (G (V,V2), δx) martingale problem and X2 be the solution
of the (G (V,W2), δx) martingale problem (cf. also Remark 4.6).

161



4. Weak solution concepts for singular Lévy SDEs

By Theorem 4.35, there exist stochastic basis (Ω1,F 1, (F 1
t ),P1) and (Ω2,F 2, (F 2

t ),P2),
such that X i for i = 1, 2 satisfy

X i = x+ Zi +Bi, a.s., where Zi = lim
n→∞

∫ ·

0

V n,i(s,X i
s)ds ∈ L2(Pi)

and such that ∥Zi∥(α+β)/α,L2(Pi) + ∥Zi | F i∥(α+β)/α,L∞(Pi) <∞. In particular, X1 and
X2 are canonical weak solutions in the sense of Definition 4.38.
We prove that Law(X1) ̸= Law(X2). But this is clear, if we show that

E1[Z
1
T−s] ̸= E2[Z

2
T−s].

Let un,1 be the solution of G (V,V2)un,1 = V n,1 with un,1(T, ·) = 0 and un,2 be the solution
of G (V,W2)un,2 = V n,2 with un,2(T, ·) = 0. Let vn,1, vn,2 be the shifted solutions, that
solve the same equations as un,1, un,2 with vn,1(T − s, ·) = vn,2(T − s, ·) = 0. Then
un,1 → u and un,2 → ũ in CTL

∞
Rd . As X1 solves the (G (V,V2), δx) martingale problem and

X2 solves the (G (V,W2), δx) martingale problem, we have (abbreviating the martingale
term by M vn,1)

E1[Z
1
T−s] = lim

n→∞
E1

[ ∫ T−s

0

V n,1(r,X1
r )dr

]
= lim

n→∞
E1[vn,1(T − s,X1

T )− vn,1(0, x)−M vn,1

0,T−s]

= lim
n→∞

un,1(s, x)

= u(s, x) ̸= ũ(s, x) = E2[Z
2
T−s],

such that the claim follows.

Proof of Lemma 4.43. Recall that d = 1 and L = B for a standard Brownian motion
B. We construct a distribution V , that is time independent and can thus integrate out
time in JT (∂xV ), i.e. instead of

JT (∂xV )(r) =

∫ T

r

F−1
(
exp
(
(s− r)1

2
|2π·|2

)
F (∂xV )

)
ds

= F−1

(
(1− exp((r − T )

1

2
|2π·|2)) 1·̸=0

1
2
|2π·|2

F (∂xV )

)
=: J∞(∂xV )− φr,T ∗ J∞(∂xV ),

we consider w.l.o.g. J∞(∂xV ) = F−1(
1·≠0

1
2
|2π·|2F (∂xV )) = (−1

2
∆)−1(Id−Π0)∂xV , where

Π0 is the projection onto the zero-order Fourier mode.
Inspired by [CF14], we set

f(x) =
∑
k>0

ake
2πi2kx
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for (ak) ⊂ C to be determined. We define

F := J∞(∂xf) =

(
−1

2
∆

)−1

(id−∆0)∂xf =
∑
k>0

ak
2πi2k

1
2
|2π2k|2

e2πi2
kx =

∑
k>0

iak
π2k

e2πi2
kx.

Then, it follows that ∆kf(x) = ake
2πi2kx and ∆kF (x) = iak

2π2k
e2πi2

kx, and therefore

F � f =
∑
k>0

ia2k
π2k

e2πi2
k+1x, F � f = −

∑
k>0

iak
2

π2k
e−2πi2k+1x,

F � f =
∑
k>0

i|ak|2

π2k
, F � f = −

∑
k>0

i|ak|2

π2k
.

Letting ak := 2−k/2, we obtain that f ∈ C −1/2. Moreover, taking V := Re(f) =
1
2

(
f + f

)
and J∞(∂xV ) = Re(F ) = 1

2

(
F + F

)
, we obtain for the resonant product

V2 := J∞(∂xV ) � V =
1

4

(
F � f + F � f + F � f + F � f

)
=

1

4

∑
k>0

ia2k
π2k

(e2πi2
k+1x − e−2πi2k+1x)

=
1

4

∑
k>0

i

π
2i sin(2π2k+1x) = −

∑
k>0

1

2π
sin(2π2k+1x).

The latter is a distribution in C 0−. Clearly, we have that V n → V in C −1/2 for

V n(x) := Re
(∑n

k=1 ake
2πi2kx

)
. Then it follows

J∞(∂xV
n) � V → J∞(∂xV ) � V =: V2,

in C 0− for n→∞.
Let (cn) ⊂ C to be determined. The other sequence (W n), we then define as follows

W n(x) := Re

(
n∑
k=1

ake
2πi2kx

)
+ Re(cne

2πi2nx) = V n(x) + Re(cne
2πi2nx),

J∞(∂xW
n)(x) = Re

(
n∑
k=1

iak
π2k

e2πi2
kx

)
+ Re

(
icn
π2n

e2πi2
nx

)
= J∞(∂xV

n)(x) + Re

(
icn
π2n

e2πi2
nx

)
.
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Writing Gn = icn
π2n

e2πi2
nx, we have (recall that an ∈ R)

Gn � f =
iancn
π2n

e2πi2
n+1x, Gn � f = −iancn

π2n
e−2πi2n+1x,

Gn � f =
iancn
π2n

, Gn � f = −iancn
π2n

,

and thus for cn := 2n/2dn for (dn) ⊂ C to be determined below,

Re(Gn) � V =
1

4

ian
π2n

(
cne

2πi2n+1x − cne−2πi2n+1x
)

+
1

4

an
π2n

(icn − icn)

=
1

4

i

π

(
dne

2πi2n+1x − dne−2πi2n+1x
)
− 1

2

Im dn
π

= − 1

2π
[Im(dne

2πi2n+1x) + Im(dn)].

We now set dn := −2πCi for a constant C ∈ R \ {0}. Then we have W n → V in C −1/2

and the following convergences in C 0−:

Re(Gn) � V → C, J∞(∂xW
n) � V → J∞(∂xV ) � V + C =: W2,

for n→∞.

4.6. Application – Brox diffusion with Lévy noise

SDEs with distributional drift have applications in various situations. This includes
the study of stochastic processes in random media, such as the so-called Brox diffusion
([Bro86]), that we consider below, and the construction of random polymer measures
(cf. [DD16, CC18]). Furthermore singular SDEs arise as stochastic characteristics of
singular SPDEs such as KPZ and PAM, cf. [KPvZ21]. In what follows, we apply the
theory of Section 4.1 to the construction of the solution to the Brox diffusion with
stable noise. The section is based on [KP22, Section 5].
Let us start with the model, that Brox studied in [Bro86]. The Brox diffusion is the
solution X of the following SDE

dXt = Ẇ (Xt)dt+ dBt, X0 = x ∈ R, (4.63)

where B is a standard Brownian motion and (W (x))x∈R is a two-sided standard
Brownian motion that is independent of B. This model was introduced in [Bro86] as a
continuous analogue of Sinai’s random walk, with the motivation that when studying
X we can exploit the scaling properties of W and B. Brox’s construction is based on
time and space transformations as in the Itô-McKean construction of diffusions. It is
natural to replace W or B by α-stable Lévy processes, which also have nice scaling
properties. The construction of the process with W replaced by a Lévy process is not
much of a problem, as the Itô-McKean approach still works [Tan87, Car97, KTT17].
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4.6. Application – Brox diffusion with Lévy noise

On the other hand, replacing B by an α-stable Lévy process is more delicate and it is
not obvious if the Itô-McKean construction could work. But using our approach we
can hope to solve the martingale problem for the SDE

dXt = Ẇ (Xt)dt+ dLt, X0 = x ∈ R. (4.64)

To be precise, the white noise Ẇ is not actually an element of any Besov space, but
only of weighted Besov spaces: With ⟨x⟩ = (1 + |x|2)1/2 we have ⟨·⟩−κẆ ∈ C −1/2−

for all κ > 0. It is possible to extend our analysis of the martingale problem to allow
for a drift term in a suitable weighted Besov space, and at the end of this section
we discuss how this could be done. But to simplify the presentation we consider a
periodic white noise Ẇ instead, which is in the unweighted space C −1/2−. Note that
this regularity is not in the Young regime, no matter which α ∈ (1, 2] we choose, and
therefore the methods of [ABM20, dRM19] do not apply and we are not aware of any
other way of constructing X, apart from the approach we present here. Although we
should point out that in d = 1 it would be possible to extend the methods of Delarue
and Diel [DD16], who treat the Brownian case, to the Lévy setting, i.e. to replace
our paracontrolled analysis by rough path analysis. As we discuss in Remark 4.49
below, the paracontrolled approach has the advantage that it allows us to construct a
multidimensional variant of the Lévy Brox diffusion.
So let ξ = Ẇ be a 1-periodic white noise, that is, ξ is a centered Gaussian process with
values in S ′(T), where T = R/Z is the one-dimensional torus and S ′(T) is the space
of Schwartz distributions on T, i.e. the topological dual of C∞(T). The covariance
of ξ is E[ξ(φ)ξ(ψ)] = ⟨φ, ψ⟩L2(T) for φ, ψ ∈ C∞(T). To any u ∈ S ′(T) we associate a
periodic distribution on the real line by setting uR(φ) = u(

∑
k∈Z φ(·+ k)), φ ∈ S . If

u ∈ C β(T), then uR ∈ C β. Here C β(T) is a Besov space on the torus, which is defined
in the same way as on the real line, except using the Fourier transform FT on T and
inverse F−1

T Fourier transform on Z.
We choose ξ independently of the Lévy process L, and we consider a fixed “typical”
realization ξ(ω). To apply the theory that we developed in this paper, we need to
construct a canonical enhancement of ξ(ω)R in such a way that we obtain an enhanced
drift in the sense of Definition 3.20.
We first note that almost surely ξ ∈ CTC −1/2−(T) (so we let β = −1/2− ε for some
very small ε > 0), see e.g. [GP15, Exercise 11]. Therefore, ξ(ω)R ∈ CTC −1/2− for
almost all ω. In fact, we require ξ ∈ C β+(1−γ′)α. Hence, we let γ′ ∈ (0, 1) be such that
β + (1− γ′)α < −1/2. It remains to construct t 7→ (Pt(∇ξ) � ξ)(ω) ∈M γ

TC (αγ−2)−(T)
for γ < 1 (cf. Definition 3.20) for almost all ω, which we will do in the next lemma. In
particular, by choosing γ larger if necessary, we can take γ = γ′ and have γα − 2 =
γα − 1 − 1/2 − 1/2 > γα − 1 + β + β + (1 − γ)α = 2β + α − 1, such that indeed
V = ξ(ω) ∈X β,γ′ .

Lemma 4.45. Let α ∈ (3/2, 2], γ ∈ ( 3
2α
, 1) and ϑ < αγ − 2. Let (Pt) be the semigroup

generated by (−L α
ν ), Ptϕ = F−1

T (e−tψ
α
ν FTϕ). Let ξn =

∑
|k|⩽n ξ̂(k)ek, where (ek)k∈Z =

(e−2πik·)k∈Z is the Fourier basis of L2(T). Then (t 7→ Pt(∇ξn) � ξn)n converges in
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4. Weak solution concepts for singular Lévy SDEs

probability in M γ
TC ϑ(T) to a limit denoted by (t 7→ Pt(∇ξ) � ξ) ∈M γ

TC ϑ(T).

Proof. 3 We carry out the computations for n = ∞ and show that P (∇ξ) � ξ ∈
M γ

TC ϑ(T) can be constructed as a random variable in the second Wiener-Itô chaos
generated by ξ. Since the kernel appearing in the definition of P (∇ξ) � ξ provides a
uniform bound for the kernels that appear in the chaos representation of (P (∇ξn)�ξn)n,
the claimed convergence then follows from the dominated convergence theorem.
To bound P (∇ξ) � ξ, note that P (∇ξ)(t) = ϱt ∗ ξ, where ϱt = ∇F−1

T (e−tψ
α
ν ). We first

derive a bound on the expectation of the Bζ
p,p-norm (for ζ to be chosen afterwards)

of the increment (ϱt ∗ ξ) � ξ − (ϱs ∗ ξ) � ξ = ((ϱt − ϱs) ∗ ξ) � ξ. Using this bound,
our claim will follow from the Besov embedding theorem together with Kolmogorov’s
continuity criterion. Let us abbreviate ϱ̃t := tγϱt. Then, we have

E
[
∥(ϱ̃t − ϱ̃s) ∗ ξ � ξ∥p

Bζ
p,p

]
= E

[∑
j

2jζp∥∆j((ϱ̃t − ϱ̃s) ∗ ξ � ξ)∥pLp

]
=
∑
j

2jζp
∫
T
E[|∆j((ϱ̃t − ϱ̃s) ∗ ξ � ξ)(x)|p]dx

≲
∑
j

2jζp
∫
T
E[|∆j((ϱ̃t − ϱ̃s) ∗ ξ � ξ)(x)|2]p/2dx,

where in the last step we used that the random variable ∆j((ϱ̃t − ϱ̃s) ∗ ξ � ξ)(x) is
in the second (inhomogeneous) Wiener-Itô chaos and therefore all its moments are
comparable by Gaussian hypercontractivity [Jan97, Theorem 5.10].
It remains to estimate

E[|∆j((ϱ̃t − ϱ̃s) ∗ ξ � ξ)(x)|2] = E[|((ϱ̃t − ϱ̃s) ∗ ξ � ξ)(κj(x− ·))|2], (4.65)

where κj = F−1
T pj =

∑
k∈Z e

2πik·pj(k). Let now ψ�(x, y) =
∑

|l1−l2|⩽1 κl1(x)κl2(y).
Then with formal notation we have

(ϱ̃t − ϱ̃s) ∗ ξ � ξ(x) =

∫∫
ψ�(x− y1, x− y2)((ϱ̃t − ϱ̃s) ∗ ξ)(y1)ξ(y2)dy1dy2,

and thus

(ϱ̃t − ϱ̃s) ∗ ξ � ξ(κj(x− ·))

=

∫∫∫
κj(x− z)ψ�(z − y1, z − y2)ξ((ϱ̃t − ϱ̃s)(y1 − ·))ξ(δ(y2 − ·))dy1dy2dz.

3We adjusted the proof to account for Definition 3.20, which is a stronger assumption on enhanced
distributions compared to [KP22].
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To derive the chaos decomposition of the right hand side, we introduce the kernel

At,sj (x, r1, r2) =

∫∫∫
κj(x− z)ψ�(z − y1, z − y2)(ϱ̃t − ϱ̃s)(y1 − r1)δ(y2 − r2)dy1dy2dz,

with which

(ϱ̃t − ϱ̃s) ∗ ξ � ξ(κj(x− ·)) = W2(A
t,s
j (x, ·, ·)) + E[(ϱ̃t − ϱ̃s) ∗ ξ � ξ(κj(x− ·))], (4.66)

where W2 denotes a second order Wiener-Itô integral. We start by estimating the first
term on the right hand side: Using the symmetrization Ãt,sj (x, r1, r2) = 1

2
(At,sj (x, r1, r2)+

At,sj (x, r2, r1)), we have

E[|W2(A
t,s
j (x, ·, ·))|2] = 2∥Ãt,sj (x, ·, ·)∥2L2(T2) ⩽ 2∥At,sj (x, ·, ·)∥2L2(T2)

=
∑

k1,k2∈Z

∣∣∣∣∫∫ At,sj (x, r1, r2)e
−2πi(k1r1+k2r2)dr1dr2

∣∣∣∣2, (4.67)

where the last equality is Parseval’s identity. Now, we obtain by computing each
integral iteratively∫∫

Aj(x, r1, r2)e
−2πi(k1r1+k2r2)dr1dr2

= κ̂j(−(k1 + k2))e
−2πi(k1+k2)xψ̂�(−k1,−k2) ̂(ϱ̃t − ϱ̃s)(−k1),

where f̂(k) =
∫
T f(x)e−2πikxdx is the Fourier transform on the torus and

ψ̂�(k1, k2) :=

∫∫
ψ�(y1, y2)e

−2πi(k1y1+k2y2)dy1dy2 =
∑

|l1−l2|⩽1

pl1(k1)pl2(k2).

As |ψαν (k)| ⩾ |k|α and 1− e−x ⩽ xε for x ⩾ 0 and ε ∈ [0, 1], we have that for ε ∈ [0, γ],
s ⩽ t and γ ∈ (0, 1]

|ϱ̂t − ϱs| = |FT(tγϱt − sγϱs)| = |2πk||tγe−tψ
α
ν (k) − sγe−sψα

ν (k)|
= |2πk||(tγ − sγ)e−tψα

ν (k) + sγe−tψ
α
ν (k)(1− e(t−s)ψα

ν (k))|
≲ (tγ − sγ)t−γ+ε|k|1−α(γ−ε) + sγt−γ|k|1−αγ|t− s|ε|k|αε

≲ |t− s|ε|k|1−α(γ−ε),
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using tε − sε ⩽ |t− s|ε, sγt−γ ⩽ 1 and sγ−εt−γ+ε ⩽ 1. This leads to∣∣∣∣∫∫ At,sj (x, r1, r2)e
−2πi(k1r1+k2r2)dr1dr2

∣∣∣∣2
≲ |t− s|2ε|pj(k1 + k2)|2

∣∣ ∑
|l1−l2|⩽1

pl1(k1)pl2(k2)
∣∣2|k1|2−2α(γ−ε).

