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Simple Summary: Pituitary pars intermedia dysfunction (PPID), also known as equine’s cushing
syndrome, is one of the most common diseases of aged horses and ponies. The pathogenesis of PPID
includes oxidative damage to dopaminergic pathways, similar to Parkinson’s disease in humans.
Here, alterations in the concentrations of the serum amino acids were reported previously. To examine
changes in the plasma amino acid profile in horses with PPID, EDTA plasma of horses that were
presented for various reasons that required laboratory examinations of blood anticoagulated with
EDTA was collected. With this plasma, the basal ACTH concentration, as well as the amino acid
profile, was determined. The basal ACTH concentration is commonly used to diagnose PPID. Horses
were considered PPID patients if the ACTH concentration was ≥ 100 pg/mL, i.e., they would be
considered affected at any time. Horses were defined as non-PPID (nPPID) patients if the ACTH
concentration was below 30 pg/mL. PPID is commonly treated with pergolide. Horses receiving
pergolide with ACTH ≤ 30 pg/mL were allocated to the group PPIDrr (PPID, ACTH in reference
range) and horses receiving pergolide with ACTH ≥ 100 pg/mL to the group PPIDarr (PPID, ACTH
above reference range). In total, 93 horses were examined, including 88 horses at the clinic and
5 horses at a private practice. Of these, 53 horses fulfilled the inclusion criteria (ACTH ≤ 30 pg/mL
or ACTH ≥ 100 pg/mL). A total of 25 horses were diagnosed as nPPID, 20 as PPID, 5 as PPIDrr, and
3 as PPIDarr. Arginine was significantly higher in PPIDrr than in PPID and nPPID, asparagine was
significantly higher in PPID, PPIDrr, and PPIDarr than in nPPID, citrulline was significantly higher
in PPIDrr than in nPPID and PPID, cysteine was significantly lower in PPIDrr than in PPID, nPPID,
and PPIDarr, and glutamine was significantly higher in PPID and PPIDarr than in nPPID. Especially,
asparagine, citrulline, and glutamine may be potential diagnostic markers and may offer interesting
approaches for research regarding amino supplementation in PPID.

Abstract: Pituitary pars intermedia dysfunction is one of the most common diseases of aged horses
and ponies. In Parkinson’s disease, which is, similar to PPID, a disease that involves oxidative damage
to dopaminergic pathways but with different clinical signs, alterations to the serum amino acid profile
have been reported. To examine changes in the plasma amino acid profile in horses with PPID, EDTA
plasma of horses that were presented for various reasons that required laboratory examinations of
blood anticoagulated with EDTA was collected. With this plasma, the basal ACTH concentration as
well as the amino acid profile was determined. Horses were considered PPID patients if the ACTH
concentration was ≥ 100 pg/mL, i.e., they would be considered affected at any time. Horses were
defined as non-PPID (nPPID) patients if the ACTH concentration was below 30 pg/mL. Horses
receiving pergolide with ACTH ≤ 30 pg/mL were allocated to the group PPIDrr (PPID, ACTH in
reference range) and horses receiving pergolide with ACTH ≥ 100 pg/mL to the group PPIDarr
(PPID, ACTH above reference range). In total, 93 horses were examined, including 88 horses at the
clinic and 5 horses at a private practice. Of these, 53 horses fulfilled the inclusion criteria (ACTH ≤
30 pg/mL or ACTH ≥ 100 pg/mL). A total of 25 horses were diagnosed as nPPID, 20 as PPID, 5
as PPIDrr, and 3 as PPIDarr. Arginine was significantly higher in PPIDrr than in PPID and nPPID,
asparagine was significantly higher in PPID, PPIDrr, and PPIDarr than in nPPID, citrulline was
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significantly higher in PPIDrr than in nPPID and PPID, cysteine was significantly lower in PPIDrr
than in PPID, nPPID, and PPIDarr, and glutamine was significantly higher in PPID and PPIDarr than
in nPPID. Especially, asparagine, citrulline, and glutamine may be potential diagnostic markers and
may offer interesting approaches for research regarding amino supplementation in PPID.

