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Chapter 1

Introduction

This thesis introduces methods to efficiently generate and analyze time series data of many-body
systems. While we have a strong focus on biomolecular processes, the presented methods can
also be applied more generally. Due to limitations of microscope resolution in both space and
time, biomolecular processes are especially hard to observe experimentally. Computer models
offer an opportunity to work around these limitations. However, as these models are bound by
computational effort, careful selection of the model as well as its efficient implementation play a
fundamental role in their successful sampling and/or estimation.

Especially for high levels of resolution, computer simulations can produce vast amounts of
high-dimensional data and in general it is not straightforward to visualize, let alone to identify
the relevant features and processes. To this end, we cover tools for projecting time series data
onto important processes, finding over time geometrically stable features in observable space,
and identifying governing dynamics. We introduce the novel software library deeptime with
two main goals: (1) making methods which were developed in different communities (such as
molecular dynamics and fluid dynamics) accessible to a broad user base by implementing them
in a general-purpose way, and (2) providing an easy to install, extend, and maintain library by
employing a high degree of modularity and introducing as few hard dependencies as possible. We
demonstrate and compare the capabilities of the provided methods based on numerical examples.

Subsequently, the particle-based reaction-diffusion simulation software package ReaDDy?2 is
introduced. It can simulate dynamics which are more complicated than what is usually analyzed
with the methods available in deeptime. It is a significantly more efficient, feature-rich, flexible,
and user-friendly version of its predecessor ReaDDy. As such, it enables—at the simulation model’s
resolution—the possibility to study larger systems and to cover longer timescales. In particular,
ReaDDy2 is capable of modeling complex processes featuring particle crowding, space exclusion,
association and dissociation events, dynamic formation and dissolution of particle geometries on
a mesoscopic scale. The validity of the ReaDDy2 model is asserted by several numerical studies
which are compared to analytically obtained results, simulations from other packages, or literature
data.

Finally, we present reactive SINDy, a method that can detect reaction networks from
concentration curves of chemical species. It extends the[sparse identification of nonlinear dynamics|
(SINDy)) method—contained in deeptime— by introducing coupling terms over a system of ordinary
differential equations in an ansatz reaction space. As such, it transforms an ordinary linear
regression problem to a linear tensor regression. The method employs a sparsity-promoting
regularization which leads to especially simple and interpretable models. We show in biologically
motivated example systems that the method is indeed capable of detecting the correct underlying




reaction dynamics and that the sparsity regularization plays a key role in pruning otherwise
spuriously detected reactions.

1.1 Motivation

To set this thesis into context, let us highlight why efficient computer simulations of molecular
processes and subsequent data analysis are important tools to gain insights into their properties.

Molecular processes themselves are fundamental to life. For the processes’ general understand-
ing it is of importance to identify and describe their structural and dynamical properties. The
involved—sometimes intracellular—components can be resolved via microscopy techniques such
as STORM with a resolution of 20nm to 50 nm [1], cryo-EM with a resolution of 3 A to 15 A (2,
3], or X-ray diffraction with a resolution of < 1nm (which was first used to resolve a protein
structure in the 1950s [|4]). This enables the construction of atomistic models. However, the
discovery of mechanisms and temporal correlations often requires not only high spatial resolution
but detailed spatiotemporal data [5, [6].

Microscopy techniques that yield high temporal resolution for biological particles (e.g.,
PALM [7, 8] or LLSM [9]) on the other hand possess a significantly lower spatial resolution. While
some of the lower spatial resolution can be gained back by longer exposure time, this leads to
radiation damage and a lower temporal resolution; furthermore, the techniques are still bounded
by the diffraction limit. The diffraction limit is inversely proportional to the wavelength used in
the respective microscopy technique. A logical step might be to use shorter wavelengths, however,
the shorter the wavelength, the greater the radiation damage inflicted on biological particles for
a given exposure time [10]. This prevents the use of short wavelengths for resolving biological
processes when temporal resolution is important.

One example of a nontrivial biological process is the widely studied [mitogen activated protein|
pathway: a signaling cascade that is microscopically triggered by receptors on
the surface of a cell and relays the signal to the cell’s DNA [5, [11]. The molecule involved here,
plays a key role in cell proliferation, differentiation, inflammation, and apoptosis [12,
13]. Therefore, the behavior of these molecules is of great interest in, e.g., cancer research. It is
possible to observe the pathway kinetics experimentally for single cells [14]. Many of such
pathways involve G protein coupled receptors (GPCRs) [15] on the cell membrane triggering a
localized synthesis of cyclic adenosine monophosphate (cAMP) as second messengers [16]—both
of which are involved in various diseases [17H19].

Since spatial locality (e.g., inhomogeneous distribution of cAMP molecules [20} [21]) and effects
such as crowding, space exclusion, association and dissociation of macromolecules as well as the
complex and inhomogeneous topology of a cell play important roles in these processes, a high
spatiotemporal resolution is required to understand the function of the involved particles. This
was demonstrated in, e.g., Refs. 22 and |5

A possible remedy for the fundamental limitations of microscopy can be found in computer
models. They can, in principle, achieve arbitrary levels of resolution in both time and space.
However, they are bounded by computational effort: since molecular processes often span multiple
spatiotemporal scales (e.g., a pathway that is triggered on an atomic level on a cell’s
surface and leads to a macroscopic response), careful consideration has to go into the design and
selection of models and simulation algorithms.

Since the advent of modern day computer hardware, computational models for physical
processes spanning a vast range of different spatial resolutions have been developed. The highest
resolution is provided by simulations operating on the quantum scale. They describe physical
properties on a (sub-)atomic level. Models at this level of detail however are computationally



expensive: a popular but still relatively low precision method is DFT [23] [24], which in most
implementations (for BSLYP functionals) scales O(N?3) where N is the number of electrons in
the system [25], quickly becoming infeasible for larger systems.

On a microscopic scale, a popular method is f[molecular dynamics| (MD]) with empirical force
fields such as CHARMM |[26] or Amber |27, |28] force fields for proteins or their generalized
versions for small molecules [29] [30]. scales in computational complexity with O(N log N),
where N is the number of simulated atoms. Long-range electrostatic interactions are typically
integrated using particle mesh Ewald [31] and dominate the computational complexity. As an
intermediate, there are methods to locally back-introduce quantum scale effects into [MD] with
the hybrid QM /MM model [32]. A typical integration time-step is in the range of femtoseconds
so that rapid fluctuations of atoms can be captured, in particular of bound hydrogen atoms [33|
34]. However, many interesting biological processes happen on scales of microseconds to seconds
or even slower—, e.g., (un-)folding and (un-)binding events of proteins [35] 36]. Therefore, the
staggering amount of 5 - 104 simulation time steps is required to achieve 1s of simulation time
under a standard [MD] integration step of 2fs. On very specialized and rare hardware it is possible
to produce 85 ps of simulation data per day for a dihydrofolate reductase system containing 23558
atoms [37]; present-day GPU-parallelized software on high-end hardware is capable of producing
hundreds of nanoseconds per day [38-41]: OpenMM produces 367 ns per day for the same system
on a NVIDIA Titan X GPU [39].

In order to relate the computation times to biological systems, we consider the already men-
tioned protein: After removing an applied stimulus, the concentration of phosphorylated
fluctuates on the scale of minutes |[42]. Considering that each protein contains
roughly 3000 atoms [43] and that multiple copies are required to reproduce the full system,
adequate sampling of such a system goes well beyond the capabilities of [MD] on current hardware.

On the larger end of physical scales is the macroscopic scale. Something being “macroscopic”
in itself is used differently in different fields and is often situational [44]; here, the term is used with
respect to objects that are visible to the naked eye. Consequently, simulations on a macroscopic
scale are too coarse to adequately describe phenomena such as the pathway.

Scales between the micro- and macroscopic scale are referred to as mesoscopic. Whereas
simulation models on the mesoscopic scale lack the level of detail of microscopic (e.g., atomistic)
simulations, the computational effort required to produce mesoscopic data is reduced. The
reduction can be described in terms of the scaling of computational effort required for a specific
system size per time step but also in the time step itself, as the fast vibrations of individual atoms
are typically no longer resolved. This makes mesoscopic models suitable and feasible candidates for
describing phenomena such as signal cascades, concentration gradients, or membrane interactions
in terms of spatiotemporal resolution.

1.2 Chapter overview

In this thesis, we introduce methods for the analysis of data that is produced by the simulation of
dynamical models as well as for the simulation of multi-body systems at a mesoscopic scale. Both
the data analysis and the simulation are focused on biological or biologically motivated systems.
A key concept for the remainder of this thesis are Markov processes. These are chains of events
in which each individual event depends only on its predecessor and has no dependency on events
further in the past (known as the Markov property). The concept of Markovianity is introduced
more formally in Chapter [2| and all of the following simulation as well as analysis methods are
based thereon.

Figure contains a flowchart style overview of chapters, sections, and their dependencies.
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Figure 1.1: Chapter and section overview. Flowchart of this thesis’ chapters and theory
sections. Implication arrows (=) show the chapter progression, dashed arrows denote that a
certain component is used in a later section or chapter, i.e., A --» B means A is used in B.

From the top, we give a formal introduction to stochastic processes and more specifically Markov
processes in Chapter [2| but also cover transfer operator theory (Sections [2.1.1H2.1.2) as well as
several examples of Markov processes which are of relevance for this thesis. Transfer operators are
generally infinite-dimensional but linear operators describing the temporal evolution of observables
and/or densities under Markovian dynamics. They are the basis for the methods introduced in
Chapter [3|as well as Chapter |5l One particular family of Markov processes is given by overdamped
Langevin dynamics, which models the movement of interacting particles in space and is introduced
in Section These dynamics are used for some of the numerical studies in Chapter [3| but are
of particular relevance for the ReaDDy2 interacting-particle reaction diffusion integrator presented
in Chapter 4l Furthermore, we introduce several reaction models, one of which is implemented in
Chapter [4] and others are used in Chapter [5| for numerical studies. Chapter [3|is based on Ref. |P4]
Chapter [4 is based on Ref. [P1], and Chapter [f]is based on Ref. [P2]
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Figure 1.2: Projection of time series data. We show a two-dimensional jump process between
two ellipsoidal distributions. (a) The two distributions are in orange and green, respectively. We
project the data into one dimension using [principle component analysis| (PCA]) and [fime-lagged]
[ndependent component analysis| (TICA)), respectively. The arrows indicate the projection axes.
(b), (c) [PCA]and [TICA| projection in blue, respectively. The red dotted line is the ground truth
jump process.

1.2.1 Machine learning dynamical models from time series data

When dealing with particle-based simulations describing biological phenomena, the obtained
amount of data can easily become an issue: assuming that only particle positions are recorded,
the result of such simulations are trajectories with frames of dimension N - d, where N is the
number of particles and d the dimension of the system (typically d = 2 or d = 3). Sometimes and
in particular for systems involving reactions, N depends on time, i.e., N = N(¢). The number
of particles can easily be in the tens of thousands, making for a very high-dimensional space.
Also, if a system is modeled with an Eulerian description (e.g., via the finite element method or
similar), the resulting dimension may be very high, depending on the resolution of spatial meshes
and ansatz spaces. The task of finding mechanisms and temporal structures from visualizations
alone may become difficult if not impossible, especially when dealing with systems whose state is
three- or higher-dimensional.

To get an idea of processes and structures, one might try to cluster together similar frames.
However, clustering becomes infeasible with higher dimensions, as the distance between two points
under increasing dimensions quickly becomes less and less interpretable . A possible remedy
is to project the data into a lower-dimensional space, which should preserve the “important”
structure. A popular data-driven method for dimension reduction is [principle component analysis|
47). Howevcr makes no use of one crucial aspect of such simulation data: it
is a time series. Instead, projects onto the axes which maximize variance (or equivalently:
minimize reconstruction error). Based on this projection, the relevant process might not be picked
up or even be lost.

In Figure exactly such a case is presented. We show two ellipsoidal distributions between
which a hidden process jumps back and forth. The transitioning is a slow process (meaning




we assume it to be important, see Section 7 which occurs with a probability of 3% per
step. The [PCA] projection uses the direction of the largest variance for explaining the data
and almost completely disregards the slowly transitioning jump process between ellipsoidal
distributions (Figure[L.2h). This leads to a loss of most of the signal (Figure [[.2p). A method
which takes into account the time series aspect of the given data is [time-lagged independent|
[component analysis| (TICA]) and is presented in Figure . Indeed, the slow (important) signal
of transitioning between the two states is nicely captured in the projection.

belongs to a family of methods based on approximating transfer operators, which
are introduced in Sections As descriptions of the temporal evolution of probability
distributions or observables, transfer operators explicitly take into account the time-dependent
aspect of stochastic processes.

Approximations of transfer operators typically try to find ‘slow’ processes like the jumping
between state 0 (green) and state 1 (orange) respective distributions in Figure For biologically
motivated systems, a slow process could correspond to, e.g., the folding and unfolding or binding
and unbinding of proteins. A fast process, on the other hand, could be the vibrations of hydrogen
atoms in a protein, which are essentially noise and mostly uninteresting for the thermodynamic,
kinetic, and mechanistic properties of a protein.

In Chapter [3| we introduce the open-source general-purpose Python software library deeptime
for time series analysis. It features various tools based on and around transfer operator approxi-
mations (see Sections |3.313.4). In particular, it contains conventional linear learning methods
such as but also |[Markov state models| (MSMs)), hidden Markov models| (HMMs|), and other
transfer operator methods (see Section [3.3|for a list). Besides linear learning methods, deeptime
also provides kernel and deep learning approaches such as and VAMPNets .

In contrast to other time series analysis libraries, deeptime is designed for providing kinetic
models rather than, e.g., forecasting, and is community-agnostic. It explicitly aims to make
methods which are used and developed in different communities available to a broad user base
by implementing them in a general-purpose way. For example, the [time-lagged independent]
[component analysis| (TICA) method is mostly used in the community and can also be found
in libraries like PyYEMMA or MSMBuilder ; these, however, are tightly geared towards
[MD] data. We highlight the differences and similarities of the methods from a theoretical point of
view as well as by numerical experiments (Section . Furthermore, the library is designed to
be easy to install, extend, and maintain. This is achieved by having a very low amount of hard
dependencies as well as employing a high degree of modularity.

In order to demonstrate and experiment with the implemented methods, deeptime offers
a set of benchmark datasets. To give some examples: it features a two-dimensional position-
based fluids implementation [51], which is a method from computer graphics for the real-time
simulation of fluids, an implementation of the Bickley jet which is an idealized model
for stratospheric flow, and several datasets which are based on the simulation of particles
in a potential landscape (which might also be time-dependent) using overdamped Langevin
dynamics (see Section . In particular, all datasets are given via their generators and dynamics,
meaning the binary size is kept small and users have the opportunity to study the effect of their
parameters on the dynamics and methods.

While most methods in deeptime (version 0.4.1) focus on the estimation of transfer operators,
there is the exception of the [sparse identification of nonlinear dynamics| (SINDy]) method (cf.
Section . also has a mathematical connection to transfer operators, but instead of
trying to approximate the propagators of observables and probability densities with respect to
the system’s slow processes, it tries to find an approximation of the corresponding generator.
To that end, [SINDy] parsimoniously identifies the governing dynamics as coefficients in a set of
lordinary differential equations| (ODES]) by performing linear regression with a sparsity-encouraging
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Figure 1.3: Reaction-diffusion model overview. Different models of reaction-diffusion
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high particle numbers, are often represented as densities instead of discrete entities) and vertically
according to their spatial resolution, in particular the ratio of encounter rate over formation rate
when considering individual reactions (well-mixed corresponding to a high ratio, diffusion-limited
corresponding to a low ratio).

regularization term. The sparsity fosters simplicity of the estimated model, which not only
regularizes the solution and can prevent overfitting but also vastly improves interpretability.
Following the rule of parsimony (or Occam’s razor), this leads to models which are more likely to
be related to the true underlying physics and/or chemistry of the observed process.

1.2.2 ReaDDy2

The methods presented in Chapter [3|are typically used for approaches with microscopic resolution
such as [MD]or in fluid dynamics. However, when going to coarser resolution levels in order to
capture longer time scales and especially when including reactions, the dynamics are often more
complicated.

There are many different approaches and algorithms available for reaction dynamics, all of
which are applicable in different situations with different strengths and weaknesses. A non-
exhaustive overview of available models is given in Figure by classifying them into regions
of model resolution and applicability. The y-axis classifies models by how particle populations
are modeled. The decision whether a model is suitable with respect to population scale (y-axis)
largely depends on whether the average concentration (or density) ¢ = N/V for a given number of
particles IV in a volume V is a good description of the dynamics—leading to methods operating
on concentrations such as reaction-diffusion [partial differential equations| (PDEs|)—or whether
individual particles are required to adequately describe the system—leading to methods based on
stochastic processes of individual particles or discrete particle counts.

On the other hand, the z-axis in Figure describes the spatial resolution of models. The
spatial resolution required to adequately represent a process largely depends on the speed at
which particles move (giving rise to an encounter rate kg) and the speed at which reactions
occur (giving rise to a reaction rate kr). If the ratio r = kg/kg is large it can be interpreted as
particles rapidly moving and relatively slow reactions, i.e., particles do not have to diffuse over




long periods of time before finding a reaction partner, spatial resolution is not at all required
to describe the dynamics (referred to as “well-mixed” regime). On the other hand, a low value
of r indicates that particles are slowly moving and do not react for a long time, leading to an
overall kinetic behavior that depends on time and place at which reactions occur. This regime is
typically termed “diffusion-limited”. [55]

Considering concentration-based models we find the reaction-diffusion with the highest
spatial resolution. [Reaction rate equations| (RREs)—corresponding to a set of ordinary differential
equations on the concentrations—do not resolve space at all. At the intermediate level are
compartmented reaction rate equations which operate on a discretized (compartmentalized) space,
each compartment described by its own set of

When populations are low and individual particles or counts of particles are used, we
find [particle-based reaction dynamics| (PBRD)]) [56//58] with a high spatial resolution by de-
scribing each particle individually and on the other hand the [chemical master equation| (CME)
with no spatial resolution but only defining a stochastic process on particle counts based on
reaction propensities. As an intermediate, one can find the reaction-diffusion master equa-
tion (RDME) , which operates on a box-discretized space with jump probabilities defined
between adjacent boxes and a description inside each individual box. The is described
in some more detail in Section a good description of RDME can be found in [61]. The
RDME model can be generalized to the so-called “spatiotemporal CME” [62], which allows an
arbitrary compartmentalization of space instead of boxes.

As particle numbers fluctuate, it may also be instructive to build multiscalar/hybrid models
that, depending on threshold values, switch between concentration and particle representations
63].

We introduce and a specific instance of in Section

We cover ReaDDy2 in Chapter [} a tool for the efficient simulation of [nferacting-particle]
[reaction dynamics| (iPRD)), which are conceptually introduced in Section [2.4] as a combination of
overdamped Langevin dynamics (Section [2.2)) and the Doi reaction model [64/67] (see Section[2.3.3).
The model can also be understood as an extension of and was first introduced
in Ref. [68 to combine the benefits of PBRD| and [MD] simulations by modeling particle-based
reaction dynamics while enabling full-blown interactions between particles as well as particles
and the environment. This makes it one of the most detailed approaches—which also
means that in comparison to the other methods a lot of computational power is required. When
computational demands are high, efficient codes become particularly important.

In this thesis we develop and present the novel simulation library ReaDDy2 . It aims to
be a high-performance and end-user convenient code for While efficient implementations
for classical PBRD] exist, they either do not offer the same degree of resolution or are simply
less efficient in terms of accessible simulation times and system sizes (see, e.g., Refs. .
ReaDDy?2 is a complete rewrite of its Java-based predecessor ReaDDy (also introduced in Ref. and
provides—opposed to a collection of configuration files like in ReaDDy—a programmable Python
interface in which the simulation environment, particle interactions, and reaction rules can be
defined and the simulation can be run, stored, and analyzed. We show that ReaDDy2 is significantly
faster, feature-rich, flexible, and conveniently usable than ReaDDy (see Section . A C++
interface is available to enable deeper interactions with the library. The main computational
work of ReaDDy2 is performed not in Python but in hardware-specific simulation kernels. Due
to the significant increase in performance and in particular due to much better scaling behavior
with respect to system sizes, ReaDDy2 is able to simulate larger systems and accumulate more
simulation time. This is particularly important to be able to study biological processes which
possess timescales on the order of minutes or more.

Compared to [PBRD] the addition of interaction potentials in allows modeling volume
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(b)

Figure 1.4: Topology reactions in ReaDDy2. Substrate particles (green) diffuse and can
attach to blue particles (likely) as well as red particles (less likely). We show the temporal
progression of the topology from its initial state in (a) via an intermediate (b) to its final state

(c)-

exclusion effects, clustering, and self-assembly. A novel feature of ReaDDy2 are topology reactions,
generalizing the concept of chemical reactions. Topologies are groups of particles which are
connected with harmonic bonds and can optionally be stiffened with angle and torsion potentials.
Topology reactions are either spatially triggered (like a catalytic reaction) or occur with a fixed
probability per unit time. Depending on their specification, they allow to concatenate, modify,
split, or even completely dissolve topologies. For example, the growth and decay of polymer
chains can be modeled (cf. Section , but it is also possible to model the self-assembly of
more complex geometries like actin filaments, viral capsids , or even flexible particle-based
membrane models as in Ref. which studies the effect of malaria parasites on red blood cell
cytoskeletons.

In Figure we show an example of this generalized concept. Small substrate particles are
diffusing freely in space and upon spatial proximity with blue beads there is a fixed probability per
unit time of forming a bond and being included in the topology. This transforms a three-particle
initial topology in Figure to a more complicated structure in Figure [[.4b. There is also
a lower probability of forming bonds with red particles, resulting in branches. Furthermore,
the topology can interact with itself: blue end beads have a smaller probability of attaching
themselves to a red bead. This leads to closed loops, which can be observed in Figure [I.4.

1.2.3 Discovering governing reactions from concentration data

In Chapter [5] we introduce reactive SINDy: an extension of that can estimate a governing
network of reactions based on concentration time series data. To that end it uses the classical
@ subject to the law of mass action| (LMA) (cf. Figure . The linear regression based
SINDy] method is extended to a linear tensor regression in order to accommodate terms within
an ansatz reaction library which are coupled over a system of These coupled terms are
crucial to realize, e.g., fusion-type reactions, where educt species concentrations decrease and
the product species concentrations increase accordingly. As an application example—among
others—the pathway makes a comeback: concentration time series are simulated using a
ground truth model and later being recovered from data. We show that we can indeed recover
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the true underlying reaction network if imposing sparsity. The lack of sparsity-encouraging
regularization leads to spurious reactions.
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Chapter 2

Theory

This chapter introduces the main theoretical concepts that are required for the rest of the thesis.
In particular, we define stochastic processes with a focus on Markov processes, including an
introduction into the theory of transfer operators (in particular Koopman and Perron—Frobenius
operators). Transfer operators are of significance for the analysis of time series data and are
heavily used in Chapter Given these theoretical tools, overdamped Langevin dynamics
is introduced (Section as an example of Markovian stochastic processes. Also chemical
reactions (in particular in view of reaction—diffusion models) can be understood as stochastic
processes and we subsequently introduce the [reaction rate equations| (RREs) in Section [2.3.1] the
[chemical master equations (CMES) in Section [2.3.2] and the Doi reaction model in Sec
The combination of overdamped Langevin dynamics together with the Doi reaction model is a
possible model for as detailed in Section An implementation of is presented in
the subsequent Chapter

2.1 Stochastic processes

Everything in this thesis either is about generating time series data or analyzing it. The main
focus for what is to follow is on Markov processes, for whose definition the concepts of probability
spaces and random variables are briefly introduced. For a more thorough introduction any
textbook on probability theory will do (e.g., Ref. [79]).

Let © be a non-empty sample space containing elementary outcomes, e.g., the set {1,2,...,6}
when throwing a six-sided die. We associate a so-called o-algebra A to € consisting of subsets of
) with the (not minimally) defining properties

(i) empty set and sample space being contained: 0, € A,
(ii) closedness under complements with respect to the sample space: A € A= Q\ A € A,
(iii) and closedness under countable intersections: ()2, A; € A with A; € A.
This algebra contains the set of all possible events, e.g., {2,4,6} € A being the event of seeing an
even die roll. Based on A, a probability measure P : A — [0, 1] is defined, i.e.,
(i) a non-negative P[A] > 0VA € A,
(ii) null preserving P[] = 0,
(iii) and o-additive (meaning P[|J;=, A;] = >, P[A;] for pairwise disjoint 4; € A) function.
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The triplet (€2,.4,P) is called a probability space. Measure theory teaches us why it is important
to construct such o-algebras as pre-image spaces for P instead of simply using the power set
2 if every possible subset was “measurable” by a probability measure, it sometimes is possible
to create sinks and sources of volume simply by decomposition of a set into finitely many subsets
and subsequent reassembly, as demonstrated in the Banach—Tarski paradox [80].

Another important and for this thesis very relevant concept is that of random wvariables, as
they allow us to precisely define what we understand under a time series and more specifically
Markovian stochastic processes. A random variable on a probability space (£2,.4,P) is a map
X : Q — E, such that

{we | X(w)eA}=X"1A)c A VAcCE,

where F is the so-called state space and £ a o-algebra over E.

Here, we focus on state spaces which are subsets of the Euclidean space E C R® equipped
with the standard Borel o-algebra £, the smallest o-algebra containing (usually referred to as
“generated by”) all possible half-open rectangles {(a1,b1] X ... X (aq4,bq] C E : a; < b;} [81].

A stochastic process on a probability space (€2, .4, P) can now be defined as follows: a family of
random variables (x¢)tcr, Xt :  — E in a common measurable space (E, £), where the parameter
set I represents time and—while it can in principle be a more general object—is in the following
assumed to be I C R>. For every w € Q the map

t— x4 (w)

is called a path, realization, or trajectory of the process. In our context, a trajectory is understood
as the movement of one or many particles in time given an initial configuration w subject to some
(usually stochastic but potentially also deterministic) dynamic.

We can characterize a stochastic process using its [finite-dimensional distributions| (FDDs]). To
this end, consider a non-empty but finite subset J = {t1,%2,...,t;/} C I. This subset represents
individual points in time and we denote H(I) :=={J C1:J # B A|J| < oo} the set of all possible
subsets of such kind. The of the stochastic process x; then refer to all push forward
measures

IP);t [Bl X ... X B\Jd =P [th € Bl,...,Xtm S B|J|] , (21)

where J € H(I) and (By x...x B|j)) € @, ;& is an event in the product o-algebra (with & = &
for all ¢). For a single particle under Brownian motion (see Section and Equation for
more details), the expression IP’*[-] denotes the probability that the particle is within certain
parts B; of the domain at points in time ¢ € J. A similar example is shown in Figure |2.1| of
particles exploring a two-dimensional potential energy landscape.

