
Adaptive Discontinuous Galerkin
Methods for Variational Inequalities

with Applications to Phase Field Models

Dissertation

zur Erlangung des Grades eines Doktors der Naturwissenschaften
am Fachbereich Mathematik und Informatik der Freien Universität Berlin

vorgelegt von

Jes Lasse Hinrichsen-Bischoff

Berlin 2022

Betreuer: Prof. Dr. Carsten Gräser (Freie Universität Berlin)
Erstgutachter: Prof. Dr. Carsten Gräser (Freie Universität Berlin)
Zweitgutachter: Prof. Dr. Oliver Sander (Technische Universität Dresden)

Tag der Disputation: 06.01.2023

Selbstständigkeitserklärung

Name: Hinrichsen-Bischoff
Vorname: Jes Lasse

Ich erkläre gegenüber der Freien Universität Berlin, dass ich die vorliegende Disser-
tation selbstständig und ohne Benutzung anderer als der angegebenen Quellen und
Hilfsmittel angefertigt habe. Die vorliegende Arbeit ist frei von Plagiaten. Alle
Ausführungen, die wörtlich oder inhaltlich aus anderen Schriften entnommen sind,
habe ich als solche kenntlich gemacht. Diese Dissertation wurde in gleicher oder
ähnlicher Form noch in keinem früheren Promotionsverfahren eingereicht.
Mit einer Prüfung meiner Arbeit durch ein Plagiatsprüfungsprogramm erkläre ich mich
einverstanden.

Datum: Unterschrift:
(Jes Lasse Hinrichsen-Bischoff)

Contents

1. Introduction 7
1.1. Acknowledgments . 10

2. Variational Inequalities and Phase Field Models 11
2.1. Mathematical Preliminaries and Notation 11

2.1.1. Domain . 11
2.1.2. Function Spaces . 11

2.2. Variational Inequalities of the First Kind 14
2.2.1. The Obstacle Problem . 15

2.3. Variational Inequalities of the Second Kind 17
2.4. Allen–Cahn Phase Field Models . 17

3. Discretization 21
3.1. Time Discretization of the Allen–Cahn Equation 21

3.1.1. Fully Implicit Euler Scheme . 22
3.1.2. Semi-implicit Euler Scheme . 23

3.2. Spatial Discretization – Discontinuous Galerkin 24
3.2.1. The Discontinuous Finite Element Space 24
3.2.2. Symmetric Interior Penalty DG 29

3.3. Discretization of the Obstacle Problem 35
3.3.1. A Priori Error Estimates . 38

3.4. Discretization of Variational Inequalities of the Second Kind 52

4. Algebraic Solution 55
4.1. Truncated Nonsmooth Newton Multigrid 56

4.1.1. Nonlinear Smoothing . 57
4.1.2. Abstract TNNMG Algorithm . 58
4.1.3. Linear Correction . 59

4.2. Linear Multilevel Solver . 61
4.2.1. hp-Multigrid for Discontinuous Galerkin Discretizations 62

4.3. Parallel Smoothers . 67
4.3.1. Preconditioned Nonlinear Gauss–Seidel 69
4.3.2. Application: Parallel TNNMG using Nonlinear `1-Smoother . . . 72

5. Adaptive Numerical Approximation 75
5.1. Hierarchical A Posteriori Error Estimation 76

5.1.1. Hierarchical Error Estimators with Interior Penalty DG 81
5.2. Adaptive Algorithm . 92

5.2.1. Marking Strategy . 93

5

Contents

5.2.2. hp-Refinement Criterion . 94

6. Implementation Aspects 97
6.1. Discretization in DUNE . 97
6.2. DUNE-HPDG . 98

6.2.1. Function Spaces . 98
6.2.2. Data Structures . 99
6.2.3. Matrix-free Operators . 101
6.2.4. Multigrid Solver . 101

7. Numerical Experiments 103
7.1. Obstacle Problem . 103

7.1.1. Discretization and Parameters 103
7.1.2. Convergence of Adaptive Algorithms 105
7.1.3. Limiting Polynomial Degree in hp-Adaptivity 115
7.1.4. Accuracy of Error Estimator . 116
7.1.5. Comparison with Continuous Finite Elements 116

7.2. Obstacle Problem with Corner Singularity 117
7.3. Allen–Cahn Phase Field Models . 120

7.3.1. Obstacle Potential . 120
7.3.2. Logarithmic Potential . 123

7.4. Application: Ambrosio–Tortorelli for Image Segmentation 124
7.4.1. Discretization and Algebraic Solution 126
7.4.2. Adaptive Algorithm . 127
7.4.3. Examples . 129

7.5. Algebraic Solver . 132
7.5.1. Linear System . 134
7.5.2. Parallel Solution of the Algebraic Problem 135

8. Conclusion 139

Appendices 141

A. Details 143

B. Zusammenfassung 147

Bibliography 149

6

1. Introduction

Many phenomena in scientific applications are modeled with partial differential equa-
tions. In the modern, functional-analytic approach, a weak formulation is used to find
solutions in a variational setting [54]. Many (stationary) problems can be modeled by
finding a function u in some suitable function space H which solves the variational
problem

a(u, v) = `(v) ∀v ∈ H. (1.1)

That is, for a given bilinear form a(·, ·), we try to find a u ∈ H such that a(u, ·) ∈ H ′
resolves to the same linear functional as the data ` ∈ H ′. For suitable a, the existence
and uniqueness of a solution in a Hilbert space H is guaranteed through the Lax–
Milgram theorem [54].

In this thesis, we look at the more general framework of variational inequalities.
Variational inequalities are used to model a wide range of physical phenomena, such
as for example porous media flow [13], contact problems [73] and many more, see
also [91] and the references therein. The mathematical formulation is similar to the
linear case (1.1). Again, we search for a function u ∈ H, which solves the following
inequality:

a(u, v − u) + j(v)− j(u) ≥ `(v − u) ∀v ∈ H. (1.2)

Here, j is a suitable functional depending on the particular model. Choosing j ≡ 0
gives us again the linear problem (1.1), hence generalizing the variational equality
case. Under suitable assumptions on a and j, we have again existence and uniqueness
of solutions in a Hilbert space H via the Lions–Stampacchia theorem [82](cf. Theorem
2.13). Choosing j = χK as the indicator functional for a convex set K ⊂ H gives us the
important class of (so called) variational inequalities of the first kind. In particular, if
K is chosen such that it contains all functions from H which do not violate given ob-
stacle functions pointwise, we speak of an obstacle problem. These obstacle problems
can be used, e. g., to model the extension of a membrane under force constrained by
a physical obstacle. In a broader spectrum, obstacle problems also arise as subprob-
lems in (semi-)discretized problems for other models. If, for instance, one considers
a phase field modeled through the Allen–Cahn equation with an obstacle potential,
the stationary problems arising after suitable time discretization are elliptic obstacle
problems. Since phase field models are used in a great number of applications, e. g. in
material science (see e. g. [105] for an overview), mechanics (e. g. for the simulation of
brittle fracture, see [3] for an overview), image segmentation [87] and many more, the
efficient numerical treatment of these is of practical importance. However, many of
the variational inequalities arising admit a central problem: Their solution might be
of very limited regularity even for smooth data [74]. This complicates the numerical
analysis and makes efficient numerical treatment hard. It is not obvious how to dis-
cretize the problem such that higher order convergence is obtained. Note that, e. g. a

7

1. Introduction

discretization of the obstacle problem by piecewise quadratic finite element functions
in P2 only leads to a convergence order of O(h1.5−ε) [38] instead of O(h2) as one might
expect from the linear case. Hence, we cannot expect better numerical efficiency solely
by using higher order finite element functions. We can however use approaches which
try to resolve the different local behaviors of the solution adequately. To this end, we
can try to refine the finite element space accordingly using an adaptive approach. An
important observation is that for many solutions to variational inequalities, there are
indeed (typically large) regions where the solution is locally much smoother than the
global regularity implies. For example, the parts which reduce the regularity of the
solution to an obstacle problem are usually at the (lower dimensional) free boundary,
where the PDE-governed and the obstacle constrained parts of the solution meet. The
central idea of this thesis is to apply an hp-adaptive approach which tries to exploit the
smoother parts with higher order functions (the “p” part of hp-adaptivity highlights
the order parameter p), while the less regular parts have to be resolved with a finer
grid width (denoted with “h”). Since hp-adaptivity is very complicated to achieve in
a standard (that is, continuous) finite element setting, we opt for the discontinuous
Galerkin method. There, functions are only defined on their respective grid element
and no inter-element continuity is required. The latter can be enforced, e. g., through
a penalty approach [11, 113] which penalizes jumps in the function and therefore gen-
erates solutions which are almost continuous. For an overview of methods to apply
discontinuous Galerkin (DG) methods to linear problems, we refer to [12]. For varia-
tional inequalities, some research has been conducted before. A priori estimates for DG
discretizations with piecewise linear and piecewise quadratic functions were derived in
[47, 110, 111]. None of these, however, exploit the smoother parts with hp-methods. In
this thesis, one of the central results is that we prove convergence and error estimates
for DG discretizations (using a particular discretization of the admissible set K) of
general ansatz orders for the obstacle problem. While in general, the convergence rate
of a naive discretization cannot exceed the O(h1.5) bound, we show that for a care-
fully chosen discretization which acknowledges the free boundary and in particular the
nonsmooth regions, one can indeed obtain higher order convergence rates. These are
numerically verified in the numerical experiments at the end of the thesis. Finally, we
explain how to use a similar approach for (the more general) variational inequalities
of the second kind (see equation (1.2)). Proving convergence and error estimates for
these can be subject of future research.

The higher order a priori proof relies on a suitable discretization which is locally
fine enough with respect to the (unknown) solution. Since in a computation, we do
not have the required information beforehand, we use a posteriori error estimates
to set up an adaptive algorithm which should identify the aforementioned smooth
and nonsmooth regions reliably. Due to their versatility and inherent simplicity, we
chose hierarchical error estimates. For (continuous) finite element discretizations, these
have been considered in various publications before, see e. g. [46, 75, 76, 77]. In [15], a
hierarchical error estimator has been proposed for the DG discretization of the obstacle
problem. There, however, the full variational inequality is solved in a bigger space,
which may be too expensive for large spaces. Building on the experiences from the
aforementioned papers, we propose a preconditioned incremental problem which is

8

computationally cheaper due to localization. For a linear model problem, we prove
that the solution of the preconditioned problem is equivalent to the hierarchical error
estimate.

Besides providing a suitable discretization (and an adaptive algorithm to obtain it),
we have to clarify how to solve the arising algebraic problems. For linear problems, a
geometric multigrid approach (see, e. g. [68]) is known to perform well for continuous
finite element discretizations (given that a suitable grid hierarchy is available). Simi-
larly, multigrid methods for DG discretizations have been considered [34, 59]. For the
discrete variational inequalities we are facing here, however, other methods have to
be used to solve the arising nonlinear problems. Many methods have been proposed
to solve these such that the solver converges (cf. Chapter 4 and the references there),
some of these are of multigrid type (see [64]). One particularly promising approach
is the Truncated Nonsmooth Newton Multigrid (TNNMG)[61, 64, 67] method, which
amends nonlinear smoothers with extra corrections obtained from Newton steps in
suitable subspaces. Since it is built on the notion of convexity rather than differen-
tiability [61], it can solve nonsmooth problems in a robust way. In our DG setting, it
proved to be a valuable tool to solve the algebraic systems, as well. Since the conver-
gence proof is built around the fact that the nonlinear smoother reduces energy, we
are required to use such a smoother, as e. g. a nonlinear Gauss–Seidel method. In a
parallel setting, however, it is not obvious how to construct such a smoother. We there-
fore developed a new parallel nonlinear smoother, which is a nonlinear variant of the
so-called `1-smoother [14], and prove its energy reduction property (and consequently
its fitness as a nonlinear smoother in the TNNMG algorithm).

In summary, the thesis explains the full process of solving variational inequalities
using adaptive discontinuous Galerkin methods, including the discretization of the
problem, the (parallel) solution of the algebraic systems and finally adaptively modi-
fying the discretization to suit the particular problem. Besides the description of the
algorithms and methods and practical implementation, we contribute new theoretical
results in all of these areas which support the use of the methods.

The individual chapters are outlined as follows: In Chapter 2, we introduce some
notation and explain the problems we are dealing with. In particular, we will in-
troduce variational inequalities in more detail and describe Allen–Cahn phase field
models. After we know how the continuous problems look like, we will investigate
the discretization in Chapter 3. For the time-dependent phase field models, we will
briefly discuss time discretizations. For the stationary problems, we show the basic
ideas of discontinuous Galerkin finite element spaces and explain a particular method
of applying them, namely the Symmetric Interior Penalty (SIPG) method [11]. After-
wards, we will propose a discretization of the obstacle problem and show some a priori
estimates as explained before. Finally, we will propose the extension of the ideas from
the obstacle problem to more general variational inequalities. Once the discretiza-
tion is chosen, we need to solve the arising algebraic problems, which is described in
Chapter 4. There, the TNNMG method is presented along with a multigrid algorithm
for the linear systems which arise as an intermediate step of the TNNMG algorithm.
Afterwards, we show how a nonlinear smoother can be used even in a parallel set-
ting. Chapter 5 deals with the question of finding a good discretization by applying

9

1. Introduction

an hp-adaptive algorithm. Most of the chapter is dedicated to finding a suitable error
estimator. Once we have such, we explain how elements can be chosen for marking.
Since in an hp setting it has to be decided which kind of refinement should happen
on a marked element (grid refinement (h) or higher polynomial order (p)), we explain
some heuristics at the end of the chapter. Before we test everything with numerical ex-
periments, we briefly explain some characteristics and features of our implementation
in Chapter 6. In particular, we show how we exploit the blocked structure of the finite
element basis functions in a DG space. Finally, in Chapter 7, we test the algorithms
and methods proposed in the preceding chapters in several numerical experiments.
After verifying our theoretical findings on a set of obstacle problems and Allen–Cahn
phase field models, we also apply the algorithms to an image segmentation problem
using the Ambrosio–Tortorelli functional near the end of this chapter.

1.1. Acknowledgments

I would like to take the opportunity to thank the many people who helped preparing
this thesis in one way or another. Most prominently, there is Prof. Dr. Carsten Gräser
who supervised this thesis. He had been a great mentor in the last years, shining with
deep knowledge in many mathematical and technical areas and the ability to clearly
communicate his ideas with me. His endless patience and curiosity in my work has
helped me tremendously and is also valued by many who have had the pleasure of
working with him. Moreover, I want to thank Prof. Dr. Ralf Kornhuber for giving me
the opportunity to work with him. Over the years, he has been a great teacher whose
insights and experience about both mathematics and life in general was invaluable
to me. The other members of Ralf’s and Carsten’s working groups have been good
colleagues and even friends for me. This thesis would not have been possible without
the constant support through family and friends. These are the people that keep me
going. Last, but not least, I want to thank my wife Sandra Bischoff for going the
whole way from my undergraduate studies to this thesis with me. I would not have
been able to achieve all this without her.

In loving memory of Hannah Hinrichsen.

10

2. Variational Inequalities and Phase Field
Models

2.1. Mathematical Preliminaries and Notation

In the following, we will very briefly introduce some notation and assumptions that
should guide the reader through the following chapters. Most of these are well-known
and established but are stated to avoid ambiguities. For more in-depth explanations
we refer to standard texts on functional analysis and partial differential equations,
such as e. g. [1, 54, 115].

2.1.1. Domain

For the remainder of this thesis, we assume the domain Ω to be an open, connected
subset of RN where the spacial dimension N (usually N = 2 or N = 3) has to be
understood in the local context, if relevant. To ease the further analysis, we assume
that Ω satisfies a uniform cone condition, i. e.

Assumption 2.1. We assume that there is a finite cone C such that the following
condition holds: For every x ∈ Ω there is a neighborhood Ux and a cone Cx with vertex
x such that Cx is congruent to C, and it holds

z ∈ Ω ∩ Ux =⇒ z + Cx ⊂ Ω,

see also [115] or [1] for more detailed expositions.

2.1.2. Function Spaces

In the following, we roughly follow [115] and [1].
Let Ω ⊂ RN be a domain with the assumptions introduced in the preceding para-

graph.
For a multiindex s ∈ NN , we write |s| = s1 + · · ·+ sN and

Ds =
∂|s|

∂xs11 . . . ∂xsNN
.

We call the space of real-valued functions f : Ω → R with bounded and continuous
derivatives Dsf , |s| ≤ k (up to k-th order) Ck(Ω) and equip it with the norm

‖f‖Ck(Ω) = sup
|s|≤k,x∈Ω

|Dsf(x)|.

11

2. Variational Inequalities and Phase Field Models

Accordingly, for the set of functions that are continuous up to the boundary of the
domain, we reserve the symbol Ck(Ω) and the norm

‖f‖Ck(Ω) = max
|s|≤k,x∈Ω

|Dsf(x)|, f ∈ Ck(Ω).

The subspace of Ck(Ω) which has Hölder continuous derivatives with constant λ up
to degree k will be denoted by Ck,λ(Ω) and can be normed via

‖f‖Ck,λ(Ω) = ‖f‖Ck(Ω) + max
|s|≤k

sup
x6=y

|Dsf(x)−Dsf(y)|
|x− y|λ ,

cf. [1].
Let LN be the N -dimensional Lebesgue measure on RN . For 1 ≤ p <∞, we denote

the space of Lebesgue-measurable functions f such that∫
Ω

|f(x)|p dLN (x) <∞

by Lp(Ω) and equip it with the usual norm

‖f‖Lp(Ω) =

(∫
|f(x)|p dLN (x)

)1/p

.

For convenience, we will usually write “dx” instead of “dLN”. The space L2(Ω) is a
separable Hilbert space [115] with the following scalar product:

(v, w)L2Ω =

∫
Ω

vw dx, v, w ∈ L2(Ω).

Consequently, we have

‖v‖L2(Ω) =
√

(v, v)L2(Ω).

We may frequently omit the subscript and write (v, w) = (v, w)L2(Ω). Sometimes,
when a particular domain U is to be highlighted, we might write

(v, w)U =

∫
U

vw dx.

When integrating over a (N − 1) manifold embedded in RN (usually the boundary
of an N -dimensional open set), we will denote the surface measure (i. e. the (N − 1)-
dimensional Hausdorff measure dHN−1) by dS.

For p =∞, we say that L∞(Ω) is the set of real-valued functions that are bounded
up to sets of measure zero and define the norm

‖f‖L∞(Ω) = ess sup(f) = sup
x∈Ω\A,
LN (A)=0

|f(x)|.

12

2.1. Mathematical Preliminaries and Notation

Finally, we define the set of locally integrable functions by L1
loc(Ω), i. e. those functions

f defined a. e. on Ω such that f ∈ L1(K) for every open K such that K ⊂⊂ Ω (i. e.
K’s closure is compact in Ω).

To define weak derivatives, we first introduce the space of test functions,

D(Ω) = C∞0 (Ω),

i. e. the set of infinitely often continuously differentiable functions whose support is
compact in Ω. Note that D(Ω) is not a normable space but can be equipped with a
suitable locally convex topology [1].

The dual space D′(Ω) (equipped with the weak-star topology) is called the space of
distributions.

Let u ∈ L1
loc(Ω). We say u has a weak (or distributional) derivative (corresponding

to a multiindex s) if there is a vs ∈ L1
loc(Ω) such that∫

Ω

uDsφ dx = (−1)|s|
∫

Ω

vsφ dx ∀φ ∈ D(Ω).

If u has classical derivatives, these coincide with the weak derivatives and we have
vs = Dsu [1]. Motivated by this fact, we will abuse notation and describe the weak
derivative also by Dsu if it is clear from the context.

Now we can finally define Sobolev spaces. Roughly speaking, these are the functions
which have weak derivatives in Lp(Ω). More precisely, for m ∈ N0 and 1 ≤ p ≤ ∞,

Wm,p(Ω) =
{
v ∈ Lp(Ω) : Dsv ∈ Lp(Ω), |s| ≤ m

}
.

This space is equipped with the norm

‖v‖Wm,p(Ω) =

 ∑
|s|≤m

‖Dsv‖pLpΩ

1/p

.

The special case p = 2 deserves more attention. We write

Wm,2(Ω) = Hm(Ω).

This is consistent with the usual definition of Hm(Ω) spaces due to the uniform cone
condition we assumed in the previous section [115]. The space Hm(Ω) can be equipped
with the scalar product

(v, w)Hk(Ω) =
∑
|s|≤m

(Dsv,Dsw), v, w ∈ Hm(Ω), (2.1)

using again the L2 scalar product. Clearly, we have H0(Ω) = L2(Ω).
As notational convenience, we will frequently write

‖v‖m = ‖v‖Hm(Ω), v ∈ Hm(Ω).

13

2. Variational Inequalities and Phase Field Models

The L2-norm of the weak derivative Dsv is only a half norm on Hm(Ω). Convention-
ally, we will write

|v|s =
√

(Dsv,Dsv). (2.2)

If both the order m of the Sobolev norm and the domain U is to be highlighted, we
may use two subscripts and write

‖v‖m,U := ‖v‖Hm(U).

The analog notation shall hold for half norms (2.2).
For fractional order Sobolev spaces W s,p with non-integer s, there are several ways

to define them which prove to be largely equivalent [1] in many cases. Following [89],
we state one definition using Gagliardo seminorms.

Definition 2.2. Let s ∈ (0, 1). The fractional Sobolev space W s,p(Ω) (1 ≤ p ≤ ∞) is
defined by

W s,p(Ω) =

{
v ∈ Lp(Ω) :

|u(x)− u(y)|
|x− y|n/p+s ∈ L

p(Ω× Ω)

}
.

This space can be equipped with the norm

‖v‖pW s,p(Ω) = ‖v‖pLp(Ω) +

∫
Ω

∫
Ω

|u(x)− u(y)|p
|x− y|n+sp

dxdy.

This space is in a sense an intermediate space between Lp and W 1,p [89]. For non-
integer s greater than one, we split s into an integer part m and a non-integer part
σ ∈ (0, 1),

s = bsc︸︷︷︸
=:m

+ (s− bsc)︸ ︷︷ ︸
=:σ

.

Using this splitting, we have

W s,p(Ω) =
{
v ∈Wm,p(Ω) : Dαv ∈Wσ,p(Ω), for any α s.t. |α| = m

}
.

Consequently, this space can be normed with

‖v‖pW s,p(Ω) = ‖v‖pWm,p(Ω) +

∫
Ω

∫
Ω

|u(x)− u(y)|p
|x− y|n+σp

dxdy.

Remark 2.3. One might add a factor σ(1 − σ) in front of the of the double integral
above to obtain the usual norm if σ ↗ 1 or σ ↘ 0 [89].

2.2. Variational Inequalities of the First Kind

For this chapter, we consider a Hilbert space H. Let (·, ·) : H × H → R and 〈·, ·〉 :
H ′ ×H → R denote H’s inner product and dual pairing, respectively.

14

2.2. Variational Inequalities of the First Kind

To state the problem, consider a continuous bilinear form a (·, ·) on H. We assume
that a(·, ·) is coercive, i. e. there is a α > 0 such that

α‖x‖2 ≤ a(x, x) ∀x ∈ H.

Moreover, let l ∈ H ′.
Problem 2.4. Let K ⊆ H be a closed, convex set (not necessarily bounded). Find
u ∈ K such that

a(u, v − u) ≥ l(v − u) ∀v ∈ K. (2.3)

Equation (2.3) is called a variational inequality of the first kind.

Remark 2.5. For K = H, Problem 2.4 reduces to the linear problem of finding u ∈ H
such that

a(u, v) = l(v) ∀v ∈ H.
By the Lax–Milgram theorem, this problem possesses a unique solution.

Theorem 2.6. Problem 2.4 possesses a unique solution u ∈ H.
Moreover, the problem is well-posed in the sense that the dependence on l is Lipschitz:

Let l1, l2 ∈ H ′ and u1, u2 ∈ H the respective solutions to (2.3). Then, it holds

‖u1 − u2‖H ≤ 1/α‖l1 − l2‖H′ .

Proof. See the Lions–Stampacchia theorem [82].

To illustrate Problem 2.4, we consider the following application.

2.2.1. The Obstacle Problem

The elliptic obstacle problem will serve as an example for variational inequalities of the
first kind. It is both relevant on its own (e. g. modeling the extension of a membrane
perturbed by some obstacle) and as part of the numerical solution process of a time-
discretized parabolic problem such as e. g. the Allen–Cahn equation, see sections 2.4
and 3.1.

For an open, connected domain Ω ⊂ Rd, consider an appropriate subset of L2(Ω),
e. g. H = H1(Ω) (possibly restricted to functions that satisfy given boundary condi-
tions). We choose lower and upper obstacle functions ψ,ψ ∈ H with ψ ≤ ψ almost
everywhere. Then, the set

K =
{
v ∈ H : ψ ≤ v ≤ ψ a.e.

}
(2.4)

is convex and closed.

Remark 2.7. We are free to drop one of the obstacles, such that we consider only a
single obstacle ψ which can be a lower or upper obstacle. Informally, this can also be
seen by setting ψ ≡ −∞ or ψ ≡ ∞.

15

2. Variational Inequalities and Phase Field Models

Example 2.7.1. A prototypical example would be now to consider the Poisson equation

−∆u = f in Ω,

u = 0 on ∂Ω.

In its weak form, this reads

u ∈ H1
0 (Ω): (∇u,∇v) = 〈f, v〉 ∀v ∈ H1

0 (Ω). (2.5)

More generally, we will consider second order elliptic equations of the form

Lu = −div (A∇u) + αu = f, (2.6)

where A(x) ∈ Rd×d is symmetric positive definite for all x, there is a θ > 0 such that
λmin(A(x)) ≥ θ for all x and finally α ≥ 0. For simplicity, we also assume Aij ∈ C1(Ω),
though Aij ∈ L∞(Ω) might suffice in many cases [54].

This gives rise to a bilinear form

a(v, w) = (A∇v,∇w) + α (v, w) .

and a functional
l(v) = 〈f, v〉.

Coercivity and boundedness of a(·, ·) are standard results to be found in any textbook
on partial differential equations, see e. g. [54].

Theorem 2.6 now gives us that there is a unique u ∈ K which solves

Problem 2.8 (Obstacle Problem). Find u ∈ K such that

a(u, v − u) ≥ 〈f, v − u〉 ∀v ∈ K. (2.7)

Over the years several, several regularity results have been established, see e. g.
[74, 96]. For example, we have for the unilateral lower obstacle case:

Theorem 2.9. Assume Ω has a smooth boundary. Let a(·, ·) = (∇·,∇·) and ψ ≡ ∞ (i. e.
no upper obstacle). For 1 < p <∞, assume f ∈ Lp(Ω) and max(−∆ψ−f, 0) ∈ Lp(Ω).
Then, the solution u of the obstacle problem (2.7) has the property

u ∈W 2, p(Ω) ∩ C1, λ(Ω)

with λ = 1−N/p.

Proof. See Theorem 2.3 in [74].

However, simple counter examples exists which show that in general u /∈ C2(Ω) (and
also u /∈ H3(Ω)) even for very smooth data [96]. Thus, even this very simple example
of a variational inequality involves some limitations for both the analytical and the
numerical treatments. Another result by Brezis [37] states that under more severe
assumptions on the problem data and the domain, one has

u ∈W s, p(Ω), 1 < p <∞, s < 2 + 1/p, (2.8)

16

2.3. Variational Inequalities of the Second Kind

see [37, 112].
For our results about a priori error estimates of our discretization schemes, we

will not discuss the requirements on the problem data in detail but rather assume a
certain smoothness of the solution. We will, however, respect the fact that the obstacle
problem’s solution is in general not too smooth and in particular we will not assume
any smoothness that goes beyond (2.8).

2.3. Variational Inequalities of the Second Kind

Picking up the notation from Section 2.2, we will introduce variational inequalities of
the second kind. Again, let a(·, ·) : H×H → R be a continuous, coercive bilinear form
and l ∈ H ′ be a continuous functional.

Definition 2.10. A functional j : X → R is said to be lower semicontinuous if for
any sequence {xk}k ⊂ X with xk → x∗ ∈ X, we have

lim inf j(xk) ≥ j(x∗).
Moreover, we say j is proper if j(x) > −∞ for all x ∈ X and ∃x̃ ∈ X such that
j(x̃) <∞.

Problem 2.11. Assume j : H → R is a convex, lower semicontinuous and proper
functional. Find u ∈ H such that

a(u, v − u) + j(v)− j(u) ≥ l(v − u) ∀v ∈ H. (2.9)

The inequality (2.9) is called a variational inequality of the second kind.

Remark 2.12. Variational inequalities of the first kind can be viewed as a special case of
variational inequalities of the second kind by choosing the indicator functional j = χK,
where

χK(v) =

{
0 if v ∈ K,

∞ else.

Analogously to the case for variational inequalities of the first kind, we can state
existence and uniqueness of solutions:

Theorem 2.13. Problem 2.11 possesses a unique solution u ∈ H.

Proof. See again Lions and Stampacchia [82].

2.4. Allen–Cahn Phase Field Models

In the following, we will consider a simple phase field model introduced by Allen and
Cahn [2]. It describes the separation of phases driven by a gradient flow with respect
to the space L2(Ω) of (a scaled version of) the so-called Ginzburg–Landau energy [56],

E(u) =

∫
Ω

ε

2
|∇u|2 +

1

ε
F (u) dx, (2.10)

17

2. Variational Inequalities and Phase Field Models

with F being a (possibly nonsmooth) double-well potential to be defined later.
We will consider a binary phase field, where a solution u assumes values between

−1 (Phase A) and 1 (Phase B). The regions where u is neither −1 nor 1, often called
interface, is usually of width O(ε) and its evolution is governed by the mean curvature
flow of the zero level set of a given initial function u0 [43]. Indeed, it can be shown
that the zero level set of the Allen–Cahn solution u converges to the mean curvature
flow for ε→ 0 for an appropriate potential F [43, 98].

Mathematically, the Allen–Cahn equation is closely related to the heat equation,
perturbed by a nonlinear potential driving the function values to one of the stable
phases A or B.

In the last decades, the problem has been extensively discussed both from an analytic
and a numerical point of view. For the problem statement, we will follow the notation
of [56]. The Allen–Cahn equation reads as follows:

Problem 2.14. Let Ω ⊂ Rd be a bounded, convex domain with polygonal boundary and
let T > 0 be a finite time horizon. Find u ∈ L2([0, T], H1(Ω)), ut ∈ L2([0, T], H1(Ω))
such that

εut − ε∆u+
1

ε
f(u) = 0 in Ω× (0, T), (2.11)

u = u0 in Ω× {0}, (2.12)

∂u

∂n
= 0 on ∂Ω× (0, T), (2.13)

for some initial state u0 ∈ G =
{
v ∈ L∞(Ω) : |v| ≤ 1

}
.

We assume F to be a double well potential with global minima at ±1 and ε > 0 is
a parameter corresponding to the width of the interface between the two phases.

Some often used potentials are

• the quartic potential F (ξ) = 1
4

(
ξ2 − 1

)2
,

• the logarithmic potential

F (ξ) = χ[−1,1](ξ) +
θ

2

[
(1 + ξ) ln(1 + ξ) + (1− ξ) ln(1− ξ)

]
− θc

2
ξ2

with θ < θc,

• the obstacle potential F (ξ) = 1
2 (1− ξ2) + χ[−1,1](ξ).

All of these potentials have convex and concave parts (creating the double well struc-
ture of the potential). For the further analysis, it is convenient to rewrite these parts
explicitly:

F (ξ) = Φ(ξ)− α

2
ξ2. (2.14)

Here, −α2 ξ2 (with α being 1 for the quartic and obstacle potential and θc for the log-
arithmic potential) is the concave smooth part of the function while Φ is the convex,

18

2.4. Allen–Cahn Phase Field Models

potentially nonsmooth part. To simplify notation, we will assume α = 1 in the follow-
ing. For smooth Φ, the function f in (2.11) is the derivative f(ξ) = F ′(ξ) = Φ′(ξ)− ξ.
If the convex part Φ is nonsmooth, we have to consider the subdifferential of Φ.

Definition 2.15. Let X be a normed vector space. For g : X → R convex, we say
x′ ∈ X ′ is a subgradient of g at x if

g(z) ≥ g(x) + 〈x′, z − x〉 ∀z ∈ X.

The subdifferential ∂g : X → 2X
′

is defined through

x 7→
{
x′ ∈ X ′ : x′ is subgradient of g at x

}
.

Clearly, if g is differentiable at x, we have ∂g(x) = {g′(x)}.
For the Allen–Cahn equation, this means if the convex part Φ might be nonsmooth,

we say f(u) = ∂Φ(u) − u. Since the subdifferential is set-valued, this renders (2.11)
an inclusion of the form

εut − ε∆u+
1

ε
f(u) 3 0 in Ω× (0, T).

Using the convex-concave splitting, we can also rewrite the Ginzburg–Landau energy
accordingly:

E(u) = εE0(u) +
1

ε
φ(u)− 1

ε
‖u‖2,

with

E0(u) =

∫
Ω

|∇u|2 dx, φ(u) =

∫
Ω

Φ(u) dx.

It can be shown that (2.11) can be rewritten as a parabolic variational inequality
of the second kind, see e. g. [57]. Thus, we replace Problem 2.14 by the following
parabolic variational inequality of the second kind:

Problem 2.16. Let H = W 1([0, T], H1(Ω)). Find u ∈ H such that

ε (ut, v − u) + ε
(
∇u,∇(v − u)

)
− 1

ε
(u, v − u) +

1

ε
(φ(v)− φ(u)) ≥ 0 ∀v ∈ H. (2.15)

For the special case of the obstacle potential, i. e. Φ being χ[−1,1], we have that
Problem 2.16 can be translated into a variational inequality of the first kind [74],
namely

Problem 2.17. Let H = W 1([0, T], H1(Ω)). Find u ∈ H such that

ε (ut, v − u) + ε
(
∇u,∇(v − u)

)
− 1

ε
(u, v − u) ≥ 0 ∀v ∈ K, (2.16)

where K = {v ∈ H : |v(·, t)| ≤ 1 a. e. in Ω and for all t}.
We cite the following result about existence and uniqueness of the Allen–Cahn equa-

tion.

19

2. Variational Inequalities and Phase Field Models

Theorem 2.18. For u0 ∈
{
v ∈ L∞(Ω) : |v| ≤ 1 a. e.

}
, Problem 2.16 (and conse-

quently Problem 2.17 as a special case) has a unique solution.

Proof. See [36] for the theoretical foundation and [100] for an extended discussion.
The special case of the obstacle potential was also discussed in [41].

Having the Allen–Cahn equation written as parabolic variational inequality will
allow us to treat it in the same framework as in the stationary case once an appropriate
time discretization has been chosen. Indeed, Problem 2.16 and Problem 2.17 have the
same structure as problems 2.11 and 2.4, respectively. Thus many of the methods for
elliptic problems developed in this thesis carry over and can be applied to phase-field
evolutions.

20

3. Discretization

We are interested in having approximate solutions to the problems introduced in Chap-
ter 2. The natural question which arises is how to turn the continuous (and therefore
generally infinite dimensional) problems into problems of finite dimension which can
be handled by a numerical algorithm. This questions has to be answered both for the
time discretization (if the given problem is not stationary) and for the space discretiza-
tion. Both questions shall be answered in this chapter. Since these are very broad
questions for which (depending on the problem) many answers may exist, we focus
on a small set of methods which we will discuss extensively in this thesis. We start
out by suggesting discretizations in time for the Allen–Cahn equation and continue
by introducing discontinuous Galerkin methods with a special focus on the Symmetric
Interior Penalty Galerkin (SIPG) method. The latter will be first explained for a linear
elliptic model problem and later be applied to variational inequalities.

For the specific case of the obstacle problem, we will derive some new a priori
estimates in Section 3.3 which generalize existing results such as [111]. These are
particularly interesting because they indicate a way how higher order convergence
rates can be obtained despite the limited regularity of the underlying problem.

3.1. Time Discretization of the Allen–Cahn Equation

For the numerical approximation of the Allen–Cahn equation (or more general, for
time-dependent partial differential equations), we are left with two possibilities. First,
one could discretize in space (using e. g. a finite element method on a fixed grid)
and discretize in time afterwards. This method (“method of lines”) has the severe
drawback that one has to decide for a spatial discretization once and for all, effectively
eliminating the possibility of applying adaptively refined spatial discretizations in each
time step. Since the solution of a time-dependent PDE typically evolves with time,
different regions of the domain might have to be more accurately resolved. This is of
course not possible if the spatial discretization is fixed for all time steps.

Hence, we opt for an alternative way by choosing a time-discretization first. This will
lead to elliptic problems in each timestep which subsequently can (maybe adaptively)
be discretized in space (“Rothe’s method” [97]), see also [27] for an extended discussion.

We recall that the Allen–Cahn equation can be written as a variational inequality
of the second kind, see Problem 2.16. Thus, our problem reads (given a suitable initial
function u0)

ε (ut, v − u) + ε
(
∇u,∇(v − u)

)
− 1

ε
(u, v − u) +

1

ε
(φ(v)− φ(u)) ≥ 0 ∀v ∈ H.

21

3. Discretization

In the following, we will briefly discuss two first order time integration schemes for
the Allen–Cahn equation, namely fully implicit and semi-implicit Euler methods.

3.1.1. Fully Implicit Euler Scheme

For a given timestep size τ = T/M > 0, M ∈ N, and the approximation from a
previous time step um, we can apply the implicit Euler method and get the stationary
variational inequality of finding um+1 ∈ H such that

ε

τ

(
um+1 − um, v − um+1

)
+ ε

(
∇um+1,∇(v − um+1)

)
−1

ε
(um+1, v − um+1) +

1

ε
(φ(v)− φ(um+1)) ≥ 0 ∀v ∈ H.