Keywords: plasma amino acids; PPID; endocrine disease; arginine; asparagine; citrulline; cys-
teine; glutamine

1. Introduction

Pituitary pars intermedia dysfunction is one of the most common diseases of aged
horses and ponies (≥15 years) [1–3]. Laminitis occurs in 30–40% of PPID patients and may
necessitate euthanasia [4–6]. In PPID, hypertrophy, hyperplasia, and microadenoma or
macroadenoma formation of the pars intermedia of the pituitary occurs [7]. This leads
to an increased secretion of the pars intermedia-derived POMC (Pro-Opiomelanocortins)
into the circulation [7]. From the healthy equine pars intermedia, only a small amount
of the adrenocorticotropic hormone (ACTH) is released and it is further cleaved into α-
melanocyte stimulating hormone (α-MSH), β-endorphine (β-END), and corticotropine-like
intermediate lobe peptide (CLIP) [7]. In the diseased equid, the pars intermedia secretes an
increased amount of POMC-derivates into the systemic circulation. An increase up to 40-
fold was reported previously [8]. Nowadays, the basal ACTH concentration is a commonly
used test to diagnose PPID with a sensitivity of approximately 70–80% and a spe-cificity
of approximately 80–90% [5,9,10]. ACTH stimulates the adrenal gland to synthesize and
release cortisol into circulation [11]. Previous research has suggested that the increased
endogenous glucocorticoid concentrations may be responsible for laminitis, since these are
known to be associated with systemic insulin resistance [12–17]. The suspected mechanism
is that binding of insulin to the insulin-like growth factor 1 receptor (IGF-1R) has an effect
in the lamellar tissue of the hoof [18–20] and also that insulin can directly trigger laminitis
even through mechanisms that have not yet been identified [21]. In addition to its effects
on the glucose metabolism, insulin is an important regulator of protein metabolism. Due to
an increased utilization of amino acids, hyperinsulinemia can contribute to an increased
amino acid and protein turnover, for example, in the skin or skeletal muscles [22–26].

Furthermore, in human Parkinson’s disease, which is, similarly to PPID, a disease
that involves oxidative damage to dopaminergic pathways but has a different clinical pre-
sentation [27], the arginine, alanine, and phenylalanine concentrations were significantly
lower in patients with advanced disease and dyskinesia than in patients suffering from
early disease and could therefore serve as a biochemical marker of disease progression [28].
As possible reasons for the significant differences in the serum amino acid profile malab-
sorption and changes in amino acid metabolism, the effects of mitochondrial dysfunction
and oxidative stress, reflection of progressive neurodegenerative processes in the brain,
and the effect of dopaminergic medications and aromatic L-amino decarboxylase inhibitors
were suggested [28].

Beside Parkinson’s disease, a change in the amino acid level in plasma or serum has
been demonstrated in other human diseases, including autism and cancer. A study by
Naushad et al. reported increased concentrations of glutamic acid and asparagine, and
lower concentrations of phenylalanine, tryptophan, methionine, and histidine in autistic
children [29]. Another study reported significantly higher concentrations of histidine,
1-methyl-histidine and 3-methyl-histidine, and significantly lower concentrations of homo-
cysteine, carnosine, methionine, cystathionine, cystine, tyrosine, and threonine in autistic
children compared to healthy children [30]. Therefore, it appears that increased concentra-
tions of excitatory amino acids (glutamate and asparagine) and decreased concentrations
of essential amino acids (phenylalanine, tryptophan, and methionine), as well as decreased
concentrations of neurotransmitter precursors (tyrosine and tryptophan), may be distinc-
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tive features of the plasma amino acid profile of autistic children and that this could offer
an opportunity for early diagnosis [29].