The of a stochastic process allow us to determine many of its important properties,
however most of the time—at least when dealing with the analysis of, e.g., simulation data—we
are presented with the reversed situation: given finite measurements at fixed points in time,
we seek to gain insight into an underlying stochastic process. Therefore, it is important that
such a process indeed exists. The consistency theorem of Daniell and Kolmogorov (sometimes
also called Kolmogorov’s extension theorem) [82, Corollary 35.4], [83, Theorem 2.1.5] gives this
guarantee under mild conditions on the state space and In particular, E needs to be a
Polish space (which are, e.g., Euclidean spaces with the usual Borel o-algebra) and the
need to be projective, meaning that if .J, H € H(I) with J C H, then P¥ = pr{;(P3) where pr};
refers to the projection of El into E’I, c¢f. Equation . In other words, there should be
consistency with respect to the implied measures when looking at subsets I C J € H(I).
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Figure 2.1: Finite-dimensional distributions example. Trajectories of three particles in
a potential energy landscape (color-coded contour background). High energies correspond to
unfavorable states. The figure also shows three sets By, , By,, By, C E corresponding to points in
time J = {t1,t2,t3}. This is an example of one [finite-dimensional distribution| (FDD]) which is
the probability of finding a particle in any measurable B;, at time ¢; for the depicted stochastic
process. The of the process comprise all possible finite and non-empty sets of points in
time H(R>o).

All simulation and analysis methods introduced in this thesis deal with one particular class of
stochastic processes, namely with Markov processes. The defining property is that

Plx; € B |xt1,...,xt“”} =Px: €B |xt|”] (2.2)

for all J = {t1,..., 15} € H(R>o) with t; < ... <{t); <{, ie., the conditional probability to see
Xy € B at most depends on its most recent state but not on any further history.

Although Equation (2.2)) tells us when we are dealing with a Markov process, it does not specify
the family of Markov processes. To this end, we introduce transition probability kernels (and
functions), which encode the information of the probability to find the process in set B at time ¢
given it being in state x at time s < t.

We call a set of maps (P;)i>0 : E x & — £ a Markov semigroup of kernels on E if all of the
following conditions hold:

P(x,B)ecforallx e E,B €€,
B — P,(x,B) is a measure on € for all x € E,

P(x,Q)=1forallx € E,

-~ W N

and the Chapman—Kolmogorov equation
Ps+t = PSPt VS,t € ]RZO (23)
The product is defined as [P P;](x, B) = Ps(x, P;(x, B)) for all x € E and B € £.

It should be noted that these conditions can be stated in greater generality, cf. Chapter 36].
Using such a Markov semigroup of kernels and a probability measure pg on (F, ) we can
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define the of a Markov process via
Py (5]

= / e / / Pt (XKn—1,dxn) Pt (Xp—2,dXp—1) ... Py, (x,dx1)  (2.4)
B Bn-1/Bn

for a given x € E, for all measurable B = By X ...B,, and for all J € H(R>(), where
J = {t1,...,ty} with i < j = t; < t;. A stochastic process with these does indeed
exist—see [82, Thm. 36.4])—and fulfills the Markov process property (2.2)—see [82, Thm. 42.3].

From now on we will assume that each measure B — P;(x, B) is absolutely continuous (with
respect to the Lebesgue measure), meaning that using the Radon—Nikodym theorem, there is a
density ps (-, -), so that for each x and ¢ > 0

B Pi(x,B) = / po,t(%,y)dy.
B
We call the function
st EXE—Rso, Plxi€B|xs=x]= / Psi(x,y)dy (2.5)
B

a Markov transition kernel function or transition density. In this case, the Chapman—Kolmogorov
equation ([2.3) can be reformulated as

pri(x,2) = / Pr.s(X,Y)Ps,t (¥, 2)dy
E

for0<r<s<t<ooandx,ze€FE.

For now we only have studied individual trajectories with fixed initial configuration w € €.
Often, however, one is interested in how a distribution over initial configuration evolves in time.
With the acquired tools it is possible to do exactly that. Let ug be an initial distribution, then
we can evolve it to a later point in time ¢ > 0 using : one obtains

B = [ [ Poso.dxrolaxo) = [ P, Balaxo), (2.6)

which—assuming that the measure pg is absolutely continuous with respect to the Lebesgue
measure with density po—can be reformulated to

jo(B) = /B /E Po.£(%, ¥)o(x)dxdy 27)

using the transition density and Fubini’s theorem. This introduces the second assumption
that is used throughout this thesis: all distributions over states are assumed to be absolutely
continuous with respect to the Lebesgue measure. To reduce the notation overhead, we denote
the corresponding density with the same symbol as its measure.

Now we have all the tools to distinguish two different cases: time-homogeneous processes,
which possess transition probabilities that do not depend on a particular point in time (this is the
case for, e.g., autonomous differential equations) and the more general case of time-inhomogeneous
processes.

The description of such processes relates to the mathematical framework of transfer opera-
tors [84H91]. We regard all operators that describe the temporal evolution of, e.g., probability
densities or observables of the system’s state as transfer operators. The operators we consider here
are all linear operators (although in general not finite-dimensional). We encountered examples
of transfer operators in Equations 7, mapping state densities forward in time. For an
introduction to these operators we follow the presentations of [88] and [P4].
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Figure 2.2: Law of a Wiener process. The law of a Wiener process is plotted after selected
times. Estimated empirically by simulating N = 1000 instances of the process (bar chart) and
computed analytically based on the probability density.

2.1.1 Time-homogeneous processes

This subsection is based on parts of Ref. |P4] which is open access and distributed
under the terms of the Creative Commons Attribution License (CC BY 4.0). Parts of
the text have been adopted unchanged in this document.

Let {x:}:>0 be a Markovian stochastic process in state space E C R? with its transition density

as given in (2.5]).
Time-homogeneity means that p,; only depends on a lag-time 7 := ¢ — s but not on specific
start and end times s and ¢ individually, i.e.,

Pst(%,y) = pr (%) (2.8)
One of the most popular Markovian stochastic processes is a one-dimensional Wiener pro-

cess (see Section for details), which is a sequence of random variables {W, };>o with Wy =0
subject to the transition kernel function

pr(z,y) = e (2.9)

Since the density only depends on 7, the process is time-homogeneous. However, this does not
mean that the law (or distribution) of the process

for sets B C Q is time-independent, see Figure
Generally speaking, transfer operators describe the effect of the underlying dynamics on

functions of the state x;. A particularly important transfer operator, the Koopman operator (first
introduced in [84]), is defined as

K, L®(Q) = L(Q),  [Kog)(x) = / g(y)p-(x.y)dy = Elg(xesr) | x, =x],  (2.10)
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evolving the observable g for a lag-time 7 > 0. The function space g € L>°(Q) is of the family of
LP spaces with

1/p
LP(Q) = {f :Q — Cs.t. f measurable A | fl, = </ f|p) < oo}
Q

for 1 <p < ooand L*(Q) :=={f:Q — Cs.t. f measurable A3IC > 0: |f(z)| < C a.e.}. Strictly
speaking LP consists of equivalence classes of measurable functions where the equivalence relation
is defined by functions being equal “almost everywhere”, i.e., can differ on sets of measure zero;
all statements therefore refer to an equivalence class or one representative of that class. In case
of deterministic dynamics x4, = ¥(x;), the transition density consists of delta peaks and the
Koopman operator is simply the composition K,g = go W.

Another commonly used transfer operator to describe Markovian dynamics is the Perron—
Frobenius (PF) operator [92, 93]

Prs LHQ) = L@, PAIO) = [ £60p-(x ¥ (2.11)

which evolves probability density functions f € L!(Q). Since it is a Markov operator (P, f > 0
and |P-f|| = ||f]l for all f > 0), probability density functions are mapped to probability
density functions [92]. The definition’s expression—although not framed in the transfer operator
setting—already appeared in Equation .

The PF operator is the adjoint of the Koopman operator |92} [93], i.e.,

(Prf.9) = (f.Krg) VfeL(Q),9€ L), (2.12)

where the bracket is defined as (h1, ho) = [, h1(x)ha(x)dx. Although L? spaces with p # 2 are
not Hilbert spaces, the product of two functions h1 € LP(Q) and hy € LI(Q) is integrable as long
as 1/p+1/g=1for 1 <p,q < oo.

For the rest of this subsection we assume that there exists a stationary distribution p € L*(Q)
satisfying P.u = p. If such a stationary distribution p exists and p(z) > 0 almost everywhere,
then the time-homogeneous processes {x;}¢>o is ergodic and the stationary distribution is unique.
Vice versa, if {x;};>0 is ergodic, there exists at most one stationary distribution [92].

Given the stationary distribution we can define a PF operator with respect to p (also simply
called the transfer operator),

T L) 1@), [Taly) = s [ uou(xp-(xy)ix. (2.13)

m(y
Instead of evolving probability densities f, it evolves densities u = f/u with respect to the
stationary distribution. Due to this construction we obtain the normalization 7,1 = 1, encoding
that the stationary distribution is preserved under propagation in time.

Under some conditions [87, (89,90, [94], the function spaces from and to which the operators
map can be assumed to be reweighted L? spaces (and therefore Hilbert spaces),

22(@) = {2 < 0 wih (., = [ FBRIpx00x}. (2.14)

where Pr 1 L2 4 (Q) — L2 1 (Q), Tr : L;,(2) — L7(), and K- = L3, (Q) — L;,(Q). In what follows
we assume that this is the case.

Via a straightforward calculation using (2.12)) one obtains that Koopman operator and transfer
operator are also adjoint in the reweighted spaces, i.e.,

(T, 9)u = (f:Krg)u Vf,9 € LL(9). (2.15)
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2.1.2 Time-inhomogeneous processes

This subsection is based on parts of Ref. |P4, which is open access and distributed
under the terms of the Creative Commons Attribution License (CC BY 4.0). Parts of
the text have been adopted unchanged in this document.

In the case of time-inhomogeneous processes, the transition density depends directly on
the initial and/or final time; i.e., Equation no longer holds. This also means that the
operators f no longer depend on the lag-time 7 but rather on specific start and end
times s and ¢, respectively (equivalently: on start time s and with lag-time 7). For such systems
there is in general no stationary distribution p, so we consider the distribution p, at initial time
s and p; at final time ¢, related by ps = Ps 1ts. The transfer operator can be defined as

1
Tt : LiS(Q) — Lit(Q), Tsat = —Ps i (upts). (2.16)

Mt

As in the time-homogeneous case, this operator is the adjoint of the time-inhomogeneous Koopman
operator [95]

(Totfs D e = ([ Ksp9hn, V€ Ly, (Vg € L (),

where Ky : L7 () = L2, (Q).

One particular advantage of considering any of the transfer operators over directly analyzing
the (in general highly nonlinear) temporal evolution of processes’ full states is their linearity. While
the considered operator usually cannot be represented as a finite-dimensional matrix, one can seek
projections and/or approximations. These approximations can be used to identify and project
onto the slow processes as well as metastable and coherent sets [87] (96} |97]. There are different
methods available for making the approximations which vary in their assumptions, approximation
power, and interpretability, some of which are accompanied by variational theorems.

In Sections transfer operators are used to build dynamical models from data.

2.2 Overdamped Langevin dynamics

With the knowledge of Markov processes, we can introduce overdamped Langevin dynamics with
isotropic diffusion: a class of (Markovian) systems, which can be understood as an extension of
Wiener processes and/or Brownian dynamics (free diffusion, as in Figure to particles which
can interact with each other and their environment, being of particular importance for this thesis.

To this end, let us first introduce Wiener processes (in the literature sometimes also referred
to as Brownian motion) in some more detail, as these are a component of overdamped Langevin
dynamics. Such processes describe the movement of a particle in a bath of solvent particles
which constantly collide with one another, so that velocities immediately decorrelate. As a result,
the motion is modeled as independent Gaussian increments. Formally, a d-dimensional Wiener
process with variance o may be described (see, e.g., Ref. 98 as a stochastic process {W;}+>¢
with

1. initial condition Wy(w) = 0 € R? almost surely,

2. statistically independent increments (Wi(w) — W(w)) ~ ®f:1N(0,02(t —3)) for all
0<s<t,

3. and trajectories t — W;(w) being continuous almost surely.
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If not noted otherwise, we assume o2 = 1. Such stochastic processes also solve the
[differential equation| (SDE)

dXt = O'th. (217)

It furthermore can be seen that E[W;] = 0, i.e., the process is mean-free, and possesses a
delta-correlated covariance

E [W,W/] = diag(c?)5(t — t').

Based on the notion of a Wiener process, we define overdamped Langevin dynamics. The

motion of N > 0 interacting particles xﬁ” € R i=1,...,N can be described by the

i DY(T) : i
dx{ = —ﬁff Jdt + 1/2DO(T)dW?, (2.18)
kgT

where T is a fixed system temperature, kg the Boltzmann constant, and D (T) € R the
particle’s diffusjon constant. Particles can interact with the environment or other particles
via the force ft(l) € RY. Typically the forces are gradients of a potential function (force field),

(2) N
t

meaning £ = —~V,U(x", x?, ... xN) with U : RV*¢ - R. The particle’s movement can be

decomposed into a deterministic part which depends on the force ft(l) € R? and the stochastic
term \/2D(i)(T)Wt(i). The stochastic terms ng) and ng) are uncorrelated for particles ¢ # j.
Whether the process is time-homogeneous or time-inhomogeneous entirely depends on ft(z): an
explicit dependence on time ¢ leads to a time-inhomogeneous process, if ft(z) = £ it is time-
homogeneous. For example a periodically acting external force which drives the system would enter
as explicit time dependency and consequently the dynamics are classified as time-inhomogeneous.

There is a relation to the theory of transfer operators introduced the previous two Sections
and (see, e.g., Section 2.5 of Ref.[99): For overdamped Langevin dynamics, the actions of the
Koopman (Equation (2.10)) and Perron-Frobenius (Equation (2.11])) operators are solutions of the
Kolmogorov backward and Kolmogorov forward equation [100], respectively. These equations are
parameterized by the deterministic and stochastic coefficients of the . The Kolmogorov
forward equation was previously discovered by Adriaan Fokker [101] and Max Planck [102] and is
therefore also known as the Fokker—Planck equation. It should be noted that these relationships
can be stated in greater generality for diffusion processes (of which overdamped Langevin dynamics
are a special case). The naming is due to the forward equations being solved forward in time (as
initial value problem) and the backward equations being solved backward in time (as final value
problem). Consequently, the Perron—Frobenius and Koopman operator are sometimes referred to
as forward and backward operator, respectively.

Both Equation and more generally Equation can be numerically integrated by
the Euler-Maruyama scheme [103]

by @ DY)
), =) 200

£ 4+ /2D (T)rn,, (2.19)

where 7 > 0 is a finite integration time step size and n; ~ ®?:1 N(0,1) is a normally-distributed
random variable. The diffusion constant D) effects the magnitude of the random displacement.

For example, in Figure we depict (time-homogeneous) overdamped Langevin dynamics in
d = 2 dimensions with a potential landscape

sh(llxlla =) if x| >,

U:R>?> R, x~— i
0 , otherwise,
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Figure 2.3: Overdamped Langevin dynamics example. A particle diffuses in a two-
dimensional potential landscape U : R? — R, which has zero potential in a circular area around
the origin with a radius of » = 3 and outside of that region acts as harmonic repulsion. The
figure shows the potential energy as wireframe and three realizations of the process, each starting
in x9 = (0,0) and then being integrated numerically using Euler—-Maruyama. For visualization
purposes, the z component of the realizations corresponds to the potential energy and the
trajectories are also color-coded according to their energy (energetically favorable state in dark
blue, unfavorable in dark red).
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for r = 3 and k = 1, i.e., a harmonic spherical inclusion potential which is flat in a circle of
radius 7 = 3 around the origin and otherwise acts on the particle with force constant k = 1. We
show three realizations of the process, integrated by Euler—-Maruyama. Since here the potential
landscape does not depend on the position of particles relative to each other, we consider it as a
function that maps from the spatial position of a particle to its energy.

Overdamped Langevin dynamics is used in ReaDDy2 (introduced in Chapter |4 for the propa-
gation of particles.

2.3 Reaction models
As depicted in Figure there are different kinds of models describing systems containing
chemical reactions. Here we want to introduce the ones which are of relevance for this thesis.

It should be noted that there is compatibility between these models in certain limits and it is
possible to create hybrid models, too [55} 62].

2.3.1 Reaction rate equations

The [reaction rate equation| (RRE] is a formulation that assumes a well-mixed system in which
particle numbers are high enough, so that a description by densities is appropriate (cf. Figure.
Here we further assume the meaning that there is proportionality between reaction rates
and concentrations of reactants [55], [104].

We are observing the concentrations of S chemical species in time ¢

o
a=| : | er’ (2.20)

Cy

The [RRE] can be formulated as a system of [ODE}
K
b= auledm 221
k=1

where v, € R is a so-called stochiometric vector describing the change in population for each
species with respect to reaction k and oy, : R® — R are propensity functions. In general, a
propensity function can be defined as probability that the reaction occurs within an infinitesimal
time interval given a particular state of the system [105], i.e.,

Adt = P[reaction occurs within [¢,¢ + dt) | x; = x]. (2.22)
A general expression for the change of concentration of reactant s as a result of order-0
reactions (creation), order-1 reactions (transitions of other species into s, transitions of s into

other species, or annihilation), order-2 reactions (production or consumption of s by the encounter
of two species), etc. is given by

60 =380+ 37 B + 3 e 1 (229
i i 4,J
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predator density (a.u.)

100 100 150
prey density (a.u.) prey density (a.u.)

Figure 2.4: Lotka—Volterra system with social friction. We demonstrate the Lotka—Volterra
system with a social friction term. (a) The plot shows the [reaction rate equation| direction
field of population change given a certain state of the system. Thickness and color of the
streamlines correspond to the magnitude (velocity) of change. (b) Additionally we show 150
averaged simulations of the corresponding |chemical master equation|in black with five individual
realizations in light blue.

where the ﬁik) values are constants belonging to the reactions of order k. These rate constants
however can incorporate several underlying reactions at once. For example, the two reactions

3!

51— 82 (2.24)
51 22 sy (2.25)

both contribute to c'gl) = ill)cgl) =—(& + §2)c§1).

A widely studied is the so-called Lotka—Volterra system [106] . It was independently
formulated by A. Lotka and V. Volterra in the 1920s and describes a predator-prey situation. It
reads

4D = (o= e Al

_ (2.26)
&2 = (e =y = pei?)el?

where ¢ corresponds to a concentration of prey, @ corresponds to a concentration of predators,

and «, 8,7,0, A\, x > 0 are constants. This is a slightly modified version of the original Lotka—
Volterra model, which is recovered by A = u = 0. The modification introduces social friction which
prohibits unlimited growth of prey if there are no predators. In Figure the corresponding
direction field is shown with parameters o = 2, § = 0.05, v = 1.5, 6 = 0.05, and A = p = 0.01.

2.3.2 Chemical master equation

The [chemical master equation] (CME]) can be understood as the counterpart to the if
the particle numbers are low so that concentrations are no longer an adequate description of
populations but rather discrete counts should be used. It therefore finds itself in the lower right
corner of overview Figure (1.3
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The is typically given in terms of a stochastic process (called the reaction jump process)
{ci}1>0 with ¢, € ]Ng0 and ¢y = x( being the number of particles for each of S species. The
temporal evolution can be described by

K
¢t =co+ Z R§k)uk, (2.27)
k=1

where—similar to the model—vy, € ]N“;O are stochiometric vectors and {ng)}tzo with

ng) € IN>q is a Poisson process describing the number of times a reaction k has occurred in the
time interval [0, ¢] [55].

Instead of characterizing the stochastic process itself, the is formulated with respect to
transition densities . For brevity, we define

pi(x) :=Plc, = x| ¢g = Xg).

Then, the is defined as

K

pe(x) = ) lan(x —w)pe(x — vi) — aw(x)pe(x)] (2.28)
k=1

where —similar to the [RRE|model—v;, € NS, are stochiometric vectors and aj : NS, — R are
propensity functions. The term —ay(x)p¢(x) can be understood as “outflow” of probability from
state x to other states, vice versa the term oy (x — vy )pt(x — ) corresponds to “inflow” from
other states [55].

While the model is a finite set of [ODEF, it is yet defined state-wise for each individual x.
This means that in general there are infinitely many equations to solve. One possibility to
obtain moments of Equation is generating realizations of the underlying stochastic process
{ci}i>0 with, e.g., kinetic Monte Carlo (also called the Gillespie [stochastic simulation algorithm)|
(SSA)) (110} [111].

The [CME] is compatible to the using population scaling: by increasing the volume but
keeping the particle concentration constant, i.e., considering a rescaled stochastic process {€&} H>o0
with € := 1/V¢; and rescaled propensities @) (c) := o} (cV), the is recovered in the limit
of V= oo. [55)

In Figure we show a Lotka—Volterra system with population friction term with volume
rescaling V' = 3. The involved chemical reactions (corresponding to Equation ) are

A A4+ A , prey birth,
A+ B ‘B + B , predator eats prey,

B 9 , predator death, (2.29)
A+ A 24 , prey social friction,
B+B 2B , predator social friction,

where the rates are chosen identical to the ones used in Section and § = §. All kinetic
Monte Carlo sampled trajectories start with 375 prey and 300 predator particles in a volume of
V = 3 and are evolved until final time ¢ = 150 is reached. The black line is the mean over 150
such trajectories using a time discretization with 1000 bins. In light blue five example realizations
of the stochastic process are shown.
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Figure 2.5: Doi reaction model illustration. Two educt particles p;, p2 (blue and orange,
respectively) approach each other via a diffusive process (for example with overdamped Langevin
dynamics, cf. Section . Once they are within reaction distance ||p2 — p1|| < R, there is a
microscopic reaction rate A > 0 with which they form a product particle (green). Such a process
could model, e.g., a binding event between two proteins.

2.3.3 Doi model

A popular and spatiotemporally high-resolution mathematical model for bimolecular reactions
A+ B — C to study the formation of bimolecular complexes (“clumping” of particles) is by
Smoluchowski . In terms of Figure it finds itself in the lower left corner, best describing
low-population and diffusion-limited systems. In this model, particles are represented by spheres
with a prescribed radius, diffuse in space and form complexes upon contact. Despite the popularity
of the Smoluchowski model, it possesses at the very least some difficulty in the implementation of
particle-based computer simulations due to the immediate nature of reactions. Typically, particles
are propagated using a fixed step size, so it is hard to determine if, when, and where a collision
occurred. Vice versa, products of dissociation reactions should not be placed in contact with
another.

A later model takes a different approach: in the Doi model |[64H67] (sometimes also referred
to as the A—p model ), particles no longer possess a radius. Instead, point particles diffuse
freely, subject to, e.g., overdamped Langevin dynamics (2.18)). Upon encountering a reaction
partner (meaning being within a prescribed reaction distance R), there is a microscopic rate
A > 0, with which the reaction occurs, cf. Figure m This makes the model more suitable and
popular for PBRD] simulations. The Doi model can be understood as a generalization of the
Smoluchowski model for A — oo and R representing the radii of the two reaction partners.

Given a system with two diffusing particles giving rise to the stochastic process {x;}i>0 =
{(a¢,by) }i>0 with a;, b, € R?, the Doi reaction model describes a propensity function A =
May, by), cf. Equation (2:22). For the Doi model and for A to be non-zero, the particles should be
within a certain reactive radius ||a; —by||2 < R. In that case the reaction probability is uniform in
time and follows a Poisson process with rate A. Poisson processes can be defined via a stochastic
process {N;};>0 with Ny = 0 almost surely, independent increments (cf. definition of Wiener
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processes in Section , and a Poisson distribution

Ae=A

Pois(A) = p

with parameter (¢t — s)\ for each random variable Ny — N, 0 < s <t < oo for n € IN>¢ [79]. Such
processes describe the probability of observing a number n of events within a certain time. In
particular, for observing no events within the time interval I = [0,7) one obtains

P[N, = 0] = e ".
Vice versa, for observing any number of events it is
P[N, #0] =1—e 7.

This means if using a numerical scheme with step-size 7 > 0 to propagate two particles A and
B within reaction distance R, the probability that a reaction A + B — C occurs within [t,t + 7)
can be evaluated as

p(\; 7) == P[reaction occurs in [t,t 4+ 7)] =1 —e . (2.30)

Equation can also be used for enzymatic (or catalysis) type reactions A+ C — B + C,
which occur in the proximity of a catalyst C. If there is only one educt as in conversions A — B
or fission reactions A — B + C, there is no reactive area with radius R but the reactions occur
spontaneously according to the Poisson clock.

2.4 Interacting-particle reaction dynamics

[Interacting-particle reaction dynamics| (iPRD]) were introduced in [68] to combine the benefits
of [PBRD| and [MD| simulations by modeling particle-based reaction dynamics while enabling
full-blown interactions between particles as well as particles and their environment.

can be implemented as a combination of overdamped Langevin dynamics (Section [2.2])
and the Doi reaction model (Section . This combination facilitates the simulation of reaction
kinetics in crowded environments, involving complex molecular geometries such as polymers,
and employing complex reaction mechanisms such as breaking and fusion of polymers.
simulations are ideal to simulate the detailed spatiotemporal reaction mechanism in complex and
dense environments, such as in signaling processes at cellular membranes, or in nano- to microscale
chemical reactors. This kind of model therefore finds itself in the lower left corner of Figure [L.3} it
operates at a high spatial resolution and performs best if reactions are diffusion-limited and
populations are low so that the description of the system by individual particles over densities is
appropriate or even necessary.