Rearranging terms, we get(
ε

τ
− 1

ε

)(
um+1, v − um+1

)
+ ε

(
∇um+1,∇(v − um+1)

)
+

1

ε
(φ(v)− φ(um+1)) ≥ ε

τ

(
um, v − um+1

)
∀v ∈ H.

(3.1)

Since existence and uniqueness results for solutions of variational inequalities usually
require the bilinear form to be coercive, we deduce that the factor in front of the mass
term should not be negative. Therefore, a restriction on the length τ of each timestep,
namely

τ < ε2

naturally emerges. Indeed, we have

Theorem 3.1. Under the condition τ < ε2, the implicit Euler method (3.1) is stable,
i. e.

ε

2τ

M∑
m=1

‖um − um−1‖20 +
ε

2

M∑
m=1

‖∇um −∇um−1‖20 ≤ E(u0),

where E is the Ginzburg–Landau energy defined in (2.10).

Proof. This is a special case of [65, Theorem 3.3]. The obstacle potential case was also
discussed in [26].

Consequently, the choice of the implicit Euler method is on the one hand reasonable
as it is stable, on the other hand we have a restriction on the time steps that scales
quadratically with the (presumably already small) interface width ε.

Remark 3.2. In [56], error estimates for an implicit Euler discretization of the strong
form of the Allen–Cahn equation have been derived. Of particular interest is that the
authors succeed to circumvent the typical exponential term arising from application
of the Grönwall lemma which would erode any practical applicability of the result.
Instead, they are only left with a term scaling like 1/ε in low polynomial order.

22

3.1. Time Discretization of the Allen–Cahn Equation

Under several (rather complex) regularity assumptions, they show O(τ) error esti-
mates for the time-discretized equation. The convergence rate, however, will decrease
for a less regular u0.

To the best of the author’s knowledge, there are no further results known for general
potentials. There are, however, some results for the quartic potential (see e. g. [103]).
Since we are mostly concerned with the nonsmooth potential case, we will not review
these here.

3.1.2. Semi-implicit Euler Scheme

As a remedy, semi-implicit schemes have been introduced (see, e. g. [43]) which dis-
cretize the concave part of the double-well potential explicitly while applying the im-
plicit scheme to the rest of the variational inequality.

This reads

ε

τ

(
um+1 − um, v − um+1

)
+ ε

(
∇um+1,∇(v − um+1)

)
−1

ε
(um, v − um+1) +

1

ε
(φ(v)− φ(um+1)) ≥ 0 ∀v ∈ H.

Note that we now have (the old state) um in the − 1
ε (· , v − um+1) term. Again,

rearranging terms gives

ε

τ

(
um+1, v − um+1

)
+ ε

(
∇um+1,∇(v − um+1)

)
+

1

ε
(φ(v)− φ(um+1)) ≥

(
ε

τ
+

1

ε

)(
um, v − um+1

)
∀v ∈ H.

(3.2)

In this case, no negative terms in front of the bilinear forms can appear no matter how
large τ is. This promising fact manifests itself in the following theorem, see [43] and
[65]:

Theorem 3.3. The semi-implicit Euler method (3.2) is unconditionally stable, i. e.

(
ε

τ
+

1

2ε

) M∑
m=1

‖um − um−1‖20 +
ε

2

M∑
m=1

‖∇um −∇um−1‖20 ≤ E(u0),

where E is again the Ginzburg–Landau energy defined in (2.10).

Proof. This is a special case of [65, Theorem 3.5].

While this theoretical result looks very promising, it was observed in practical com-
putations that the semi-implicit scheme severely underestimates the speed of the evolu-
tion for large timestep sizes. Even for choices of τ that fulfill the restriction for implicit
schemes, namely τ < ε2, the time discretized problem evolves too slowly [23, 65].

23

3. Discretization

3.2. Spatial Discretization – Discontinuous Galerkin

Discontinuous Galerkin methods are used since the 1970s [12]. While first used for
solving hyberbolic problems, they were adopted in the numerical solution of elliptic
and parabolic problems soon. The variational formulation of many problems allowed to
commit what is called a “variational crime” (see, e. g. [35]) by dropping the continuity
requirement of the ansatz functions in the finite element spaces. Each basis function
in a discontinuous Galerkin finite element space has only support in a single element
of a given grid T . In particular, it is not required that the elements of these spaces
are continuous across element boundaries.

Remark 3.4. In this thesis, we will call the (N − 1)-dimensional intersections of two
elements faces (as opposed to e. g. edges in 2D) independently of N .

To ensure that numerical solutions to the discretized problems are continuous (up to
a certain point) and the bilinear forms arising from discretizing elliptic problems still
fulfill requirements such as stability, certain modifications have to be made. Several
methods have been proposed which emphasize different properties to varying degree.
For an overview, see [12]. There, many of these approaches are put into a joined
framework that allows for a unified analysis.

In this thesis, we will use the symmetric variant of Interior Penalty Discontinuous
Galerkin (SIPG)[11]. The main idea is that discontinuities across element faces are
penalized by adding extra terms in the bilinear form. We emphasize that other DG
methods that give symmetric bilinear forms and are stable could be employed as well.

In recent years, discontinuous Galerkin methods got a renewed interest due to tech-
nical aspects on high performance hardware. The discontinuous structure of the ansatz
spaces offers several possibilities for parallelization and matrix-free computation, which
have been shown to be superior to classical matrix based approaches in certain ap-
plications [81, 88]. In particular, very large problems can become feasible with these
approaches. Moreover, easy handling of non-conforming grids and varying polyno-
mial degrees make discontinuous Galerkin methods particularly suited for hp-adaptive
computations, see also Chapter 5.

3.2.1. The Discontinuous Finite Element Space

For the rest of this work, let Ω be an open, connected domain in RN , where N is
typically 2 or 3, see also the assumptions in Section 2.1. We assume that Ω has a
polygonal boundary.

Definition 3.5. We say the set T is a grid, if it is a partition of Ω consisting of
open disjoint elements K that cover Ω. The elements K in T are required to be
(diffeomorphic) affine images of either the reference cube (0, 1)N or the N -simplex.
For every element K ∈ T , let FK : : K̂ → K denote the diffeomorphism which maps
the reference element to K.

We explicitly do not require that T is conforming, i. e. in particular hanging nodes
are allowed.

24

3.2. Spatial Discretization – Discontinuous Galerkin

Definition 3.6. For a given grid T , we denote that set of (N − 1)-dimensional inter-
sections between grid elements (the inner faces) by Γh, i. e.

Γh =
{
K0 ∩K1 : K0,K1 ∈ T ,dim(K0 ∩K1) = N − 1

}
.

The set of boundary faces is called Γb, i. e.

Γb =
{
e = ∂Ω ∩ ∂K : dim(e) = N − 1,K ∈ T

}
,

Now, the union of these is the set of all faces, defined by

Γ := Γb ∪̇Γh. (3.3)

Finally, we define for a given element K

ΓK = {e ∈ Γ : e ⊂ ∂K}

the set of faces belonging to K.

To avoid potential corner cases, we introduce the following condition [35]:

Definition 3.7. A family of partitions is regular or non-degenerate if there are pos-
itive numbers θ and ρ such that for every K, it holds

1. Every angle of K is greater or equal to θ,

2. for every face e ∈ Γ with e ⊂ ∂K, we have

|∂K|/|e| ≤ ρ.

In particular, the second condition implies that the number of faces corresponding
to a single grid element is uniformly bounded.

Assumption 3.8. All grids considered in this thesis are assumed to be regular. In
particular, if a sequence of grids are considered (say due to refinement), the same
constants θ and ρ hold for all grids.

For a given grid, we can now proceed to define functions defined on grid entities and
construct the discontinuous Galerkin finite element spaces.

Definition 3.9. Let K ∈ T be an element generated as by an affine transformation
of the reference cube K̂. Qk(K) is the space of tensor-product polynomials of degree
k on K ∈ T , i. e. we have

Qk(K) = span

v : K → R : v(x) =

N∏
i=1

vi

(
(F−1
K (x))i

)
, vi ∈ Pk([0, 1])

 ,

where Pk([0, 1]) is the set of all polynomials on the unit interval of degree at most k.

25

3. Discretization

For K being the affine image of the N -simplex (e. g. a triangle), we have the set of
complete polynomials

Pk(K) =

p : K → R : p(x) =
∑

i∈{0,...,k}N
|i|≤k

ci(F
−1
K (x))i, ci ∈ R

 ,

where |i| = ∑N
k=1 ik and yi =

∏N
k=1 y

ik
k for y ∈ RN .

To ease the notation we introduce the following symbol denoting the type of poly-
nomial space depending on the respective reference element of each grid element:

Definition 3.10. For each K ∈ T and its reference element K̂ = F−1
K (K), we define

Pk(K) =

{
Qk(K) if K̂ is a cube,

Pk(K) if K̂ is a simplex.

We can now define the abstract DG space.

Definition 3.11. For a given function p : T → N that assigns every element in T a
polynomial degree, the discontinuous Galerkin space V pT consists of all L2(Ω) functions
that are piecewise polynomials of degree p(K):

V pT =
{
v ∈ L2(Ω) : v|K ∈ Pp(K)(K), K ∈ T

}
. (3.4)

Due to the discontinuous nature of the functions in V pT , they may not be part of the
classical Sobolev spaces Wm,p(Ω) but rather of a broken Sobolev space:

Definition 3.12. For m ≥ 0 and 1 ≤ p ≤ ∞, we define the broken Sobolev space

Wm,p(T) =
{
v ∈ L2(Ω) : v|K ∈Wm,p(K)

}
(3.5)

equipped with the norm

‖v‖Wm,p(T) =

∑
K∈T
‖v‖pWm,p(K)

1/p

,

see also Section 2.1.2 for the definition of (unbroken) Sobolev spaces.

In particular, differential operators on these spaces are to be understood piecewise
and not in the sense of distributions [11].

One can see that while the space V pT is conceptually very close to the classic finite el-
ement space Pk(T), no global constrains such as inter-element continuity are imposed.
This fact also directly influences the construction of the basis functions of V pT . While
not directly necessary for general DG methods, we require the local basis functions to
be of nodal kind, i. e. the coefficients of each function v ∈ Pk(K) should be uniquely
defined by the nodal values v(xi) in a set of nodes {xi} to be chosen:

26

3.2. Spatial Discretization – Discontinuous Galerkin

Definition 3.13. For K ∈ T , and a set of nK := dim(Pp(K)(K)) pairwise distinct

nodes XK =
{
x1, . . . , xnK

}
⊂ K, we say a basis

{
φXKi : i = 1, . . . , nK

}
of Pp(K)(K)

is nodal, if

φXKi (xj) =

{
1 if i = j,

0 else,
.

Since the interpolation in nK nodes produces a unique polynomial, we have that
the choice of nodes XK (called Lagrange nodes) induces a local basis. For notational
convenience, we may later suppress φXKi ’s dependence on XK if the particular choice
of nodes has been made clear from the context.

Remark 3.14. For Pk(K) = Qk(K), the set of nodes is usually generated by the tensor
product of a set of nodes on the real line. These might be equidistant or rather based
on a quadrature rule such as Gauss–Lobatto. For example, if the X̂K is the set of
Gauss-Lobatto nodes in [0, 1] of size k + 1, one has

XK = FK(X̂K × ...X̂K).

The corresponding local basis would be the tensor product of the scalar Lagrange
polynomials defined by the scalar nodes X̂K composed with F−1

K .

While the construction of local basis functions is similar to those for continuous
finite element spaces, we do not explicitly require that there are any Lagrange nodes
on the element boundaries.

Assume for now that for every K ∈ T a corresponding node set XK of appropriate
(with respect to the reference elements and p(K)) size has been chosen. Using the
construction of the local basis functions, we can easily generalize this concept to a
global basis of our DG space V pT .

Definition 3.15. Given an element K ∈ T and a local nodal basis
{
φXKi

}
, we can

define the global basis function

ϕKi (x) =

{
φXKi (x) if x ∈ K,

0 else,
, i = 0, . . . ,dim

(
Pp(K)(K)

)
. (3.6)

It is clear from the definition that each basis function has support only on the closure
of the element K it corresponds to. In fact, DG functions can only be evaluated with
respect to a given element K. The downside to this approach is that a global finite
element function is only well-defined if x ∈ K for a single K ∈ T . For x ∈ e for some
inner face e ∈ Γh, we have values from all adjacent elements. Since the inner faces
form a set of Lebesgue-measure zero, we do not need to define function values there
in the variational setting. However, it will be necessary to introduce the following
notions of jumps and averages across adjacent elements.

Definition 3.16. For any point x in a given inner face K0 ∩ K1 ∈ Γh, we denote
the unit normal vector pointing from K0 into K1 by n0(x) and analogously the unit
normal pointing from K1 into K0 by n1(x). In particular, this implies n0 = −n1.

27

3. Discretization

If only a single element K is considered, we call the outward pointing normal nK(x)
for x ∈ ∂K.

Similarly, for x on the domain’s boundary (in particular on a face e ∈ Γb), we denote
the unit normal pointing outside Ω by n(x).

As usual, we may drop the dependence on x if it is clear from the context where the
normal is evaluated.

Definition 3.17. Let v be piecewise continuous, i. e. v ∈ C0(T). For a face e =
K0 ∩K1 ∈ Γh, we define the jump on e by

JvK = v|K0
n0 + v|K1

n1. (3.7)

The average across the face e is defined by

{v} =
1

2

(
v|K0

+ v|K1

)
. (3.8)

For notional convenience, we also define the J·K and {·} operators for boundary faces
e ∈ Γb with e ⊂ ∂K:

{v} = v|K ,
JvK = v|Kn.

Similarly, for vector-valued functions v ∈ (C0(T))N , we define the jump and average
across an interior face K0 ∩K1 by

JvK = v|K0
· n0 + v|K1

· n1,

{v} =
1

2

(
v|K0

+ v|K1

)
,

where “·” denotes the Euclidian scalar product. For a boundary face e ∈ Γb, e ∈ ∂K,
we say

{v} = v|K .
Remark 3.18. The particular definition for the jumps and averages given in Defini-
tion 3.17 frees us from assigning an artifical ordering between the elements since the
definitions are invariant under permutations of K0’s and K1’s indices.

Other authors might assume an ordering and use a definition that does not involve
the outer normal.

Before we introduce a specific DG scheme, we will define the interpolation operator
Πh.

Definition 3.19. For (piecewise) continuous functions, we define the interpolation
operator Πh : C0(T)→ V pT by locally interpolating in the chosen node set, i. e. we have
that for every K ∈ T ,

Πhv|K ∈ Pp(K)(K), v ∈ C0(T)

is the unique tensor-product polynomial such that

Πhv|K(xi) = v(xi) ∀xi ∈ XK .

28

3.2. Spatial Discretization – Discontinuous Galerkin

3.2.2. Symmetric Interior Penalty DG

The Interior Penalty Discontinuous Galerkin method was introduced for elliptic prob-
lems (in a nonsymmetric formulation) by Mary Wheeler in [113] and analyzed in
greater detail in Douglas Arnold’s PhD thesis[10] and the resulting paper [11]. There,
also the symmetric variant is considered.

Relying on Nitsche’s approach to enforce boundary data [90], Arnold establishes
a method to use functions that are of the form (3.4) to solve parabolic problems
numerically.

As a motivation, we will sketch the derivation of the Symmetric Interior Penalty
Method (SIPG) by considering the following simple model problem:

Problem 3.20. Find u ∈ C2(Ω) ∩ C0(Ω) such that

−∆u = f in Ω,

u = g on ∂Ω,

for suitable f and g.

For a function u0 ∈ H1(Ω) which equals g on the boundary, the weak formulation
on the (“unbroken”) Sobolev space is [31] to find u ∈ H1(Ω) such that

(∇u,∇v) = (f, v) ∀v ∈ H1
0 (Ω), (3.9)

u− u0 ∈ H1
0 (Ω). (3.10)

For these classical Sobolev spaces, one directly translates the (∇u,∇v) into the
symmetric bilinear form

a(u, v) = (∇u,∇v) .

When we assume the solution u to Problem 3.20 to be reasonably smooth, say
at least u ∈ H2(Ω), we can derive a weak formulation tested with broken Sobolev
functions. First, we state the following integration by parts formula, see also [11].

Lemma 3.21. Let φ ∈ H1(T)N and ψ ∈ H1(T). Then, by applying integration by
parts, one has∫

Ω

−∇ · φψ dx =
∑
K∈T

∫
K

−∇ · φψ dx

=
∑
K∈T

∫
K

φ∇ψ dx−
∫
∂K

(φ · nK)ψ dS

= (φ,∇ψ)−
∫
∂Ω

(φ · n)ψ dS −
∑
e∈Γh

∫
e

{φ} JψK + {ψ} JφK dS. (3.11)

Proof. As the bulk parts
∫
K
φ∇ψ dx are obvious, we only consider the lower dimen-

sional face integrals ∫
∂K

(φ · nK)ψ dS.

29

3. Discretization

By construction of the grid, the boundary of any element K ∈ T can be decomposed
into faces, i. e. ∫

∂K

(φ · nK)ψ dS =
∑
e∈ΓK

∫
e

(φ · nK)ψ dS.

If we sum over all integrals on the boundary faces, we get∑
e∈Γb

∫
e

(φ · n)ψ dS =

∫
∂Ω

(φ · n)ψ dS,

which is the second term in (3.11).
Now we consider the inner faces. As we sum over all elements K ∈ T , we will visit

each face e ∈ Γh twice, i. e. for e = K0 ∩K1 ∈ Γh, we have a summand∫
e

(
φ|K0

· n0

)
ψ|K0

dS +

∫
e

(
φ|K1

· n1

)
φ|K1

dS. (3.12)

Using n1 = −n0, expanding all terms in
∫
e
{φ} JψK + {ψ} JφK dS and noticing how

cross terms cancel each other out, we can rewrite (3.12) by:∫
e

(
φ|K0 · n0

)
ψ|K0 dS +

∫
e

(
φ|K1 · (−n0)

)
φ|K1 dS =

∫
e

{φ} JψK + {ψ} JφK dS.

Summing over all e ∈ Γh, we get the last term in (3.11).

Having established the partial integration formula (3.11), we can apply it to the
solution u of the model problem. Since it is assumed that u is reasonable smooth, i. e.
u ∈ H2(Ω), we know that J∇uK = 0 on every interior face. Thus, (3.11) with φ = ∇u
and ψ = v ∈ H1(T) reads∫

Ω

(−∇ · ∇u)v dx = (∇u,∇v)−
∫
∂Ω

(∇u · n) v dS −
∑
e∈Γh

∫
e

{∇u} JvK dS.

First, to symmetrize the expression (3.11), we use the fact that JuK = 0 on every face
e ∈ Γh and get

− (∆u, v) = (∇u,∇v)−
∫
∂Ω

∇u · nv dS −
∑
e∈Γh

∫
e

{∇u} JvK + {∇v} JuK dS (3.13)

Remark 3.22. One could have as well changed the sign in front of the extra term∫
e
{∇v} JuK dS. This would then have lead to the Nonsymmetric Interior Penalty DG

variant, which is also common.

So far, a bilinear form based on (3.13) would not be coercive and a numerical scheme
based on this equation would not have a unique solution. In particular, the numerical
scheme would have no incentive to drive towards an (at least approximatively) contin-
uous solution. Therefore one can introduce another term, again using JuK = 0. For a

30

3.2. Spatial Discretization – Discontinuous Galerkin

given penalty factor σ > 0 (or rather, a given family of penalty factors {σe}e, σe > 0),
whose particular choice will be discussed later, we add the penalty term

σe
|e|

∫
e

JuKJvK dS

for every face e ∈ Γh. This gives

− (∆u, v) = (∇u,∇v)− 〈∇u, v〉∂Ω∑
e∈Γh

−
∫
e

{∇u} JvK + {∇v} JuK dS +
σ

|e|

∫
e

JuKJvK dS.
(3.14)

Of particular elegance is the fact that with the notation of averages and jumps on
boundary faces introduced in Definition 3.17, we can introduce a weak enforcement
of Dirichlet data in a way Nitsche [90] introduced in 1971. This allows us to drop
the boundary data requirement on the test space, i. e. we consider test functions v ∈
H1(T).

In Nitsche’s approach for the model Problem 3.20, one can drop the boundary
requirements on the ansatz space by introducing extra terms to the bilinear form and
the right hand side. Using the notation 〈v, w〉M =

∫
M
vw dS for a (N−1)-dimensional

manifold M and the (N − 1)-dimensional Hausdorff-measure S, Nitsche formulated a
problem which is equivalent to

(∇u,∇v)−
〈
u,
∂v

∂n

〉
∂Ω

−
〈
v,
∂u

∂n

〉
∂Ω

+µ 〈u, v〉∂Ω = (f, v)+

〈
∂v

∂n
+ µv, g

〉
∂Ω

, (3.15)

where µ > 0 is a penalty factor to be chosen. Consider for now a continuous FE space
with piecewise linear functions, i. e. P1(Ω) or Q1(Ω). Nitsche showed that if µ scales
as η/h for a suitable large constant η, one gets optimal convergence properties in both
the L2- and H1-norm [90].

If we apply the notions JvK = vn and {v} = v on boundary faces as introduced in
Definition 3.17 and use u = g on ∂Ω, we can rewrite (3.15) for a given finite element
space V pT defined on T by∑

K∈T
(∇u,∇v)K +

∑
e∈Γb

(
−
∫
e

[
{∇v} JuK + {∇u} JvK

]
dS + µ

∫
e

JuKJvK dS

)
= (f, v) +

∑
e∈Γb

∫
e

(∂nv + µv)g dS.

(3.16)

If one defines µ = σ
|e| , the boundary face terms have exactly the same form as for

the inner faces in (3.14). Hence, we can state the final form of the symmetric interior
penalty method by defining the bilinear form

ah (v, w) =
∑
K∈T

(∇v,∇w)K +
∑
e∈Γ

−
∫
e

{∇v} JwK + {∇w} JvK dS

+
σ

|e|

∫
e

JvKJwK dS.

(3.17)

31

3. Discretization

Picking up the boundary terms from the Nitsche method, we also define the right hand
side

Fh(v) = (f, v) +
∑
e∈Γb

∫
e

(
−∂nv +

σ

|e|v
)
g dS. (3.18)

We will frequently write Fhv instead of Fh(v) to emphasize the linearity of the func-
tional.

Remark 3.23. Neumann boundary data can be included in a similar way, see e. g. [94]
(but beware of the misplaced sign, see their erratum). Assume ΓD to be the subset
of the boundary faces Γb where Dirichlet data gD is imposed and ΓN to be the part
where Neumann data ∂u

∂n = gN . Then, we have the right hand side

Fhv = (f, v) +
∑
e∈ΓD

∫
e

(
−∂nv +

σ

|e|v
)
gD dS +

∑
e∈ΓN

∫
e

vgN dS (3.19)

and the bilinear form

ah (v, w) =
∑
K∈T

(∇v,∇w)K +
∑

e∈Γh∪ΓD

(
−
∫
e

[
{∇v} JwK + {∇w} JvK

]
dS

+
σ

|e|

∫
e

JvKJwK dS

)
.

(3.20)

Note how the boundary faces with Neumann boundary conditions are left out in the
DG bilinear form.

Remark 3.24. For simplicity, we treated σ as a constant in our derivation. In practice,
however, one can (and should!) let σ depend on the current face, i. e. σ is a function
e 7→ σ(e) := σe > 0. This is particularly important if non uniform ansatz degrees are
used. We may emphasize this notion by writing σe if appropriate.

While most of the cited authors in this section assume a constant penalty parameter
for simplicity, most arguments and estimates are face-local and can be generalized to
the face-dependent penalty function.

Having derived the bilinear form (3.17) and right hand side (3.18), we can formulate
the discretized version of Problem 3.20.

Problem 3.25. For a given penalty parameter (function) σe > 0, find uh ∈ V pT such
that

ah (uh, v) = Fhv ∀v ∈ V pT . (3.21)

We have constructed the method such that ah contains (besides the usual bulk
terms) all the boundary integrals arising from partial integration when testing with
functions from a broken Sobolev space. Moreover, by assuming that u ∈ H2(Ω), we
were able to add additional terms to create a symmetric bilinear form. These extra
terms, however, vanish when u is used as an ansatz function since u has no jumps
on the faces by assumption. Hence the solution u to the continuous problem satisfies
equation (3.21), i. e. ah (u, v) = Fhv for all v ∈ V pT by construction. Therefore, we call
the discretization consistent.

32

3.2. Spatial Discretization – Discontinuous Galerkin

Boundedness and Coercivity

To show that the former problem is well-posed, we have to show boundedness and
coercivity of the bilinear form in suitable norms. The particular choices of DG specific
norms vary in the literature. On V pT , the different norms should be equivalent. Here,
we will select the norms as used in [35].

For the boundedness, we consider a norm (depending on the mesh and σ) that is an
upper bound to the energy product ah (v, v):

‖v‖2h = |v|21 +
∑
e∈Γ

(|e|
σe

∫
e

{∇v}2 dS +
2σe
|e|

∫
e

JvK2 dS

)
. (3.22)

We can bound ah (·, ·) in this norm:

Lemma 3.26. For all v, w ∈ H1(Ω) + V pT , it holds

ah (v, w) ≤‖v‖h‖w‖h .

Proof. Apply Young’s inequality, see also [35, Exercise 10.x.32].

Remark 3.27. For other choices of the norm ‖·‖h, one gets an upper bound

ah (v, w) ≤ Cb‖v‖h‖w‖h (3.23)

with a constant Cb > 0. With our choice of ‖·‖h, it holds Cb = 1 [35]. To be
more independent of the particular choice, we will use (3.23) when referring to the
boundedness of the bilinear form.

To derive coercivity of the bilinear form, we need another norm, namely

|||v|||2 = |v|21 +
∑
e∈Γ

σe

∫
e

JvK2 dS. (3.24)

As mentioned before, the penalty parameter might depend on the particular face it is
evaluated on.

Remark 3.28. To simplify notation, we suppress the dependence of the norm on the
grid and penalty parameters where possible. If we need to make the dependence
explicit, we will do so by appending the corresponding discrete space as a subscript,
e. g. |||·|||V pT .

Without loss of generality, assume |e| ≤ 2 for all faces e ∈ Γ. Obviously, we have

|||v||| ≤‖v‖h ∀v ∈ H1(Ω) + V pT .

On the other hand, we have the equivalence on the discrete space by the following
inequality:

Lemma 3.29. There is a C > 0 depending only on the grid quality (i. e. ρ and θ from
Definition 3.7), such that

‖v‖h ≤ C(1 + σ−1)|||v||| ∀v ∈ V pT .

33

3. Discretization

Proof. See [35, Lemma 10.5.15].

Equipped with this norm, we may state the following stability relation:

Lemma 3.30. There is a σ0 > 0 depending on the grid quality and the ansatz degree
p such that

ah (v, v) ≥ 1

2
|||v|||2 ∀v ∈ V pT (3.25)

provided the penalty parameter σ was chosen larger than σ0 on every face e ∈ Γh.

Proof. For piecewise linear elements, see [35, Lemma 10.5.19]. The more general case
is discussed e. g. in [53] and the references therein.

Note that the coercivity only holds on the discrete space but not on the full energy
space H1(Ω)+V pT . While this is sufficient to guarantee the existence of unique discrete
solutions, it is a source of difficulty for the numerical analysis.

Remark 3.31. Using the equivalence of ‖·‖h and |||·||| on the discrete space, we have
that there is a constant Cs > 0 such that

ah (v, v) ≥ Cs‖v‖2h ∀v ∈ V pT . (3.26)

Another issue is the practical choice of the penalty parameter. As Lemma 3.30
shows, it needs to exceed a certain threshold. This particular threshold, however, is
often not known. For a grid consisting of simplices, the penalty parameter can be
estimated using results from [53]. These estimates can be applied for each intersection
of two elements separately and depend on the smallest angle of the involved elements
as well as the polynomial degree employed in the discrete space for the respective
elements.

In general it is expected that σ should asymptotically scale as p2, therefore some
authors also write

σ = µp2 (3.27)

for an appropriate constant µ which only depends on the grid quality.
For the rest of this work, we tacitly assume that σ is of form (3.27) and is large

enough in the sense of Lemma 3.30.

Remark 3.32. While in our derivation we only considered a model problem of the form
−∆u = f , one can easily generalize this to equations of the form (2.6).

The bilinear form (3.17) then reads

ah (v, w) =
∑
K∈T

[
(A∇v,∇w)K + α(v, w)K

]
+

∑
e∈Γh∪ΓD

−
∫
e

{A∇v} JwK + {A∇w} JvK dS

+
σ

|e|

∫
e

JvKJwK dS.

(3.28)

The coercivity and boundedness can also be shown for ah (·, ·) being defined as in
(3.28). In particular, (3.17) is a special case of (3.28) where A = Id and α = 0. Thus,
in the following, we will assume ah (·, ·) being defined as in (3.28).

34

3.3. Discretization of the Obstacle Problem

Interpolation Estimate

Consider a DG space V pT with p(K) ≡ p constant for all elements. Recall from Defi-
nition 3.19 that Πh interpolates a given function locally on each element. Given the
local approximation property

|u−Πhu|s,K . hp+1−s|u|p+1,K , (3.29)

(see also the Bramble–Hilbert lemma [42]), we get the following interpolation error:

Lemma 3.33. Let u ∈ Hq(T) with q ≥ p+ 1. Then, it holds

‖u−Πhu‖h . hp|u|p+1. (3.30)

Proof. Use the arguments from [11] and adapt to the different norm. See also [35].

3.3. Discretization of the Obstacle Problem

As an example for the use of (possibly high order) DG methods for variational in-
equalities of the first kind, we will discuss the discretization of the obstacle problem
as stated in Section 2.2.1 and prove some a priori error estimates.

While several error estimates for the finite element discretization of the obstacle
problem are known, we contribute several new and important results. First, we show
that using DG finite elements of arbitrary order will lead to a convergent scheme under
mild assumptions on the solution. While it might sound obvious that minimizing a
convex functional in a larger space leads also to a convergent solution, we have to
take into account that the functional depends on the current discretization: First, we
have that a penalty parameter has to be chosen such that it approximately scales with
p2, thus changing the underlying quadratic energy with increasing polynomial degree.
Second, the way we restrict the admissible set depends on the choice of the basis, see
below, thus we minimize over different sets for varying polynomial degree. In fact, our
numerical examples (see Chapter 7) indicate that a higher polynomial degree does not
always imply a lower discretization error.

Further, we show that for problems which have somewhat smoother solutions, one
can expect convergence rates of order O(h1.5−ε) if using finite elements of order 2
or higher. While a similar result for quadratic DG elements was obtained in [111],
our result is substantially improved in the sense that we allow for arbitrary order
polynomials (as long as their order is 2 or higher) and, more importantly, we do so
under more realistic assumptions. More precisely, in [111] it was assumed that the
solution of the obstacle problem is in H3(Ω) which is in general not true. Indeed, one
has u /∈ H3 even for simple counterexamples. In our case, on the other hand, we only
require u ∈ H2.5−ε(Ω), which is feasible under certain conditions, cf. (2.8).

In addition to these results that rely on (quasi-)uniform grids, we also prove a result
which shows that one can exploit the fact that the solution of the obstacle problem has
locally higher regularity in regions which do not intersect the free boundary. Assuming
a grid which is locally refined such that the free boundary is finer resolved than the

35

3. Discretization

rest of the domain (where the solution is assumed to be smoother), we show that one
can actually gain convergence orders higher than 1.5 for higher order ansatz functions
in these regions. Assuming the grid elements near the free boundary are smaller by
an appropriate number of orders, a global high order convergence could be expected.

As a reminder, we will once more state the obstacle problem as given in Problem
2.8: Let L be a second order differential operator of the form (2.6), i. e.

Lu = −div (A∇u) + αu,

with smooth coefficients Aij(x) ∈ C1(Ω) and α ≥ 0. This gives rise to a bilinear form

a(v, w) = (A∇v,∇w) + α (v, w) .

For a given functional l, we seek to solve the obstacle problem of finding u ∈ K such
that

a(u, v − u) ≥ l(v − u) v ∈ K,
where the convex set K is generated by two obstacle functions ψ and ψ,

K =
{
v ∈ H : ψ ≤ v ≤ ψ a.e.

}
,

H being a closed affine subspace of H1(Ω) that obeys some boundary conditions.
When discretizing Problem 2.8 with DG finite elements, a central aspect is how

to discretize the admissible set K. For piecewise linear finite elements (P1 or Q1),
this is usually done by interpolating the obstacle function in the finite element space
and controlling the obstacle conditions in the interpolation nodes. As the ansatz
functions are linear between these nodes, it is obvious that any function that does
not violate the obstacle in these nodes will also not violate the interpolated obstacle
function. For any function of polynomial degree greater than one, however, this may
not hold anymore. This puts additional burden on the analysis as it invalidates some
commonly used arguments. Nevertheless, we still discretize the set K by controlling
in the interpolation points.

In the following, we assume that a certain grid T and local polynomial degrees
p : T → N have been chosen such that our finite element space V pT is well defined.
Moreover, we assume that the element-local node sets {XK}K were chosen such that
XK are based on a proper quadrature rule. More precisely, we require the weights of
such a quadrature rule to be positive and the rule to be able to integrate polynomials
of order at least p(K) exactly:

Assumption 3.34. For each K, we require that the Lagrange nodes XK are such that
the induced basis functions (see Definition 3.13) have positive integral, i. e.

wKi :=

∫
K

φXKi dx > 0 ∀i ∈
{

0, . . . ,dim
(
Pp(K)(K)

)}
. (3.31)

For a polynomial v ∈ Pp(K)(K), we have∫
K

v dx =
∑
i

v(xi)w
K
i , (3.32)

36

3.3. Discretization of the Obstacle Problem

where xi ∈ XK are the Lagrange nodes on the element K.

Assumption 3.34 shows why we suggested to take tensor-products of quadrature
rules such as Gauss–Lobatto when using Qk elements. For finite element functions on
simplex-based elements, the choice of suitable Lagrange nodes and the construction of
appropriate local basis functions might be more delicate and will not be discussed here.
The usage of Fekete points in a triangle [108] might lead to an approach that is similar
to the construction of using Gauss–Lobatto nodes for Qk. In [108] points that satisfy
our requirements for moderate polynomial orders are computationally approximated.

Definition 3.35. For given obstacle functions ψ,ψ, we define the discrete admissible
set by

Khp =
{
v ∈ V : ψ|K(x) ≤ v|K(x) ≤ ψ|K(x) ∀K ∈ T ∀x ∈ XK

}
. (3.33)

We do not require any specific boundary conditions for the set Khp. These will be
weakly enforced by the bilinear form as indicated in Section 3.2.2.

Remark 3.36. Note that since the node sets XK are not necessarily subsets of each
other for different p, in general we do not have Khp ⊂ Khp̃ with p 6= p̃.

After having found a suitable discrete representation of K and defining the DG
bilinear form ah (·, ·) and functional Fh as in (3.28) and (3.19) respectively, we can
state the discrete problem corresponding to Problem 2.8:

Problem 3.37. Find uh ∈ Khp such that

ah (uh, v − uh) ≥ Fh(v − uh) ∀v ∈ Khp. (3.34)

Theorem 3.38. Problem 3.37 has a unique solution uh ∈ Khp.

Proof. As for the continuous case, this is implied by the Lions–Stampacchia theorem
[82].

By construction of the Lagrange basis, the obstacle condition as suggested in Def-
inition 3.35 is particularly easy to verify by comparing the coefficients of the finite
element functions:

Consider the interpolated obstacle function with coefficients ψK
i

, i. e.

Πhψ =
∑
K

∑
i

ψK
i
ϕKi

and analogously ψ
K

i for Πhψ. For a given finite element function v =
∑
K

∑
i v
K
i ϕ

K
i ∈

V pT , we have

v ∈ Khp ⇐⇒ ψK
i
≤ vKi ≤ ψ

K

i ∀K ∈ T ∀i ∈ {0, . . . , p}N .

37

3. Discretization

As explained before, the given construction cannot ensure that the interpolated ob-
stacle is not violated by a function v ∈ Khp, i. e.

v ∈ Khp ; ψ ≤ v a. e. in Ω,

v ∈ Khp ; v ≤ ψ a. e. in Ω.

We can, however, derive the following weaker result:

Lemma 3.39. Let v be in Khp. Then it holds for every element K ∈ T∫
K

Πhψ − v dx ≤ 0, (3.35)∫
K

Πhψ − v dx ≥ 0. (3.36)

Proof. We will only show the first part, i. e. (3.35), as the second equation’s proof is
performed in the same manner.

Since v ∈ Khp ⊂ V pT , we have (Πhψ − v)
∣∣∣
K
∈ Pp(K). By assumption on XK , the

chosen quadrature rule has positive weights
{
wKi
}
i

and can integrate polynomials of
degree p exactly. Hence, we have∫

K

Πhψ − v dx =
∑
i

(Πhψ − v)
∣∣∣
K

(xi)w
K
i ≤ 0

since (Πhψ − v)
∣∣∣
K

(xi) ≤ 0 for every node xi ∈ XK by definition of Khp.

3.3.1. A Priori Error Estimates

In this chapter, we will discuss the discretization error ‖u− uh‖h. A priori error es-
timates for finite element discretizations of the obstacle problem have been derived
before by various authors. Among others, Brezzi et al.[38] derived O(h) convergence
for piecewise linear finite elements. In the same article, O(h1.5−ε) convergence was
proven for piecewise quadratic ansatz functions where the obstacle condition is con-
trolled in the midpoints of the edges. The same result under weaker assumptions is
stated in [112]. Similar estimates for piecewise linear and piecewise quadratic DG
function spaces have been derived in [111]. The argument there, however, suffers from
a regularity assumption on u, namely u ∈ H3(Ω), which is not true in general. A
convergence result for a p–FEM discretization where the obstacle condition is also
controlled in Gauss–Lobatto nodes has been derived in [78]. There, the convergence
is proven when increasing the polynomial degree p without altering the mesh width.