Even in disease caused by the novel coronavirus (SARS-CoV-2), significant differences
in the amino acid profile in the plasma in hospitalized adults and children with multisystem
inflammatory syndrome, in particular a reduced arginine concentration and arginine
bioavailability, are considered important. It was suggested that arginine deficiency may
contribute to endothelial dysfunction, T cell dysregulation, and coagulopathy [31]. Changes
in plasma amino acid profile were also found in cancer patients. This could be due to
changes due to cancer-induced protein metabolism in tumors, skeletal muscle, and liver
in cancer patients. Cancer-related plasma amino acid profiles are particularly present
in cancers which affect the digestive organs. These are not only influenced by the type
of cancer, but also by the cancer stage [32–37]. The plasma amino acid profile seems to
undergo specific changes during different diseases, not only in humans, but also in animals,
which was previously shown in horses suffering from equine metabolic syndrome [38,39]
or in experimentally-induced hyperinsulinemia [21].

Therefore, we hypothesized that there may be differences in the amino acid profile of
healthy horses and horses affected with PPID. Furthermore, we assumed that treatment
with pergolide may affect the amino acid profile as well and that these may be used as a
potential diagnostic biochemical marker.

2. Material and Methods
2.1. Study Population

Included in the study were horses that were presented for various reasons at the
Equine Clinic of Freie Universität Berlin (FU Berlin) that required laboratory examinations
of blood anticoagulated with EDTA. The horses had to be clinically healthy except for
possible orthopaedic or ophtalmological reasons for examination and/or surgery. After a
physical examination, the horses were stabled. The time between transport and sample col-
lection varied; however, all horses were given time to accommodate to their surroundings
before sample collection (at least 30 min after transport). At the moment of sample collec-
tion, all horses showed no signs of pain. Their vital parameters were within normal limits
and the horses were relaxed and comfortable in their surroundings. Besides the ACTH
concentration, age, weight, breed, gender, and feeding regimen were recorded. Further,
5 horses that presented to a private practice to evaluate the response to therapy by deter-
mining the ACTH concentration were included in the study. Individuals with suspected or
diagnosed endocrinopathies (previous dynamic testing for equine metabolic syndrome,
suspicious fat accumulations) other than PPID were excluded from the statistical analysis.
Since the samples were collected at different times of the year, horses were classified as
healthy if the measured ACTH concentration was normal (ACTH ≤ 30 pg/mL) at any time
of the year. The reference value of LABOklin (Holding—GmbH, Bad Kissingen/Germany)
were used. Horses were considered PPID patients if an ACTH concentration ≥ 100 pg/mL
was present, i.e., they would be considered affected at any time. Horses were defined as
non-PPID (nPPID) patients if the ACTH concentration was below 30 pg/mL and as PPID
patients (PPID) if the ACTH concentration above 100 pg/mL. Horses receiving pergolide
with ACTH ≤ 30 pg/mL were allocated to the group PPIDrr (PPID, ACTH in reference
range) and horses receiving pergolide with ACTH ≥ 100 pg/mL to the group PPIDarr
(PPID, ACTH above reference range).

2.2. Laboratory Diagnostics

After required laboratory diagnostics were performed (within 10 min of collection), the
blood samples, uncoagulated with EDTA, were centrifuged and the plasma was separated
from the solid blood components.
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2.2.1. ACTH

The plasma for the ACTH determination was sent cooled to the laboratory within a
maximum of 12 h after collection. ACTH was determined with a chemoluminiscence-assay
by Laboklin (LABOklin Holding—GmbH Bad Kissingen/Germany).

2.2.2. Amino Acid Concentrations

The amino acid profiles were determined by MembraPure GmbH (Hennigsdorf/Germany).
In order to determine the total cysteine concentration, bound cysteine had to be reduced to
free cysteine. For this, 500 µL plasma and 100 µL dithiothreitol solution (4%) were mixed
in an Eppendorf tube and incubated at 40 ◦C for 30 min. Then, 150 µL sulfosalicylic acid
solution (10%) was added and the sample was stored for 30 min at 5–8 ◦C. Afterwards,
500 µL sample dilution buffer (with internal standard norleucine 100 nmol/mL) was added.
The sample was centrifuged at 13,150× g for 5 min. After these steps, the amino acid
analyses were performed with the Aracus amino acid analyzer, using the amino acid
analysis method based on ion exchange chromatography with post column derivatization
with Ninhydrin. The amino acid concentrations were determined by comparing the sample
with a standard solution with predefined concentrations using the Clarity Chromatography
Software (DataApex Company, Prague, Czech Republic).