Let now p̃l1 :=
∑

l:|l−l1|⩽1 pl. Since for fixed k1 there are at most three l1 with pl1(k1) ̸= 0,

we can bound
∣∣∑

l1
pl1(k1)p̃l1(k2)

∣∣2 ≲∑l1
pl1(k1)

2p̃l1(k2)
2 and thus we obtain in (4.67)

E
[
|W2(A

t,s
j (x, ·, ·))|2

]
≲ |t− s|2ε

∑
k1,k2

∑
l1

pj(k1 + k2)
2pl1(k1)

2p̃l1(k2)
2|k1|2−2α(γ−ε)

= |t− s|2ε
∑

l1:2j≲2l1

∑
k1

2jpl1(k1)
2|k1|2−2α(1−ε) (4.68)

≲ |t− s|2ε
∑

l1:2j≲2l1

2j2l12l1(2−2α(γ−ε)) (4.69)

≲ |t− s|2ε2j(4−2α(γ−ε)),

where we used that pi(k) ̸= 0 for O(2i) values of k, with i = j respectively i = l1, and
we choose ε ∈ (0, 1) so that 3− 2α(γ − ε) < 0 to obtain the convergence of the series
in the last estimate (recall that we assume γ > 3/2α).
Moreover, the expectation on the right hand side of (4.66) vanishes. Indeed, using that
for ek(x) = e2πikx, we have

∫
ek(x)el(x)dx = δk,−l (Kronecker delta), we obtain

E[(ϱ̃t − ϱ̃s) ∗ ξ � ξ(κj(x− ·))]

=

∫∫∫
κj(x−z)ψ�(z−y1, z−y2)(ϱ̃t−ϱ̃s)(y1−y2)dy1dy2dz

=
∑
k,l,k′,l′

κ̂j(k)ψ̂�(k′, l′) ̂(ϱ̃t−ϱ̃s)(l)
∫∫∫

ek(x−z)ek′(z−y1)el′(z−y2)el(y1−y2)dy1dy2dz

=
∑
k′

κ̂j(0)ψ̂�(k′,−k′) ̂(ϱ̃t − ϱ̃s)(k′) = 0.

Here, the last equality is due to ˜̂ϱt − ϱ̃s being an odd function, i.e. ˜̂ϱt − ϱ̃s(−k) =

−(˜̂ϱt − ϱ̃s)(k) for k ∈ Z, and ψ̂�(k,−k) = ψ̂�(−k, k) = 1. To make this formal
argument rigorous we have to include the regularization, which only has the effect
of restricting the sum to |k′| ⩽ n. Therefore, also the expectation of the regularized
resonant product vanishes.

Combining this with (4.66) and (4.68), we get via the Besov embedding theorem that
for all ϑ′ < αγ − 2 there exists ε > 0 such that for all p > 1 (by taking ζ = ϑ′),

E[∥(ϱ̃t − ϱ̃s) ∗ ξ � ξ∥p
C ϑ′−1/p ] ≲ E[∥(ϱ̃t − ϱ̃s) ∗ ξ � ξ∥p

Bϑ′
p,p

] ≲ |t− s|εp.
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4.6. Application – Brox diffusion with Lévy noise

After choosing p large enough so that εp > 1 we obtain from Kolmogorov’s continuity
criterion that P (∇ξ) � ξ ∈ M γ

TC ϑ′−1/p. Given ϑ < αγ − 2 as in the statement of
the theorem, it now suffices to take ϑ′ ∈ (ϑ, αγ − 2) and then p large enough so that
ϑ′ − 1/p ⩾ ϑ.

By freezing a “typical” realization of ξ(ω), we obtain the following corollary of
Lemma 4.45 and Theorem 4.2.

Theorem 4.46. Let α ∈ (7/4, 2] and let ξ be a periodic white noise on a probability
space (Ω,F ,P). Then for almost all ω there exists a unique solution to the “quenched
martingale problem” associated to the Brox diffusion with symmetric, α-stable Lévy
process L,

dXt = ξ(ω)(Xt)dt+ dLt, X0 = x ∈ R.

If we denote the distribution of X by Pω, then the “annealed measure”
∫
Pω(·)P(dω) is

the distribution of a Brox diffusion in a white noise potential, driven by an independent
symmetric α-stable Lévy process L.

Remark 4.47. By analogy with rough path regularities, the constraint α > 7/4 corre-
sponds to an “α > 1/3 condition” in rough paths, and we expect that it is possible to
treat α ∈ (3/2, 7/4] by considering higher order expansions of the Kolmogorov backward
equation. To carry out this analysis we would need to use regularity structures [Hai14]
or the higher order paracontrolled calculus of [BB19]. The constraint α > 3/2 appears
in the construction of the resonant product P (∇ξ) � ξ, so it seems to be of a similar
nature as the constraint H > 1/4 for the Hurst index of a fractional Brownian motion
that is required to construct its iterated integrals (cf. [CQ02]). But in fact not only
the probabilistic construction fails at α = 3/2: at that value the equation is critical
in the sense of [Hai14] and we cannot solve it with perturbative techniques such as
paracontrolled distributions or regularity structures.

Remark 4.48. To avoid dealing with weighted function spaces, we restricted our
attention to periodic ξ. But we expect that it is also possible to treat the white noise
ξ on R with our approach, at the price of a slightly more involved analysis. In that
case we have ⟨·⟩−κξ ∈ C −1/2− and ⟨·⟩−κP (∇ξ) � ξ ∈M γ

TC (αγ−2)− for all κ > 0, where
⟨x⟩ = (1 + |x|2)1/2. With the techniques of [DD16, HL15, MP19] it is still possible to
solve the Kolmogorov backward equation for such ξ, by working in weighted function
spaces with a time-dependent weight. Roughly speaking, if the terminal condition uT
grows like exp(l|x|δ) as x→∞, where δ ∈ (0, 1) and l ∈ R, then u(T − t) grows like
exp((l + t)|x|δ). This might look dangerous because for α < 2 our Lévy noise does not
even have finite second moments, let alone finite (sub-)exponential moments. But we
can take l ∈ R arbitrary, and in particular l ⩽ −T is allowed and then u(t) is bounded
for all t. In that way it should be possible to extend our results to construct a Brox
diffusion with Lévy noise in a non-periodic white noise potential.
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Remark 4.49. With our approach we can more generally solve the multidimensional
SDE

dXt = ∇W (Xt)dt+ dLt, X0 = x ∈ Rd

where W is the Brownian sheet on Rd. In the Brownian noise case α = 2, the
construction of this SDE, which coincides with the Brox diffusion in d = 1, can be done
via Dirichlet form techniques and was already carried out in [Mat94]. But to the best
of our knowledge in the Lévy noise case the Dirichlet form approach is not applicable.
Let us argue in the periodic case why our theory applies. Since W ∈ C 1/2−(Td)
we have ∇W ∈ C −1/2−(Td), and therefore we only have to lift ∇W to an element
of X −1/2−,γ. This can be done using similar arguments as for Lemma 4.45. The
periodic Brownian sheet is the centered Gaussian process on Td with E[Ŵ (k)Ŵ (l)] =
δk,−l(2π)−2d(k1 · · · kd)−21k∈Zd

0
for the Fourier transform f̂ = FTdf on the torus and

Zd0 := (Z \ {0})d. Under the assumption that α > 3/2, γ ∈ ( 3
2α
, 1), one can show that

P (∂j∂iW ) � ∂iW for i, j = 1, . . . , d, exists as limit of the mollified resonant products
P (∂j∂iW

n) � ∂iW
n in M γ

TC ϑ for ϑ < αγ − 2. In the case j ≠ i, one can even show

that the resonant product P (∂j∂iW ) � ∂iW lies in M γ
TC ϑ̃ with 0 < ϑ̃ < αγ − 3/2.

Thus, our methods allow us to solve the multidimensional SDE with drift given by the
gradient of the Brownian sheet on Rd and driven by α-stable Lévy noise for α > 7/4.
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5. Periodic homogenization for
singular SDEs

We prove a functional central limit theorem for the solution to singular SDEs of the
form

dXt = F (Xt)dt+ dLt, X0 = x (5.1)

where L is a d-dimensional α-stable symmetric and non-degenerate Lévy process for
α ∈ (1, 2] and periodic drift F ∈ (C β)d =: C β

Rd for β < 0. The drift does not depend on
a time variable in this chapter. Sections 5.1 to 5.5 prepare the theoretical foundation
that leads to the main Theorem 5.26 in Section 5.6.

5.1. Preliminaries

This section gives an introduction to periodic Besov spaces and Schauder and exponen-
tial Schauder estimates on such. Furthermore, we introduce the projected solution XTd

of X onto the torus and its generator L and semigroup. We define the space of enhanced
distributions X β,γ

∞ , which differs from the space considered in the previous chapters.
This section finishes with a summary on our strategy in proving the convergence results
(5.7) and (5.8).

A periodic (or 1-periodic) distribution u satisfies u(φ(·+ 1)) = u(φ) for all φ ∈ S (Rd).
Let Td = (R/Z)d denote the torus and define the Besov space on the torus as Bθ

p,q(Td)
as in (2.32) and (2.33), i.e. by replacing the Fourier transform on Rd by the one on Td
in the definition (3.1) (cf. [ST87, Section 3.5]). The Fourier transform on the torus is
defined by f̂(k) := FTdf(k) :=

∫
Td e

−2πik·xf(x)dx, k ∈ Zd, for f ∈ L2(Td).
To a distribution u ∈ S ′(Td), we can associate a periodic distribution on Rd via
uR

d
(ϕ) := u(

∑
z∈Zd ϕ(· + z)), ϕ ∈ S (Rd) and vice versa, cf. [ST87, Section 3.2]. If

u ∈ C θ(Td) = Bθ
∞,∞(Td), then we have uR

d ∈ C θ. Thus, Bθ
∞,∞(Td) is simply the space

of periodic distributions on Rd, that are in Bθ
∞,∞. The periodic Besov space Bθ

∞,∞(T)
we also introduced in Section 4.6.
In the following, we will not distinguish between F ∈ (C β(Td))d and the periodic
version on Rd, FRd ∈ (C β)d, whenever there is no danger of confusion. We understand
(5.1) as a singular SDE with periodic coefficient FRd

and in particular the existence
results from Chapter 4 apply. In the following, we will also consider the projected
process (XTd

t ) = (ι(Xt)) for the canonical projection ι : Rd → Td, x 7→ [x] = x mod Zd,
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5. Periodic homogenization for singular SDEs

with generator L defined below, acting on functions f : Td → R.
For the homogenization, we need to distinguish between the cases α ∈ (1, 2) and α = 2,
due to the different scaling and limit behaviour. For α ∈ (1, 2), we consider a symmtric
α-stable Lévy process satifying the non-degeneracy Assumption 3.4. If α = 2, the
symmetric α-stable process L has the same law as the Brownian motion (

√
CBt)t⩾0

for some covariance matrix C ∈ Rd×d (cf. [Sat99, Theorem 14.2]). Thus in the case
α = 2 we set, without loss of generality and to ease notation, −L α

ν := 1
2
∆, which is

the generator of the standard Brownian motion, whereas in the general case, one would
consider the generator

∑
i,j=1,...,dC(i, j)∂xi∂xj .

This chapter moreover yields a characterization of the domain dom(L) of the generator
L, cf. Theorem 5.17, with

Lf := −L α
ν f + F · ∇f

acting on functions f : Td → R. That is, the generator of the Markov process (XTd

t )t⩾0
with compact state space Td. We denote its semigroup by (T Td

t )t⩾0 with T Td

t f := Ttf
Rd

,
f ∈ L∞(Td), with the semigroup (Tt)t⩾0 of the Markov process (Xt) on Rd with periodic
drift FRd

.
The semigroup (P Td

t ) of the generalized fractional Laplacian (−L α
ν ) acting on functions

on the torus, is analogously defined as P Td

t f := Ptf
Rd

and the semigroup estimates for
(Pt) imply the estimates for (P Td

t ) on the periodic Besov spaces C θ(Td) = C θ
∞(Td) (due

to u ∈ L∞(Td) implying uR
d ∈ L∞(Rd) and vice versa). The following lemma states

the semigroup estimates for (P Td

t ) on C θ
2 (Td), that will be employed in this chapter.

The proof can be found in Appendix A. For α ∈ (1, 2), the fractional Laplacian on
smooth test functions f ∈ C∞(Td) is defined via L α

ν f = F−1
Td (Zd ∋ k 7→ ψαν (k)f̂(k))

and ψαν as in (3.1). Lemma 5.1 in particular proves the extension of L α
ν to Besov

spaces C β
2 (Td).

Lemma 5.1. Let u ∈ C β
2 (Td) for β ∈ R. Then the following estimates hold true

∥L α
ν u∥C β−α

2 (Td) ≲ ∥u∥C β
2 (Td). (5.2)

Moeover, for any θ ⩾ 0 and ϑ ∈ [0, α],

∥Ptu∥C β+θ
2 (Td) ≲ (t−θ/α ∨ 1)∥u∥C β

2 (Td), ∥(Pt − Id)u∥C β−ϑ
2 (Td) ≲ tϑ/α∥u∥C β

2 (Td). (5.3)

For functions with vanishing zero-order Fourier mode, we can improve the Schauder
estimates for large t > 0. This is established in the following lemma.

Lemma 5.2. Let (Pt) be the (−L α
ν )-semigroup on the torus Td as defined above. Then

for g ∈ C β
p , β ∈ R, p ∈ [1,∞], with ĝ(0) = FTd(g)(0) = 0, exponential Schauder

estimates hold true. That is, for any θ ⩾ 0, there exists c > 0, such that

∥Ptg∥C β+θ
p (Td) ≲ t−θ/αe−ct∥g∥C β

p (Td).
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Proof. By the assumption of vanishing zero-order Fourier mode, we have

Ptg =
∑
k ̸=0

exp(−t|2πk|α)ĝ(k)ek.

Thus, for any θ ⩾ 0, we obtain an estimate for the Littlewood-Paley blocks:

∥∆j(Ptg)∥Lp ≲ ∥g∥C β
p (Td) min

(
2−jβ exp(−t|2π|α), 2−j(β+θ)(t−θ/α ∨ 1)

)
.

The claim thus follows by interpolation.

In the sequel, we will employ the following duality result for Besov spaces on the torus.
For Besov spaces on Rd, the result is proven in [BCD11, Proposition 2.76]. The same
proof applies for Besov spaces on the torus (cf. also [ST87, Theorem in Section 3.5.6]).

Lemma 5.3. Let θ ∈ R and f, g ∈ C∞(Td). Then we have the duality estimate:

|⟨f, g⟩| ≲ ∥f∥Bθ
2,2(Td)∥g∥B−θ

2,2(Td). (5.4)

In particular, the mapping (f, g) 7→ ⟨f, g⟩ can be extended uniquely to f ∈ Bθ
2,2(Td),

g ∈ B−θ
2,2(Td).

Motivated by the corresponding characterization of periodic Besov spaces from [ST87,
Section 3.5.4], we define the homogeneous Besov space on the torus for θ ∈ (0, 1) with
notation ∆hu(x) := u(x+ h)− u(x), h, x ∈ Td as follows:

Ḃθ
2,2(Td) :=

{
u ∈ L2(Td)

∣∣∣∣ ∥u∥2Ḃθ
2,2(Td)

:=

∫
Td

|h|−2θ∥∆hu∥2L2(Td)

dh

|h|d
<∞

}
. (5.5)

Using derivatives of u, one can define homogeneous periodic Besov spaces in that way
also for θ > 1 (cf. [ST87, Section 3.5.4]), but we will not need them below. Let us also
define the periodic Bessel-potential space or fractional Sobolev space for s ∈ R,

Hs(Td) =

{
u ∈ S ′(Td)

∣∣∣∣ ∥u∥2Hs(Td) =
∑
k∈Zd

(1 + |k|2)s|f̂(k)|2 <∞
}
,

and the homogeneous periodic Bessel-potential space

Ḣs(Td) =

{
u ∈ S ′(Td)

∣∣∣∣ ∥u∥2Hs(Td) =
∑
k∈Zd

|k|2s|f̂(k)|2 <∞
}
.

We refer to [ST87, (iv) of Theorem, Section 3.5.4] for an equivalent characterization of
spaces Bθ

2,2(Td) for θ ∈ (0, 1] in terms of the differences ∆hu.

For time-independent drifts, the definition of enhanced distributions Definition 3.20
from Chapter 3 simplifies. That is, for β ∈ (2−2α

3
, 1−α

2
], we assume that (F1 = F, F2) ∈
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5. Periodic homogenization for singular SDEs

X β,γ
∞ (Td), i.e. (FRd

, FRd

2 ) ∈X β,γ
∞ , where

X β,γ
∞ := cl({

(
η, (Pt(∂iη

j) � ηk)i,j,k∈{1,...,d}
)
| η ∈ C∞

b (Rd,Rd)}) (5.6)

for the closure in C β+(1−γ)α ×M γ
∞,0C

2β+α−1 with γ ∈ (0, 1), where

M γ
∞,0X = {u : (0,∞)→ X | ∃C > 0, ∀t > 0, ∥ut∥X ⩽ C[t−γ ∨ 1]}.

