g

Laboratory Investigation (2020) 100:1288-1299
https://doi.org/10.1038/541374-020-0455-y

P>

ARTICLE

Multiclass cancer classification in fresh frozen and formalin-fixed
paraffin-embedded tissue by DigiWest multiplex protein analysis

Teresa Bockmayr®' - Gerrit Erdmann? - Denise Treue'? - Philipp Jurmeister'” - Julia Schneider? - Anja Arndt? -
Daniel Heim' - Michael Bockmayr'>*® - Christoph Sachse? - Frederick Klauschen'*

Received: 9 February 2020 / Revised: 2 June 2020 / Accepted: 7 June 2020 / Published online: 29 June 2020
© The Author(s) 2020. This article is published with open access

Abstract

Histomorphology and immunohistochemistry are the most common ways of cancer classification in routine cancer
diagnostics, but often reach their limits in determining the organ origin in metastasis. These cancers of unknown primary,
which are mostly adenocarcinomas or squamous cell carcinomas, therefore require more sophisticated methodologies of
classification. Here, we report a multiplex protein profiling-based approach for the classification of fresh frozen and
formalin-fixed paraffin-embedded (FFPE) cancer tissue samples using the digital western blot technique DigiWest. A
DigiWest-compatible FFPE extraction protocol was developed, and a total of 634 antibodies were tested in an initial set of
16 FFPE samples covering tumors from different origins. Of the 303 detected antibodies, 102 yielded significant correlation
of signals in 25 pairs of fresh frozen and FFPE primary tumor samples, including head and neck squamous cell carcinomas
(HNSC), lung squamous cell carcinomas (LUSC), lung adenocarcinomas (LUAD), colorectal adenocarcinomas (COAD),
and pancreatic adenocarcinomas (PAAD). For this signature of 102 analytes (covering 88 total proteins and 14
phosphoproteins), a support vector machine (SVM) algorithm was developed. This allowed for the classification of the tissue
of origin for all five tumor types studied here with high overall accuracies in both fresh frozen (90.4%) and FFPE (77.6%)
samples. In addition, the SVM classifier reached an overall accuracy of 88% in an independent validation cohort of 25 FFPE
tumor samples. Our results indicate that DigiWest-based protein profiling represents a valuable method for cancer
classification, yielding conclusive and decisive data not only from fresh frozen specimens but also FFPE samples, thus
making this approach attractive for routine clinical applications.

Introduction

Precise cancer diagnostics is crucial for the selection of the
appropriate treatment and estimation of prognosis. Tumor
classification includes the tissue of origin (histological type
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and primary site), as well as the grade and stage of cancer.
Besides clinical and radiographic data, the pathological
examination is decisive in cancer diagnostics. Histomor-
phology complemented by immunohistochemistry allows
for the determination of the tissue of origin in many cases.
However, in certain instances, such as in squamous cell
carcinomas, or when tumors have lost their specific features,
this approach fails, and the tumor types cannot be deter-
mined by conventional methods. Moreover, in cancers of
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unknown primary (CUP), which account for 3-5% of all
malignant epithelial tumors, no primary tumor can be
identified even after extensive diagnostic work-up [1]. CUP
are often adenocarcinomas, and more than half of the pri-
maries found in autopsy arose in the lung or the pancreas
[2, 3]. Furthermore, patients sometimes develop more than
one cancer, which makes it difficult to differentiate metas-
tasis from a second primary tumor. For example, primary
squamous cell carcinomas of the lung and metastases from
head and neck squamous cell carcinomas (HNSC) often
share a similar morphology and can, therefore, hardly be
distinguished from each other [4].

Through the advances in molecular techniques, sophis-
ticated diagnostic approaches have been developed and
applied to cancer classification. Several studies describe the
classification of tumors according to their tissue of origin
using gene expression [5-7], microRNA [8, 9], and, more
recently, DNA methylation [10, 11] profiling. Tissue-based
protein profiling constitutes a further promising approach
for cancer classification, as tumor types are characterized by
specific protein profiles [12]. Proteins are the principal
effector molecules in a cell, and their function can be
influenced by posttranslational modifications such as
phosphorylation, acetylation, glycosylation, or sulphation
[13]. Proteomic approaches have been successfully applied
to differentiate cancer from nonmalignant tissue [14—16]
or for the pairwise distinction of tumor types or subtypes
[17-19]. However, so far, only a few studies have been
conducted to classify multiple tumor types based on protein
profiles in tissue samples [20-22].