2.3. Statistical Analysis

Data were analyzed using IBM SPSS Statistics version 27 (IBM Corp., Armonk, New
York, USA). Data were tested for normal distribution with the Shapiro Wilk Test. The Chi-
Squared-test was used to compare gender distribution between groups. Further statistical
tests used were the ANOVA for normally distributed data and the Kruskal–Wallis test for
non-normally distributed data. For post hoc testing, the Tukey test and the Games–Howell
test or Bonferroni test were used. Laboratory data that could not be measured as they
exceeded the maximum which is validated for the test or fell below the detection limit,
were regarded as either the maximum (ACTH > 1250 pg/mL, n = 1) or the minimum (Asp
< 5 nmol/mL, n = 20, nPPID = 7, PPID = 12, PPIDarr = 1). As per usual, the significance
level was set at 0.05.

2.4. Ethical Statement

The study was not declared according to the German Animal Welfare law §8.1, since
all samples were taken as a part of a routine clinical examination. Written owner’s consent
to involve their horses in the study was obtained during the admission process at the clinic
as well as at the private practice.

3. Results
3.1. Study Population

In total, 93 horses were examined, including 88 horses at the clinic and 5 horses at the
private practice. Of these, 53 horses fulfilled the inclusion criteria (ACTH ≤ 30 pg/mL or
ACTH ≥ 100 pg/mL):

A total of 25 horses were diagnosed as nPPID, 20 as PPID, 5 as PPIDrr, and 3 as
PPIDarr.

There was no significant difference regarding gender between these groups (p = 0.428,
Welch Test). Information on breed was unavailable for two horses. Ten of the twenty
individuals in the PPID group were ponies, compared to 7/25 horses in the nPPID, 1/5 in
the PPIDrr, and 2/3 in the PPIDarr group. Six horses had a history of laminitis (3 nPPID, 2
PPID, and 1 PPIDarr), and there was no significant difference between the groups (p = 0.553,
Kruskal–Wallis Test). However, significant differences between the groups were detected
for feeding, age, and ACTH concentration. All horses identified as PPIDrr were exclusively
maintained on a hay diet, whereas the nPPID and PPID patients also received concentrates
(1 nPPID), Mash (10 nPPID, and 3 PPID) or grass (1nPPID and 12 PPID) in addition to hay
(p = 0.005, Kruskal–Wallis Test). One horse (nPPID) received grass only. Information on
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age was unavailable for one horse (PPIDrr). Horses suffering from PPID were significantly
older than nPPID horses (p < 0.001, ANOVA with Games-Howell test). Between the other
groups, there were no significant differences regarding age. There were no significant
differences in the ACTH concentration between nPPID and PPIDrr (p = 0.972, ANOVA
with Games-Howell test). The ACTH concentration of PPID patients was significantly
higher than in nPPID (p < 0.001, ANOVA with Games-Howell test), PPIDrr (p < 0.001,
ANOVA with Games-Howell test), and PPIDarr (p = 0.014, ANOVA with Games-Howell
test). Furthermore, PPIDarr horses had significantly higher ACTH concentrations than
PPIDrr horses (p = 0.017, ANOVA with Games-Howell test). Mean and standard deviations
of age and ACTH are displayed in Table 1.

Table 1. Age and ACTH concentrations of the tested horses (mean ± standard deviation).

Parameter nPPID PPID PPIDrr PPIDarr

ACTH (pg/mL) 19.76 ± 6.96 382.85 ± 352.69 18.1 ± 7.88 154.0 ± 23.07

Age (years) 15.91 ± 6.96 27.79 ± 6.7 21.25 ± 3.77 27.33 ± 4.16
nPPID: non-PPID horse, PPID: horse suffering from PPID, PPIDrr: horse treated for PPID and ACTH ≤ 30 pg/mL,
and PPIDarr: horse treated for PPID and ACTH ≥ 100 pg/mL.