The notation M γ
∞,0X shall indicate that the blow-up occures at time t = 0. Furthermore,

the assumption on the enhanced distribution in (5.6) is stronger compared to Chapter 3.
First, we do not fix a T > 0, but instead require that F is an enhanced distribution for
any T > 0. This assumption will be needed in (5.3) to solve the resolvent equation.
Second, we allow for three different indices i, j, k in (5.6). This assumption is due
to the fact that we also solve the adjoint equation, i.e. the Fokker-Planck equation.
For the Fokker-Planck equation, we will encounter the products Pt(∂iF

i) � F j for
i, j = 1, . . . , d, whereas for the Kolmogorov equation, we saw Pt(∂iF

j) � F i for i, j. To
cover both products, we assume in this chapter (5.6).

Strategy to prove the main result

To prove the CLT in Theorem 5.26, we distinguish between the cases α = 2 and
α ∈ (1, 2). Let us first consider the case α = 2. As mentioned above, α = 2 shall refer
to taking L = B for a standard Brownian motion B. Then, motivated by results from
periodic homogenization for SDEs with periodic and C2

b coeffients (cf. [BLP78, Chapter
3, Section 4.2]), we prove in Section 5.4 existence and uniqueness of an invariant, ergodic
measure π for X and in Theorem 5.26 the following weak convergence(

1√
n

(Xnt − nt⟨F ⟩π)

)
t∈[0,T ]

d→ (
√
DWt)t∈[0,T ], (5.7)

where W is a standard d-dimensional Brownian motion and a constant diffusion matrix
D with entries

D(i, j) :=

∫
Td

(ei +∇χi(x))(ej +∇χj(x))Tπ(dx).

for i, j = 1, . . . , d and ei denoting the i-th euclidean unit vector. Herein, χ ∈ (L2(π))d

solves the singular Poisson equation

(−L)χi = F i − ⟨F i⟩π

for i = 1, . . . , d.
In the pure Lévy noise case α ∈ (1, 2), to observe a non-trivial limit, we need to consider
the scaling n−1/α for the fluctuations around the mean ⟨F ⟩π. In analogy to [Fra07], we
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5.2. Singular Fokker-Planck equation and a strict maximum principle

prove in Theorem 5.26 the following weak convergence(
1

n1/α
(Xnt − nt⟨F ⟩π)

)
t∈[0,T ]

d→ (Lt)t∈[0,T ], (5.8)

where L is a stable process with generator (−L α
ν ). Compared to the Brownian case,

in the pure stable noise case, there is no diffusivity enhancement in the limit.
In the following, we briefly summarize our strategy to prove (5.7) and (5.8).
For existence of π, we solve in Section 5.2 the singular Fokker-Planck equation with the
paracontrolled approach in C α+β−1

1 , yielding a continuous (as α+ β − 1 > 0) Lebesgue-
density. Furthermore, we prove a strict maximum principle for the Fokker-Planck
equation. In Section 5.4 an application of Doeblin’s theorem then yields existence and
uniqueness of the invariant ergodic probability measure π for L with a strictly positive
Lebesgue density ρ∞. Doeblin’s theorem also gives L∞-spectral gap estimates on the
semigroup (T Td

t )t⩾0 associated to L, which means that the process XTd
is exponentially

ergodic.
We then extend those spectral gap estimates to L2(π)-spectral gap estimates. This
enables to solve the Poisson equation in Corollary 5.19 for right-hand sides that are
in L2(π) and that have vanishing mean under π. In particular, we can solve the
Poisson equation with right-hand side Fm − ⟨Fm⟩π for Fm ∈ C∞(Td) with Fm → F
in X β,γ

∞ (Td), denoting the solution by χm.
We then prove convergence of (χm)m in L2(π) utilizing a Poincaré-type estimate for
the opertor L and combining with the theory from [KLO12]. Via solving the resolvent
equation (λ− L)g = G in Section 5.3 with the paracontrolled approach for right-hand-
sides in G ∈ L2(π) or G = F i, i = 1, ..., d, we then obtain in Section 5.5 convergence of
(χm)m in (C α+β

2 (Td))d to a limit χ which solves the Poisson equation (−L)χ = F−⟨F ⟩π
with singular right-hand side F − ⟨F ⟩π. Here, ⟨F ⟩π can be defined in a stable manner
using the regularity, respectively the paracontrolled structure, of the density ρ∞, cf.
Lemma 5.20.
Decomposing the drift in terms of the solution to the Poisson equation and Dynkin’s
martingale, we can finally prove the functional CLT in Section 5.6.
Via Feynman-Kac formula, the CLT yields the periodic homogenization result of
Corollary 5.27 for the solution to the associated Cauchy problem with operator Lε as
ε→ 0, where formally Lεf = −L α

ν f + ε1−αF (ε−1·) · ∇f .

5.2. Singular Fokker-Planck equation and a strict
maximum principle

This section features the results on the Fokker-Planck equation, Theorem 5.4 and
Proposition 5.8, that will be of use in Section 5.4 below.
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5. Periodic homogenization for singular SDEs

Let us define the blow-up spaces for γ ∈ (0, 1),

M γ
T,0X :=

{
u : (0, T ]→ X

∣∣ sup
t∈[0,T ]

tγ∥ut∥X <∞
}

and

C1,γ
T,0X :=

{
u : (0, T ]→ X

∣∣∣∣ sup
0⩽s<t⩽T

sγ∥ut − us∥X
|t− s|

<∞
}

with blow-up at t = 0.
The solution to the Fokker-Planck eqution with initial condition equal to a Dirac
measure, will have a blow-up at time t = 0 due to the singularity of the initial condition.

A direct computation shows that the Dirac measure in x ∈ Rd satisfies δx ∈ C
−d(1− 1

p
)

p

for any p ∈ [1,∞], in particular δx ∈ C 0
1 . Moreover, one can show that the map

x 7→ δx ∈ C −ε
1 is continuous for any ε > 0. The next theorem proves existence of a

mild solution to the Fokker-Planck equation

(∂t − L∗)ρt = 0, ρ0 = µ,

with initial condition µ ∈ C −ε
1 for small ε > 0. Here, L∗ denotes the formal Lebesgue-

adjoint to L,

L∗f := −L α
ν f −∇ · (Ff) = −L α

ν f − div(Ff).

We refer to Chapter 3 for the paraproducts and the notation. The proof of Theorem 5.4
is similar to Theorem 3.25.

Theorem 5.4. Let T > 0, α ∈ (1, 2] and p ∈ [1,∞]. Let either β ∈ (1−α
2
, 0) and

F ∈ C β
Rd or F ∈X β,γ′

∞ for β ∈ (2−2α
3
, 1−α

2
], γ′ ∈ (2β+2α−1

α
, 1).

Then, for any small enough ε > 0 and any initial condition µ ∈ C −ε
p , there exists a

unique mild solution ρ to the Fokker-Planck equation in M γ
T,0C

α+β−1
p ∩C1−γ

T C β
p ∩C

1,γ
T,0C

β
p

for γ ∈ (C(ε), 1) (for some C(ε) ∈ (0, 1)) in the Young regime and γ ∈ (γ′, αγ′

2−α−3β
) in

the rough regime, i.e.

ρt = Ptµ+

∫ t

0

Pt−s(−∇ · (Fρs))ds, (5.9)

where (Pt)t⩾0 denotes the (−L α
ν )-semigroup.

In the rough case, the solution satisfies

ρt = ρ♯t + ρt 4 It(−∇ · F ) (5.10)

where ρ♯t ∈M γ
T,0C

2(α+β)−2
p ∩ C1−γ

T C 2β−2+α
p ∩ C1,γ

T,0C
2β−2+α
p and It(v) :=

∫ t
0
Pt−svsds.

Moreover, the solution depends continuously on the data (F, µ) ∈X β,γ′
∞ × C −ε

p . Fur-

thermore, for any fixed t > 0, the solution satisfies (ρt, ρ
♯
t) ∈ C α+β−1 × C 2(α+β)−2.
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5.2. Singular Fokker-Planck equation and a strict maximum principle

If (F, µ) are 1-periodic distributions, then the solution ρt is 1-periodic.

Proof. We will prove that we can solve the Fokker-Planck equation for initial conditions
µ ∈ C −ε

p for ε = −((1 − γ̃)α + β) for γ̃ ∈ [α+β
α
, 1) in the Young regime and for

ε = −((2− γ̃)α + 2β − 1) for γ̃ ∈ [2β+2α−1
α

∨ 0, γ′] in the rough regime. In the Young

regime, we obtain a solution ρ ∈M γ
T,0C

α+β−1
p ∩ C1−γ

T C β
p ∩ C

γ,1
T,0C

β
p for γ = γ̃ and the

proof is analogous to Theorem 3.19. We thus only give the proof in the rough regime.
To that aim, let us define, analogously as in the proof of Theorem 3.25 for γ ∈ (γ′, 1)
as there,

L γ,θ
T,p := M γ

T,0C
θ
p ∩ C

1−γ
T C θ−α

p ∩ C1,γ
T,0C

θ−α
p

and the paracontrolled solution space

Dγ
T,p := {(u, u′) ∈ L γ′,α+β−1

T,p ×(L γ,α+β−1
T,p )d | u♯t = ut−u′t4It(−∇·F ) ∈ L γ,2(α+β)−2

T,p }

for p ∈ [1,∞], equipped with the norm

∥u− w∥Dγ
T,p

:= ∥u− w∥
L γ′,α+β−1

T,p

+ ∥u′ − w′∥(L γ,α+β−1
T,p )d + ∥u♯ − w♯∥

L
γ,2(α+β)−1
T,p

,

which makes the space a Banach space.
For µ ∈ C −ε

p , ε = −((2− γ̃)α+ 2β − 2), we first prove that we obtain a paracontrolled
solution ρ ∈ Dγ

T,p. The proof is similar to Theorem 3.25 and we only give the essential
arguments of the proof. Notice that compared to Theorem 3.25, here we consider the
operator L∗ instead of L and initial conditions in C −ε

p for ε = −((2− γ̃)α + 2β − 2),

hence ρ0 = ρ♯0.
For ρ ∈ Dγ

T,p the resonant product F � ρ = (F i � ρ)i=1,..,d is well-defined and satisfies

F i � ρ = F i � ρ♯ + ρ′ · (F i � It(∇ · F )) + C1(ρ
′, It(∇ · F ), F i)

for the paraproduct commutator

C1(f, g, h) := (f 4 g) � h− f · (g � h).

Using the paraproduct estimates from the preliminaries of Chapter 3, we obtain
Lipschitz dependence of the product on (F, ρ) ∈X β,γ′

∞ ×Dγ
T,p, that is,

∥F � ρ∥
M γ′

T Cα+2β−1
p

≲ ∥F∥
X β,γ′

∞
(1 + ∥F∥

X β,γ′
∞

)
(
∥ρ∥

M γ′
T Cα+β−1

p
+ ∥ρ′∥

(M γ′
T Cα+β−1−δ

p )d
+ ∥ρ♯∥

M γ′
T C

2(α+β)−2−δ
p

)
≲ ∥F∥

X β,γ′
∞

(1 + ∥F∥
X β,γ′

∞
)
(
∥ρ∥

M γ′
T Cα+β−1

p
+ ∥ρ′∥(Lγ,α+β−1

T,p )d + ∥ρ♯∥
L
γ,2(α+β)−2
T,p

)
≲ ∥F∥

X β,γ′
∞

(1 + ∥F∥
X β,γ′

∞
)∥ρ∥Dγ

T,p

for δ = α− αγ′
γ

, using moreover the interpolation estimates from Lemma 3.17.
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The contraction map will be defined as

Dγ

T ,p
∋ (ρ, ρ′) 7→ (ϕ(ρ), ρ) ∈ Dγ

T ,p

with

ϕ(ρ)t := Ptµ+ It(−∇ · (Fρ)).

Here, T will be chosen small enough, such that the above map becomes a contraction.
Afterwards the solutions on the subintervals of length T are patched together. Notice
that the fixed point satisfies ρ′ = ρ.
As ε = −((2− γ̃)α + 2β − 2), we obtain by the semigroup estimates from Lemma 3.7,
that

∥Ptµ∥C 2(α+β)−2
p

≲ t−γ̃∥µ∥C−ε
p
. (5.11)

Utilizing Corollary 3.12 (which applies by a time change also for blow-up-spaces with
blow-up at t = 0 instead of blow-ups at t = T ) and the estimate for the resonant
product yields

∥I(∇ · (Fρ))∥L γ,α+β−1
T,p

≲ T γ−γ
′∥∇ · (Fρ)∥

M γ′
T,0C β−1

p

≲ T γ−γ
′∥F∥

X β,γ′
∞

(1 + ∥F∥
X β,γ′

∞
)∥ρ∥Dγ

T,p
.

Moreover, we have that for a solution ρ,

ρ♯t = Ptµ+ C2(ρ,∇ · F )t + It(−∇ · (ρ� F )) + It(−∇ · (ρ5 F )) + It(−∇ρ4 F )

for the semigroup commutator

C2(u, v) = I(u4 v)− u4 I(v).

Using (5.11) and Lemma 3.14, we obtain

∥ρ♯∥
L

γ,2(α+β)−2
T,p

≲ ∥µ∥C−ε
p

+ T γ−γ
′∥F∥

X β,γ′
∞
∥ρ∥

Lγ′,α+β−1
T,p

.

Hence, as γ > γ′, replacing T by T ⩽ T small enough, we obtain a paracontrolled
solution in Dγ

T ,p
. Then, we paste the solutions on the subintervals together to obtain a

solution on [0, T ], cf. in the proof of Theorem 3.25.
It remains to justify that the solution at fixed times t > 0 satisfies (ρt, ρ

♯
t) ∈ C α+β−1 ×

C 2(α+β−1), i.e. that we can increase the integrability from p to ∞. From the above, we
obtain (ρ, ρ♯) ∈ C([t, T ],C α+β−1

p )× C([t, T ],C 2(α+β−1)
p ). Then, we can apply the argu-

ment to increase the integrability, that was carried out in the end of the proof of [PvZ22,
Proposition 2.4], to obtain that indeed (ρ, ρ♯) ∈ C([t, T ],C α+β−1)×C([t, T ],C 2(α+β−1))
for any t ∈ (0, T ).
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The continuous dependence of the solution on the data (F, µ) follows analogously as in
Theorem 3.30, with the above estimates and a Gronwall-type argument.
If (F, µ) are 1-periodic distributions, then Ptµ = pt ∗ µ is 1-periodic, as the convolution
with the fractional heat-kernel pt with a periodic distribution yields a periodic func-
tion and the fixed point argument can be carried out in the periodic solution space
Dγ
T,p(Td).

Corollary 5.5. Let X be the unique martingale solution of the singular periodic SDE
(5.1) for L (acting on functions f : Rd → R), starting at x ∈ Rd. Let (t, y) 7→ ρt(x, y)
be the mild solution of the Fokker-Planck equation with ρ0 = δx from Theorem 5.4.
Then for any t > 0, the map (x, y) 7→ ρt(x, y) is continuous.
Furthermore, for any f ∈ L∞(Rd),

EX0=x[f(Xt)] =

∫
Rd

f(y)ρt(x, y)dy, (5.12)

that is, ρt(x, ·) is the density of Law(Xt), if X0 = x, with respect to the Lebesgue
measure. In particular, for the projected solution XTd

with drift F ∈ X β,γ′
∞ (Td) and

f ∈ L∞(Td) and z ∈ Td,

E
XTd

0 =z
[f(XTd

t )] =

∫
Td

f(w)ρt(z, w)dw, (5.13)

where, by abusing notation to not introduce a new symbol for the density on the torus,
ρt(z, w) := ρt(x, y) for (x, y) ∈ Rd with (ι(x), ι(y)) = (z, w), ι : Rd → Td denoting the
canonical projection.

Remark 5.6. Let ρ(x, ·) be the solution of the Fokker-Planck equation started in
δx from Theorem 5.4 and uy solve the Kolmogorov backward equation with terminal
condition uT = δy from Theorem 3.25. Then due to (5.12) and the Feynman-Kac
formula (approximating F and utilizing the continuity of the solutions maps) we see
the equality ρt(x, y) = uyT−t(x).

Remark 5.7. If F ∈X β,γ′
∞ (Td), then by definition of (P Td

t ), ρ(z, ·) is the mild solution
of the Fokker-Planck equation on the torus (that is, (Pt) replaced by (P Td

t ) in (5.9))
with ρ0(z, ·) = δz.

Proof. Continuity in y follows from ρt(x, ·) ∈ C α+β−1 and α + β − 1 > 0. Continuity
in x follows from the continuous dependence of the solution on the initial condition δx
and continuity of the map x 7→ δx ∈ C −ε

1 for ε > 0.
That ρt is the density of Law(Xt) follows by approximation of F by Fm ∈ C∞

b (Rd)
with Fm → F in C β

Rd , respectively in X β,γ′
∞ , using that ρ depends continuously on the

data (F, µ) and that Xm → X in distribution, where Xm is the strong solution to the
SDE with drift term Fm (cf. the proof of Theorem 4.2) and the Feynman-Kac formula
for classical SDEs. Indeed, for m ∈ N, we have that for f ∈ C2

b (and thus for f ∈ L∞
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by approximation),

umT−t(x) = EXm
0 =x[f(Xm

t )] =

∫
f(y)ρmt (x, y)dy

with (∂t +Lm)um = G Fm
um = 0, umT = f , and (∂t− (Lm)∗)ρ = 0, ρ0 = δx. Now, we let

m→∞ to obtain (5.12). In particular, ρt ⩾ 0 and ρt ∈ L1(dx). That ρt is well-defined
follows as ρt is periodic (due to the periodicity assumption on F ). Equality (5.13)
follows from (5.12) considering f ◦ ι instead of f .