When simulating systems with opposed to, e.g., sampling from the (cf. Figure ,
nontrivial—in this case wave-like—spatial patterns can emerge. We illustrate this in Figure [2.6]
It shows the temporal progression of a system simulated using Lotka—Volterra dynamics (see,
e.g., Equation ) together with immobile particles (in black) which act as barriers and
induce spatial exclusion. Besides the wave-like patterns, the predator and prey densities are still
showing their characteristic oscillatory behavior. The exact simulation setup can be found in
Appendix

The mathematical and theoretical treatment of such models in terms of stochastic processes
and transfer operators however is difficult due to their reactive nature: particle numbers fluctuate
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Figure 2.6: Lotka—Volterra system with spatial resolution. We simulate Lotka—Volterra
dynamics with social friction using an [interacting-particle reaction dynamics| (i(PRD])) model.
In the upper row, red dots correspond to prey particles and blue dots correspond to predator
particles. Black dots correspond to immobile particles. The black dots correspond to particles,
which act as spatial barriers via repulsive interaction potentials and induce a nontrivial geometry.
In the lower row we show the temporal evolution of predator and prey densities.
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and the state space may change its effective dimension at any point in time. Also particles of the
same species are indistinguishable to one another giving rise to permutational invariances which
have to be respected in mathematical descriptions. One possibility is to build on the idea of Fock
spaces [113] from quantum dynamics and construct state spaces containing variable numbers of
particles together with appropriate reaction and diffusion operators to formulate a probabilistic
evolution equation [55, [114]. This description embeds into the framework of stochastic
processes as presented in Section [2.1

Aside from the mathematical description, also the efficient implementation of integrators
is challenging but ultimately necessary to reach relevant time scales and sufficient statistics of the
simulated processes. To this end, we introduce the simulation software package ReaDDy2 in
Chapter |4 which combines overdamped Langevin dynamics (Section for particle propagation
with the Doi reaction model (Section [2.3.3).
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Chapter 3

Machine learning dynamical
models from time series data

The results of this chapter were originally presented in Ref. |P4;

M. Hoffmann, M. K. Scherer, T. Hempel, A. Mardt, B. de Silva, B. E.
Husic, S. Klus, H. Wu, N. Kutz, S. L. Brunton, F. Noé. “Deeptime: a
Python library for machine learning dynamical models from time series
data” In: Mach. learn.: sci. technol. (2021). URL: https://doi.org/10.
1088/2632-2153/ac3de0.

Text and illustrations have been adopted largely unchanged in this document. The
above publication is open access and distributed under the terms of the Creative Com-
mons Attribution License (CC BY 4.0, https://creativecommons.org/licenses/
by/4.0/).

Moritz Hoffmann (MH) was lead author and sole first author in this project. The au-
thor contributions were as follows: MH, Steven L. Brunton (SLB), and Frank Noé (FN)
conceived the project. MH designed and implemented the majority of deeptime: Ar-
chitecture of Koopman operator methods (Section as well as most of their
implementations, flexible integration of deep learning components (Section , ar-
chitecture of MSM and HMM code (Section as well as most of its implementation,
architecture of the SINDy integration (Section , architecture and most implemen-
tations of example datasets (Section , architecture of clustering algorithms as well
as most of their implementations, flexible integration and implementation of basis
and kernel functions, most of top- and low-level documentation, packaging, testing,
fixing and improving legacy code. Martin K. Scherer had contributions to the code
in the early stages of the project, especially in terms of software architecture as well
as refactoring and integrating legacy codes. Tim Hempel (TH) has contributed to
tests and architecture of MSM/HMM code. Brooke E. Husic helped with the original
structure and organization of the repository. Stefan Klus (SK) contributed some
implementations of Koopman operator and Perron—Frobenius operator methods, in
particular kernel methods, as well as their documentation and description in the paper.
SK contributed some example datasets, particularly for coherent set detection tasks.
MH laid out, performed, and visualized the dimension reduction method comparison
presented in Section MH and SK laid out the coherent set benchmark pre-
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sented in Section MH carried out corresponding simulations, analyses, and
visualizations. TH contributed to the MSM section (Section and implemented,
carried out, analyzed, and visualized the therein contained Prinz potential example.
Brian de Silva implemented the SINDy method and laid out, performed, analyzed,
and visualized the SINDy example presented in Section MH laid out, performed,
analyzed, and visualized the two-dimensional double-well benchmark presented in
Section All contributors wrote the paper.

Realizing stochastic processes in computer simulations can yield very high-dimensional and long
trajectories. When particle-based models are used and N particles are parameterized only by
their position in three-dimensional space (meaning no, e.g., velocities), the dimension of each
simulated frame is d = 3 - N, making the visual discovery and analysis of dominant processes
very difficult. This chapter tries to answer the following question: Given time series data, what is
a reduced dynamical model which captures the underlying processes’ most important features?
Importance here is understood in terms of slowness, e.g., the folding and unfolding process of a
protein is deemed more important than its hydrogen bonds’ high-frequency vibrations. All of the
following methods build on or are related to transfer operators (see Sections and in
particular finite-dimensional approximations thereof.

3.1 Introduction

deeptime is an open source Python library for the analysis of time series data; i.e., the provided
methods relate to finding relationships between instantaneous data x; for some t € [0, 00) and
corresponding future data x;, for some so-called lag-time 7 > 0 based on an underlying stochastic
process {X; }1>0 (cf. Section . Most of the implemented methods try to estimate the behavior
of processes when going from x; to x;;, by predicting the latter based on the former. The API
is similar to what is implemented in the well-known software package scikit-learn [115] and there
is basic compatibility of the methods in the two packages via duck typing. Duck typing refers to
the objects’ behavior defining in which contexts it can be used, not so much its concrete type.
deeptime has two main goals: (1) making methods which were developed in different communities
(such as molecular dynamics and fluid dynamics) accessible to a broad user base by implementing
them in a general-purpose way, and (2) easy to extend and maintain due to modularity and very
few hard dependencies.
deeptime offers the following main groups of methods:

e Dimension reduction of dynamical data. One vitally important ingredient to understanding
high-dimensional data is projecting them onto a low-dimensional manifold which preserves
the “interesting” parts of the signal. One prominent linear method which can perform this
task is [principle component analysis (PCA]) [46, 47]. While is a widely implemented
method, it is not designed for extracting dynamically relevant features from time series
data. [Time-lagged independent component analysis| (TICA)) [116} |117] and
[decomposition| (DMD)) [118,119] provide dimension reduction along with a best-fit linear
model. deeptime offers a range of methods which are based on the mathematical framework
of transfer operators (see Sections [2.1.1H2.1.2)), enabling users to study in particular kinetic
properties of the data as well as find temporally metastable and coherent regions.

e Nonlinear dimension reduction. While linear methods are widely used due to their sim-
plicity, the high-dimensional data manifold might not always be structured in a way in
which important processes are linearly separable. For that reason, deeptime offers some
featurizations, explicitly defined basis functions, and kernel methods.

30



e Deep dimension reduction. For nonlinear dimension reduction—especially in the high-data
regime—there is also a weak dependency (i.e., no strict requirement for installation) to
PyTorch [120], enabling the use of deep learning techniques for dimension reduction of time
series data. A variety of such methods has recently been developed, for example time-lagged
Autoencoders [121], linearly-recurrent Autoencoder networks [122], VAMPNets [49], deep
generative Markov state models [123] [124], deep Koopman networks [125], and variational
dynamical encoders [126]. Some of the mentioned methods are implemented in this software.

e Markov state models . [127H135] are stochastic models describing temporal
transitions between states in chains of events where each event only depends on its predecessor
and has no dependency on events further in the past (known as the Markov property). They
also fit into the mathematical framework of transfer operators. Based on [MSME one can
estimate in particular kinetic properties from data.

o Hidden markov models . [136], [137] are a type of model consisting of a hidden
(i.e., not observable) Markov process emitting an observable output process depending on
the hidden process. In comparison to [MSME, are more expressive and can produce
good results where would not, but are harder to estimate. A more effective/efficient
model for hidden Markov processes with discrete output probability distributions is the
observable operator model [138] that can also be found within the deeptime package.

o Sparse identification of nonlinear dynamics (SIND3}). [SINDy] [54] identifies nonlinear
governing equations with as few terms as possible from a library of candidate terms that
best fit the data. In that way, it complements the dimension-reduction techniques. In
particular, while most methods model and analyze the relationships of time-shifted pairs
of data, [SINDy| predicts maps yielding the infinitesimal expected temporal change of the
system’s current state. On the other hand, [SINDy| can also predict discrete-time maps by
directly relating the system’s future state to the system’s current state (see Section for
details).

deeptime currently focuses on the domain-agnostic estimation of dynamical models and
their analysis in terms of physically relevant quantities describing equilibrium or nonequilibrium
behavior. The aim of deeptime is not to provide tools specific for a single domain, such as molecular
dynamics, but it can be easily combined with python packages that, e.g., load and featurize domain-
specific data files in order to prepare such data for analysis with deeptime [139H144]. Alternatively
there also exist time series analysis packages that are more domain-specific |[P5| 49} |50, 145 |146]
or implement a subset of deeptime’s methods but with a wider range of options and/or more
flexibility [147H149]. As the dynamical model and its properties take the center stage in deeptime,
its aim is also not to perform time series forecasting, e.g., for weather or financial data, or clustering,
regression, and annotation directly on the dynamical data itself. For these types of tasks there
is, e.g., the sktime project |150]. sktime also provides a curated overview of various projects
dealing with time series data: https://www.sktime.org/en/latest/related_software.html.

3.2 Design and implementation
deeptime is mainly implemented in and available for Python 3.7+ and available for all major
operating systems via the Python package index (PyPI) and conda-forge [151] . Some computa-

tionally expensive calculations are implemented in C++ using pybind11 [152] or if appropriate
using NumPy [153] and SciPy [154].
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The APT itself is inspired (and largely compatible with) the one used by scikit-learn [115]. In
particular, deeptime offers Estimator classes, which can be fit on data. An important point at
which deeptime’s implementation is different to what is offered by scikit-learn is the following: a
call to fit leads to the creation of a Model instance; in particular, estimators can be fit multiple
times and each time produce an independent model instance (therefore are model factories).
Regarding the structure of data they store, Models carry the estimation results and are rather
simple classes, that are akin to Python dictionaries. If possible, estimators offer a partial_fit
method that allows the user to continuously update a model with a stream of data. This is
particularly useful if the dataset does not fit into the computer’s main memory. Additionally,
Models may also be Transformers, meaning they can transform data based on the state of the
Model instance. In such cases the corresponding Estimator also implements the Transformer
interface, dispatching the call to the latest estimated model.

In comparison, in scikit-learn an Estimator is also a Model and the estimation results are
dynamically attached to the estimator instance. Given that our models come with a large
variety of attached methods and properties, we deviate from this paradigm to ensure clarity
and component separation and to avoid an overcrowded interface. Furthermore, as our Models
are relatively lightweighted objects that are divorced from the data they have been trained on,
it is straightforward to use the Python pickle module for serialization. This way, Estimator
instances can be re-used on existing models without side effects, fostering deeptime’s applicability
to parameter studies.

The number of dependencies is kept as low as possible to reduce maintenance efforts. The base
functionality of deeptime only depends on the established packages NumPy [153], Scipy [154],
and scikit-learn [115]. Dependencies to plotting routines (matplotlib [155]) and deep learning
components (PyTorch [120]) are optional.

The code is hosted on GitHub (https://github.com/deeptime-ml/deeptime|) and licensed
under LGPLv3, meaning it uses a license with weak copyleft so the library can be used also in
proprietary codes. The repository is coupled to the continuous integration service Azure Pipelines,
performing automated testing upon changes or proposed changes to the main branch. The project
uses the pytest testing framework [156].

The documentation aims for maximal transparency with respect to the implemented methods
and the implementation details. To that end, the main methods and their basic usage are explained
in Jupyter notebooks [157] with some theoretical background, references, and illustrative examples.
The detailed API documentation is generated directly from the Python source code, so that it can
be referred to while using the software but also while developing new components or fixing bugs.
Furthermore, there are short example scripts for the datasets and selected methods, compiled
into example galleries. All this is rendered into HTML and transparently hosted on GitHub pages
using Sphinx under https://deeptime-ml.github.io /.

The deeptime library is structured in such a way that the entire user interface is exposed at
package-level. We structure the (sub-)packages as follows:

e deeptime.base: Contains all the basic classes of deeptime, in particular the interface
definitions for Estimators, Models, and Transformers.

« deeptime.basis: A set of basis functions which can be used for and some of the
dimension reduction algorithms as ansatz and/or featurization.

e deeptime.kernels: A set of predefined kernels which can be used in kernel methods. Some
of these possess subclasses with a Torch prefix, indicating that they are PyTorch-ready and
support batched evaluation as well as backpropagation.

e deeptime.sindy: Contains an implementation of the [SINDy]| estimator (see Section [3.5)).
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o deeptime.covariance: Methods for estimating covariance and autocorrelation matrices
from time series data in an online fashion. These are mainly used by some of the decompo-
sition methods (see Section [3.3.1]).

¢ deeptime.decomposition: Decomposition methods for time series data (see Section
for a comprehensive list of implemented estimators).

o deeptime.markov: Analysis tools, validators, and estimators for [MSMs| and [HMMs| (see
Section [3.4).

o deeptime.clustering: A collection of clustering/discretization algorithms. These are
mostly intended for assigning frames to discrete states (potentially after using one of the
dimension reduction algorithms) and subsequently estimating [MSMs| or [[TIMMs]

e deeptime.numeric: A collection of numerical utilities, most notably for eigenvalue problems
and regularized inverses of symmetric positive semi-definite matrices.

¢ deeptime.data: A selection of example data on which the algorithms can be tested (see

Section .

e deeptime.util.data: Utilities which relate to data processing, e.g., time series specific
DataSet implementations which can be used in conjunction with PyTorch.

Some of the implementations are based on the molecular-dynamics analysis package PyYEMMA 2
[P5], [145) including its dependencies bhmm [158] and msmtool§|—modified so that they are no
longer dependent on any molecular-dynamics specific libraries and offer greater flexibility—and on
the dynamical systems toolbox d3sﬂ The deeptime.sindy package is based on and compatible to
PySINDy [149]. The deeptime.decomposition package contains an implementation of
[mode decomposition| (DMD]) (118} 119} 159, 160]. For a richer feature set and different variants
and flavors of [DMD| we recommend the PyDMD package [147].

3.3 Dimension reduction and decomposition methods

All of the following methods make use of transfer operators (see Sections(2.1.1H2.1.2)). In particular
the Koopman operator Ks ; (see Equation (2.10) which propagates observables from time s to
time ¢, the Perron-Frobenius operator Py (see Equation (2.11))) propagating densities from time
s to time ¢, and the reweighted Perron-Frobenis operator 7, (see Equation ), which is
often just called “transfer operator”.

Depending whether the process is time-homogeneous or time-inhomogeneous, there is—in the
time-homogeneous case—no explicit dependency of either of the operators on both s and ¢ but
just on the time delta 7 := t — s, referred to as lag time (cf. Section . For the remainder
of this section we will simplify the notation to P, 7, and K for the Perron—Frobenius, transfer,
and Koopman operators, respectively. Also we often wish to consider/use vector-valued feature
functions, in which case it is assumed that the transfer operators act component-wise.

3.3.1 Conventional dimension reduction and decomposition

The conventional machine learning estimators for dimension reduction supported by deeptime
are detailed below. For more thorough introductions to available methods and overviews of their

*https://github.com/markovmodel/msmtools
Thttps://github.com/sklus/d3s
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Figure 3.1: Relationships of conventional dimension reduction methods. Methods
shaded in green are regression-based, while methods shaded in blue are based on a variational
principle. (a) Methods assuming time-homogeneous dynamics. While the [variational approach to
conformational dynamics| (VAC]) can only be applied under time-reversible dynamics, [extended|
dynamic mode decomposition| (EDMD)]) makes no assumptions about the dynamics’ reversibility.
(b) Methods supporting time-inhomogeneous dynamics. While the [kernel embedding based|
[variational approach for dynamical systems| (KVAD]) is based on a variational principle, the ansatz
and in particular the estimated transfer operator is a Perron—Frobenius operator in contrast to
the [variational approach for Markov processes| (VAMP]), which estimates an approximation of the
Koopman operator.

relationships, we refer the reader to Refs. Most of the following methods seek a
matrix K € R™*™ a finite-dimensional approximation of a transfer operator that should fulfill

Elg(xe++)] = K E[f (x:)] (3.1)

as closely as possible for time series data x;. The system’s state x; is transformed into feature
space by f,g € F™, where F is the space of scalar feature functions.

We give an overview of conventional dimension reduction methods in Figure all of
which reside in the deeptime.decomposition subpackage. Roughly, the methods can be divided
into groups of estimators that are restricted to data observed from time-homogeneous systems
(Figure , see Section and estimators that are also capable of working with data of
time-inhomogeneous systems (Figure , see Section .

Another distinction can be made by considering the estimation approach of the respective
methods. While some are regression-based (green shade in Figure [3.1)), others (purple shade)
operate within the framework of an underlying variational principle.

In what follows, we have instantaneous data x; € R? and time-lagged data y; € R? organized
into matrices X = [x1,...,%X,] € R and Y = [y1,...,yn] € R¥™, respectively.
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3.3.1.0.1 Dynamic mode decomposition (DMD). [118] |119, 159, [160] was in-
troduced in the fluid dynamics community to extract spatiotemporal coherent structures from
high-dimensional time series data. It is closely related to in the sense that its objective is to
solve the regression problem

m]ViIn”Y*MDMDXHF (32)

for a matrix Mpyp € R%¥?. A subsequent spectral analysis of Mpyp can reveal information
about the dominant dynamics of the system.

There are a variety of extensions to[DMD] For example, DMD]algorithms have been developed
that incorporate control [163], promote sparsity |164], are randomized [165], and act on time
delay vectors [166] (the last has a relationship to Koopman operator analysis). Bagheri [167]
demonstrated the sensitivity of the algorithm to measurement noise, motivating several
noise-robust variants: total least squares DMD [168], forward backward DMD [169], Bayesian
DMD [170], optimized DMD [171], and variational DMD [172].

While deeptime offers a basic version of [DMD] most of these extensions are currently not
available. The PyDMD Python package [147] offers a broad range of based methods.

3.3.1.0.2 Extended dynamic mode decomposition (EDMD). [173] defines a
basis set of functions or observables B := {¢1, ..., %} C F to construct the vector-valued function
U (z) = (Y1(x),...,¥m(x))T € F™. The sought-after matrix K with respect to f = g = ¥ is the
solution of the regression problem

K = argming | ®(Y) — K¥(X)||p € R™™, (3.3)

where the application of ¥ is column-wise.

A projection onto dominant processes can be found by applying the eigenfunctions of the
Koopman operator deduced from K and ¥ corresponding to the largest eigenvalues to the
transformed input data.

The solution of the regression problem is an approximate version of the desired prop-
erty (2.13) for specific choices of f and g. In deeptime this is implemented by the model of the
Ml)estimator being a TransferOperatorModel (see Figure .

As its name suggests, can be understood as a special case of in which the feature
basis contains only the identity function, i.e., ¥(x) = x. If we define the set of basis functions to
contain indicator functions for a given discretization of the state space, EDMD] estimates [MSMp

(see Figure and Section for details on [MSME).

3.3.1.0.3 Time-lagged independent component analysis (TICA). [116] is a linear
transformation method which was introduced for molecular dynamics in [117], was independently
derived as a method for extracting the slow molecular order parameters by invoking the variational
approach for conformation dynamics (see below) [174], and introduced as a method for constructing
high-accuracy in [174][175]. is designed for time-homogeneous processes and also
assumes that the process is reversible, although it may still perform well practically when applied
outside these constraints. A process is defined to be reversible if it fulfills the detailed balance
condition

w(x)p-(x,y) = p(y)p-(y,x) Vx,y € Q. (3.4)
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As a consequence, the transfer (2.13]) and Koopman ([2.10)) operators are identical and therefore
self-adjoint. Assuming K to be a Hilbert—-Schmidt operator, this means that (using the Hilbert—
Schmidt theorem) there is an eigenvalue decomposition

K= ZAi<'7gpi>H§0i7 (35)
1=1

where ¢; are eigenfunctions with (p;, /), = d; and A; are eigenvalues which are real and
bounded by the eigenvalue max; A; = 1 with a multiplicity of one (see Ref. )

The objective of is to yield components which are uncorrelated and also maximize the
time-autocorrelation under lag-time 7. To this end, one can solve the generalized eigenvalue
problem

Cor i = MiCooPi, (3.6)

where Cyg = ﬁX X7 is the instantaneous covariance matrix and Cp, = ﬁX YT is the time-
lagged covariance matrix. The reversibility assumption leads to Coy = C,» and Cy, = Cro = Cf.
and therefore eigenvalues \i € R. Because real numbers possess a total order, we can assume
that the eigenvalues ); are in a descending order and the transformation @(-) = [¢1(-), ..., &k()]
is the projection onto the first k& dominant components. The corresponding eigenvalues can
be related to relaxation timescales of the processes ; . Therefore, if we know a priori that
the system is time-homogeneous and reversible, can be more data-efficient and yield more
interpretable results compared to methods, which do not make these assumptions.

For a comparison with it is useful to identify with Mrica = CgOCOT, where C’go
denotes the Moore—Penrose pseudoinverse. It can be seen that Mrpica = MSMD . Therefore,
the transformation consists of Koopman eigenfunctions projected onto the basis spanned by
Y (x) = xi and the modes are the corresponding Koopman modes—, i.e., the coefficients
N = (M1, - - - ,nkd)T required to write the k-th component of the full-state observable in terms of
eigenfunctions gi(x) = X = >, Mkipi(X) 173].

This relationship is reflected in Fig. by identifying and as “dual”. This duality
can also be found within the deeptime software: in contrast to is a subclass of
TransferOperatorModel (see Figure .

3.3.1.0.4 Variational approach for conformational dynamics (VAC). Like
1176 assumes time-homogeneous and reversible dynamics. Similar to the generalization
from [DMD] to [EDMD}, [VAC]| generalizes using a basis B := {¢1,...,¢,,} C F to construct
a transformation ¥(x) = (¥1(x),...,%¥m(x)) . Subsequently the instantaneous and time-lagged
data is transformed to ¥(X) and ¥(Y), respectively, and used in the problem instead of
X and Y. From this it becomes clear that can be understood as a special case of
with ¥(x) = x (see Figure[3.1)). Because it is algorithmically identical to under a prior
featurization of data, there is no dedicated m estimator in deeptime. Under the particular
choice of basis functions being indicator functions, estimates [MSME (see Figure and

Section for details on [MSME).
A

As its name suggests, [VAC|involves a variational bound. It defines the score syac =), A
which is bounded from above by the sum over the eigenvalues of the true Koopman operator and
therefore expresses how much of the slow dynamics is captured in the projection . The
score can be used to optimize the feature functions ¥. We will see in the following paragraph
that under the assumption of reversible dynamics, the [VAC] score is equal to the VAMP-1 score,
which is why deeptime only offers a score implementation. Assuming reversible dynamics,

is equivalent to [EDMD] (see Figure [3.1]).
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3.3.1.0.5 Variational approach for Markov processes (VAMP). [90], sometimes
also referred to as “time-lagged canonical correlation analysis” (TCCA) [178], not only optimizes
for K but also optimizes for f and g. This cannot be achieved by merely solving the regression
problem (3.3)—as, e.g., the trivial model f = g = (1,...,1)"T, K = Id is not informative but
yields zero error. Instead, minimizes the left-hand side of

IK = Kllfis = —R(E, &) + |IKls, 3.7)

the Hilbert—Schmidt norm of the difference between true Koopman operator and ap-
proximated Koopman operator K deduced from K, f, and g. The minimization is achieved by
maximizing R, a variational score. The decomposition of the modelling error assumes that
K is indeed a Hilbert—Schmidt operator.

In [90] it was shown that the smallest approximation error is achieved for

i=1

where K = diag(o1,...,0m), £ = (¥1,...,%m), & = (d1,...,0m), and o;,¢;, ; are the square
root of the i-th eigenvalue, left eigenfunction, and right eigenfunction of the forward-backward
operator K*K, respectively.

During estimation (similar to and [VAC)), covariance matrices are estimated and under
regularization inverted to perform whitening operations to finally construct an approximation of
the Koopman operator. One obtains coefficient matrices U, V € R™** and the matrix K € RF**,
so that

E[V " x1(x¢4,)] = K TE[U " xo(x4)], (3.9)

where yo and y; are vectors of basis functions which optimally should contain v; and ¢; in their
span, respectively.
The family of VAMP-r scores,

Ry =Y of, (3.10)

as well as the VAMP-E score (see Ref. [90| for a definition) can be optimized to minimize the
model error on the left-hand side of and therefore can be used to select optimal features
and/or observables by using cross-validation techniques (see, e.g., [P6]). These scores give rise to
the “variational” aspect of as they are bounded from above and their maximization leads
to better approximations.

therefore generalizes [VAC| to a time-inhomogeneous and nonreversible setting (recall
Fig. While [VAMP| is applicable in more situations, i.e., because it possesses greater
generality and nonequilibrium dynamics are more common in nature, it also loses some of
its interpretability—as, e.g., singular values can in general no longer by related to relaxation
timescales of processes.

The deeptime library reflects the mathematics of the approach by the[VAMP|estimator
producing a CovarianceKoopmanModel, an extension of the TransferOperatorModel, which in
particular allows the evaluation of scores (see Figure[3.2). The estimator can deal with
large amounts of data, because the estimation procedure is based on the decomposition of
covariance matrices, which can be constructed incrementally [179]. Furthermore, is a
subclass of as the two methods are algorithmically closely related.
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It should be noted that while [TICA] and [VAC]| are special cases of in deeptime the
estimators are not combined into one due to differences in how covariance matrices are estimated—
in particular, [TICAJs stronger inductive bias is implemented by forced symmetrizations which
are not applicable to and differences in the decomposition (eigenvalue decomposition
and singular value decomposition for [TICA] and [VAMP} respectively).

Analogously to the choice of indicator feature functions leads to generalized
(GMSMs) [88], which are also applicable to time-inhomogeneous systems (see Figure [3.1)).

3.3.1.0.6 Kernel canonical correlation analysis (Kernel CCA). is
a kernelized version of canonical correlation analysis (CCA) that seeks to maximize the
correlation between two multidimensional random variables X and Y (pairs of instantaneous and
time-lagged data, respectively). In the standard inner products are replaced by a
kernel function (-, -) using the “kernel trick”. deeptime has a subpackage dedicated to kernel
implementations (deeptime.kernels), containing (amongst others) vectorized versions of the
popular Gaussian kernel

) = oxp (—3llx — x3/0?) (3.11)

as well as the polynomial kernel x(x,x’) = (¢ +x ' x/)?.

It was shown in that can be derived from optimizing the VAMP-1 score ([3.10))
within a kernel approach and thus can be understood as a kernelized version of (for this
reason it is sometimes referred to as kernel VAMP).

In addition to the kernel parameters, the estimator also possesses a regularization parameter
€, as involves inverting covariance operators (which on their own are generally not
invertible).

3.3.1.0.7 Kernel extended dynamic mode decomposition (Kernel EDMD).

EDMD)] [181} [182] is, analogously to [kernel CCA] a kernelized version of [EDMD| In contrast to
kernel CCAl it assumes a time-homogeneous process. Furthermore, [kernel EDMD]| requires a

regularziation parameter € in order to ensure invertibility of covariance operators.