Mass spectrometry is a powerful method for compre-
hensive proteomics, but is associated with high initial and
operating costs, requires specially trained staff and has not
yet been implemented routinely in diagnostics [23]. Besides
mass spectrometry, diverse targeted antibody-based tech-
niques have been established for protein analysis. Immu-
nohistochemistry is widely used for standard diagnostic
purposes and enables protein identification and quantifica-
tion in histological sections [23]. Western blots facilitate
immunodetection according to molecular weight [24].
However, both methods are inconvenient for the analysis of
a high number of proteins and require a relatively large
amount of tissue. In contrast, reverse phase protein arrays
(RPPA) and the DigiWest method are more suitable for the
parallel measurement of multiple proteins [25, 26]. Digi-
West relies on classical western blotting and combines it
with bead-based multiplexing, which allows for the simul-
taneous measurement of 80-800 proteins in samples even
with low amounts of material [26]. Furthermore, DigiWest
shows a similar sensitivity, reproducibility, and signal lin-
earity as a high-end western blot system [26]. It has been
effectively used in the analysis of signaling pathways and
for the verification of biomarker candidates [27-31].

Fresh frozen samples are often preferred for molecular
analysis, as macromolecules are preserved without cross-
links [32], but the availability of fresh frozen samples is
often limited as their collection is laborious, expensive, and
necessitates special logistics. Hence, in routine diagnostic
pathology, tissue samples are fixed in formalin and
embedded in paraffin for preservation. Formaldehyde
induces cross-links among proteins or between proteins and
nucleic acids, thereby preserving the tissue morphology
adequately [33]. This ensures good quality for histological
examination, but cross-links may impair the immunor-
eactivity of proteins by modifying their conformation and
altering or masking the epitope [34]. It is also challenging to
extract full-length proteins from formaldehyde-fixed tissue
[35]. Different protocols have already been developed to
analyze formalin-fixed paraffin-embedded (FFPE) samples
by immunohistochemistry, western blotting, mass spectro-
metry, and RPPA [36-39].

In this study, we established FFPE sample extraction
protocols suitable for DigiWest protein profiling, tested
over 600 antibodies for their suitability on FFPE tissue, and
identified antibodies yielding comparable results in FFPE
and fresh frozen tissue. We showed that DigiWest multiplex
protein profiles can be used to predict the tissue of origin of
five different cancer types, including HNSC, lung squamous
cell carcinomas (LUSC), lung adenocarcinomas (LUAD),
colorectal adenocarcinomas (COAD), and pancreatic ade-
nocarcinomas (PAAD) in both fresh frozen and FFPE
tissue.

Materials and methods
Sample acquisition and preparation

A set of 25 paired fresh frozen and FFPE tumor samples, as
well as an independent validation cohort of 25 FFPE tumor
samples, were acquired from the archive of the Institute of
Pathology of the Charité University Hospital Berlin, Ger-
many. Informed consent was obtained from all patients in
accordance with standard institutional guidelines. The
samples were all primary tumors.

The set of 25 paired fresh frozen and FFPE tumor
samples contained five HNSC, five LUSC, five LUAD, five
COAD, and five PAAD. Tumors with different histological
grades were included (1 well, 18 moderately, 2 moderately
to poorly, and 4 poorly differentiated) to represent tumors
that would occur in a realistic clinical setting. Tumor cell
content was assessed by a board-certified pathologist based
on hematoxylin-eosin-stained slides and was determined to
be at least 30% in fresh frozen and at least 40% in FFPE
samples. The average tumor cell content was 70% in fresh
frozen and 68% in FFPE samples.
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The independent validation cohort consisted of 25 FFPE
tumor samples, also with five cases per tumor type (HNSC,
LUSC, LUAD, COAD, and PAAD). Of these, 18 tumor
samples were moderately and seven poorly differentiated.
The tumor cell content was at least 40% and averaged 68%.