3.2. Amino Acid Analysis

The mean ± standard deviation and the median, minimum and maximum of the
measured amino acid concentrations are displayed in Tables 2 and 3. The p-values of
ANOVA or Kruskal–Wallis tests are included in these tables as well.

Significant group differences were detected for arginine, asparagine, citrulline, cys-
teine, glutamine, and threonine.

Table 2. Mean and standard deviations of the normally distributed amino acid concentrations
(nmol/mL); p-values (ANOVA).

nPPID PPID PPIDrr PPIDarr p

Mean SD Mean SD Mean SD Mean SD

1mHis 17.1 6.0 15.8 6.0 18.5 9.2 23.7 6.2 0.231

Ala 205.8 69.0 215.0 85.1 164.2 41.7 213 70.3 0.595

Arg 67.3 29.7 86.7 20.0 95.7 27.1 116.0 16.0 0.004

Asn 35.6 20.3 68.0 29.1 33.0 12.2 78.9 53.1 0.018

Cit 56.4 20.2 53.3 19.1 83.9 12.0 68.1 17.4 0.016

Cys 135.6 81.9 169.8 32.9 18.7 7.4 146.4 115.0 <0.001

GABA 20.4 8.0 19.3 8.0 12.9 1.1 21.9 11.1 0.258

Gln 239.8 56.1 334.8 43.9 286.4 46.0 337.4 42.363 <0.001

Glu 40.9 24.4 35.7 20.3 18.3 5.3 41.4 23.2 0.21

Gly 410.2 161.6 431.9 119.5 400.8 146.7 384.4 90.2 0.92

His 71.2 13.4 81.3 17.2 77.5 8.0 86.4 5.1 0.89

Ile 60.6 16.0 70.2 19.4 53.2 15.4 72.9 11.5 0.113

Leu 100.9 30.6 112.6 36.8 97.8 24.7 123.5 20.7 0.458

Orn 59.5 18.1 57.4 14.3 64.0 5.5 55.7 5.2 0.83

Phe 54.9 11.4 53.5 11.2 60.1 7.2 59.0 3.6 0.603

Ser 212.4 64.6 244.2 68.1 220.9 34.0 227.1 20.5 0.419
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Table 2. Cont.

nPPID PPID PPIDrr PPIDarr p

Mean SD Mean SD Mean SD Mean SD

Tau 41.3 12.6 47.3 14.6 40.1 13.1 42.9 13.3 0.473

Trp 50.9 12.8 52.2 16.3 56.0 11.5 72.6 12.5 0.102

Val 157.4 52.0 162.7 49.2 172.7 26.5 174.8 42.9 0.88

nPPID: non-PPID horse, PPID: horse suffering from PPID, PPIDrr: horse treated for PPID and ACTH ≤ 30 p g/mL,
PPIDarr: horse treated for PPID and ACTH ≥ 100 pg/mL, SD: Standard deviation, 1mHis: 1-methyl histidine,
Ala: Alanine, Arg: Arginine, Asn: Aspargine; Citr: Citrulline, Cys: Cysteine, GABA: Gamma-aminobutyric acid,
Gln: Glutamine, Glu: Glutamic acid, Gly: Glycine, His: Histidine, Ile: Isoleucine, Leu: Leucine, Met: Methionine,
Orn: Ornithine, Phe: Phenylalanine, Ser: Serine, Tau: Taurine, Trp: Tryptophan, Val: Valine.