3.3.1.0.8 Kernel embedding based variational approach for dynamical systems

(KVAD). [KVAD is an alternative to which can also be applied to systems in

which the transfer operator 7 is not Hilbert—Schmidt as an operator from LZS to Lit, which
is (e.g.) the case for some deterministic systems. In case of time-homogeneous processes, we have
s = pt = p, which is the stationary distribution.

To this end, the similarity of functions of interest is not determined using norms of L? function
spaces but rather using kernel embeddings of said functions. In particular, for a given kernel
k(x,x') = (p(x), p(x)), functions ¢ can be embedded via

Eq = /(p(x)q(x)dx. (3.12)
The similarity between functions ¢ and ¢’ can then be measured as

lg—d'lle = (E(e—d).E(q—q)). (3.13)

In Ref.|94]it was shown that for universal and bounded kernels &, the Hilbert-Schmidt assumption
is always fulfilled if the PF operator is considered as

P Ligl — L2, (3.14)
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KVAD EDMD Kernel CCA KernelEDMD
TransferOperatorModel
Elg(xi4r)] = KTE[f(x)]

|

CovarianceKoopmanModel

VI x1(yesr)] = diag(oi)E[UT xo(x¢)]

/ >

TICA VAMP ’ MarkovStateModel

Figure 3.2: Class diagram illustrating relationships between estimators producing
approximations of transfer operators. Estimators have a blue background while models
are shaded in gray. The TransferOperatorModel implements observable transforms f(-) and
g(+) as well as propagation of f(x;) with the Koopman matrix K. It is produced (») by EDMD,
KernelEDMD, KernelCCA, and KVAD estimators. The the CovarianceKoopmanModel extends (—)
the TransferOperatorModel. It assumes the estimation to be based on covariance matrices and
defines the Koopman matrix in a whitened space, where yg and x; are basis transformations of
the state x; and x4, respectively, and U and V are basis transform matrices. The Koopman
matrix is then a diagonal matrix. The CovarianceKoopmanModel can be produced by TICA, VAMP,
and MarkovStateModels and additionally possesses a score() function.

where L2 = {f € L? : ||f|le < oo} is an L? space equipped with the kernel similarity mea-
sure . Note that in this case the Perron—Frobenius operator as defined in is in general
no longer the adjoint of the Koopman operator.

Like is based on the optimization of a (variational) score that is bounded from
above and expresses the quality of the found approximation. A key difference is the ansatz: While
yields approximations of the Koopman operator, estimates its adjoint, the PF
operator (adjoint in the sense of Equation ) To this end, uses the transition
density and assumes that it can be represented as

Pr(xe, Xeqr) = £(x¢) " q(Xe4r), (3.15)

where q = (q1,...,¢m) ' are m density basis functions and f are, as in (3.1]), feature functions of
the system’s state. This leads to the linear model (3.1)) with f = g and

K = / y) " dy.

It has been shown [94] that q can be estimated directly from data in a nonparametric fashion,
which means that all the model’s parameters reside inside the definition of f. With the help of
estimated f and q, also the transition matrix K can be constructed. This kind of ansatz—sans
the modified codomain in —is similar to what was used in Ref. 123\
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Figure 3.3: Schematic overview of the flexible integration of deep learning components
in deeptime. (a) deeptime interface: Some Estimator instances in deeptime, for example
VAMPNets and Time-lagged Autoencoders, take neural networks as configurational input. These
estimators offer a fit( ) method which takes PyTorch data loaders. The data loaders are
configured by the users and manage, e.g., shuffling and batch sizes. After a Model has been fit, it
can be used for further analysis of the input data. Models containing deep learning components
are designed so that they can also seamlessly work with NumPy arrays and interact with the rest
of the deeptime library. (b) PyTorch interface: Neural networks can be defined using PyTorch
and also be trained using optimizers which either are already included in PyTorch or at the very
least are PyTorch compatible. Instances thereof can be used with certain estimators in deeptime.
(c) Example: A typical workflow for a deep learning estimator, color-coded according to which
library the classes and respective instances belong.

3.3.2 Deep dimension reduction and decomposition

In addition to the conventional learning methods introduced in Section [3.3.1] deeptime also offers
several deep learning methods for dimension reduction.

The deep learning components require PyTorch; however, PyTorch-dependent parts of the
library are separate—i.e., a working installation of PyTorch is not required for the rest of the
library. The estimators providing deep dimension reduction can be found in the
deeptime.decomposition.deep subpackage.

Deep learning requires some additional flexibility and data handling compared to conventional
learning. In particular, the user first must define a neural network architecture and an optimizer
for adjusting the network’s weights. There are some predefined architectures directly available
in deeptime (such as multilayer perceptrons), but in principle these as well as the optimizer
are defined with PyTorch (see Figure ) Once defined, one can construct a deep estimator
that contains losses, validation metrics, and training procedures (see Figure ) Fitting deep
learning components typically involves shuffling and dividing the data into batches. Since the
optimal batch size and also the shuffling method are problem-dependent, these choices must be
made by the user. PyTorch offers DataLoaders for this exact purpose. Therefore estimator.fit
is performed on a data loader instance rather than arrays (see Figure ) Finally, deep learning
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estimators also produce models which encapsulate among other things a copy of the trained neural
network. While PyTorch neural networks operate on torch.Tensor instances, deeptime models
with deep learning components are designed so that they can also work with ordinary NumPy
arrays, ensuring a seamless integration with other and in particular conventional models and
methods. For more details about PyTorch, see the official documentation https://pytorch.org/.

3.3.2.0.1 VAMPNets. VAMPNets [49] are a deep learning approach that seek to find
parametrizations of neural networks xo and x; (referred to as “lobes”) so that the VAMP-E or
one of the VAMP-r scores under these transformations is maximized, leading to smaller
model errors (recall paragraph about in Section [3.3.1)). This is possible because there is a
variational upper bound to the scores and their computation is differentiable—therefore any of
the [VAMP| scores can be used directly as an objective function in a deep learning context.

Other deep learning methods which are not currently included in deeptime but also approxi-
mate the Koopman operator are, e.g., those found in Refs. [122] [125] 183 |184!

3.3.2.0.2 KVADNets. Analogously to VAMPNets, KVADNets optimize the variational
KVAD)| score to find an optimal parametrization of feature functions f (3.15)). As in the case of
VAMPNets, the [KVAD| score is differentiable [94].

3.3.2.0.3 Time-lagged (variational) autoencoders (T(V)AEs). 121] are a type of
neural network approach in which instantaneous data x; € R¢ is compressed / encoded through
a parameterized function

E: IR,d — Rn,Xt — E(Xt) = Z¢
with n < d and then reconstructed as time-lagged data x;y,, 7 > 0 via a decoder network
D:R"— ]Rd7zt — D(Zt) X Xttr-

The optimization target is to reduce the mean-squared error between x;y, and (D o E)(x:),
effectively training a latent and lower-dimensional representation F(x;) of the process. In [121] it
was shown that in the linear case perform time-lagged canonical correlation analysis, cf.
the paragraph about in Section An architecture that is akin to the one of
was used in [185] to find collective variables in the context of molecular enhanced sampling.

A natural extension to is to exchange the neural network architecture of an autoencoder
by the architecture of a variational autoencoder (VAE) [186, [187], yielding the generative
that can also be found in the deeptime library. In [126] these architectures (there called
“variational dynamics encoder” (VDE)) were used in conjunction with a loss term inspired by
saliency maps |188] (known from computer vision) to produce interpretable dynamical models
while still maintaining the high degree of nonlinearity that can be achieved by neural networks.

3.3.3 Numerical experiments

We compare some of the dimension reduction methods introduced in Section[3.3.1]and Section[3.3.2}
The first example highlights differences in the approximation if used for dimension reduction in a
time-homogeneous system. The second example uses data obtained from a time-inhomogeneous
system with the objective to find coherent structures.
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3.3.3.1 Dimension reduction

We consider a two-state hidden Markov model (see Section [3.4) with transition matrix

0.95 0.05
P= (0.05 o.95> (3.16)

and anisotropic but linearly separable two-dimensional Gaussian emission distributions. In a
subsequent step the data is transformed via

(2,9) = (z,y + V]z]). (3.17)

This leads to two wedge-shaped output distributions which are no longer linearly separable (see
Figure . We simulate a trajectory of T'= 1000 frames from this model and try to recover a
separation into the two original hidden states using different dimension reduction methods by
projecting onto the dominant slow process, which is the jump process between the two wedges.

Figure (a,b,c,g,h,i) shows the sampled and transformed time series data x; € R? as a
scatter plot. The estimated models yield two-dimensional decision landscapes x : RZ — R
which are shown in the background as a filled contour. Based on the decision landscape we
obtain crisp assignments to one of the two states via k-means |189] clustering with k = 2 cluster
centers in the projected space; these clusters determine the point colors in the scatter plot. In
Figure (a,b,c,g,h,i) we furthermore report the 10-fold cross-validated VAMP-2 score along
with its standard deviation (see Section for the score and Ref. |[190| for the cross-validation
scheme), which enables a quantitative assessment of the quality of the projection .

Figure (d,e,f,j,k,1) shows the projection of the two-dimensional time series onto one
dimension for the first 200 frames of the trajectory, where y(z;) is presented in transparent blue
with corresponding crisp clustered assignments in opaque blue and the hidden reference state
is presented in orange. We also report the assignment accuracy of the crisp state with respect
to the hidden reference state over the entire dataset in the titles of subfigures (a-f).2. While
the assignment accuracy can be used as another measure of the quality of the projection, it is
only available if the ground truth is known. A VAMP score, on the other hand, can always be
evaluated. Here, we chose the VAMP-2 score, because its maximization can be identified with
the maximization of kinetic variance (see Ref.|191). Maximizing kinetic variance achieves an
optimal separation of metastable sets, which corresponds to the separation of the two wedges in
this example.

In the limit of infinite data (i.e., when faithfully representing the original data distribution) and
optimal featurization, the score should approach sy, = 1.81. This can be found from using the
ground truth hidden transition matrix (3.16)) and applying it to the VAMP score assuming that the
distribution of data is given by the stationary distribution. In more detail, if g = (0.5,0.5)T is the
stationary distribution corresponding to , we assume that data distribution is given by the
stationary distribution and set covariance matrices Cog = C;, = diag(p) and the cross-covariance
matrix to Cp, = P (in this example 7 = 1). From the covariance matrices we can obtain the
Koopman matrix (cf. Section [3.3.1)) which can be decomposed and used for scoring.

Below, we discuss and further describe each of the panels in Figure [3.4]

(a) TICA. is a linear method in that it can only draw linear decision boundaries and the
dataset is deliberately not linearly separable. Therefore the tip of the upper wedge and the
outer areas of the lower wedge are misclassified. This is also reflected in the comparably
low VAMP-2 score and accuracy.
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(2) TICA (b) EDMD (c)
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Figure 3.4: Comparison of different Koopman operator methods. The data is generated
by a[HMM]with two hidden states and respective two-dimensional output probability distributions
which are not linearly separable. The methods should approximately recover the underlying
hidden process, where in (a,b,c,g,h,i) the background contour is the decision landscape and
the scatter colors denote sharp assignments obtained by a two-state clustering in the projection.
Incorrectly assigned states have a red edge. The scores reported in the bottom parts of the plots
are cross-validated VAMP-2 scores. Plots (d,e,f,j,k,l) show a projection of the two-dimensional
time series onto one dimension (transparent blue) with crisp assignments (opaque blue) and the

ground truth (orange) as reference. The accuracy (acc.) refers to the amount of correctly assigned
states after clustering.
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(b) EDMD. We choose [EDMD)]| with an ansatz basis of monomials up to degree two in two-

dimensional space; i.e.,
B={(z,y) = 2"y? :p,q € N>o, p+q < 2}.

This leads to a decision landscape shaped like a rounded cone, able to separate most of the
data into the two hidden states except for the tip of the upper wedge. Consequently, score
and accuracy achieve a higher value than the one obtained from [TICA

(c) Backtransform. Here we use the hand-tailored transformation (z,y) + (z,y — /|z]),
which makes the two states linearly separable again and apply This featurization
uses the ground truth as prior knowledge and therefore achieves perfect state separation.
Consequently, the accuracy is at 100% and the VAMP-2 score reaches a high value. Due to
finite data it does not quite reach the theoretical limit of sy, = 1.81.

(d) Kernel EDMD. We use [kernel EDMD| with a Gaussian kernel (3.11). The regularization

parameter € of the estimator as well as the bandwidth o of the kernel are tuned to maximize
the VAMP-2 score on a validation set using the SLSQP optimizer [192], yielding o ~ 1.42
and € =~ 6.7 x 10~*. The method finds a good separation between the two hidden states.

(e) Kernel CCA. As in thekernel EDMD|case, we choose for [kernel CCAla Gaussian kernel ((3.11])

with regularization parameter and bandwidth tuned to maximize the VAMP-2 score on
a validation set using the SLSQP optimizer [192]. This leads to o =~ 0.85 and € =~ 0.36.
Compared to the other methods, the support of the estimated singular functions is smaller
and in particular does not extend far beyond the area spanned by the sample data. This
means that according to there is large uncertainty as to which state a point in
space belongs to as soon as it is outside the densely populated areas of the wedges. On the
other hand, the score is lower compared to or VAMPNets. This means that
the metastable sets are separated less clearly, which can also be observed in the fuzziness
of the transparent blue trajectory in Figure and therefore the slow dynamics of the

system are not represented as well as they are represented with, e.g.,

(f) VAMPNets. As an architecture for the lobe x we choose a multilayer perceptron of depth
d = 5 with a rectified linear unit (ReLU) nonlinearities and 15, 10, 10, 5, and 1 neurons,
respectively. The network is trained using the Adam optimizer [193] with a learning rate of
1073. We obtain a decision landscape that resembles the one of the backtransform with
a perfect state separation. Also the idealized VAMP-2 score sj, based on the hidden
transition matrix is within the standard deviation of the VAMPNet VAMP-2 score. The
hyperparameters were chosen heuristically so that training was stable and yielded high
scores.

For the optimization of the parameters of kernel EDMD| we found it crucial to first whiten
the data by removing the empirical mean g and transforming it into the [PCA] basis via

X; C_%(xt — ), (3.18)
where C' denotes the covariance matrix over the trajectory. The other methods were numerically

more stable and applicable directly to the raw data. Whether whitening is required does not only
depend on the method but in particular also on the chosen ansatz.
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3.3.3.2 Coherent set detection

Here, we illustrate how the introduced decomposition methods can be used to detect coherent
sets; i.e., sets of particles which are geometrically consistent under a forward-backward dynamic
and small perturbations [194} 195]. Following Ref. 195, one can quantitatively describe coherent
sets A C  under the transfer operator T (see, e.g., ) as a set which is difficult to leave, i.e.,

o la >
TT ——,1 ~ 1, 3.19
< ILLS(A) 4 Ms ( )

the probability of staying within A under the forward-backward dynamic |[195] should be close to
1. Here, ps(A) refers to the evaluation of the measure induced by the initial distribution.

While dominant eigenfunctions of methods assuming time-homogeneous dynamics (cf. Fig-
ure can be related to metastable sets, methods that may also be applied to time-inhomogeneous
dynamics yield coherent sets [88]. In particular, metastable sets can be understood as a special
case of coherent sets.

Practically, these sets can be obtained by projecting Lagrangian data into the dominant
(with respect to magnitude of singular values) left singular function space of an approximated
Perron—Frobenius or Koopman operator [161} (194], as these singular functions correspond to
eigenfunctions of backward-forward dynamic 77* or forward-backward dynamic 7*7 [90, [161]
194] and therefore are an important ingredient for characterizing coherence (3.19)). Spatial
proximity in the singular function space indicates membership of the same coherent set.

As an application example we choose the Bickley jet, an idealized and periodically perturbed
approximation of stratospheric flow which is described by a deterministic but non-autonomous

system of [52} 53]. The act on particles x = (z,y) € Q = [0,20] x [—4,4] and are

given by
. v
i _ov
<> = ( 33@/) (3.20)
Y ox

W(z,y,t) = csy — UpLtanh(y/L) + AsUyLsech?(y/L) cos(k1x)
+ AsUgLsech?(y/ L) cos(kaa — oat)
+ AUpLsech®(y/L) cos(kiz — o1t)

with stream function

and parameters chosen as in [195]. The domain 2 is quasi-periodic in z-direction. The Bickley jet
is widely used as a benchmark problem in the coherent set literature, e.g., in Refs. 161}, |194-198|

We expect to find a separation into nine coherent sets, where the domain 2 is separated into
an upper ),p and lower oy, part with three circular coherent sets each, a coherent layer that is
between 2, and {2qown and the remainder of €, and €y, sans the circular coherent sets, as
illustrated in any of the panels of Fig. column 4.

Because the is not autonomous (meaning x = f(¢,x) depends on time t), we restrict
ourselves to methods that support time-inhomogeneous dynamics, in particular
VAMPNets, and KVADNets. In order to fit the respective Koopman models, we
first integrate N = 3000 particles whose positions are drawn uniformly in €2 from ¢y = 0 to t; = 40.
From the resulting trajectories we use the initial time particle position matrix X € Q~ and final
time particle position matrix Y € QV to find an embedding with corresponding Koopman or
Perron—Frobenius operator that describes transport from x; to y;.

The visualization of the first three estimated dominant singular functions already reveals
some of the coherent structure of the underlying process (see Figure columns 1-3). All of
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Figure 3.5: Comparison of different Koopman operator methods for coherent set
detection. Columns 1-3 show the first, second, and third dominant singular function of the
respective estimated Koopman operators. Column 4 shows a k-means clustering with £ =9 on
the initial data after it has been transformed by the first nine respective singular functions. (a)
with a Gaussian kernel with bandwidth and regularization parameter optimized to
maximize the VAMP-2 score. (b) [Variational approach for Markov processes| (VAMP)-estimated
model, where the ansatz featurization consists of a set of randomly shifted and distorted Gaussian
functions f(x) = exp(—2?). (c) VAMPNets with multilayer perceptron lobes. (d) with
the same ansatz as and a Gaussian kernel with bandwidth o = 1. (e) KVADNets with
a Gaussian kernel with bandwidth ¢ = 0.5 and a feature transformation given by multilayer
perceptrons.
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the methods yield similar results and, with different degrees of sharpness, each show the three
vortices in the upper part and lower part of the domain.

To obtain crisp assignments to for a predefined number of coherent sets we perform k-means
clustering using kmeans++ initialization with k£ = 9 cluster centers with one cluster center
belonging to exactly one coherent set. The clustering is repeated 500 times and we select the
cluster centers which yield the smallest cumulative squared distance between sample points and
assigned cluster center (sometimes referred to as “inertia”). In the last column of Figure the
particle positions at ¢ = 0 are color-coded according to their cluster membership.

For both [VAMP] and [KVAD| we set up the feature functions in the following way: Weight
matrices W; € R'09%3 1, € R%%190 are generated by drawing i.i.d. samples from the normal
distribution A(0,1) and bias vectors b; € R!% b; € R5Y are generated by drawing i.i.d. samples
from the uniform distribution &(—1,1). The vector-valued feature function is then given by

F:R%2—> IRSO, X = Waoo (W1 T (x) + b1) + b,

where o(z) = exp(—z?) acts component-wise and T is a transformation that embeds the two-
dimensional data into three dimensions by mapping it onto a cylinder

, , . Cf)s(27rx/20)
T:R* — R, (y) — Sm(2y7;§/20) , (3.21)

accounting for the quasi-periodicity of the domain (2. is equipped with a Gaussian kernel
with bandwidth o = 1.

For VAMPNets, the instantaneous and time-lagged lobes are each a jmultilayer perceptron|
with shared weights. The two-dimensional data is first transformed into three dimensions
to account for quasi-periodicity in z direction via and subsequently transformed through
a batch normalization layer. The [MLPE possess layers with 256, 512, 128, 128, and 9 neurons,
respectively, separated using ELU nonlinearities and dropout (p = 50%).

In the case of KVADNets there is per definition just one lobe. Its architecture is the same as
for VAMPNets.

All models project onto the dominant nine singular functions.

(a) We use a Gaussian kernel where the bandwidth and regularization parameter
maximize the VAMP-2 score (o &~ 0.58, ¢ ~ 5.6 - 1073). Optimization was performed with
SLSQP [192]. The first singular function shows a clear separation between upper and lower
part of the domain as the dominant process. The vortices are circular in shape and can be
observed in the evaluation of the singular functions as well as the clustering.

(b) [VAMP| The results are qualitatively comparable to the ones of kernel CCA| however the

clustering is less pronounced.

(¢) VAMPNets. Some of the coherent structures are clearly visible in the first three singular
functions. The clustering is pronounced; however, it yields vortices of varying sizes.

(d) We use a Gaussian kernel with bandwidth ¢ = 1. The results are qualitatively
comparable to VAMP.

(e) KVADNets. Here the vortices can easily be detected in the singular functions; however,
the shape is less circular compared to the other methods. Furthermore, the first singular
function has a less pronounced decision surface between upper and lower part of the domain;
rather, it almost exclusively describes the exchange of mass between two individual vortices.
The clustering, however, is sharp and is comparable to the other methods in terms of the
detected sets.
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While differences in estimated coherent sets can be evaluated qualitatively by visual inspection,
we now seek to compare the methods in a quantitative fashion and try to determine a “best”
subdivision into coherent sets according to some criterium.

To this end, we define a “coherence score”. Let x; = Py, +(x0) be the flow describing the
solution of the governing equations given an initial position x¢ at initial time ¢y. Since in this
example the ground truth dynamics are known, we can take our definition of a coherent set
as template. For a subdivision of § into disjoint coherent sets | J; A; = €, the score restricted to
one set A; is defined as

s =P (@14, 0Ny 0@y, 1) (x1,) € Ai | x40 € A (3.22)

coh *

where N, (x) := x + on distorts the forward-mapped x¢ by white noise n = (71,...,74)", 17; ~
N(0,1) with standard deviation . In this example, we chose ¢ = 10~!. In other words,
Equation describes the probability of a particle staying inside set A; C Q under propagation
forward in time, addition of noise, and subsequent back-propagation to its initial time. This
concept is illustrated in Figure [3.6f. Following the arrows in the figure, it depicts a subset A; at
top = 0 in blue and red, the remainder is colored in light gray. The particles are then propagated
according to the flow ®;, 4, to the final time ¢; = 40 (upper right panel). The map N, is applied,
yielding slightly different particle positions at t; (lower right panel). Subsequently, the distorted
particles are mapped back to tg = 0. As one might expect, the particles leaving A; aggregate
at the set’s boundary. The figure uses the subdivision of the domain that is yielded by the
KVADNets trained transfer operator (see Figure )

Finally, Figure shows the forward-backward mapping for each of the coherent sets. For
clarity, we do not distinguish leaked particles from the respective sets but only show them as
generally leaked from any of the sets. It can be observed that most of the interior area of the
detected vortices remains vacant of leaked particles.

In order to arrive at one value for all estimated coherent sets, we consider the expectation

_ 7]~ Mo (Ai) )
Scoh = By, [scoh} = i Tto(ﬂ) Sean- (3.23)

For practical evaluation of the score, we estimate a [MSM]| without a reversibility constraint (see
Section on n = 2500 discrete trajectories with nine states corresponding to the coherent
sets, each trajectory corresponding to one individual particle and containing exactly two entries;
namely, the coherent set before and after application of the forward-backward dynamic as given
in (3.22). Then, the ith diagonal entry of the transition matrix is exactly the coherence score
corresponding to the ith coherent set A;. The distributions i, (A4;) and p,(£2) are the empirical
distributions; i.e., the number of particles initially inside set A; and the total number of particles
N, respectively.

A drawback of this score is that it does not indicate how faithfully the discovered coherent
sets represent the system’s dynamics. If, for example, the entire domain is its own coherent set,
the score is maximized. Therefore, the score should be considered in conjunction with
other indicators such as the [VAMP] or score.

We compare these metrics in Table[3.I] For all used methods of this example it shows the
coherence score, the VAMP-2 score, and the KVAD score calculated with a Gaussian kernel with
bandwidth ¢ = 0.5.

The table also reports standard deviations, which are obtained by repeating the scoring
for fifteen rounds of n = 2500 independently and over the domain uniformly sampled initial
particle positions. According to the coherence score, KVADNets deliver the best subdivision
into coherent sets, with as a close second. This is also reflected in their respective

48



3 ,;.." T -"“T Lo b ‘.'r - ...;'
"... e —_ e ‘o ot
=31 t = 0] 7 t = 20] 7 t = 40]
T T T T T T T l T
- - Y - > . Bt s
3 4 Py '-.b-.. o gk 5 ‘...-.}
v -«— ; ‘ <« | SRR .
=3 = N = N =
T T T T T T T T T
(b)
3 e 3 g2onan e, -?,-l'.'{“ 1 f."..:ﬁ.’\n‘:p = vl v N el - "?‘ -."..‘-'.!‘.-
- —> — 8
—3 T =0 1 = 20 T t =40
T T T T T T T 1 T
3 1 sy 2y - &8 -‘.'.';_7‘.*.:,‘. s Y e T, b
2 | — s -«—
=31 t =0 7 ==390) 7 t = 40
T T T T T T T T T
0 10 20 0 10 20 0 10 20

Figure 3.6: Coherence in the Bickley jet. This figure demonstrates the concept of “leaked”
particles used for defining a coherence score. Particles are colored according to their coherent
set membership or marked as leaked (red dots). (a) Particles that stay assigned to a particular
coherent set (blue dots) and particles that change their set membership under the forward-
backward transformation with noise (red dots) as detected by KVADNets. The top row depicts
application of forward dynamics, bottom row application of noise and backward dynamics,
respectively. Particles initially not belonging to the considered coherent set are shown in grey.
(b) Generalization of (a) depicting all coherent sets; red dots now depict particles leaking from
any coherent set.

Table 3.1: Coherence scores on Bickley jet. Table showing different kinds of scores with
standard deviations for different methods used for coherent set detection using the Bickley
jet example (Section . For the evaluation of the KVAD score, a Gaussian kernel with
bandwidth o = 0.5 was chosen. The methods are in ascending order from left to right according
to their coherence score.

IKVADl 'AMP VAMPNets |Kernel CCAI KVADNets
Coherence score  0.74 +0.01 0.77 +0.01 0.79 £ 0.01 0.85+0.01 0.87 +0.01
VAMP-2 score 4.63 +0.06 5.18 £ 0.08 7.28 +0.06 5.77 +0.08 6.03 + 0.09

KVAD score 0.070+1.2-1073

0.073+1.1-1073

0.078 £ 1.1-1073

0.080 +1.4-1073

0.087+1.2-1073
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VAMP-2 and KVAD scores. In contrast to which yields the same sequence of methods (if
ordered ascendingly) as the coherence score, the VAMP-2 score for VAMPNets is an outlier. The
VAMP-2 score for VAMPNets is significantly higher compared to any of the other methods. The
Bickley jet is a deterministic system and therefore the Koopman operator associated to it is not
Hilbert—Schmidt—a violation of the assumptions that are made to define the VAMP scores. Up
to noise effects caused by numerical integration, this might be the cause of the high score of
VAMPNets.