Fresh frozen samples used for DigiWest analysis were
collected after surgical resection, snap-frozen in liquid
nitrogen, and stored at —80 °C. The cold ischemic time was
measured in 21 of 25 samples with a median of 14 min.
They were cut in slices of 15 um thickness at —20 °C using
a cryostat (Leica Biosystems, Wetzlar, Germany). Tissue
slices were lysed in CLB1 lysis buffer (10 pl lysis buffer/mg
tissue) containing PhosSTOP inhibitor cocktails (Roche
Diagnostics GmbH) for 30 min in a thermomixer (4 °C,
1400 rpm). Samples were subsequently centrifuged for 5
min at 4 °C and 18,200 g (Eppendorf, Hamburg, Germany).
The supernatant was collected, divided into three aliquots,
and stored at —80 °C. The total protein concentration was
measured using Coomassie Plus (Bradford) Assay Kit
(Thermo Scientific, Rockford, USA). All samples had a
protein concentration of more than 1 mg/ml.

FFPE samples were cut in 15um thick curls. When
needed, tumor-rich areas were manually macro-dissected to
ensure a tumor cell content of at least 40%. For the
extraction of proteins from FFPE curls, the Qproteome
FFPE Tissue kit (Qiagen, Hilden, Germany) with its
Heptan-based protocol was used according to the manu-
facturer’s recommendations. The resulting protein lysates
were further purified with the 2-D Clean-Up Kit (GE
Healthcare, Chicago, USA) according to the vendor’s pro-
tocol. The resulting protein pellets were re-suspended in
LDS buffer containing 212 mM Tris HCL, 282 mM Tris
base, 4% LDS (w/v), 1.01 mM EDTA and supplemented
with S0mM DTT (Invitrogen, Carlsbad, USA). Protein
concentrations were determined using the 660 nm assay
with IDCR (Invitrogen, Carlsbad, USA).

Protein concentrations of both fresh frozen and FFPE
lysates were then adjusted by SDS PAGE, employing
Coomassie Fluor Orange Protein Gel Stain (Invitrogen,
Carlsbad, USA) according to the vendor’s protocol,
including an internal protein lysate standard to optimize
sample loading for DigiWest.

DigiWest multiplex protein analysis

DigiWest assays were performed as published (see [26] for
details). In brief, for the initial analysis of 634 antibodies,
2 x 20 pg of total protein per sample was loaded on an SDS-
polyacrylamide gel (20 pg/lane) and size-separated via
electrophoresis. For the subsequent analysis of 306 anti-
bodies, 1 x 20 ug of total protein was required, while only
1 x 10 pg of total protein was used for the measurement
of 102 antibodies in the independent validation cohort.
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Size-separated proteins were blotted to a PVDF membrane
and biotinylated. Every lane of the membrane was cut into
96 strips of 0.5 mm width, each corresponding to a certain
molecular weight fraction. Each biotinylated protein strip
was then placed in a specific well of a 96-well plate and
elution buffer was added. The eluted proteins were incu-
bated with magnetic color-coded beads (Luminex, Austin,
USA) coated with neutravidin. The biotinylated proteins
bind to the neutravidin beads such that each bead color
represents proteins of one specific molecular weight frac-
tion. The beads were mixed in pools of 96 bead identifies,
thus resulting in a reconstitution of the original lane. For
each protein measured, a small aliquot of the bead pool was
incubated with a specific antibody and phycoerythrin-
labeled secondary antibodies were added to generate
signals.

Samples were read on a FlexMAP 3D flow cytometer
(Luminex, Austin, USA), resulting in 96 values per anti-
body and sample, represented as graphs. Signal intensity
was plotted against molecular weight and protein bands
were visualized as peaks. While the molecular weight of
each antibody was provided, an algorithm was used to
identify adjacent peaks. The detected signals corresponded
to the integral of the area of a peak, after subtraction of the
local background. In a dedicated set-up, extraction of 4-16
FFPE samples plus DigiWest for up to 300 antibodies plus
data analysis can be conducted within 10-12 days.

Antibody selection

Antibody selection was performed on the set of 25 paired
fresh frozen and FFPE tumor samples. From our collection
of >1200 antibodies that had been pre-validated for Digi-
West in fresh frozen materials, a selection of 634 antibodies
was initially measured by DigiWest in 16 FFPE samples (3
HNSC, 4 LUSC, 3 LUAD, 3 COAD, and 3 PAAD). These
634 antibodies covered a broad range of molecular weights,
targeting proteins and phosphoproteins in the cytoplasm and
the nucleus. Among them, 306 antibodies were detectable in
at least four samples or all samples of the same tumor type.
These 306 antibodies were subsequently measured in the
corresponding 16 fresh frozen samples and the additional
nine pairs of fresh frozen and FFPE samples (2 HNSC, 1
LUSC, 2 LUAD, 2 COAD, and 2 PAAD).