We will now derive several error estimates for our DG discretizations of Problem
3.37 which are not limited to linear or quadratic elements. At first, we generalize
the results from [111] in the sense that we show that we obtain O(h) convergence
for general Pk (possibly higher order) DG finite elements. Also, we show that if the
continuous solution has certain smoothness properties, we get O(h1.5−ε) convergence

38

3.3. Discretization of the Obstacle Problem

for Pk elements with k ≥ 2. Afterwards, we proceed to investigate whether we can get
better than that:

Due to the limited regularity (see e. g. the monograph [74] for an extended discussion)
of the continuous solution u, we cannot expect to get better global convergence rates
than O(h1.5−ε), which raises the question whether the use of higher order ansatz
functions is appropriate at all. Our motivation is that for sufficiently smooth data, u
might be locally smoother than H2.5 for those subregions of Ω that are not adjacent to
the free boundary. For regions in the interior of Ωl ⊂ Ω where the obstacle is active,
that is u|Ωl ≡ ψ|Ωl , we obviously have that u has the same regularity as ψ (or as ψ in
Ωu respectively). Similarly, in the interior of Ω+ ⊂ Ω where u is strictly greater than
ψ and strictly less than ψ, we have that u’s smoothness is controlled by the underlying
linear PDE. Depending on the problem data, the error estimate for these regions might
be of higher order than the global O(h1.5) bound. Since the nonsmooth regions near
the free boundary will in general only converge with lower order, we will split our
error estimates between these regions. In the nonsmooth regions, the mesh width is
bounded by hF while on the smoother parts a mesh width of hC is used. To achieve a
method of at least asymptotically higher order, hF must be significantly smaller than
hC .

For the proof of convergence, we split our grid into subsets which are induced by
the contact and non-contact areas of the domain Ω:

Definition 3.40. We define the contact region and the regions where the solution is
equal to the lower or upper obstacle, respectively, by

Ω+ =
{
x ∈ Ω | ψ(x) < u(x) < ψ(x)

}
,

Ωl =
{
x ∈ Ω | u(x) = ψ(x)

}
,

Ωu =
{
x ∈ Ω | u(x) = ψ(x)

}
.

Similarly, for the grid T , we define the subsets

T l =
{
K ∈ T | K ⊂ Ωl

}
,

T u =
{
K ∈ T | K ⊂ Ωu

}
,

T + =
{
K ∈ T | K ⊂ Ω+

}
,

T b = T \
(
T l ∪ T u ∪ T +

)
.

Moreover, we have the following complementarity conditions for the solution u ∈
H2(Ω) of the variational inequality (2.3), see e. g. [74],

Lu = f a.e. in Ω+, (3.37)

Lu ≥ f a.e. in Ωl, (3.38)

Lu ≤ f a.e. in Ωu. (3.39)

Later in the proofs, it will be convenient to have the following definition:

39

3. Discretization

Definition 3.41. For an element K ∈ T , we denote the local L2(K)-projection into
the space of constant functions by

P 0
K : L1(K)→ P0(K),

P 0
Kv ≡

1

|K|

∫
K

v dx, v ∈ L1(K).

The remainder term will be defined by

R0
Kv = v − P 0

Kv.

Corollary 3.42. Using the notation from Definition 3.41, we get from Lemma 3.39
the following (pointwise) inequalities

P 0
K(Πhψ − uh) ≤ 0,

P 0
K(Πhψ − uh) ≥ 0.

A similar variant of the following statement was also derived in [111], however only
for L = −∆:

Proposition 3.43. With u ∈ H2(Ω) and uh ∈ V pT being the solutions to (2.3) and
(3.34), respectively, we have

ah (u− uh,Πhu− uh) ≤
∑
K∈T

−
∫
K

(f − Lu) (Πhu− uh) . (3.40)

Proof. Since u ∈ H2(Ω), we have JuK = 0 and {u} = u on interior faces. Also, it
holds that {∇u} = ∇u and J∇uK = 0 on interior faces since ∇u ∈ H1(Ω), see e. g. [93,
Proposition 3.2.1]. Moreover, u = gD on ΓD and ∂nu = gN on ΓN .

Defining FDIP(v) =
∑
e∈ΓD

∫
e
(−∂nv+ σ

|e|v)gD dS and FNIP(v) =
∑
e∈ΓN

∫
e
vgN dS, we

40

3.3. Discretization of the Obstacle Problem

have Fh(v) = (f, v) + FDIP(v) + FNIP(v), cf. equation (3.19). Then, we have

ah (u,Πhu− uh) =
∑
K∈T

∫
K

A∇u · ∇(Πhu− uh) dx+ α

∫
Ω

u (Πhu− uh) dx

−
∑

e∈Γh∪ΓD

∫
e

A∇uJΠhu− uhK dS + FDIP(Πhu− uh)

=−
∑
K∈T

∫
K

div (A∇u) [Πhu− uh] dx+ α

∫
Ω

u (Πhu− uh) dx

+
∑
K∈T

∫
∂K

A∇u (Πhu− uh) nK dS

−
∑

e∈Γh∪ΓD

∫
e

A∇uJΠhu− uhK dS + FDIP (Πhu− uh)

=−
∫

Ω

div(A∇u) [Πhu− uh] dx+ α

∫
Ω

u (Πhu− uh) dx

+ FDIP (Πhu− uh) + FNIP (Πhu− uh)

=

∫
Ω

Lu (Πhu− uh) dx+ FDIP (Πhu− uh) + FNIP (Πhu− uh) .

Since uh solves Problem 3.37 and Πhu ∈ Khp, we have

ah (uh,Πhu− uh) ≥ (f,Πhu− uh) + FDIP (Πhu− uh) + FNIP (Πhu− uh) .

Combining both, we get (3.40).

As a first result, we will prove a result that shows that a DG discretization of the
obstacle problem as stated in Problem 3.37 converges with at rate at least O(h) when
reducing the mesh size. While a similar result is known for piecewise linear ansatz
functions [111], we want to make sure that higher order ansatz functions do not derail
the convergence. This is not obvious since as remarked earlier, controlling the obstacle
condition only in the Lagrange nodes might lead to solutions which do not obey the
obstacle condition everywhere (not even for the interpolated obstacle).

As customary, we let C denote a generic constant whose precise value might change
from line to line.

Theorem 3.44. Assume ψ,ψ ∈ H2(Ω). Let u ∈ H2(Ω) be the solution to Problem
2.4 and uh be the solution to the discrete Problem 3.37. Then, we have

‖u− uh‖h ≤ Ch. (3.41)

Proof. The proof follows in parts the proofs for continuous [38, 112] and discontinuous
[111] quadratic elements. Moreover, we will adopt some arguments made for the double
obstacle case as in [110].

By the triangle inequality, we have

‖u− uh‖h ≤‖u−Πhu‖h +‖Πhu− uh‖h . (3.42)

41

3. Discretization

Using the coercivity of the discrete bilinear form for discrete functions, we have

Cs‖Πhu− uh‖2h ≤ ah (Πhu− uh,Πhu− uh)

= ah (Πhu− u,Πhu− uh) + ah (u− uh,Πhu− uh) . (3.43)

By Young’s inequality, it holds

ah (Πhu− u,Πhu− uh) ≤ Cb‖Πhu− u‖h‖Πhu− uh‖h

≤ Cs
2
‖Πhu− uh‖2h +

C2
b

2Cs
‖Πhu− u‖2h .

Inserting into (3.43) and rearranging terms, we get

‖Πhu− uh‖2h ≤
C2
b

C2
s

‖Πhu− u‖2h +
2

Cs
ah (u− uh,Πhu− uh)︸ ︷︷ ︸

=:T1

. (3.44)

It remains to estimate the term T1 = ah (u− uh,Πhu− uh), for which we have

T1 ≤
∑
K∈T

∫
K

− (f − Lu) (Πhu− uh) dx, (3.45)

by Proposition 3.43.

Combining everything we have so far by inserting (3.45) into (3.44) and using the
result in (3.42), we can deduce the following inequality:

‖u− uh‖h ≤
(

1 +
Cb
Cs

)
‖Πhu− u‖h (3.46)

+

 2

Cs

∑
K∈T

∫
K

−(f − Lu)(Πhu− uh) dx

1/2

.

The first term on the right hand side can be estimated by the interpolation result, i. e.
we know ‖Πhu− u‖h . h|u|1 (or even better if higher order polynomials are used).

It remains to handle the latter term, namely(
2

Cs

∑
K∈T

∫
K

−(f − Lu)(Πhu− uh) dx︸ ︷︷ ︸
=:T2

)1/2

.

This term would vanish if we would consider the linear case without any (active)
obstacles, as f − Lu = 0 would hold.

By the complementarity condition (3.37), we only need to consider those elements
that are in T l, T u or T b. For convenience, we define w := − (f − Lu). Using this

42

3.3. Discretization of the Obstacle Problem

notation, we rewrite (3.45) as

T2 =
∑
K∈T l

∫
K

w (Πhu− uh) dx+
∑
K∈T u

∫
K

w (Πhu− uh) dx+
∑
K∈T b

∫
K

w (Πhu− uh) dx

=
∑

K∈T \T +

∫
K∩Ω+

w (Πhu− uh) dx

+

∫
K∩Ωl

w (Πhu− uh) dx+

∫
K∩Ωu

w (Πhu− uh) dx

Clearly, the first integral vanishes as w ≡ 0 on Ω+ by (3.37), i. e.

T2 =
∑

K∈T \T +

∫
K∩Ωl

w (Πhu− uh) dx+

∫
K∩Ωu

w (Πhu− uh) dx.

We will now consider the integrals over K ∩ Ωl. The integrals over K ∩ Ωu can be
handled analogously.

Define wl, as w restricted to Ωl and extended by zero outside, i. e.

wl|Ωl = w,

wl|Ω\Ωl ≡ 0.

This gives ∫
K∩Ωl

w (Πhu− uh) dx =

∫
K

wl (Πhu− uh) dx.

This integral can be rewritten as

∫
K

wl (Πhu− uh) dx =

∫
K

wl

(
Πhu− u+ ψ −Πhψ

)
dx︸ ︷︷ ︸

=:T3

+

∫
K

wl

(
u− ψ

)
dx+

∫
K

wl

(
Πhψ − uh

)
dx︸ ︷︷ ︸

=:T4

.

(3.47)

Clearly, the middle integral vanishes as u ≡ ψ in Ωl by definition.

The first integral of (3.47), T3, vanishes on T l and on T u. For the remaining

43

3. Discretization

elements, we have ∑
K∈T b

T3 =
∑
K∈T b

∫
K

wl

(
Πhu− u+ ψ −Πhψ

)
dx

=
∑
K∈T b

∫
K

wl

(
ψ − u−Πh(ψ − u)

)
dx

=
(
wl, ψ − u−Πh(ψ − u)

)
Ωl

≤‖wl‖0
∥∥∥ψ − u−Πh(ψ − u)

∥∥∥
0

≤ C‖wl‖0 h2
∣∣∣ψ − u∣∣∣

2
.

For the last integral from (3.47), T4, (similarly to the proofs in [38, 111, 112]), we
will use the local L2-projection as defined in Definition 3.41 to estimate the remaining
integrals. By Corollary 3.42, we have P 0

K(Πhψ− uh) dx ≤ 0 and thus, since wl ≥ 0 on
K, we get ∫

K

wlP
0
K

(
Πhψ − uh

)
dx ≤ 0.

Thus, we can estimate

T4 =

∫
K

wl

(
Πhψ − uh

)
dx

≤
∫
K

wl

(
Πhψ − uh

)
dx−

∫
K

wlP
0
K

(
Πhψ − uh

)
dx

=

∫
K

wlR
0
K

(
Πhψ − uh

)
dx

We define R0 piecewise by

R0v|K = R0
Kv.

Applying interpolation estimates for piecewise constant approximations, we get

∑
K∈T \T +

∫
K

wlR
0
K

(
Πhψ − uh

)
=

(
wl, R

0
(

Πhψ − uh
))

Ωl

≤‖wl‖0
∥∥∥∥R0

(
Πhψ − uh

)∥∥∥∥
0,Ωl

. h‖wl‖0
∣∣∣Πhψ − uh

∣∣∣
1,Ωl

≤ h‖wl‖0
(∣∣∣Πhψ − ψ

∣∣∣
1,Ωl

+
∣∣∣ψ − uh∣∣∣

1,Ωl

)
.

44

3.3. Discretization of the Obstacle Problem

The first term in the last line can be estimated by∣∣∣Πhψ − ψ
∣∣∣
1,Ωl

. h
∣∣∣ψ∣∣∣

2,Ωl
≤ h

∣∣∣ψ∣∣∣
2
, (3.48)

since ψ ∈ H2(Ω).
For the latter term, it holds∣∣∣ψ − uh∣∣∣

1,Ωl
= |u− uh|1,Ωl ≤‖u− uh‖h .

Repeating the argument for
∑
K∈T \T +

∫
K∩Ωu

w (Πhu− uh) dx and inserting the in-

terpolation estimates for the first term in (3.46), we arrive at

‖u− uh‖h ≤
(

1 +
Cb
Cs

)
|u|1h

+

(
2

Cs
C‖w‖0|(|ψ − u|2 + |ψ − u|2 + |ψ|2 + |ψ|2

)1/2

h

+ 2

(
2

Cs
‖w‖0‖u− uh‖h h

)1/2

.

Using Young’s inequality on the last term finishes the proof.

In Theorem 3.44, we established convergence of the DG discretization with at least
linear order. It extends the result from [110] in the sense that arbitrary polynomial
degrees are allowed. In particular, the polynomial degree influences the construction
of admissible sets Khp.

We now establish an analog result for basis functions of higher order, that is, at
least piecewise quadratic.

Theorem 3.45. Assume ψ,ψ ∈ H3(Ω) ∩W 2,∞(Ω). Let u ∈ W 2+ 1
p−ε, p(Ω) (for all

1 < p < ∞ and ε > 0) be the solution to Problem 2.4 and uh be the solution to
the discrete Problem 3.37. Moreover, assume that in the definition of V pT , we have
p(K) ≥ 2 ∀K ∈ T in (3.4). Then, we have

‖u− uh‖h ≤ Ch1.5−ε. (3.49)

Proof. At first, we can repeat the arguments made in the proof of Theorem 3.44,
arriving at (3.46), namely

‖u− uh‖h ≤
(

1 +
Cb
Cs

)
‖Πhu− u‖h +

 2

Cs

∑
K∈T

∫
K

−(f − Lu)(Πhu− uh) dx

1/2

.

Since by assumption u ∈ H2.5−ε and we are using piecewise polynomials of order at
least 2, we have

‖Πhu− u‖h . h1.5−ε|u|2.5−ε.

45

3. Discretization

Again, it remains to estimate the product
(
−(f − Lu),Πhu− uh

)
0
. Following the

further steps of the previous proof, in particular splitting the estimate into integrals
on Ωl and Ωr, again, we arrive once more at (3.47),∫

K

wl (Πhu− uh) dx =

∫
K

wl

(
Πhu− u+ ψ −Πhψ

)
dx (3.50)

+

∫
K

wl

(
u− ψ

)
dx+

∫
K

wl

(
Πhψ − uh

)
dx

=

∫
K

wl

(
Πhu− u+ ψ −Πhψ

)
dx︸ ︷︷ ︸

=:T3

+

∫
K

wl

(
Πhψ − uh

)
dx︸ ︷︷ ︸

=:T4

.

The first integral on the right hand side, T3, again vanishes on T l and on T u. In
contrast to the previous proof, however, we have to employ an additional argument
here to retrieve the desired order. For the remaining elements, we will use the following
result from [112]:

‖Πhv − v‖L1(Ω) ≤ Ch3−ε‖v‖W s∗,p∗ (Ω) (3.51)

for some values of s∗ and p∗ depending on ε.
Since by assumption ψ ∈ W 2,∞, we have wl ∈ L∞(Ω). By applying Hölder’s

inequality and using (3.51), we get∑
K∈T b

T3 =
∑
K∈T b

∫
K

wl

(
Πhu− u+ ψ −Πhψ

)
dx

=
∑
K∈T b

∫
K

wl

(
ψ − u−Πh(ψ − u)

)
dx

=
(
wl, ψ − u−Πh(ψ − u)

)
Ωl

≤‖wl‖L∞(Ω)

∥∥∥ψ − u−Πh(ψ − u)
∥∥∥
L1(Ω)

≤ C‖wl‖L∞(Ω) h
3−ε
∥∥∥ψ − u∥∥∥

W s∗,p∗ (Ω)
.

It remains to estimate the sum over the second integral from (3.50), i. e.∑
K∈T \T +

T4 =
∑

K∈T \T +

∫
K

wl (Πhu− uh) .

Following the proof of Theorem 3.44, we have

T4 =

∫
K

wl (Πhu− uh) ≤
∫
K

wlR
0
K(Πhψ − uh) dx.

Since P 0
Kwl is a constant function and

∫
K
R0
Kg dx = 0 for any function g, we have

P 0
KwlR

0
K(Πhψ − uh) = 0,

46

3.3. Discretization of the Obstacle Problem

and hence

T4 =

∫
K

wl (Πhu− uh)

≤
∫
K

wlR
0
K(Πhψ − uh) dx

=

∫
K

wlR
0
K(Πhψ − uh) dx−

∫
K

P 0
KwlR

0
K(Πhψ − uh) dx

=

∫
K

R0
KwlR

0
K

(
Πhψ − uh

)
dx.

Note that wl = max(w, 0) and hence wl ∈ H0.5−ε(Ω) just like w, see, e. g. Lemma
A.2. Applying interpolation estimates for piecewise constant approximations, we get

∑
K∈T \T +

T4 =
∑

K∈T \T +

∫
K

wl

(
Πhψ − uh

)
dx

≤
∑

K∈T \T +

∫
K

R0
KwlR

0
K

(
Πhψ − uh

)
=

(
R0wl, R

0
(

Πhψ − uh
))

Ωl

≤
∥∥∥R0wl

∥∥∥
0

∥∥∥∥R0
(

Πhψ − uh
)∥∥∥∥

0,Ωl

. h
∥∥∥R0wl

∥∥∥
0

∣∣∣Πhψ − uh
∣∣∣
1,Ωl

≤ h
∥∥∥R0wl

∥∥∥
0

(∣∣∣Πhψ − ψ
∣∣∣
1,Ωl

+
∣∣∣ψ − uh∣∣∣

1,Ωl

)
≤ h1.5−ε|wl|0.5−ε

(∣∣∣Πhψ − ψ
∣∣∣
1,Ωl

+
∣∣∣ψ − uh∣∣∣

1,Ωl

)

for ε > 0.

The first term in the last line can be estimated by∣∣∣Πhψ − ψ
∣∣∣
1,Ωl

. h2
∣∣∣ψ∣∣∣

3,Ωl
≤ h2

∣∣∣ψ∣∣∣
3
, (3.52)

since ψ ∈ H3(Ω).

For the latter term, we have once more∣∣∣ψ − uh∣∣∣
1,Ωl

= |u− uh|1,Ωl ≤‖u− uh‖h .

47

3. Discretization

Putting everything together, we have

‖u− uh‖h ≤
(

1 +
Cb
Cs

)
|u|2.5−εh1.5−ε

+

(
2

Cs
C

[
‖w‖L∞(Ω)(‖ψ − u‖W s∗,p∗ (Ω) + ‖ψ − u‖W s∗,p∗ (Ω))

+ |w|0.5−ε(|ψ|3 + |ψ|3)

])1/2

h1.5−ε

+ 2

(
2

Cs
|w|0.5−ε‖u− uh‖h h1.5−ε

)1/2

.

Applying Young’s inequality to the last term finishes the proof.

In the following, we want to take local refinements into account to overcome the
reduced convergences rate caused by the nonsmoothness near the free boundary. We
will assume (e. g. through an adaptive procedure) that the mesh is locally finer in
elements that contain parts of the free boundary. More precisely, we have

Definition 3.46. Let T b be defined as in Definition 3.40. We define the maximal
element size in T b as

hF = max
K∈T b

diam(K),

and the maximal element size in the remaining grid as

hC = max
K∈T \T b

diam(K).

Figure 3.3.1.: Example of a grid having finer resolution near free boundary (red line).

The higher regularity of u in regions that do not interfere with the free boundary
will be manifested in the following assumption.

48

3.3. Discretization of the Obstacle Problem

Assumption 3.47. Let p be the minimal ansatz degree on elements in T \ T b. There
exists q ∈ N, 1 ≤ q ≤ p, such that

u|K ∈ Hq+1(K) ∀K ∈ T \ T b. (3.53)

In particular, this implies the obstacle functions ψ and ψ are locally smooth enough.

Example 3.47.1. As an example of Assumption 3.47, consider the one-dimensional
phase field profile in Figure 3.3.2. The areas around the free boundary (marked with
red dots) use a finer grid elements, typically with lower degree (orange elements),
while the remaining elements in the smoother sections have coarser grid elements with
higher degrees (blue elements). While one might expect that only one or two small
elements are actually touching the free boundary, in practice one will only have an
approximation of the (analytical) free boundary. Having nearby elements also refined
(as in the picture) is therefore a more realistic discretization. Note that in the special

Figure 3.3.2.: Phase Field Profile with Discretization

ψ ≡ −1

ψ ≡ 1

Grid

case of (piecewise) constant obstacles (as in this example), it is not necessary to employ
high order functions in order to resolve the solution on T l and T u sufficiently.

We can now state the following lemma that shows how to incorporate the different
element sizes from Definition 3.46 into the interpolation estimate.

Lemma 3.48. Let v ∈ H2(Ω) be such that the smoothness Assumption 3.47 holds.

‖v −Πhv‖h ≤ Ch
q
C |v|q+1,T \T b + C̃hF |v|1,T b , (3.54)

where the constant depends on the grid, the penalty parameter and the chosen discrete
space.

49

3. Discretization

Proof. Let e ∈ Γ be a face of an element K. From equation 2.4 and 2.5 in [11], we
have

‖v‖20,e ≤ C
(
|e|−1‖v‖20,K + |e||v|21,K

)
, v ∈ H1(K),∥∥∥∥ ∂v∂n

∥∥∥∥2

0,e

≤ C
(
|e|−1|v|21,K + |e||v|22,K

)
, v ∈ H2(K).

Using this and the Cauchy–Schwarz inequality, we get

‖v −Πhv‖2h =
∑
K∈T

|v −Πhv|21,K +
∑
e∈Γ

σ−1|e|‖
{
∇(v −Πhv)

}
‖20,e

+ σ|e|−1‖Jv −ΠhvK‖20,e

≤ C

∑
K∈T

|v −Πhv|21,K + |hK ||v −Πhv|21,K + |hK |2|v −Πhv|22,K

 .

Splitting the sum over the elements between the nonsmooth (T b) and the smooth parts
and applying the local interpolation estimate (3.29) yields the result.

The following assumption can be verified without knowing the solution since only
the obstacle functions and the discretization are involved.

Assumption 3.49. We assume that in every element Ku ∈ T u and every basis func-
tion ϕKui defined on Ku, we have∫

Ku

(
f − Lψ

)
ϕKui dx ≥ 0. (3.55)

Analogously, we assume for Kl ∈ T l it holds for every basis function∫
Kl

(
f − Lψ

)
ϕKli dx ≤ 0. (3.56)

Clearly, for piecewise linear or other non-negative basis functions, the conditions are
always fulfilled. In Appendix A.1, we provide a sufficient (yet not necessary) condition
for Assumption 3.49 to be true.

Equipped with these results and assumptions, we can state a modified version of
Theorem 3.44 that takes local refinements into account.

Theorem 3.50. Assume ψ,ψ ∈ H2(Ω). Let u ∈ H2(Ω) be the solution to Problem
2.4 and uh be the solution to the discrete problem 3.37. Assume u is locally smooth
in the sense that Assumption 3.47 holds. Moreover, we require Assumption 3.49 to be
true. Then, we have

‖u− uh‖h ≤ C0h
q
C + C1hF . (3.57)

50

3.3. Discretization of the Obstacle Problem

Proof. As expected, the proof is very similar to the proofs of Theorem 3.44 and The-
orem 3.45.

As before, we deduce (3.46), i. e.

‖u− uh‖h ≤
(

1 +
Cb
Cs

)
‖Πhu− u‖h +

 2

Cs

∑
K∈T

∫
K

−(f − Lu)(Πhu− uh) dx

1/2

.

By applying Lemma 3.48, we know the first term on the right hand side can be esti-
mated by (

1 +
Cb
Cs

)
‖Πhu− u‖h ≤

(
1 +

Cb
Cs

)(
ChqC |v|q + C̃hF |u|1

)
.

Therefore we are once more left with estimating the square root of∑
K∈T

∫
K

−(f − Lu)︸ ︷︷ ︸
=:w

(Πhu−uh) dx =
∑
K∈T

∫
K∩Ωl

w(Πhu−uh) dx+

∫
K∩Ωu

w(Πhu−uh) dx

as argued before. Note that all integrals vanish for K ∈ T + as w ≡ 0 there.
We will again consider the regions Ωl and Ωu separately and use the function wl

which is equal to w in Ωl and 0 outside. This gives, again, (3.47), namely∫
K∩Ωl

w (Πhu− uh) dx =

∫
K

wl (Πhu− uh) dx

=

∫
K

wl

(
Πhu− u+ ψ −Πhψ

)
dx (3.58)

+

∫
K

wl

(
u− ψ

)
dx+

∫
K

wl

(
Πhψ − uh

)
dx

=

∫
K

wl

(
Πhu− u+ ψ −Πhψ

)
dx︸ ︷︷ ︸

=:T3

+

∫
K

wl

(
Πhψ − uh

)
dx︸ ︷︷ ︸

=:T4

.

The first integral of (3.58), T3, vanishes on T l and on T u. The remaining elements
are from T b and thus have maximal diameter hF . Hence, we have∑

K∈T b
T3 =

∑
K∈T b

∫
K

wl

(
Πhu− u+ ψ −Πhψ

)
dx

=
∑
K∈T b

∫
K

wl

(
ψ − u−Πh(ψ − u)

)
dx

=
(
wl, ψ − u−Πh(ψ − u)

)
Ωl∩T b

≤‖wl‖0
∥∥∥ψ − u−Πh(ψ − u)

∥∥∥
0,Ωl∩T b

≤ C‖wl‖0 h2
F

∣∣∣ψ − u∣∣∣
2
.

51

3. Discretization

The latter integral of (3.58), T4 =
∫
K
wl

(
Πhψ − uh

)
dx, again vanishes on T u by

definition of wl and is nonpositive on T l by Assumption 3.49. Thus, we only have to
consider elements which are in T b. Repeating the arguments of the proof of Theorem
3.44 verbatim (only replacing h with hF), we get∑
K∈T b

T4 =
∑
K∈T b

∫
K

wl

(
Πhψ − uh

)
dx ≤ ChF ‖wl‖0

(
|Πhψ − ψ|1,Ωl + |ψ − uh|1,Ωl

)
.

As seen before, the first term in the last line can be estimated by∣∣∣Πhψ − ψ
∣∣∣
1,Ωl

. hF

∣∣∣ψ∣∣∣
2,Ωl

,

since ψ ∈ H2(Ω).
For the latter term, it holds∣∣∣ψ − uh∣∣∣

1,Ωl
= |u− uh|1,Ωl ≤‖u− uh‖h .

Repeating the arguments starting from (3.58) for Ωu, i. e. estimating∫
K∩Ωu

w (Πhu− uh) dx along the same lines, we finally get

‖u− uh‖h ≤C
(

1 +
Cb
Cs

)
|u|1hqC

+

(
(1 +

Cb
Cs

)C̃ +
2

Cs
C‖w‖0|(|ψ − u|2 + |ψ − u|2 + |ψ|2 + |ψ|2

)1/2

hF

+ 2

(
2

Cs
‖w‖0‖u− uh‖h hF

)1/2

.

Applying Young’s inequality on the last term, we arrive at the conclusion.

Remark 3.51. For DG spaces that employ at least piecewise quadratic basis func-
tions and problems satisfying the assumptions of Theorem 3.45, we can easily extend
Theorem 3.50 to

‖u− uh‖h ≤ Ch
q
C + C̃h1.5−ε

F .

3.4. Discretization of Variational Inequalities of the
Second Kind

While we have not developed much theory for this case, we will briefly suggest a dis-
cretization scheme for variational inequalities of the second kind. In [111], a priori error
estimates for a discontinuous Galerkin discretization of a simplified friction model, are
proved. We will introduce a discretization of a more general class of variational in-
equalities of the second kind which is a special case of Problem 2.11.

52

3.4. Discretization of Variational Inequalities of the Second Kind

Problem 3.52. For H = H1(Ω), let a(·, ·) be a symmetric bilinear form, l ∈ H ′ a
bounded linear functional and Φ convex and chosen such that the map v 7→

∫
Ω

Φ(v) dx
is lower semicontinuous and proper.

Find u ∈ H such that

a(u, v − u)− l(v − u) +

∫
Ω

Φ(v(x)) dx−
∫

Ω

Φ(u(x)) dx ≥ 0 ∀v ∈ H. (3.59)

Equivalently (see e. g. [57]), we want to minimize the energy such that

J (u) ≤ J (v) ∀v ∈ H,

with J (v) = 1
2a(v, v)− l(v) +

∫
Ω

Φ(v(x)) dx.

We stress once more that Problem 3.52 is just Problem 2.11 with j(·) =
∫

Ω
Φ(·) dx.

While the discretization of the quadratic part of the functional, namely J0(v) =
a(v, v)−l(v) with SIPG is straightforward (see the preceding sections), we need to take
special care of the nonlinear (and possibly nonsmooth) part

∫
Ω

Φ(v(x)) dx. Computing
and optimizing the exact integral would be challenging or even impossible.

The idea, which has been successfully employed for continuous finite element spaces
before (see e. g. [57]) is to replace integrals in the nonlinearity by appropriate quadra-
ture rules (also known as mass lumping [61]). Since we assumed before that the
Lagrange points of basis functions are distributed such that a reasonable quadrature
rule emerges (e. g. Gauss–Lobatto points), see Assumption 3.34, we approximate the
integral in the following way:

Let {ϕi}i be the set of (discontinuous) nodal basis functions, wi =
∫

Ω
ϕi(x) dx, and

let xi ∈ Ω be the Lagrange node corresponding to the i-th basis function. Then, we
replace

∫
Ω

Φ(v(x)) dx by the approximate integral:∫
Ω

Φ(v(x)) dx ≈
∑
i

wiΦ(v(xi)).

Indeed, having negative weights ωi would make us lose the convexity of the nonlinearity.
Note that for a finite element function v ∈ V pT , the point values v(xi) are readily
available as the coefficients in the Lagrange basis. Finally, we arrive at a discrete
version of Problem 3.52:

Problem 3.53. Let n = dim(V pT). Find uh ∈ V pT such that

ah (uh, v − uh)− Fh(v − uh) +

n∑
i=1

wi
(
Φ(v(xi))− Φ(u(xi))

)
≥ 0 ∀v ∈ V pT , (3.60)

or, equivalently,

Jh(uh) ≤ Jh(v) ∀v ∈ V pT ,

Jh(v) =
1

2
ah (v, v)− Fh(v) +

n∑
i=1

wiΦ(v(xi)).

53

3. Discretization

Since both the mappings v 7→
∫

Ω
Φ(v(x)) dx for v ∈ H1(Ω) and

vh 7→
n∑
i=1

wiΦ(vh(xi))

for vh ∈ V pT are convex, lower semicontinuous and proper, we have that Problem 3.52
and Problem 3.53 have unique solutions in H and V pT , respectively.

All of the algorithms and heuristics in the following chapters can be applied to this
class of variational inequalities, too.

54

4. Algebraic Solution

The problems discussed in the previous chapters have a common theme. They are not
only not linear but in general not even smooth. Thus, standard techniques for solv-
ing the arising algebraic problems such as for example a classical Newton method are
not applicable since second order derivatives of energy functionals may not be avail-
able globally. Therefore other, more specialized optimization algorithms, in particular
stemming from the area of nonsmooth optimization, have to be applied.

Much research has been performed to find methods which are particularly efficient
for optimization problems arising from the finite element discretization of variational
inequalities and other related problems. In particular, these problems often exhibit a
very large number of unknowns. This implies that efficient algorithms with optimal
complexity are needed. While -for linear problems- several well established methods
such as e. g. multigrid methods exist, the nonlinear case we are concerned with is
more involved. Many attempts have been made to construct solvers that are both
efficient and convergent. Examples of these are constraint decomposition method by
Tai [107], FAS based approaches due to Brandt [33], the projected multilevel relaxation
and standard monotone multigrid methods by Mandel [83], or truncated monotone
multigrid methods by Kornhuber [75]. Another popular algorithm is the Primal-Dual
Active Set Strategy, see, e. g. [69]. Many of these algorithms can be understood as
multigrid algorithms as summarized in [64]. In particular for obstacle problems, they
may require the construction of coarse grid obstacles.

A particularly elegant algebraic solver that does not need coarse grid obstacle func-
tions is the Truncated Nonsmooth Newton Multigrid (TNNMG) method. This method
has been first introduced for obstacle problems in [64] and analyzed in [61]. Since then,
it has been applied to various problems in material science (e. g. [62]), mechanics (e. g.
[92]), etc. Part of the method’s beauty stems from its simplicity, manifested in the
fact that many of its components, such as nonlinear smoothers and algebraic solvers
for linear systems, are readily available in many finite element codes, yet the method
converges rapidly for many problems. Despite being a solution procedure for nonlin-
ear problems, in general only very small nonlinear (sub-)problems have to be solved.
Much of the heavy lifting can be delegated to an approximate linear solver. There,
a single step of a multigrid method (if available) is the canonical choice. For rea-
sonable initial iterates, the convergence rate of the method is asymptotically the rate
of the linear solver for many problems [67]. In the following section, we will present
the TNNMG method in more detail and discuss how to apply it to the discontinuous
Galerkin discretizations we consider.

55

4. Algebraic Solution

4.1. Truncated Nonsmooth Newton Multigrid

The TNNMG method has been introduced as a nonsmooth minimization algorithm for
block-separable convex problems. In particular, the problem at hand may arise from
a different source than the discretization of a differential equation [67]. Therefore we
may frequently identify a given finite dimensional space V with Rdim(V) by a suitable
isomorphism. For example, on a given element K ⊂ Ω ⊂ Rd, we can identify a finite

element function v ∈ Pk(K), v =
∑
i viφi by its coefficient vector (vi)i ⊂ Rdim(Pk(K)).

A detailed analysis of the TNNMG method can be found in [61]. Several further
additions and insights culminated in the general framework presented in [67], see also
the references therein. There, it was also shown that the requirements on the convexity
of the problem can be weakened.

The general idea of the method is to take a method that is proven to converge
to a stationary point by monotonically reducing energy. A typical example would
be a successive energy minimization for smaller sub-problems, i. e. a nonlinear Gauss–
Seidel method. While these are known to converge theoretically, they exhibit very poor
performance for growing numbers of unknowns. Thus, the TNNMG method accelerates
their convergence by computing another search direction that will be damped by a
line search to guarantee energy descent and therefore convergence of the method. The
additional search direction will be determined by applying a Newton method in an
appropriate subspace and using a suitable projection afterwards.

In the following, we will present a short introduction to the TNNMG method. For
more details, we again refer to [67] and the references therein. We will also loosely
follow their notation.

Problem 4.1. Consider a functional J : Rn → R∪{∞}, with J being proper, coercive,
lower semicontinuous and continuous in its domain

domJ =
{
x ∈ Rn : J (x) <∞

}
.

Moreover, let domJ be convex. Then, we seek a minimizer u∗ ∈ Rn such that

J (u∗) ≤ J (v) ∀v ∈ Rn. (4.1)

A crucial assumption for the TNNMG method on the energy J is that it exhibits
a certain splitting into a rather well-behaved functional J0 and a block-separable
nonlinearity ϕ:

Assume there is a disjoint partition of {1, . . . , n} into M non-empty index sets Ni,

defining subspaces Vi ' R|Ni|. Then, we have Rn = V1 ⊕ · · · ⊕ VM . Let v ∈ Rn. For
each index set N i =

{
N i

1, . . . , N
i
ni

}
⊂ {1, . . . , n}, we denote the canonical restriction

of v to Vi by

vi =

vNi1

...
vNini

 .

Given this notation, we can state our assumption on J :

56

4.1. Truncated Nonsmooth Newton Multigrid

Assumption 4.2. Assume J has the following form:

J = J0 + ϕ. (4.2)

Here, J0 is assumed to be coercive and continuously differentiable. For the other part,
assume ϕ is such that

ϕ(v) =

M∑
i=1

ϕi(vi), (4.3)

with each ϕi being convex, proper, lower semicontinuous and continuous on its domain.

Example 4.2.1. For the discretized obstacle problem from Chapter 3, we can split the
nonlinearity such that each “block” is scalar, i. e. N i = {i} (and therefore M = n) and
the functional can be decomposed into

J0(v) =
1

2
ah (v, v)− Fh(v)

ϕi(vi) = χ[
ψ
i
,ψi

](vi).

Since the discretization scheme was constructed such that ah (·, ·) leads to a positive
definite matrix, we have that J0 is a coercive, smooth functional. Moreover, it can
easily be seen that indicator functionals of the kind

χA(x) =

{
0 if x ∈ A,

∞ else

fulfill the requirements on ϕi and thus the discretized obstacle problem can be treated
in this framework.

4.1.1. Nonlinear Smoothing

Problems of type (4.2) can be solved e. g. by iterative schemes such as successive
subspace minimization methods (also known as relaxation or nonlinear (Block-)Gauss–
Seidel methods), see e. g. [58].

To this end, we define the local minimization operators Mi : domJ → domJ ,
i = 1, . . . ,M , by

Mi(·) = (·) + arg min
v∈Vi

J (·+ v). (4.4)

Composition of these gives the nonlinear Gauss–Seidel operator

M =MM ◦ · · · ◦M1. (4.5)

The application of this operator,

xν+1 =M(xν), (4.6)

can also be written in algorithmic form, see Algorithm 1.