Proposition 5.8. Let µ ∈ C 0
1 be a positive, nontrivial (µ ̸= 0) measure. Let ρ be the

mild solution of the Fokker-Planck equation (∂t − L∗)ρt = 0 with ρ0 = µ. Then for any
compact K ⊂ Rd and any t > 0, there exists c > 0 such that

min
x∈K

ρt(x) ⩾ c > 0.

Let ρt be as in Remark 5.7. Then, in particular, for any z ∈ Td, t > 0, there exists
c > 0 such that

min
x∈Td

ρt(z, x) ⩾ c > 0.

Proof. In the Brownian case, α = 2, this follows from the proof of [CFG17, Theorem
5.1]. We give the adjusted argument for α ∈ (1, 2].
Let pt be the α-stable density of Lt. Without loss of generality, we assume µ = u ∈
Cb(Rd) with u ⩾ 0 and with u ⩾ 1 on a ball B(0, κ), κ > 0. Otherwise, we may consider
ρs for s > 0 as an initial condition, for which we know that ρs ∈ C α+β−1 ⊂ Cb(Rd)
and that ρs ⩾ 0 by Corollary 5.5. Then by continuity there exists a ball B(x, κ) where
ρs > 0. Dividing by the lower bound and shifting ρs, we can assume that ρs > 1 on
B(0, κ).
Let now κ > 0 and u ∈ Cb(Rd) with u ⩾ 0 and with u ⩾ 1 on the ball B(0, κ). Then
by the scaling property, we have that

pt ∗ u(y) ⩾ P(|y + t1/αL1| ⩽ κ) = P(L1 ∈ B(yt−1/α, κt−1/α))

Let y = (κ+ tρ)z for z ∈ B(0, 1), ρ ⩾ 0, so that y ∈ B(0, κ+ tρ). Then we obtain

P(L1 ∈ B(yt−1/α, κt−1/α))

= P(L1 ∈ B(z(κt−1/α + ρt1−1/α), κt−1/α))

⩾ P(2z · L1 ⩾ |L1|2(κt−1/α + ρt1−1/α)−1 + (|z|2 − 1)[κt−1/α + ρt1−1/α])

⩾ inf
|z|⩽1

P(2z · L1 ⩾ |L1|2(κt−1/α + ρt1−1/α)−1 + (|z|2 − 1)[κt−1/α + ρt1−1/α])
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5.3. Singular resolvent equation

= inf
|z|=1

P(2z · L1 ⩾ |L1|2(κt−1/α + ρt1−1/α)−1)

→ inf
|z|=1

P(z · L1 ⩾ 0) =
1

2

for t→ 0. Here we used that α > 1 and that by symmetry of L, for any z ∈ B(0, 1)
with |z| = 1, P(z · L1 ⩾ 0) = P(z · L1 ⩽ 0) = 1 − P(z · L1 ⩾ 0), because P(z · L1 =
0) = P(L1 = 0) = 0.
Thus, we conclude, that there exists tρ > 0, such that for all t ∈ [0, tρ] and all
y ∈ B(0, κ+ tρ), pt ∗ u(y) ⩾ 1

4
.

Moreover, we have

ρt = Ptu+

∫ t

0

Pt−s(−∇ · (Fρs))ds

with Ptu = pt ∗ u and∥∥∥∥∫ t

0

Pt−s(−∇ · (Fρs))ds
∥∥∥∥
L∞
⩽ Ct(α+β−1−ε)/α

for ε ∈ (0, α + β − 1) by the semigroup estimates, Lemma 3.7, with α + β − 1 > 0.
Hence, for small enough t, we can achieve∥∥∥∥∫ t

0

Pt−s(−∇ · (Fρs))ds
∥∥∥∥
L∞

<
1

8
.

Together with the lower bound for pt ∗ u, we obtain that there exists tρ > 0, such that
for all t ∈ [0, tρ] and all y ∈ B(0, κ+ tρ), it holds that

ρt(y) ⩾
1

8
.

Using linearity of the equation, we can repeat that argument on [tρ, 2tρ] etc. Because
K is compact, finitely many steps suffice (for large enough t, the ball B(0, κ+ tρ) will
cover K) to conclude that for all T > 0 there exists c > 0 such that for all y ∈ K and
all t ∈ [0, T ],

ρt(y) ⩾ c > 0.

5.3. Singular resolvent equation

In this and all subsequent sections of this chapter, we write (Pt), respectively (Tt), for
the semigroups acting on the periodic Besov spaces C θ

p (Td), p = 2,∞, omitting the
supercript Td that we introduced earlier.
We solve the resolvent equation in Theorem 5.10 for the singular operator L and
for singular paracontrolled right-hand sides G = G♯ + G′ 4 F , G♯ ∈ C 0

2 (Td), G′ ∈
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(C α+β−1
2 (Td))d, that is

(λ− L)g = G,

obtaining a solution g ∈ C α+β
2 (Td).

The next Lemma proves semigroup and commutator estimates for the Iλ-operator.

Lemma 5.9. Let λ ⩾ 1, δ ∈ R and v ∈ C δ
2 . Let again Iλ(v) :=

∫∞
0
e−λtPtvdt. Then,

Iλ(v) is well-defined in C β+ϑ
2 (Td) for ϑ ∈ [0, α] and the following estimate holds true

∥Iλ(v)∥C δ+ϑ
2 (Td) ≲ λ−(1−ϑ/α)∥v∥C δ

2 (Td). (5.14)

Furthermore, for v ∈ C σ
2 (Td), σ < 1, u ∈ C β(Td), β ∈ R, and ϑ ∈ [0, α], the following

commutator estimate holds true:

∥Cλ(v, u)∥C σ+β+ϑ
2 (Td) := ∥Iλ(v 4 u)− v 4 Iλ(u)∥C σ+β+ϑ

2 (Td)

≲ λ−(1−ϑ/α)∥v∥C σ
2 (Td)∥u∥C β(Td). (5.15)

Proof. The proof of (5.14) follows from the semigroup estimates, Lemma 5.1. Indeed,
we have

∥Iλ(v)∥C δ+ϑ
2 (Td) ⩽

∫ ∞

0

e−λt∥Ptv∥C δ+ϑ
2 (Td)dt

≲ ∥v∥C ϑ
2 (Td)

∫ ∞

0

e−λt[t−ϑ/α ∨ 1]dt

= ∥v∥C ϑ
2 (Td)

(
λ−(1−ϑ/α)

∫ 1

0

e−tt−ϑ/αdt+ λ−1

∫ ∞

1

e−tdt

)
≲ λ−(1−ϑ/α)∥v∥C ϑ

2 (Td),

since λ ⩾ 1 and where we use that
∫ 1

0
e−tt−ϑ/αdt ⩽

∫ 1

0
t−ϑ/αdt < ∞ if ϑ ∈ [0, α) and∫∞

1
e−tdt <∞. The bound in the case ϑ = α follows with

∥Iλ(v)∥C δ+α
p (Td) ⩽

∥∥∥∥∫ 1

0

e−λtPtvdt

∥∥∥∥
C δ+α
2 (Td)

+

∫ ∞

1

e−λt∥Ptv∥C δ+α
p (Td)dt

≲ ∥v∥C δ
p (Td),

using Lemma 3.11 to estimate the integral over [0, 1] (with, in the notation of that
lemma, T = 1, γ = 0, σ = δ, ς = α, f0,t = e−λtPtv).
The commutator (5.15) is proven analogously using Lemma 3.9.

Theorem 5.10. Let α ∈ (1, 2] and F ∈ C β(Td) for β ∈ (1−α
2
, 0) or F ∈X β,γ

∞ (Td) for

β ∈ (2−2α
3
, 1−α

2
] and γ ∈ (2β+2α−1

α
, 1).
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5.3. Singular resolvent equation

Then, for λ > 0 large enough, the resolvent equation

Rλg = (λ− L)g = G (5.16)

with right-hand side G = G♯ +G′ 4 F , G♯ ∈ C 0
2 (Td), G′ ∈ (C α+β−1

2 (Td))d, possesses a
unique solution g ∈ C θ

2 (Td), θ ∈ ((2− β)/2, β + α).
If β ∈ (2−2α

3
, 1−α

2
], the solution is paracontrolled, that is,

g = g♯ + (G′ +∇g) 4 Iλ(F ), g♯ ∈ C 2θ−1
2 (Td). (5.17)

Proof. Consider the paracontrolled solution space

Dθ
2 := {(g, g′) ∈ C θ

2 (Td)× (C θ−1
2 (Td))d | g♯ := g − g′ 4 Iλ(F ) ∈ C 2θ−1

2 (Td)} (5.18)

with norm ∥g − h∥Dθ
2

:= ∥g − h∥C θ
2 (Td) + ∥g♯ − h♯∥C 2θ−1

2 (Td) + ∥g′ − h′∥C θ−1
2 (Td), which

makes it a Banach space.
The solution g satisfies

g =

∫ ∞

0

e−λtPt(G+ F · ∇g)dt,

i.e. it is the fixed point of the map C θ
2 (Td) ∋ g 7→ ϕλ(g) :=

∫∞
0
e−λtPt(G+F · ∇g)dt ∈

C θ
2 (Td), respectively, in the rough case β ∈ ((2− 2α)/3, (1− α)/2], of the map

Dθ
2 ∋ (g, g′) 7→ (ϕλ(g), G′ +∇g) =: Φλ(g, g′) ∈ Dθ

2 .

The product is defined as F ·∇g := F�∇g+F4∇g+F5∇g, where for F ∈X β,γ
∞ (Td)

and g ∈ Dθ
2 ,

F �∇g =
d∑
i=1

F i � ∂ig :=
d∑
i=1

[
F i � [∂ig

♯ + ∂ig
′ 4 Iλ(F )] + g(Iλ(∂iF ) � F i)

+ C1(g, Iλ(∂iF ), F i)
]
,

with paraproduct commutator

C1(g, f, h) := (g 4 f) � h− g(f � h) (5.19)

from [GIP15, Lemma 2.4]. Analogously as before, the product of F ∈X β,γ
∞ (Td) and

g ∈ Dθ
2 with θ > (2− β)/2 can thus be estimated by

∥F · g∥C β
2 (Td) ≲ ∥F∥X β,γ

∞ (Td)(1 + ∥F∥X β,γ
∞ (Td))∥g∥Dθ

2
.

The unique fixed point is obtained by the Banach fixed point theorem, where, in the
Young case the map ϕ, and in the rough case, Φ2

λ = Φλ ◦ Φλ are contractions for large
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enough λ > 0. This can be seen by estimating

∥ϕλ(g)− ϕλ(h)∥C θ
2 (Td) ≲ λ(θ−β−α)/α∥F · ∇(g − h)∥C β

2 (Td)

≲ λ(θ−β−α)/α∥F∥X β,γ
∞ (Td)(1 + ∥F∥X β,γ

∞ (Td))∥g − h∥Dθ
2

using (5.14) and the estimate for the product. Thus a contraction is obtained by
choosing λ large enough, such that λ(θ−β−α)/α∥F∥X β,γ

∞ (Td)(1 + ∥F∥X β,γ
∞ (Td)) < 1, using

θ < α + β. To check that indeed Φλ(g, g′) ∈ Dθ
2 , we note that

Φλ(g, g′)♯ = ϕλ(g)− [G′ei +∇g] 4 Iλ(F )

= Iλ(G♯ + F � g + F 4∇g) + Cλ(G′ei +∇g, F )

for the commutator Cλ from (5.15). Notice that, if β < (1 − α)/2, for G♯ ∈ C 0
2 (Td),

Iλ(G
♯) ∈ C α

2 (Td) ⊂ C 2θ−1
2 (Td) as θ > (1 + α)/2. Hence, together with Lemma 5.9, it

follows that Φλ(g, g′)♯ ∈ C 2θ−1(Td). Thereby we also get the small factor of λ(θ−α−β)/α

in the estimate. To see that Φ2
λ = Φλ ◦ Φλ is a contraction, we furthermore check

∥Φλ(Φλ(g, g′))′ − Φλ(Φλ(h, h′))′∥C θ−1
2 (Td)

= ∥∇ϕλ(g)−∇ϕλ(h)∥C θ−1
2 (Td)

≲ ∥ϕλ(g)− ϕλ(h)∥C θ
2 (Td)

≲ λ(θ−β−α)/α∥F∥X β,γ
∞ (Td)(1 + ∥F∥X β,γ

∞ (Td))∥g − h∥Dθ
2
,

by the above estimate.

5.4. Existence of an invariant measure and spectral
gap estimates

In this section, we prove with Theorem 5.12 existence and uniqueness of an invariant,
ergodic probability measure for the process XTd

with state space Td, in the following for
short denoted by X. The theorem moreover shows that X is exponentially ergodic, in
the sense that pointwise spectral gap estimates for its semigroup (Tt) hold. Furthermore,
we characterize the domain of L in L2(π) in Theorem 5.17 and define the mean of
F ∈X β,γ

∞ with respect to the invariant measure π in Lemma 5.20.
Existence and uniqueness of the invariant measure together with the pointwise spectral
gap estimates on the semigroup are obtained by an application of Doeblin’s theorem
(see e.g. [BLP78, Theorem 3.1, Chapter 3, Section 3, p. 365]), that we state here in the
continuous time setting.

Lemma 5.11 (Doeblin’s theorem). Let (Xt)t⩾0 be a time-homogeneous Markov process
with state space (S,Σ) for a compact metric space S and its Borel-sigma-field Σ. Let
(Tt)t⩾0 be the associated semigroup, Ttf(x) := E[f(Xt) | X0 = x] for x ∈ S and
f : S → R bounded measurable. Assume further, that there exists a probability measure
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µ on (S,Σ) and, for any t > 0, a continuous function ρt : S × S → R+, such that
Tt1E(x) =

∫
E
ρt(x, y)µ(dy), E ∈ Σ. Assume moreover that, for any t > 0, there exists

an open ball U0, such that µ(U0) > 0 and ρt(x, y) > 0 for all x ∈ S and y ∈ U0.
Then, there exists a unique invariant probability measure π (i.e.

∫
S
Tt1E(x)π(dx) =

π(E) for all E ∈ Σ and all t ⩾ 0) on (S,Σ) with the property that there exist constants
K, ν > 0, such that for all t ⩾ 0, x ∈ S and ϕ : S → R bounded measurable,∣∣∣∣Ttϕ(x)−

∫
S

ϕ(y)π(dy)

∣∣∣∣ ⩽ K|ϕ|e−νt (5.20)

where |ϕ| := supx∈S|ϕ(x)|.

Proof. For discrete time Markov chains, the result follows immediately from [BLP78,
Theorem 3.1, p. 365]. For continuous time Markov processes, the proof is similar.
Indeed, in the same manner one proves that if π is such that (5.20) holds, then π is
unique and π is invariant for (Tt). Furthermore, using the assumptions on the density
ρ and the same proof steps as in [BLP78, Theorem 3.1, p. 365], one obtains existence
of an invariant measure π with π(E) given as the limit of (Tn1E(x))n for any x ∈ S
and with (5.20) for t replaced by n ∈ N. Then, using the semigroup property, we also
obtain (5.20) for any t ⩾ 0, with a possibly different constant K > 0. Indeed, let t > 0
and n = ⌊t⌋. Then for bounded measurable ϕ with

∫
S
ϕdπ = 0, we obtain

|Ttϕ(x)| = |TnTt−nϕ(x)| ⩽ K|Tt−nϕ|e−νn ⩽ K|ϕ|e−νn = Keν(t−n)|ϕ|e−νt ⩽ Keν |ϕ|e−νt.

Now, by changing the constant K, we obtain (5.20) for all t ⩾ 0.

Theorem 5.12. Let X be the martingale solution to the singular periodic SDE (5.1)
projected onto Td with contraction semigroup (Tt)t⩾0 on bounded measurable functions
f : Td → R.
Then there exists a unique invariant probability measure π for (Tt). In particular, π is
ergodic for X. Furthermore there exist constants K,µ > 0 such that for all f ∈ L∞(Td),

∥Ttf − ⟨f⟩π∥L∞ ⩽ K∥f∥L∞e−µt. (5.21)

That is, L∞-spectral gap estimates for the associated Markov semigroup (Tt) hold true.
In particular, π is absolutely continuous with respect to the Lebesgue measure on the
torus, with density denoted by ρ∞.