A noticeable cross-reaction of the anti-rabbit secondary
antibody (dk-o-rb-IgG (H+ L)-RPE #711-116-152 Jack-
son, Westgrove, USA) was observed at 47-53 kDa in all
HNSC samples, resulting in a stronger signal in fresh frozen
than in FFPE samples. Therefore, we excluded a priori three
antibodies (Cytokeratin 16, PPAR alpha-pS12, DAPK3
(ZIPK)-pT265) for which it was not possible to distinguish
the specific signal from a cross-reaction. This resulted in a
dataset of 303 antibodies.
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Pearson correlations were computed for these 303 anti-
bodies between fresh frozen and FFPE samples. Multiple
testing correction for the significance of correlation scores
was performed with the Benjamini—Hochberg (BH) method.
Of the 303 antibodies, 121 showed a significant correlation
(p-BH <0.05), corresponding to 128 of 407 detected sig-
nals. In the cases in which more than one signal was
detected for a given antibody, only the signal with the
highest correlation factor was retained for further analysis.

Among these 121 antibodies, 12 were excluded because
the detected signal shifted over 20% of the expected
molecular weight of the antibody, another five antibodies
were discarded because the peaks were not clearly identi-
fiable, and two antibodies were excluded due to limited
availability or redundancy.

In total, 102 of 634 antibodies (Supplementary Table 1)
resulted in clear peaks at the expected molecular weights
(x20%) and showed a significant correlation between the
DigiWest signals detected in fresh frozen and FFPE sam-
ples. These 102 antibodies were subsequently used for
cancer classification. Furthermore, DigiWest analysis in the
independent validation cohort of 25 FFPE samples was also
conducted with these 102 antibodies.

Statistical analysis, classification, and data
visualization

The analysis of processed DigiWest data was performed
using the statistical programming language R [40] including
the packages gplots, kernlab, e1071, and caret [41-44]. The
data were transformed into log2 scale, and Pearson corre-
lation coefficient was applied for the analysis between log2
expression values in fresh frozen and FFPE samples. The
significance of correlation was assessed with the R-function
cor.test. Heatmaps were generated based on the average-
linkage method and Pearson correlation coefficient as
similarity measure.

Radial basis function kernel support vector machines
(SVM) were used as tumor classifiers. The model for the
paired set was tuned and evaluated using nested cross-
validation [45] with fivefold outer and fourfold inner cross-
validation, repeated ten and five times, respectively. This
ensures that no information from the validation samples was
used for model selection at any point. The tuning para-
meters were chosen between C = 10!%!>3 and 6=0.01 x
1013723} The classifier used on the independent vali-
dation set was trained on the 25 FFPE samples from the
paired set using fivefold cross-validation (ten repeats)
and the same tuning parameters. The optimal parameters
were ¢ =0.0001 and C=100. The SVM classifiers were
compared with a random forest classifier, which yielded
inferior classification accuracy for these prediction tasks.

The significance of differential expression between two
groups was assessed with the #-test (R-function pairwise.t.
test with default parameters). Multiple testing correction
was performed with the BH method [46]. p values < 0.05
were considered statistically significant.

Results

After the establishment and optimization of a DigiWest-
compatible extraction protocol for FFPE samples, we
determined the performance of DigiWest in FFPE tissue for
the initial 634 antibodies. From these, we selected 303
antibodies that were expressed in at least four samples or all
samples of the same tumor type to compare their signals in
fresh frozen and FFPE samples (see “Methods”). Those 303
antibodies were measured in the 25 pairs of fresh frozen and
FFPE primary tumor samples, which included five samples
for each of the following tumor types: HNSC, LUSC,
LUAD, COAD, and PAAD.