Table 3. Median, minimum, and maximum of the non—normally distributed amino acid concentra-
tions (nmol/mL); Kruskal—Wallis Test.

nPPID PPID PPIDrr PPIDarr p

Med Min Max Med Min Max Med Min Max Med Min Max

Asp 8.1 5 16.5 5 5 20.7 8.1 5.7 9.9 8.3 5.0 16.5 0.304

Lys 76.1 45.5 153.8 92.6 29.3 143.5 87.8 46.7 122.9 114.6 80.0 126.2 0.498

Pro 76.3 42.8 308.7 74.0 35.8 147.1 68.2 46.6 104.1 102.2 78.2 112.7 0.315

Thr 94.7 41.1 203.9 129.6 65.9 208.4 113.2 39.6 138.6 151.5 125.7 156.6 0.047

Tyr 52.1 36.5 97.6 58.0 36.4 93.5 63.8 46.5 96.7 63.2 50.8 64.4 0.528

nPPID: non-PPID horse, PPID: horse suffering from PPID, PPIDrr: horse treated for PPID and ACTH ≤ 30 p g/mL,
PPIDarr: horse treated for PPID and ACTH ≥ 100 pg/mL, Med: median, Min: minimum, Max: maximum, Asp:
aspartic Acid, Lys: lysine, Pro: proline, Thr: threonine, Tyr: tyrosine.

Arginine in PPIDarr was significantly higher than in nPPID (p = 0.016, Tukey test).
Asparagine was significantly higher in PPID when compared to nPPID (p < 0.001, Games-
Howell test) and PPIDrr (p = 0.043, Games-Howell Test). Furthermore, the asparagine
concentration was significantly higher in PPIDarr when compared to nPPID (both: p = 0.039,
Games-Howell test). Citrulline was significantly higher in PPIDrr when compared to nPPID
(p = 0.024, Tukey test) and PPID (p = 0.012, Tukey test). The cysteine concentration in PPIDrr
was significantly lower than in all other groups (nPPID vs PPIDrr p = 0.003, Games-Howell
test, PPID vs PPIDrr p = 0.043, Games-Howell test, PPIDrr vs PPIDarr p = 0.044, Games-
Howell test). When compared to nPPID, the glutamine concentration in PPID (p < 0.001,
Tukey test) and PPIDarr (p = 0.014, Tukey test) was significantly higher. For threonine, no
significant group differences were identified by post hoc testing.

4. Discussion

The main limitation of this study is the insufficient number of PPIDrr and PPIDarr
that were included in the analysis. However, since an adequate number of horses was
included PPID and nPPID, the comparisons between these groups should provide valid
results. Furthermore, even if only a few horses medicated with pergolide were available
for the study, the detected differences clearly show that the amino acid profile is potentially
affected by this medication. For PPID, epidemiological differences regarding gender or
breed were not reported previously; however, increasing age was identified as a risk factor
for PPID [1,40,41], which may explain that horses in the PPID group were significantly
older than in the nPPID group. A frequently reported sign of ageing horses, loss of muscle
tone, was reported by owners of geriatric horses [42,43], which was previously reported as
a sign of ageing in horses [44]. Among hypertrichosis and/or other haircoat abnormalities,
laminitis, lethargy, depression and weight loss, and epaxial muscle wastage or muscle
atrophy are counted to be the most common clinical signs reported in horses suffering from
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PPID [45,46]. These changes may also be responsible for some of the changes in the amino
acid profile.

In human ACTH—secreting pituitary adenoma, changes in the amino acid metabolism
have been reported; particularly, these concern the alanine, aspartate, and glutamate
metabolism [47]. Significant differences in the plasma concentration of asparagine, the neu-
tral derivative of aspartic acid, were also detected in horses suffering from PPID. Healthy
horses and PPIDrr patients had significantly lower asparagine concentrations when com-
pared to PPID patients. Furthermore, PPIDarr had significantly higher asparagine con-
centrations than healthy horses. Additionally, higher asparagine concentrations in horses
suffering from PPID compared to healthy horses have already been reported previously [48].
However, the results for asparagine must be interpreted with care since 20 horses fell below
the detection limit. Also, glutamine, which was significantly lower in plasma in healthy
horses than in untreated PPID patients and PPID patients who received pergolide but
whose ACTH concentration was above the reference range, is synthesized from glutamic
acid and ammonia [49]. An altered activity of this metabolic pathway also seems conceiv-
able in horses suffering from PPID, especially since epaxial muscle wasting is a typical sign
of PPID [45,46] and glutamine is assumed to potentially be a direct regulator of muscle
synthesis and degradation [50,51]. Therefore, it could be suggested that a higher glutamine
concentration in PPID patients may be assumed, since stress leads to a release of high con-
centrations of glutamine [52,53]. However, the storages eventually become depleted [52,53],
which may explain the lower glutamine concentrations in the PPID and PPIDarr groups.