Proof. The proof is an application of Doeblin’s theorem. We check, that the assumptions
of Lemma 5.11 are satisfied. To that aim, note that for the Fokker-Planck density
ρt(x, ·) with ρ0 = δx, the map (x, y) 7→ ρt(x, y) is continuous by Theorem 5.4. It
remains to show that there exists an open ball U0 and a constant c > 0, such that ρt is
bounded from below by c on Td × U0. We choose U0 = Td and obtain

min
x∈Td,y∈U0

ρt(x, y) = ρt(x
∗, y∗) ⩾ c > 0.
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Indeed, this follows from the strict maximum principle for y 7→ ρt(x
∗, y) by Proposi-

tion 5.8 with c = c(x∗) > 0.
The spectral gap estimates also imply absolute continuity, as

⟨1A⟩π = lim
t→∞

EX0=x[1A(Xt)] = lim
t→∞

∫
1A(y)ρt(x, y)dy

and thus any Lebesgue nullset A is also a π-nullset. The existence of the density thus
follows by the Radon-Nikodym theorem.

Corollary 5.13. Let ρ∞ be the Lebesgue density of the invariant measure π. Then
ρ∞ ∈ C α+β−1(Td) and it follows the paracontrolled structure

ρ∞ = ρ♯∞ + ρ∞ 4 I∞(∇ · F ),

where ρ♯∞ ∈ C 2(α+β)−2(Td) and I∞(∇ · F ) :=
∫∞
0
Ps(∇ · F )ds.

Furthermore, the density is strictly positive,

min
x∈Td

ρ∞(x) > 0.

In particular, π is equivalent to the Lebesgue measure.

Proof. Let t > 0. By invariance of π, i.e. ⟨Ttf⟩π = ⟨f⟩π for all f ∈ L∞(Td), and
dπ = ρ∞dx, we obtain that almost surely

ρ∞ = T ∗
t ρ∞,

where T ∗
t denotes the adjoint of Tt with respect to L2(λ). Here λ denotes the Lebesgue

measure and ⟨f⟩π :=
∫
Td f(x)π(dx).

Denote yt(x) := T ∗
t ρ∞(x). Then we show that y is a mild solution of the Fokker-Planck

equation started in ρ∞, that is

(∂t − L∗)y = 0, y0 = ρ∞. (5.22)

Here the density satisfies ρ∞ ∈ L1(λ), i.p. ρ∞ ∈ C 0
1 (Td). Indeed, that yt = T ∗

t ρ∞
is a mild solution of the Fokker-Planck equation follows from approximation of F
by Fm ∈ C∞(Td) with Fm → F in X β,γ

∞ (Td) using that for m ∈ N, ym = (Tmt )∗ρ∞
solves (∂t − (Lm)∗)ym = 0, ym = ρ∞ by the classical Fokker-Planck theory, where
Tm denotes the semigroup for the strong solution of the SDE with drift Fm and
generator Lm := −L α

ν + Fm · ∇. By continuity of the Fokker-Planck solution map
from Theorem 5.4 for converging data (Fm, ρ∞)→ (F, ρ∞) in X β,γ

∞ (Td)× C 0
1 (Td), we

deduce ym → y in the paracontrolled solution space, where y is the mild solution of
(5.22).
The lower bound away from zero then also follows from Theorem 5.4, as well as the

186



5.4. Existence of an invariant measure and spectral gap estimates

paracontrolled structure

ρ∞ = ρ♯∞ + ρ∞ 4 It(∇ · F ),

where ρ♯∞ := y♯t ∈ C 2(α+β)−2(Td) and It(∇ · F ) :=
∫ t
0
Pt−s(∇ · F )ds.

Due to FTd(∇ · F )(0) = 0, we have that, for any θ ⩾ 0, there exists c > 0, such that,
uniformly in s > 0,

∥Ps(∇ · F )∥C β−1+θ(Td) ≲ s−θ/αe−cs∥∇ · F∥C β−1(Td). (5.23)

Indeed, this follows from Lemma 5.2. Thus we obtain, for t > 0 and any θ ⩾ 0, that

It(∇ · F )− I∞(∇ · F ) =

∫ ∞

t

Ps(∇ · F )ds ∈ C θ(Td).

That is, the remainder is smooth and thus can be absorbed into ρ♯∞. Notice, that∫ t
0
Ps(∇ · F )ds ∈ C α+β−1(Td) by (5.23) and Lemma 3.14 and in particular that I∞(∇ ·

F ) ∈ C α+β−1(Td) is well-defined.

Corollary 5.14. Let X and (Tt) be as before. Then, the semigroup (Tt)t⩾0 can
be uniquely extended to a strongly continuous contraction semigroup on L2(π), i.e.
Tt+s = TtTs, Tt1 = 1, Ttf → f for t ↓ 0 and f ∈ L2(π) and ∥Ttf∥L2(π) ⩽ ∥f∥L2(π), such
that and for (possibly different) constants K,µ > 0, the L2(π)-spectral gap estimates
hold true:

∥Ttf − ⟨f⟩π∥L2(π) ⩽ K∥f∥L2(π)e
−µt for all f ∈ L2(π).

Proof. That the semigroup (Tt)t⩾0 can be uniquely extended to a contraction semigroup
on L2(π) follows from Jensen’s inequality,

∥Ttf∥2L2(π) =

∫
|EX0=x[f(Xt)]|2π(dx) ⩽

∫
EX0=x[|f(Xt)|2]π(dx) = ∥f∥2L2(π),

for f ∈ L∞, using the invariance of π (by Theorem 5.12). By approximation, we then
also obtain for the extension, that Ttf(x) = EX0=x[f(Xt)] for f ∈ L2(π).
We check strong continuity of the semigroup on L2(π). Using the contraction property
in L2(π), we obtain

∥Ttf − f∥2L2(π) = ∥Ttf∥2L2(π) + ∥f∥2L2(π) − 2⟨Ttf, f⟩π ⩽ 2∥f∥2L2(π) − 2⟨Ttf, f⟩π. (5.24)

It is left to prove that the right-hand side vanishes as t ↓ 0. By Fatou’s lemma and
using that X is almost surely càdlàg, we have that for x ∈ Td and f ∈ C(Td,R),

lim
t↓0
|Ttf(x)− f(x)| ⩽ EX0=x[lim

t↓0
|f(Xt)− f(X0)|] = 0. (5.25)
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Furthermore, we can bound uniformly in x ∈ Td and t > 0,

|Ttf(x)| =
∣∣∣∣∫ ρt(x, y)f(y)dy

∣∣∣∣ ⩽ supt>0 maxx,y∈Td ρt(x, y)

miny∈Td ρ∞(y)
∥f∥L1(π) ⩽ C∥f∥L2(π) (5.26)

where C > 0 is a constant (not depending on t, f) and ρt(x, y) denotes the Fokker-
Planck density with ρ0(x, y) = δx. Here, we have miny∈Td ρ∞(y) > 0 by Corollary 5.13.
Furthermore we have

sup
t>0

max
x,y∈Td

ρt(x, y) <∞. (5.27)

Indeed, by the L∞-spectral gap estimates, it follows that

sup
t⩾0
∥ρt ∗ f∥L∞ ⩽ K∥f∥L∞ + |⟨f⟩π|,

with convolution (ρt ∗ f)(x) :=
∫
Td ρt(x, y)f(y)dy. We can apply this bound for

f ε,ỹ(y) := 1|y−ỹ|<ε for ỹ ∈ Td and ε > 0 and let ε ↓ 0. By continuity of y 7→ ρt(x, y)
and the dominated convergence theorem, (ρt ∗ f ε,ỹ)(x)→ ρt(x, ỹ)λ(Td), which yields
(5.27).
In particular, by (5.26), supt>0∥Ttf∥L∞ ≲ ∥f∥L2(π) and an application of the dominated
convergence theorem using (5.25), yields that for f ∈ C(Td,R),

lim
t↓0
⟨Ttf, f⟩π = ∥f∥2L2(π).

We conclude with (5.24), that for all f ∈ C(Td,R), ∥Ttf − f∥L2(π) → 0 as t ↓ 0.
As (Tt) is a contraction semigroup on L2(π), the operator norm is trivially bounded,
that is supt⩾0∥Tt∥L(L2(π)) ⩽ 1. Above, we proved that (Tt) is strongly continuous on a
dense subset of L2(π). Thus, together with boundedness of the operator norm, (Tt) is
also strongly continuous on L2(π) as a consequence of the Banach-Steinhaus theorem.
It remains to prove that the L2(π)-spectral gap estimates follow from the L∞-spectral
gap estimates and the bound (5.26). Indeed, we obtain for f ∈ L2(π) with ⟨f⟩π = 0
and all t > 1,

∥Ttf∥L2(π) = ∥Tt−1T1f∥L2(π) ⩽ Ke−µ(t−1)∥T1f∥L∞ ⩽ eµCKe−µt∥f∥L2(π).

For t ∈ [0, 1], we trivially estimate, using the contraction property,

∥Ttf∥L2(π) ⩽ ∥f∥L2(π) ⩽ eµe−µt∥f∥L2(π).

Remark 5.15. The argument in the above proof of Corollary 5.14 (using the bound
(5.27) and ρ∞ > 0) can be adapted to prove the stronger estimate (for constants
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K,µ > 0)

∥Ttf − ⟨f⟩π∥L∞ ⩽ Ke−µt∥f − ⟨f⟩π∥L1(π),

which in particular implies the L2(π)-L2(π)-bound from the corollary.

Remark 5.16. More generally, one can show the Feller property, that is (Tt) is strongly
continuous on C(Td). Using [RY99, Proposition III.2.4] and (5.25), it is left to show
Ttf ∈ C(Td) for f ∈ C(Td) ⊂ C 0(Td). But this follows from Theorem 3.25, since for
R > t, yt = TR−tf solves the backward Kolmogorov equation with periodic terminal
condition yR = f ∈ C 0 and y ∈ M γ

RC α+β, such that in particular x 7→ yt(x) is
continuous.

The next theorem relates the semigroup (Tt)t⩾0 from above with the generator L and
gives an explicit representation of its domain in terms of paracontrolled solutions of
singular resolvent equations.

Theorem 5.17. Let (Tt) be the contraction semigroup on L2(π) from Corollary 5.14
and denote its generator by (A, dom(A)) with A : dom(A) ⊂ L2(π) → L2(π) and
domain dom(A) := {f ∈ L2(π) | limt→0(Ttf − f)/t =: Af exists in L2(π)}. Let
θ ∈ ((1 + α)/2, α + β) and

D := {g ∈ Dθ
2 | Rλg = G for some G ∈ L2(π) and λ > 0},

where Rλ := (λ− L).
Then it follows D = dom(A) and (A,D) = (L, D). In particular, (L, D) is the generator
of the Markov process X with state space Td and transition semigroup (Tt).

Remark 5.18. Since the drift F does not depend on a time variable, one could
reformulate the martingale problem for X in terms of the elliptic generator L and the
domain D ⊂ L2(π).

Proof. We first show that D ⊂ dom(A). To this aim, note that for f ∈ D, we obtain
Rλf = G for G ∈ L2(π). For a mollification (Gn) ⊂ C∞(Td) of G and (fn) ⊂ C∞(Td),
such that Rλf

n = Gn, we obtain that in particular fn is a mild solution of the
Kolmogorov backward equation on the torus for G = ∂t + L with right-hand side
λfn −Gn ∈ L∞ and terminal condition fn ∈ C 3. Equivalently, its periodic version is
the periodic solution of the Kolmogorov backward equation on Rd. As X equals the
projected solution of the (G , x)-martingale problem onto the torus, we have, for n ∈ N
and x ∈ Td, that

Ttf
n(x)− fn(x) = EX0=x[f

n(Xt)− fn(X0)]

= EX0=x

[ ∫ t

0

(λfn −Gn)(Xs)ds

]
=

∫ t

0

Ts(λf
n −Gn)(x)ds.
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5. Periodic homogenization for singular SDEs

Using that fn → f in L2(π) as Gn → G by continuity of the resolvent solution map,
we obtain that for f ∈ D,

Ttf − f =

∫ t

0

Ts(λf −G)ds.

By continuity of the map s 7→ Ts(λf −G) ∈ L2(π), since T is strongly continuous on
L2(π), we obtain that for f ∈ D, limt→0(Ttf − f)/t exists in L2(π) and

Af = λf −G = λf −Rλf = Lf.

To prove that also dom(A) ⊂ D, we use that for χ ∈ dom(A), there trivially exists
f ∈ L2(π) with Aχ = f . Notice that by Theorem 5.10, we can solve the resolvent
equation for λ > 0 large enough,

Rλχ̃ = λχ− f,

with right-hand side λχ− f ∈ L2(π) ⊂ C 0
2 , obtaining a solution χ̃ ∈ D. By the above,

we have that A|D = L|D, such that Lχ̃ = Aχ̃. This yields by inserting in the equation
for χ̃ and since f = Aχ, that A(χ̃− χ) = λ(χ̃− χ). As λ > 0, by uniqueness of the
solution of the resolvent equation for the generator A, we obtain χ̃ = χ. Thus with the
equation for χ̃ this yields χ ∈ D and Lχ = f .

Corollary 5.19. Let f ∈ L2(π) with ⟨f⟩π = 0. Then there exists a unique solution
χ ∈ D of the Poisson equation Lχ = f such that ⟨χ⟩π = 0.

Proof. This follows from the L2(π)-spectral gap estimates. We can solve the Poisson
equation in L2(π) for the given right-hand side f ∈ L2(π) with ⟨f⟩π = 0. The solution
is explicitly given by χ =

∫∞
0
Ttfdt ∈ L2(π).

We check that χ is indeed a solution. By [EK86, Proposition 1.1.5 part a)], we have
that for f ∈ L2(π),

∫ t
0
Tsfds ∈ dom(A) and

Ttf − f = A

∫ t

0

Tsfds,

where (A, dom(A)) denotes again the generator of (Tt) on L2(π). By the L2-spectral
gap estimates and ⟨f⟩π = 0, we obtain that (

∫ t
0
Tsfds)t converges in L2(π) for t→∞

to a limit χ, and that (Ttf)t converges to zero in L2(π) for t → ∞. Hence, since A
is a closed operator (cf. [EK86, Corollary 1.1.6]), we obtain in the limit t→∞, that
f = A

∫∞
0
Ttfdt = Aχ and χ ∈ dom(A). Now, using dom(A) = D and (A,D) = (L, D)

by Theorem 5.17, this yields χ ∈ D and Lχ = f .

Thanks to the regularity of the density of the invariant measure π, we can finally define
the mean of the singular drift F under π, ⟨F ⟩π = ⟨F, ρ∞⟩λ, respectively the product
F · ρ∞.
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Lemma 5.20. Let ρ∞ be the density of π. Let ⟨F ⟩π = (⟨F i⟩π)i=1,...,d for

⟨F i⟩π = (F i · ρ∞)(1)

:= [(F i · ρ♯∞) + (F i � I∞(∇ · F )) · ρ∞ + C1(ρ∞, I∞(∇ · F ), F i)](1),

where 1 ∈ C∞(Td) is the constant test function and C1 denotes the paraproduct
commutator defined in (5.19).
Then, ⟨F i⟩π is well-defined and continuous, that is, ⟨Fm⟩π → ⟨F ⟩π for Fm → F in
X β,γ

∞ (Td). Moreover, the following Lipschitz bound holds true

∥F · ρ∞∥C β(Td) ≲ ∥F∥X β,γ
∞ (Td)(1 + ∥F∥X β,γ

∞ (Td))[∥ρ∞∥Cα+β−1 + ∥ρ♯∞∥C 2(α+β−1) ].

Proof. The proof follows directly from Theorem 5.4 and Corollary 5.13.

5.5. Solving the Poisson equation with singular
right-hand side

To prove the central limit theorem for the solution of the martingale problem X, we
utilize the classical approach of decomposing the additive functional in terms of a
martingale and a boundary term, using the solution of the Poisson equation for L with
singular right-hand side F − ⟨F ⟩π. For solving the Poisson equation in Theorem 5.24
below, Corollary 5.19 is not applicable, as F is a distribution and therefore not an
element of L2(π). Consider an approximation (Fm) ⊂ C∞(Td) with Fm → F in
X β,γ

∞ (Td). Then, we can apply Corollary 5.19 for the right-hand sides Fm − ⟨Fm⟩π ∈
L2(π), m ∈ N. This way we obtain solutions χm = (χm,i)i=1,...,d ∈ Dd ⊂ L2(π)d of the
Poisson equations

(−L)χm,i = Fm,i − ⟨Fm,i⟩π (5.28)

for m ∈ N.
In this section, we show that the sequence (χm)m converges in a space of sufficient
regularity to a the limit χ that indeed solves the Poisson equation

(−L)χ = F − ⟨F ⟩π. (5.29)

Let us define the space H 1(π) as in [KLO12, Section 2.2],

H 1(π) := {f ∈ D | ∥f∥2H 1(π) := ⟨(−L)f, f⟩π <∞}, (5.30)
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5. Periodic homogenization for singular SDEs

which is the Sobolev space for the operator L with respect to L2(π). Its dual is defined
by

H −1(π) := {F : H 1(π)→ R | F linear with ∥F∥H −1(π) := sup
∥f∥H 1(π)=1

|F (f)| <∞}.

(5.31)

The space H 1(π) is related to the quadratic variation of Dynkin’s martingale, see
[KLO12, Section 2.4], which motivates the definition.
To prove convergence of (χm)m in L2(π)d, we first establish in Corollary 5.23 convergence
of (χm)m in the space H 1(π)d and utilize a Poincaré-type bound on the operator L.
A standard argument as in [GZ02, Property 2.4] shows that the L2(π)-spectral gap
estimates from Corollary 5.14 for the constant K = 1, imply the Poincaré estimate for
the operator L:

∥f − ⟨f⟩π∥2L2(π) ⩽ µ⟨(−L)f, f⟩π = µ∥f∥2H 1(π), for all f ∈ D.