Then we investigated the correlations of all detected
signals between fresh frozen and FFPE samples via Pearson
correlation coefficients (R) to identify those antibodies that
performed similarly in both tissue types. Figure 1 presents
selected proteins comparing fresh frozen and FFPE signal
intensities (Fig. 1a). The detected signals correspond to the
integrated area of a peak at a certain molecular weight. If
more than one signal was detected for a given antibody,
only the signal with the highest correlation coefficient was
included. Without applying a multiple testing correction,
150 out of the 303 antibodies (50%) were found to be
significantly correlated between fresh frozen and FFPE
tissue. After multiple testing correction (BH method), 121
antibodies (40%) demonstrated a significant correlation (p-
BH<0.05), with a correlation coefficient of R>0.47
(Fig. 1b). Nineteen of these antibodies were excluded
because the peak was shifted (>20% of the expected
molecular weight), or peaks were not clearly identifiable.
Cytokeratin 5 and c-Myc showed the highest correlation
coefficient among all proteins, with R =0.93 and p-BH =
2.2e — 9. The detected signals for these proteins were par-
ticularly high in HNSC and LUSC, for both fresh frozen
and FFPE tissue (Fig. 1c). The remaining 182 antibodies
(60%) were not significantly correlated (p-BH > 0.05) and
thus excluded. In total, 102 antibodies (34%) were used for
further analysis. These 102 analytes comprised 14 out of 48
antibodies against phosphoproteins (29%) and 88 out of 255
against total proteins (35%). In fresh frozen samples, the
mean signal intensities (log2 scale) were generally higher,
except for one of 102 antibodies, and the signals were
detected more frequently than in FFPE tissue (23 vs. 18
tumor samples on average).

SPRINGER NATURE
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Fig. 1 DigiWest protein profiling in fresh frozen and FFPE tissue.
a DigiWest data displayed for four antibodies (Cytokeratin 5, p53,
B-Catenin-phospho S675, HSP 27-phospho S78) in different tumor
samples (fresh frozen in blue and FFPE tissue in red) with signal
intensity (RFU: relative fluorescence units) plotted against molecular
weight. b Pearson correlation coefficients (R) were computed for each
antibody between all signals detected in both fresh frozen and FFPE
samples. p values were corrected for multiple testing with the
Benjamini-Hochberg method (p-BH), using a significance level of
0.05. The corresponding volcano plot shows the p values (—logl0

Furthermore, we explored to which extent the selected
panel of 102 antibodies would qualify to classify cancers
with respect to their histological type and organ origin in the
paired set. We first applied an unsupervised learning
approach, visualizing DigiWest data by heatmaps combined
with hierarchical clustering in both fresh frozen and FFPE
tissue (Fig. 2). The 25 tumor samples were grouped together
based on the correlation between the antibody signals. For
fresh frozen samples, the different tumor types formed
relatively distinct clusters. Only one LUSC was more clo-
sely grouped with HNSC than with the other LUSC. In the

SPRINGER NATURE

transformed) plotted against correlation coefficients (R) (n: number of
antibodies with significant correlation (p-BH <0.05), colored in
orange; m: number of antibodies with p-BH > 0.05, colored in blue).
c Relative signals (log2) detected by DigiWest for three antibodies
(Cytokeratin 5, c-Myc, Caspase 6) in 25 tumor samples, in both fresh
frozen and FFPE samples. COAD colorectal adenocarcinomas, HNSC
head and neck squamous cell carcinomas, LUAD lung adenocarci-
nomas, LUSC lung squamous cell carcinomas, PAAD pancreatic
adenocarcinomas.

same way, two LUAD were more similar to PAAD than to
the other LUAD. The two main clusters clearly separated
adenocarcinomas from squamous cell carcinomas. In FFPE
specimens, HNSC samples formed a distinct group, with
high signals for a considerable number of proteins. All other
tumor types were included in a second cluster, in which the
tumor types were not well separated. Particularly, most
of the LUAD and LUSC clustered together. Overall, the
hierarchical clustering revealed clear differences between
the investigated tumor types, especially in fresh frozen
samples.



Multiclass cancer classification in fresh frozen and formalin-fixed paraffin-embedded tissue by...