It should be noted that the coherence score can still be approximated if the ground truth is not
known or too expensive to compute by using a propagation model of the form . Assuming a
good representation of the slow dynamics (which is indicated by a high VAMP or KVAD score),
the error of integrating backwards in time with is small.

3.4 Markov state models

[Markov state models| (MSMs)) are stochastic models describing the time evolution of a random
process {x:}1>0, x¢ € Q (see Refs. |127H135) and describe Markov chains with memory depth
of 1. In other words, given a sequence (...,X;_2,,X¢—r,X;) With a set of possible states Q, the
conditional probability of encountering a particular state x4, € §2 is only conditional on x; € S;
ie. P(X¢qr|Xt, Xtmr, Xt—27y -..) = P(Xeq+|X¢). In contrast to the methods presented in Section [3.3]
we assume that we have a finite number of discrete states. Therefore we consider

S={1,....,n}=Q (3.24)

as state space for the remainder of this section. Often we are presented with data that does not
live in a countable or even finite state space. In these cases, the state space is tessellated using a
finite amount of indicator functions. Typically, the tesselation is a Voronoi decomposition.

As shown at the example of the Prinz potential (Figure 3.7h), the fineness of the chosen
discretization affects approximation quality [133]. The estimated transition matrix can
approximate the dynamics with higher spatial resolution in a finer discretized space (Figure )
Furthermore, the discretization has implications on the estimated eigenfunctions and, in particular,
the estimated stationary distribution (Figure ) Evaluating the eigenvalues for a given
discretization yields a comprehensive picture of the model’s quality (Figure ) as the true
eigenvalues present an upper bound to the estimated ones (variational principle [90]): the sum of
eigenvalues reflects the VAMP-1 score.

fit into the framework of transfer operators as introduced in Section (see Figure .
In particular, an indicator function ansatz used with and/or yields an When
indicator functions are used with one obtains generalized (GMSMs), which are
capable of representing time-inhomogeneous dynamics. We suggest Refs. |[133-135| for thorough
reviews.

The conditional probabilities in the framework are described by a transition matrix
P € R™*", where n = |S| is the number of states. The transition matrix is given by

Pij = P(xiqr = jloe =1) Vi 20, (3.25)

i.e., the time-stationary probability of transitioning from state i € S to state j € S within time 7.
This also means that P is a row-stochastic matrix. Note that the [MSM] transition matrix is a
special case of a transfer operator approximation (see Section , where the ansatz consists of
indicator functions.

Dynamical quantities of interest can be computed from an [MSMs transition matrix, e.g.,
mean first passage times and fluxes among (sets of) states [199], implied timescales [133], or
metastable decompositions of Markov states [200].
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Figure 3.7: [Markov state models| (MSMs) on Prinz potential. Spectral decomposition
for a random walk in a asymmetric 1D 4-well potential; the corresponding potential function (upper
part) with histogram of simulated data (lower part) is depicted in (a). (b) shows transition
matrix estimates for various discretizations, from very coarse (b).1 to very fine (b).6. The discrete
states are sorted in ascending order with respect to their corresponding z-coordinate. (c¢) depicts
the four dominant left eigenvectors; discretizations are color coded from faint (coarse) to strong
colors (fine discretization). The eigenvalues corresponding to the nonstationary eigenvectors are
depicted in (d) in the same color.
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3.4.0.0.1 MSM estimation with deeptime The goal of the deeptime.markov module
is to provide tools to estimate and analyze from discrete-state time series data. If the
data’s domain is not discrete, classical discretization algorithms (such as the ones implemented in
deeptime.clustering) can be employed to assign each frame to a state.

In what follows, we introduce the core object, the MarkovStateModel, as well as a variety
of estimators. An overview of the main models contained in the markov module is depicted in
Figure 3.8

deeptime implements maximum-likelihood estimators for Markov state models as well as
Bayesian sampling routines [201], leading to MarkovStateModel and BayesianPosterior model
instances, respectively. An integral component of estimation and sampling based on time
series data is collecting statistics over the encountered state transitions (transition counting),
which leads to a TransitionCountModel.

Bayesian sampling of leads to a BayesianPosterior that consists out of one Ma
rkovStateModel instance representing the prior as well as the sampled MarkovStateModels
instances (see Figure ) Each MarkovStateModel possesses a transition matrix (3.25) and,
if available, statistical information about the data in the form of a transition count matrix.
Furthermore, deeptime provides augmented Markov models (AMMs) [202] which can be used
when experimental data is available, as well as observable operator model (OOMs) [138].
OOMs are unbiased estimators for the transition matrix that correct for the effect of being
presented with out of equilibrium data even when short lag-times are used. Both AMMs and
OOMs inherit from the MarkovStateModel class definition.

Whileare a special case of the transfer operator model (cf. Section and Figures
and , they can be converted to CovarianceKoopmanModels of two different types. In one case,
one can define the Koopman operator solely based on the transition matrix and corresponding
stationary distribution; i.e., without respect to any statistical information. In the other case,
when statistical information is present in the form of a TransitionCountModel, the statistics
over transition counts may be used to estimate an empirical distribution according to which
the Koopman operator is defined. The choice of Koopman model is up to the user; therefore,
in deeptime do not inherit from CovarianceKoopmanModel but rather offer properties
yielding respective instances of CovarianceKoopmanModel.

When estimating from data, deeptime assumes that the data is in the form of k > 1
trajectories 11, T5, ..., Ty which comprise sequences of discrete states, i.e.,

T; = (51,52, -,5n,), Vj=1,...,n;:5; €5, (3.26)

where n; is the length of the i-th trajectory and S = {0,1,..., Ng — 1} is the set of discrete
states. In terms of further analysis it can be desirable to restrict the discrete state space onto
a subset of S’ C S, e.g., when certain state transitions are not populated and/or to select an
ergodic subset. This task is best performed using a TransitionCountModel instance prior to
estimating an m as it possesses methods to produce new instances of the transition count
model but restricted onto S’.

3.4.0.0.2 Hidden Markov models In many applications, the observed processes are only
approximately Markovian in discrete state space; i.e., are only approximately valid [133].
The Markovianity assumption for the observed dynamics is discarded for [hidden Markov models|
which assume that the modeled stochastic process is hidden (not directly observable).
Therefore, the central object of the is the transition matrix P among hidden states s; € S.
The transition matrix P can be estimated from the time series of observable states O with the
Baum-Welch algorithm [136} |203205]. Briefly: alongside the transition matrix P, for each hidden
state s; € S the algorithm estimates an emission probability for a given observable state o; € O.
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Figure 3.8: Class diagram showing relationships of main models contained in the
markov package. We show two of the sub-packages of the markov module. Classes may be
related via inheritance (—), composition (-e), or produce objects of another kind (). In
case of composition, we further denote the cardinality of the relationship next to the arrow. (a)
msm. The markov.msm package has the [Markov state modell (MSM]) at its core. It is completely
determined by a transition matrix, but may also contain information about the statistics of
data, in which case it possesses a TransitionCountModel. Furthermore there are AugmentedMsSM
and KoopmanReweightedMSM subclasses. An is also a Koopman model using indicator
basis functions; therefore, it can generate corresponding CovarianceKoopmanModel objects (see
Section and Figure . Bayesian sampling around an leads to BayesianPosteriors,
consisting of the prior and drawn samples. (b) hmm. This package contains estimators and
models corresponding to hidden Markov model estimation. A HiddenMarkovModel consists out
of a transition_model which describes evolution of a hidden state and an OutputModel which
assigns a distribution over observable states to each hidden state. The discrete output model
assigns each hidden state a discrete probability distribution over states, the Gaussian output
model samples from one-dimensional Gaussians with means and variances conditioned on the
hidden state. Same as Bayesian sampling is available for [hidden Markov models| (IMMg)),
leading to a BayesianHMMPosterior.
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therefore provide a (time-dependent) mapping between observable and hidden states along
with the transition matrix P [137]. This further allows us to estimate a maximum likelihood
pathway of the trajectories in the hidden state space (Viterbi algorithm [206]).

Because the Baum—Welch algorithm converges to a local likelihood maximum [137], it is crucial
to provide a reasonable initial guess of the emission probabilities and initial state distribution.
deeptime offers multiple possibilities to initialize the estimation procedure (contained
in the deeptime.markov.hmm.init package), with a fallback option to a classical or
MSM-derived (e.g., PCCA [200]) estimate of the metastable dynamics.

The initial guess is an object of type HiddenMarkovModel (see Figure [3.8p). [HMDMS are
composed of an [MSM] which describes the hidden state transitions and an output model. The
output model is responsible for mapping a hidden state s; to an observable state o, = o(s;) € O.
deeptime offers DiscreteOutputModels which map each hidden state to a sample of a discrete
probability distribution over observable states as well as GaussianOutputModels which map a
hidden state to a sample of a one-dimensional Gaussian distribution with mean and variance
depending on the hidden state.

As with[MSMs| [HMMs|in deeptime also support Bayesian sampling following a Gibbs sampling
scheme detailed in Ref. |158. This produces a BayesianHMMPosterior which inherits from the
BayesianPosterior, (cf. Figure. , which allows samples of quantities of interest which can
be derived from an HMM instance to be collected.

3.5 Sparse identification of nonlinear dynamics

The [sparse identification of nonlinear dynamics| (SINDy)) algorithm [54] is a data-driven method for
discovering nonlinear dynamical systems models from measurement data using sparse regression.
The method also fits into the Koopman operator framework presented in Sections|2.1.1 and
since it is related to an approximation of the Koopman generator, defined by

L= tim (KT - ),

;
see Ref. 207 for details. The goal of [SINDy]is to approximate a nonlinear dynamical system

d
X= f(x) (3.27)

as a sparse linear combination of candidate functions 6 (x):

x ~ Z0(x). (3.28)

==

l
d
%xj ~ Zgjké?k(x) —
j=1

The matrix = is assumed to be sparse, with the nonzero elements determining which terms
in the library © are active in the dynamics. In practice, the library © is defined either to
contain a generic set of terms, such as monomials, or terms guided by partial knowledge of the
physical system. For example, metabolic regulatory networks often include rational function
nonlinearities [208]. However, monomomials often suffice, either because the governing physics is
polynomial (e.g., the Navier—Stokes equations for fluid dynamics), or because polynomials provide
a reasonable Taylor expansion of the dynamics into a normal form [209].

The sparse matrix = is typically identified via sparse regression based on a time series of data
X1,X2,...,X;, collected at times t1,to,...,,,. This data is organized into a matrix X € R"*™,
and a matrix of derivatives X is formed either by measuring the derivatives directly or numerically
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approximating them from the data in X. The library ® may now be evaluated on the data
matrix X, resulting in the following matrix system of equations

X ~ E20(X). (3.29)

The matrix = is then solved for in the following optimization
argming | X — ZO(X)||r + A|E]o- (3.30)
The first term measures the model error, while the || - ||o term counts the number of nonzero

elements in =, promoting sparsity. This zero norm is non-convex, and several relaxations are
available that yield sparse solutions [54} 210].

There are several extensions to e.g., incorporating the effect of actuation and con-
trol |211} |212] and to enforce partially known physics, such as symmetries and conservation
laws [213]. It is also possible to combine with deep autoencoders to identify a coordinate
system in which the dynamics are approximately sparse [209]. Other extensions include the
discovery partial differential equations [214} |215], the modeling of stochastic dynamics [207} |216
217], updating already existing models [218], and weak formulations of the problem [219-221],
among others [215] [222}224]. has also been extended to accommodate tensor libraries,
which dramatically increases its ability to handle systems with high state dimension [225]. This
sparse modeling procedure has been applied to discover new physical models, for example in fluid
dynamics [213}226], including for turbulence closure modeling [227].

It is important to note that also applies equally well to discrete time systems

Xk4+1 = F(Xk) (331)

in which case derivatives need not be estimated. If is formulated in discrete time with no
sparsity promoting term (i.e., A = 0) and with a library ®(x) = x, then the approximation
is recovered.

To demonstrate @ we consider the Rossler attractor [228], a system of exhibiting
chaotic behavior. Fig. [3.9] shows the reconstruction of the dynamic attractor for the Rossler
system of equations:

j?l = —X9 — I3
i’g =1 + axe
3'2‘3 = b+$3($1 —C)

with constants a = 0.1, b = 0.1, and ¢ = 14.

deeptime has two objects. The SINDy estimator is used to solve the optimization
problem given ©, X, and optionally X. By default the sequentially-thresholded least-
squares algorithm [54] is used to solve the optimization problem. If X is not user-provided, it is
estimated from X with a first order finite difference method.

The estimator produces a SINDyModel, representing the learned dynamical system. The model
can be used to predict derivatives given state variables, to simulate forward in time from novel
initial conditions, and to score itself against ground truth data.

The implementation is API-compatible to the Python package PySINDy [149], which in
particular enables users to make use of a wider range of optimizers defined in PySINDy.

3.6 Datasets

deeptime offers a range of datasets to which its methods can be applied. The datasets and
methods were purposefully designed to be non-domain-specific and to deliver data generators
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Figure 3.9: Reconstruction of the Rossler attractor using the [sparse identification of nonlinear|
[dynamics| (SINDy]) method.

rather than fixed datasets. As a result, the repository as well as package size are remain small and
generation parameters can be varied to study their effects on the algorithms. The data simulators
are structured so that performance-critical parts are implemented in C++ and the generation
procedure is not very time consuming.

In particular, a range of example of the form

dXt = F(t, Xt)dt + O'th,

where F : R x R = R?, W, a d-dimensional Wiener process, and ¢ € R**?, are implemented.
All these are integrated using an Euler-Maruyama integrator. While the definition of these
examples happens in C++, it is set up in such a way that also C++-inexperienced users can
natively define their own. In Listing [C] we show an example of such a definition.

For example, the definition of a double well system

dx; = =VV(x)dt + odW;, V() = (x] — 1) +x3,

with x; € R? and o = diag(0.7,0.7) can be achieved by a struct definition detailing the evaluation
of the right-hand side. Many of the parameters of the system can be made available at compile-
time, enabling further optimizations by the compiler. An example trajectory as well as a contour
plot of the potential landscape can be found in Figure [3.10h. By making information such as the
data type (e.g., float or double), the dimension of the state space, the integrator, and o available
at compile time, the compiler can perform further optimizations and potentially vectorizations
that it otherwise could not, reducing the time it needs for evaluation.

Users also have the option to define the right-hand side F(x;) as well as the diffusion matrix
o in Python at some performance penalty (see Figure . Three different implementations are
compared: one native C++ implementation, one implementation where just o and the right-hand
side are defined in Python, and one native Python implementation. One can see that roughly
one order of magnitude in terms of evaluation performance is gained from native Python to
a mixed Python/C++ implementation and from the mixed implementation to a native C+-+
implementation.

A drawback of making this information known at compile time is that for the mixed
Python/C++ implementations, the dimension needs to be predefined; i.e., it must be explicitly
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Figure 3.10: Two-dimensional double-well example system. We show a performance
comparison between three different implementations of a two-dimensional double well system. (a)
Potential landscape V (x) = V(x1,%3) = (x2 — 1)? + x3 with example trajectory under diffusion
matrix ¢ = diag(0.7,0.7) and state snapshots taken every 10* steps. (b) Time elapsed over
number of evaluations, while one evaluation corresponds to evolving the state by 100 steps under
a integration step size of h = 1073, “Python” refers to a native Python implementation, “C++"
refers to a native C++ implementation, and “mixed” refers to a C++ implementation, where the
diffusion matrix as well as the gradient of the potential are defined in Python.

exported when generating the Python bindings. On the other hand it improves performance and
one can first prototype a system using the Python-defined diffusion matrix and right-hand side,
and then eventually move the implementation to native C++ with relative ease.

3.7 Discussion and outlook

We have outlined the key components of deeptime’s API and discussed the corresponding theory
and methods as well as their relationships, in particular transfer operator based methods which
can be used for dimension reduction, coherent set detection, analysis of kinetic quantities, and
discovery of governing dynamics. These applications were each demonstrated with respective
examples.

For future development we are actively looking for contributors and want to extend the
currently available library of methods and datasets. For example there is a version of VAMPNets
which allows the inclusion of experimental data. The module can be extended to include
neural network based estimation of dynamics. Also the [ HMM] module can be extended to support
a richer set of output models. Furthermore the inclusion of more example datasets is desirable as
this enables users to test and analyze existing or new methods and draw comparisons.

Finally we are planning to integrate time series specific chunking and streaming capabilities
so that methods which support online learning can more easily be used with data streams.
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Chapter 4

ReaDDy2: Fast and flexible
software framework for
interacting-particle reaction
dynamics

The results of this chapter were originally presented in Ref. [P1}

M. Hoffmann, C. Frohner, F. Noé. “ReaDDy 2: Fast and flexible software
framework for interacting-particle reaction dynamics”. In: PLoS Comput.
Biol. (2019). URL: https://doi.org/10.1371/journal.pcbi.1006830.

Text and illustrations have been adopted largely unchanged in this document. The
above publication is open access and distributed under the terms of the Creative Com-
mons Attribution License (CC BY 4.0, https://creativecommons.org/licenses/
by/4.0/).

Moritz Hoffmann (MH) was lead author and sole first author in this project. The work
was developed in collaboration with Christoph Frohner (CF) and is therefore also part
of the dissertation of CF. The author contributions were as follows: MH, CF, and
Frank Noé (FN) conceived the project. MH implemented the majority of ReaDDy2. CF
implemented parts of ReaDDy2. MH laid out and implemented the concept of topology
reactions as detailed in Section MH carried out the performance analysis of
Section CF laid out the validation scenarios presented in Sections [.4.1H4.4.3]
and MH and CF laid out the scenarios presented in Section MH and CF
analyzed and visualized the data. All contributors wrote the paper.

[[nteracting-particle reaction dynamics| (iPRD|) combine the simulation of dynamical trajectories
of interacting particles as in [MD] simulations with reaction kinetics, in which particles appear,
disappear, or change their type and interactions based on a set of reaction rules. We introduced
as a combination of overdamped Langevin dynamics and reactive particles in Section
This combination facilitates the simulation of reaction kinetics in crowded environments, involving
complex molecular geometries such as polymers, and employing complex reaction mechanisms
such as breaking and fusion of polymers. simulations are ideal to simulate the detailed
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spatiotemporal reaction mechanism in complex and dense environments, such as in signaling
processes at cellular membranes, or in nano- to microscale chemical reactors.

The complexity of the simulated systems often exceeds the complexity of systems typically
analyzed with the tools introduced in Chapter [3| Also computational costs play a big role, as
systems can contain many thousand particles and potentially very long trajectories are required
to acquire sufficient sampling. Here, we introduce the implementation ReaDDy2, which
aims to be both computationally efficient but also user-friendly. It is validated on several model
systems with comparisons against—if available—analytically obtained quantities and results from
the literature.

4.1 Introduction

Other available simulation tools that are capable of special cases of simulations are, e.g.,
the packages LAMMPS [41] which is capable of forming and breaking bonds dynamically
and ESPResSo [229) 230] which additionally has an implementation of catalytic reactions. In
comparison to the simulator ReaDDy [68], these do not support full and are built and
optimized for particle numbers that stay roughly constant. Comparing and classical PBRD|
without interactions, the interaction potentials can be used to induce structure on mesoscopic
length scales, e.g., volume-exclusion in crowded systems [68) [231], clustering of weakly interacting
macromolecules [232], restriction of diffusing particles to arbitrarily-shaped membranes [6, [22,
68]. Furthermore it allows to study the large-scale structure of oligomers [233], polymers and
membranes [234]. When not only considering interactions but also reactions, a wide range of
reactive biochemical systems are in the scope of the model. For example, the reaction dynamics of
photoreceptor proteins in crowded membranes [22] including cooperative effects of transmembrane
protein oligomers [6] have been investigated. Another example is endocytosis, in which different
proteins interact in very specific geometries 235, 236]. The simulation tool Cytosim [237]
is another software package that can be used to investigate mesoscopic biochemical systems,
specifically geared towards the simulation of the cytoskeleton.

The price of resolving these details is that the computation is dominated by computing particle-
particle interaction forces and—depending on the system’s density and reactivity—evaluating
reactions. Although non-interacting particles can be propagated quickly by exploiting solutions
of the diffusion equation [57, |69, [238| [239|, interacting particles are propagated with small
time-steps (240, 241], restricting the accessible simulation timescales whenever parts of the system
are dense. As this computational expense is not entirely avoidable when the particle interactions
present in are needed to model the process of interest realistically, it is important to have a
simulation package that can fully exploit the computational resources.

ReaDDy2 provides a Python interface in which the simulation environment, particle interactions
and reaction rules can be conveniently defined and the simulation can be run, stored and analyzed.
A CH+ interface is available to enable deeper and more flexible interactions with the framework.
The main computational work of ReaDDy2 is done in hardware-specific simulation kernels. While
the version introduced here provides single- and multi-threading CPU kernels, the architecture is
ready to implement GPU and multi-node kernels. We demonstrate the efficiency and validity of
ReaDDy2 using several benchmark examples. ReaDDy?2 is available at the https://readdy.github.io/
website.

The library is significantly faster, more flexible, and more conveniently usable than its
predecessor ReaDDy |68, [242]. Specifically, ReaDDy?2 includes the following new features:

¢« Computational efficiency and flexibility: ReaDDy2 defines computing kernels which
perform the computationally most costly operations and are optimized for a given computing
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environment. The current version provides a single-CPU kernel that is four to ten times
(depending on system size) faster than ReaDDy, and a multi-CPU kernel that scales with
80% efficiency to number of physical CPU cores for large particle systems (Section .
Kernels for GPUs or parallel multi-node kernels can be readily implemented with relatively
little additional programming work (Section .

e Python user interface: ReaDDy2 can be installed via the conda package manager and
used as a regular python package. The python interface provides the user with functionality
to compose the simulation system, define particle interactions, reactions and parameters, as
well as run, store and analyze simulations.

e C++ user interface: ReaDDy2 is mainly implemented in C++-. Developers interested in
extending the functionality of ReaDDy2 in a way that interferes with the compute kernels,
e.g., by adding new particle dynamics or reaction schemes, can do that via the C++ user
interface.

» Reversible reaction dynamics: ReaDDy2 can treat reversible reactions by using
steps that obey detailed balance, as described in [243] (iPRD-DB), and thus ensure correct
thermodynamic behavior for such reactions (Section |4.4.1]).

¢ Topologies: We enable building complex multi-particle structures, such as polymers, by
defining topology graphs (briefly: topologies, see Section . As in simulations,
topologies are an efficient way to encode which bonded interactions (bond, angle and torsion
terms) should act between groups of particles in the same topology. Note that particles in
topologies can still be reactive. For example, it is possible to define reactions that involve
breaking or fusing polymers (Section [4.4.4).

¢ Potentials and boundaries: Furthermore, the range of by default supported interaction
potentials has been broadened, now including harmonic repulsion, a harmonic interaction
potential with a potential well, Lennard—Jones interaction, and screened electrostatics. The
simulation volume can also be equipped with partially or fully periodic boundary conditions.

This chapter summarizes the features of ReaDDy2 and the demonstrates its efficiency and validity
of ReaDDy?2 using several benchmarks and reactive particle systems. With few exceptions, we limit
our description to the general features that are not likely to become outdated in future versions.

4.2 Interacting-particle reaction dynamics in ReaDDy2

The ReaDDy2 simulation system consists of particles interacting by potentials and reactions
(Figure at a temperature T. Such a simulation system is confined to a box with either
repulsive or periodic boundaries. A boundary always has to be either periodic or be equipped with
repulsive walls so that particles cannot diffuse away arbitrarily. To simulate in complex
architectures, such as cellular membrane environments with specific shapes, additional potentials
can be defined that confine the particle to a sub-volume of the simulation box (see Section .

ReaDDy2 provides a developer interface to flexibly design models of how particle dynamics
are propagated in time. The default model, however, is overdamped Langevin dynamics (cf.
Section with isotropic diffusion as this is the most commonly used [PBRD|and [iPRD| model.
In these dynamics a particle ¢ moves according to the given in Equation ([2.18).

In ReaDDy?2 the default assumption is that the diffusion coefficients D) (T') are given for the
simulation temperature 7. Additionally, we offer the option to define diffusion coefficients for a
reference temperature Ty = 293K and then generate the diffusion coeflicients at the simulation
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Figure 4.1: The simulation model.

involving two, three or four particles. As in[molecular dynamics| force fields, bonded potentials
are defined within particle groups called “topologies” whose bonding structure is defined by
a connectivity graph. (b) Reactions: Most reactions are unimolecular or bimolecular particle
reactions. Topology reactions act on the connectivity graphs and particle types and therefore
change the particle bonding structure. (c) Simulation box: The simulation box with edge lengths
Ly, €y, and £,. It can optionally be periodic in a combination of z, y, and z directions, applying

the minimum image convention.
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temperature T by employing the Einstein-Smoluchowski model for particle diffusion in liquids [244}
245):
. , T
DI(T) = DD(Ty) —.
To
This way, simulations at different temperatures are convenient while only having to specify one
diffusion constant. Using this model, the dynamics are given by

i DI(Ty) i .
ax® = ~ 2200 gy 1 Jap )
k5T

T W
—dW,". 4.1
TO t ( )
This means that the mobility is preserved if the temperature changes and (2.18) is recovered for
T ="T,.

A simple integration scheme for (2.18)) is Euler-Maruyama, as detailed in Equation (2.19).
Using the modified dynamics (4.1]), the integration scheme reads

i iy DTy . D () L

where—same as in (2.19)— > 0 is a finite time step size and 1, ~ @7, N(0,1).

The particles’ positions are loosely bound to a cuboid simulation box with edge lengths
Ly, Ly, L, (cf. Figure . If a boundary is non-periodic it is equipped with a repulsive wall given
by the potential

3
1
Voan 1 R® 5 R, x5 ) S kd(xi, W;)? (4.3)

i=1
acting on every component i of the single particle position x, where k is the force constant,

3
W = H WZ = H |:xt()Z1r)igin’ xc()lr)igin + xg()tent:|
i=1 i=1

the cuboid in which there is no repulsion contribution of the potential, and
d(-,W;) = inf {d(-,w) : w € W;}

the shortest distance to the interval W;. The cuboid can be larger than the simulation box in the
periodic directions. In non-periodic directions there must be at least one repulsive wall for which
this is not the case.