In general, the constant K > 0 in the spectral gap estimates from Corollary 5.14 does
not need to satisfy K = 1 and the above argument breaks down for K ̸= 1. Hence, we
show below in (5.34) that ∥f − ⟨f⟩π∥2L2(π) ⩽ C∥f∥2H 1(π) holds true for some constant
C > 0. That constant may differ from the constant µ and may not be optimal, but
the bound suffices for our purpose of concluding on L2(π)d convergence given H 1(π)d

convergence of (χm)m.
An optimal estimate, that however applies for a much more general situation of weak
Poincaré inequalities and slower than exponential convergences, can be found in [RW01,
Theorem 2.3].
The H 1(π)d convergence of (χm)m follows from H −1(π)d-convergence of (Fm)m for
the approximating sequence Fm → F in X β,γ

∞ (Td). Convergence of (Fm)m in H −1(π)d

is established in Theorem 5.22. The following lemma is an auxiliary result, which
proves that the semi-norms in H 1(π) and the homogeneous Besov space Ḃ

α/2
2,2 (Td),

cf. (5.5), are equivalent.

Lemma 5.21. Let α ∈ (1, 2] and θ ∈ (1, α). Define the carré-du-champ operator of
the generalized fractional Laplacian as Γαν (f) = Γαν (f, f) := 1

2
((−L α

ν )f 2 − 2f(−L α
ν )f).

Then, there exist constants c, C > 0, such that for all f ∈ Ḃα/2
2,2 (Td),

c∥f∥2
Ḃ

α/2
2,2 (Td)

⩽ ⟨Γαν (f)⟩λ ⩽ C∥f∥2
Ḃ

α/2
2,2 (Td)

. (5.32)

Proof. By [ST87, part (v) of Theorem, Section 3.5.4] we obtain that the periodic
Lizorkin space F s

2,2(Td) coincides with the periodic Bessel-potential space Hs(Td).
Furthermore F s

2,2(Td) coincides with Bs
2,2(Td) (cf. [ST87, Section 3.5.1, Remark 4]).

Thus, we obtain that in particular

Ḃs
2,2(Td) = Ḣs(Td).
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5.5. Solving the Poisson equation with singular right-hand side

It remains to show (5.32) with Ḃ
α/2
2,2 (Td) replaced by Ḣs(Td). To that aim, we calculate,

using the definition of L α
ν for a Schwartz function f ∈ S (Td) and ψαν (0) = 0,

⟨Γαν (f)⟩λ =

∫
Td

Γαν (f)(x)dx = FTd(Γαν (f))(0)

=
1

2
FTd((−L α

ν )f 2)(0)−FTd(f(−L α
ν )f)(0)

= −1

2
ψαν (0)(f̂ ∗ f̂)(0) + (f̂ ∗ ψαν f̂)(0)

=
∑
k∈Zd

f̂(−k)f̂(k)ψαν (k)

=
∑
k∈Zd

|f̂(k)|2ψαν (k).

By Assumption 3.4 on the spherical component of the jump measure ν, we obtain, that
there exist constants c, C > 0 with

c|k|α ⩽ ψαν (k) =

∫
S

|⟨k, ξ⟩|αν(dξ) ⩽ C|k|α.

Thus it follows that

c∥f∥2
Ḣα/2(Td)

= c
∑
k∈Zd

|k|α|f̂(k)|2 ⩽ ⟨Γαν (f)⟩λ ⩽ C
∑
k∈Zd

|k|α|f̂(k)|2 = C∥f∥2
Ḣα/2(Td)

.

By a density argument, the claim follows for all f ∈ Ḣα/2(Td) = Ḃ
α/2
2,2 (Td).

Theorem 5.22. Let F ∈X β,γ
∞ (Td) for β ∈ (2−2α

3
, 0) and α ∈ (1, 2].

Then, equivalence of the semi-norms ∥·∥H 1(π) ≃ ∥·∥Ḃα/2
2,2 (Td)

follows and F := F−⟨F ⟩π ∈
H −1(π)d. In particular, Fm → F in X β,γ

∞ (Td) implies F
m → F in H −1(π)d.

Proof. By invariance of π we obtain ⟨Lg⟩π = 0 for g ∈ D, because for g ∈ D,
( d
dt
Tt)|t=0f = Lf ∈ L2(π). We now apply this for g = f 2 for which we need to check

that if f ∈ D, then Lf 2 is well-defined and Lf 2 ∈ L1(π). This follows by calculating

f 2 = (f ♯ +∇f 4 Iλ(F ))2 = g♯ + g′ 4 Iλ(F ),

where

g♯ = (f ♯)2 + 2f ♯ � (∇f 4 Iλ(F )) + 2f ♯ 5 (∇f 4 Iλ(F ))

+ (∇f 4 Iλ(F )) � (∇f 4 Iλ(F )) ∈ C 2θ−1
1 (Td)

and

g′ = 2f ♯ 4∇f +∇f 4 Iλ(F ) 4∇f + Iλ(F ) 4∇f 4 Iλ(F ) ∈ (C θ−1
1 (Td))d.
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Hence, we conclude that for f ∈ D, f 2 admits a paracontrolled structure with g♯ ∈
C 2θ−1
1 (Td) and g′ ∈ (C θ−1

1 (Td))d, such that Lf 2 is well-defined and

Lf 2 = 2fLf + 2Γαν (f) = 2λf 2 − 2fRλf + 2Γαν (f) ∈ L1(π).

Herein we used that 2λf 2 − 2fRλf ∈ L1(π) as f ∈ D and Γαν (f) = Γαν (f, f) =
1
2
(L α

ν f
2 − 2fL α

ν f) ∈ L1(π) for f ∈ C θ
2 (Td) by Lemma 5.21 as θ can be chosen close

to α + β, such that θ > α/2.
Analogously, if we denote the domain of L with integrability p by Dp, then for f, g ∈ D2,
we concluded that f · g ∈ D1, which in particular implies that the carré-du-champ
operator

ΓL(f, g) =
1

2
(L(fg)− fLg − gLf) ∈ L1(π)

for f, g ∈ D is well-defined in L1(π).
Applying invariance of π for g = f 2, we can add 1

2
⟨Lf 2⟩π = 0 yielding

∥f∥2H 1(π) = ⟨(−L)f, f⟩π = ⟨ΓL(f)⟩π = ⟨Γαν (f)⟩π.

where ΓL(f) = 1
2
Lf 2 − fLf = Γαν (f). Thus, we obtain

∥f∥2H 1(π) = ⟨Γαν (f)⟩π ≃ ⟨Γαν (f)⟩λ ≃ ∥f∥2Ḃα/2
2,2

, (5.33)

where ≃ denotes that the norms are equivalent.
Here, we used that absolute continuity of π with respect to the Lebesgue-measure, with
density ρ∞ that is uniformly bounded from above and from below, away from zero by
Corollary 5.13. Moreover, note that the carré-du-champ is non-negative, Γαν (f) ⩾ 0.
Furthermore we utilized (5.32) from Lemma 5.21.
Thus applying the duality estimate from Lemma 5.3 (for functions f − ⟨f⟩λ, g − ⟨g⟩λ
to obtain the result for the homogeneous Besov spaces), we get for F := F −⟨F ⟩π with
mean ⟨F ⟩π from Lemma 5.20,

|⟨F i
, g⟩π| = |⟨F

i
ρ∞, g⟩|

≲ ∥F i
ρ∞∥Ḃ−α/2

2,2 (Td)
∥g∥

Ḃ
α/2
2,2 (Td)

≲ ∥F i
ρ∞∥Ḃβ

2,2(Td)∥g∥Ḃα/2
2,2 (Td)

≲ ∥F i
ρ∞∥Ḃβ

2,2(Td)∥g∥H 1(π),
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for i = 1, ..., d, using β > −α/2 and (5.33). Hence, we find

∥F i∥H −1(π) ≲ ∥F
i
ρ∞∥Ḃβ

2,2(Td)

≲ ∥F i
ρ∞∥Bβ

2,2(Td)

≲ ∥F i
ρ∞∥C β+(1−γ)α(Td)

≲ ∥F∥X β,γ
∞ (Td)(1 + ∥F∥X β,γ

∞ (Td))[∥ρ∞∥Cα+β−1 + ∥ρ♯∞∥C 2(α+2β−1) ],

where the estimate for the product of F
i

and ρ∞ follows from Lemma 5.20.
This proves that F ∈H −1(π)d. Convergence follows by the same estimate.

Corollary 5.23. Let F ∈ X β,γ
∞ and Fm ∈ C∞(Td) with Fm → F in X β,γ

∞ (Td). Let
χm = (χm,i)i=1,...,d ∈ L2(π)d denote the unique solution of

(−L)χm,i = Fm,i − ⟨Fm,i⟩π =: F
m,i

with ⟨χm,i⟩π = 0. Then (χm)m converges in H 1(π)d ∩ L2(π)d to a limit χ.

Proof. Convergence in H 1(π) follows from the estimate

∥χm,i − χm′,i∥2H 1(π) = ⟨(−L)(χm,i − χm′,i), χm,i − χm′,i⟩π

= ⟨Fm,i − Fm′,i
, χm,i − χm′,i⟩π

⩽ ∥Fm,i − Fm′,i∥H −1(π)∥χm,i − χm
′,i∥H 1(π).

Thus we obtain

∥χm,i − χm′,i∥H 1(π) ⩽ ∥F
m,i − Fm′,i∥H −1(π).

And indeed the H −1(π)-norm on the right-hand side is small, when m,m′ are close,
by Theorem 5.22.
It remains to conclude on L2(π) convergence. By Theorem 5.22, we also obtain the
seminorm equivalences, ∥·∥H 1(π) ≃ ∥·∥Ḣα/2(Td) ≃ ∥·∥Ḃα/2

2,2 (Td)
. Combining with the

fractional Poincaré inequality on the torus,

∥u− ⟨u⟩λ∥2L2 =
∑

k∈Zd\{0}

|û(k)|2 ⩽
∑

k∈Zd\{0}

|k|α|û(k)|2 = ∥u∥2
Ḣα/2(Td)

,

with Lebesgue measure λ on Td, we can thus estimate

∥χ− ⟨χ⟩λ∥L2(π) ≲ ∥χ− ⟨χ⟩λ∥L2(λ) ⩽ ∥χ∥Ḣα/2(Td) ≲ ∥χ∥H 1(π). (5.34)

Furthermore, as ⟨χ⟩π = 0, we obtain ∥χ− ⟨χ⟩λ∥2L2(π) = ∥χ∥2L2(π) + ⟨χ⟩2λ. Together, we
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thus find

∥χ∥2L2(π) ≲ ∥χ∥2L2(π) + ⟨χ⟩2λ ≲ ∥χ∥2H 1(π). (5.35)

In particular, we conclude that H 1(π)-convergence implies L2(π)-convergence of the
sequence (χm).

Theorem 5.24. Let (Fm)m, (χm)m and χ be as in Corollary 5.23.
Then, (χm)m converges to χ in (C θ

2 (Td))d, θ ∈ ((1−β)/2, α+β) and there exists λ > 0,
such that

χ = χ♯ +∇χ4 Iλ(F ) (5.36)

for χ♯ ∈ (C 2θ−1
2 (Td))d.

Furthermore, the limit χ solves the singular Poisson equation with singular right-hand
side F ,

(−L)χ = F . (5.37)

Proof. Trivially, for λ > 0, χm solves the resolvent equation

Rλχ
m = (λ− L)χm = λχm + F

m

with right-hand side Gm := λχm + F
m

. The right-hand sides (Gm) converge in
(C β

2 (Td))d to G = λχ+F , because χm → χ in L2(π)d by Corollary 5.23 and, thanks to
the equivalence of π and the Lebesgue measure λTd , thus also in L2(λTd)d. Choosing
λ > 1 big enough, by Theorem 5.10, we can solve the resolvent equation

Rλg
i = Gi = G♯,i +G′,i 4 F, (5.38)

with G♯,i := λχi ∈ L2(λ) ⊂ C 0
2 (Td) and G′,i := (1− ⟨F i⟩π)ei ∈ C α+β−1(Td). Thereby

we obtain a paracontrolled solution gi ∈ Dθ
2 for θ < α+β, with gi = g♯,i +∇gi 4 Iλ(F ),

g♯,i ∈ C 2θ−1
2 (Td) and Iλ(F ) :=

∫∞
0
e−λtPtFdt ∈ C α+β(Td). By continuity of the solution

map for the resolvent equation, we obtain convergence of χm,i → gi in Dθ
2 for m→∞.

Convergence of (χm) to g in (Dθ
2 )d in particular implies convergence in L2(λTd)d and

thus in L2(π)d, which implies that almost surely g = χ and hence, by (5.38), that
χ ∈ (Dθ

2 )d solves (−L)χ = F .

5.6. Fluctuations in the Brownian and pure Lévy noise
case

In this section, we prove the central limit Theorem 5.26 for the diffusion X with
periodic coefficients. In the following, we again explicitly distinguish between X and
the projected process XTd

. Of course, the central limit theorem in particular implies
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5.6. Fluctuations in the Brownian and pure Lévy noise case

that for t > 0, 1
n
Xnt → t⟨F ⟩π with convergence in probability for n→∞, i.e. a weak

law of large numbers. The central limit theorem then quantifies the fluctuations around
the mean t⟨F ⟩π.
Due to ergodicity of π, it follows by the von Neumann ergodic theorem that, if the
projected process is started in XTd

0 ∼ π, 1
n

∫ nt
0
b(XTd

s )ds→ t⟨b⟩π in L2(Pπ) as n→∞
for b ∈ L∞(Td). As Pπ =

∫
Td Pxπ(dx), this implies in particular the convergence (along

a subsequence) in L2(Px) for π-almost all x.
The L∞-spectral gap estimates yield the following slightly stronger ergodic theorem
for the process started in XTd

0 = x for any x ∈ Td. In particular, in the periodic
homogenization result for the PDE, Corollary 5.27 below, pointwise convergence (for
every x ∈ Td) of the PDE solutions can be proven.

Lemma 5.25. Let b ∈ L∞(Td) and x ∈ Td. Let XTd
be the projected solution of the

G = ∂t + L- martingale problem on the torus Td started in XTd

0 = x ∈ Td.
Then the following convergence holds in L2(P):

1

n

∫ nt

0

b(XTd

s )ds→ t⟨b⟩π.

Proof. Without loss of generality, we assume that ⟨b⟩π = 0, otherwise we subtract the
mean. With the Markov property we obtain∥∥∥∥ 1

n

∫ nt

0

b(XTd

s )ds

∥∥∥∥2
L2(P)

=
1

n2

∫ nt

0

∫ nt

0

E[b(XTd

s )b(XTd

r )]dsdr

=
2

n2

∫ nt

0

∫ nt

0

1s⩽rE
[
b(XTd

s )Es[b(X
Td

r )]
]
dsdr

Using the spectral gap estimate (5.21), we can estimate∣∣∣∣ 2

n2

∫ nt

0

∫ nt

0

1s⩽rTs(bTr−sb)(x)dsdr

∣∣∣∣ ⩽ 2K2∥b∥2L∞

n2

∫ nt

0

∫ nt

0

e−µse−µ(r−s)dsdr

=
tK2∥b∥2L∞

nµ
(1− e−µnt)→ 0,

for n→∞.

Theorem 5.26. Let α ∈ (1, 2] and F ∈ C β(Td) for β ∈ (1−α
2
, 0) or F ∈ X β,γ

∞ (Td)
for β ∈ (2−2α

3
, 1−α

2
] and γ ∈ (2β+2α−1

α
, 1). Let X be the solution of the G = (∂t + L)-

martingale problem started in X0 = x ∈ Rd.
In the case α = 2 and L = B for a standard Brownian motion B, the following
functional central limit theorem holds:(

1√
n

(Xnt − nt⟨F ⟩π)

)
t∈[0,T ]

⇒
√
D(Wt)t∈[0,T ],

197



5. Periodic homogenization for singular SDEs

with convergence in distribution in C([0, T ],Rd), a d-dimensional standard Brownian
motion W and constant diffusion matrix D given by

D(i, j) :=

∫
Td

(ei +∇χi(x))T (ej +∇χj(x))π(dx)

for i, j = 1, . . . , d and the i-th euclidean unit vector ei. Here, χ solves the singular
Poisson equation (−L)χi = F i − ⟨F i⟩π, i = 1, ..., d, according to Theorem 5.24.
In the case α ∈ (1, 2), the following non-Gaussian central limit theorem holds:(

1

n1/α
(Xnt − nt⟨F ⟩π)

)
t∈[0,T ]

⇒ (L̃t)t∈[0,T ],

with convergence in distribution in D([0, T ],Rd), where L̃ is a d-dimensional symmetric
α-stable nondegenerate Lévy process (with generator −L α

ν ).