57

4. Algebraic Solution

Algorithm 1 Nonlinear Gauss–Seidel method

1: procedure NonlinearGS(xν)
2: Set w0 = xν

3: for i = 1, . . . ,M do
4: wi = wi−1 + arg minv∈Vi J (wi−1 + v)
5: end for
6: xν+1 ← wM

7: end procedure

Remark 4.3. Since typically the size of the subspaces Vi is small (or even scalar) and
fixed, the sub-problems (4.4) can often be solved exactly in reasonable (i. e. O(1)) time.
In other works, particularly [61, 67], also inexact local minimization is considered.

It is well known that the algorithm (4.6) converges if reasonable assumptions on J
are made, for instance J being strictly convex, see e. g. [58]. As mentioned before,
however, this algorithm tends to exhibit very poor convergence rates with a growing
number of unknowns. Therefore we will introduce additional elements to the algorithm
which will be motivated in the following.

4.1.2. Abstract TNNMG Algorithm

By assuming the block-separable structure of J and applying exact minimization in
the sub-problems (4.4), we directly obtain continuity of J ◦M, see [67, Lemma 5.1].
Moreover, we clearly have that each local minimization does not increase the energy
of the current iterate:

J (Mi(v)) ≤ J (v) ∀v ∈ Rn.

This directly implies that the Gauss–Seidel iteration (4.6) is also monotone:

J (M(v)) ≤ J (v) ∀v ∈ Rn. (4.7)

This monotonicity property is both central to the convergence proof of the TNNMG
method and motivates its construction:

The central idea is that if the algorithm converges by decreasing energy, perform-
ing another correction that does not increase energy should not harm the theoretical
convergence property. This is expressed in Algorithm 2. We can now state a conver-

Algorithm 2 Abstract TNNMG algorithm

Require: xν ∈ domJ
1: procedure AbstractTNNMG(xν)
2: xν+1/2 ←M(xν) . Perform nonlinear Gauss–Seidel step
3: Compute C(xν+1/2), s.t. J (xν+1/2 + C(xν+1/2)) ≤ J (xν+1/2)
4: xν+1 ← xν+1/2 + C(xν+1/2) . Add linear correction
5: end procedure

58

4.1. Truncated Nonsmooth Newton Multigrid

gence result (which is a special case of Theorem 4.1 in [67]) for the abstract TNNMG
algorithm.

Theorem 4.4. Let (xν)
∞
ν=1 be generated by the abstract TNNMG Algorithm 2. Addi-

tionally to the formerly stated assumptions, assume that the local minimization problem

arg min
v∈Vi

J (w + v)

has a unique solution for all w ∈ domJ and i ∈ {1, . . . ,M}.
Then, any accumulation point x of (xν)ν is stationary in the sense that

J (x) ≤ J (x+ v) ∀v ∈ Vi, i = 1, . . . ,M.

Proof. Apply [67, Theorem 4.1], noting that J (·), M(·) and C(·) comply with the
assumptions of that theorem by construction.

More specifically, one can show that if the problem has a unique solution, the ab-
stract TNNMG algorithm will converge to this minimizer.

Corollary 4.5. Under the assumptions of Theorem 4.4, if J possesses a unique min-
imizer u∗, we have

xν → u∗. (4.8)

Proof. Apply [67, Corollary 4.4], noting that by Assumption 4.2, J is block-separable
nonsmooth.

4.1.3. Linear Correction

We are left with the question how to construct a suitable search direction C(xν+1/2).
If J were smooth, one could apply a Newton-step of the form

C(xν+1/2) = −
(
J ′′
(
xν+1/2

))−1

J ′(xν+1/2).

As it is well known from optimization theory, this would lead to rapid convergence if
xν+1/2 is close to a stationary point x and if J is smooth enough. This would render
the TNNMG method as a Newton method in terms of the nonlinear preconditioner.

To account for the possible nonsmoothness of J , we have to construct iteration
dependent subspaces Wν such that

v ∈Wν 7→ J (xν+1/2 + v)

is C2 near the origin. For a good search direction it is in general desirable to have Wν

to be as large as possible. Finding such a space, however, might be a challenging task.
In [67], several methods for constructing the subspaces Wν are presented for different
applications.

59

4. Algebraic Solution

Example 4.5.1. Consider again the quadratic obstacle problem from Example 4.2.1.
There, we have that J is not differentiable in direction ei exactly if the function touches
an obstacle in the i-th node. Thus, we can define Wν to be the subset of nodes that
are inactive, i. e. bounded away from the obstacles:

Wν = RIν ,

Iν =

{
i ∈ {1, . . . , n} : x

ν+1/2
i ∈

(
ψ
i
, ψi

)}
.

Assume we have found a suitable space Wν . Then, we compute an approximate
Newton-correction on that space that serves as a candidate for C(xν+1/2):

vν ≈ −
(
J ′′
(
xν+1/2

)
|Wν×Wν

)−1

J ′
(
xν+1/2

)
|Wν . (4.9)

In implementations, the restriction to Wν is implemented by setting the corresponding
rows and columns or vector entries to zero, thus truncating the matrix and right hand
side. Strictly speaking, the system (4.9) is not well-posed. As a remedy, one might
formally introduce the Moore–Penrose pseudoinverse for J ′′(·)|Wν×Wν

. For J convex,
the system (4.9) then indeed possesses a unique solution, see [67].

In practice it is often sufficient to perform a single step of a suitable iterative solver
for the linear problems to obtain a reasonable approximation in (4.9). The canonical
choice would be a multigrid method, if available. For details how to construct a
multigrid method for our hp-DG discretized system, consult Section 4.2.

As the correction vν is agnostic of any nonlinearities of J , we cannot use it directly
since we cannot guarantee the crucial error descent J (xν+1/2 + vν) ≤ J (xν+1/2). To
overcome this issue, a damping parameter ρ̂ can be introduced that can be computed
for example by a simple line search:

Find ρ̂ ∈ R such that J (xν+1/2 + ρ̂vν) ≤ J (xν+1/2).

Thus, ρvν could be used as the linear correction C(xν+1/2) in the abstract TNNMG
algorithm. In practice, however, it turned out that often vν is so close to the boundary
of domJ that only very small damping parameters are possible, thus slowing down the
method significantly. Therefore, before applying the line search to guarantee energy
descent, a Euclidean projection to J ’s domain is performed.

Example 4.5.2. Consider the situation as illustrated in Figure 4.1.1. As xν+1/2 is close
to the boundary of J ’s domain, only a short increment can be achieved by optimizing
along the direction vν (the red line). If the projection is performed, however, the
correction can be done along a greater length (the blue line). However, this might
come at the price of a worse descent direction.

This leaves us with

C(xν+1/2) = ρPdom(J)(x
ν+1/2 + vν), (4.10)

60

4.2. Linear Multilevel Solver

domJ

xν+1/2

Search direction vν

Projected search direction PdomJ (xν+1/2 + vν)

Figure 4.1.1.: Projected search direction (blue) allows for more optimization than the
nonprojected direction (red)

where Pdom(J) : Rn → dom(J) is the Euclidean projection into dom(J) and ρ is
chosen such that

J
(
xν+1/2 + C(xν+1/2)

)
≤ J

(
xν+1/2

)
.

Thus, we clearly have that the particular choice of the linear correction (4.10) fulfills
the assumption of Theorem 4.4 and we have that the TNNMG Algorithm 3 converges.

Algorithm 3 Full TNNMG Algorithm

1: procedure TNNMG(xν)
2: xν+1/2 ←M(xν) . Perform nonlinear Gauss–Seidel step

3: vν ≈ −
(
J ′′
(
xν+1/2

)
|Wν×Wν

)−1

J ′
(
xν+1/2

)
|Wν

. Approximately solve

system (4.9)
4: Compute projection into domJ , PdomJ (vν)
5: Compute damping factor ρ that guarantees energy is not increased
6: xν+1 ← xν+1/2 + ρPdomJ (vν)
7: end procedure

4.2. Linear Multilevel Solver

As seen in Section 4.1.3, the TNNMG method requires the approximate solution of
a (truncated) linear system. For iterative schemes that converge rapidly for a given
problem, often a single iteration step of that scheme is sufficient to generate a rea-
sonable search direction [61]. The canonical example would be a geometric multigrid

61

4. Algebraic Solution

step for a P1-finite-element discretization of an elliptic problem. This would require
the existence of a suitable grid hierarchy. If no such hierarchy is available or the prob-
lem at hand does not respond well to geometric multigrid, any other linear solution
scheme, e. g. an algebraic multigrid scheme or even direct solvers, are valid alternatives
[67]. Note that in practice special care has to be taken since the truncation of the full
system leads to problems that might be not invertible on the full space Rn but only
on Wν .

4.2.1. hp-Multigrid for Discontinuous Galerkin Discretizations

In the following we will present a multigrid strategy which is suitable for systems arising
from geometric (“h–”)refinements of the underlying grid or by increasing the local
ansatz degree (“p–refinement”). Abusing terminology, we still speak of a multigrid
method in the latter case.

Multigrid methods for DG discretizations (using h-, p- or hp-refinements) have been
considered in several works before, see e. g. [8, 34, 59, 84]. In these articles, different
kinds of multigrid methods have been presented and analyzed. We will present an
approach that is most similar to the one from [8] (albeit using Gauss–Seidel type
smoothers instead of a Richardson iteration). In numerical examples the same authors
confirmed that using Gauss–Seidel smoothers (either blocked or scalar type) leads to
better convergence rates while exhibiting less dependence on the polynomial degree
used for the ansatz functions [9].

Assume there is a sequence of DG finite element spaces

V p1T1 ⊂ · · · ⊂ V
pJ
TJ .

A finer space V
pj+1

Tj+1
is obtained from V

pj
Tj (j ∈ {1, . . . , J − 1}) by local modifications:

Assumption 4.6. For every “fine” element K in Tj+1, it holds

• if K ∈ Tj+1 ∩ Tj, we have pj+1(K) ≥ pj(K),

• if K ∈ Tj+1 \ Tj, K was obtained from a geometric refinement of an element
K ′ ∈ Tj and we have pj+1(K) ≥ pj(K ′).

Note that in general it is permitted that in some elements neither (or both!) types
of refinement happened. For shorter notation, we denote will abbreviate V

pj
Tj by V j .

As a model problem, consider again the SIPG discretization of the (linear) Poisson
problem from Chapter 3. For a given basis {ϕi}i of V J , this induces the linear system

AJxJ = bJ (4.11)

defined by

AJij = ah
(
ϕi, ϕj

)
,

bJi = Fh(ϕi).

62

4.2. Linear Multilevel Solver

One key ingredient of a multigrid method is the definition of prolongation and
restriction operators. Since the discrete spaces {V j}j are nested, we can define the
prolongation operator

T j+1
j : V j → V j+1 (4.12)

as the canonical injection operator. Assume that for each space V j a suitable basis
has been chosen. For these bases, the corresponding matrix to the linear map (4.12)
can be obtained through interpolation of the coarse basis functions using the finer
basis functions. The resulting matrix representing the map T j+1

j in these bases will

be called P j+1
j .

The corresponding restriction

T jj+1 :
(
V j+1

)′
→
(
V j
)′

(4.13)

is defined as being the adjoint of the operator T j+1
j . The algebraic representation

Rjj+1 of the restriction operator with respect to the chosen basis is the transposed
prolongation matrix, i. e.

Rjj+1 =
(
P j+1
j

)>
.

For nonconsecutive level pairs (j, j + l), we can define restriction and prolongation in
the obvious way:

P j+lj = P j+lj+l−1 · · · · · P
j+1
j ,

Rjj+l = Rjj+1 · · · · ·Rj+l−1
j+l .

Given prolongation and restriction operators, we can define coarse-grid matrices re-
cursively through

Aj = Rjj+1A
j+1P j+1

j =
(
P j+1
j

)>
Aj+1P j+1

j , j = 1, . . . , J − 1. (4.14)

The definition of the coarse-grid matrices through the prolongation to finer levels
and subsequent restriction has an unfavorable effect. Evaluation of the bilinear form
induced by AJ for functions that are defined on coarser grids means that we compute
the penalty terms by integrating over the fine faces:

Say we have v, w ∈ V j with j < J and let vj , wj ∈ Rdim(V j) be their respective
coefficient vectors in V j ’s chosen basis. Then, we have

〈Ajvj , wj〉 = · · ·+
∑
e∈ΓJ

σ

|e|

∫
e

JvKJwK dS,

where Γj denotes the set of faces on the j-th level. Since the faces on coarser level can
be understood as unions of finer faces, we have for every coarse face ej ∈ Γj ,∑

e∈ej∩ΓJ

∫
e

JvKJwK dS =

∫
ej

JvKJwK dS.

63

4. Algebraic Solution

However, if we have that the face ej is actually coarser than the finest faces from ΓJ ,
we have ∑

e∈ej∩ΓJ

σ

|e|

∫
e

JvKJwK dS 6= σ

|ej |

∫
ej

JvKJwK dS,

since than |ej | < |e| for finer faces e. Hence, with this approach to coarse-grid matrices,
we are are overpenalizing the jumps of DG functions on coarse level by a factor that
is proportional to the number of subdivisions applied to a coarse face to obtain a fine
face. Similar arguments hold for p-transfers as well, since the penalization factor σ is
assumed to be of order p2.

The former argument suggests that the coarser matrices exhibit a worsening condi-
tion depending on the number of levels. Indeed, in [8] it was proved that the use of
plain Galerkin restriction for the coarse-grid bilinear forms (“inherited” bilinear forms)
leads to a dependence of the convergence rate on the number of levels, rendering the
multigrid method in this case as not grid independent. As a remedy, most authors
choose to not use inherited bilinear forms but to re-discretize the problem on each
level, i. e.

Ãjkl = ah

(
ϕjk, ϕ

j
l

)
for a given basis

{
ϕji

}
i

of V j .

In this work, however, we will not follow that approach. Besides the fact that
assembling a matrix from scratch is a relatively costly operation, the full coarse levels
might not be directly accessible due to the way how locally refined grids are stored.
More importantly, the truncation of basis functions as introduced by the TNNMG
algorithm (see Section 4.1) would lead to basis functions on coarser levels which lack
some of their finer components due to truncation and that must be recalculated in
every TNNMG iteration step. Moreover, explicitly computing these might arguably
be quite involved. To keep computational efficiency and since the TNNMG method
only requires a rather rough approximation of the solution to the arising linear systems
anyway, we accept the level dependence of the method and increase the number of
smoothing steps if required.

Remark 4.7. Another approach would be to store the penalty terms of the matrix rep-
resentation separately and use these to subtract parts of the overpenalized terms in the
coarse grid representation when using Galerkin restriction. In our experiments, this
approach led to better convergence rates than using plain Galerkin restriction. How-
ever, this comes of course at a significant computational cost and increased complexity
of the underlying code, so we decided to abandon this approach.

The remaining building blocks are the choices of a suitable smoother and optionally,
a coarse grid solver. In practice, using the chosen smoother as coarse grid “solver” will
suffice, given that the system corresponding to the coarsest level is sufficiently small.
The coarse grid “solver” will be written as the application of a matrix B1, which may

or may not be equal to
(
A1
)−1

.
For simplicity and because of its good smoothing properties, we will restrict our-

selves to simple (Block-)Gauss–Seidel smoothers. It is, however, reported, that other

64

4.2. Linear Multilevel Solver

methods, e. g. polynomial smoothers [14] or overlapping Schwarz preconditioners (see,
e. g. [106]) work well for DG-discretized systems.

The Gauss–Seidel smoothers for linear systems such as (4.11) are defined just as
their nonlinear counterpart (4.4)–(4.6), in this case using the unconstrained quadratic
functional

J0(v) =
1

2
〈Ajv, v〉 − 〈bj , v〉

as the underlying energy. Then, the (linear) Gauss–Seidel method is to successively
minimize energy in the coordinate directions (or in small subspaces for the blocked
version). On each level j, this reads

F ji (x) = x+ arg min
e∈V ji

J0(x+ e),

F j = F jnj ◦ · · · ◦ F
j
1 ,

where V j1 , . . . , V
j
nj is a partition of Rdim(V j) into subspaces, e. g. V ji = span{ei}. It

is also conceivable to use other subspaces, e. g to exploit the natural element-wise
blocking when using discontinuous Galerkin spaces. For this unconstrained system,
the local minimizations can often be performed exactly (up to floating point precision).

Besides Gauss–Seidel, other suitable suitable smoothers can be used. Hence, we will
assume for each level j some smoother has been chosen and it can be represented by the
application of a matrix Bj . For Gauss–Seidel, we would have Bj = (Lj+Dj)−1, where
Lj and Dj are the lower-diagonal and diagonal parts of Aj , respectively. However, it
has to be guaranteed that the smoothers (and also the coarse grid solver B1) can deal
with truncated rows and columns due to truncated subspaces in the TNNMG method.
This can e. g. be achieved for example by explicitly ignoring the corresponding indices
(this can be easily be done in the Gauss–Seidel method since the subspaces are treated
individually) or by replacing the diagonal entry of a truncated row by 1 instead of 0.

In Algorithm 4, we define the application of a single multigrid step. Note that we
use the residual as input parameter. Thus, if we have an approximation xJν on the
finest level J , we compute the residual rJ = bJ −AJxJν and call MultigridStep(rJ ,
J), which will give a correction eJν . For the linear correction problems in Algorithm 4
we usually use xj = 0 as initial guess. Then, the current iterate xJν is obtained through

xJν+1 = xJν + eJν .

Choice of Subspaces

It remains to clarify how a suitable strategy for the choice of coarse spaces should
look like. In this work we chose to first reduce the ansatz degree and afterwards, after
having piecewise Q1 function on all elements, perform a geometric multigrid approach.
More formally, consider the “fine” space V pJTJ and pick an increasing sequence of degrees
between 1 and the maximal degree of pJ ,

1 = k1 < k2 < · · · < km = max
K∈TJ

pJ(K).

65

4. Algebraic Solution

Algorithm 4 Single Step of Multigrid Scheme

1: procedure MultigridStep(Residual r, Level j)
2: x = 0 ∈ Rdim(Vj) . Create correction vector
3: if j = 1 then
4: x← B1r . (Approximately) solve system
5: else
6: for i = 1, . . . , µ1 do
7: x← Bjx . Apply µ1 smoothing steps
8: end for
9: r ← r −Ajx . Compute new residual

10: rj−1 = Rj−1
j r . Restrict to coarser space

11: c = MultigridStep(rj−1, j − 1) . Compute coarse correction
12: x← x+ P jj−1c . Update correction vector
13: for i = 1, . . . , µ2 do
14: x← Bjx . Apply µ2 smoothing steps
15: end for
16: end if
17: return x
18: end procedure

The sequence is arbitrary and may for example contain all integers between 1 and km
or just hold powers of two. Mathematically it is not crucial which sequence is chosen,
however computationally one may need to trade off convergence rates and time per
iteration.

With a given degree sequence, the finest spaces are constructed by using the fine
grid TJ and locally capped degree functions, i. e. on any fine element K ∈ TJ , we have

pJ−i(K) = min
(
pJ(K), km−i

)
, i = 0, . . . ,m− 1.

Thus, the fine spaces are defined as the DG spaces on grid TJ and degree functions as
above,

V
pJ−m+1

TJ ⊂ · · · ⊂ V pJTJ . (4.15)

Clearly, by construction, we have pJ−m+1 ≡ 1. We will therefore also write V 1
Tj for

spaces that contain only piecewise linear functions.
Up to now, we only constructed coarse levels by reducing the degree of the local

ansatz functions. This is also called p-multigrid, see e. g. [84], and is a viable strategy
on its own. The coarse space V 1

TJ , however, is usually still too big to be solved directly
within reasonable time. Therefore another iterative scheme might be applied to the
system

AJ−m+1x = b, x, b ∈ Rdim(V 1
TJ

).

If the grid includes a hierarchy of coarser levels (i. e. it was obtained through geometric
refinement of a coarse grid T1), we apply a geometric multigrid approach by defining

66

4.3. Parallel Smoothers

the coarse spaces as the DG spaces with Q1 functions on the coarser levels:

V 1
T1 ⊂ . . . V 1

Tl = V 1
TJ . (4.16)

Combining (4.16) and (4.15), the sequence of spaces

V 1
T1 ⊂ . . . V 1

Tl ⊂ V
pl+1

TJ ⊂ · · · ⊂ V pJTJ
defines a hp-multigrid method that stacks geometric multigrid and p-multigrid on top
of each other.

Remark 4.8. If the underlying mesh is conforming (or has conforming coarser levels), a
particular elegant way of structuring the coarse grid solver might be to use continuous
finite element spaces as coarse grid solvers. These often show superior multigrid conver-
gence and are not prone to the overpenalizing introduced through the non-inherited
bilinear forms. For further evidence, in [39], it is argued that an additive Schwarz
scheme can only work if coarser spaces are spanned by continuous functions. In the
popular approach from [21], the system reduced to a subspace containing only contin-
uous finite element functions (which is solved with an algebraic multigrid approach)
serves as coarse grid correction.

For systems that are very nonconforming, e. g. through a large number of hanging
nodes generated by local adaptive refinement, the construction of suitable continuous
finite element spaces is however not always feasible.

4.3. Parallel Smoothers

Error estimates in the numerical analysis of PDEs are usually stated in a form that,
loosely speaking, implies that a higher number of degrees of freedom lead to more accu-
rate approximations of the solution to the continuous problem. Thus, one is in general
interested in computing problems large enough to comply with given error thresholds,
possibly bounded by the available computing power. Rapid advancements in computer
technology lead to ever growing problem sizes in the last decades. However, it turned
out that the predicted exponential growth of computing power for a single computer
(Moore’s “law”) is saturating. As a remedy (among other variants such as, e. g. using
architectural parallelization through SIMD) a common approach is to split the prob-
lem into parts and distribute them among many processes (“nodes”). These processes
can reside on different machines and communicate through some protocol, usually the
Message Passing Interface (MPI)1 standard.

Since communication is slow compared to the computations on each node, we want
an approach that allows to perform as much work as possible locally. Thus, the
common practice is to apply a domain decomposition ansatz by splitting the grid into
parts. We will not, however, follow the classical domain decomposition technique of
solving (e. g. with a multigrid approach) in each subdomain and combining (possibly
amended by the use of a global coarse space) the solutions of the individual parts to

1https://www.mpi-forum.org

67

4. Algebraic Solution

a global solution. While this approach requires less communication, the convergence
of the algebraic solver will usually suffer due to the fact that less information and
coupling is used. Moreover, it is not so clear how to solve the nonlinear problems in
this fashion (see for example [107] for an attempt for variational inequalities). Rather,
we will employ a multigrid strategy as outlined in the previous sections to the global
problem. Hence, we can solve the problem in the same fashion as we are used to from
the serial case, with the crucial difference that the building blocks of the solver (e. g.
matrix-vector-products, updates to residuals, application of smoothers, etc.) will be
distributed between the machines and therefore frequent communication is required to
keep the data on each machine in a valid state. We accept the increased communication
costs (compared to the other approach where the local problems are first solved and
commucation happens afterwards) for the benefit of faster solvers and the possibility
to reuse our existing solvers, in particular the TNNMG method. At some points,
algorithms which are inheritely non-parallel (think, e. g., the Gauss–Seidel method)
still have to be adapted or replaced to allow for parallel computations. Naturally,
we have to make sure that the employed algorithms still yield satisfying properties
even when performed in parallel. Moreover, we have to make sure that we do not lose
any properties that are essential for the convergence of the methods (e. g. the error
reduction property of the nonlinear smoother).

Regardless of whether one chooses to use domain decomposition with multigrid or
(as we decided to) the parallel multigrid approach, the technical starting point is
similar: The domain will be split into a number of sub-domains matching the number
of available nodes. Each node will only know its part of the grid (and maybe some of the
neighboring elements in form of ghost or overlap elements) and perform computations
on that sub-domain. For the PDE numerics framework DUNE2 which is used for the
numerical examples in this thesis, the parallelization approach is described in detail in
[19, 20, 25]. From a technical perspective, these methods are well understood, see e. g.
[17] for a detailed explanation. We will therefore only discuss the parts that might
introduce problems in our case. This concerns mostly the smoothers used for the
algebraic solution of the problems, both the nonlinear smoother in the beginning of
each step of the TNNMG method and the linear smoothers used on each level of the
multigrid step. The classical approach is to apply a hybrid Gauss–Seidel method, i. e.
performing a Gauss–Seidel step locally on each node in parallel and communicating
the result afterwards. This is similar to a block-Jacobi method with inexact block
solvers, given that the degrees of freedom are appropriately blocked.

Such a hybrid Gauss–Seidel method, however, does not converge for all s. p. d. ma-
trices [14]. Moreover, it is not clear if the nonlinear variant of the hybrid method
converges, a result crucial for the converges proof of the TNNMG method. In the lin-
ear case, convergence can be guaranteed with proper damping of the corrections. The
estimation of a suitable damping factor, however, is not trivial. As a remedy Baker
et al. [14] introduced so-called `1-smoothers that are proven to converge without the
need to explicitly compute proper damping factors. This, however, does not answer
the question of the convergence of the nonlinear variant of the smoother.

2https://www.dune-project.org

68

4.3. Parallel Smoothers

In the following section, we will prove a sufficient criterion for the convergence of
a preconditioned nonlinear smoother. As a corollary, we obtain that the nonlinear
variant of the `1-smoother converges, rendering it as a good candidate for the use in a
parallel TNNMG method.

4.3.1. Preconditioned Nonlinear Gauss–Seidel

We seek for a minimizer to the following convex energy:

J (x) =
1

2
〈Ax, x〉 − 〈b, x〉+

∑
i

ϕi(xi), (4.17)

where A ∈ RN×N is a symmetric, positive definite matrix, b is a linear functonal and
the ϕi have the same properties as in Assumption 4.2. As argued before, J has a
unique minimizer u ∈ Rn.

As outlined in Section 4.1.1, functionals of the form (4.17) can be minimized through
a nonlinear Gauss–Seidel method, i. e. by successively minimizing energy in subspaces
Vi.

Reformulating (4.6) in a correction form, we have

xν+1 =M(xν) = xν + F(xν), (4.18)

with the correction operator F = M− Id. More general, we introduce the notation
MG, which shall denote the application of a nonlinear Gauss–Seidel step to a specific
functional G : RN → R. In particular, we haveMJ =M. Similarly, we introduce the
correction operator FG =MG − Id.

For arbritrary v ∈ RN , rewriting (4.17) gives

J (x+ v) = J (x) +
1

2
〈Av, v〉 − 〈b−Ax, v〉+

∑
i

ϕi(xi + vi)− ϕi(xi).

Denoting the residual part by

Dx(v) =
1

2
〈Av, v〉 − 〈b−Ax, v〉+

∑
i

ϕi(xi + vi)− ϕi(xi),

we have J (x+ v) = J (x) +Dx(v). Clearly, Dx is a convex functional with the same
properties as J . Instead of evaluating the nonlinear Gauss–Seidel Id +FJ at xν to
get the new iterator xν+1, we can also get the correction xν+1 − xν by performing a
nonlinear Gauss–Seidel step FDx to the functional Dx at 0. Thus, we can rewrite the
iteration (4.18) as

xν+1 = xν + FDxν (0).

In particular, we have F(xν) = FDxν (0). This also resembles a frequently used tech-
nique when implementing the smoother.

We are now interested in computing a preconditioned version of the Gauss–Seidel
algorithm. More precisely, we want to replace the matrix A in the quadratic part of the

69

4. Algebraic Solution

functional by another matrix B which might be more suitable for specific reasons (in
our case, e. g., to reduce coupling). For the modified iteration, consider a symmetric
matrix B ∈ RN×N such that we have

0 ≤ 〈Ax, x〉 ≤ 〈Bx, x〉 ∀x ∈ RN . (4.19)

Obviously, with A being positive definite, B is also positive definite. This allows us to
modify the functional Dx by defining

D̃x(v) =
1

2
〈Bv, v〉 − 〈b−Ax, v〉+

∑
i

ϕi(xi + vi)− ϕi(xi),

where we replaced A by B in the quadratic part. Similarly as before, we introduce the

notation F̃(x) := F D̃x(0) for the application of a nonlinear Gauss–Seidel step to the
modified functional. Clearly, by (4.19), we have

Dx(v) ≤ D̃x(v) ∀v ∈ RN . (4.20)

Moreover, since D̃x is a quadratic functional just as J , we get that the application of
the nonlinear Gauss–Seidel method to D̃x at zero decreases energy:

D̃x(F̃(x)) ≤ D̃x(0) = 0. (4.21)

It is well-known for Gauss–Seidel methods that in (4.21), we have equality if and only
if 0 is the unique minimizer of D̃x(v), v ∈ RN .

We can now define a sequence of iterates induced by applying the nonlinear Gauss–
Seidel method to the modified residual D̃x, i. e.

x̃ν+1 = x̃ν + F̃(x̃ν), ν = 0, 1, (4.22)

This algorithm is the same as the Gauss–Seidel method only using the matrix B instead
of A in the quadratic part.

Since the nonlinear smoother will be integrated into a TNNMG method, it is crucial
that the sequence (4.22) is a minimizing sequence. This will be shown in the following
lemma.

Lemma 4.9. Let the sequence {x̃ν}ν be defined as in (4.22). Then, for every ν ∈ N,
we have

J (x̃ν+1) ≤ J (x̃ν)

with equality if and only if x̃ν = x̃ν+1 = u.

Proof. Let ν ∈ N.

J
(
x̃ν+1

)
= J

(
x̃ν + F̃(x̃ν)

)
= J (x̃ν) +Dx̃ν

(
F̃(x̃ν)

)
≤ J (x̃ν) + D̃x̃ν

(
F̃(x̃ν)

)
(by (4.20))

≤ J (x̃ν) . (by (4.21))

70

4.3. Parallel Smoothers

For the second part, assume it holds J (x̃ν+1) = J (x̃ν). This implies

D̃x̃ν

(
F̃(x̃ν)

)
= 0.

Thus, 0 must be the unique minimizer of D̃x̃ν and we have that F̃ (x̃ν) = 0.
We need to show that no correction through D̃ implies that also no correction

through D would have been made and hence x̃ν = u.
Let ε := F(xν) be the correction the nonlinear Gauss–Seidel method applied to

the (unmodified) functional Dx̃ν yields, and analogously ε̃ := F̃(x̃ν) for the modified
functional. Let i ∈ {1, . . . , n} be the lowest index such that εi 6= 0 (if no such index
exists, the statement follows immediately). We have

ε̃i = arg min
α∈R

1

2
α2Bii − α(b−Ax̃ν)i + ϕi(x̃

ν
i + α)− ϕi(x̃νi),

εi = arg min
α∈R

1

2
α2Aii − α(b−Ax̃ν)i + ϕi(x̃

ν
i + α)− ϕi(x̃νi),

ignoring terms that are independent of α. Both equations only differ by the factor in
front of the quadratic term. As both Aii and Bii are greater than 0, we can write both
minimization problems as (scalar) variational inequalities of the second kind:

b(ε̃i, v − ε̃i)− `(v − ε̃i) + j(v)− j(ε̃i) ≥ 0 ∀v ∈ dom(j),

a(εi, v − εi)− `(v − εi) + j(v)− j(εi) ≥ 0 ∀v ∈ dom(j).

Here, we used the notation a(v, w) = Aiivw, b(v, w) = Biivw, `(v) = v(b−Ax̃ν)i and
j(v) = ϕi(x̃

ν
i + v)− ϕi(x̃νi) with v, w ∈ R.

Since ε̃i = 0 by assumption, we have

− `(v) + j(v) ≥ 0 (4.23)

for all admissible v. By assumption, εi 6= 0, hence we have, testing with v = 0,

0 = a(εi, 0)− `(0) + j(0) ≥ a(εi, εi)− `(εi) + j(εi) > −`(εi) + j(εi),

a contradiction to (4.23). Hence, it follows that whenever the Gauss–Seidel minimiza-
tion of D̃x̃ν gives no correction, the analogous minimization of Dx̃ν would not yield
any correction either, hence x̃ν = u.

The other direction, namely x̃ν = u implying J (x̃ν+1) = J (x̃ν), follows directly
from the uniqueness of the minimizer.

Lemma 4.10. The operator F̃ is Lipschitz continuous.

Proof. Apply Lemma A.4 for the individual subspaces. Inductively, one can see there
is a constant C such that ‖F(x)−F(x̃)‖ ≤ C‖x− x̃‖.

71

4. Algebraic Solution

Equipped with these lemmas, the following theorem ensures the convergence of
the nonlinear preconditioner. This in particular guarantees the convergence of the
TNNMG algorithm [67].

Theorem 4.11. Assume B is symmetric, positive-definite and (4.19) holds. Then, the
TNNMG algorithm using the preconditioned nonlinear Gauss–Seidel smoother M̃ =
Id +F̃ converges.

Proof. Use the monotonicity proved in Lemma 4.9, deduce the continuity of J ◦M̃ on
domJ from Lemma 4.10 and finally apply [67, Theorem 4.1] or [61, Theorem 4.1].

4.3.2. Application: Parallel TNNMG using Nonlinear `1-Smoother

In the following, we construct a nonlinear variant of the `1-smoother derived in [14].
The smoother replaces the matrix A by a matrix B that is block-diagonal where
the blocks are induced by the domain decomposition (given a suitable numbering
of unknowns). As we learned in Section 4.3.1, replacing A with B when doing the
nonlinear Gauss–Seidel step will not harm the convergence, given that (4.27) holds.
If the matrix B decouples parts of the matrix from each other (through the block
diagonal structure), we can compute the correction F̃(x) in parallel while theoretically
performing a (inherently sequential) nonlinear Gauss–Seidel step.

We introduce a partition of the index set P = {1, . . . , N} into p disjoint nonempty
subsets, i. e.

P =
⋃̇p

k=1
Pk (4.24)

with Pk =
{
j1, . . . , jnk

}
⊂ P . In practice, p will be the number of nodes in a dis-

tributed setup. For every index i there is a unique k(i) ∈ {1, . . . , p} such that i ∈ Pk(i).
For this i, we associate the set of all indices that do not belong to the same index set
Pk(i):

P (i)
o = P \ Pk(i).

The idea of the `1-smoother is to remove all matrix entries Aij where k(i) 6= k(j)
and adding them to the diagonal term Aii. This immediately removes all coupling
between the nodes.

More formally, we set B = Alocal +D`1 , where

Alocal
ij =

{
Aij if k(i) = k(j),

0 if k(i) 6= k(j),
i, j = 1, . . . , N (4.25)

and D`1 is a diagonal matrix with entries

D`1
ii =

∑
j∈P (i)

o

|Aij |, i = 1, . . . , N. (4.26)

As mentioned in [14], we have the following estimate:

72

4.3. Parallel Smoothers

Lemma 4.12. For A ∈ RN×N s.p.d., and B ∈ RN×N defined as before, we have

〈Av, v〉 ≤ 〈Bv, v〉, ∀v ∈ RN . (4.27)

Proof. Let v ∈ RN be arbitrary.

〈Av, v〉 = 〈Alocalv, v〉+ 〈(A−Alocal)v, v〉
≤ 〈Alocalv, v〉+

∑
i

∑
j∈P (i)

o

|Aij ||vi||vj |.

Using A’s symmetry, we have |Aij ||vi||vj | = |Aji||vj ||vi|. Hence, we can rewrite the
former inequality as

〈Av, v〉 ≤ 〈Alocalv, v〉+
∑
i

∑
j∈P (i)

o
j>i

2|Aij ||vi||vj |.

Using Young’s inequality, we have 2|Aij ||vi||vj | ≤ |Aij |v2
i +|Aij |v2

j . A short calculation
shows that ∑

i

∑
j∈P (i)

o
j>i

|Aij |v2
i + |Aij |v2

j =
∑
i

v2
i

 ∑
j∈P (i)

o

∣∣Aij∣∣
 ,

and hence
〈Av, v〉 ≤ 〈Alocalv, v〉+ 〈D`1v, v〉 = 〈Bv, v〉.

Equation (4.27) shows that we can use the modified matrix B in our smoothers as
presented above. As argued before, this matrix can be used in a parallel computation
as a Gauss–Seidel method which is computationally equivalent to a (blocked) Jacobi
method. In particular, the convergence of the nonlinear smoother inside the TNNMG
method is guaranteed through Theorem 4.11, yielding the convergence of the TNNMG
method itself, cf. Theorem 4.4.

Also, when computing the linear correction of the TNNMG algorithm using a multi-
grid method, the same way of constructing a matrix BJ from AJ on the J-th level can
be used in the linear smoothers. Convergence for this linear case was shown in [14]
and is also a special case of the proof for the nonlinear case, choosing ϕi ≡ 0 for all i.

73

5. Adaptive Numerical Approximation

Solutions to the problems of Chapter 2 (and in general PDE problems) often times
exhibit local phenomena that will only be visible if the discrete space can resolve them
sufficiently well. Often, this means having a very fine mesh width, ansatz functions of
higher polynomial degree, or both. An example in the context of phase field models
is the interface area between different phases where the solution has a relatively sharp
gradient. Another example for the obstacle problem was motivated earlier in the a
priori hp estimate in Theorem 3.50. There, it was concluded that near the free bound-
ary the local mesh width has to be fine enough to account for the local nonsmoothness
while ansatz functions of higher order might not yield further benefits. On the other
hand, it was shown that away from the free boundary, a high polynomial degree in
the ansatz functions would be superior compared to a finer mesh (compare the O(hp)
convergence in p to the O(h) convergence in h). A naive solution to the dilemma would
be to employ both a very fine mesh and a high polynomial degree globally. This, how-
ever, would lead to a very large finite element space where the discrete solution cannot
be computed in a reasonable time if at all. A more economical approach is to locally
adapt the discrete space such that the mentioned local phenomena are sufficiently re-
solved while keeping a coarser mesh where possible. Since the exact position where a
higher resolution is needed is usually not known a priori (think again, e. g. of the free
boundary of an obstacle problem), one has to set up a procedure that will identify
the crucial areas in a given discrete solution and successively generate new discrete
solutions on a finer finite element space. To be successful, such a procedure has to be
build around an error estimator that serves (at least) two purposes. First, it needs to
give a realistic estimate of the (unknown) global discretization error ‖u− uh‖, where
u is the solution to a given PDE problem and uh the solution to a discretized version
of the same problem. Once this error is small enough, the procedure can terminate.
Second, the error estimator should give a local criterion which allows an algorithm
to identify the regions where a finer resolution will let the global error decrease most
rapidly. If such a local criterion were not available, we would have no means but to
refine uniformly, a technique that would lead to too large discrete spaces as argued
before.

