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Abstract

Single‐cell sequencing methods provide the highest resolution insight into

cellular heterogeneity. Owing to their rapid growth and decreasing cost, they

are now widely accessible to scientists worldwide. Single‐cell technologies

enable analysis of a large number of cells, making them powerful tools to

characterise rare cell types and refine our understanding of diverse cell states.

Moreover, single‐cell application in biomedical sciences helps to unravel

mechanisms related to disease pathogenesis and outcome. In this Viewpoint,

we briefly describe existing single‐cell methods (genomics, transcriptomics,

epigenomics, proteomics, and mulitomics), comment on available analysis

tools, and give examples of method applications in the biomedical field.
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1 | INTRODUCTION

Human tissues are composed of heterogeneous cell po-
pulations that harbour different cell types. With the help
of bulk sequencing, where individual cells cannot be
distinguished from each other, many valuable insights
into tissue dynamics have already been obtained. How-
ever, this approach only captures average properties of
the population constituents, which often do not

accurately portray the state of an individual cell.1 In re-
cent years, development of single‐cell methods allowed
us to identify the heterogeneity and cell‐to‐cell variations
from a new perspective by providing a complete and
unbiased analysis of each cell. The rising popularity of
single‐cell genomics was subsequently recognized as
“Method of the Year in 2013,” and most recently, the
combination of methodologies, single‐cell multiomics,
was awarded “Method of the Year 2019.”2 The detailed
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technical aspects of the numerous single‐cell approaches
have already been reviewed elsewhere,3–6 and will,
therefore, not be covered here. The aim of this Viewpoint
article is to provide a summary of the various single‐cell
omic approaches, briefly cover analysis methods and
present examples of their applications in biomedical
sciences.

2 | SINGLE ‐CELL GENOMICS

Single‐cell DNA sequencing (scDNA‐seq) helps to un-
mask intercellular variation and heterogeneity at geno-
mic level. Currently scDNA‐seq methods allow to study
single nucleotide variants, copy number variations and
microsatellite variations.7–9 Cancer biology is one of the
research areas where scDNA‐seq is widely applied. It can
be used to trace the expansion of different clones and
reconstruct cell lineages in the mosaic tissue of the tu-
mour.10,11 In addition, scDNA‐seq has the power to
characterise rare cell types (e.g., cancer stem cells) that
would have been missed in conventional bulk analyses.12

Despite the benefits, numerous challenges still exist that
need to be addressed such as selection bias caused by the
whole genome amplification step. As a single cell only
holds two copies of genomic DNA with an approximate
weight of 6 pg, a wide variety of amplification methods
had to be developed to obtain enough material for library
preparation. More recently, microfluidic systems were
used to build libraries without preamplification steps by
direct tagmentation of single‐cell DNAs that reach a
more uniform coverage and provide high‐resolution
single‐cell copy‐number profiles.13 Other limiting fac-
tors include the throughput of cell isolation techniques,
the occurrence of allele dropout events, loss of coverage
uniformity, and false‐positive, false‐negative errors.14,15

3 | SINGLE ‐CELL
TRANSCRIPTOMICS

Single‐cell transcriptomics have developed rapidly ever since
2009, when the first single‐cell transcriptome profile was
described.16 Cell populations with homogenous cell surface
markers harbour cell‐to‐cell variations with a considerable
impact on cell function.17 This heterogeneity can be resolved
using single‐cell RNA sequencing (scRNA‐seq). Currently
available scRNA‐seq technologies can be divided into two
categories: (1) droplet‐based (e.g., Drop‐seq,18 inDrop,19 10x
Genomics,20 Seq‐well21) and (2) plate‐based (e.g., STRT‐
seq,22 Smart‐Seq. 1–3.23–25 All available methods are based
on the conversion of RNA into complementary DNA fol-
lowed by amplification steps to obtain sufficient amounts of

DNA for sequencing. Plate‐based approaches (e.g., Smart‐
seq) generate full‐length transcripts that can detect lowly
expressed genes, alternative splicing events and allele‐
specific expression. Droplet‐based methods (e.g., 10x Geno-
mics), on the other hand, can analyse a larger number of
single cells, however, since they sequence only the 5′ or 3′
end of the transcript, no allele‐specific expression or isoforms
can be detected.26

Single‐cell transcriptomics is the most mature among
single‐cell methods. However, it also harbours several lim-
itations. The majority of the currently available protocols
only focuses on the polyadenylated messenger RNA
(mRNA) fraction, thus excluding microRNAs and other
regulatory RNAs from the analysis. To circumvent that
problem, newmethods have been developed that capture the
entire RNA content of a single cell.27 Another problem stems
from tissue processing that can lead to both a distorted re-
flection of the composition of the original tissue and altered
gene expression patterns.28,29 To avoid that, new protocols
have been developed that aim to minimise gene expression
artefacts related to tissue preprocessing.30

4 | SINGLE ‐CELL EPIGENOMICS

Epigenetics is a complex regulatory network that modulates
chromatin structures and genome function via chemical
modifications of DNA and histone proteins.31,32 Currently
available single‐cell methods focus on the investigation of the
methylation pattern and chromatin state.