Due to the soft nature of the walls particles still can leave the simulation box in non-periodic
directions. In that case they are no longer subject to pairwise interactions and bimolecular
reactions however still are subject to the force of the wall pulling them back into the box.

Other types of dynamical models and other integration schemes can be implemented in ReaDDy2
via its C++ interface. For example, non-overdamped dynamics, anisotropic diffusion [241} [246],
hydrodynamic interactions [247], or employing the MD-GFRD scheme to make large steps for
noninteracting particles will all affect the dynamical model and can be realized by writing suitable
plugins.
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4.2.1 Potentials

The deterministic forces are given by the gradient of a many-body potential energy U (see
Figure |4.1h)

ft(i) =V; Z Uext (xi) + Z Upair (%3, %;) + Z Utriple (%i, X, Xp) + .
i i#j i#j#k

The potentials are defined by the user. ReaDDy2 provides a selection of standard potential terms,
additional custom potentials can be defined via the C++ interface and then included into a
Python simulation script.

External potentials only depend on the absolute position of each particle. They can be used,
e.g., to form softly repulsive walls and spheres, or to attach particles to a surface, for
example to model membrane proteins. Furthermore the standard potential terms enable the user
to simulate particles inside spheres and exclude particles from a spherical volume. The mentioned
potential terms can also be combined to achieve more complex geometrical structures. Under
the hood, ReaDDy2 makes it easy to define harmonic inclusion and/or exclusion potentials: if a
function is provided which gives the shortest difference vector between a position and the surface
of the geometry, one can automatically use it as harmonic potential in a simulation as custom
geometry.

Pair potentials generally depend on the particle distance and can be used, e.g., to model space
exclusion at short distances.

A fundamental restriction of ReaDDy2 interaction potentials is that they have a finite range
and can therefore be cut off. This means that, e.g., full electrostatics is not supported but screened
electrostatic interactions are implemented (see Section . Additionally a harmonic repulsion
potential, a weak interaction potential made out of three harmonic terms, and Lennard—Jones
interaction are incorporated.

ReaDDy2 has a special way of treating interaction potentials between bonded particles. Topolo-
gies define graphs of particles that are bonded and imply which particle pairs interact via bond
constraints, which triples interact via angle constraints, and which quadruplets interact via a
torsions potential. See Section for details.

4.2.2 Reactions

Reactions are discrete events, that can change particle types, add, and remove particles (see
Figure ) In ReaDDy2, the Doi reaction model (cf. Section is used. That means, that
each reaction is associated with a microscopic rate constant A > 0 which has units of inverse time
and represents the probability per unit time of the reaction occurring. The integration time-steps
used in ReaDDy2 should be significantly smaller than the inverse of the largest reaction rate. We
compute reaction probabilities by Equation under a integration time step 7.

In the software it is checked whether the time step 7 is smaller than the inverse reaction rate
up to a threshold factor of 10, otherwise a warning is displayed as discretization errors might
become too large. In general, ReaDDy2 reactions involve either one or two reactants. At any
time step, a particle that is subject to an unary reaction will react with probability p(A; 7). If
there are two products, they are placed within a sphere of specified radius R, around the educt’s
position x¢. This is achieved by randomly selecting an orientation n € R3, distance d < Ry,
and weights w; > 0,wy > 0, s.t. w; +we = 1. The products are placed at x; = xg + dwin
and xo = xg — dwson. Per default, w; = we = 0.5 and the distances d are drawn such that the
distribution is uniform with respect to the volume of the sphere. When it is necessary to produce
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pairs = []
triples = []
quadruples = []

G=G(V,E) # a graph with vertices V and edges E
for v; € V:

for v; € N(v;): # all neighbors of v;
if i < j: # prevent finding both (v;,v;) and (v;,v;)
pairs.append((v;,v;))

for vy € N(v;) \ {v;}: # all neighbors of v; exzcept v;
for v € N(v;) \{vi,vx}: # all neighbors of v; except v; and vy
quadruples.append ((vg, v;, v;, 1))

for vy € N(v;) \ {v;}:
if k < j: # prevent finding both (vg,v;,v;) and (vj,v;,vy)
triples.append ((vg,v;, v;))

Listing 1: Algorithm to find all edges (v;,v;), triples (vg, v;,v;), and quadruples (v, v, v;,v;) in
a connected graph G up to reversing the order, i.e., if the triple (vj, v;, vx)—corresponding to an
angle—is detected, the same triplet (vy,v;,v;) is not recorded. Same for pairs corresponding to
bonds and quadruples corresponding to torsion potentials.

new particles, we suggest to define a producing particle A and use the unary reaction A — A+ B
with corresponding placement weights w; = 0,ws = 1 so that the A particle stays at its position.

A complex can be formed if there are two educts within a reactive distance of Ry, or less, where
Ry is a parameter, e.g., see Figure Fusion or Enzymatic reaction. The formation probability
is given in accordance to the Doi reaction model by p(A; 7).

Optionally ReaDDy2 can simulate reversible reactions using the reversible iPRD-DB scheme
developed in . This scheme employs a Metropolis—-Hastings algorithm that ensures the
reversible reaction steps to be made according to thermodynamic equilibrium by accounting for
the system’s energy in the educt and product states.

4.2.3 Topologies

Topologies are a way to group particles into superstructures. For example, large-scale molecules
can be represented by a set of particles corresponding to molecular domains assembled into a
topology. A topology also has a set of potential energy terms such as bond, angle, and torsion
terms associated. The specific potential terms are implied by finding all paths of length two,
three, and four in the topology connectivity graph. The used algorithm is sketched in Listing
The sequence of particle types associated to these paths then is used to gather the potential term
specifics, e.g., force constant, equilibrium length or angle, from a lookup table (Figure )

Reactions are not only possible between particles, but also between a topology and a particle
(Figure ) or two topologies. In order to define such reactions, one can register topology types
and then specify the consequences of the reaction on the topology’s connectivity graph. We
distinguish between global (or: structural) and local (or: spatial) topology reactions.

Global topology reactions are triggered analogously to unary reactions, i.e., they can occur at
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any time with a fixed rate and probability as given in . Any edge in the graph can be removed
and added. Moreover, any particle type as well as the topology type can be changed, which may
result in significant changes in the potential energy. If the reaction causes the graph to split into
two or more components, these components are subsequently treated as separate topologies that
inherit the educt’s topology type and therefore also the topology reactions associated with it.
Such a reaction is the topology analogue of a particle fission reaction.

A local topology reaction is triggered analogously to binary reactions with probability p(A; 7)
if the distance between two particles is smaller than the reaction radius. At least one of the two
particles needs to be part of a topology with a specific type. The product of the reaction is then
either yielded by the formation of an edge and/or a change of particle and topology types. In
contrast to global reactions only certain changes to particle types and graphs can occur:

o Two topologies can fuse, i.e., an additional edge is introduced between the vertices corre-
sponding to the two particles that triggered the reaction.

e A topology and a free particle can fuse by formation of an edge between the vertex of the
topology’s particle and a newly introduced vertex for the free particle.

o Two topologies can react in an enzymatic fashion, i.e., particle types of the triggering
particles and topology types can be changed.

e Two topologies and a free particle can react in an enzymatic fashion analogously.

In all of these cases the involved triggering particles’ types and topology types can be changed.

4.2.4 Simulation setup and boundary conditions

Once the potentials, the reactions (see Figure (a,b)), and a temperature 7' have been defined,
a corresponding simulation can be set up. A simulation box can be periodic or partially periodic,
see Figure [{.Ik. Periodicity in a certain direction means that with respect to that direction
particle wrapping and the minimum image convention are applied. Non-periodic directions require
a harmonically repelling wall as given in .

In order to define the initial condition, particles and particle complexes are added explicitly
by specifying their 3D position and type. A simulation can now be started by providing a time
step size 7 and a number of integration steps.

4.3 Design and Implementation

ReaDDy2 is mainly written in C++ and has Python bindings making usage, configuration, and
extension easy while still being able to provide high performance. To encourage usage and
extension of the software, it is Open Source and licensed under the BSD-3 license. It therefore
can not only be used in other Open Source projects without them requiring to have a similar
license, but also in a commercial context.

4.3.1 Design

The software consists of three parts. The user-visible toplevel part is the Python user interface, see
Figure . It is a language binding of the C++ user interface (Figure ) and has additional
convenience functionality. The workflow consists out of three steps:
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(a) Python library

readdy.ReactionDiffusionSystem readdy.Simulation readdy.Trajectory
generates output |
Define and configure ] . anﬁgl}re alnd um a files A .
Ty — reaction-diffusion simulation based Read back simulation output
on a configured system

Python
) language binding
C++

(b)

C++ core library

User interface Compute kernel interface

y

(c)

calls

Compute kernel implementation Dynamic linker

Figure 4.2: The software structure. (a) Python user interface: Provides a Python binding
to the “C++ user interface” with some additional convenience functionality. The user creates a
readdy.ReactionDiffusionSystem and defines particle species, reactions, and potentials. From
a configured system, a readdy.Simulation object is generated, which can be used to run a
simulation of the system given an initial placement of particles. (b) C++ core library: The
core library serves as an adapter between the actual implementation of the algorithms in a
compute kernel and the user interface. (¢) Compute kernel implementation: Implements the
compute kernel interface and contains the core simulation algorithms. Different compute kernel
implementations support different hard- or software environments, such as serial and parallel
CPU implementations. The compute kernel is chosen when the readdy.Simulation object is
generated and then linked dynamically in order to provide optimal implementations for different
computing environments under the same user interface.
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initialize_compute_kernel ()
if has_output_file:
write_simulation_setup()

set_up_neighbor_list()

compute_forces()

evaluate_observables()

while continue_simulating():
call_integrator()
update_neighbor_list()
perform_reactions()
perform_topology_reactions()
update_neighbor_list()
calculate_forces()
evaluate_observables()

tear_down_compute_kernel ()

Listing 2: ReaDDy2 default simulation loop. Each of the calls are dispatched to the compute kernel,
see Figure Furthermore, the user can decide to switch off certain calls in the simulation loop
while configuring the simulation.

1. The user is creating a readdy.ReactionDiffusionSystem, including information about
temperature, simulation box size, periodicity, particle species, reactions, topologies, and
physical units. Per default the configuration parameters are interpreted in a unit set well
suited for cytosolic environments (lengths in nm, time in ns, and energy in kJ/mol), e.g.,
particles representing proteins in solution. The initial condition, i.e., the positions of
particles, is not yet specified.

2. The system can generate one or many instances of readdy.Simulation, in which particles
and particle complexes can be added at certain positions. When instantiating the simulation
object, a compute kernel needs to be selected, in order to specify how the simulation will
be run (e.g., single-core or multi-core implementation). Additionally, observables to be
monitored during the simulation are registered, e.g., particle positions, forces, or the total
energy. A simulation is started by entering a time step size 7 > 0 in units of time and a
number of integration steps that the system should be propagated.

3. When a simulation has been performed, the observables’ outputs have been recorded into a
file. The file’s contents can be loaded again into a readdy.Trajectory object that can be
used to produce trajectories compatible with the VMD molecular viewer [248].

Running a simulation based on the readdy.Simulation object invokes a simulation loop.
The default simulation loop is given in Algorithm [2| Individual steps of the loop can be omitted.
This enables the user to, e.g., perform pure PBRD]simulations by skipping the calculation of
forces. Performing a step in the algorithm leads to a call to the compute kernel interface, see
Figure [£.2pb. Depending on the selected compute kernel the call is then dispatched to the actual
implementation. Compute kernel implementations (Figure ) are dynamically loaded at runtime
from a plugin directory. This modularity allows ReaDDy2 to run across many platforms although
not every computing kernel may run on a given platform, such as a CUDA-enabled computing
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kernel. ReaDDy2 version 2.0.11 includes two iPRD| computing kernels: a single threaded default
computing kernel, and a dynamically-loaded shared-memory parallel kernel.

The computing kernels contain implementations for the single steps of the simulation loop.
Currently, integrator and reaction handler are exchangeable by user-written C++ extensions.
Hence, there is flexibility considering what is actually performed during one step of the algorithm
or even what kind of underlying model is applied.

In comparison to the predecessor ReaDDy, the software is a complete rewrite and extension.
The functionality of the Brownian dynamics integrator has been preserved, however the reaction
handlers can behave slightly differently. In particular, if during an integration step a reaction
conflict occurs, i.e., there are at least two reaction events which involve the same educt particles,
only one of these events can be processed. One possibility of choosing the to-be processed event
is the so-called UncontrolledApproximation, which draws the next reaction event uniformly
from all events and prunes conflicting events. Another possibility is drawing the next reaction
event from all events weighted by their respective reaction probability. Since this approach is
loosely based on the reaction order in the Gillespie (cf. Section , this reaction handler
is named Gillespie in ReaDDy2.

With respect to the microscopic evaluation of a reaction event, the ReaDDy implementation
places product particles of fission type reactions at a fixed distance, which is handled more flexibly
in the current implementation, see Section 4.2.2

4.3.2 Performance

To benchmark ReaDDy2, we use a reactive system with three particle species A, B, and C
introduced in [68] with periodic boundaries instead of softly repelling ones. The simulation
temperature is set to 7' = 293K and the diffusion coefficients are given by D = 143.1 yum?s~!
Dg =71.6 um?s™!, and D¢ = 68.82 um? s~ !, respectively.

Particles of these types are subject to the two reactions A+B — C with microscopic association
rate constant Aon = 1073 ns~! and reaction radius R; = 4.5nm, and C — A + B with microscopic
dissociation rate constant Aog = 5 x 107°ns™! and dissociation radius Ry = R;. Particles are
subject to an harmonic repulsion interaction potential which reads

Elp —g)? orr<o
U(T):{(;( 2 forr <o, (8

)

, otherwise,

where 7 = ||x; — x;]|2 is the inter-particle distance, ¢ is the distance at which particles start to
interact and x = 10kJmol~! nm~2 is the force constant. The interaction distance o is defined
as sum of radii associated to the particles’ types, in this case r4 = 1.5nm, rg = 3nm, and
rc = 3.12nm.

All particles are contained in a cubic box with periodic boundaries. The edge length is chosen
such that the initial number density of all particles is py; = 3141nm~3. This total density is
distributed over the species, such that the initial density of A is ppo = ptot/4, the initial density
of B is pp = prot/4, and the initial density of C is pc = prot /2.

For the chosen microscopic rates these densities roughly resemble the steady-state of the
system. The performance is measured over a simulation time span of 300 ns which is much shorter
than the equilibration time of this system. Thus the overall number of particles does not vary
significantly during measurement and we obtain the computation time at constant density.

In the following the benchmark results are presented. A comparison between the sequential
reference compute kernel, the parallel implementation, and the previous Java-based ReaDDy [68]
is made with respect to their performance when varying the number of particles in the system
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Figure 4.3: Performance comparison. Average computation time per particle and integration
step for the benchmark system of Section [4.3.2] using a machine with an Intel Core i7 6850K
processor, i.e., six physical cores at 3.8 GHz, and 32 GB DDR4 RAM at 2.4 GHz (dual channel).
The number of particles is varied, but the particle density is kept constant. The sequential kernel
(orange) has a constant per-particle CPU cost independent of the particle number. For large
particle numbers, the parallel kernels are a certain factor faster (see scaling plot Figure .
For small particle numbers of a few hundred the sequential kernel is more efficient. ReaDDy?2 is
significantly faster and scales much better than the previous Java-based ReaDDy [68].

keeping the density constant. Since the particle numbers fluctuate the comparison is based on the
average computation time per particle and per integration step (Figure . The sequential kernel
scales linearly with the number of particles, whereas the parallelized implementation comes with
an overhead that depends on the number of threads. The previous Java-based implementation
does not scale linearly for large particle numbers, probably owing to Java’s garbage collection.
The parallel implementation starts to be more efficient than the sequential kernel given sufficiently
many particles.

Figure [£.4] shows the strong scaling behavior of the parallel kernel, i.e. the speedup and
efficiency for a fixed number of particles as a function of the used number of threads. For
sufficiently large particle numbers, the kernel scales linear with the number of physical cores and
an efficiency of around 80%. In hyperthreading mode, it then continues to scale linear with the
number of virtual cores with an efficiency of about 55-60%.

The number of steps per day for a selection of particle numbers and kernel implementation is
displayed in Table For a system with 13,000 particles and a time step size of 7 = 1ns (e.g.,
membrane proteins [68]), a total of 17 ms simulation time per day can be collected on a six-core
machine (see Figure for details). The current ReaDDy2 kernels are thus suited for the detailed
simulation of processes in the millisecond- to second timescale, which include many processes in
sensory signaling and signal transduction at cellular membranes.

4.4 Results

In the following, several aspects of the model applied in ReaDDy2 are validated and demonstrated
by considering different application scenarios and comparing the results to analytically obtained
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Figure 4.4: Speedup and efficiency. Parallel speedup and efficiency of the benchmark system
of Section as a function of the number of cores using the machine described in Figure
(a) Speedup with different numbers of cores compared to one core. Optimally one would like to
have a speedup that behaves like the identity (black dashed line). (b) Efficiency is the speedup
divided by the number of threads, i.e., how efficiently the available cores were used.

Table 4.1: Number of steps per day for the benchmark system. Number of time steps per
day for benchmark system of Section using the machine described in Figure In case of
the parallelized implementation the peak performance with respect to the number of threads is
shown.

Approximate Steps per day Peak performance steps per day Number of
number of particles sequential kernel parallel kernel threads
250 2.8 x 108 2.6 x 108 4
1000 7.9 x 107 1.2 x 108 7
13000 5.6 x 106 1.7 x 107 11
40000 1.8 x 106 6.3 x 108 11
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Figure 4.5: Reaction kinetics and detailed balance. Concentration time series of a the
reaction-diffusion system introduced in Section with the reversible reaction A + B = C.
Compared are cases with and without harmonic repulsion . Additionally we compare two
different reaction mechanisms, the Doi reaction scheme and the detailed balance (iPRD-DB)
method for reversible reactions. (a) 30% volume occupation and no interaction potentials.
(b) 30% volume occupation with harmonic repulsion between all particles. (c) 60% volume
occupation and no interaction potentials. (d) 60% volume occupation with harmonic repulsion
between all particles.

results, simulations from other packages, or literature data.

4.4.1 Reaction kinetics and detailed balance

We simulate the time evolution of particle concentrations of the benchmark system described in
Section In contrast to the benchmarks, the considered system initially only contains A and
B particles at equal numbers. It then relaxes to its equilibrium mixture of A, B, and C particles
(see Figure . Since the number of A and B molecules remain equal by construction, only the
concentrations of A and C are shown.

In addition we compare the solutions with and without harmonic repulsion potentials
between all particles, as well as two different methods for executing the reactions: the Doi reaction
scheme as described in Sections[2.3.3]and [£:2.2]and the detailed-balance reaction scheme iPRD-DB
described in [243).

In contrast to Section we construct a macroscopic reference system with rate constants
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kon = 3.82 x 107  nm3s™! and kog = 5 x 107 57! resembling a cellular system. The microscopic
reaction rate constants Ao, and A.g are then chosen with respect to the reference system taking
interaction potentials between A and B into account. In particular,

Aot = Koft, (4.5)
kon

A n — 5 4.6

on = 77 (4.6)

where Vog = fOR exp(—BU)4nr?dr is the accessible reaction volume, R the reaction radius, 3
the inverse thermal energy, and U the pair potential. The harmonic repulsion potential reduces
Veg with respect to the volume of the reactive sphere. The expression originates from an
approximation for ko, in a sufficiently well-mixed (i.e., reaction-limited) and sufficiently diluted
system. The derivation can be found in [243] based on calculating the total association rate
constant ko for an isolated pair of A and B particles. In this case one obtains Aog = 5x 10 °ns™!
for the microsopic dissociation rate constant. The microscopic association rate constant reads
don = 1073 ns™! for the noninteracting system and Ao, = 2.89 x 1073 ns~! for the interacting
system. Note that for non-reversible binary reactions without interaction potentials the formula
provided by [56], 64, [65] describes the relation between A and k for slow diffusion encounter. In
the case of non-reversible binary reactions with interaction potentials and slow diffusion encounter
such a relation can still be numerically computed [249].

Using the macroscopic rate constants ko, and kg, a solution can be calculated for the mass-
action (cf. Section . This solution serves as a reference for the non-interacting system
(no potentials), because the system parameters put the reaction kinetics in the mass-action limit.

In the non-interacting system, the ReaDDy2 solution and the @ solution indeed agree
(cf. Figure ,c). In the case of interacting particles, see Figure ,d; an exact reference is
unknown. We observe deviations from the solution that become more pronounced with
increasing particle densities. A difference between the two reaction schemes can also be seen.
The Doi reaction scheme shows faster equilibration compared to for increasing density,
whereas the iPRD-DB scheme shows slower equilibration, as it has a chance to reject individual
reaction events based on the change in potential energy. Thus an increased density leads to more
rejected events, consistent with the physical intuition that equilibration in a dense system should
be slowed down. Furthermore the equilibrated states differ depending on the reaction scheme,
showing a dependence on the particle density. For denser systems the iPRD-DB scheme favors
fewer A and B particles than the Doi scheme, consistent with the density-dependent equilibria
described in [243].

4.4.2 Diffusion

Next we simulate and validate the diffusive behavior of non-interacting particle systems and the
subdiffusive behavior of dense interacting particle systems. The simulation box contains particles
with diffusion coefficient Dy and is equipped with softly repelling walls, in order to introduce
finite size effects. The observations are carried out with and without interaction potential. In
the case without interaction potential we compare with an analytical solution and the case of an
interaction potential is compared to the literature.

Length z is given in units of o, time ¢ is given in units of 02/Dy, and energy is given in units
of kgT. The cubic box has an edge length of ¢ ~ 28¢.

The non-interacting particle simulation has a mean-squared displacement of particles in
agreement with the analytic solution given by Fick’s law for diffusion in three dimensions

((x¢ —x0)*) = 6Dot, (4.7)
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Figure 4.6: Diffusion in crowded environments. Mean squared displacement as a function
of time. Multiple particles are diffusing with intrinsic diffusion coefficient Dy in a cubic box
with harmonically repelling walls. Triangles were obtained by using the Yukawa repulsion
potential between all particles. The dashed line represents an effective diffusion coefficient
from the literature [250] for the same Yukawa repulsion potential.

where x; is the position of a particle at time ¢ (see Figure . For long timescales t > 10!,
transport is obstructed by walls, which results in finite size saturation.

Figure [4.6] also shows that more complex transport can be modeled, as, e.g., found in crowded
systems. Particles interact via the Yukawa potential [251]

A=< <
Ulr) = {anexp( A=2) /o forr <, (48)

0 , otherwise,

where Uy = kpT is a repulsion energy, o is the length scale, A = 8 is the screening parameter,
and r, = 2.50 the cutoff radius.

The particle density is no® = 0.6 with n being the number density. In such a particle system,
the mean-squared displacement differs significantly from the analytical result for free diffusion
after an initial time ¢ > 10~2 in which particles travel their mean free path length with diffusion
constant Dy. At intermediate timescales ¢ € [1072,1071), particle transport is subdiffusive due
to crowding. At long timescales, t € [10~!,101), the particles are again diffusive with an effective
diffusion coeflicient D that is reduced to reflect the effective mobility in the crowded systems.
We compare this to an effective diffusion coefficient obtained by Brownian dynamics simulations
from Léwen and Szamel [250] and find that they qualitatively agree. For large timescales t > 10!
finite size saturation can explicitly be observed as almost every particle has been repelled at least
once by the boundaries.

To quantitatively compare the long-time effective diffusion coefficient D, we set up 1100
particles in a periodic box without repelling walls with the edge length chosen to give the densired
density no® = 0.6. The cutoff of the potential is set to r. = 5o, where U(r.) < 10~ 1kpT.
The particle suspension is equilibrated for at least toq > 3 with a time-step size of 7 = 107°. We
observe the mean squared displacement until t,,s = 4.5 and measure the diffusion coefficient as
the slope of a linear function for ¢ € [4,4.5). We obtain D/Dy = 0.54 £ 0.01, which agrees with
the reference value [250] D*f/Dg = 0.55 £ 0.01.
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Table 4.2: Thermodynamic equilibrium properties of a Lennard—Jones colloidal fluid
in a (N,V,T) ensemble. Results of the ReaDDy 2 framework are compared to other simulation
frameworks and analytical results for validation.

density p* pressure P* energy u*

ReaDDy 2 0.3 1.0253 + 0.0004 —1.6704 £ 0.0003
HALMD [252] 0.3 1.0234 + 0.0003 —1.6731 £ 0.0004
Johnson et al. [253] 0.3 1.023 =£0.002 —1.673 £0.002
Ayadim et al. [254] 0.3 1.0245 —1.6717
ReaDDy 2 0.6 3.711 £0.002 —3.2043 £ 0.0004
HALMD [252] 0.6 3.6976 £ 0.0008 —3.2121 + 0.0002
Johnson et al. [253] 0.6 3.69 =£0.01 —3.212 £0.003
Ayadim et al. [254] 0.6 3.7165 —3.2065

4.4.3 Thermodynamic equilibrium properties

We validate that ReaDDy2’s integration of equations of motion yields the correct thermodynamics
of a Lennard-Jones colloidal fluid in an (N, V,T) ensemble. To this end, we simulate a system
of N particles confined to a periodic box with volume V at temperature T. The results and
comparisons with other simulation frameworks and analytical results are shown in Table The
particles interact via the Lennard—Jones potential

o= [(2)° - (2,

with € being the depth of the potential well and o the diameter of particles. The potential is cut
off at rc = 40 and shifted to avoid a discontinuity. The rescaled temperature is T* = kgTe ™! = 3.
We perform simulations of the equilibrated Lennard—Jones system for 10° integration steps with
rescaled time step size 7* = 10~%. Time units are 62/D and are determined by the self-diffusion
coefficient D of the particles. We measure the rescaled pressure P* = Po3s~! by estimating the
virial term from forces acting in the system as described in [255]. Additionally, we measure the
rescaled potential energy per particle u* = UN~'e~!. Both pressure and potential energy are
calculated every 100th time step. This sampling gives rise to the mean and its error of the mean
given for the ReaDDy2 results in Table Comparing HALMD [252] and ReaDDy2, the latter
shows larger energy and pressure in the third decimal place for the lower density p* = 0.3. For
the higher density p* = 0.6 pressure differs in the first decimal place and energy in the second.
This can be explained by ReaDDy2 using an Euler-Maruyama scheme to integrate motion of
particles, which has a discretization error of first order in the time step size O(7). On the other
hand HALMD uses a Velocity—Verlet method [256], which has a discretization error of second
order in the time step size O(72).