Let η be an estimate of the global error‖u− uh‖. Two properties are expected from
a suitable error estimator [28]:

1. The error estimator should be reliable, i. e.

‖u− uh‖ . η,

2. and it should be efficient, i. e.

η .‖u− uh‖ .

75

5. Adaptive Numerical Approximation

In summary, we want η ≈‖u− uh‖ that can be computed without the explicit knowl-
edge of u.

The chapter is organized as follows: At first, we will recall how hierarchical error
estimators can be used to solve a linear PDE problem when a continuous P1 finite
element discretization is used. Particularly, we explain how we can modify the problem
of finding an estimator in a way that allows for a more efficient computation. After-
wards, we explain how the approach is used in a variational inequality setting. Having
explained the approach for the classical (that is, continuous) Galerkin methods, we
will switch to the discontinuous finite element spaces we are considering in this thesis.
We will show how to apply a similar approach of hierarchical error estimating for the
SIPG discretization for the linear model problem. Finally, we argue how the methods
can be transferred to the error estimation of discretized variational inequalities.

5.1. Hierarchical A Posteriori Error Estimation

In this section, we will investigate a particular technique, namely hierarchical error
estimators, of estimating the discretization error that is almost independent of the
particular problem at hand. While there are several results for residual based error
estimators for the problems presented in Chapter 2 discretized with discontinuous
Galerkin methods (see, e. g. [72, 95]), there are few results for hierarchical error esti-
mates in the DG context (see e. g. [15]). However, residual error estimators are often
only efficient up to oscillation terms (see, e. g. [31]). Moreover, hierarchical error esti-
mators impress through their simplicity, which makes it easy to transfer the approach
from the simpler linear model problem to variational inequalities. Therefore, we will
introduce the concepts and some results about hierarchical error estimators as they
are known for continuous, piecewise linear finite elements and extend the ideas to
discontinuous finite elements with varying order.

For a given elliptic PDE problem, let u ∈ H be the solution to its weak formulation
and uS ∈ S be the solution to a discretization in a suitable discrete space S. We are
interested in the error ‖u− uS‖ in a suitable norm. Since we do not know u, we can
only estimate by other means. For hierarchical error estimators, one considers another
discrete space Q and the discrete solution in that space, uQ. Usually Q is obtained
through an enlargement of S (hence S ⊂ Q), for example through a uniform grid
refinement or by increasing the polynomial degree. We will assume that u is strictly
better approximated in Q than it is in S. This is manifested in the following saturation
assumption:

Assumption 5.1 (Saturation Assumption). For uS and uQ being the discrete solu-
tions in S and Q, respectively, we assume there is a β < 1 such that

‖u− uQ‖ ≤ β‖u− uS‖ . (5.1)

Obviously, the saturation assumption depends not only on the chosen spaces S and
Q but also on their suitability for the given problem. Spaces that are well suited for
a particular problem might perform badly at another problem, so a careful selection

76

5.1. Hierarchical A Posteriori Error Estimation

is advisable. For many problems, it can be argued that the saturation assumption
is true if the problem data has only small oscillations [50]. Note that, however, in
general counterexamples can be constructed such that Assumption 5.1 is not valid [28,
Proposition 2.2].

The key idea is to compare the discrete solutions uS and uQ and consider their
difference as an estimate of the discretization error ‖u− uS‖. It is well known that
the saturation assumption 5.1 implies that the difference η =‖uS − uQ‖ is an efficient
and reliable error estimator [28], as summarized in the following Theorem:

Theorem 5.2. Suppose Assumption 5.1 is true. This implies for η =‖uS − uQ‖ that

1

1 + β
η ≤‖u− uS‖ ≤

1

1− β η

holds.

Proof. Apply the triangle inequality and insert (5.1).

Remark 5.3. The theorem and its proof above assume that for all spaces the same
norm ‖·‖ can be applied. This might not be true for grid dependent norms as they
arise e. g. for Interior Penalty DG. Extra care for the norm equivalences has to be
paid in those cases, see e. g. [15] for a treatment of obstacle problems discretized with
IPDG.

Theorem 5.2 directly shows that the quality of the hierarchical error estimator is
tightly linked to the constant β, i. e. to which extend the discrete solution uQ is able
to capture phenomena beyond uS . In particular if β is close to one (meaning Q does
resolve the solution better than S only by a small amount), the constant 1

1−β will be
very large which reduces the error estimator’s reliability.

For the rest of this section, we assume that the saturation assumption 5.1 holds with
a “reasonable” constant β. While in theory this suffices to estimate the discretization
error reliably and efficiently, we are left with the challenge of solving an additional
discrete problem, namely to compute uQ. By assumption, we have that Q is consider-
ably larger than S. For example if one considers Q to be the uniform h-refinement of
a DG space S on a three-dimensional grid consisting of cubes, one would have that Q
consists of 8 times as many unknowns as S. Fully assembling and solving the larger
problem is hence prohibitively expensive and would directly oppose to the idea of only
solving local finer problems to save computing time. Therefore, a second layer of ap-
proximation was introduced that approximates the solution uQ on the finer space by
an approximation ũQ ∈ Q that is easier to compute. If one can show (or at least has
a heuristic reasoning) that the induced approximate error η̃ =‖uS − ũQ‖ is equivalent
to the error estimator η, one gets the another efficient and reliable error estimator at
a lower computational cost. The approximation ũQ is often achieved by replacing a
bilinear form a(·, ·) of the given problem by another bilinear form b(·, ·) and solving
the defect problem with respect to this bilinear form. This approach can be viewed
as a preconditioning technique. The formulation as a preconditioner was first made
explicit in [46]. Many concepts for preconditioning in the context of hierarchical error

77

5. Adaptive Numerical Approximation

estimates are closely related to domain decomposition techniques, see e. g. [28]. As an
example, we will briefly demonstrate how diagonal scaling can be used for a simple
Poisson problem. For more details, see [28].

Example 5.3.1. Consider the discretized Poisson problem

uS ∈ S : a(uS , v) = (∇uS ,∇v) = 〈f, v〉 ∀v ∈ S,

where S = P1 (T) is the finite element space of piecewise linear, continuous functions
on a given triangulation T of Ω ⊂ R2. Here, we assume that uS is known exactly, i. e.
we ignore any algebraic error stemming from, e. g., an iterative solution procedure.
The corresponding defect problem for computing d = uQ − uS is

Problem 5.4 (Defect problem).

d ∈ Q : a(d, v) = ruS (v) ∀v ∈ Q, (5.2)

ruS (v) = 〈f, v〉 − a(uS , v).

Typically, the larger space Q is constructed by adding linear independent basis
functions

{
ψi : i = 1, . . . ,dim(V)

}
= Ψ (say, e. g. quadratic bubble functions) from

another space V = span Ψ (hence forming a hierarchical extension). These basis
functions are the Lagrange basis functions with respect to a node set NQ and which
vanish on the nodes NS of S. The splitting Q = S + V can also be written as the
hierarchical splitting

Q = S ⊕
⊕
ψ∈Ψ

span {ψ} , (5.3)

hence every w ∈ Q can be uniquely written as

w = RSw +

dim(V)∑
i=1

wi, RSw ∈ S, wi ∈ span {ψi} .

Here, RS is the orthogonal projection induced through the direct sum in (5.3).
To allow a cheaper approximation, we replace the bilinear form a(·, ·) by a precon-

ditioner:

a(v, w) ≈ b(v, w)

:= a(RSv,RSw) +

dim(V)∑
i=1

a(ψi, ψi)(v −RSv)(pi)(w −RSw)(pi), (5.4)

where pi ∈ NQ \NS is the i-th Lagrange node corresponding to the basis function ψi.
As we can see, the bilinear form b(·, ·) does not couple the subspaces involved in (5.3).
The modified defect problem now reads:

Problem 5.5 (Preconditioned Defect problem).

d̃ ∈ Q : b(d̃, v) = ruS (v) ∀v ∈ Q. (5.5)

78

5.1. Hierarchical A Posteriori Error Estimation

In particular, this defines an approximation of uQ,

ũQ = d̃+ uS . (5.6)

Since uS solves the variational problem on S, we have ruS (v) = 0 for v ∈ S. Also,
note that v −RSv = 0 if v ∈ S and therefore the latter terms in (5.4) vanish. Hence,
we have

b(d̃, v) = a(RS d̃S , v) = a(RS(ũQ − uS), v) = ruS (v) = 0 ∀v ∈ S.

In particular, this implies RuS (ũQ − uS) = 0 and thus RSuQ = uS . Moreover, we
have that b decouples S and V as for w ∈ V it follows

b(v, w) = 0 ∀v ∈ S (5.7)

from RSw = 0. Therefore, we have d̃ = ũQ−uS ∈ V and suffices to solve the variational
problem in the extension space:

d̃ ∈ V : bV(d̃, w) = ruS (v) ∀v ∈ V. (5.8)

Here, bV(·, ·) is the bilinear form b without the S contributions,

b(v, w) :=

dim(V)∑
i=1

a(ψi, ψi)(v −RSv)(pi)(w −RSw)(pi).

Since the resulting system is diagonal, we can solve the following local defect problems
to obtain d̃:

d̃i ∈ span {ψi} : a(d̃i, ψi) = ruS (ψi), i = 1, . . . ,dim(V). (5.9)

This is equivalent to an additive Schwarz method on the subspaces spanned by each
of V’s basis functions which emphasizes the relationship to domain decomposition
preconditioning techniques.

Finally, we can propose the following global error estimate:

η̃2 =

dim(V)∑
i=1

η̃i
2

with η̃i =
∥∥∥d̃i∥∥∥.

Remark 5.6. If we consider the energy norm ‖·‖ = a(·, ·), we have

η̃i =
ruS (ψi)

2

a(ψi, ψi)
.

If we put certain assumptions on the extension space V, namely that (5.3) is a stable
splitting, i. e.

‖v‖2 ≈‖vS‖2 +
∑
ψ∈Ψ

∥∥vψ∥∥2
, (5.10)

79

5. Adaptive Numerical Approximation

where v = vS +
∑
ψ vψ is the unique decomposition according to (5.3), we get the

following equivalence, cf. [28, Theorem 3.1]:

η̃ ≈‖uQ − uS‖ = η. (5.11)

Clearly, this implies that the preconditioned error estimator η̃ is also an efficient and
reliable error estimator.

Moreover, the constructed error estimator directly gives us a criterion for local
refinements as the local contributions η̃i carry information about how large the error
is in the support of ψi.

Extension to Variational Inequalities

After having discussed the hierarchical error estimator for the linear problem, we
want to briefly comment on how to use a similar approach for variational inequalities.
Consider again the finite element space S and the hierarchical extension V such that
Q = S ⊕ V. Assume uS to be the solution to a discrete variational inequality

a(uS , v − uS)− 〈b, v − uS〉+ jS(v)− jS(uS) ≥ 0 ∀v ∈ S.

Here, we understand that jV is an appropiate discretization of a nonlinearity φ in
the respective finite element space V by using a quadrature rule, i. e. we have j(v) =∑
i φ(v(xi))ωi, where ωi is the integral of the i-th basis function of V and xi its

corresponding Lagrange node. Similarly, let uQ be the solution to the variational
inequality in Q,

a(uQ, v − uQ)− 〈b, v − uQ〉+ jQ(v)− jQ(uQ) ≥ 0 ∀v ∈ Q.

Assuming a saturation assumption (as in Assumption 5.1) for this problem, we get
that ‖uS − uQ‖ is a reliable and efficient error estimator, cf. Theorem 5.2. uQ can be
computed by computing again the correction d = uQ − uS using the defect problem

a(d, v − d)− 〈b−AuS , v − d〉+ j(uS + v)− j(uS + d) ≥ 0 ∀v ∈ Q.

Here, we used a(uS , ·) =: 〈AuS , ·〉.
Of course, just as in the linear case, we do not want to compute uQ in the large

space Q to obtain the error estimator. Instead, we once more want to solve only
an easier (preconditioned) problem in the extension space V. When we replace the
bilinear form a(·, ·) by the preconditioner b(·, ·) as the in the preceding section for the
linear problem, we get by the same arguments as before that S and V decouple in the
quadratic part. This gives the following problem in the extension space:

d̃ ∈ V : b(d̃, v − d̃)− 〈b−AuS , v − d̃〉+ jV(uS + v)− jV(uS + d̃) ≥ 0 ∀v ∈ V.

d̃ can now be used as an error estimator as explained in the previous section. However,
note that we are ignoring the coupling between the spaces S and V which is induced
through the nonlinearity jQ. Indeed, we are just optimizing in the nodes NQ \ NS

80

5.1. Hierarchical A Posteriori Error Estimation

which correspond to V, omitting the fact that the values of uS on the nodes NS which
were optimal in S might not be the right values for uQ on these nodes. In fact, it
can be shown that ignoring this coupling can lead to the loss of reliability of the error
estimator [76]. On the other hand, numerical experiments show that the estimator
still works well for many problems [76]. In [77, 116], modified error estimates for the
obstacle problem were derived which take into account missing terms (and show that
indeed they are of higher order) such that the error estimators are reliable and efficient.

5.1.1. Hierarchical Error Estimators with Interior Penalty DG

Now, we want to discuss how we can translate the concept of hierarchical error esti-
mates to our DG setting. While the abstract idea of having a discrete space S and a
larger space Q is not tied to having piecewise linear or even continuous finite elements,
most of the cited results so far assume these in one way or another. In particular, it
will turn out that there are aspects to it which made us adopt a related, yet different
approach to compute an approximation to the error estimator uQ − uS . Instead of
using a diagonal scaling to compute the correction in the extension space V, we will
instead compute an approximation to the defect uQ−uS directly in the extended space
Q while making sure that the method is still reasonably computationally efficient.

Remark 5.7. Some of the algorithmic techniques referenced in this chapter (e. g. matrix-
free evaluation of the differential operator) have only been implemented for Qk ele-
ments, i. e. those based on cube reference elements, cf. Chapter 7. The mathematical
results presented here, however, hold for general Pk elements.

Reliability and Efficiency

Before we consider problems that are more involved than the Poisson problem, we
discuss how an approach similar to Example 5.3.1 can be adopted to Interior Penalty
on discontinuous Galerkin spaces with varying order. Let S be a given DG finite
element space. Consider the discrete solution uS to some PDE problem discretized by
a Symmetric Interior Penalty method, e. g. the Poisson problem

uS ∈ S : aS (u, v) = Fh(v) ∀v ∈ S.

We still consider a larger space Q ⊃ S to estimate the discretization error |||u − uS |||
by considering |||uQ − uS ||| with uQ being the solution to

uQ ∈ Q : aQ (u, v) = Fh(v) ∀v ∈ Q.

Remark 5.8. Many of the objects that will be considered in this section depend on
the respective discrete space. We will therefore use sub- or superscripts S and Q to
highlight this connection but may abstain from explicitly defining the space-dependent
objects where appropiate. For example, we have that aS (·, ·) = ah (·, ·) is the SIPG
bilinear form with respect to the grid, polynomial degree distribution and penalty
function corresponding to the finite element space S.

81

5. Adaptive Numerical Approximation

Possible choices to derive an extended space Q from S are to increase the local
polynomial degree by using a polynomial degree pQ(K) > pS(K), a refinement of the
underlying grid TS to TQ, or both methods.

Assumption 5.9. Let S be the DG space defined on a grid TS and polynomial degree
distribution pS : TS → N. Then, the extended space Q ⊃ S is defined on a grid TQ with
degree distribution pQ : TQ → N. On every element KQ ∈ TQ, one of the following
conditions holds:

1. KQ ∈ TS ∩ TQ and pQ(KQ) > pS(KQ) (“p-refinement”),

2. KQ ∈ TQ \ TS was obtained through a refinement of a unique father-element
KS ∈ TS (“h-refinement”) and pQ(KQ) ≥ pS(KS).

Recall from Chapter 3, equation (3.24), the definition of the DG-norm

|||v|||2 = |v|21 +
∑
e∈Γ

σe

∫
e

JvK2 dS.

Note that for Interior Penalty methods, the norm of the discrete spaces will depend
on the grid (due to the integrals which are evaluated on the boundary between grid
elements) and on the penalty factor respectively the polynomial degree (through the
O(p2) scaling of the penalty factor). Therefore, we will introduce subscripts |||·|||S and
|||·|||Q when appropriate. As the penalty constant should scale roughly as O(p2) [94],
we assume the penalty constant in Q on a given face should not be smaller than the
corresponding penalty constant in S:

Assumption 5.10. Let eQ be a face in TQ, i. e. eQ ∈ ΓQ. For any

eS ∈
{
e ∈ ΓS : eQ ⊆ e

}
,

we have
σSeS ≤ σQeQ .

Finally, we have to state a modified version of the saturation assumption.

Assumption 5.11. Let u ∈ H1(Ω) be the analytic solution to the given problem and
uS and uQ be its discrete solutions in S and Q, respectively. Then, we assume there
is a β < 1 such that

|||u− uQ|||Q ≤ β|||u− uS |||S .

We can relate the different norms of the discretization error u − uS through the
following equivalence lemma.

Lemma 5.12. For v ∈ H1(Ω) and vh ∈ S ⊂ Q, we have

|||v − vh|||2S ≤ |||v − vh|||
2
Q,

|||v − vh|||2Q ≤ C(σS , σQ)|||v − vh|||2S .

82

5.1. Hierarchical A Posteriori Error Estimation

Proof. For the full argument, but with a different norm, see [15, Lemma 14].
In our case, we have that the first equation is a direct consequence of Assumption

5.10. For the second equation, we can bound the difference in penalty constants of the
jump terms by

C(σS , σQ) = max
e∈ΓQ

σQe
σSe
≥ 1.

Example 5.12.1. For a typical choice of the penalty constant which is a constant times
the square of the local polynomial degree, we have C(σS , σQ) ≤ 4 if the polynomial
degree was increased and C(σS , σQ) = 1 if only the grid was refined.

Similarly to the continuous finite element case, we can deduce from the saturation
assumption that the difference of uQ and uS is again a suitable error estimator. The
following two theorems also appear in [15].

Theorem 5.13. Let Assumption 5.11 hold and let Q be obtained from S by h- or
p-refinement. Then it holds for ηQ = |||uQ − uS |||Q,

1√
C(σS , σQ) + β

ηQ ≤ |||u− uS |||S ≤
1

1− β ηQ. (5.12)

Proof. For the upper bound, apply the triangle inequality and insert the saturation
assumption.

The proof for the lower bound is almost identical to the standard case where the
same norms are used everywhere. Additionally, here one has to use Lemma 5.12 to
relate the different norms.

|||uQ − uS |||Q = |||uQ − u+ u− uS |||Q
≤ |||uQ − u|||Q + |||u− uS |||Q
≤ β|||uS − u|||S +

√
C(σS , σQ)|||u− uS |||S .

=

(
β +

√
C(σS , σQ)

)
|||u− uS |||S .

As one can see, the different norms on the discrete spaces introduce a constant into
the equivalence relation (5.12). This is because the coarse norm |||·|||S is not suitable
for functions from Q if any grid refinement happened. Functions from the finer space
Q created by grid refinements may have discontinuities across the new faces that will
not be captured by the coarse norm |||·|||S because it lacks the appropriate face integral
terms. For a pure p-refinement, however, no new faces are introduced and therefore
|||·|||S is also a suitable norm on Q. Since H1(Ω) functions do not contribute to the face
terms and due to the smaller penalty constant (cf. Assumption 5.10), we can evaluate
functions from H1(Ω) +Q in the |||·|||S -norm and in particular, we have

|||u− uQ|||S ≤ |||u− uQ|||Q. (5.13)

83

5. Adaptive Numerical Approximation

In that case, we can derive a simpler version of the error estimator because we can
evaluate |||uS − uQ||| now in the |||·|||S -norm instead of the |||·|||Q-norm.

Theorem 5.14. Let Q be obtained from S by increasing in the polynomial degree pS
while leaving the grid TS unchanged. Then, given Assumption 5.11 holds, we have for
ηS = |||uQ − uS |||S the following equivalence:

1

1 + β
ηS ≤ |||u− uS |||S ≤

1

1− β ηS . (5.14)

Proof. Clearly, (5.13) implies that we can state the saturation assumption in the form

|||u− uQ|||S ≤ β|||u− uS |||S .

Because we are now also allowed to evaluate |||uQ − uS |||S , we can apply the same
arguments as in Theorem 5.2 to derive (5.14).

As we can see, the theoretic foundation for hierarchical error estimates using Interior
Penalty methods is almost the same as for the classical, continuous Galerkin case.

Remark 5.15. In the following, we will denote the error estimator |||uQ − uS ||| by η,
where the S-norm is used if possible (i. e. if Q was obtained via p-refinement) and the
Q-norm otherwise.

Approximation through Preconditioning

Similarly as for the case with piecewise linear, continuous finite elements, computing
the full solution uQ on the finer space would be prohibitively expensive. As a remedy,
we will introduce a preconditioning technique that is based on subspace splittings as
used e. g. in [6, 7, 72].

First, note that the appealing structure of hierarchical extensions (say, e. g. quadratic
bubble functions) are not easily generalized to higher order ansatz functions.

Example 5.15.1. To illustrate this, consider a space Q which was obtained by a p–
(p + 1) refinement of a DG space S on a partition T of a one-dimensional domain
Ω = (a, b). Since ultimately our goal is to solve variational inequalities (in contrast
to linear variational problems), it is reasonable to require that Q’s elementwise basis
functions are again Lagrange polynomials based on a quadrature rule (see Chapter 3
and in particular Lemma 3.39). Say for a given element K ∈ T , the local degree is
p > 1 and the local basis functions {φi}i are Lagrange polynomials based on the Gauss–
Lobatto nodes XK =

{
x1, . . . , xp+1

}
with p+ 1 nodes. If we wanted to generalize the

concept of hierarchical extensions, we had to pick another node xp+2 ∈ K and construct
the Lagrange basis function

`p+1(x) =

p+1∏
i=1

x− xi
xp+2 − xi

.

84

5.1. Hierarchical A Posteriori Error Estimation

By a dimension argument, it’s easy to see that span({φi}i ∪
{
`p+1

}
) = Qp+1(K).

However, we also required that the quadrature weights are positive, i. e.
∫
K
`p+1 dx > 0,

which is not the case:

Since the Gauss–Lobatto quadrature rule can integrate rules up to order 2p − 1
exactly and we required p > 1, `p+1 can be integrated using this quadrature rule.

∫
K

`p+1(x) dx =

p+1∑
i=1

`p+1(xi)ωi = 0

by the Lagrange construction of `p+1.

Example 5.15.1 shows that hierarchical extensions based on Lagrange functions are
not advisable if the increase in p is small. While there are techniques to enrich quadra-
ture rules by additional nodes (see, e. g. Gauss–Kronrod rules) these will inevitable lead
to rather large jumps in the polynomial degree (for example, the finer space would need
a polynomial degree of at least 2p if Gauss–Lobatto nodes are used as illustrated in
the preceding example). Moreover, these may not be readily available in many finite
element software packages.

In summary, the classical (polynomial) hierarchical extension approach might not
be a viable way to construct Q, because it’s not clear how to construct a basis for the
hierarchical extension

V = Q \ S ∪ {0}

that preserves the quadrature rule structure for the basis of Q. Therefore, we will
drop the concept of an extension space V and consider preconditioning by applying
an non-overlapping additive Schwarz method to the defect problem on the whole of Q
instead. The main idea is to apply a hybrid Schwarz method (see, e. g. [109]) where our
solution uS on S acts as a coarse space solver and for the fine space Q, one applies local
solvers on the subspaces spanned by the basis functions grouped by their associated
elements. Since the solution on the coarse space is known, only the latter part has
to be computed. Algebraically, this corresponds to the application of a block Jacobi
method if using a pure p-refinement. Such an approach has been described in [72] for
a DG method similar to Interior Penalty. There, the fine space Q is obtained through
a positive number of uniform grid refinements of the conforming grid TS optionally
amended by an increasing pS .

In the following, we will construct a similar method for Symmetric Interior Penalty
DG methods together with the possibility of pure p-refinements without altering the
grid. To this end, we will use the proof structure of [72, Theorem 4.1] paired with
techniques also used in [7] for a Schwarz method on the same subspace splitting.

For simplicity of notation, we will only consider the case where TS is quasi-uniform
and both pS and pQ are constant on their respective grid. While this is of course an
unrealistic assumption in an hp-adaptive setting, we emphasize that the analysis can
be translated to the general case using min- and max-operators at the appropriate

85

5. Adaptive Numerical Approximation

places. To stay consistent with the notation used in [7], we consider

H = max
K∈TS

diam(K),

h = max
K∈TQ

diam(K),

q ≡ pS ,
p ≡ pQ.

The following two lemmas are from [7]:

Lemma 5.16. For every vQ ∈ Q, there exists a HS(vQ) ∈ S, such that∥∥vQ −HS(vQ)
∥∥
L2(Ω)

.
H

q
|||vQ|||Q, (5.15)

|vQ −HS(vQ)|H1(TQ) . |||vQ|||Q. (5.16)

Proof. See [7, Lemma 5.1].
The basic idea of the proof is to find a suitable approximation H(vQ) of vQ in H1

0 (Ω)
and to define HS(vQ) as the S-interpolation of that approximation, i. e.

HS(vQ) = ΠSH(vQ).

Then, interpolation and approximation results can be used to obtain (5.15)–(5.16).

Another useful lemma from [7, Lemma 5.3] is the following trace inequality, which
has been proven in [104].

Lemma 5.17. Let vQ ∈ Q, then it holds∑
K∈TS

‖vQ‖2L2(∂K) .|vQ|H1(TQ)‖vQ‖L2(Ω) +
1

H
‖vQ‖2L2(Ω)

+

 ∑
K∈TS

∑
e∈ΓQK

∥∥∥σ1/2JvQK
∥∥∥2

L2(e)

1/2

‖vQ‖2L2(Ω) .

(5.17)

Equipped with Lemma 5.16 and 5.17, we can construct an approximation γ of uQ−
uS that is equivalent in the |||·|||V -norm (with V being either S or Q, see Remark 5.15)
and therefore a reliable and efficient error estimator on its own.

Consider the elementwise subspace decomposition of Q: For every K ∈ TS , define

QK =
{
v|K : v ∈ Q

}
,

i. e. QK is the restriction of Q to the coarse element K ∈ TS . Let RK : Q → QK be
the restriction operator of Q to a single element K ∈ TS ,

RKv = v|K , v ∈ Q.

86

5.1. Hierarchical A Posteriori Error Estimation

Analogously, let R>K : QK → Q be the prolongation defined by extending the function
by zero outside K. Clearly, every v ∈ Q can be rewritten as

v =
∑
K∈TS

R>KvK , (5.18)

where vK = RKv.
For every K ∈ TS , we define the local norm on QK by

|||v|||K = |||R>Kv|||, v ∈ QK .
Lemma 5.18. Let v ∈ Q. Then, it holds

|||v|||2 .
∑
K∈TS

|||RKv|||2K . (5.19)

Proof. Since the bulk terms, the face integrals on ∂Ω, and the integrals for faces in
the inner of every coarse element K are equal, we only need to compare the integrals
that are located on coarse faces.

Let v ∈ Q and consider a face e ⊂ K+ ∩ K− for K+,K− ∈ TS . Summing over
all K, the face integral ‖v‖L2(e) will be evaluated both on the K+ and the K− side.

Applying the basic inequality (a− b)2 ≤ 2a2 + 2b2, we get∥∥v+
∥∥2

L2(e)
+
∥∥v−∥∥2

L2(e)
&
∥∥v+ − v−

∥∥2

L2(e)
=
∥∥JvK∥∥2

L2(e)
.

Summing over all these faces, we get (5.19).

For the coarse space S, we define the prolongation R>S : S → Q to be the classical
injection operator.

Remark 5.19. Since S ⊂ Q, we will simplify notation by dropping the prolongation
operator where appropriate, e. g.

|||uQ −R>S uS |||Q = |||uQ − uS |||Q.
For every K ∈ TS , we define the restriction of the global bilinear form aQ (·, ·) to an

element K ∈ TS by

aK (v, w) = aQ

(
R>Kv,R

>
Kw
)
,

dropping the superscript Q for readability. Now, it is time to define the approximate
error estimator γ ∈ Q. To do so, we consider the following local defect problems

γK ∈ QK : aK (γK , v) = Fh(R>Kv)− aQ
(
R>S uS , R

>
Kv
)
∀v ∈ QK . (5.20)

Naturally, the global error function γ is defined through

γ =
∑
K∈TS

R>KγK .

For the proof of the main result of this section, we need another technical lemma
from [7], proven in [6]:

87

5. Adaptive Numerical Approximation

Lemma 5.20. Let v ∈ Q. Consider the decomposition of v into vK ∈ QK , K ∈ TS ,
as in (5.18). Then, it holds

aQ (v, v) =
∑
K∈TS

aK (vK , vK) +
∑

K,K̃∈TS
K 6=K̃

aQ

(
R>KvK , R

>
K̃
vK̃

)
. (5.21)

Additionally, we can estimate the cross terms by∑
K,K̃∈TS
K 6=K̃

aQ

(
R>KvK , R

>
K̃
vK̃

)
. |||v|||2 + σ

∑
K∈TS

‖v‖2L2(∂K) , (5.22)

where

σ = Cσ max
K∈TQ

pQ(K)2

diam(K)
≈ Cσ

p2

h

is an upper bound for the penalty terms of Q.

We are now left to prove that the equivalence |||γ||| ≈ |||d||| = |||uQ − uS ||| = η holds.
First, just as in [72], we need to make an assumption on the penalty parameter:

Assumption 5.21. Assume that the penalty parameters in S and Q are chosen such
that we have

aS (v, w) = aQ

(
R>S v,R

>
Sw
)

v, w ∈ S.

In particular, Assumption 5.21 implies the Galerkin orthogonality

aQ

(
uQ −R>S uS , v

)
= 0 ∀v ∈ S. (5.23)

Remark 5.22. Assumption 5.21 implies that the penalty factors of S and Q have to
be carefully calibrated to account for the smaller face volumes or higher polynomial
degrees of Q. Since Q typically requires a higher penalty term than S to be positive
definite (depending on the increase in p), we might need to employ a higher than
necessary penalty constant for S, which in turn might degrade the numerical condition
of the algebraic system in S. In our computations, however, we experienced satisfying
performance of the error estimator without ensuring Assumption 5.21, see also Section
7.1.4. Therefore it might be possible to weaken Assumption 5.21.

Now, we can prove the following theorem which is based on the proof structure of
[72, Theorem 4.1] and the tools used in [7].

Theorem 5.23. Let Assumption 5.21 hold. Then, we have

|||γ||| . |||uQ − uS ||| . Cσ
H

h

p2

q
|||γ|||. (5.24)

Proof. For convenience, we define d := uQ −R>S uS ∈ Q.

88

5.1. Hierarchical A Posteriori Error Estimation

First, we observe that by (5.20), we have

aK (γK , v) = aQ

(
d,R>Kv

)
∀v ∈ QK . (5.25)

Together with the continuity of aQ (·, ·), this implies∑
K∈TS

aK (γK , γK) = aQ (d, γ) . |||d||| |||γ|||. (5.26)

On the other hand, aK inherits the coercivity from aQ and therefore∑
K∈TS

aK (γK , γK) &
∑
K∈TS

|||γK |||2K & |||γ|||2,

where the last inequality is due to (5.19). Combining both estimates, we get

|||γ||| . |||d|||, (5.27)

which is the first part of (5.24).

For the other direction, consider dS := HS(d) as defined in Lemma 5.16. Since
dS ∈ S, we can apply the Galerkin orthogonality (5.23) and get, by applying (5.25)
again, ∑

K∈TS

aK
(
γK , RK(d− dS)

)
= aQ (d, d− dS) = aQ (d, d) .

Consequently, it holds |||d|||2 .
∑
K∈TS aK

(
γK , RK(d− dS)

)
. Since

∑
K aK (·, ·) in-

duces a scalar product, we get by the Cauchy–Schwarz inequality∑
K∈TS

aK
(
γK , RK(d− dS)

)
≤

 ∑
K∈TS

aK (γK , γK)

1/2 ∑
K∈TS

aK
(
RK(d− dS), RK(d− dS)

)1/2

.

(5.28)

From (5.26) we have

 ∑
K∈TS

aK (γK , γK)

1/2

. |||d|||1/2|||γ|||1/2. (5.29)

It remains to estimate the second factor in the right hand side of (5.28). Employing

89

5. Adaptive Numerical Approximation

Lemma 5.20, we have∑
K∈TS

aK
(
RK(d− dS), RK(d− dS)

)
= aQ (d− dS , d− dS)−

∑
K,K̃∈TS
K 6=K̃

aQ

(
R>KvK , R

>
K̃
vK̃

)

≤ aQ (d− dS , d− dS) +

∣∣∣∣∣∣∣∣∣∣
∑

K,K̃∈TS
K 6=K̃

aQ

(
R>KvK , R

>
K̃
vK̃

)
∣∣∣∣∣∣∣∣∣∣

. |||d− dS |||2 + σ
∑
K∈TS

‖d− dS‖2L2(∂K) . (5.30)

Since JdSK = 0 on all interior faces that are not on the boundary of a coarse element,

and using
∥∥v+

∥∥2

L2(e)
+
∥∥v−∥∥2

L2(e)
&
∥∥JvK∥∥2

L2(e)
(cf. proof of Lemma 5.18), we see that

|||d− dS |||2 . |||d|||2 + |d− dS |2H1(TQ) + σ
∑
K∈TS

‖d− dS‖2L2(∂K) .

Applying Lemma 5.16, we can further estimate (5.30) by

|||d− dS |||2 + σ
∑
K∈TS

‖d− dS‖2L2(∂K) . |||d|||
2

+ σ
∑
K∈TS

‖d− dS‖2L2(∂K) .

By using the trace inequality from Lemma 5.17 and the estimates in Lemma 5.16, we
get

σ
∑
K∈TS

‖d− dS‖2L2(∂K) . σ
H

q
(1 + 1/q)|||d|||2

. Cσ
H

h

p2

q
|||d|||2.

Combining the preceding estimates, we derived the following bound:∑
K∈TS

aK
(
RK(d− dS), RK(d− dS)

)
. Cσ

H

h

p2

q
|||d|||2. (5.31)

Inserting (5.29) and (5.31) into (5.28), we obtain

|||d|||2 .
∑
K∈TS

aK
(
γK , RK(d− dS)

)
.

(
Cσ

H

h

p2

q

)1/2

|||γ|||1/2|||d|||3/2,

which implies the second estimate in (5.24) and therefore concludes the proof.

90

5.1. Hierarchical A Posteriori Error Estimation

Thus, we have shown that the approximate error estimator γ is equivalent to the
error estimator uQ − uS where the constants only depend on the penalty parameter
and the amount by which S was refined to obtain Q, cf. Assumption 5.9. Since all
local corrections γK are mutually independent, the quantities can be computed by a
fully parallel method where only small systems have to be solved. The right hand
side of the defect problems and the evaluation of the energy norms can be obtained
through a matrix-free approach (see, e. g., [79]) allowing us to compute γ without ever
assembling the full stiffness matrix. For an efficient implementation of matrix-free
operator evaluation (as done in, e. g., [80, 81, 88]) one might even consider solving the
small systems corresponding to the coarse elements in a completely matrix-free way.
This renders the approach much more feasible than a full computation of uQ − uS .

Extension to Variational Inequalities

In the previous section, we have shown how an approximation strategy based on sub-
space decomposition can be employed to obtain reasonable estimates of the exact
solution in the extended space Q. This proof was, however, based on a simple linear
Poisson problem. Similar approaches to the hierarchical one described earlier have
been applied to various variational inequality problems, in particular obstacle prob-
lems, before, cf. the elaboration in Section 5.1. It has to be noted, though, that due
to the nonlinearity in the equations (say, e. g. an obstacle condition), the unknowns
of S and V can become coupled. For the obstacle problem, simple counterexamples
(demonstrated for example in [77]) show that ignoring this coupling may lead to an
error estimator that is no longer reliable.

We will now demonstrate how the technique as described before for the linear prob-
lem can be employed for variational inequalities using again the obstacle problem as
an example. Consider again a DG space S and an extension Q. Let uS and uQ be the
solution to the discretized obstacle problems in S and Q, respectively, see also Chapter
3.3. Assuming again a saturation assumption as in 5.11, we have that |||uQ− uS ||| is a
reliable and efficient error estimator, see also [15]. Note that the sets of nodes in which
the obstacle conditions are controlled might be disjoint for a discretization in S and
Q, respectively. Instead of adding additional control nodes in Q, we have in general a
different set of nodes. Thus, a hierarchical approach similar to the continuous P1 case
is once again not feasible. Instead, we will again solve independent, local subproblems
to approximate uQ − uS . First, we have to specify the set of control nodes for the
defect problem. Clearly, this is obtained by shifting the control set by uS :

KQ − uS ={
v ∈ Q : ψ|K(x̂)− uS |K(x̂) ≤ v|K(x̂) ≤ ψ|K(x̂)− uS |K(x̂)∀K ∈ TQ∀x̂ ∈ XQK

}
.