4.1 | Methylation profile

The analysis of single‐cell DNA methylation typically relies
on methylation‐sensitive restriction enzymes and bisulfite
conversion. The quantitative information of bisulfite se-
quencing is considered the gold standard for genome‐wide
methylation analysis, but its application to single cells is
hampered by DNA degradation, resulting in high dropout
rates.38 Single‐cell bisulfite sequencing (scBS‐seq) allows
the detection of the 5mC methylation status at CpG sites,
genomic regions where a cytosine nucleotide is followed by
a guanine nucleotide.39 The main limitation of this method
is a relatively poor genome coverage of only up to 48% with
high sequencing depth in a single cell. Due to the lack of
genome‐wide coverage, allele‐specific differences in me-
thylation are difficult to detect.40 Alternative to scBS‐seq is
single‐cell reduced representation bisulfite sequencing
(scRRBSseq).41,42 Compared with the scBS‐seq technique,
scRRBSseq covers fewer CpG sites, but it provides better
coverage for CpG islands, which are likely to be the most
informative elements for DNA methylation.42
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4.2 | Chromatin state

Single‐cell techniques can also assess chromatin acces-
sibility by transposase‐accessible chromatin sequencing
(ATAC‐seq).33 Currently, both plate‐based (interrogation
of hundreds of cells) and droplet‐based (interrogation of
tens of thousands of cells) methods for scATAC‐seq are
available.34,35 Additionally, DNA‐protein interactions in
single cells can be investigated via chromatin im-
munoprecipitation sequencing (ChIP‐seq).36 This meth-
od identifies binding sites of DNA‐associated proteins.
Recently also methods allowing for investigation of his-
tone modifications at single‐cell level are becoming
available.37 For example, single‐cell Cleavage Under
Targets and Tagmentation (scCUT&Tag) allows for pro-
filing diverse chromatin components at single‐cell re-
solution including histone acetylation.37

5 | SINGLE ‐CELL PROTEOMICS

Proteome analysis at single‐cell level can provide additional
information on state and function of a cell. However, ana-
lysing the protein content of a single cell is challenging,
mainly due to the lack of methods for protein amplification
and the added complexity of secondary and tertiary struc-
tures. In recent single‐cell studies, cytometry approaches
based on fluorescence‐activated cell sorting and single‐cell
mass spectrometry (CyTOF) became available with medium
throughput (∼40–50 proteins). CyTOF has been used to
analyze surface and intracellular proteins by using anti-
bodies, conjugated to rare heavy metal isotopes. This method
overcomes the spectra overlap issue characteristic for mul-
ticolor flow cytometry.43

6 | SINGLE ‐CELL MULTIOMICS

Ultimately, the combination of the aforementioned
single‐cell sequencing techniques has raised attention as
it allows for parallel analysis of multiple molecular fea-
tures within the same cell.4 One type of methods in
single‐cell multiomic studies includes genome and tran-
scriptome sequencing (G&T‐seq) which allows for si-
multaneous interrogation of DNA and mRNA from a
single cell to dissect the effect of genomic variation on
gene expression.44 Another type of multiomic methods
combines single‐cell analyses of the epigenome and
transcriptome. The simultaneous analysis of the epigen-
ome and transcriptome enables scientists to investigate
gene regulatory pathways. Accordingly, several ap-
proaches have been developed that profile chromatin
accessibility and gene expression45,46 as well as DNA

methylation and gene expression.41,47,48 In addition,
commercially available solutions such as the “10x
Chromium Single Cell Multiome ATAC+Gene expres-
sion” platform are now also available. Finally, a third
type of multiomic methods enables the analysis of cel-
lular proteins and the transcriptome profile of individual
cells.49,50 One example is the cellular indexing of tran-
scriptomes and epitopes by sequencing (CITE‐seq).
CITE‐seq allows the detection of the protein of interest
and the corresponding mRNA levels at single‐cell re-
solution. It provides phenotypic information based on
cell surface protein levels together with standard
scRNAseq for an unbiased transcriptome analysis. It uses
oligonucleotide‐labeled antibodies to detect extracellular
proteins and measures the transcriptome profile si-
multaneously, thus providing the joint information about
abundance of protein and corresponding mRNA level.49