Proof. The martingale solution X of the singular SDE started in X0 = x is a weak
solution by Theorem 4.35. In particular there exists a probability space (Ω,F ,P) with
an α-stable symmetric non-degenerate process L, such that X = x+ Z + L, where Z
is given by

Zt = lim
m→∞

∫ t

0

Fm(Xs)ds (5.39)

for a sequence (Fm) of smooth functions Fm with Fm → F in X β,γ
∞ (Td) and where

the limit is taken in L2(P), uniformly in t ∈ [0, T ].
We write the additive functional

∫ ·
0
(Fm)R

d
(Xs)ds =

∫ ·
0
Fm(XTd

s )ds in terms of the
periodic solution χm of the Poisson equation (5.28) with right hand side Fm−⟨Fm⟩π =:
Fm, such that

Xt − t⟨F ⟩π = X0 + (Zt − t⟨F ⟩π) + Lt (5.40)

= X0 + lim
m→∞

∫ t

0

Fm(XTd

s )ds+ Lt (5.41)

= X0 + lim
m→∞

(
[χm(XTd

0 )− χm(XTd

t )] +Mm
t

)
+ Lt (5.42)

= X0 + [χ(XTd

0 )− χ(XTd

t )] +Mt + Lt. (5.43)

Here, the limit is again taken in L2(P) and χ is the solution of the Poisson equation
(5.29) with right-hand side F , which exists by Theorem 5.24.
To justify (5.41), we use the convergence from (5.39) and ⟨F ⟩π = limm→∞⟨Fm⟩π by
Lemma 5.20. In (5.42), we applied Itô’s formula to (χm)R

d
(Xt) for m ∈ N. For the

equality (5.43), we utilized that χm → χ in L∞(Td) by Theorem 5.24 and that the
sequence of martingales (Mm) converges in L2(P) uniformly in time in [0, T ] to the
martingale M . Here, for α ∈ (1, 2), the martingales are given by (notation: [y] := y
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5.6. Fluctuations in the Brownian and pure Lévy noise case

mod Zd = ι(y))

Mm
t =

∫ t

0

∫
Rd\{0}

[χm(XTd

s− + [y]))− χm(XTd

s−)]π̂(ds, dy),

where π̂(ds, dy) = π(ds, dy) − dsµ(dy) is the compensated Poisson random measure
associated to L. M is given by an analogue expression, where we replace χm by χ.
In the Brownian noise case, α = 2, we have that Mm

t =
∫ t
0
∇χm(XTd

s ) · dBs and Mt is
defined analogously with χm replaced by χ. Indeed, convergence of the martingales
in L2(P) follows from the convergence of (χm) to χ in C θ

2 (Td) with θ ∈ (1, α + β) by
Theorem 5.24, which in particular implies uniform convergence of (χm) and (∇χm)
(cf. also the arguments for Lemma 4.4).

Let now first α = 2 and L = B for a standard Brownian motion B. Then we have by
the above, almost surely,

1√
n

(Xnt − nt⟨F ⟩π) =
1√
n
X0 +

1√
n

[χ(XTd

0 )− χ(XTd

nt )] +
1√
n

(Mnt +Bnt)

with Mt =
∫ t
0
∇χ(XTd

s ) · dBs.
To obtain the central limit theorem, we will apply the functional martingale central
limit theorem, [EK86, Theorem 7.1.4], to(

1√
n

(Mnt +Bnt)

)
t∈[0,T ]

.

To that aim, we check the convergence of the quadratic variation

1

n
⟨M i +Bi,M j +Bj⟩nt =

1

n

∫ nt

0

(Id +∇χ(XTd

s ))T (Id +∇χ(XTd

s ))(i, j)ds

in probability to

t

∫
Td

(Id +∇χ(x))T (Id +∇χ(x))(i, j)π(dx) = tD(i, j).

This is a consequence of Lemma 5.25.
The boundary term 1√

n
[χ(XTd

0 ) − χ(XTd

nt )] vanishes when n → ∞ as χ ∈ L∞(Td).
Furthermore, as a processes,(

1√
n

[χ(XTd

0 )− χ(XTd

nt )]

)
t∈[0,T ]

converges to the constant zero process almost surely with respect to the uniform
topology in C([0, T ],Rd).
Using Slutsky’s lemma and combining with the functional martingale central limit
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5. Periodic homogenization for singular SDEs

theorem above, we obtain weak convergence of (n−1/2Xnt)t∈[0,T ] to the Brownian motion√
DW with the constant diffusion matrix D stated in the theorem.

Let now α ∈ (1, 2). We rescale by n−1/α and claim that the martingale n−1/αMnt

vanishes in L2(P) for n→∞. Indeed, in this case the martingale M is given by

Mt =

∫ t

0

∫
Rd\{0}

[χ(XTd

s− + [y])− χ(XTd

s−)]π̂(ds, dy).

Using the estimate from [PZ07, Lemma 8.22] and the mean-value theorem, we obtain

E[ sup
t∈[0,T ]

|Mnt|2] ≲
∫ nT

0

∫
Rd\{0}

E[|χ(XTd

s− + [y])− χ(XTd

s−)|2]µ(dy)ds

=

∫ nT

0

∫
Rd\{0}

E[|χ(XTd

s + [y])− χ(XTd

s )|2]µ(dy)ds

⩽
∫ nT

0

∫
B(0,1)c

E[|χ(XTd

s + [y])− χ(XTd

s )|2]µ(dy)ds

+

∫ nT

0

∫
B(0,1)\{0}

E[|χ(XTd

s + [y])− χ(XTd

s )|2]µ(dy)ds

⩽ 2nTµ(B(0, 1)c)∥χ∥2L∞(Td)d + 2nT∥∇χ∥2L∞(Td)d×d

∫
B(0,1)\{0}

|y|2µ(dy)

≲ nT.

Hence, we conclude

E[ sup
t∈[0,T ]

|n−1/αMnt|2] ≲ Tn1−2/α (5.44)

and since α < 2, we obtain the claimed convergence to zero.
As the J1-metric (for definition, see [JS03, Chapter VI, Equation 1.26]) can be bounded
by the uniform norm, (5.44) implies in particular, that the process (n−1/αMnt)t∈[0,T ]
converges to the constant zero process in probability with respect to the J1-topology on

the Skorokhod space D([0, T ],Rd). Furthermore, (n−1/αLnt)t⩾0
d
= (Lt)t⩾0. Using [JS03,

Chapter VI, Proposition 3.17] and that the constant process is continuous, we thus
obtain that (n−1/αXnt)t⩾0 convergences in distribution in D([0, T ],Rd) to the α-stable
process (L̃t)t∈[0,T ], that has the same law as (Lt)t∈[0,T ].

Utilizing the correspondence of the solution of the SDE (i.e. the solution of the
martingale problem) to the parabolic generator PDE via Feynman-Kac, we can now
show the corresponding periodic homogenization result for the PDE as a corollary.

Corollary 5.27. Let F and FRd
be as in Theorem 5.26. Assume moreover that ⟨F ⟩π = 0

and let f ∈ Cb(Rd). Let T > 0 and let u ∈ DT (DT denotes the paracontrolled solution
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5.6. Fluctuations in the Brownian and pure Lévy noise case

space from Corollary 3.28) be the mild solution of the singular parabolic PDE

(∂t − L)u = 0, u0 = f ε,

where f ε(x) := f(εx). Let uε(t, x) := u(ε−αt, ε−1x) with uε(0, ·) = f .
Let furthermore, for α = 2 and −L α

ν = 1
2
∆, u be the solution of

(∂t −D : ∇∇)u = 0, u0 = f,

with notation D : ∇∇ :=
∑

i,j=1,...,dD(i, j)∂xi∂xj ,
and for α ∈ (1, 2), let u be the solution of

(∂t + L α
ν )u = 0, u0 = f.

Then, for any t ∈ (0, T ], x ∈ Rd, we have the convergence uεt(x)→ ut(x) for ε→ 0.

Remark 5.28. Note that uε solves (∂t − Lε)uε = 0, uε0 = f with operator Lεg =
−L α

ν g + ε1−αF (ε−1·)∇g.

Remark 5.29. If α = 2 and F is of gradient-type, that is, F = ∇f for f ∈ C 1+β (f
is a continuous function, as 1 + β > 0), the invariant measure is explicitly given by
dπ = c−1e−f(x)dx with suitable normalizing constant c > 0, since the operator is of
divergence form, L = ef∇ · (e−f∇·). Then it follows that ⟨F ⟩π =

∫
Td∇e−f(x)dx = 0.

Thus, F satisfies the assumptions of Corollary 5.27.

Proof of Corollary 5.27. Notice that (ũs := ut−s)s∈[0,t] solves the backward Kolmogorov
equation (∂s + L)ũ = 0, ũ(t, ·) = f ε. Approximating f by C 3(Rd) functions and using
that X solves the (∂t + L, x)-martingale problem, we obtain

uε(t, x) = EX0=ε−1x[f(εXε−αt)].

The stated convergence then follows from Theorem 5.26. Indeed, if X0 = ε−1x, then
εXε−2· → W x in distribution, where W x is the Brownian motion started in x with
covariance D, respectively εXε−α· → Lx if α ∈ (1, 2) for the α-stable process L with
generator (−L α

ν ) and L0 = x. The Feynman-Kac formula for the limit process then
gives that the limit of (uε(t, x)) equals u(t, x) = E[f(W x)] if α = 2, respectively
u(t, x) = E[f(Lx)] if α ∈ (1, 2).

Remark 5.30 (Brox diffusion with Lévy noise). We can apply our theory to obtain
the long-time behaviour of the periodic Brox diffusion with Lévy noise (see Section 4.6
for the construction). As α ∈ (1, 2], Theorem 5.26 yields that |Xt| ∼ t1/α for t→∞.
In the non-periodic situation, the long-time behaviour of the Brox diffusion with Brown-
ian noise is however very different. Brox [Bro86] proved, that the diffusion gets trapped
in local minima of the white noise environment and thus slowed down (that is, for
almost all environments: |Xt| ∼ log(t)2 for t→∞, cf. [Bro86, Theorem 1.4]). In the
non-periodic pure stable noise case, the long-time behaviour of the Brox diffusion is an
open problem, that we leave for future research.
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5. Periodic homogenization for singular SDEs

Remark 5.31 (Homogenization for diffusions in singular random environments). To
prove the homogenization limit Theorem 5.26, we used the Kipnis-Varadhan approach
and some of the techniques developed in [KLO12]. Those techniques can be applied to
diffusions in random stationary environments (cf. [KLO12, Chapter 9]) of which the
diffusion with periodic coefficients is a special case. Parts of the theory developed in
this chapter can thus also be of use when generalizing to singular, stationary random
fields F with path space C β

Rd.
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A. Appendix

Appendix for Chapter 3

Proof of Lemma 3.8. The proof of the lemma uses ideas from the proof of [Per14,
Lemma 5.3.20]. Let ψ = p0 ∈ C∞

c and let j ⩾ 0 (for j = −1, ∆j(f 4 g) = 0, so there is
nothing to estimate). Then we estimate (notation: Sj−1u :=

∑
l⩽j−1 ∆lu)

∥∆j[(−L α
ν )(f 4 g)− f 4 (−L α

ν )g]∥Lp

=

(∫
Rd

∣∣∣∣∫
Rd

F−1(−ψαν pj)(x− y)(Sj−1f(y)− Sj−1f(x))∆jg(y)dy

∣∣∣∣pdx)1/p

≲
∑
|η|=1

∥[z 7→ zηF−1(−ψαν pj)(z)] ∗ ∂η(Sj−1f)∥Lp∥∆jg∥L∞

≲
∑
|η|=1

∥z 7→ zηF−1(−ψαν pj)(z)∥L1∥∂ηSj−1f∥Lp∥∆jg∥L∞

for a multi-index η and using that Sj−1f(x)−Sj−1f(y) =
∫ 1

0
DSj−1f(λx+(1−λ)y))(x−

y)dλ with λx + (1 − λ)y = (1 + λ)x − λy − (x − y) (and substituting y → x − y,
x → (1 + λ)x − λy) and Young’s inequality for the last estimate. We have that, as
σ < 1,

∥∂ηSj−1f∥Lp∥∆jg∥L∞ ≲ 2−j(σ−1+ς)∥∂ηf∥C σ−1
p
∥g∥C ς ≲ 2−j(σ−1+ς)∥f∥C σ

p
∥g∥C ς .

Moreover, we obtain

∥z 7→ zηF−1(−ψαν pj)(z)∥L1 = 2jα∥z 7→ zηF−1(ψαν (2−j·)p0(2−j·))(z)∥L1

= 2jα2−j∥F−1(∂η[ψαν p0](2
−j·))∥L1

≲ 2j(α−1)

using that

∥F−1(∂η[ψαν p0](2
−j·))∥L1 = ∥2jdF−1(∂η[ψαν p0])(2

−j·)∥L1 = ∥F−1(∂η[ψαν p0])∥L1 <∞.

Together we have

∥∆j[(−L α
ν )(f 4 g)− f 4 (−L α

ν )g]∥Lp ≲ 2−j(σ+ς−α)∥f∥C σ
p
∥g∥C ς ,

which yields the claim.
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Proof of Lemma 3.9. For ϑ ∈ [−1,∞), the claim follows from [Per14, Lemma 5.3.20
and Lemma 5.5.7], applied to φ(z) = exp(−ψαν (z)). Here, [Per14, Lemma 5.3.20] can
be generalized, with the notation from that lemma, to u ∈ C α

p for p ∈ [1,∞] arguing
analoguously as in the proof of Lemma 3.8.
It remains to prove the commutator for ϑ ∈ [−α,−1). For that we note that

Pt(u4 v)− u4 Pt(v) = (Pt − Id)(u4 v)− u4 (Pt − Id)v

=

∫ t

0

[(−L α
ν )Pr(u4 v)− u4 (−L α

ν )Prv]dr.

For the operator (−L α
ν )Pr we have by Lemma 3.10 below (whose claim follows from

(3.11) for ϑ ⩾ 0 and Lemma 3.8), that for θ ⩾ 0 (uniformly in r ∈ [0, t])

∥(−L α
ν )Pr(u4 v)− u4 (−L α

ν )Prv∥C σ+ς−α+θ
p

≲ r−θ/α∥u∥C σ
p
∥v∥C ς

holds true and thus we obtain (taking θ = ϑ+ α ⩾ 0)

∥Pt(u4 v)− u4 Pt(v)∥C ς+σ+ϑ
p

⩽
∫ t

0

∥(−L α
ν )Pr(u4 v)− u4 (−L α

ν )Prv∥C (ς+σ−α)+(ϑ+α)
p

dr

≲ ∥u∥C σ
p
∥v∥C ς

∫ t

0

r−(ϑ+α)/αdr ≲ t−ϑ/α∥u∥C σ
p
∥v∥C ς ,

where the last two estimates are valid for ϑ ∈ [−α, 0).

Proof of Lemma 3.10. We have that

(−L α
ν )Pt(u4 v)− u4 (−L α

ν )Ptv = (−L α
ν )
(
Pt(u4 v)− u4 Ptv

)
+ (−L α

ν )(u4 Ptv)− u4 (−L α
ν )Ptv.

The first summand, we estimate by the commutator for (Pt) from Lemma 3.9, and
continuity of the operator (−L α

ν ) from Proposition 3.5, which gives

∥(−L α
ν )
(
Pt(u4 v)− u4 Ptv

)
∥C σ+ς+θ−α

p
≲ ∥Pt(u4 v)− u4 Ptv∥C σ+ς+θ

p

≲ t−ϑ/α∥u∥C σ
p
∥v∥C ς .

The second summand follows from the commutator for (−L α
ν ). If α = 2, then the

estimate is immediate due to Leibnitz rule, σ < 1 and Schauder estimates for Pt as
θ ⩾ 0. If α ∈ (1, 2), then we apply Lemma 3.8 with f = u and g = Ptv and use the
Schauder estimates with θ ⩾ 0, Lemma 3.7, to obtain

∥(−L α
ν )(u4 Ptv)− u4 (−L α

ν )Ptv∥C σ+ς−α+θ
p

≲ ∥u∥C σ
p
∥Ptv∥C ς+θ ≲ t−θ/α∥u∥C σ

p
∥v∥C ς .

Altogether, we obtain the desired bound.
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Proof of Lemma 3.11. The proof of the lemma uses the ideas from the proof of [GIP15,
Lemma A.9]. Let δ ∈ (0, T−t

2
) to be chosen later. Then we have that for j ⩾ −1

∆j

∫ T

t

ft,rdr =

∫ T

t

∆jft,rdr =

∫ T

t+δ

∆jft,rdr +

∫ t+δ

t

∆jft,rdr.

The first summand we estimate as follows, using Minkowski’s inequality,∥∥∥∥∫ T

t+δ

∆jft,rdr

∥∥∥∥
Lp

⩽
∫ T

t+δ

∥∆jft,r∥Lpdr

⩽ C2−j(σ+ς+ες)
∫ T

t+δ

(T − r)−γ(r − t)−(1+ε)dr

= C2−j(σ+ς+ες)(T − t)−γ−ε
∫ 1

δ/(T−t)
(1− r)−γr−(1+ε)dr

⩽ [2 max(ε−1, (1− γ)−1)C]2−j(σ+ς+ες)(T − t)−γ−ε(δ/(T − t))−ε

= [2 max(ε−1, (1− γ)−1)C]2−j(σ+ς)(T − t)−γ(2jςδ)−ε,

where we used that for σ ∈ (0, 1
2
), as ε > 0 and γ < 1,∫ 1

σ

(1− r)−γr−(1+ε)dr =

∫ 1/2

σ

(1− r)−γr−(1+ε)dr +

∫ 1

1/2

(1− r)−γr−(1+ε)dr

⩽ [(
1

2
)−γε−1 + (

1

2
)−γ(1− γ)−1]σ−ε ⩽ 2 max(ε−1, (1− γ)−1)σ−ε.