Therefore, we can state the global defect equation for d = uQ − uS :

d ∈ KQ − uS : aQ(d, v − d) ≥ r(v − d) ∀v ∈ KQ − uS ,
r(v) = Fh(v)− aQ(uS , v).

91

5. Adaptive Numerical Approximation

For every K ∈ TS , we denote the localized version of KQ − uS by

(KQ − uS)|K =
{
v ∈ QK : ψ|K(x̂)− uS |K(x̂) ≤ v(x̂) ≤ ψ|K(x̂)− uS |K(x̂)∀x̂ ∈ XQK

}
.

This leads us directly to the approximate defect function γ =
∑
K γK defined by the

local defect problems on K ∈ TS :

γK ∈: (KQ − uS)|K : aK(γK , vK − γK) ≥ r(vK − γK) ∀vK ∈ (KQ − uS)|K . (5.32)

In practice, these local problems could be solved using the TNNMG method or (given
that the local problems are relatively small) by applying a number of steps of the
nonlinear Gauss–Seidel method.

Remark 5.24. For discretized variational inequalities of the second kind (cf. Section
3.4), the approach would be very similar. We again localize the defect problems to
the coarse elements and solve the variational inequalities (shifted by uS) arising in the
small spaces, i. e. for each coarse K ∈ TS , we solve for γK ∈ QK such that

aK(γK , vK − γK) +
∑
i

wi
(
Φi(vK(xi) + uS(xi))− Φi(γK(xi) + uS(xi))

)
≥ r(vK − γK) ∀vK ∈ QK .

While this construction works well in practice (see also Chapter 7, in particular
Section 7.1.4), we could not prove an equivalence relation between |||d||| and |||γ||| for
discretized variational inequalities as we did for the linear problem. Heuristically one
can argue that the defect d is of high frequency since it mostly contains parts of the
solution that are not resolved by the coarser (yet possibly already high order) function
space S. Therefore, even simple preconditioners as the nonlinear additive Schwarz
method induced by (5.32) and local “solvers” like nonlinear Gauss–Seidel methods
can be expected to converge quickly. One can argue that the coarse scales are al-
ready resolved by uS , therefore no multigrid hierarchy as in a full TNNMG solver (see
Chapter 4) is needed. Moreover, while a single application of a non-overlapping addi-
tive Schwarz might be insufficient to compute d accurately due lacking emphasize on
inter-element continuity, the local solution process should at least lead to good local
estimates, identifying elements with greater error reduction potential. Our numeri-
cal experiments show that usually it suffices to solve the local defect problems only
approximately, say by applying a fixed number of nonlinear Gauss–Seidel steps.

5.2. Adaptive Algorithm

After having introduced an error estimator in the previous section, we will briefly
sketch how it can be included in an hp-adaptive algorithm. The main idea is, after
having computed the local and global error estimates, to use a marking algorithm to de-
termine a set of elements where the ansatz space should be locally refined. Afterwards,
on each marked element one needs to make a decision whether one wants to refine the

92

5.2. Adaptive Algorithm

grid (“h-refinement”) or increase the local polynomial order (“p-refinement”). Natu-
rally, one would like to employ a higher polynomial degree where the analytic solution
is assumed to be smooth and use a finer mesh where it is not, see also Section 3.3
where this concept is formulated in terms of a priori estimates.

The abstract hp-adaptive algorithm can be described in the following way:

1. For a given DG space S, compute discrete solution uS for the given problem.

2. Compute local and global error estimates {εK}K∈T and ε, respectively.

3. If ε is less than a required tolerance, STOP.

4. Mark a subset T ∗ ⊂ T of grid elements where the DG space should be refined
according to a marking strategy, cf. Section 5.2.1.

5. For every element K ∈ T ∗, decide, whether the DG space should be refined by
splitting K into smaller elements or by increasing the local ansatz degree, cf.
Section 5.2.2

6. Refine the space S and apply algorithm again.

We stress that the individual components, i. e. the marking strategy and the criterion
for h- or p-refinement, can be chosen independently. In the following, we will briefly
introduce the algorithms used for the numerical examples in this thesis.

5.2.1. Marking Strategy

A simple, yet very common marking strategy was introduced by Dörfler in [49]. We
define the global error estimate (computed from local estimates εK as suggested in the
previous section) by

ε2
T =

∑
K∈T

ε2
K ,

and, analogously, for any subset A ⊂ T ,

ε2
A =

∑
K∈A

ε2
K .

To reduce the (estimated) error by a given fraction, we choose a parameter θ ∈ [0, 1]
and define the set of admissible subsets of T by

Nθ =
{
A ∈ 2T : εA ≥ (1− θ)εT

}
.

Naturally, one is interested in a subset of grid elements from Nθ which has minimal
cardinality, i. e. we choose an A∗ ∈ Nθ such that

|A∗| = min
A∈Nθ

|A| . (5.33)

93

5. Adaptive Numerical Approximation

While this set is in general not uniquely determined, we can computationally determine
such a set by sorting the elements of T by their corresponding local error estimates
εK . After a set A∗ according to (5.33) has been chosen, we say that an element K ∈ T
is marked if and only if K ∈ A∗.

For more details on this marking strategy, we refer to [49].

5.2.2. hp-Refinement Criterion

As indicated earlier, we want to assess on each marked element whether increasing the
order of the ansatz function or applying a grid refinement would lead to a more efficient
error reduction. In our case, applying either strategy is particularly easy as discontin-
uous Galerkin discretizations allow for locally varying degrees or nonconforming grid
refinements without having to ensure that finite element functions remain continuous.
Thus, some aspects of the burden of implementing an hp-adaptive strategy are reduced
compared to classical (continuous) finite element methods.

Conceptually, it is clear that if the underlying analytic solution is locally smooth,
increasing the polynomial degree should decrease the error at a lower computational
cost. While some a priori information about the solution and its regularity might be
known (for example for the obstacle problem, we know that regularity might be low
at the free boundary), in general we cannot predict the smoothness of the solution
sufficiently. Thus, similarly to the error estimation case, we want to make educated
guesses using the current state of the discrete solution. In the literature, there are
several suggestions how to proceed in this way, see e. g. [86] for an overview. It is
the author’s impression that many of these suffer from at least one of the following
problems:

1. They are tightly interwoven with the particular error estimator used (e. g. [85],
where the local error estimates are compared against predicted error estimates),
rendering them impractical for our rather general framework.

2. They require large additional problems to be solved (e. g. [45]) with no obvious
way to localize computations (cf. the previous section on localizing the hierarchi-
cal error estimator). Thus, in particular for higher dimensions, theses approaches
might be inefficient.

3. They require algorithms which are hard to implement and/or are rather costly
(e. g. [40, 48], where not only the regularity is taken into account but also the
amount of new degrees of freedom have to be optimized).

We will present two methods which have none of these drawbacks. The first is
presented in more depth in [71]. There, also an overview about other existing methods
is given. In fact, in [71], two new methods are introduced. The first one is based on
judging whether a function is locally analytic by measuring the decay of the Legendre
coefficients of the solution. The second method estimates the local Sobolev regularity
index, i. e. the highest k > 0 such that the function under consideration is still in Hk.
Consequently, if that k is larger than the local degree, the degree of the ansatz function
can be increased.

94

5.2. Adaptive Algorithm

In the following, we will at first outline the first approach from [71]. The same
approach was used for the numerical methods for an obstacle problem in [15]. While
the latter method sounds convincingly straightforward, the actual implementation is
not. Meanwhile for obstacle type problems, we often know that the solution is locally
either very smooth or has quite limited regularity. As indicated before, one seeks to
judge if a function is (locally) analytic and therefore in C∞. To this end, one estimates
the size of a region around an element where a given function is still analytic using the
fact that the Legendre coefficients vanish at an exponential rate for analytic functions
[71].

We call the Bernstein ellipse with foci ±1 and radius ρ = aρ + bρ (where aρ and

bρ are the lengths of the semi-major and semi-minor axes, respectively) Êρ, cf. [71].

Let v be a function C→ C that is analytic in the interior of an ellipse Êρ with radius

ρ ≥ 1 containing the reference interval (−1, 1) but not in an ellipse Êρ′ of radius ρ′ > ρ.
Then, for the Legendre series

v(z) =

∞∑
i=0

biLi(z)

(where the Li are the Legendre polynomials) it holds

1

ρ
= lim sup

i→∞
|bi|1/i, (5.34)

cf. [71]. Values of ρ close to 1 indicate a small area of analyticity while large values
correspond to a larger area where the function is analytic. Thus, the we have that
θ = 1

ρ ∈ [0, 1] is a criterion of local smoothness, where smaller values mean higher

regularity. This approach can also be understood on more general (one dimensional)
elements. There, ρ indicates the area of analyticity relative to the given element [71].

Of course, we do not know the Legendre coefficients {bi}i for all i ∈ N. However,
if we have a discrete solution of order p, we have at least an approximation of the
first p+ 1 coefficients. For simple problems in 1D, these might even be exact, see [71,
Remark 1]. Given an approximation of the Legendre coefficients{

b̃i

}p
i=0

,

we deduce from (5.34)
|b̃i| ≈ |bi| ∼ (1/ρ)i for i→∞.

Applying the logarithm, we obtain log |b̃i| ≈ i log(1/ρ) for i → ∞. Since we have
only a limited amount of coefficients available, we apply a linear regression to these to
obtain a slope m ∈ R by assuming a linear relation of the form

| log(|b̃i|)| = im+ b.

After having computed such an m by a least squares approach, we have

θ = ρ−1 ≈ em.

95

5. Adaptive Numerical Approximation

Finally, the decision whether to h- or p-refine is made by picking a parameter δ ∈ [0, 1].
If ρ ≤ δ, the ansatz space should be (locally) p-refined while for larger values of ρ,
grid refinement should be performed. Clearly, larger values of δ drive the hp-adaptive
algorithm to favor p-refinement over h-refinement and vice versa. An extension of this
approach for 2-dimensional Qk functions is provided in [15].

The other promising approach we will briefly describe which was recently published
is based on the use of continuous Sobolev embeddings. In [55, 114], it was observed
that functions which are nonsmooth often exhibit steep gradients. By considering
Sobolev embeddings like

‖u‖2L∞(K) ≤ C
(
h−1‖u‖2L2(K) + h|u|21,K

)
(5.35)

for an H1 function u on the real line (where C = coth(1), see [114]), one can define an
alternative indicator

θ = ‖u‖2L∞(K)

[
C
(
h−1‖u‖2L2(K) + h|u|21,K

)]−1

. (5.36)

Clearly, it holds θ ∈ [0, 1]. Steep gradients will increase the denominator in (5.36) such
that θ will be driven towards 0, while for flat gradients the ratio will be closer to 1.

Hoping that a discrete approximation vh to a function v somehow resembles its
features to a sufficient degree, we compute (5.36) for the discrete functions and pick
again a threshold parameter δ, such that for values θ < δ the grid is refined and for
values θ ≥ δ, the local polynomial degree is increased. For ansatz degrees p > 1, we
take the (p− 1)-th derivative to check if the p-th derivative has steep gradients.

Of course, equation (5.35) is only valid in one space dimension. An extension to
Qk elements for higher space dimensions was developed in [55]. There, H2 functions
have to be taken into account since H1 is not continuously embedded in L∞ for higher
dimensions.

We emphasize once more that there are many more strategies to decide whether to
choose h or p refinement and there is no definite answer which work best for which
problems, yet. For an overview, see e. g. [86] and the cited literature. In our numerical
experiments, we rely on the approach from [71] which estimates the analytical region
by considering the Legendre coefficients as explained before.

96

6. Implementation Aspects

Before we test the strategies for obtaining efficient discretizations as described in the
preceding chapters, we will briefly describe some technical aspects of the implementa-
tion. Due to the special structure of the algebraic problems arising from DG discretiza-
tion, we were able to employ some non-standard techniques which were not readily
available in the finite element codes we used.

The implementations are based on the C++ numerics framework DUNE (“Dis-
tributed Unified Numerics Environment”) [18, 19, 20, 24, 101]. More precisely, all
numerical experiments were performed using either DUNE releases 2.7., 2.8 or the
master branch after 2.8.

DUNE emphasizes flexibility with respect to things such as the used data struc-
tures, algorithms, grid managers and other aspects where users might want to adopt
the techniques most suited for their particular problem. This is mostly achieved by
using generic interfaces through template code and type erasure. Consequently, after
identifying areas where specialized data structures and algorithms promised efficiency
gains, we integrated these without leaving the general framework or having to rework
many other parts.

In the following, we will briefly describe which existing DUNE modules were used
and afterwards where we went off the beaten paths.

6.1. Discretization in DUNE

Before we describe the particular route taken for our examples, we need to empha-
size that there is no single representative approach on how to use DUNE to discretize
PDEs. This is a natural consequence of the flexible and modular structure of DUNE.
While there is a number of core modules which contain general data structures, al-
gebraic solvers, shape functions, grid managers, geometry utilities and many other
building blocks of any finite element code, the final act of combining them to obtain a
fully-fledged PDE discretization is left to the user. To ease this task, several discretiza-
tion modules exist, each with different strengths and emphasizes. Examples of these
are DUNE-PDELab, DUNE-FEM [44], DUNE-FUFEM or more domain specific
frameworks such as DuMux.

Since DUNE-FUFEM originated at Freie Universität Berlin, the author’s research
group traditionally relies on this framework and its siblings such as DUNE-Solvers,
DUNE-Subgrid[66] and DUNE-TNNMG. A possible workflow in DUNE using these
modules could be the following:

1. Generate a grid for the given domain using DUNE-Grid’s interface and an
appropriate grid manager.

97

6. Implementation Aspects

2. Define a function space on this grid, e. g. using the function spaces (and respective
bases) from DUNE-Functions [51, 52].

3. Choose a discretization scheme and assemble the resulting system, e. g. using
DUNE-FUFEM for assembling and DUNE-ISTL for data structures.

4. Solve resulting algebraic systems using e. g. DUNE-Solvers and DUNE-
TNNMG.

In addition to the mentioned modules, we developed a module DUNE-HPDG1 which
contains several additions for using hp-adaptive discontinuous Galerkin methods as
described in this thesis. There we extended the ideas from the other modules for the
hp-adaptive DG case. While some of the needed concepts were not present in the other
modules (e. g. the appropriate function spaces), other aspects were optimizations built
around certain assumptions in our models. Some of the additions will be described in
the following section.

6.2. DUNE-HPDG

6.2.1. Function Spaces

As mentioned above, one of the first steps when discretizing a PDE with finite elements
is to define a suitable finite-dimensional function space. In DUNE, a convenient way
to do so is to use the function spaces offered by the DUNE-Functions module which
offer a lot of flexibility with respect to creating tree-based bases and complex index-
ing schemes [52]. Several common function spaces are directly included such as e. g.
the continuous Lagrange bases, the Taylor–Hood basis or the Raviart–Thomas basis.
While there is also an implementation for a DG basis with Lagrange elements shipped,
it is lacking two crucial features for our applications. First, the shape functions on the
individual elements are with respect to equidistant nodes for Qk elements. This would
lead to basis functions which do not fulfill the crucial assumption of having a positive
integral when using higher orders. As we have seen in Chapter 3, this would be a
violation of a central assumption in our discretization scheme. Second, the polynomial
order of the shape functions have to be set on a global level, thus not allowing for
p-adaptivity where we want to set individual orders on different elements.

Since these limitations are not acceptable for our discretization, we set up our own
DG function space using the framework provided by DUNE-Functions. This comes
with the following modifications:

• We set up shape functions (also called “Local Finite Elements” in the DUNE
context) using Lagrange functions based on quadrature rules such as Gauss–
Lobatto, Gauss–Kronrod and Gauss–Legrende. Naturally, these basis functions
have positive integrals.

1https://github.com/c1887/dune-hpdg

98

6.2. DUNE-HPDG

• The function space basis implementation allows to choose and change the degree
of the shape function per element at runtime, thus allowing for having a p-
adaptive algorithm.

• While the included DG basis uses a flat indexing scheme (i. e. every basis function
has a single integer as index), we opted for a multi-index which emphasizes the
DG structure: Each basis function is associated to a particular node on a single
element. Our indexing scheme then reads

(Element Index,Local Index)

assuming we have a flat indexing of all elements in the grid and some flat indexing
of the nodes on each particular element. This indexing scheme requires almost
no computation or manipulation of indices when computing global indices from
a given local function on a particular element. In particular this allows for much
simplified algorithms in many cases because one can safely assume a consecutive
(local) indexing without having to query the global index in each step.

6.2.2. Data Structures

Inspired by the blocking of the indices described in the previous paragraph, we opted
for a blocked version of the data structures such as vectors and matrices. Here, the
individual entries will be addressed with the same index scheme as described above.
The advantage of this becomes clear when one considers a typical stiffness matrix.
There, in general every basis function associated to an element will couple (i. e. the
corresponding matrix entry will be non-zero) with every other basis function on that el-
ement. Moreover, it will also have non-zero entries when paired with all basis function
from every adjacent element. In particular for higher orders the number of non-zero
entries for each basis function will therefore be relatively high. For typical sparse ma-
trix formats such as Compressed Row Storage (CRS, see e. g. [99]), the data structure
has to keep track of all these non-zero entries additionally to the actual values of the
entries. In our DG setting, however, the structure of the non-zero entries is very reg-
ular. As explained earlier, we know that each local function will couple with most or
all of the other functions on the particular element as well as the local functions from
the neighboring elements. Hence, in a sparse matrix format, it suffices to know which
elements are adjacent to which other elements. The resulting matrix is stored as a
blocked CRS matrix. Since most of the local functions will couple with each other
when the elements are adjacent (or the same), the individual blocks can be stored as
small dense matrices. The vector data structures can analogously be stored in the
same blocked fashion with small dense vectors as blocks.

Since these dense matrix and vector blocks can be multiplied in a straightforward
and efficient fashion, we can expect fast arithmetic operations of the blocked data
structures such as e. g. matrix-vector multiplications. Moreover, due to the much
reduced storage requirements on the sparsity pattern, we observed a greatly reduced
memory usage.

99

6. Implementation Aspects

While DUNE-ISTL provides an implementation of the blocked CRS format
(Dune::BCRSMatrix), the size of the matrix blocks must be static (and thus be cho-
sen at compile time) and fixed for all elements. This is again not suitable for our
hp-adaptive approach, where due to varying local orders the size of the individual
matrix blocks must be controllable at run-time and on a per-element basis. While
this could theoretically be achieved by using a dynamic matrix type as block type for
the blocked CRS matrix, this approach has the disadvantage that the memory for the
matrix blocks would be allocated individually and hence not be stored in a consecutive
fashion. This is expected to induce drastic performance penalties.

As a remedy, we implemented a blocked CRS matrix (based on DUNE-ISTL’s
BCRSMatrix) which allows to control the individual block sizes at run-time while the
underlying memory is stored consecutively. While the complete matrix data is stored
as a single large memory block, the individual matrix blocks are accessed using views
on their respective data chunks which act like normal matrix blocks. In particular, us-
ing pointers to the data chunks, it is possible to use external libraries like BLAS (Basis
Linear Algebra Subprograms)2 to perform fast arithmetic locally. Figure 6.2.1 illus-

Figure 6.2.1.: Illustration of the dynamically blocked CSR storage. White blocks are
zero matrices.

Blocked Global Matrix

A11 A12 A15

A21
. . .

A66

1, 1 1, 2 1, 3 1, 4

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

9, 1 9, 2 9, 3 9, 4

View into A12

Memory

End of A11

memory block

Start of A12

memory block

End of A12

memory block

Start of A15

memory block

trates our implementation. While the global matrix has to know the position blocks
(corresponding to grid elements and their coupling, respectively) as well as their size,
the entries are stored in a consecutive memory batch. Thus, in addition to the coordi-

2https://www.netlib.org/blas/

100

6.2. DUNE-HPDG

nates (the first index in our indexing as introduced earlier) and the size, the individual
matrix blocks have also a pointer to the beginning of the corresponding memory block.
When the block is accessed, a MatrixWindow is used, which is constructed using the
memory pointer and the block size. Then, this window can be used as a regular dense
matrix object. In particular, the local indexing of this matrix will always be flat and
consecutive. This increases the locality as no additional calls (e. g. to the basis object
or the sparsity pattern) have to be made in order to figure out global indices.

We also developed a corresponding vector format, which is quite similar to DUNE-
ISTL’s VariableBlockVector while having a slightly different interface as well as a
set of utility functions that generates data structures such as matrices and vectors of
appropriate size using the information provided by the basis.

6.2.3. Matrix-free Operators

When estimating the error in a larger space (cf. Section 5.1.1), we need to compute
quantities in this space. Since we do not want to assemble full matrices in this space
due to the increased costs, we perform several operations such as (nonlinear) smoothing
and matrix-vector products on-the-fly, i. e without having the full matrix assembled
at any stage. The strategy is that we iterate over all elements of the grid (possibly in
parallel) and perform local operations on these. This can either be done by assembling
only the needed local matrix block (e. g. when performing a block Jacobi method) or
by computing the quantities directly. For example, when performing a matrix-vector
product with the stiffness matrix consisting of a discretized Laplace operator in 2D, we
implemented sum-factorized code which is faster than a full matrix-vector product due
to reduced memory bottlenecks for higher orders. Moreover, the memory requirement
is obviously much lower for all orders. More sophisticated and highly parallelized
approaches are described e. g. in [80, 81, 88].
DUNE-HPDG offers the matrix-free infrastructure and several local operators

which can be used for the algorithms described in this thesis. As a starting point, local
assemblers from DUNE-FUFEM can also be used as local operators for a matrix-free
matrix-vector product in this framework.

6.2.4. Multigrid Solver

While DUNE-Solvers offers a multigrid implementation, we chose to base our multi-
grid algorithm on an implementation called DUNE-ParMG3 which allows for a par-
allel geometric multigrid algorithm. We extended the implementation such that also
the p-multigrid part we described earlier is possible in parallel. Naturally, we also
included the parallel `1–smoothers [14] (both nonlinear for the obstacle problem and
linear) described in Section 4.3.

Moreover, we have transfer operators that work with non-uniform grids and also for
the transfer to lower order spaces as described in Section 4.2. Here, we once more
exploited the blocked structure and indices when using DG methods to implement
simple yet efficient algorithms.

3Unfortunately, not publicly available at the time of writing.

101

7. Numerical Experiments

7.1. Obstacle Problem

In this section we will examine some of the methods introduced in the earlier chapters
using numerical experiments for an elliptic obstacle problem as introduced in Chapter
2.2.1. All examples will be discretized using a Symmetric Interior Penalty DG method
(SIPG) as described in Chapter 3. In particular, we will use Gauss–Lobatto bases
and check the obstacle condition in the Lagrange nodes. Naturally, a heavy emphasis
will be on the use of hp-adaptivity as introduced in Chapter 5. The arising algebraic
problems will be solved by a TNNMG method using a multilevel linear solver built
with a combination of p-multilevel and classical multigrid solvers, cf. Chapter 4.

To support our claim that the proposed methods are indeed working as expected,
we start with a unilateral obstacle problem to which the analytical solution is known.
The example was found in [16]:

Problem 7.1. Consider Ω =
(
− 3

2 ,
3
2

)2
. Find u ∈ K such that

a(u, v − u) ≥ `(v − u) ∀v ∈ K,

with a(v, w) = (∇v,∇w) and `(v) = 〈f, v〉. Here, f is the L2 functional stemming
from the L2 product with the constant function −2, i. e. 〈f, ·〉 = −2

∫
Ω
·dx.

The admissible functions are all H1 functions that satisfy the boundary condition
v|∂Ω = g and which are greater or equal to zero almost everywhere, i. e.

K =
{
v ∈ H1 : v = g on ∂Ω, 0 ≤ v <∞ a.e.

}
,

where g(x) = |x|2
2 − ln(|x|)− 1

2 .

Theorem 7.2. Problem 7.1 has the unique solution

u(x) =

{
|x|2

2 − ln(|x|)− 1
2 if |x| ≥ 1,

0 else.

Proof. For uniqueness, consider Theorem 2.6. It can be verified that u is indeed a
solution to the given obstacle problem by a direct calculation.

7.1.1. Discretization and Parameters

While the discretization has been described in detail in the earlier chapters, in partic-
ular Chapter 3, we will briefly recap the most important features.

103

7. Numerical Experiments

As the domain Ω has a very regular structure, it will be (initially) discretized with
a uniform structured grid T that consists of squares of equal size. Note that the grid
might get refined nonconformingly in the adaptive process. If a grid element is marked
for refinement, it will be subdivided into four new squares of equal size.

Our ansatz space is the DG space V pT consisting of the piecewise Qk finite elements.
Initially, the degree k is constant across all grid elements but might be locally adjusted
during p-refinement.

The bilinear form a(·, ·) = (∇·,∇·) on the discrete space will be replaced by the
SIPG form from (3.17),

ah (v, w) =
∑
K∈T

(∇v,∇w)K +
∑
e∈Γ

−
∫
e

{∇v} JwK + {∇w} JvK dHd−1

+
σe
|e|

∫
e

JvKJwK dHd−1.

To emphasize that the penalty parameter might vary for different faces e, we denote
it with σe. Let p : T → N be the function mapping grid elements to the degree of the
respective polynomials on the given element have, i. e.

v|K ∈ Qp(K) ∀K ∈ T .

Then, for a face e = K0 ∩K1, we have

σe = σ̃ ·max
{
p(K0), p(K1)

}2
.

The value σ̃ > 0 is fixed for all elements. We used a value of σ̃ = 1.6 for the numerical
examples in this section. Note that this construction of penalty parameters means
that for different degree distributions p, the discretization is strictly speaking not the
same. For example, for given distributions p and p with p(K) = p(K) + 1, we have
that

V pT ⊃ V pT ,

yet the values of the bilinear forms might be different for given (coarse) functions from
V pT . In particular, for a quadratic energy involving ah (·, ·), the global minimum might
be lower for a bilinear form corresponding to V pT compared to the global minimum for

the analog bilinear form of V pT despite the latter being the greater set.

For the Qk finite elements, we use Lagrange polynomials with respect to the Gauss–
Lobatto nodes of the corresponding degree as basis functions. This has direct conse-
quences for the discretization of the obstacle problem. We solve the problem

ah (uh, v − uh) ≥ `(v − uh) ∀v ∈ Khp,

with Khp being the set of functions from V pT whose nodal values (i. e. in the Gauss–
Lobatto nodes) do not violate the nodal values of the obstacle function, see also Defi-
nition 3.35.

104

7.1. Obstacle Problem

7.1.2. Convergence of Adaptive Algorithms

Ultimately, we are interested in approximating solutions to the given problems with
the highest possible efficiency, i. e. obtaining a discrete solution which is close enough
(in an appropriate norm) to the real solution while investing as little work as possible.
An important statistic for this goal is of course the convergence rate, i. e. obtaining
an exponent c > 0 such that ‖u− uh‖ . hc with h being the maximal diameter of all
grid elements and c being as large as possible. In the case of an adaptive refinement,
however, the largest diameter h might be very large for some elements and therefore the
convergence rate in h will not be the appropriate measure. Rather, we will investigate
how the rate behaves with respect to the number of unknowns n, i. e. we are interested
in an error reduction rate of the form O(nc̃). We want to investigate how convergence
rates behave with respect to different adaptive and non-adaptive refinement strategies.

Fixed p, Uniform h Refinement

At first, we investigate the “classical” case where a fixed polynomial degree for all
ansatz functions is chosen and the grid is successively uniformly refined. The grid is
chosen to be a structured grid, dividing Ω into squares of equal size.

For a given (non-adaptively refined) grid, we expect c = 1 for piecewise linear DG
elements and c = (1.5− ε) for higher order elements, cf. [112]. Figure 7.1.1 shows the
error history of a DG-Qk for varying values of k ∈ N. All errors are computed in the
SIPG norm

|||·|||2 = ‖ · ‖21 +
∑
e∈Γ

∫
e

J·K2 dH1. (7.1)

As the plot lines are almost parallel for k > 1, we conclude that indeed employing
higher order elements does not lead to higher order convergence rates for the obstacle
problem. We compute an approximation of the convergence rate c̃ by performing a
linear regression for the equation

ln(ei) = c̃ ln(Ni) + b,

i. e. we compute the slope of the lines in Figure 7.1.1. Here, ei is the computed error
for Ni degrees of freedom for the respective degree. Since it holds h ∼ N−0.5, we
obtain the convergence rate hc by computing c = −2c̃. For better comparison with
the methods that will be shown later, we also report c̃.

Indeed, Table 7.1.1 confirms the theoretical bound on the convergence rate for higher
order elements as all values for k > 1 are close to 1.5.

Surprisingly though, the piecewise linear Q1 elements perform better than predicted
for the given model problem.

105

7. Numerical Experiments

Figure 7.1.1.: Convergence for fixed p and uniformly refined grid

103 104 105 106

Degrees of Freedom

10−4

10−3

10−2

10−1

100

E
rr

or

Fixed p Obstacle Problem

DG-Q1 Error

DG-Q2 Error

DG-Q3 Error

DG-Q4 Error

O(h)-convergence rate

O(h1.5)-convergence rate

Degree k Convergence Rate c Convergence Rate c̃
1 1.2755 -0.6377
2 1.5318 -0.7659
3 1.5448 -0.7724
4 1.5191 -0.7596

Table 7.1.1.: Ansatz Degree and Corresponding Convergence Rates

Fixed h, Uniform p Refinement

The next logical step in a non-adaptive setting is to perform what is sometimes called
p-FEM, i. e. fixing a given grid (and thus h) and increasing the polynomial degree to
increase accuracy. In [78] it has been proven that such a method converges eventually
for continuous finite element spaces. The authors control the obstacle conditions in
the Gauss–Lobatto nodes as well.

We will now numerically investigate the behavior for our DG discretization. Figure
7.1.2 suggests that while increasing the polynomial degree indeed decreases the error,

106

7.1. Obstacle Problem

Figure 7.1.2.: Convergence for fixed grid and uniformly increased degree

104 105

Degrees of freedom

10−3

10−2

10−1

E
rr

or

Uniformly p-refined Obstacle Problem

the speed at which this happens decreases simultaneously, i. e. convergence slows down
when using higher and higher ansatz degrees.

There is an outlier towards the end of the plotted line (at k = 9). The error value
is actually lower than the following at k = 10 besides Q10 being the larger space. We
attribute this to the fact that the discretizations do not coincide for different p: We
use σk = σk2 as penalty parameter for a fixed value of σ throughout all degrees k.
While the optimal penalty value scales approximately as k2, we do not optimize for
penalty values independently. Hence, the specific value σ9 = σ · 92 in SIPG might just
be a better discretization for DG-Q9 than σ10 = σ ·102 is for DG-Q10. Moreover, even
if we chose the same penalty value, we discretize the admissible set K by checking the
obstacle condition in the Gauss–Lobatto nodes. Obviously, this will generate different
sets Khp for different values of p.

Fixed p, Adaptive h Refinement

In this section, we will numerically investigate how an adaptive DG discretization will
perform. Performing grid refinement on continuous finite element spaces for obstacle
problems using hierarchical error estimators has been thoroughly tested before, see

107

7. Numerical Experiments

(a) 4 Refinement Steps (b) 10 Refinement Steps

Figure 7.1.3.: Grid after Adaptive h-Refinement, p = 1.

e. g. [77]. The difference here is that we use discontinuous Galerkin spaces and the
preconditioned error hierarchical estimator differs in the sense that we do not consider
e. g. quadratic bubble functions as space enrichment but rather approximately solve
on the full extended space, cf. Section 5.1.1.

The fine space Q in the hierarchical error estimator is constructed by increasing
the local polynomial degree of each ansatz function in the coarse space S by one.
Other choices (e. g. increasing by a higher number or refining the grid) are of course
possible. Moreover, we allow adjacent elements to have a level difference of at most
two, i. e. for each edge there are at most three hanging nodes. Technically, this is not
necessary for DG discretizations. Indeed, we found the impact of this safety measure
to be rather small for this problem because the adaptive algorithm will try do reduce
the discontinuities arising from hanging nodes due to the penalty terms in the DG
formulation.

Remark 7.3. Classical conforming adaptive refinements (e. g. red–green refinements)
are not possible in our framework, since we restrict ourselves to Qk elements which
live on square reference elements.

The plots in Figure 7.1.3 show that for piecewise linear finite elements, the er-
ror estimator is able to correctly identify the contact region (which is the disc{
x ∈ R2 : |x| = 1

}
) and refine the grid accordingly. Moreover, since the obstacle is

constant, we have that the solution u is constant in the contact region. The adaptive
algorithm acknowledges this fact by applying only very few refinements in the corre-
sponding area (i. e. inside the disc). Outside the contact region, the grid is almost
uniformly refined.

Albeit the solution being rotationally symmetric, we observe that the grid does not
always represent this fact. This can be due to the fact that the discrete solution can
only be obtained to a given accuracy when solving the discrete problem or because of
rounding errors in the marking process. However, the non-symmetric parts are getting

108

7.1. Obstacle Problem

(a) Q1 Errors

103 104 105

Degrees of Freedom

10−1

100

E
rr

or

Uniform h-Refinement (Q1)

Adaptive h-Refinement (Q1)

O(h)-convergence rate

(b) Q2 Errors

103 104 105

Degrees of Freedom

10−4

10−3

10−2

10−1

E
rr

or

Uniform h-Refinement (Q2)

Adaptive h-Refinement (Q2)

O(h1.5)-convergence rate

Figure 7.1.4.: Uniform versus Adaptive Refinement Errors

less severe the more refinement steps are applied.
We will now investigate how the convergence rate with respect to the number of

degrees of freedom, n, behaves.

Remark 7.4. We do not compute the convergence rate with respect to the maximal
mesh width since in an adaptive algorithm, some elements might be deliberately left
large and thus the notion of h is skewed. As mentioned before, for convergence rates
with respect to h on uniform grids, one can multiply the slope by −2.

Again, we computed the approximate slope of the error plot using a linear regression,
i. e. we compute c̃ such that

ei ≈ nc̃i .
As observed earlier, Table 7.1.2 shows the piecewise linear elements exceed the theo-
retical expectation (namely O(h), i. e. c̃ = −0.5) for this model problem, while for the
Q2 elements the measured slope is very close to the theoretical value of −0.75.

For the piecewise linear elements, we observe that while the adaptive method needs
less degrees of freedom to achieve a given error threshold, the rate at which it converges
only slightly differs from the uniform refinement. This is not surprising as the parts of
the solution that are not in contact with the obstacle have quadratic and logarithmic
contributions and hence will always gain accuracy from refining the mesh when using
piecewise linear elements. The contact region, however, which makes up about a third
of the domain, is constant and can be approximated exactly even with a very coarse
grid. Thus, the adaptive method can save about a third of the degrees of freedom the
uniform refinement invests.

For the quadratic Q2 finite elements, we observe that the adaptive method actually
leads to a higher convergence rate, as can be seen in Figure 7.1.4b and in Table 7.1.2.
While we have not used the option of p-refining at this point, this already gives an
outlook to truly hp-adaptive methods. Loosely speaking, the Q2 elements can often
approximate the non-constant parts of the solution well enough even on rather coarse

109

7. Numerical Experiments

(a) 4 Refinement Steps (b) 10 Refinement Steps

Figure 7.1.5.: Grid after Adaptive h-Refinement, p = 2.

elements. Meanwhile, the h-refinement can now “focus” on the nonsmooth parts at
the free boundary as argued extensively in Section 3.3. This can also be seen in the
exemplary plots in Figure 7.1.5.

Degree k Refinement Type Convergence Rate c̃
1 Uniform -0.6729
1 Adaptive -0.7072
2 Uniform -0.7700
2 Adaptive -1.2015

Table 7.1.2.: Convergence Rates for Uniform and Adaptive h-Refinement

Fixed h, Adaptive p Refinement

Following the scheme, we present the results for a fixed grid with optional adaptive
p refinement. More precisely, we employ the same error estimator as in the previous
section and increase the ansatz degree on marked elements while leaving the grid
unchanged.

We found that this method has some practical limitations. The error estimator is
correctly identifying the free boundary (or rather the fact that the nonsmooth solu-
tion is not accurately represented on coarse elements even when using higher order
polynomials). Therefore, the corresponding elements are repeatedly marked in the
refinement steps. Figure 7.1.6 shows the distribution of polynomial degrees on each el-
ement after 20 refinement steps. We can see that the very high order functions cluster
around the free boundary. Many finite element software frameworks, however, only
allow for polynomial degrees up to a certain degree. Hence the employable ansatz
degrees might saturate while the error estimator still finds significant errors on these

110

7.1. Obstacle Problem

Figure 7.1.6.: Distribution of Degrees on p-Adaptively Refined Space

1

2

3

4

5

6

7

8

9

10

11

12

elements. Moreover, very high order polynomials might lead to high run-time costs or
even numerical instabilities.

In Figure 7.1.7, we see that our method seems to be unsuited for a purely p-adaptive
refinement for this problem. In some cases, the uniform refinement even outperforms
the adaptive method. Again, note that for high polynomial degrees, the penalty fac-
tor on the adjacent edges will also be very large, rendering the arising system ill-
conditioned.

Moreover, we could not get to a high number of degrees of freedom without exceeding
the bounds of polynomial degrees that are available in our implementation. Since
neither of the (logarithmic) error lines for the adaptive and uniform method seem to
follow a linear trend, we omit convergence rates in this section.

Adaptive hp-Refinement

Finally, we will put together all the methods we collected so far: We make use of the
fact that DG spaces allow locally changing the grid or increasing the ansatz degree in
a straightforward way and apply what is called “hp-adaptivity”. As before, we use our
hierarchical error estimator as presented in Section 5.1. After marking the elements

111

7. Numerical Experiments

Figure 7.1.7.: Errors for Adaptive and Uniform p-Refinements

104 105

Degrees of Freedom

10−3

10−2

10−1

E
rr

or

Uniform p-Refinement

Adaptive p-Refinement

following the Dörfler marking described earlier, we have to decide whether to h- or
p-refine on a given element. We will employ the strategy suggested in [71] which was
explained in Section 5.2.2. This involves picking another parameter, namely choosing
δ ∈ [0, 1] where values closer to 0 prefer h and values closer to 1 prefer p-refinement. We
found that the particular choice of δ has some influence on the measured convergence
rates, but also on the runtime of the algorithm. Thus, a trade-off has to be made for
a particular problem. For the numerical example here, we chose a value δ = 0.3.