7 | SPATIAL TRANSCRIPTOMICS

Current single‐cell sequencing methods require tissue dis-
sociation and thus result in loss of spatial contextualisation.
The emerging field of spatial transcriptomics addresses this
problem by aiming to characterise gene expression profiles
while retaining the spatial information of a tissue.51 Spatial
transcriptomics enables the visualisation of the mRNA dis-
tribution in tissue sections. Existing spatial transcriptomics
methods can be roughly divided into (1) fluorescent in situ
hybridization methods (e.g., RNAscope,52 MERFISH53, seq-
FISH54 and (2) methods based on scRNA‐seq (e.g., Slide‐
seq,55 sci‐Space56). Fluorescence‐based methods rely on di-
rect labelling of tissue sections with fluorescent probes52–54

whereas scRNA‐seq methods apply oligonucleotide or bead‐
based spatial barcoding.55,56 Spatial transcriptomics at
single‐cell resolution is a rapidly developing field which
provides a unique opportunity to dissect the tissue archi-
tecture together with underlying cellular interactions and
thus offering a better understanding of morphologically
complex tissues.57 A commercially available Visium HD so-
lution from 10x Genomics for single‐cell spatial tran-
scriptomics is planned to be released in the first half of 2022.
Availability of an easy‐to‐use commercial product will in-
crease the accessibility of spatial transcriptomics and further
broaden its applications.

8 | COMPUTATIONAL METHODS
FOR SINGLE ‐CELL ANALYSIS

The rapid growth and decreasing costs of single‐cell methods
is making them more accessible to scientists around the
world.28,58 The information about cellular phenotypes,
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developmental dynamics and communication networks is
encrypted in a complex sequencing dataset. Current mul-
tiomics methods can measure multiple features of single
cells, including the genome, transcriptome, epigenome and
proteome. However, the implementation of computational
methods is crucial to extract biological information from the
data59 and the volume and complexity of the data pose un-
ique computational challenges. Single‐cell data is char-
acterised by a high level of technical noise and multifactorial
variability between cells.60,61 The widely recognised chal-
lenges within single‐cell data science include (1) scaling up
to higher dimensionalities regarding cells and features, (2)
integration of single‐cell data across different samples, ex-
periments and modalities, and (3) validation and bench-
marking of available analysis tools.14

Analysing single‐cell data is especially challenging
for first time users without strong bioinformatic
support (Figure 1). Therefore, there is a growing focus
on enhancing the user‐friendliness and accessibility
of available analytical tools.62 Open source analysis
tools with tutorials like Seurat from Satija's group (in
R programming language)63 or Scanpy from Theis's
group (in Python programming language)64 are
available. In addition, Bioconductor (https://www.
bioconductor.org/), an open source software for
bioinformatics, provides sophisticated tools for the

analysis of high‐throughput genomic data. Never-
theless, the application of those tools still requires
basic programming skills. Therefore, commercial
providers of single‐cell technologies are developing
softwares compatible with their products allowing
easy interpretation of single‐cell data for wet lab sci-
entists without programming skills. One example of
such software is Loupe Browser from 10x
Genomics, which is a desktop application with point‐
and‐click user interface that facilitates the visualisa-
tion and interpretation of data from different 10x
Genomics solutions. This includes expression profile
and/or chromatin accessibility of single‐cells to sub-
sequently identify and characterise cell types. Satija
lab also developed a web application, Azimuth
(https://satijalab.org/azimuth/) that uses publicly
available data sets to facilitate the interpretation of
scRNA‐seq data. Azimuth uses the count matrix of
gene expression from the single‐cell experiment and
performs data processing including normalisation and
clustering. It is a reference‐based mapping in which
the uploaded dataset is compared to the reference
dataset with annotated cell clusters to predict cluster
identity. Further development of easy analysis tools
will facilitate first interpretation of the data (Table 1).
However, in‐depth analysis of the complex dataset

FIGURE 1 Workflow for scRNA‐seq experiment. Single cells are isolated from heterogeneous tissue, followed by library preparation in
which the barcoding step allows to distinguish material coming from each individual cell. Ready libraries are sequenced using Next
Generation Sequencing methods. Raw sequencing data are processed using bioinformatic tools to generate count matrices followed by
quality control. Dimensionality reduction methods are used for visualisation. Downstream analysis using appropriate bioinformatic tools
allows to identify different cell types, perform trajectory analysis and/or infer cellular communication networks

1574 | STEIN ET AL.
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requires good understanding of biological processes
and advanced bioinformatics skills. It fosters the
collaboration between dry and wet lab scientists.