For the second summand, we have∥∥∥∥∫ t+δ

t

∆jft,rdr

∥∥∥∥
Lp

⩽ C2−jσ
∫ t+δ

t

(T − r)−γdr

=
C

1− γ
2−jσ[(T − t)1−γ − (T − t− δ)1−γ]

=
C

1− γ
2−jσ(T − t)−γ[(T − t)− (T − t− δ)

( T − t
T − t− δ

)γ
]

⩽
C

1− γ
2−jσ(T − t)−γδ.

The goal is to estimate supj⩾−1 2j(σ+ς)
∥∥∆j

∫ T
t
ft,rdr

∥∥
Lp . For that purpose, we use for j

such that 2−jς ⩽ T−t
2

the above estimates for δ = 2−jς . If j is such that 2−jς > T−t
2

,
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then we trivially estimate∥∥∥∥∆j

∫ T

t

ft,rdr

∥∥∥∥
Lp

⩽ C2−jσ
∫ T

t

(T − r)−γdr =
C

1− γ
2−jσ(T − t)1−γ

⩽
C

1− γ
2−j(σ+ς)(T − t)−γ

using γ < 1. Together we thus obtain uniformly in t ∈ [0, T ]

sup
j⩾−1

2j(σ+ς)
∥∥∥∥∆j

∫ T

t

ft,rdr

∥∥∥∥
Lp

⩽ [2 max(ε−1, (1− γ)−1)C](T − t)−γ,

which yields the claim.
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Proof of Lemma 4.3. We prove this by induction. For n = 0 the claim is true, so we
assume that it holds for n and establish it also for n + 1. We get with Campbell’s
formula (see [Kin93, Section 3.2]):

Φ(λ) = exp

(∫ t

r

∫
|y|⩽C

(eλ|y|
2 − 1)µ(dy)ds

)
= exp

(
(t− r)

∫
|y|⩽C

(eλ|y|
2 − 1)µ(dy)

)
,

and therefore

Φ(n+1)(λ)

= ∂λΦ(n)(λ)

= ∂λ

Φ(λ)
∑

ω∈Nn
0 :|ω|=n

c(n, ω)
n∏
i=1

(
(t− r)

∫
|y|⩽C

|y|2ieλ|y|2µ(dy)

)ωi


= Φ(λ)(t−r)

∫
|y|⩽C
|y|2eλ|y|2µ(dy)

∑
ω∈Nn

0 :|ω|=n

c(n, ω)
n∏
i=1

(
(t−r)

∫
|y|⩽C

|y|2ieλ|y|2µ(dy)

)ωi

+ Φ(λ)
∑

ω∈Nn
0 :|ω|=n

c(n, ω)∂λ

(
n∏
i=1

(
(t− r)

∫
|y|⩽C

|y|2ieλ|y|2µ(dy)

)ωi

)
.

The first term on the right-hand side is of the claimed form with the choice ω̃ =
(ω1 + 1, ω2, . . . , ωn, 0) ∈ Nn+1

0 such that |ω̃| = n + 1. For the second term on the
right-hand side we get by Leibniz’s rule

∂λ

(
n∏
i=1

(
(t− r)

∫
|y|⩽C

|y|2ieλ|y|2µ(dy)

)ωi

)

=
n∑
j=1

n∏
i ̸=j

(
(t− r)

∫
|y|⩽C

|y|2ieλ|y|2µ(dy)

)ωi

× ωj
(

(t− r)
∫
|y|⩽C

|y|2jeλ|y|2µ(dy)

)ωj−1

× (t− r)
∫
|y|⩽C

|y|2(j+1)eλ|y|
2

µ(dy)

=
n+1∑
j=1

ωj

n+1∏
i=1

(
(t− r)

∫
|y|⩽C

|y|2ieλ|y|2µ(dy)

)ω̃j
i

,

with ω̃ji ∈ Nn+1
0 defined by

ω̃ji =


ωi, i ̸= j, j + 1,
ωj − 1, i = j,
ωj+1 + 1, i = j + 1.
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As required we have |ω̃j| = |ω| − j + (j + 1) = |ω|+ 1 = n+ 1, and thus the proof is
complete. By plugging λ = 0 into (4.4), we obtain (4.5).

Proof of Lemma 4.28. We use the paracontrolled structure of u to prove the bound
(4.29), but nonetheless the bound does not trivially follow from that. We abbreviate θ :=
α+ β. Let us first make some observations. By the Schauder estimates, Corollary 3.12,
we have that JT (∂iV ) ∈ (L 0,θ−1+(1−γ)α

T )d as V ∈ CTC β+(1−γ)α
Rd , and thus by the

interpolation estimates, specifically (3.26) from Lemma 3.17 (applied for θ̃ = 2(θ−1) ∈
(0, α)), we obtain that JT (∂iV ) ∈ C2(θ−1)/α

T C (1−γ)α−(θ−1)

Rd and ∇u ∈ C2(θ−1)/α
T C −(θ−1)

Rd .
With that, we can estimate the resonant and paraproduct product as (1− γ)α > 0 and
the following notation ∇usr(x) := ∇u(r, x)−∇u(s, x) (and analogously for JT (∂iV ))

∥∇usr � JT (∂iV )r∥L∞ + ∥∇usr 4 JT (∂iV )r∥L∞

≲ ∥∇usr � JT (∂iV )r∥C (1−γ)α + ∥∇usr 4 JT (∂iV )r∥C (1−γ)α

≲ ∥JT (∂iV )∥CT C θ−1+(1−γ)α∥∇u∥
C

(2θ−2)/α
T C−(θ−1) |r − s|(2θ−2)/α. (A.1)

Furthermore, using that by assumption (1− γ)α− (θ − 1) = −γα− β + 1 < 0 since
γ ⩾ (2β + 2α− 1)/α > (1− β)/α in the rough case, and γ > (1− β)/α in the Young
case (cf. Definition 3.20), we obtain

∥JT (∂iV )sr �∇us∥L∞ + ∥JT (∂iV )sr 4∇us∥L∞

≲ ∥JT (∂iV )sr �∇us∥C (1−γ)α + ∥JT (∂iV )sr 4∇us∥C (1−γ)α

≲ ∥JT (∂iV )∥
C

2(θ−1)/α
T C (1−γ)α−(θ−1)∥∇u∥CT C θ−1|r − s|(2θ−2)/α. (A.2)

Notice that we do not have the symmetric estimate for the time difference in the upper
part of the product.
Moreover, using the paracontrolled structure we have that

∂iu(r, x)− ∂iu(s, y)

= (∇u4 JT (∂iV ))(r, x)− (∇u4 JT (∂iV ))(s, y) + ∂iu
♯(r, x)− ∂iu♯(s, y)

+ (∂i∇u4 JT (V ))(r, x)− (∂i∇u4 JT (V ))(s, y)

= (∇u4 JT (∂iV ))(r, x)− (∇u4 JT (∂iV ))(s, y) + g(r, x)− g(s, y) (A.3)

for g defined as

g := ∂iu
♯ + ∂i∇u4 JT (V ).

By ∂i∇u 4 JT (V ) ∈ C(2θ−2)/α
T L∞ ∩ CTC 2θ−2, ∂iu

♯ ∈ C(2θ−2)/α
T L∞ ∩ CTC 2θ−2 and the

interpolation estimates, we obtain the desired estimate for g:

|g(r, x)− g(s, y)| ⩽ |g(r, y)− g(s, y)|+ |g(r, x)− g(r, y)|
≲ |r − s|(2θ−2)/α + |x− y|2θ−2.
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Thus it is left to show that

|(∇u4JT (∂iV ))(r,x)−(∇u4JT (∂iV ))(s,y)−∇u(s,y)·(JT (∂iV )(r,x)−JT (∂iV )(s,y))|
≲ |t− s|(2θ−2)/α + |x− y|2θ−2.

To that aim, we replace r by s and subtract the remainder, such that we obtain∣∣(∇u4 JT (∂iV ))(r, x)− (∇u4 JT (∂iV ))(s, y)

−∇u(s, y) · (JT (∂iV )(r, x)− JT (∂iV )(s, y))
∣∣

⩽
∣∣(∇u4 JT (∂iV ))(s, x)− (∇u4 JT (∂iV ))(s, y)

−∇u(s, y) · (JT (∂iV )(s, x)− JT (∂iV )(s, y))
∣∣

+ |(∇u4 JT (∂iV ))sr(x)−∇u(s, y)JT (∂iV )sr(x)|. (A.4)

For the first term in (A.4), we abbreviate v = JT (∂iV )s ∈ C θ−1
Rd and u = ∇us ∈ C θ−1

Rd

and utilize the space regularities to prove the claim

|u4 v(x)− u4 v(y)− u(y)(v(x)− v(y))| ≲ |x− y|2θ−2. (A.5)

To prove (A.5), we use ideas from the proof of [GIP15, Lemma B.2]. We write

u4 v(x)− u4 v(y)− u(y)(v(x)− v(y))

=
∑
j⩾−1

(Sj−1u(x)− u(y))(∆jv(x)−∆jv(y)) +
∑
j

(Sj−1u(y)− Sj−1u(x))∆jv(y)

(A.6)

with the notation Sj−1u :=
∑

−1⩽i⩽j−1 ∆iu. The first summand, we estimate in two

different ways, once using that C θ−1 ⊂ Cθ−1, where Cθ−1 is the Hölder space with
θ − 1 ∈ (0, 1) and on the other hand using the mean value theorem, such that

|(Sj−1u(x)− u(y))(∆jv(x)−∆jv(y))|
≲ 2−j(θ−1)∥u∥θ−1

(
|x− y|θ−1∥v∥θ−1 ∧ |x− y|∥D∆jv∥L∞

)
≲ 2−j(θ−1)∥u∥θ−1

(
|x−y|θ−1∥v∥θ−1∧|x−y|2−j(θ−2)∥v∥θ−1

)
.

The second summand, we estimate analogously using θ−1 ∈ (0, 1) (and thus θ−2 < 0)

|(Sj−1u(y)− Sj−1u(x))∆jv(y)|
≲
(
|x− y|θ−1∥u∥θ−1 ∧ |x− y|∥DSj−1u∥L∞

)
2−j(θ−1)∥v∥θ−1

≲
(
|x− y|θ−1∥u∥θ−1 ∧ |x− y|2−j(θ−2)∥u∥θ−1

)
2−j(θ−1)∥v∥θ−1.

We can w.l.o.g. assume that |x − y| ⩽ 1. Otherwise the estimate (A.5) is trivial as
u, v ∈ L∞. Then we let j0 such that 2−j0 ∼ |x− y| and decompose both sums in (A.6)
in the part with j > j0, such that 2−j < 2−j0 ⩽ |x − y|, and in the part with j ⩽ j0
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(i.p. a finite sum), such that 2−j ⩾ |x− y|, and perform an analogous estimate for the
two. We write down the estimate for the first sum. That is, we have∑

j⩾−1

|(Sj−1u(x)− u(y))(∆jv(x)−∆jv(y))|

≲ ∥u∥θ−1∥v∥θ−1

(∑
j>j0

|x− y|θ−12−j(θ−1) +
∑
j⩽j0

|x− y|2−j(θ−2)2−j(θ−1)

)
≲ ∥u∥θ−1∥v∥θ−1

(
|x− y|θ−12−j0(θ−1) +

∑
j⩽j0

|x− y||x− y|2θ−3

)
≲ ∥u∥θ−1∥v∥θ−1

(
|x− y|θ−1|x− y|(θ−1) + |x− y||x− y|2θ−3

)
= ∥u∥θ−1∥v∥θ−1|x− y|2θ−2

using θ− 1 > 0, such that the first series converges, and 2θ− 3 < 0 and that the second
sum is a finite sum. Hence the claim (A.5) follows. Rewritten in the previous notation,
we thus obtain a bound uniformly in s, x, y, that is,∣∣(∇u4 JT (∂iV ))(s, x)− (∇u4 JT (∂iV ))(s, y)

−∇u(s, y) · (JT (∂iV )(s, x)− JT (∂iV )(s, y))
∣∣

≲ |x− y|2θ−2.

We are left with the second term in (A.4), that we furthermore decompose as follows

|(∇u4 JT (∂iV ))sr(x)−∇u(s, y) · JT (∂iV )sr(x)|
⩽ |∇us 4 JT (∂iV )sr(x)−∇u(s, x) · JT (∂iV )sr(x)|+ |∇usr 4 JT (∂iV )r(x)|

+ |(∇u(s, x)−∇u(s, y)) · JT (∂iV )sr(x)|
⩽ |∇us 5 JT (∂iV )sr(x)|+ |∇us � JT (∂iV )sr(x)|+ |∇usr 4 JT (∂iV )r(x)|

+ |(∇u(s, x)−∇u(s, y)) · JT (∂iV )sr(x)|
≲ |r − s|(2θ−2)/α + |(∇u(s, x)−∇u(s, y)) · JT (∂iV )sr(x)|
≲ |r − s|(2θ−2)/α + |x− y|θ−1|r − s|(θ−1)/α,

where we used the estimates from the beginning, that is (A.1) and (A.2). Thus
altogether we obtain the estimate for (A.4):∣∣(∇u4 JT (∂iV ))(r, x)− (∇u4 JT (∂iV ))(s, y)

−∇u(s, y) · (JT (∂iV )(r, x)− JT (∂iV )(s, y))
∣∣

≲ |r − s|(2θ−2)/α + |x− y|2θ−2 + |x− y|θ−1|r − s|(θ−1)/α,

where for |x− y| < |r− s|1/α as well as for |x− y| ⩾ |r− s|1/α (i.e. |r− s| ⩽ |x− y|α),
we obtain the desired estimate (4.29).
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Appendix for Chapter 5
Proof of Lemma 5.1. To show (5.2), we notice that by the isometry of the spaces
L2(Td), l2(Zd) by the Fourier transform,

∥∆jL
α
ν u∥2L2(Td) =

∑
k∈Zd

|ρj(k)ψαν (k)û(k)|2.

Due to ρj(k) ̸= 0 only if |k| ∼ 2j and |ψαν (k)| ≲ |k|α, we obtain that

∥∆jL
α
ν u∥2L2(Td) ≲ 22jα

∑
k∈Zd

|ρj(k)û(k)|2 = 22jα∥∆ju∥2L2(Td)

and thus

∥L α
ν u∥C β−α

2 (Td) = sup
j

2j(β−α)∥∆jL
α
ν u∥L2(Td) ≲ sup

j
2jβ∥∆ju∥L2(Td) = ∥u∥C β

2 (Td).

To show (5.3), we again use the isometry, such that

∥∆jPtu∥2L2(Td) =
∑
k∈Zd

|ρj(k) exp(−tψαν (k))û(k)|2.

For j = −1, ρj is supported in a ball around zero and as |exp(−tψαν (k))| ⩽ 1, the
estimate ∥∆jPtu∥2L2(Td)

≲ (t−θ/α ∨ 1)2θ
∑

k∈Zd |ρj(k)û(k)|2 holds trivially for θ ⩾ 0. For

j > −1, pj is supported away from zero and we can use that exp(−tψαν (·)) is a Schwartz
function away from 0 and thus, for |k| > 0, |exp(−tψαν (k))| ≲ (tψαν (k) + 1)−θ/α ≲
t−θ/α|k|−θ, for any θ ⩾ 0. Thus, for j > −1, we obtain

∥∆jPtu∥2L2(Td) ⩽ 2−2jθt−θ/α
∑
k∈Zd

|ρj(k)û(k)|2 = 2−2jθt−θ/α∥∆ju∥2L2(Td),

such that together (5.3) follows. To obtain the remaining estimate, we argue in a
similar manner using that, due to Hölder-continuity of the exponential function, for
θ/α ∈ [0, 1], |exp(−tψαν (k))− 1| ⩽ |tψαν (k)|θ/α ⩽ tθ/α|k|θ.
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einverstanden.

Datum: Unterschrift:

213





Bibliography

[ABLM22] Siva Athreya, Oleg Butkovsky, Khoa Lê, and Leonid Mytnik. Well-
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[GP93] István Gyöngy and Etienne Pardoux. On the regularization effect
of space-time white noise on quasi-linear parabolic partial differential
equations. Prob. theory and related fields, 97(1):211–229, 1993.

[GP15] Massimiliano Gubinelli and Nicolas Perkowski. Lectures on singular
stochastic PDEs. Ensaios Mat., 29, 2015.

[GP16] Massimiliano Gubinelli and Nicolas Perkowski. The Hairer–Quastel
universality result at stationarity. RIMS Kôkyûroku Bessatsu, B59,
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equations with Lévy noise. Bernoulli, 28:1648–1674, 2022.

[Hel73] Wolfgang Helfrich. Elastic properties of lipid bilayers: theory and
possible experiments. Zeitschrift für Naturforschung C, 28(11-12):693–
703, 1973.
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[RW01] Michael Röckner and Feng-Yu Wang. Weak Poincaré inequalities and
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