Furthermore, decreased glutamic acid, arginine, cysteine, and glutamine levels were
shown to be associated with oxidative stress and neurodegeneration in Parkinson’s dis-
ease [28]. Since PPID is a neurodegenerative disease as well, decreased concentrations of
these amino acids may also reflect the progression of the disease and might be used as
potential markers of disease severity in the future.

The non-proteogenic amino acid citrulline was significantly higher in PPIDrr horses
than in nPPID and PPID horses. This amino acid is mostly metabolized by the small
intestine; therefore, it is considered to be a biomarker for the functional small intestinal
bowel mass [54,55]. Furthermore, since citrulline is an intermediate metabolite in ureagene-
sis [56,57], during which citrulline is metabolized to arginine, a major regulator of vascular
tone [58–60] in the kidney [61], it also is a functional biomarker for kidney function. In
some cells, citrulline can act as a precursor for arginine [62] and, therefore, may be of im-
portance for the metabolism and regulation of nitric oxide (NO) [63]. Regarding decreased
citrulline concentrations and increased arginine concentrations, an upregulation of this
pathway in the PPIDrr group seems conceivable; however, it should be clearly underlined
again that only a few of these animals were included in the study. However, a previous
study on gastrointestinally-diseased horses developing laminitis found significantly lower
citrulline concentrations in horses developing laminitis than in those that did not [64].
Horses suffering from PPID are at risk for developing (endocrinopathic) laminitis [65];
however, endocrinopathic laminitis has a different pathogenesis than laminitis caused
by gastrointestinal disease. Whether or not a decreased citrulline concentration is also a
characteristic in equine endocrinopathic laminitis remains to be elucidated.

Cysteine is one of the least abundant, but functionally important, amino acids in
proteins [66]. Mutations including cysteine residues include genetic diseases [67]. Cys-
teine molecules can react with other cysteine molecules by forming the typical disulfide
bond, which can functionally interchange with another amino acid, selenocysteine, which
is assumed to occur exclusively at functional sites [68]. A study performed on anterior
pituitary cells in primary culture showed that cysteine proteases, in addition to aspartyl
proteases, may be involved in the cellular metabolism of ACTH [69]. An association of these
findings with lower cysteine concentrations due to altered ACTH production and pergolide
treatment in PPIDrr patients remains to be elucidated, especially since these experiments
were not conducted in horses but in cellular culture. Studies on human subjects with
ACTH-secreting pituitary tumors also revealed metabolic changes: one study reported on
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12 initially significantly changed metabolites in pituitary adenoma samples when compared
to the control samples; after performing a Bonferroni correction, there were only three
metabolites significantly changed: pyridoxate, deoxycholic acid, and 3-methyladipate [47].
Several changes were also detected in the metabolic pathway analysis, including changes
in amino acid metabolism. Alanine, aspartate and glutamate metabolism, and starch and
sucrose metabolism, as well as amino sugar and nucleotide sugar metabolism, lysine
biosynthesis, vitamin B6 metabolism, aminoacyl-tRNA biosynthesis, glycolysis or gluco-
neogenesis, and purine metabolism, were significantly affected. The metabolism of alanine,
aspartate, and glutamate was particularly affected [47]. Similarly, significant differences
in the asparagine concentration, which is the neutral derivate of aspartate, were observed
between the PPIDarr and the nPPID group. Different observations between the mentioned
study and our study are probably caused by the different pathogenesis of the diseases.

5. Conclusions

Altered amino acid concentrations are found in horses suffering from PPID when
compared to healthy horses. Especially asparagine, citrulline, and glutamine may be
potential diagnostic markers and may offer interesting approaches for research regarding
amino acid supplementation in PPID patients.
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