4.4.4 Topology reactions

We illustrate ReaDDy2’s ability to model complex reactions between multi-particle complexes,
called “topology reactions”. We model polymers as linear chains of beads, held together by
harmonic bonds and stiffened by harmonic angle potentials.

When considering just one worm-like chain with a certain amount of beads n, its equilibrium
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Figure 4.7: Mean-squared end-to-end distance of worm-like chains. The theoretical
mean-squared end-to-end distance of worm-like chains as a function of number of beads is
compared to simulation data obtained from linear chains of beads as described in Section
Error bars depict errors over the mean from multiple measurements.

mean-squared end-to-end distance should behave like [257]

(R?) = 21, Rpax — 21 (1 — exp (—Rmax)> ) (4.9)

by

where [, = 4lk(kpT)~! is the persistence length, Rpyax = (n — 1)l the chain contour length, [
the bond length, and k the force constant of the harmonic angles. In order to verify that the
considered chain model obeys the mechanics of a worm-like chain, the theoretical mean-squared
end-to-end distance can be compared to observations from simulations, see Figure For
each fixed number of beads, an isolated chain was relaxed into an equilibrium state without
performing topology reactions, yielding a squared end-to-end distance at the end of the simulation.
This experiment was repeated 51 times. From the figure it can be observed that there is good
agreement between the theoretical and measured mean-squared end-to-end distances. A more
detailed description of the used simulation parameters can be found in Appendix

In a system with many of these chains, we introduce two different particle types for the beads.
Either they are head particles and located at the ends of a polymer chain or they are core particles
and located between the head particles, as shown in Figure [£.8h,c in blue and orange, respectively.

We impose two different topology reactions in the system with many chains (Figure [4.8k):

1. Association: Two nearby head particles (distance < R) can connect with rate A;. The
topology is changed by adding an edge between the connected particles, resulting in the
addition of one bond and two angle potentials. Additionally, the particle types of the two
connected particles change from “head” to “core”.

2. Dissociation: A chain with n particles can dissociate with microscopic rate n\y, such
that longer chains have a higher probability to dissociate than shorter chains. When a
dissociation occurs, a random edge between two core particles is removed. The particle
types of the respective core particles are changed to “head”. As a result, the graph decays
into two connected components which subsequently are treated as autonomous topology
instances.
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Figure 4.8: Topology reactions example. Illustrative simulation of polymer assembly /dis-
assembly using topology reactions. (a) Sketch of the involved topology reactions. Association:
When two ends of different topologies come closer than R, there is a rate \; that an edge is
formed. Dissociation: The inverse of association with a rate A and a randomly drawn edge that
is removed. (b) The number of beads in a polymer (n(t)) over time averaged over 15 realizations.
(c) Two representative particle configurations showing the initial state and the end state at time
thegin and tenq, respectively.
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The temporal evolution of the average length of polymer chains is depicted in Figure [f.8b. The
simulation was performed 15 times with an initial configuration of 500 polymers containing four
beads each. After sufficient time (n(¢)) reaches an equilibrium value. Over the course of the
simulation the polymers diffuse and form longer polymers. This can also be observed from the
two snapshots shown in Figure , depicting a representative initial configuration at ¢pegin and a
representative configuration at the end of the simulation at time. In that case, there are polymers
of many different lengths.

4.4.5 Nontrivial bimolecular association kinetics at high concentrations

This section studies a biologically inspired system with three macromolecules A, B, and C, that
resemble, e.g., proteins in cytosol. The macromolecules A and B can form complexes C that also
can dissociate back into their original components, i.e., we introduce reactions

A+B=C. (4.10)

This form of interaction has been studied for proteins bovine serum albumin and hen egg white
lysozyme in coarse-grained atomistic detail in [258] and for Barnase and Barstar in [259]. Here,
we consider the case where the association reaction of does not preserve volume, i.e., the
complex C is more compact.

The presence of ions in aqueous solutions has effects on protein interactions [260], therefore
we assume the reversibly associating macromolecules to be weakly charged and thus subject to
the Debye-Hiickel interaction potential [261] including an additional repulsion term

2

e’ exp(—kr) Osys9 ) 12
Us s — (s,(s Ur ( ) s 4.11
152 (T) Gorloag T . (4.11)

where s1,s2 € {A,B,C}, ¢ are partial charges associated with the macromolecules, e is the
elementary charge, g¢ is the vacuum permittivity, €, is the relative permittivity of an aqueous
solution, x is the screening parameter that describes shielding due to ions in the solution, U, is
the repulsion energy, and og,5, = 75, + 75, is the sum of two particle radii. Here, we do not take
hydration effects into account.

We investigate the equilibrium constant K = [A][B]/[C] for different number densities n =
(Nao+ Np)/2+ N¢. In case of a reversibly associating fluid described by the law of mass action,
the equilibrium constant is given by K = kog/kon, where ko, is the macroscopic association
rate constant of and kog the respective dissociation rate constant. In a well-mixed (i.e.,
reaction-limited) and sufficiently diluted system, ko, can be approximated as in Section m
However, for a diffusion-influenced process which we consider here, ko, is typically understood as
a harmonic mean of encounter and formation rates [262-265|, i.e., k;,! = koL + kil . At low
densities, only two-body interactions between A and B determine the on-rate constant, in this
limit, kon can be evaluated numerically as a function of the microscopic association rate constant
Aon in the presence of the interaction potential, based on solving the Smoluchowski diffusion
equation with a sink term that accounts for the volume reaction model, see [249|. Furthermore, in
dense reversibly associating fluids, many-body interactions have an influence on ko, in particular
due to competition for reactants, clustering, volume exclusion, and caging [265].

Thus, it is challenging to find a consistent analytical description over multiple orders of
magnitudes in density. In contrast, we perform an empirical evaluation by simulations as shown in
Figure To this end, we set up 6 simulations for different n € [2 x 101, 1.5 x 10*] in a constant
volume which then are allowed to relax into an equilibrium state subject to detailed-balance and
yield a measurement K (n). The exact simulation parameters can be found in the Appendix
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Figure 4.9: Equilibrium constant transition from dilute to dense systems. The equilibrium
constant K is obtained by simulation for different choices of the number of particles n =
(N4 + Np)/2 4+ N¢ which corresponds to a density due to constant volume of the simulation box
and compared to an analytically obtained equilibrium constant of a dilute system (dashed line).
The number of particles n remains constant during the course of a simulation. The shaded areas
are standard deviations from the recorded data.

The reference value for the dilute case is given by Kyijute = koft/ kgrill“te, where kog = Aog and

kdilute j5 5 function of the microscopic association rate constant A\, as well as the interaction
potential and is numerically computed as described in [249].

We show that the reference value Kgjute is recovered by the simulation for low densities. For
increasing densities more complex behavior can be observed. In particular, there is a drop in
the value of K for n 2> 102 which then is followed by a roughly stable regime up to n ~ 5 x 103.
For even higher densities, the equilibrium state is dominated by the complexes C likely due to
finite size of the simulation volume. This drop in the equilibrium constant is in accord with Le
Chételier’s principle [266], i.e., the system prefers the state of lower free energy.

4.5 Availability and Future Directions

We have described the [PRD] simulation framework ReaDDy2 for combined particle interaction
dynamics and reaction kinetics, which permits to conduct highly realistic simulations of signal
transduction in crowded cellular environments or chemical nanoreactors with complex geometries.
ReaDDy2 follows up upon and significantly extends the simulation package ReaDDy. ReaDDy?2 is
significantly faster than its predecessor, it can be easily installed as a Python conda package, and
it can be flexibly used and reconfigured via its Python interface.

In comparison to molecular dynamics software packages, ReaDDy2 does not include long range
interactions. The software comes with a set of default interaction potentials. These include, e.g.,
harmonic repulsion which can model steric repulsion, Lennard—Jones interaction, and screened
electrostatics which provide a way to model charged interaction at short ranges. Furthermore,
ReaDDy2 allows for implementation of any short-ranged potential via a C++ interface. It is
possible to implement and subsequently use hydration models which are short-ranged [267, 268]
in the ReaDDy2 framework. Hydrodynamic interactions are currently not included. They can
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be added by, e.g., providing an appropriate integrator which represents these interactions by a
particle pairwise friction tensor [247].

Currently all pair potentials implemented in ReaDDy2 are isotropic, however anisotropic
interactions can be emulated by using particle complexes, in particular allowing for patchy
particles. If the particles and interactions should be anisotropic themselves, a new computation
kernel or appropriate integrator can be implemented into the framework via the C++ interface.

We have conducted a set of numerical studies, showing that ReaDDy2 produces quantitatively
accurate results where references from analytical solutions or other simulation packages were
available, and physically meaningful results where reference solutions were not available.

For a quick and easy start into simulating and developing with ReaDDy2 step by step tutorials,
sample code, and further details are available online (https://readdy.github.io/). The software
itself is Open Source and available under a permissive license in order to enable a broad group of
people to run simulations without forcing them to make their own work public.

ReaDDy2 has been designed to be easily extensible. Planned extensions include simulation
kernels for specialized hardware platforms, such as graphics processors and highly parallel HPC
environments. Also planned is a MD-GFRD integrator [238] to speed up computations in dilute
systems, and a particle-based membrane model as described in [234] that reproduces mechanical
properties of cellular membranes.

In its current state, membranes can be modeled in terms of external forces, i.e., constraining
particles onto two-dimensional surfaces. As these constraints only apply to selected particle types,
it is possible to, e.g., grow polymers against a static membrane, where one end is anchored.
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Chapter 5

Discovering governing reactions
from concentration data

The results of this chapter were originally presented in Ref. P2}

M. Hoffmann, C. Frohner, F. Noé. “Reactive SINDy: Discovering gov-
erning reactions from concentration data”. In: J. Chem. Phys. (2019).
URL: https://doi.org/10.1063/1.5066099.

Text and illustrations have been adopted largely unchanged in this document. Reprinted
from The Journal of chemical physics “Reactive SINDy: Discovering governing re-
actions from concentration data”, Hoffmann, Frohner, and Noé, 2019, with the
permission of AIP Publishing.

Moritz Hoffmann (MH) and Christoph Frohner (CF) developed this work collabora-
tively. MH and CF contributed roughly equally to this work and are consequently
both shared first author. The work is therefore also part of the dissertation of CF.
The author contributions were as follows: MH, CF, and Frank Noé (FN) conceived
the project and laid out the theory. MH and CF set up the software pipeline for
generation of training data and cross validation procedures. MH implemented the
minimization procedure. MH laid out and performed numerical experiments in the
low-noise limit (Section [5.3.1.1). CF ran the cross validation for noisy measure-
ments (Sections [5.3.1.2)and [5.3.1.3)). CF applied the reactive SINDy method to the
example (Section . MH set up the application of reactive SINDy to
the predator-prey example (Section . MH and CF analyzed and visualized all
resulting data. All contributors wrote the paper.

In this chapter we introduce reactive SINDy, an extension of (introduced in Section
that focuses on the detection of reaction networks from species concentration data. The method
is applied to several model systems to study its correctness and effectiveness. Code related to
this chapter can be found under https://github.com/readdy/readdy_learn.

5.1 Introduction

Mapping out the reaction networks behind biological processes, such as gene regulation in
cancer [17], is paramount to understanding the mechanisms of life and disease. A well-known
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example of gene regulation is the lactose operon whose crystal structure was resolved in [269]
and dynamics were modeled in [270]. The system’s “combinatorial control” in E. coli cells was
quantitatively investigated in [271], in particular studying repression and activation effects. These
gene-regulatory effects often appear in complex networks [272] and there exist databases resolving
these for certain types of cells, e.g., E. coli cells [273] and yeast cells [274]. Another example where
mapping the active reactions is important is that of chemical reactors [275], where understanding
which reactions are accessible for a given set of educts and reaction conditions is important to
design synthesis pathways [276], [277].

The traditional approach to determine a reaction network is to propose the structure of the
network based on chemical insight and subsequently fit the parameters given available data [22].
To decipher complex reaction environments such as biological cells, it would be desirable to have
a data-driven approach that can answer the question which reactions are underlying a given
observation, e.g., the time series of a set of reactants. However, in sufficiently complex reaction
environments the number of reactive species and possible reactions is practically unlimited—as an
illustration, consider vast amount of possible isomerizations and post-translational modifications
for a single protein molecule. Therefore, the more specific formulation is “given observations of
a set of chemical species, what is the minimal set of reactions necessary to explain their time
evolution?”. This formulation calls for a machine learning method that can infer the reaction
network underlying the observation data.

Knowledge about the reaction network can be applied to parameterize other numerical methods
to further investigate the processes at hand. Such methods include particle-based approaches
derived from the [60L |62}, [110, 111} [278], as well as highly detailed but parameter-rich
methods such as or [P1}, 157, |58, |68, (69} |243] |279] capable of fully resolving molecule
positions in space and time-see Section Chapter [4] as well as Refs. |73}, [280| for recent reviews.

Existing methods to infer regulatory networks include ARACNE [281] that uses experimental
essay data and information theory, as well as the likelihood approach presented in [282] that takes
the stochasticity of observed reactant time series into account.

The method presented in this chapter can identify underlying complex reaction networks
from concentration time series by following the law of parsimony, i.e., by inducing sparsity in the
resulting reaction network. This promotes the interpretability of the model and avoids overfitting.
We formulate the problem as data-driven identification of a dynamical system, which renders the
method consistent with and an extension of the framework of [sparse identification of nonlinear
[dynamics| (SINDy) (cf. Section [3.5)). Specifically, the problem of identifying a reaction network
from time traces of reactant concentrations can be solved by finding a linear combination from a
library of candidate nonlinear functions (ansatz functions) that each corresponds to a reaction
acting on a set of reactants. With this formulation, the reaction rates can be determined via
regression. Sparsity is induced by equipping the regression algorithms with a sparsity inducing
regularization.

We extend and apply [SINDy] to the case of learning reaction networks from non-equilibrium
concentration data. Similar approaches make use of but do not resolve specific reac-
tions [208], use weak formulations to avoid numerical temporal derivatives [283], or use compressive
sensing and sparse Bayesian learning [284].

Our extension of the original [SINDy|] method mostly involves estimating parameters which are
coupled across the equations of the arising dynamical system. In the context of learning reaction
networks this means that we look for specific reactions and their rate constants that might have
lead to the observations instead of net flux across species. We demonstrate the algorithm on a
gene-regulatory network in three different scenarios of measurement: When there is no noise in
the data we can find, given sufficient amounts of data, all relevant processes of the ground truth.
If there is noise in the data we converge to the correct reaction network and rates with decreasing
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levels of noise. The third scenario generalizes the method to two measurements with different
initial conditions, also converging to the correct model with decreasing levels of noise.

We additionally demonstrate the algorithm on time series data of the jmitogen activated|
[protein kinases| (MAPK]) pathway as an example for a bimodal system and on time series data of
the Lotka—Volterra system (cf. Section which describes oscillatory predator-prey dynamics
subject to social friction. In both systems reactive SINDy recovers the generating reaction
network whereas non-sparse estimation detects many spurious processes.

5.2 Reactive SINDy

We are observing the concentrations of S chemical species in time ¢ according to the [RRE| model

subject to the (see Section [2.3.1]).

To disentangle Equation (2.23]) into single reactions, we choose a library of R possible ansatz
reactions that each represent a single reaction:

Yra(ct)
yvr(ct) = : , r=1,...,R. (5.1)
Yr,s(ct)
With this ansatz, the reaction dynamics becomes a set of linear equations

R
e =3 yrile)é, i=1,...,8, (5.2)
r=1

where &, are unknown parameters that represent the to-be estimated macroscopic rate constants.
The two reactions in the example ([2.24)-(2.25)) would be modeled by the functions

yl(X) = (7I17I1,0)T,
y?(x) = (7%1,0,I'1)T,

illustrating that the values of the coefficients £; and & can be used to decide whether a single
reaction is present and to what degree.

Now suppose we have measured the concentration vector at T time points t; < -+ < tp.
We represent these data as a matrix

X=(c, ¢, - ¢y ) eRTS. (5.3)
Given this matrix, a library © : RT*5 — RT*SXR X sy (61(X) 62(X) -+ 0r(X)) of R
candidate (ansatz) reactions can be proposed with corresponding reaction functions
yr(Xl*)T
0,(X) = : eRT*S r=1,...,R, (5.4)
yr(XT*)T

where X;, denotes the i-th row in X. Applying the concentration trajectory to the library yields
@(X) c RT><S><R.
The goal is to find coefficients = = (51 & e fR)T7 so that
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Table 5.1: Initial conditions (a) and (b) used to generate concentration time series for gene-
regulatory network in Section Reaction rates can be found in Table

DNA, mRNA, A DNAy mRNAgp B DNA¢ mRNA¢c C

(a) 1 2 0 1 0 3 1 0 0
(b) 1 1.5 0 1 0 2 1 0 1

In particular, the system is linear in the coefficients =, which makes regression tools such as elastic
net regularization |285] applicable. To this end, one can consider the regularized minimization
problem (reactive SINDy):

2= argﬁmin<21T X — @(X)E||2F +aM||E][1 + a1l - /\)||E|§> subject to 2> 0 (5.6)
Here, || - || denotes the Frobenius norm, A € [0, 1] is a hyperparameter that interpolates linearly
between LASSO [286, [287] and Ridge [288] methods, and a > 0 is a hyperparameter that,
depending on A, can induce sparsity and give preference to smaller solutions in the L; or Lo
sense. For oo = 0 the minimization problem reduces to standard [least squares| (LSQ) with the
constraint = > 0. reactive SINDy is therefore a generalization of the [SINDy| method to
vector-valued ansatz functions.

Since often only the concentration data X is available but not its temporal derivative, X is
approximated numerically by second order finite differences with the exception of boundary data.
Once the pair (X,X) is obtained, the problem becomes invariant under temporal reordering.
Hence, when presented with multiple trajectories the data matrices X; and X; can simply be
concatenated.

In order to solve the numerical sequential minimizer SLSQP [192] is applied via
the software package SciPy [154].

5.3 Results

5.3.1 Application to a gene-regulatory network

We estimate the reactions of a gene-regulatory network from time series of concentrations of
the involved molecules. Let S := {4, B,C} be a set of three species of proteins which are being
translated each from their respective mRNA molecule. Each mRNA in turn has a corresponding
DNA which it is transcribed from. The proteins and mRNA molecules decay over time whereas the
DNA concentration remains constant. The network contains reactions of the following form [289]

DNA; — DNA; + mRNA; (transcription),
mRNA; — mRNA, +4 (translation),
mRNA,; — 0 (decay of mRNA),

1—=0 (decay of protein),
i+ mRNA; — 4 (regulation of j € S),

for each of the species i € S.
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Figure 5.1: Gene-regulatory network. The regulation network example described in Section[5.3]
Each circle depicts a species, each arrow corresponds to one reaction. Blue arrows denote
transcription from DNA to mRNA, green arrows denote translation from mRNA to protein, and
red arrows denote the regulatory network.
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These reactions model a regulation of species j by virtue of the fact that the transcription
product inhibits the transcription processes. In our example proteins of type A regulate the
mRNAg molecules, proteins of type B regulate the mRNAc molecules and proteins of type
C regulate the mRNA molecules (see Figure . Using this reaction model, time series of
concentrations are generated using the rates given in Table[B.IJunder the initial condition described
in Table [5.1h, which were chosen so that all the reactions in the reaction model significantly
contribute to the temporal evolution of the system’s concentrations. The generation samples the
integrated equations equidistantly with a discrete time step of 7 = 3 - 1072 yielding 667 frames
which amounts to a cumulative time of roughly T" = 2.

The proposed estimation method is applied to analyze these time series of concentrations in
order to recover the underlying reaction network from data. To this end we use the library of
ansatz functions given in Table which contains a large number of possible reactions, only few
of which are actually part of the model.

5.3.1.1 The low-noise limit

We first demonstrate that the true reaction network can be reconstructed when using a finite
amount of observation data without additional measurement noise, i.e., the observations are
reflecting the true molecule concentrations at any given time point. The minimization problem
is solved using the concentration time series shown in Figure [5.1p.

We first set the hyperparameter o = 0 in the minimization problem , which results in
constrained least-squares regression without any of the regularization terms. In this case we
estimate a reaction network that can reproduce the observations almost exactly (cf. Figure .
However, the result is mechanistically wrong as the sparsity pattern does not match the reaction
network used to generate the data. On the one hand many spurious reactions are estimated that
were not in the true reaction scheme and would lead to wrong conclusions about the mechanism,
suichas A+ A—Aand A+C—C.

More dramatically, the reaction responsible for the decay of A particles is completely ignored
(cf. Figure[5.3).

Next, we sought sparse solutions by using o > 0 and additionally eliminating reactions
with rate constants smaller than a cutoff value x. For a suitable choice of hyperparameters
a~191-1077, A =1, and xk = 0.22, a sparse solution is obtained that finds the correct reaction
scheme and also recovers the decay reaction (see Figure [5.3)).

The value of the cutoff k was determined by comparing the magnitude of estimated rates
and finding a gap, see Figure The hyperparameter pair (o, \) was obtained by a grid
search and evaluating the difference Héa A — Z|l1, where ém  is the estimated model under a
particular hyperparameter choice and Z is the ground truth. If the ground truth is unknown, a
hyperparameter pair can be estimated by utilizing cross-validation as in the following sections.

5.3.1.2 Data with stochastic noise

In contrast to Section we now employ data that includes measurement noise. Such
noise can originate from uncertainties in the experimental setup or from shot noise in single- or
few-molecule measurements. In gene-regulatory networks such noise is commonly observed when
only few copy numbers of mRNA are present [290-292|. In order to simulate noise from few copies
of molecules, the system of Section [5.3.1] with initial conditions as given in Table is integrated
using the Gillespie [stochastic simulation algorithm| (SSA)) [110} 111, see also Section [2.3.2] In the
limit of many particles and realizations, the Gillespie[SSA]converges to the integrated [RRE|subject
to the[LMA] As our model is based on exactly these dynamics, the initial condition’s concentrations
are interpreted in terms of hundreds of particles. Each realization is then transformed back to
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Figure 5.2: Gene-regulatory network concentration time series. Concentration time series
generated from integrating the reaction network shown in Figure [5.1p. The initial condition
prescribes positive concentration values only for B protein and mRNA s species (see Table |5.1h).
This initial condition is used in the subsequent sections for further analysis. Gray dots depict

concentration time series yielded from the (LSQ)) rates estimated in Section [5.3.1.1
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Figure 5.3: Reaction rate sparsity pattern. Estimated reaction rates in the system described
in Section The y and x axes contain reaction educts and products, respectively. A circle
at position (7, j) represents a reaction ¢ — j whose rate is proportional to the area of the circle.
The black outlines denote the reactions with which the system was generated and contain the
respective rate value. Red crosses denote reactions that were used as additional ansatz reactions.
Blue circles are estimated by and orange circles depict rates which were obtained
by solving the minimization problem . The latter rates are subject to a cutoff kK = 0.22
corresponding to the green circle’s area under which a sparse solution with the correct processes
can be recovered. If a certain rate was estimated in both cases, two wedges instead of one circle
are displayed.
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cutoff K = 0.22 of Section [5.3.1.1] The rates were estimated using the regularized minimization

problem (j5.6]).

a time series of concentrations. We define the noise level as the mean-squared deviation of the
concentration time series from the integrated reaction-rate equations. Data with different noise
levels are prepared by averaging multiple realizations of the time series obtained by the Gillespie
ISSA

It can be observed that decreasing levels of noise lead to fewer spurious reactions when
applying reactive SINDy , see Figure . Also the estimation error ||£ — éHl with respect
to the ground truth £ decreases with decreasing levels of noise (see Figure ) In both cases,
the regularized method with a suitable hyperparameter pair (a, A) performs better than m

The hyperparameters («, A) are obtained by shuffling the data and performing a 10-fold cross
validation.

5.3.1.3 Multiple initial conditions

Preparing the experiment that generates the data in different initial conditions can help identifying
the true reaction mechanisms as a more diverse dataset makes it easier to confirm or exclude the
participation of specific reactions. This section extends the analysis of the previous Section [5.3.1.2
to two initial conditions, where the first initial condition is identical to the one used previously
and the second initial condition is given in Table [5.1p.

The corresponding time series are depicted in Fig. [5.6p. The gray graph corresponds to a
sample trajectory generated by the Gillespie [SSA] For both initial conditions the same time step
of 7 =3-1072 has been applied, amounting to 2 - 667 = 1334 frames. Once the data matrices

Xy = (z1(t1) - xiltesr)), Xo= (z2(t) -~ @a(tesr))

and the corresponding derivatives X;, X5 have been obtained, the frames are concatenated so
that

X = (x1(t1) -+ xiteer) ®2(t) - - @a(teer)),

analogously for X.
Similarly to Section [5.3.1.2] decreasing levels of noise lead to fewer spurious reactions (see
Figure ) and a smaller L; distance to the ground truth (Figure ) Again applying the
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Figure 5.5: Convergence to ground truth under decreasing noise levels. Convergence of
the estimation error when estimating the system described in Section with varying levels of
noise by application of reactive SINDy with and without regularization in blue and orange,
respectively. The procedure was independently repeated 10 times with different realizations giving
rise to the mean and standard deviation depicted by solid lines and shaded areas, respectively.
(a) The number of detected spurious reactions up to the cutoff value introduced in Section
over different levels of noise. (b) The estimation error given by the mean absolute error between
the generating reaction rates £ and the estimated reaction rates é over different levels of noise.

optimization problem with a suitable set of parameters (a, A, x) performs better than m
Compared to the previous section the convergence is better due to twice as much available data.
At noise levels of smaller than roughly 107% the model can reliably be recovered when using the
regularized method.

The hyperparameters (a, A) are obtained by shuffling the data and performing a 20-fold cross
validation.

5.3.2 Application to the MAPK cascade

The reactive SINDy method is applied to the jmitogen activated protein kinases| (MAPK])
pathway [11] which is an important regulatory mechanism of biological cells to respond to stimuli
and is involved in proliferation, differentiation, inflammation, and apoptosis [12]. Single-cell

MAPK]| kinetics can be observed experimentally [14]. Mathematically MAPK]| kinetics are often
modelled using reaction rate equations [293, 294] which enables analysis using reactive SINDy.

Generally a pathway consists of multiple stages of kinases that are either inactive or
active, denoted by “*”. Their activation occurs due to phosphorylation catalyzed by the upstream
kinase of the previous stage, dephosphorylation is catalyzed by phosphatases. When the kinase
is active it can activate other downstream kinases of the next stage. The initial activation is
often due to an external stimulus. The response of the whole cascade is the amount of activated
substrate after the final stage, typically measured as a function of the initial stimulus.