Figure 7.1.8 shows that the refinement process evolves according to our expectations:
The regions that are close to the free boundary (and hence the less smooth parts of
the solution) are resolved by significantly smaller grid elements while the regions in
the smooth parts have higher order polynomials on rather coarse elements. Note how
this fits nicely to the assumptions on the discretization of the obstacle problem when
we discussed a priori estimates for a hp-DG discretization of the obstacle problem in
Section 3.3. The difference here, however, is that no a priori information about the
solution’s structure was supplied. The adaptive procedure was able to separate the
smooth and nonsmooth parts of the solution in an automatic way and enriched the
DG spaces accordingly.

In the following, we investigate the evolution of the error in the adaptive process

112

7.1. Obstacle Problem

Figure 7.1.8.: hp-Adaptively Refined Grid with Ansatz Degrees

1

2

3

4

113

7. Numerical Experiments

Figure 7.1.9.: Error Plots for Different Adaptive Strategies

103 104 105

Degrees of Freedom

10−5

10−4

10−3

10−2

10−1

100

E
rr

or

hp-Adaptive, Start with Q1

hp-Adaptive, Start with Q2

h-Adaptive, Fixed Q2

for different strategies. We will compare our hp-adaptive algorithm with the best
method of the previous sections, namely using Q2 finite elements and applying h-
adaptivity, i. e. refining the grid where necessary. The hp-adaptive algorithm on the
other hand also starts with a given mesh and Qk elements put can decide between
grid refinement and increasing the polynomial degree as argued before. Since for the
h-adaptive case we found that starting with Q2 elements was superior to starting with
piecewise linear elements, we also tested the hp-adaptive algorithm with both scenarios.
Figure 7.1.9 shows that while the former champion (namely Q2 with adaptive grid
refinements) has a lesser error for a given number of unknowns compared to the hp-
adaptive algorithm that started on piecewise linear elements, the latter algorithm
exhibits a faster convergence rate and its error/unknowns line surpasses the former
algorithm eventually. Not surprisingly, the hp-adaptive algorithm starting from Q2

finite elements combines the best of both worlds: Not only does it show almost the
same convergence rate as the same algorithm starting from piecewise linear functions
but it also seems to have a lower constant in the asymptotic, expressed through the
lower amount of unknowns needed for a given error. This can also be verified by
consulting the computed convergence rates in Table 7.1.3.

114

7.1. Obstacle Problem

Degree k Refinement Type Convergence Rate c̃
1 hp-Adaptive -1.5837
2 hp-Adaptive -1.4914
2 h-Adaptive -1.2015

Table 7.1.3.: Convergence Rates for Adaptive Strategies

7.1.3. Limiting Polynomial Degree in hp-Adaptivity

Motivated by the results of Section 7.1.2, one might ask if it is worth to employ
higher order polynomial degrees beyond a certain point. The argument could be,
that we observed a convergence rate c̃ ≈ −1.58 which would roughly correspond to a
convergence rate of O(h3) on a uniform grid. Therefore one might be tempted to stop
p-refinement after degree 3 or 4 for this problem.

We tested this approach by applying h-refinement on marked elements which already
have the maximal degree, even if the hp-criterion suggests to p-refine. Indeed, Figure

Figure 7.1.10.: Error Plots for Limited Degrees

103 104 105

Degrees of Freedom

10−4

10−3

10−2

10−1

100

E
rr

or

Max degree p=2

Max degree p=3

Max degree p=4

Max degree unlimited

7.1.10 shows that using degrees beyond 3 do not gain much for this particular problem.

115

7. Numerical Experiments

This is not too surprising if we remember the result of Theorem 3.50: The local
mesh-width hF in areas where the solution has reduced smoothness (e. g. near the
free boundary) would have to scale like hpC where hC is the mesh-width and p the
polynomial degree in smoother regions. For larger p this would indeed require hF to
be very small compared to hC .

7.1.4. Accuracy of Error Estimator

Given that Problem 7.1 has a known solution, we are in the comfortable situation to
actually test the error estimator in the context of a nonlinear problem. We apply the
method suggested in sections 5.1.1 and 5.1.1, namely solving the extended problem
in the fine space Q only approximately by applying a block-Jacobi-like method to
each element separately and using matrix-free techniques to evaluate matrix-vector
products. Note that the behavior was only analyzed in detail for a linear model
problem.

For an hp-adaptive approximation of the obstacle problem as outlined in Chapter
4, for every stage of the grid (and corresponding basis), we compute not only the
estimated error but also compute the actual error in the SIPG norm (7.1) using the
analytical solution. In Figure 7.1.11, we can clearly see that the estimated error is
very close to the real one and seems to differ mostly by a constant factor. Thus,
we gathered evidence that the method which was shown to be effective (under the
saturation assumption) for the linear problem can also be a viable choice for more
complicated nonlinear problems.

7.1.5. Comparison with Continuous Finite Elements

An often used approach in Finite Element modeling is to use continuous, piecewise
linear ansatz functions on a simplex grid (here called P1). Since DG spaces use more
degrees of freedom on a given grid (even when using only piecewise linear finite ele-
ments) we are interested whether our hp-adaptive approach leads to a discretization
which needs less unknowns for a given error bound. To this end we discretized Problem
7.1 on a grid consisting of simplices both with a uniform and an h-adaptive refinement
strategy and compared it with the results of the previous sections. The h-adaptive
refinement was performed with a preconditioned hierarchical error estimator as de-
scribed, e. g. in [76].

In Figure 7.1.12, we see that indeed the continuous variants offer a better ratio
of error to number of unknowns compared to the DG spaces with piecewise linear
functions, which is hardly surprising as we have more degrees of freedom on a DG
space compared to a continuous finite element space defined on the same grid. However,
our hp-adaptive approach clearly outperforms both the uniform and the h-adaptively
refined continuous P1 discretizations after a few iterations of the algorithm. Thus,
the DG based method is actually giving a practical advantage over the “classical”
approach using continuous, piecewise linear elements.

Remark 7.5. Another aspect would of course be to compare the actual runtime of
the algorithms. However, this is naturally an implementation-dependent property.

116

7.2. Obstacle Problem with Corner Singularity

Figure 7.1.11.: Behavior of Error Estimator and Actual Error

103 104 105

Degrees of Freedom

10−4

10−3

10−2

10−1

100

E
rr

or

Estimated Error

Actual Error

Therefore, we will not compare runtimes here.

7.2. Obstacle Problem with Corner Singularity

In addition to the obstacle problem which we discussed in Section 7.1, we will compute
another obstacle solution whose solution has a singularity and in particular has a lower
global regularity than the first example. This example was also used in [16].

Problem 7.6. Consider the L-shaped domain Ω = (−2, 2)2 \ [0, 2] × [−2, 0]. Using
Dirichlet data uD = 0 and a lower obstacle ψ ≡ 0, we have

K =
{
v ∈ H1

0 (Ω) : v ≥ ψ a. e.
}
,

and we are looking for u ∈ K such that

a(u, v − u) ≥ `(v − u) ∀v ∈ K.

Here, we have again a(v, w) = (∇v,∇w) and `(·) = 〈f, ·〉 with f given in polar coor-

117

7. Numerical Experiments

Figure 7.1.12.: Continuous vs. Discontinuous Galerkin

102 103 104 105

Degrees of Freedom

10−4

10−3

10−2

10−1

100

E
rr

or

P1, h-adaptive

P1, uniform

DG-Q1, h-adaptive

DG, hp-Adaptive

O(h)-convergence rate

dinates by

f(r, θ) = −r2/3 sin(2θ/3)
(
γ′1(r)/r + γ′′1 (r)

)
− 4

3
r−1/3γ′1(r) sin(2θ/3)− γ2(r).

γ1 and γ2 are defined through

γ1(r) =

1 if r < 0,

−6r5 + 15r4 − 10r3 + 1 if 0 ≤ r < 1,

0 if 1 ≤ r,

with r = 2(r − 1/4) and

γ2(r) =

{
0 if r ≤ 5/4,

1 else.

The exact solution u to Problem 7.6 is

u(r, θ) = r2/3γ1(r) sin(2θ/3),

118

7.2. Obstacle Problem with Corner Singularity

see [16]. The solution has a singularity at the origin [16] and it holds u ∈ H5/3−ε(D)
for every ε > 0 and every open neighborhood D of the origin [32]. Hence, this problem
is an interesting addition to the examples we computed before since its solution is even
less regular than the typical H2.5−ε-regularity we discussed thoroughly in Chapter 3.

Figure 7.2.1.: Discretization Error

103 104 105 106

Degrees of Freedom

10−5

10−4

10−3

10−2

10−1

100

E
rr

or

Uniform Q1 Error

Uniform Q2 Error

hp-Adaptive Error

Discretization Convergence Rate c̃
Q1 Uniform -0.4548
Q2 Uniform -0.4837
hp-Adaptive -1.6674

Table 7.2.1.: Convergence Rates

We discretized the problem the same way we did before, i. e. applying a SIPG scheme
for the quadratic part and controlling the obstacle condition in the Lagrange nodes.
Due to the reduced regularity, we cannot expect that higher order methods (e. g. Q2

elements) lead to better convergence rates. Indeed, Figure 7.2.1 and Table 7.2.1 show
that a DG discretization with Q2 elements converges only at a O(h) rate when using

119

7. Numerical Experiments

(a) 4 Refinement Steps (b) 10 Refinement Steps

1

2

3

4

5

Figure 7.2.2.: Grid after Adaptive hp-Refinement.

uniform grid refinements, just as piecewise linear Q1 elements. Remarkably though,
our hp-adaptive algorithm is still able to leverage higher order elements at the right
places and achieves similar convergence rates as for the smoother problem of Section
7.1.

Figure 7.2.2 indicates that our algorithm resolves both the free boundary where
the active and inactive set meet as well as the singularity at the origin with smaller
elements, i. e. favoring h-refinements. The region where the solution is not constant
and smooth on the other hand is discretized with higher order elements.

7.3. Allen–Cahn Phase Field Models

After having discussed the methods introduced in this thesis for the obstacle problem,
we will briefly have a look at an application for a phase field model. As discussed
in Section 2.4, the Allen–Cahn equation is one of the simplest attempts at modeling
phase fields.

7.3.1. Obstacle Potential

Choosing the obstacle potential Φ = χ[−1,1] and using an implicit Euler time dis-
cretization with timestep τ leads us to an obstacle problem of finding uk+1 ∈ K such
that

(
1

τ
− 1

ε2
) (uk+1, v − uk+1) + (∇uk+1,∇v −∇uk+1) ≥ 1

τ
(uk, v − uk+1) ∀v ∈ K,

see also equation (3.1). The admissible set is the set of H1(Ω) functions which are
pointwise in the interval [−1, 1] almost everywhere.

120

7.3. Allen–Cahn Phase Field Models

1

2

3

4

Figure 7.3.1.: Solution and Discretization - Allen–Cahn with Obstacle Potential

The spatial discretization is very similar to the one from the previous section. We
replace the (∇v,∇w) part with the SIPG bilinear form ah (v, w) and get

b(uk+1, v − uk+1) ≥ 1

τ
(uk, v − uk+1) ∀v ∈ Khp,

with b(v, w) =
(
1/τ − 1/ε2

)
(v, w) + ah (v, w). The admissible set Khp is once again

the set of discrete functions whose nodal values do not exceed the lower and upper
obstacle, i. e. the coefficients of the discrete functions are in the interval [−1, 1] for this
particular model. For more details, consult Section 7.1.1.

We chose to look at a single timestep, i. e. we approximate the solution of the
(elliptic) variational inequality (3.1) for a given uk. The time step uk is obtained by
computing a few timesteps into the evolution to make sure it has the typical phase
field profile. Unfortunately, we cannot rely on an analytic solution for this problem.
Therefore, the discretization error has to be approximated. We do so by computing a
DG solution u∗ on a very fine uniform grid with uniform degree of p = 5. Due to the
uniform structure we assume that discontinuities and other problems will be negligible.
In our adaptive algorithm, we compute the solutions ũ0

k+1, ..., ũ
m
k+1 on a sequence of

discrete spaces V 0, . . . , V m determined through the algorithms described in Chapter
5. A plot of a single solution ũik+1 along with its discretization (that is, the mesh and
the employed polynomial degrees) can be seen in Figure 7.3.1.

As long as the discrete space V i at hand is still coarser (in the sense that the mesh
is everywhere at least one level coarser than for the reference solution and the local
polynomial degree is not greater than p = 5), we can compute the approximated error

|||ũik+1 − u∗||| ≈ |||ũik+1 − uk+1|||. (7.2)

Another information about the error we have is the estimated error computed during
the adaptive process. In Section 7.1.4 we have seen that it captures the error quite

121

7. Numerical Experiments

well for the obstacle problem. Since the estimated error does need a reference solution,
the corresponding trajectory in Figure 7.3.2 is much longer.

Figure 7.3.2.: Allen–Cahn Obstacle Discretization Error

103 104 105

Degrees of Freedom

10−3

10−2

10−1

100

101

E
rr

or

Approx. Error

Estimated Error

Figure 7.3.2 shows that for the Allen–Cahn problem our error estimator is at first
not as good as for the simpler obstacle problem but still within one order of magnitude.
It seems that for higher number of degrees of freedom, the approximated error from
(7.2) and the estimated error are getting closer.

Remark 7.7. Of course, it is not surprising that the estimated error is not too precise
for a small number of unknowns: When the grid is still very coarse, even the finer
space Q will be too coarse to catch the small scale features of the phase field.

With respect to convergence rates, we observe very similar rates to the ones observed
for the stationary obstacle problem in earlier sections, see Table 7.3.1.

Error Convergence Rate c̃
Approximated Error -1.6246
Estimated Error -1.7101

Table 7.3.1.: Convergence Rates

122

7.3. Allen–Cahn Phase Field Models

7.3.2. Logarithmic Potential

In this section, we will investigate a discretized Allen–Cahn equation once more. This
time, however, we employ a different type of potential, namely the logarithmic poten-
tial, cf. Section 2.4. More precisely, we have

Φ(ξ) = χ[−1, 1](ξ) +
θ

2

[
(1 + ξ) ln(1 + ξ) + (1− ξ) ln(1− ξ)

]
.

In the concave part, i. e. − θc2 ξ2, we choose θc = 1 for simplicity and to stay consistent
with the obstacle potential model we investigated before. For the time discretization,
we use again the fully implicit scheme from Section 3.1.1. In this case, this gives us
variational inequality of the second kind in each time step, cf. (3.1),(

ε

τ
− 1

ε

)(
um+1, v − um+1

)
+ ε

(
∇um+1,∇(v − um+1)

)
+

1

ε
(φ(v)− φ(um+1)) ≥ ε

τ

(
um, v − um+1

)
∀v ∈ H1(Ω).

As usual, we have φ(v) =
∫

Ω
Φ(ξ) dξ. Using a DG space V pT with the SIPG method, we

can discretize the problem as before. To do so, we replace the integral
∫

Ω
Φ(v(ξ)) dξ

by a quadrature rule
∑
i ωiΦ(v(xi)), cf. Section 3.4. Thus, in the (m+ 1)th time step,

we solve

b(um+1, v−um+1)+
∑
i

ωiΦ(v(xi))−
∑
i

ωiΦ(um+1(xi)) ≥
1

τ
(um, v−um+1) ∀v ∈ Khp,

using the notation from the previous section.
In our numerical example, we again compare the adaptively computed solutions

to a reference solution which was computed on a fine uniform grid. A plot of the
solution in one time step and an illustration of the discretization can be found in
Figure 7.3.3. The corresponding convergence rates, shown in Figure 7.3.4, which
uses a value of θ = 0.1 in the potential, exhibit a similar behavior as we observed
for the obstacle potential: While the estimator seems to underestimate the error by a
factor, we have that asymptotically the estimated and the approximated errors seem to
behave similarly, thus fueling our confidence in the error estimator. The convergence
rates (both for the estimated and the approximated errors) are reported in Table 7.3.2.
It seems that the convergence is slightly worse for the logarithmic potential than it
was for the obstacle potential.

Error Convergence Rate c̃
Approximated Error -1.4026
Estimated Error -1.3729

Table 7.3.2.: Convergence Rates

123

7. Numerical Experiments

1

2

3

4

Figure 7.3.3.: Solution and Discretization - Allen–Cahn with Logarithmic Potential

7.4. Application: Ambrosio–Tortorelli for Image
Segmentation

In the area of image segmentation, the goal is to separate regions in an image which
are homogeneous in a given sense (e. g. having similar gray scales). The curves sep-
arating these regions are called “edge sets”[70]. Many algorithms and approaches to
find suitable edge sets have been proposed, some of these are PDE-based or rely on
variational methods.

In the following, we follow the notation of [70]. One particular model is obtained by
minimizing the Mumford-Shah energy [87],

MS(u,Γ) =
1

2

∫
Ω\Γ
|∇u|2 dx+

α

2
H1(Γ) +

β

2
‖u− g‖2L2(Ω), (7.3)

(u,Γ) ∈ A =
{

Γ ⊂ Ω closed and u ∈ H1(Ω \ Γ)
}
. (7.4)

Here, α and β are positive real numbers andH1 denotes the one-dimensional Hausdorff-
measure. The function g represents the grayscale image we want to segment and Ω is
the image domain. It is natural to view g ∈ L∞(Ω) as a piecewise constant function
on the domain Ω = (0,m) × (0, n) where the image consists of m × n pixels. The
energy (7.3) penalizes jumps in u while simultaneously penalizing deviations from
the image g (weighted by a parameter β). u can thus be viewed as a (piecewise)
smooth approximation of g. The geometric part, namely the curve Γ that separates
the regions, on the other hand, should not be too long; therefore its length is penalized
with a parameter α.

However, the model has some problems both with respect to analysis and numerical
treatment. The optimization will be difficult since u depends on Γ and the set of

124

7.4. Application: Ambrosio–Tortorelli for Image Segmentation

Figure 7.3.4.: Allen–Cahn Logarithmic Discretization Error, θ = 0.1

103 104

Degrees of Freedom

10−2

10−1

100

101

102

E
rr

or

Approx. error

Estimated error

possible Γ is not even linear [70]. Moreover, the notion of the curve can be difficult to
capture in a discretization.

As a remedy, we will consider a phase field approach via the so-called Ambrosio–
Tortorelli functional

AT(u, z) =
1

2

∫
Ω

(z2 + η)|∇u|2 dx

+
α

2

(
ε

∫
Ω

|∇z|2 dx+
1

4ε

∫
Ω

|z − 1|2 dx

)
+
β

2

∫
Ω

|u− g|2 dx.

(7.5)

Here, the functional is minimized over the set H1(Ω)×K with

K =
{
v ∈ H1(Ω) : 0 ≤ v ≤ 1 a. e.

}
.

It can be shown [4, 5] that the solutions converge to the solutions of the Mumford–
Shah model in the sense of Γ-convergence. Note that the functional is not convex but

125

7. Numerical Experiments

biconvex, i. e. AT(u, ·) and AT(·, z) are convex for fixed u and z, respectively. For
a fixed u, the minimization in z is an obstacle problem motivating us to apply our
method to this particular problem.

Ideally, in the regions separated by the free boundary (approximated through the
phase field variable z), u should be reasonably smooth, justifying the use of adaptive
methods. Before we introduce the full adaptive algorithm, we explain how we discretize
the problem and compute a solution for a given basis.

7.4.1. Discretization and Algebraic Solution

Looking at the Ambrosio–Tortorelli energy (7.5), we observe that all the operators
involved can be discretized using the SIPG approach we presented in Chapter 3. More
specifically, we have weighted L2 products and and weighted Laplace terms. Therefore,
we can use almost the same methods as before.

Given a grid T and a distribution of degrees p, we employ for both the image variable
u and the phase field variable z the same basis V pT . Let v, w ∈ V pT . Using the SIPG
approach, the following energies are involved:

ah(v) =

∫
Ω

∇v∇v dx+
∑
e∈Γ

(
−2

∫
e

JvK {∇v} dS +
σe
|e|

∫
e

JvK2
dS

)
,

mh(v) =

∫
Ω

v2 dx,

ch(v, w) =

∫
Ω

(w2 + η)|∇v|2 dx

+
∑
e∈Γ

(
−2

∫
e

JvK
{

(w2 + η)∇v
}

dS +
σe
|e|

∫
e

{
w2
}

JvK2
dS

)
.

In the last term of ch which penalizes jumps in v, we have included
{
w2
}

even though
typically one only has an upper bound for the weight function included in the penalty
factor. In our case, however, we also want to minimize in the w direction and therefore
have to make sure that the bilinear form is also coercive in the w-direction.

The SIPG-modified functional in the discrete space is

AThp(u, z) =
1

2
ch(u, z) +

α

2

(
εah(z) +

1

4ε
mh(z − 1)

)
+
β

2

∫
Ω

|u− g|2 dx,

where 1(x) ≡ 1 is the constant one function.
Finally, we have to discretize the constrained set K and do so in the established

manner by controlling the obstacle condition in the Lagrange nodes:

Khp =
{
v ∈ V pT : 0 ≤ v|K(xk) ≤ 1, ∀K ∈ T ∀xk ∈ XK

}
.

Hence, we try to solve the following problem:

126

7.4. Application: Ambrosio–Tortorelli for Image Segmentation

Problem 7.8. Find (u, z) ∈ V pT ×Khp such that

AThp(u, z)→ min . (7.6)

While optimizing the global problem can be hard, we make use of the fact that the
optimization in the individual directions are convex problems and employ an alter-
nating (“operator split”) algorithm, see, e. g. [60]. Given initial guesses u0, z0 in V pT ,
we alternate between minimizing in u and minimizing in z direction while keeping the
other direction fixed, respectively. The same method for a (continuous) finite element
discretization was used in [30] and other articles. To the best of the author’s knowl-
edge, there are no proofs of convergence, though. However, the sequence AThp(un, zn)
generated by Algorithm 5 is decreasing [30].

Algorithm 5 Alternating Minimization Algorithm

procedure AlternateMin(u0, z0)
n = 0
repeat

un+1 = arg minu∈V pT AThp(u, z
n)

zn+1 = arg minz∈Khp AThp(u
n+1, z)

n← n+ 1
until ‖un − un−1‖ < TOL and ‖un − un−1‖ < TOL
return (un, zn)

end procedure

Since the arising convex minimization problems are an unconstrained quadratic
problem in u and a quadratic obstacle problem in z, we can use the multigrid solver
and the TNNMG algorithm from Chapter 4, respectively.

Remark 7.9. For models of brittle fracture that employ a very similar ansatz (also
using the Ambrosio–Tortorelli energy), the TNNMG algorithm has been successfully
applied to the global functional instead of using operator split [63].

Remark 7.10. In [30], it is argued that for a function v ∈ C(Ω), the function min(1, v)
would have a lower energy than v (and similarly for max(0, v)). Therefore, the author
concludes that one can ignore the obstacle restriction and simply solve the uncon-
strained quadratic problem. It is not so obvious if this also holds for the discrete case,
however. In our experiments, we observed that the approximate solution might vio-
late the constraints slightly if they are not imposed. Hence, we still solve the obstacle
problem in Khp as described above.

7.4.2. Adaptive Algorithm

Since the edges in the image are lower dimensional objects which are modeled through
the phase field approach in the functional AThp, we expect that a very fine resolution
of these areas is necessary to represent z accurately. Moreover, some regions of the

127

7. Numerical Experiments

image domain might be rather homogeneous, which lead us to believe an hp-adaptive
method could also benefit the approximation of the image variable u.

In Chapter 5, we explained how to use hierarchical estimators for DG discretizations
of variational inequalities. Hence, we can directly build on that knowledge. In the
following, we will briefly explain the ideas and refer the reader to Chapter 5 for more
details. The adaptive algorithm is performed by applying the hierarchical estimator
to both subproblems we have seen in the alternating minimization algorithm. Having
obtained approximate elementwise errors, the marking and the hp-decision can be
performed as before. Thus, both regions which cause large errors for the image variable
u and regions which cause large errors in the edge variable z should be appropriately
refined.

Remark 7.11. It has to be noted that the method of Section 5.1.1, namely performing
a single step of a block Jacobi method to compute an approximation of the hierar-
chical error estimator, is of course a very rough estimate: Not only do we replace
the full solution of the given subproblem by performing only a single iteration of the
method, but we also do not attempt to solve the global problem but restrict ourselves
to approximately solving the subproblems in both directions. If the hierarchical error
approximation for a given problem is not satisfying, one could try to run an alternating
minimization also in the larger space Q.

Starting with a DG space S, the algorithm can be written as follows:

Algorithm 6 Alternating Adaptive Algorithm

1. Solve for u, z in S, e. g. using alternating minimization.

2. Estimate error in u and refine:

a) Choose incremental space Q ⊃ S, represent u and z by uQ, zQ ∈ Q.

b) Compute an approximation eu ≈ arg minu∈QAThp(u, zQ)−uQ (see Section
5.1.1) and derive local and global error estimators.

c) Mark elements for refine, choose h or p refinement for each element.

d) Obtain new space S̃ ⊃ S accordingly.

3. Analogously, estimate error in z and refine, again:

a) Choose incremental space Q̃ ⊃ S̃, represent u and z by uQ̃, zQ̃ ∈ Q̃.

b) Compute an approximation ez ≈ arg minz∈Q̃AThp(uQ̃, z) − zQ̃ and derive
local and global error estimators.

c) Mark elements for refine, choose h or p refinement for each element.

d) Obtain new space Ŝ ⊃ S̃ accordingly.

4. If global errors are small enough, stop. Else, set S ← Ŝ and go to Step 1.

In practice, the stopping criterion in Step 4 of Algorithm 6 might replaced by per-

128

7.4. Application: Ambrosio–Tortorelli for Image Segmentation

forming a fixed number of steps.

Remark 7.12. Since the performance of hierarchical error estimators is connected to
the saturation assumption 5.11, we might have bad performance if β ≈ 1. In particular,
the saturation assumption is linked to severity of the oscillations in the right hand side
[50]. In our case, the right hand side represents an image, which might have sharp
edges and strong oscillations. To capture these, one can include oscillation terms
(which are usually of higher order). Let f be the data of the current problem and fh
its L2-projection into the finite element space at hand.

osc2(f) =
∑
K∈T

h2
K

p2
K

‖f − fh‖20,K , (7.7)

see also [49] and, for a more DG specific reference, [22]. For the obstacle problem,
similar oscillation terms were derived in [77].

Note that the computation of fh involves solving a linear system containing the L2

mass matrix of the finite element space. Since the mass matrix of a discontinuous
Galerkin space is block diagonal, this can be done in parallel just like the other parts
of the hierarchical error estimator.

7.4.3. Examples

For this application oriented example, we will not present error graphs since it is now
clear what the analytical solution (or a sufficiently accurate approximation) would
look like. Rather, we show a selection of example input images and the respective
approximations of the smooth image function u and the edge indicator z.

Boat

As a first test image, we use the boat1 image, Figure 7.4.1. For this problem, we used
the following model parameters:

α = 30,

β = 10,

ε = 0.85,

η = 0.005.

Note that the value of ε is higher than usual to increase the visibility of the detected
edges when printed on this page. As for the discretization, we only implemented a
purely h-adaptive refinement process as described in the previous section. No oscil-
lation terms (cf. Remark 7.12) were added to the error estimator in this example.

1This work is a derivative of “Alexandra in speziellen Farben zur Windjammerparade 1972 in Kiel”
by Wolfgang Fricke, used under CC BY. Source: https://commons.wikimedia.org/wiki/File:

Alexandra_P_Kiel_03-09-1972_(1).jpg, retrieved 9 April 2022.

129

 https://commons.wikimedia.org/wiki/File:Alexandra_P_Kiel_03-09-1972_(1).jpg
 https://commons.wikimedia.org/wiki/File:Alexandra_P_Kiel_03-09-1972_(1).jpg

7. Numerical Experiments

Figure 7.4.1.: Input image boat1

As we can see in Figure 7.4.2b, the edge variable z can indeed be used to visualize
the edges in the picture and thus to segment the image. In Figure 7.4.3, we can see the
generated grid. The adaptive algorithm captures the parts where the image exhibits
sharp color transitions (in particular the light and dark paint of the boat, its mast,
and the lateral windows). Less distinct transitions (as seen, e. g. in the waves on the
bottom of the image) are less pronounced with these parameters.

Sharp Edges: Letters

Our second test image Figure 7.4.4 is structurally different from the first one. It
contains a few monochromatic letters on a solid background. Thus, in contrast to the
boat example, we have few but very pronounced edges. In particular, these might
be aligned with the grid axes. Since the input is a 256 × 256 pixel image (and not
a vector graphic), edges which are not parallel to grid axis do not look smooth in
close-up. The sharp discontinuities are sometimes not well captured even in the finer
space Q when estimating the error. This might lead to discretizations which do not
look pleasant, as our human eye is quite capable at recognizing inconsistencies in the
pictures. Therefore, a sufficiently fine initial grid might be required, possibly amended
with the oscillation terms from (7.7). For this model, the following parameters are

130

7.4. Application: Ambrosio–Tortorelli for Image Segmentation

(a) Smooth image u1 (b) Edge indicator z1

Figure 7.4.2.: Discrete Solutions for the boat Image

Figure 7.4.3.: Discretization1

131

7. Numerical Experiments

Figure 7.4.4.: Input image letters

used:

α = 75,

β = 1,

ε = 0.85,

η = 0.005.

Again, we apply an h-adaptive process using the discretization and algorithms de-
scribed before.

7.5. Algebraic Solver

Finally, we want to briefly highlight the quality of the algebraic solvers. In Chapter 4,
we suggested to use a geometric multigrid approach with a layer of different p-levels
(“p-multigrid”) on top as a linear solver, which forms one of the building blocks of
the TNNMG method, see Section 4.1. As discussed before, we cannot expect the
convergence to be independent from the number of grid and p levels.

132

7.5. Algebraic Solver

(a) Smooth image u (b) Edge indicator z

Figure 7.4.5.: Discrete Solutions for the text Image

Figure 7.4.6.: Discretization

133

7. Numerical Experiments

7.5.1. Linear System

At first, we want to consider the solution of a linear system. We discretize the following
linear problem

Problem 7.13.

(∇u,∇v) = `(v), ∀v ∈ H1(Ω),

u = 0 on ∂Ω.

Here, we choose Ω = [0, 1]2 ⊂ R2 and `(v) = −10
∫

Ω
v dx.

For the discretization, we once more use the SIPG approach from Section 3.2, using
a penalty parameter of σ = 2p2.

Remark 7.14. Note that the choice of the penalty parameter influences the condition
number of the stiffness matrix. If we choose a penalty number which is too large, the
convergence rate of our solver will suffer.

An extensive discussion about the solver including dependencies on various param-
eters can be found in [8]. In particular, the authors show how a higher number of pre-
and post-smoothing steps can accelerate the convergence.

For our linear numerical example, we use u0 = 0 as the initial iterate or each
problem. The convergence rate ρ is calculated as follows:

ρ =

(‖u∗ − uν‖A
‖u∗‖A

)1/ν

where k is the number of iterations needed to reduce the error below a threshold of
10−8, ‖ · ‖A is the energy norm and u∗ is a reference solution computed with a much
smaller tolerance. Depending on the number of levels k and the polynomial degree p,
we solve Problem 7.13 numerically on a uniform grid. We used m = 3 pre- and post-
smoothing steps, respectively. For our model problem, Table 7.5.1 shows convergence
rates of the linear multigrid solver introduced in Section 4.2.

k=2 k=3 k=4 k=5
p=1 0.131685 0.12166 0.11985 0.241822
p=2 0.15661 0.235043 0.490307 0.696959
p=3 0.311607 0.546574 0.730558 0.849779
p=4 0.400005 0.66417 0.821656 0.906722

Table 7.5.1.: Convergence rates of hp-multigrid for linear problem.

We can clearly see that the number of grid levels and the polynomial order affects the
convergence rates. This is not surprising due to the use of “inherited” bilinear forms,
cf. Section 4.2 (see also [8]). To an extent, one can overcome this level-dependence by

134

7.5. Algebraic Solver

removing parts of the penalty terms on coarser levels, see Remark 4.7. This takes a
higher computational load and more complex implementations.

Clearly, the convergence rates from Table 7.5.1 are disappointing, in particular if
one compares them to the rates for geometric multigrid methods on uniform meshes
when a continuous P1 finite element space is used. Since the convergence speed of the
TNNMG method for nonlinear problems is asymptotically governed by the quality of
the linear solver [67], we are interested in better convergence rates. Adding a lower
obstacle ψ ≡ − 1

2 , we turn Problem 7.13 into an obstacle problem. The TNNMG
algorithm with the hp-multigrid as linear solvers gives the following convergence rates,
see Table 7.5.2.

k=2 k=3 k=4 k=5
p=1 0.0209317 0.0698919 0.0920876 0.12038
p=2 0.0735163 0.0882236 0.108398 0.316817
p=3 0.0876253 0.125077 0.333269 0.561108
p=4 0.0689302 0.213225 0.483802 0.703574

Table 7.5.2.: Convergence rates of TNNMG for an obstacle problem.

As we can see, the TNNMG algorithm for the discretized obstacle problem also
admits a level dependency (albeit slightly better than for the linear problem). It has
to be noted, though, that we did not account for the fact that the TNNMG method is
fastest only once the active set has been determined correctly. Therefore often nested
iterations (i. e. using the interpolated solutions from coarser spaces as initial iterate)
are employed. Given the fact that we focus on adaptive procedures, we can obtain
coarse grid solutions naturally: Since the current space was obtained by refining from a
coarser space where the (approximate) solution is known, we can use this initial iterate
for the next application of the TNNMG method. In particular, we found that this
gives far superior convergence rates compared to what we just found for the uniform
problems using u0 = 0 as an initial guess. We postpone the extended discussion of the
solver performance in the adaptive setting to the following Section 7.5.2, where the
serial and parallel solvers are discussed for the obstacle problem. For example, Figure
7.5.1 shows that the convergence rates stay well below 0.2 for the obstacle problem
even for a high number of unknowns and a parallel setup if the adaptive procedure
with nested iteration is used. Hence, even if the hp-multigrid approach might look like
it yields unsatisfactory convergence rates, we can indeed use it to efficiently solve the
arising algebraic problems with the TNNMG method.

7.5.2. Parallel Solution of the Algebraic Problem

In the following, we will briefly investigate how the parallelization approaches from
Section 4.3 influence the convergence of the algebraic solver. To do so, we compare
different amounts of parallel nodes by solving the same problem (“strong scaling”).
More precisely, we solve once more Problem 7.1 by the hp-adaptive procedure described

135

7. Numerical Experiments

before. The initial domain is split across several nodes and the resulting systems are
solved in parallel. After each refinement step the new system on the greater space
is solved by using the interpolated solution from the previous step as initial iterate.
This helps in particular our (nonsmooth) Newton method to converge more rapidly.
In contrast to the previous section, we will not address the question of convergence
of the discretization here (after all, we compute the same trajectory of solutions as in
the serial case) but rather investigate how fast the algebraic solver converges and how
this changes with respect to the number of processes. This boils down to the question
to which extend the modified smoothers degrades the solver’s performance (we use
the `1 smoothers described in Section 4.3, both in a nonlinear way as the first step
of the TNNMG algorithm and in the linear way as part of the multigrid step). Note
that we did not implement load-balancing, yet. Therefore, in particular in later stages
of the adaptive algorithm, the number of unknowns per process might be unevenly
distributed. In Figure 7.5.1, we computed the average convergence rate each time

Figure 7.5.1.: Average Convergence Rates

104 105

Number of Unknowns

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

A
ve

ra
g
e

C
on

ve
rg

en
ce

R
at

e

Serial

2 Processes

4 Processes

8 Processes

16 Processes

32 Processes

we had to solve an algebraic system. For each of those systems, we started with an
initial guess u0 (as explained before, initialized from interpolated solutions of coarser
grids, if available) and we computed iterates u1, . . . , uk by applying TNNMG steps
until a threshold ‖uk − u∗‖ < 10−8 was met. The average convergence rate cavg was

136

7.5. Algebraic Solver

Figure 7.5.2.: Number of TNNMG Steps k

104 105

Number of Unknowns

2

3

4

5

6

7

8

9

10

T
N

N
M

G
S

te
p

s

Serial

2 Processes

4 Processes

8 Processes

16 Processes

32 Processes

computed by

cavg = k

√
‖uk − u∗‖
‖u0 − u∗‖

.

Here, u∗ denotes an “exact” algebraic solution, which we approximate by a precom-
puted solution with a much lower tolerance. Figure 7.5.1 shows that a higher number
of cores (and thus higher number of parallel blocks) does indeed have a negative impact
on the convergence rate. The number of steps k needed to achieve the given accuracy
is shown in Figure 7.5.2. This plot confirms our finding that a higher number of pro-
cesses slows down the algebraic solver and we cannot claim “strong scaling” in this
respect. It has to be noted, though, that the number of TNNMG steps suffer only
moderately, therefore the algorithm is still useful, in particular if performance gains
can be achieved.

Remark 7.15. Strong scaling is often considered with respect to run times, i. e. a
perfectly strong scaling algorithm would take only 1/N -th of the time when using N
processes compared to a single process.

We do not think that run time is a suitable measure here since it depends on a lot
of external factors like hardware, the specific software used, network architecture etc.

137

7. Numerical Experiments

These are beyond our control and can only be a snapshot of the capabilities at a given
time.