9 | APPLICATION OF SINGLE‐CELL
TECHNOLOGIES

The rapid growth of single‐cell methods is reflected in their
increasing application in biology and medicine.68 In general,
the use of single‐cell sequencing in this context can be
roughly grouped into three main themes, (1) developmental
studies,69–71 (2) atlasing,72 and (3) precision medicine.73,74

9.1 | Developmental studies

Single‐cell approaches capture cells at various developmental
stages, namely before, during and after lineage commitment,
thus are well suited to resolve heterogeneity and steps during

the developmental process. This approach was already suc-
cessfully applied to study the development of nematodes,70

mice71 and zebrafish.69 Single‐cell methods are well suited to
study the development of multicellular organisms as they
can provide simultaneous measurement of clonal history
and cell identity. In this context information about gene
expression heterogeneity across differentiation pathways
brings increased resolution to our understanding of the
lineage commitment process.

9.2 | Atlasing

High‐throughput single‐cell methods are currently being
applied to create a detailed map of the human organism
under the initiative of the Human Cell Atlas (https://www.
humancellatlas.org/). The scope is to create a detailed cata-
logue of all cell types present in the human body. The
comparison of the cell types present during homeostasis with
the diseased tissue will help to identify molecular changes

TABLE 1 Examples of free single‐cell data analysis tools

Name Short description Reference

Azimuth Web application for quick interpretation of scRNA‐seq data. https://satijalab.org/azimuth/

Cell Ranger Four pipelines to analyse data from different 10x Genomics solutions.
Read alignements, generation of feature‐barcode matrices,
clustering, gene expression analysis.

10x Genomics

CogentAP Processing of the sequencing data generated by ICELL8 technology
including generation of gene matrix for downstream analysis.

Takara Bio

Cogenta NGS Discovery
Software

Visualisation of the data generated by Cogenta AP. Takara Bio

EpiScanpy Preprocessing and analysis of epigenomic data (scATAC‐seq and
single‐cell DNA methylation) including dimensionality reduction,
clustering and visualisation.

Danese et al., (2019)65

Loupe Browser Visualisation of the files generated by Cell Ranger pipelines. 10x Genomics

MultiMap Tool for integration of scRNA‐seq, scATAC‐seq, single‐cell DNA
methylation and spatial data.

Jain et al., (2021)66

Scanpy Preprocessing and analysis of scRNA‐seq data including visualisation,
clustering, trajectory interference, simulation of gene regulatory
networks.

Wolf et al., (2018)64

Seurat R package for quality control, analysis and exploration of scRNA‐
seq data.

https://satijalab.org/seurat/

Single Cell Interactive
Application (SCiAp)

Tools and workflows for scRNA‐seq data analysis from Human Cell
Atlas and Single Cell Expression Atlas projects.

Moreno et al. (2021)67

https://humancellatlas.
usegalaxy.eu/

Singular Analysis Toolset
Software

Analysis and visualisation of the data from Fluidigm systems. Gene
expression profile and mutation patterns.

Fluidigm

Tapestri Insight Software for single‐cell DNA analysis and visualisation compatible
with Tapestri Platform.

Mission Bio
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driving pathogenesis.72 Additionally, the recent advances in
mitochondrial DNA (mtDNA) tracing reveal the power of
somatic mtDNA variation as natural genetic barcodes in
primary human samples.75 Using somatic mutation in
mtDNA can be applied to trace clonal evolution of
malignancies.

9.3 | Precision medicine

Highly innovative single‐cell approaches are slowly starting
their transition from basic science to clinical applications by
enabling detailed characterization of cell types, states and
pathways associated with human diseases. A single‐cell
multiomic approach with combined single‐cell tran-
scriptomics and lineage tracing was successfully applied to
identify leukaemic and preleukaemic stem cells in acute
myeloid leukaemia. It allowed the characterisation of the
differentiation block stemming from the presence of leu-
kaemic mutations.74 Another great example illustrating the
potential clinical application of single‐cell methods, used a
combination of whole exome sequencing and single‐cell
genotyping to understand genetic mechanisms driving pro-
gression and resistance in myelofibrosis.73 There is an in-
creased interest in potential clinical application of single‐cell
techniques reflected in collaborative initiatives like LifeTime.
LifeTime aims to understand the complex behaviour of hu-
man cells during disease progression and analyse their re-
sponse to the therapy, all at single‐cell resolution.76 To
achieve that, further development and integration of mul-
tiomics methods is urgently needed. In the future, the drop
in single‐cell method costs and development of robust sam-
ple preprocessing pipelines will facilitate their transition to
the clinic.

10 | CONCLUDING REMARKS

Single‐cell methods are transforming our under-
standing of biological processes by allowing more
complex profiling of cells forming an organism. Fur-
ther technological developments will make it possible
to obtain information on the past (genome muta-
tions), present (transcriptome and proteome), and
future (chromatin accessibility) state of a cell from a
single experimental snapshot.
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