Here the pathway is modeled with three stages of kinases MAPK, MAPKK, and
MAPKKK. The initial stimulus is called S and the final substrate to be activated is a transcription
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Figure 5.6: Convergence to ground truth with two different initial conditions. Con-
vergence of estimation error of reaction schemes from noisy gene-regulation data starting from
two different initial conditions under decreasing levels of noise. The minimization problem
was solved for a = 0 and with regularization. This was repeated 10 times on different
sets of observation data generated by Gillespie [SSA] giving rise to mean and standard deviation
(solid lines and shaded areas, respectively). (a) Concentration time series corresponding to the
initial conditions, generated by integrating the reaction-rate equations. The first initial condition
is identical to the one used in Section and Section The second initial condition
(Table [5.1p) prescribes positive initial concentrations for mRNA,, B, and C species. The gray
graphs are sample realizations of integration using the Gillespie (b)-(c) Analogously to
Figure[5.5| with the difference that 20-fold cross validation was used for hyperparameter estimation.
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Figure 5.7: Reactive SINDy on MAPK. Application of reactive SINDy to the
[activated protein kinases| (MAPK)] pathway system. (a) The response curve of the
as a function of external stimulus given as a constant concentration [S]. The activity is the steady
state concentration of activated transcription factors [TFx]. Dashed lines show the values of [S] at
which concentration time series data was generated. (b) Estimated rate coefficients of candidate
reactions (see Table after application of reactive SINDy (regularized) to the time series
data. and the ground truth model for comparison.

factor TF. The ground truth reaction network consists of activation/phosphorylation reactions

S + MAPKKK — S + MAPKKK=*
MAPKKKx* + MAPKK — MAPKKKx* + MAPKK*
MAPKKx* + MAPK — MAPKKx* + MAPKx
MAPKx* + TF — MAPKx* + TFx

and deactivation/dephosphorylation reactions

MAPKKK#x — MAPKKK
MAPKK* — MAPKK
MAPKx — MAPK
TFx — TF.

For simplicity we assume phosphatase to be abundant such that deactivations effectively become
first order reactions. The external stimulus S is not consumed such that time integration of
these reactions yields a steady state in which the response, i.e., the concentration [TFx| can be
measured as a function of the stimulus concentration [S].
Using the rate constants given in Table we obtain the response curve given in Figure [5.7h.
We generate concentration time series data of the reactions above at three different
initial conditions, each differing in the amount of stimulus [S]. The response yielded by the chosen
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initial conditions is marked in Figure by vertical dashed lines. The concatenated time series is
a dataset of 300 frames in total. We use the library © of ansatz reactions given in Table The
hyperparameter o = 6.6 x 10~? was determined by shuffling the data and performing 15-fold cross
validation. The estimated rate constants were obtained by solving the minimization problem
with A = 1. The results are given in Figure [5.7p. Least-squares estimation detects 5 of the 8
reaction processes that belong to the ground truth model. However it also detects 12 spurious
reaction processes (615 - f29). Reactive SINDy estimation detects all reactions of the ground
truth, two processes (04 and 6g) show deviations in rate constants. Generally reactive SINDy
yields a sparse model which allows further simplification of the reaction network by dropping out
reaction processes that lie beneath a certain cutoff. In this case for example a cutoff of kK = 0.25
would directly recover the ground truth reaction network. Quantitatively, one may consider the
L1 norm of the relative distance of estimated rate constants ér to the non-zero rate constants of
the ground truth &,

8
Z ‘(67‘ - gr)/fr
r=1
which yields 167% error for least-squares and 21% error for reactive SINDy.

5.3.3 Application to the Lotka—Volterra system

As biological pathways often exhibit oscillatory behavior [295] which can stem from positive
or negative feedback loops [296] we apply reactive SINDy to an idealized oscillatory system,
namely the Lotka—Volterra system that was already used in examples in Sections [2.3.1H2.3.2
The predator-prey dynamics of two species A (prey) and B (predator) is defined by the
reaction network given in Equation . From this model we generated concentration time
series data with 200 frames which is displayed in Figure [5.8h. The library of ansatz reactions ©
is given in Table The hyperparameter o = 2.7 x 107 was determined by shuffling the data
and performing 5-fold cross validation. The estimated rate constants were obtained by solving the
minimization problem with A = 1. The results are depicted in Figure [5.8p. Least-squares
estimation detects all reactions of the ground truth model but also two spurious processes (g
and 67) with a higher rate than the first two underlying processes (6; and 63). Reactive SINDy
recovers the true reaction network with minor deviations in rate constants. As in Section [5.3.2
considering the L; norm of the relative distance to the ground truth for non-zero rate constants

5 & —&/e

yields 75% error for least-squares and 7% error for reactive SINDy.

5.4 Conclusions

In this chapter we have extended the method to reactive SINDy, not only parsimoniously
detecting potentially nonlinear terms in a dynamical system from noisy data, but also yielding, in
this case, a sparse set of rates with respect to generating reactions . Mathematically this has
been achieved by permitting vector-valued basis functions and obtaining a tensor linear regression
problem. We have applied this method on data generated from a gene-regulation network, a
pathway, and a Lotka—Volterra system and could successfully recover the underlying

reaction networks.
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Figure 5.8: Reactive SINDy on Lotka—Volterra. Application of reactive SINDy to the
Lotka—Volterra system with social friction. (a) Concentration data as a function of time for
predator and prey species. (b) Estimated rate coeflicients of candidate reactions (see Table [B.3
after application of reactive SINDy (regularized) to the time series data. [Least squares| (LSQ
estimation and the ground truth model for comparison.

The studies of Section [5.5.1.2] and Section have shown that the applied regularization
terms can mitigate noise up to a certain degree compared to the unregularized method, so that
identification of the reaction network is more robust and closer to the ground truth. Potentially,
this method could be used to identify reaction networks from time series measurements even if
the initial conditions are not always exactly identical, as was demonstrated in Section [5.3.1.3

One apparent limitation is that the method can only be applied if the data stems from
the equilibration phase, as the concentration-based approach has derivatives equal zero in the
equilibrium, which precludes the reaction dynamics to be recovered. Thus, in the case of oscillatory
systems the reaction network can be recovered robustly.
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Chapter 6

Summary and outlook

We presented and implemented methods for the efficient generation and analysis of time series
data for many-body systems, focusing mainly on biologically motivated applications. Often
these systems, e.g., in the study of biomolecular processes, are highly complex and difficult to
observe experimentally with a high spatiotemporal resolution. Computer simulations, however,
can attain a high level of resolution within reach of the underlying model, as is the case in
molecular dynamics. The high resolution comes with the caveat of large amounts of data, i.e.,
long trajectories in a high-dimensional space, rendering inspection and analysis of the dominant
processes a challenging task.

In the first part of the thesis (Chapter |3)) we presented several machine learning approaches
that aim to estimate reduced dynamical models from long and high-dimensional trajectories.
These dynamical models can reflect governing dynamics, dominant processes, (meta-)stable
structures, and structures that are geometrically stable over time. We developed the novel
machine learning library deeptime with the goals to make community-specific methods accessible
to a broad user base by implementing them in a general-purpose way, and to provide a library
that is easy to install, extend, and maintain. These goals were achieved: Alongside a high
degree of modularization and few hard dependencies in the implementation, we further offer a
comprehensive documentation and a wide range of mostly domain unspecific example datasets.
To get a unified view, we compared a majority of the implemented methods from a theoretical
point of view—in particular reviewing connections between methods—and conducted numerical
studies on model systems. These studies mainly deal with the projection of time series data onto
dominant processes and coherent set detection tasks. The studies are set up so that they can
serve as benchmarks for future additions to the library and/or development of new methods.
For coherent set detection, we defined a novel coherence score to quantitatively determine the
estimation quality, which allowed us to draw comparisons and rank methods. Although most
implemented methods focus on finding finite-dimensional approximations of transfer operators,
deeptime complements these by including the [sparse identification of nonlinear dynamics| (SINDy))
method, which approximates the underlying governing dynamics.

In the future, it would be desirable to develop methods which are capable of estimating
dynamical models with fluctuating numbers of particles. That way, the full flexibility and
information content of [particle-based reaction dynamics| simulations could be leveraged. In
terms of implemented methods there are various possible directions: transition manifold learning
methods, more variants, different flavors of [dynamic mode decomposition), more basis
transformations, or kernel implementations. Support for other deep learning frameworks (e.g.,
JAX) could be added—either directly or as a separate plugin library. From a more programmatic
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point of view, the addition of built-in support for streaming large amounts of data not completely
fitting into memory is beneficial. While it is currently possible for users to stream the data
themselves and use it on estimators which are capable of being partially fit, it would greatly
improve the convenience if such implementations were already available. Furthermore, deeptime
would benefit from more example datasets as well as tutorial notebooks.

In the second part of the thesis (Chapter 4)), we developed and introduced the novel interacting-
particle reaction dynamics software ReaDDy2 for the simulation of biological macromolecules’
bulk behavior. The package approaches the problem of particle simulators being bounded by
computational effort, meaning that there is a trade-off between underlying model resolution and
accessible sizes of systems and timescales. ReaDDy2 operates on a mesoscopic scale where, e.g.,
proteins are treated as individual particles or small particle complexes. At its resolution level,
we showed that it is significantly faster than comparable simulation packages. It is suitable
to simulate biological processes—Ilike signal transduction in crowded cellular environments or
chemical nanoreactors with complex geometries—involving ~ 5-10* particles on the millisecond to
second timescale while using integration time steps in the range of nanoseconds. These timescales
are on current hardware beyond the reach of more fine-grained approaches such as molecular
dynamics. We successfully verified that ReaDDy2 simulations yield quantitatively correct results
for a set of numerical experiments. By a novel generalization of chemical reactions to reactions on
a particle topology level, we enabled even more complex models that are capable of simulating,
e.g., the dynamical growth of geometrically complex structures such as actin filaments. Through
the successful implementation of ReaDDy2, we created new possibilities to further our insight into
biological processes.

Future developments could introduce anisotropic interactions as well as particles with orienta-
tion. Currently, anisotropy and orientation can only be emulated by using connected particle
complexes. ReaDDy2 would also benefit from the addition of coarse-grained particle-based mem-
brane models. Support for specialized hardware like graphics cards or distributed environments
like supercomputers could be added to enable the study of larger systems and/or longer timescales.

In the third part of the thesis (Chapter [5)), we presented reactive SINDy. It is an extension
of the method and can parsimoniously detect a network of reactions in terms of reaction
rate equations based on concentration time series data of species. A crucial ingredient for the
method are ansatz functions which are coupled over a system of jordinary differential equations),
since we aim to recover reaction rates as well as stochiometry. To this end we formulate reactive
SINDy as a tensor linear regression problem and successfully demonstrate its abilities on model
systems.

As a future direction, the method could be phrased with respect to the [chemical master|
instead of freaction rate equationsl Currently, reactive SINDy functions best when
applied to off-equilibrium data, since equilibrated concentrations yield no more information with
respect to their time derivative. An [reaction rate equation| formulation potentially allows the
inference of governing reactions based on stochastic fluctuations even in case of steady state data.

In this thesis, we developed general methods and software packages aiding both in the
simulation and analysis of many-body systems. Although we focused mostly on biological
processes, these tools can be applied to a wider range of problems. For instance, the introduced
machine learning tools are also ideal to analyze data from fluid dynamics, both from simulation
data as well as from real measurements, such as atmospheric flow data. Moreover, although
ReaDDy2 was developed for modeling reaction kinetics on a mesoscopic scale, it could also be used
to study topics ranging from epidemics to population dynamics, pattern formation, or soft matter
physics. By the successful formulation and implementation of these methods, we thus provide
accessible theoretical and computational platforms to study a wide range of many-body systems.
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Appendix A

Simulation setups for ReaDDy2

A.1 Lotka—Volterra example

We present the unitless parameters used for the creation of Figure [2.6]in the theory Section
We define three species:

1. “A”: Prey particles. Diffusion constant Dy = 0.01,
2. “B”: Predator particles. Diffusion constant D = 0.01,

3. “W7”: Spatial barrier particles. Diffusion constant Dw = 0.

The microscopic reaction rates and radii of system (2.26) are chosen as

« = 2 (prey birth rate), ro = 0.85 (distance of spawned particles),
[ = 7.67 (predator consume rate), rg = 0.25 (reaction radius),
~v = 1.5 (predator decay rate),

A = p = 0.39 (social friction rate), ry =1, = 0.2 (friction reaction radius).

Pairs of prey and wall or predator and wall particles are subject to a harmonic repulsion potential
with cutoff radius r = 1 and force constant k¥ = 150. The simulation box is equipped with
harmonically repelling walls under the same force constant of kK = 150. We integrate with a time
step of 7 = 1073.

A.2 Density-dependent reaction kinetics
This table contains parameters for the Debye-Hiickel system in the results Section [£.4.5]
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Quantity Symbol  Value Unit

Thermal energy kT 2.49 kJ mol ™!
Volume 1% 1003 nm?3
Radius A TA 1 nm
Radius B rB 0.8 nm
Radius C' re 1 nm
Diffusion coeff. A Dy 0.01 nm?ns~!
Diffusion coeff. B Dp 0.0125 nm?ns—!
Diffusion coeff. C' D¢ 0.01 nm?ns~!
Charge A qa 1.3 -

Charge B qB -1 -
Charge C qc 0 -
Screening parameter K 3.82 nm~!
Debye-Hiickel prefactor e’ey 15: L2349 kJ nmmol !
Repulsion energy U, 1. kJ mol ™!
Cutoff radius Teutoff 4.7 nm
Reaction radius R 2. nm
Equilibrium constant Kgilute  6.16 x 107 nm™3
Macroscopic rate constant kon 0.11 nm3 ns~!
Macroscopic rate constant kot 6.58 x 1076 ns!
Microscopic rate constant Aon 5.61 x 1073 ns!
Microscopic rate constant Aoff 6.58 x 107% ns!
Timestep T 0.1 ns

A.3 Living polymers

This table contains parameters for the living polymers system in the results Section

Quantity Symbol  Value Unit
Thermal energy kgT 2.437 kJmol *
Diffusion coeff. D 2-3 nm?ns~!
Volume v 1003 nm?
Bond length o 1 nm
Bond formation rate kr 1 ns~!
Bond formation radius rE 1 nm
Bond dissociation rate kB 5N -1076 ns—!
Time step T 1 ns

The dissociation reaction is implemented as follows.

import numpy as np
import readdy

def dissociation_rate_function(topology) :

edges = topology.graph.edges
return .000005 * float(len(edges)) if len(edges) > 2 else O.
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def dissociation_reaction_function(topology):
recipe = readdy.StructuralReactionRecipe(topology)
edges = topology.graph.edges
vertices = topology.graph.vertices

# at least a structure like
# vl —— v2 —— V3 —- v4
if len(edges) > 2:
# find the end particles
counts = defaultdict(int)
for (eixl, eix2) in edges:
counts[topology.particles[eix1]] += 1
counts [topology.particles[eix2]] += 1

# the end particles are the ones that have ezxactly one edge
endpoints = []
for pix in counts.keys():

if counts[pix] ==

endpoints.append (pix)

# randomly draw an edge excluding the edges leading to the both ends
edge_index = np.random.randint(0, len(edges) - 2)
removed_edge = None
# for each edge in the graph
for (eixl, eix2) in edges:
pixl = topology.particles[eix1]
pix2 = topology.particles[eix?2]
# check <f it belongs to one of the end vertices
if pixl not in endpoints and pix2 not in endpoints:
# if not, reduce edge_index until 0
if edge_index ==
# remove this edge
recipe.remove_edge(e[0], e[1])
removed_edge = e
break
else:
edge_index -= 1

pixl = topology.particles[removed_edge[0]]
pix2 = topology.particles[removed_edge[1]]

# Set the correct particle types for nmew topologies
recipe.change_particle_type([vix for vix, v in enumerate(vertices)

if v.particle_index == pix1][0], "Head")
recipe.change_particle_type([vix for vix, v in enumerate(vertices)

if v.particle_index == pix2][0], "Head")

return recipe
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Appendix B

Ansatz libraries for reactive
SINDy studies

Here we list all the used ansatz libraries © that were used in the “reactive SINDy” chapter (Chap-
ter [5)).

B.1 Gene-regulatory network ansatz

Full set of ansatz reactions © used in Section for the gene-regulatory network. The given
rate constants define the ground truth reaction model.
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Reaction rate description
DNA, — DNAjp+mRNA, k=138 transcription of mRNA 5
mRNA, — mRNAj +A ko =21 translation of A proteins
mRNA, — ks =1.3 mRNA 5 decay
A — 0 ky=1.5 decay of A proteins
DNAg — DNAg+mRNAp k5=2.2 transcription of mRNAg
mRNAg — mRNAg +B ke = 2.0 translation of B proteins
mRNAg — 0 ky = 2.0 mRNAg decay
B — 0 kg = 2.5 decay of B proteins
DNA: — DNA¢+mRNAg k9g=3.2 transcription of mRNA¢
mRNA: — mRNA¢c+C k10 = 3.0 translation of C proteins
mRNA; — 0 ki1 =23 mRNA¢ decay
cC = 0 k12 = 2.5 decay of C proteins
mRNAp, +A — A ki3 =0  self regulation of A proteins
mRNAg+B — B k14 =0  self regulation of B proteins
mRNA+C — C kis =0  self regulation of C proteins
mRNAg+A — A kig=0 regulation of mRNAg
mRNA-+B — B ki7=0 regulation of mRNA¢g
mRNAp, +C — C kig=0 regulation of mRNA 5
mRNA+A —~ A kig = 6.0 regulation of mRNAg
mRNAg+C — C ki = 4.0 regulation of mRNAg
mRNA, +B — B kig = 3.0 regulation of mRNA o
mRNAA +A — mRNA, k19 =0 artificial fusion
mRNAg +B — mRNAg koo =0 artificial fusion
mRNAA +B — mRNA4 ko1 =0 artificial fusion
mRNAg +C — mRNApg koo =0 artificial fusion
mRNA:+A — mRNA¢ kos =0 artificial fusion
mRNA, +C — mRNA, kou =0 artificial fusion
mRNAg +A — mRNAg kos =0 artificial fusion
A+A — A kog =0 A regulates A
B+B — B ko7 =0 B regulates B
cC+C —~ C kog =0 C regulates C
B+A —~ A kog =0 artificial fusion
C+B — B k3o =0 artificial fusion
A+C —~ C k31 =0 artificial fusion
C+A — A k3o =0 artificial fusion
B+C —~ C k33 =0 artificial fusion
A+B —~ B k3s =0 artificial fusion
A — B kss =0 artificial conversion
B — C ksg =0 artificial conversion
c —~ A ksr =0 artificial conversion
A —~ C kg =0 artificial conversion
C — B kg =0 artificial conversion
B — A kip=0 artificial conversion
mRNAg + mRNAc — mRNA4 ki1 =0 artificial fusion
mRNAc +mRNAg — mRNA¢ kio =0 artificial fusion
mRNA+A —~ C ks =0 artificial fusion




B.2 MAPK ansatz

Full set of ansatz reactions © used in Section for the MAPK system. The given rate

constants define the ground truth reaction model.

Reaction rate description

S+ MAPKKK — S+ MAPKKKx% k1 =1 external stimulus activates MAPKKK

MAPKKKx — MAPKKK ko =1 dephosphorylation
MAPKKKx* + MAPKK — MAPKKKx* + MAPKKx* k3 =1 phosphorylation of MAPKK
MAPKK* — MAPKK ky = dephosphorylation
MAPKK* + MAPK — MAPKKx* 4+ MAPKx ks =1 phosphorylation of MAPK

MAPK*x — MAPK ke =1 dephosphorylation

MAPK*x+TF — MAPKx*+ TFx k7 = phosphorylation of transcription factor
TF« — TF kg =1 dephosphorylation
MAPKKK + MAPKK — MAPKKK + MAPKKx kg =0 artificial reaction
MAPKKK + MAPK — MAPKx* kio=0 artificial reaction
MAPKKK +TF — MAPKKK + TFx* ki1 = artificial reaction
MAPKKKx* + MAPK — MAPKKKx* + MAPKx* ki = artificial reaction
MAPKKKx* +TF — MAPKKKx* + TFx ki3 =0 artificial reaction
MAPKK +TF — MAPKK + TFx* kg = artificial reaction
MAPKK+ +TF — MAPKKx* + TFx* ki5 =0 artificial reaction
MAPK +TF — MAPK + TFx k16 =0 artificial reaction
MAPKK + MAPK — MAPKK + MAPKx* ki7=0 artificial reaction
MAPKKK + MAPKK* — MAPKKK + MAPKK kig = artificial reaction
MAPKKK + MAPKx — MAPKKK + MAPK k19 = artificial reaction
MAPKKK + TF+x — MAPKKK + TF kog =0 artificial reaction
MAPKKKx* + MAPKK*x — MAPKKKx* + MAPKK koy =0 artificial reaction
MAPKKK=#* + MAPK+x — MAPKKK=* + MAPK koo =0 artificial reaction
MAPKKKx + TF+ — MAPKKKx + TF kog = artificial reaction
MAPKK + MAPKx — MAPKK + MAPK koy = artificial reaction
MAPKK + TF+ — MAPKK + TF kos =0 artificial reaction
MAPKKx* + MAPKx — MAPKKx* + MAPK kog =0 artificial reaction
MAPKKx* + TFx — MAPKKx + TF ko7 = artificial reaction
MAPK + TFx — MAPK+ TF kog = artificial reaction
MAPKx* + TF+ — MAPKx 4+ TF kog = artificial reaction

B.3 Lotka—Volterra ansatz

Full set of ansatz reactions © used in Section for the Lotka—Volterra system. The given rate

constants define the ground truth reaction model.
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Reaction rate description

A+A — 0 k1 =0.1 social friction of prey
B+B — 0 ko = 0.1 social friction of predator
A — A+A k=1 prey growth
A+B — B+B k=1 predator eats prey
B — 0 ks =1 predator decays
A+B — A+A kg= artificial reaction
A —~ 0 k=0 artificial reaction
B+B — B ks =0 artificial reaction
B — B+B kg = artificial reaction
A+A —~ A kio=0 artificial reaction
A+B —~ A k11=0 artificial reaction
A+B —~ B kio =0 artificial reaction
A+A —~ B ki3=0 artificial reaction
A — B k14=0 artificial reaction
B —~ A ki5 =0 artificial reaction
A — B+B kig=0 artificial reaction
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Appendix C

Definition of an SDE simulator in
deeptime

Double well 2D definition. Using constexpr specifiers, it is already known at compile-time
that, e.g., the system lives in two-dimensional space and should use an Euler-Maruyama integrator.

template<typename T>
struct DoubleWell2D {

using system_type = sde_tag; // this is an SDE
// the state-space dimension

static constexpr std::size_t DIM = 2;

// data type, e.g., float or double

using dtype = T;

// the type of state of the system, here x; € R?
using State = Vector<T, DIM>;

// use Euler-Maruyama

using Integrator = EulerMaruyama<State, DIM>;

// implementation of V(x), optional
constexpr dtype energy(const State &x) const {

return (x[0]*x[0]-1.) * (x[0]*x[0]-1.) + x[1] * x[1];
}

// implementation of —VV(x)
constexpr State f(const State &x) const {

return {{-4 * x[0] * x[0] * x[0] + 4 = x[0], -2 * x[1]}};
}

static constexpr Matrix<T, 2> sigma{{{{0.7, 0.0}}, {{0.0, 0.7}}}};
// the time step to use for integration

T h{le-3};

// the number of steps between each sample

std::size_t nSteps{10000%};
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Zusammenfassung

Die vorliegende Arbeit prasentiert Methoden und Implementierungen, um Mehrkorpersysteme
effizient zu simulieren und die generierten Daten zu analysieren. Wir konzentrieren uns hauptséch-
lich auf biologische Systeme und Prozesse, welche experimentell bei einer hohen raumzeitlichen
Auflésung kaum beobachtbar sind. Computersimulationen hingegen erlauben im Rahmen ihres
zugrundeliegenden Modells hohe Auflésungen. Der Fokus dieser Arbeit liegt auf der Simulation von
partikelbasierten Modellen, welche grofie Mengen an hochdimensionalen Zeitseriendaten erzeugen
konnen, wodurch Visualisierung und Analyse von dominanten Prozessen erheblich erschwert sind.

Im ersten Teil der Arbeit stellen wir daher mehrere Ansétze maschinellen Lernens vor, welche
das Ziel haben, moglichst niedrigdimensionale Modelle zu schétzen. Diese repréasentieren dominante
Prozesse, geometrisch stabile Strukturen oder die zugrundeliegende Dynamik. Die vorgestellten
Methoden sind in der hier entwickelten Programmbibliothek deeptime enthalten, welche sie,
obwohl sie aus verschiedenen Fachrichtungen stammen, einer breiten Nutzerbasis zugénglich
macht.

Im zweiten Teil der Arbeit entwickeln wir die partikelbasierte Reaktionsdiffusionssimulations-
software ReaDDy2. Sie arbeitet auf einer mesoskopischen Skala, in der zum Beispiel Proteine als
einzelne Partikel oder kleine Partikelkomplexe dargestellt werden kénnen. Wir zeigen, dass ReaDDy2
auf diesem Auflésungsniveau wesentlich schneller als vergleichbare Softwarepakete arbeitet. Damit
ist es, im Gegensatz zu hoherauflésenden Methoden wie Molekiildynamik, méglich, Prozesse mit
Zeitskalen im Millisekunden- bis Sekundenbereich, etwa Signaltransduktion in Zellumgebungen
oder chemische Reaktoren mit komplizierten Geometrien, abzubilden. Eine Verallgemeinerung
von chemischen Reaktionen einzelner Partikel auf die Struktur von Partikelkomplexen erlaubt es,
dass sich die Komplexe dynamisch verdndern kénnen.

Im dritten Teil erarbeiten wir die reactive SINDy Methode, welche besonders diinn besetzte
Reaktionsnetzwerke im Sinne der klassischen Reaktionskinetik anhand von Konzentrationszeitse-
rien schatzen kann. Eine hierfiir kritische Komponente sind tiber ein Differenzialgleichungssystem
gekoppelte Ansatzfunktionen. Daher haben wir reactive SINDy als lineare Tensorregression
formuliert.

Die eingefiithrten Methoden werden iiberwiegend anhand von biologischen Prozessen motiviert
und validiert, konnen aber in einem allgemeineren Kontext eingesetzt werden. Zum Beispiel
kénnen dynamische Modelle aus Simulations- und Messdaten der Fluiddynamik geschétzt werden.
Des Weiteren kann ReaDDy2 genutzt werden, um etwa Epidemien oder Populationsdynamik
abzubilden. Durch die Formulierung und Implementierung dieser Methoden schaffen wir neue
Méglichkeiten, Mehrkorpersysteme zu simulieren und verstehen.
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