138

8. Conclusion

We have seen that the discretization of variational inequalities with higher order DG
elements is indeed possible and (using the hp-adaptive approach) gives higher order
convergence rates with respect to the number of unknowns. Hardly surprising, the
higher order methods lead to a better convergence rate compared to piecewise linear
finite element functions which did not yield convergence rates beyond the O(n) rate.
Interestingly, we can obtain convergence rates better than the O(n1.5) rates from
piecewise quadratic finite element functions. These are well known for the obstacle
problem [38, 111, 112]. The hp-adaptive method is both theoretically (cf. Chapter
3) and practically (cf. Chapter 7) able to beat these in terms of error per unknown.
Beyond the obstacle problem, we can use the methods also for variational inequalities
of the second kind, which we demonstrated for a timestep of the time-discretized Allen–
Cahn equation with logarithmic potential. Other nonlinearities can be treated in the
same manner, cf. Section 3.4. Thus we developed an efficient framework which covers
discretization, solution of the algebraic system and an adaptive process to approximate
solutions to variational inequalities. Since the arising systems for DG discretizations
(in particular with higher order) are denser than for a continuous piecewise linear finite
element discretization, we have to make sure that the implementation can leverage the
better convergence rates to make up for the higher arithmetic loads per unknown.
Luckily, the blocked structures of DG bases allow for many optimizations such as fast
arithmetic, good use of caches and easier parallelization. In conclusion, we can say
that (given a suitable implementation), adaptive discontinuous Galerkin methods can
be used as an efficient way to solve variational inequalities numerically.

139

Appendices

141

A. Details

In the following, we will derive a condition under which Assumption 3.49 is true. For
simplicity, we will restrict ourselves to the case of a lower obstacle. The criterion is
based on bounding the difference of the residual f − Lψ to its integral mean in a Lp

norm, making it similar to classical oscillation assumptions.

Note that, however, this condition is in general stronger than required. A simple
counter example would be f − Lψ being a linear function.

Lemma A.1. For K0 ∈ T l, assume there is s ∈ [1,∞], such that

∥∥∥∥|K0|
(

(f − Lψ − P 0
K0

(f − Lψ)
)∥∥∥∥

Ls(K0)

≤ βs
∥∥∥(f − Lψ)

∥∥∥
L1(K0)

. (A.1)

The basis-dependent constant βs is defined through

βs = min
ϕp

∫
K0
ϕp dx∥∥ϕp∥∥Lt(K0)

(A.2)

where the minimum is taken over the basis functions ϕp defined on K0 and t is defined
through 1/t+ 1/s = 1 (using the usual convention that t =∞ if s = 1 and vice versa).

Then, Assumption 3.49 is true, i. e.

∫
K0

(
f − Lψ

)
ϕp dx ≤ 0.

Proof. First, note that since (f − Lψ) ≤ 0, we have

P 0
K(f − Lψ) =

1

|K|

∫
K

f − Lψ dx = − 1

|K|

∫
K

|f − Lψ|dx = − 1

|K|
∥∥∥f − Lψ∥∥∥

L1(K)
.

Let t again denote the conjugate exponent to s. Observing that ωp =
∫
K
ϕp dx > 0

143

A. Details

by construction of the basis functions, we deduce∫
K

(f − Lψ)ϕp dx =

∫
K

P 0
K(f − Lψ)ϕp +R0

K(f − Lψ)ϕp dx

= P 0
K(f − Lψ)ωp +

∫
K

R0
K(f − Lψ)ϕp dx

≤ P 0
K(f − Lψ)ωp +

∥∥∥R0
K(f − Lψ)

∥∥∥
Ls(K)

∥∥ϕp∥∥Lt(K)

= P 0
K(f − Lψ)ωp + |K|−1

∥∥∥|K|R0
K(f − Lψ)

∥∥∥
Ls(K)

∥∥ϕp∥∥Lt(K)

≤ P 0
K(f − Lψ)ωp + |K|−1βs

∥∥∥f − Lψ∥∥∥
L1(K)

∥∥ϕp∥∥Lt(K)
(by (A.1))

≤ P 0
K(f − Lψ)ωp + |K|−1

∥∥∥f − Lψ∥∥∥
L1(K)

ωp (by (A.2))

= P 0
K(f − Lψ)ωp − P 0

K(f − Lψ)ωp

= 0.

Lemma A.2. Let u ∈ Hs(Ω) with s ∈ (0, 1). Then, we have

u+ = max(u, 0) ∈ Hs(Ω).

Proof. Let f be a smooth function on Ω. Clearly, f+ ∈ L2(Ω) as f+ is dominated by
f . Let Ω+ and Ω0 be the parts where f is positive and nonpositive, respectively. Now,
we have

‖f+‖2Hs(Ω) = ‖f+‖20 +

∫
Ω

∫
Ω

|f+(x)− f+(y)|2
|x− y|N+2s

dx dy

= ‖f+‖20 +

∫
Ω+

∫
Ω+

|f+(x)− f+(y)|2
|x− y|N+2s

dxdy

+ 2

∫
Ω0

∫
Ω+

|f+(x)|2
|x− y|N+2s

dxdy.

The first double integral is clearly dominated by |f |2s. For the second double integral,
we note that we that for x ∈ Ω+ and y ∈ Ω0, we have u(y) ≤ 0 and u(x) > 0 and thus
we have the pointwise estimate

|u(x)|2 ≤ |u(x)− u(y)|2,

showing that the second double integral is indeed also bounded by |f |2s. Using the
usual densitiy argument, the proof is finished.

Remark A.3. Similar to the preceding lemma, it can be shown, that for u ∈ Wm,p

with m ∈ (0, 1 + 1/m), one has |u| ∈ Wm,p [29]. In [102], the case for u+ is discussed
for several spaces.

144

Continuity of Preconditioned Nonlinear Gauss–Seidel

In the following, we want to lay ground for the proof of Lemma 4.10. We are minimizing
the following functional: Let j(v) =

∑
ji(vi).

D̃x(v) =
1

2
B(v, v)− 〈b−Ax, v〉+ j(x+ v).

Using B(v, v) = 〈Bv, v〉 for B ∈ Rn×n s. p. d. Here, we have replaced the matrix A by
B in the quadratic part. Equivalently, we solve the variational inequality

B(u, v − u)− 〈b−Ax, v − u〉+ j(x+ v)− j(x+ u) ≥ 0.

We see, the shift in the linear part is with respect to x but using A, not B. When
applying Gauss–Seidel, we have that intermediate iterates will be shifted by x plus the
former corrections. Say y =

∑i−1
j=1 yjej contains all corrections made up to the i-th

subspace, then we have
yi = arg min

u∈R
D̃x(y + Pu),

where P : R→ Rn, v 7→ vei is the prolongation operator. Similarly, define R : Rn → R,
Rv = vi, as the restriction to the subspace of the i-th component.

As a variational inequality, this reads

B(Pu, P (v − u))− 〈b−Ax−By, P (v − u)〉
+ ji(Rx+Ry + v)− ji(Rx+Ry + u) ≥ 0.

(A.3)

Lemma A.4. Let u and ũ be solutions of (A.3) with respect to the shifts (x, y) and
(x̃, ỹ) respectively. Then, we have there is a C such that

‖u− ũ‖ ≤ C
(
‖x− x̃‖+ ‖y − ỹ‖

)
.

Proof. First, define z = y + B−1Ax and z̃ = ỹ + B−1Ax̃. For shorter notation,
introduce du = ũ− u, dx = x̃− x, dy = ỹ − y and dz = z̃ − z.

Insert v = R(x̃− x) +R(ỹ− y) + ũ in the VI for u and v = R(x− x̃) +R(y− ỹ) + u
in the VI for ũ.

This gives

B(Pu, PRdx + PRdy + Pdu)− 〈b−Bz, PRdx + PRdy + Pdu〉
+ ji(Rx̃+Rỹ + ũ)− ji(Rx+Ryi + u) ≥ 0

−B(Pũ, PRdx + PRdy + Pdu) + 〈b−Bz̃, PRdx + PRdy + Pdu〉
− ji(Rx̃+Rỹ + ũ) + ji(Rx+Ry + u) ≥ 0.

Adding both, we have

B(−Pdu, PRdx + PRdy + Pdu)− 〈B(z̃ − z), PRdx + PRdy + Pdu〉 ≥ 0.

Or, using B(·, ·) = 〈B·, ·〉,

B(−Pdu − dz, PRdx + PRdy + Pdu) ≥ 0.

145

A. Details

Adding 0 = −PRdx − PRdy + PRdx + PRdy on the left hand side, we get

B(PR(dx+dy)−dz, P (R(dx+dy)+du)) ≥ B(P (R(dx+dy)+du), P (R(dx+dy)+du)).

Thus

γB‖P (R(dx + dy) + du)‖2 ≤ B(P (R(dx + dy) + du), P (R(dx + dy) + du))

≤ B(PR(dx + dy)− dz, P (R(dx + dy) + du))

≤ ΓB‖PR(dx + dy)− dz‖‖P (R(dx + dy) + dy)‖.

Dividing by γB‖P (R(dx + dy) + du)‖ on both sides, we get

‖P (R(dx + dy) + du)‖ ≤ ΓB
γB
‖PR(dx + dy)− dz‖. (A.4)

Now, we can finally estimate:

‖du‖ = ‖RPdu‖
= ‖R‖‖Pdu‖
≤ ‖R‖

(
‖P (R(dx + dy) + du)‖+ ‖PR(dx + dy)‖

)
≤ ‖R‖

(
ΓB
γB
‖PR(dx + dy)− dz‖+ ‖PR(dx + dy)‖

)
≤ C(‖dx‖+ ‖dy‖+ ‖dz‖)

The last estimate is possible since both P and R are bounded linear operators. It
remains to show ‖dz‖ ≤ C(‖dx‖+ ‖dy‖).

‖dz‖ = ‖z̃ − z‖
= ‖ỹ +B−1Ax̃− y +B−1Ax‖
= ‖dy +B−1Adx‖
≤ ‖dy‖+ ||B−1A‖‖dx‖
≤ C(‖dx‖+ ‖dy‖).

146

B. Zusammenfassung

In dieser Arbeit wird dargestellt, wie sogenannte Discontinuous Galerkin (DG) Metho-
den für die numerische Lösung von Variationsungleichungen eingesetzt werden können.
Dazu werden zunächst die mathematischen Grundlagen eingeführt, insbesondere
ebendiese Variationsungleichungen sowie Anwendungen im Bereich von Phasenfeldglei-
chungen. Danach werden die Discontinuous Galerkin Methoden erklärt sowie gezeigt,
wie man diese nutzen kann, um Hindernisprobleme (welche einen wichtigen Spezial-
fall von Variationsungleichungen darstellen und hier als Modellproblem dienen) zu
diskretisieren. Hindernisprobleme haben die Eigenschaft, dass ihre Lösungen selbst
für glatte Daten nur eine beschränkte Regularität besitzen. Somit ist der Einsatz von
Methoden mit höherer Ordnung zumindest fragwürdig, da deren Effizienz maßgeblich
an der Glattheit der zu approximierenden Lösung hängt. Es wird jedoch gezeigt, wie
durch geschickte Wahl des Gitters der Einsatz von DG Funktionen höherer Ordnung
zu einer Diskretisierung führt, deren theoretische Konvergenzordnung höher ist als die
bisher bekannten Schranken. Ferner wird erklärt, wie die für das Hindernisproblem
eingeführte Diskretisierung auf allgemeinere Variationsungleichungen verallgemeinert
werden kann.

Im praktischen Einsatz müssen die entstehenden algebraischen Probleme natürlich
erst einmal gelöst werden. Dazu wird beschrieben, wie die Truncated Nonsmooth New-
ton Multigrid (TNNMG) Methode für die betrachteten Probleme eingesetzt werden
kann, um möglichst schnell zu einer numerischen Lösung zu kommen. Ein wichtiger
Baustein des TNNMG Verfahrens ist ein schneller linearer Löser, der mittels eines
geometrischen Mehrgitterverfahrens für DG Systeme realisiert wird. Darüber hinaus
wird in der Arbeit ein nichtlinearer Glätter entwickelt, der für die Konvergenz des
TNNMG Verfahrens in einer parallelisierten Implementierung geeignet ist.

Da die eingangs erwähnten “geschickt gewählten” Gitter jedoch von der (unbekan-
nten) analytischen Lösung abhängig sind, wird eine adaptive Prozedur beschrieben,
welche die glatten und nicht glatten Teile der Lösung identifiziert und jeweils mit
Funktionen höherer Ordnung bzw. einem feineren Gitter auflöst (man spricht von
hp-Adaptivität). Um die Fehler der aktuellen Zwischenlösung zu approximieren und
lokalisieren, wird ein hierarchischer Fehlerschätzer benutzt, der auf den DG Fall
angepasst wurde und dessen Effizienz sowie Verlässlichkeit für ein lineares Modell-
problem bewiesen wird.

Am Ende werden die eingeführten Methoden numerisch an einer Reihe von Beispie-
len getestet. Dabei wird auf verschiedene Aspekte des Prozesses eingegangen und
gezeigt, dass die hp-adaptive DG Variante einer stückweise linearen oder stückweise
quadratischen Diskretisierung überlegen ist. Insbesondere kann die Konvergenz mit
höherer Ordnung experimentell nachgewiesen werden, obwohl die Regularität der an-
alytischen Lösung dieses nicht direkt erwarten lässt.

147

Bibliography

[1] Robert A. Adams and John J. F. Fournier. Sobolev Spaces. Academic Press,
second edition, 2003.

[2] Samuel M. Allen and John W. Cahn. A microscopic theory for antiphase bound-
ary motion and its application to antiphase domain coarsening. Acta Metallur-
gica, 27(6):1085–1095, June 1979.

[3] Marreddy Ambati, Tymofiy Gerasimov, and Laura De Lorenzis. A review on
phase-field models of brittle fracture and a new fast hybrid formulation. Com-
putational Mechanics, 55(2):383–405, 2015.

[4] Luigi Ambrosio and Vincenzo Maria Tortorelli. Approximation of functional
depending on jumps by elliptic functional via Γ-convergence. Communications
on Pure and Applied Mathematics, 43(8):999–1036, 1990.

[5] Luigi Ambrosio and Vincenzo Maria Tortorelli. On the approximation of free
discontinuity problems. 1992.

[6] Paola F. Antonietti and Paul Houston. A class of domain decomposition pre-
conditioners for hp-discontinuous Galerkin finite element methods. Journal of
Scientific Computing, 46(1):124–149, Jan 2011.

[7] Paola F. Antonietti, Paul Houston, and Iain Smears. A note on optimal spectral
bounds for nonoverlapping domain decomposition preconditioners for hp-version
discontinuous Galerkin methods. International Journal of Numerical Analysis
and Modeling, 2015.

[8] Paola F. Antonietti, Marco Sarti, and Marco Verani. Multigrid algorithms for
hp-discontinuous Galerkin discretizations of elliptic problems. SIAM Journal on
Numerical Analysis, 53(1):598–618, 2015.

[9] Paola F. Antonietti, Marco Sarti, and Marco Verani. Multigrid algorithms for
high order discontinuous Galerkin methods. In Lecture Notes in Computational
Science and Engineering, pages 3–13. Springer International Publishing, 2016.

[10] Douglas N. Arnold. An interior penalty finite element method with discontinuous
elements. PhD thesis, University of Chicago, 1979.

[11] Douglas N. Arnold. An interior penalty finite element method with discontinuous
elements. SIAM Journal on Numerical Analysis, 19(4):742–760, 1982.

149

Bibliography

[12] Douglas N. Arnold, Franco Brezzi, Bernardo Cockburn, and L. Donatella Marini.
Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM
Journal on Numerical Analysis, 39(5):1749–1779, 2002.

[13] C Baiocchi, V Comincioli, E Magenes, and GA Pozzi. Free boundary problems
in the theory of fluid flow through porous media: existence and uniqueness
theorems. Annali di Matematica Pura ed Applicata, 97(1):1–82, 1973.

[14] Allison H. Baker, Robert D. Falgout, Tzanio V. Kolev, and Ulrike Meier Yang.
Multigrid smoothers for ultraparallel computing. SIAM Journal on Scientific
Computing, 33(5):2864–2887, January 2011.

[15] Lothar Banz and Ernst P. Stephan. A posteriori error estimates of hp-adaptive
IPDG-FEM for elliptic obstacle problems. Applied Numerical Mathematics, 76:76
– 92, 2014.

[16] S. Bartels and C. Carstensen. Averaging techniques yield reliable a posteri-
ori finite element error control for obstacle problems. Numerische Mathematik,
99(2):225–249, 2004.

[17] Peter Bastian. Parallele adaptive Mehrgitterverfahren. Vieweg Teubner Verlag,
1996.

[18] Peter Bastian, Markus Blatt, Andreas Dedner, Nils-Arne Dreier, Christian Eng-
wer, René Fritze, Carsten Gräser, Christoph Grüninger, Dominic Kempf, Robert
Klöfkorn, et al. The DUNE framework: basic concepts and recent developments.
Computers & Mathematics with Applications, 81:75–112, 2021.

[19] Peter Bastian, Markus Blatt, Andreas Dedner, Christian Engwer, Robert
Klöfkorn, Ralf Kornhuber, Mario Ohlberger, and Oliver Sander. A generic grid
interface for parallel and adaptive scientific computing. part ii: implementation
and tests in DUNE. Computing, 82(2):121–138, Jul 2008.

[20] Peter Bastian, Markus Blatt, Andreas Dedner, Christian Engwer, Robert
Klöfkorn, Mario Ohlberger, and Oliver Sander. A generic grid interface for par-
allel and adaptive scientific computing. part i: abstract framework. Computing,
82(2):103–119, Jul 2008.

[21] Peter Bastian, Markus Blatt, and Robert Scheichl. Algebraic multigrid for dis-
continuous Galerkin discretizations of heterogeneous elliptic problems. Numeri-
cal Linear Algebra with Applications, 19(2):367–388, 2012.

[22] Robert E. Bird, William M. Coombs, and Stefano Giani. A posteriori discon-
tinuous Galerkin error estimator for linear elasticity. Applied Mathematics and
Computation, 344-345:78–96, March 2019.

[23] Luise Blank, Harald Garcke, Lavinia Sarbu, and Vanessa Styles. Primal-dual
active set methods for Allen–Cahn variational inequalities with nonlocal con-
straints. Numerical methods for partial differential equations, 29(3):999–1030,
2013.

150

Bibliography

[24] Markus Blatt and Peter Bastian. The iterative solver template library. In
Bo K̊agström, Erik Elmroth, Jack Dongarra, and Jerzy Waśniewski, editors,
Applied Parallel Computing. State of the Art in Scientific Computing, pages
666–675, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[25] Markus Blatt and Peter Bastian. On the generic parallelisation of iterative
solvers for the finite element method. Int. J. Comput. Sci. Engrg., 4:56–69, 01
2008.

[26] James F. Blowey and Charles M. Elliott. Curvature dependent phase boundary
motion and parabolic double obstacle problems. In Wei-Ming Ni, L. A. Peletier,
and J. L. Vazquez, editors, Degenerate Diffusions, pages 19–60, New York, NY,
1993. Springer New York.

[27] Folkmar A. Bornemann. An adaptive multilevel approach to parabolic equations
I. General theory and 1D implementation. IMPACT of Computing in Science
and Engineering, 2(4):279–317, Dec 1990.

[28] Folkmar A. Bornemann, Bodo Erdmann, and Ralf Kornhuber. A posteriori
error estimates for elliptic problems in two and three space dimensions. SIAM
J. Numer. Anal., 33(3):1188 – 1204, 1996.

[29] Gérard Bourdaud and Yves Meyer. Fonctions qui opèrent sur les espaces de
sobolev. Journal of Functional Analysis, 97(2):351 – 360, 1991.

[30] Blaise Bourdin. Image segmentation with a finite element method. ESAIM:
Mathematical modelling and numerical analysis, 33(2):229–244, 1999.

[31] Dietrich Braess. Finite Elemente. Springer-Verlag Berlin Heidelberg, 4 edition,
2007.

[32] Dietrich Braess, Carsten Carstensen, and Ronald HW Hoppe. Convergence anal-
ysis of a conforming adaptive finite element method for an obstacle problem.
Numerische Mathematik, 107(3):455–471, 2007.

[33] Achi Brandt and Colin W. Cryer. Multigrid algorithms for the solution of linear
complementarity problems arising from free boundary problems. SIAM Journal
on Scientific and Statistical Computing, 4(4):655–684, December 1983.

[34] Susanne C. Brenner, J. Cui, T. Gudi, and L.-Y. Sung. Multigrid algorithms
for symmetric discontinuous Galerkin methods on graded meshes. Numerische
Mathematik, 119(1):21–47, April 2011.

[35] Susanne C. Brenner and L. Ridgway Scott. The Mathematical Theory of Finite
Element Methods. Springer, third edition, 2008.

[36] Häım Brezis. Opérateurs maximaux monotones et semi-groupes de contractions
dans les espaces de Hilbert. North-Holland Pub. Co., Amsterdam, 1973.

151

Bibliography

[37] Häım R. Brezis and Guido Stampacchia. Sur la régularité de la solution
d’inéquations elliptiques. Bull. Soc. Math. France, 96:153–180, 1968.

[38] Franco Brezzi, William W. Hager, and P. A. Raviart. Error estimates for
the finite element solution of variational inequalities. Numerische Mathematik,
28(4):431–443, Dec 1977.

[39] Kolja Brix, Martin Campos Pinto, and Wolfgang Dahmen. A multilevel pre-
conditioner for the interior penalty discontinuous Galerkin method. SIAM J.
Numer. Anal., 46(5):2742–2768, July 2008.

[40] Markus Bürg and Willy Dörfler. Convergence of an adaptive hp finite el-
ement strategy in higher space-dimensions. Applied numerical mathematics,
61(11):1132–1146, 2011.

[41] Xinfu Chen and Charles M. Elliott. Asymptotics for a parabolic double obstacle
problem. Proceedings., 444(1922):429–445, 1994.

[42] Philippe G Ciarlet. The finite element method for elliptic problems / Philippe
G. Ciarlet. Society for Industrial and Applied Mathematics, Philadelphia, PA,
unabridged republ. of the work first publ. by North-Holland, 1978 edition, 2002.

[43] Klaus Deckelnick, Gerhard Dziuk, and Charles M Elliott. Computation of ge-
ometric partial differential equations and mean curvature flow. Acta numerica,
14:139–232, 2005.

[44] Andreas Dedner, Robert Klöfkorn, Martin Nolte, and Mario Ohlberger. A
generic interface for parallel and adaptive discretization schemes: abstraction
principles and the dune-fem module. Computing, 90(3-4):165–196, August 2010.

[45] Leszek Demkowicz, Waldemar Rachowicz, and Ph Devloo. A fully automatic
hp-adaptivity. Journal of Scientific Computing, 17(1):117–142, 2002.

[46] Peter Deuflhard, Peter Leinen, and Harry Yserentant. Concepts of an adap-
tive hierarchical finite element code. IMPACT of Computing in Science and
Engineering, 1(1):3 – 35, 1989.

[47] JK Djoko. Discontinuous Galerkin finite element methods for variational in-
equalities of first and second kinds. Numerical Methods for Partial Differential
Equations: An International Journal, 24(1):296–311, 2008.

[48] W Dörfler and V Heuveline. Convergence of an adaptive hp finite element strat-
egy in one space dimension. Applied numerical mathematics, 57(10):1108–1124,
2007.

[49] Willy Dörfler. A convergent adaptive algorithm for Poisson’s equation. SIAM
Journal on Numerical Analysis, 33(3):1106–1124, June 1996.

[50] Willy Dörfler and Ricardo H Nochetto. Small data oscillation implies the satu-
ration assumption. Numerische Mathematik, 91(1):1–12, 2002.

152

Bibliography

[51] Christian Engwer, Carsten Gräser, Steffen Müthing, and Oliver Sander. The
interface for functions in the dune-functions module. Archive of Numerical Soft-
ware, Vol 5:No 1 (2017), 2017.

[52] Christian Engwer, Carsten Gräser, Steffen Müthing, and Oliver Sander. Function
space bases in the dune-functions module. 2018.

[53] Yekaterina Epshteyn and Béatrice Rivière. Estimation of penalty parameters
for symmetric interior penalty Galerkin methods. Journal of Computational and
Applied Mathematics, 206(2):843–872, sep 2007.

[54] Lawrence C. Evans. Partial Differential Equations. American Mathematical
Society, 1998.

[55] Thomas Fankhauser, Thomas P. Wihler, and Marcel Wirz. The hp-adaptive
FEM based on continuous sobolev embeddings: Isotropic refinements. Comput-
ers & Mathematics with Applications, 67(4):854–868, March 2014.

[56] Xiaobing Feng and Andreas Prohl. Numerical analysis of the Allen-Cahn equa-
tion and approximation for mean curvature flows. Numerische Mathematik,
94(1):33–65, Mar 2003.

[57] Roland Glowinski. Numerical Methods for Nonlinear Variational Problems.
Springer Series in Computational Physics. Springer-Verlag, 1984.

[58] Roland Glowinski, Jacques-Louis Lions, and Raymond Trémolières. Numerical
Analysis of Variational Inequalities, volume 8 of Studies in Mathematics and Its
Applications. Elsevier, 1981.

[59] Jayadeep Gopalakrishnan and Guido Kanschat. A multilevel discontinuous
Galerkin method. Numerische Mathematik, 95(3):527–550, 2003.

[60] Jochen Gorski, Frank Pfeuffer, and Kathrin Klamroth. Biconvex sets and opti-
mization with biconvex functions: a survey and extensions. Mathematical meth-
ods of operations research, 66(3):373–407, 2007.

[61] Carsten Gräser. Convex minimization and phase field models. PhD thesis, Freie
Universität Berlin, 2011.

[62] Carsten Gräser, Max Kahnt, and Ralf Kornhuber. Numerical approximation of
multi-phase Penrose-Fife systems. Comput. Meth. in Appl. Math., 16:523–542,
2016.

[63] Carsten Gräser, Daniel Kienle, and Oliver Sander. Truncated nonsmooth Newton
multigrid for phase-field brittle-fracture problems. 2020.

[64] Carsten Gräser and Ralf Kornhuber. Multigrid methods for obstacle problems.
Journal of Computational Mathematics, pages 1–44, 2009.

153

Bibliography

[65] Carsten Gräser, Ralf Kornhuber, and Uli Sack. Time discretizations of
anisotropic Allen–Cahn equations. IMA Journal of Numerical Analysis,
33(4):1226–1244, March 2013.

[66] Carsten Gräser and Oliver Sander. The dune-subgrid module and some applica-
tions. Computing, 86(4):269, 2009.

[67] Carsten Gräser and Oliver Sander. Truncated nonsmooth Newton multigrid
methods for block-separable minimization problems. IMA Journal of Numerical
Analysis, 39(1):454–481, 11 2018.

[68] Wolfgang Hackbusch. Iterative solution of large sparse systems of equations,
volume 95. Springer, 1994.

[69] Michael Hintermüller, Kazufumi Ito, and Karl Kunisch. The primal-dual active
set strategy as a semismooth Newton method. SIAM Journal on Optimization,
13(3):865–888, 2002.

[70] Michael Hintermüller, Steven-Marian Stengl, and Thomas M. Surowiec. Un-
certainty quantification in image segmentation using the Ambrosio–Tortorelli
approximation of the Mumford–Shah energy. Journal of Mathematical Imaging
and Vision, 63(9):1095–1117, July 2021.

[71] Paul Houston and Endre Süli. A note on the design of hp-adaptive finite element
methods for elliptic partial differential equations. Computer Methods in Applied
Mechanics and Engineering, 194:229–243, February 2005.

[72] Ohannes A. Karakashian and Frederic Pascal. A posteriori error estimates for a
discontinuous Galerkin approximation of second-order elliptic problems. SIAM
J. Numerical Analysis, 41:2374–2399, 01 2003.

[73] Noboru Kikuchi and John Tinsley Oden. Contact problems in elasticity: a study
of variational inequalities and finite element methods. SIAM, 1988.

[74] David Kinderlehrer and Guido Stampacchia. An Introduction to Variational
Inequalities and their Applications. Academic Press, Inc, 1980.

[75] Ralf Kornhuber. Monotone multigrid methods for elliptic variational inequalities
i. Numerische Mathematik, 69(2):167–184, December 1994.

[76] Ralf Kornhuber. A posteriori error estimates for elliptic variational inequalities.
Computers & Mathematics with Applications, 31(8):49–60, 1996.

[77] Ralf Kornhuber and Qingsong Zou. Efficient and reliable hierarchical error esti-
mates for the discretization error of elliptic obstacle problems. Mathematics of
Computation, 80(273):69–88, jun 2010.

[78] Andreas Krebs and Ernst P. Stephan. A p-version finite element method
for nonlinear elliptic variational inequalities in 2D. Numerische Mathematik,
105(3):457–480, 2007.

154

Bibliography

[79] Martin Kronbichler and Katharina Kormann. A generic interface for parallel
cell-based finite element operator application. Computers & Fluids, 63:135 –
147, 2012.

[80] Martin Kronbichler and Katharina Kormann. Fast matrix-free evaluation of
discontinuous Galerkin finite element operators. ACM Transactions on Mathe-
matical Software, 45(3):1–40, September 2019.

[81] Martin Kronbichler, Katharina Kormann, Igor Pasichnyk, and Momme Allalen.
Fast matrix-free discontinuous Galerkin kernels on modern computer architec-
tures. In Julian M. Kunkel, Rio Yokota, Pavan Balaji, and David Keyes, editors,
High Performance Computing, pages 237–255, Cham, 2017. Springer Interna-
tional Publishing.

[82] J. L. Lions and G. Stampacchia. Variational inequalities. Communications on
Pure and Applied Mathematics, 20(3):493–519, 1967.

[83] Jan Mandel. A multilevel iterative method for symmetric, positive definite linear
complementarity problems. Applied Mathematics & Optimization, 11(1):77–95,
February 1984.

[84] Brendan S. Mascarenhas, Brian T. Helenbrook, and Harold L. Atkins. Applica-
tion of p-multigrid to discontinuous Galerkin formulations of the Euler equations.
AIAA Journal, 47(5):1200–1208, May 2009.

[85] Jens Markus Melenk and Barbara I Wohlmuth. On residual-based a posteriori
error estimation in hp-fem. Advances in Computational Mathematics, 15(1):311–
331, 2001.

[86] William F Mitchell and Marjorie A McClain. A comparison of hp-adaptive
strategies for elliptic partial differential equations. ACM Transactions on Math-
ematical Software (TOMS), 41(1):1–39, 2014.

[87] David Bryant Mumford and Jayant Shah. Optimal approximations by piecewise
smooth functions and associated variational problems. Communications on pure
and applied mathematics, 1989.

[88] Steffen Müthing, Marian Piatkowski, and Peter Bastian. High-performance
implementation of matrix-free high-order discontinuous Galerkin methods.
arXiv:1711.10885, 2017.

[89] Eleonora Di Nezza, Giampiero Palatucci, and Enrico Valdinoci. Hitchhiker’s
guide to the fractional Sobolev spaces. Bulletin des Sciences Mathématiques,
136(5):521–573, July 2012.

[90] J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen
bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen
sind. Abhandlungen aus dem Mathematischen Seminar der Universität Ham-
burg, 36(1):9–15, Jul 1971.

155

Bibliography

[91] Muhammad Aslam Noor. Some developments in general variational inequalities.
Applied Mathematics and Computation, 152(1):199–277, 2004.

[92] Elias Pipping, Oliver Sander, and Ralf Kornhuber. Variational formulation of
rate-and state-dependent friction problems. ZAMM-Journal of Applied Math-
ematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik,
95(4):377–395, 2015.

[93] Alfio Quarteroni and Alberto Valli. Numerical Approximation of Partial Differ-
ential Equations. Springer Science & Business, 2009.

[94] Beatrice Rivière. Discontinuous Galerkin Methods for Solving Elliptic and
Parabolic Equations: Theory and Implementation. Society for Industrial and
Applied Mathematics, 2008.

[95] Béatrice Riviere and Mary F Wheeler. A posteriori error estimates for a discon-
tinuous Galerkin method applied to elliptic problems. log number: R74. Com-
puters & Mathematics with Applications, 46(1):141–163, 2003.

[96] José-Francisco Rodrigues. Obstacle Problems in Mathematical Physics. North-
Holland, 1987.

[97] Erich Rothe. Zweidimensionale parabolische Randwertaufgaben als Grenzfall
eindimensionaler Randwertaufgaben. Mathematische Annalen, 102(1):650–670,
1930.

[98] Jacob Rubinstein, Peter Sternberg, and Joseph B. Keller. Fast reaction, slow dif-
fusion, and curve shortening. SIAM Journal on Applied Mathematics, 49(1):116–
133, February 1989.

[99] Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2nd edition, 2003.

[100] Uli Sack. Numerical Simulation of Phase Separation in Binary and Multicom-
ponent Systems. PhD thesis, Freie Universität Berlin, 2014.

[101] Oliver Sander. DUNE—The Distributed and Unified Numerics Environment,
volume 140. Springer Nature, 2020.

[102] Giuseppe Savaré. On the regularity of the positive part of functions. Nonlinear
Analysis: Theory, Methods & Applications, 27(9):1055 – 1074, 1996.

[103] Jie Shen and Xiaofeng Yang. Numerical approximations of Allen-Cahn and
Cahn-Hilliard equations. Discrete & Continuous Dynamical Systems - A,
28(4):1669–1691, 2010.

[104] Iain Smears. Nonoverlapping domain decomposition preconditioners for discon-
tinuous Galerkin approximations of Hamilton–Jacobi–Bellman equations. Jour-
nal of Scientific Computing, 74(1):145–174, Jan 2018.

156

Bibliography

[105] Ingo Steinbach. Phase-field models in materials science. Modelling and simula-
tion in materials science and engineering, 17(7):073001, 2009.

[106] Jörg Stiller. Robust multigrid for high-order discontinuous Galerkin methods:
A fast Poisson solver suitable for high-aspect ratio cartesian grids. Journal of
computational physics, 327, 2016-12.

[107] Xue-Cheng Tai. Rate of convergence for some constraint decomposition methods
for nonlinear variational inequalities. Numerische Mathematik, 93(4):755–786,
February 2003.

[108] Mark A Taylor, Beth A Wingate, and Rachel E Vincent. An algorithm for
computing Fekete points in the triangle. SIAM Journal on Numerical Analysis,
38(5):1707–1720, 2000.

[109] A. Toselli and O. Widlund. Domain Decomposition Methods - Algorithms and
Theory. Springer Series in Computational Mathematics. Springer Berlin Heidel-
berg, 2009.

[110] Fei Wang. Discontinuous Galerkin methods for solving double obstacle problem.
Numerical Methods for Partial Differential Equations, 29(2):706–720, June 2012.

[111] Fei Wang, Weimin Han, and Xiao-Liang Cheng. Discontinuous Galerkin methods
for solving elliptic variational inequalities. SIAM Journal on Numerical Analysis,
48(2):708–733, 2010.

[112] Lie-Heng Wang. On the quadratic finite element approximation to the obstacle
problem. Numerische Mathematik, 92(4):771–778, Oct 2002.

[113] Mary Fanett Wheeler. An elliptic collocation-finite element method with interior
penalties. SIAM Journal on Numerical Analysis, 15(1):152–161, February 1978.

[114] Thomas P. Wihler. An hp-adaptive strategy based on continuous Sobolev embed-
dings. Journal of Computational and Applied Mathematics, 235(8):2731–2739,
February 2011.

[115] Joseph Wloka. Partielle Differentialgleichungen. B. G. Teubner Stuttgart, 1982.

[116] Qingsong Zou, Andreas Veeser, Ralf Kornhuber, and Carsten Gräser. Hierarchi-
cal error estimates for the energy functional in obstacle problems. Numerische
Mathematik, 117(4):653–677, 2011.

157

	Introduction
	Acknowledgments

	Variational Inequalities and Phase Field Models
	Mathematical Preliminaries and Notation
	Domain
	Function Spaces

	Variational Inequalities of the First Kind
	The Obstacle Problem

	Variational Inequalities of the Second Kind
	Allen–Cahn Phase Field Models

	Discretization
	Time Discretization of the Allen–Cahn Equation
	Fully Implicit Euler Scheme
	Semi-implicit Euler Scheme

	Spatial Discretization – Discontinuous Galerkin
	The Discontinuous Finite Element Space
	Symmetric Interior Penalty DG

	Discretization of the Obstacle Problem
	A Priori Error Estimates

	Discretization of Variational Inequalities of the Second Kind

	Algebraic Solution
	Truncated Nonsmooth Newton Multigrid
	Nonlinear Smoothing
	Abstract TNNMG Algorithm
	Linear Correction

	Linear Multilevel Solver
	hp-Multigrid for Discontinuous Galerkin Discretizations

	Parallel Smoothers
	Preconditioned Nonlinear Gauss–Seidel
	Application: Parallel TNNMG using Nonlinear l1-Smoother

	Adaptive Numerical Approximation
	Hierarchical A Posteriori Error Estimation
	Hierarchical Error Estimators with Interior Penalty DG

	Adaptive Algorithm
	Marking Strategy
	hp-Refinement Criterion

	Implementation Aspects
	Discretization in DUNE
	DUNE-HPDG
	Function Spaces
	Data Structures
	Matrix-free Operators
	Multigrid Solver

	Numerical Experiments
	Obstacle Problem
	Discretization and Parameters
	Convergence of Adaptive Algorithms
	Limiting Polynomial Degree in hp-Adaptivity
	Accuracy of Error Estimator
	Comparison with Continuous Finite Elements

	Obstacle Problem with Corner Singularity
	Allen–Cahn Phase Field Models
	Obstacle Potential
	Logarithmic Potential

	Application: Ambrosio–Tortorelli for Image Segmentation
	Discretization and Algebraic Solution
	Adaptive Algorithm
	Examples

	Algebraic Solver
	Linear System
	Parallel Solution of the Algebraic Problem

	Conclusion
	Appendices
	Details
	Zusammenfassung
	Bibliography