1293

@
=3

>

Count

Fig. 2 Heatmap and
hierarchical clustering of

a
oS

d

) [Fom T

Fresh frozen

T

202
DigiWest data. Overall, 102 Value B COAD
. . O HNSC
antibodies were analyzed in 25 B LUAD
tumor samples, including five = W LusC
B PAAD
tumor types (a fresh frozen
tissue; b FFPE specimens) with
columns = tumor samples and ==
rows = antibody signals. The —
color gradient from blue to |
yellow corresponds to low or
high antibody-specific signals
among the 25 tumor samples.
COAD colorectal
adenocarcinomas, HNSC head
and neck squamous cell =
carcinomas, LUAD lung
adenocarcinomas, LUSC lung %
squamous cell carcinomas, 28 X8328-I52883358°585885 %8
PAAD pancreatic R I R R R = = R R e = = = =
L < €< L L L L
adenocarcinomas. %%%%%33333888883333355555
B I
§“’°m . FFPE
O 0 s
-4 0 4 B COAD
Value O HNSC
W LUAD
W LUSsC
W PAAD

i

COAD.97

A t-test was carried out in fresh frozen and FFPE samples
for each pair of tumor types to identify the proteins that
were suitable for discrimination of the respective tumor
types. The corresponding p values were visualized in a
heatmap, displayed in Fig. 3. Generally, more proteins with
a significant p value (p-BH<0.05) were found in fresh
frozen than in FFPE tissue (Fig. 3a, b). Furthermore, a large
proportion of the proteins that were significantly differen-
tially expressed between the different tumor types in FFPE
tissue were also significantly differentially expressed in
fresh frozen samples (Fig. 3c). The expression of two pro-
teins, Cytokeratin 5 and c-Myc, was significantly different
between all squamous cell and adenocarcinomas, both in
fresh frozen and in FFPE samples. Among all pairs of tumor
types, those with the largest number of differentially
expressed proteins all involved HNSC samples. For the

COAD.94
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three pairs of HNSC and adenocarcinomas (COAD, PAAD,
and LUAD), at least 50 proteins in fresh frozen tissue and
33 in FFPE samples were significantly different. Both types
of squamous cell carcinomas (HNSC and LUSC) could also
be discriminated by a considerable number of proteins (39
in fresh frozen and 26 in FFPE tissue). In contrast, only a
few proteins were suitable for distinguishing LUSC vs.
LUAD, as well as between two types of adenocarcinomas.
For LUAD vs. COAD, only one protein with a significant
p value was determined (Thyroid transcription factor-1
(TTE-1)).

To classify the tumor samples according to their tissue of
origin, an SVM algorithm with repeated nested cross-
validation (fourfold internal and fivefold external) was
applied to the set of paired tumor samples. With the
resulting classification, an overall accuracy of 90.4% was

SPRINGER NATURE
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Fig. 3 Pairwise z-test
performed for 102 antibodies
for each pair of tumor types.

Fresh frozen

Heatmaps show p values
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and b FFPE tissue) after
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correction. Columns represent
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indicate pairs of tumor types.
¢ Bar chart of the number of
antibodies with a significant
p value (p-BH <0.05) in the
pairwise t-test for each pair of
tumors; comparison of fresh
frozen samples, FFPE tissue,
and overlap of both tissue types.
COAD colorectal
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squamous cell carcinomas,
PAAD pancreatic
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obtained in fresh frozen samples (standard deviation of
5.4% over ten repeats; Fig. 4a). All colorectal and PAAD
were classified correctly. The lowest accuracy of 78% was
attained for LUAD. For FFPE samples, the SVM classifier
yielded an overall accuracy of 77.6% (standard deviation of
3.4% over ten repeats). The individual accuracies among the
different tumor types varied more in FFPE than in fresh
frozen specimens. On the one hand, all PAAD and almost
all HNSC (98%) were correctly assigned to their tissue of
origin. On the other hand, the classifier based on FFPE data
was often not able to discriminate between LUSC and
LUAD. Only 52% of LUSC were predicted correctly, while
40% of LUSC were misclassified as LUAD. Similar results
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were obtained for LUAD, with 58% of the samples being
correctly classified and 18% of LUAD -categorized as
LUSC. If squamous cell and adenocarcinomas of the lung
were considered as only one tumor type since they arise in
the same organ, the accuracy of this class increased to 84%.
This resulted in an overall accuracy of 89.2%. Furthermore,
some misclassification of FFPE tumor samples also occur-
red between LUAD and COAD.

In general, the classification model based on fresh frozen
samples performed better than the classifier constructed
with FFPE samples (overall accuracies of 90.4% vs.
77.6%). Both models performed best for PAAD and yielded
there a prediction accuracy of 100%. For LUSC, LUAD,
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Fig. 4 Multiclass cancer A
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SVM-based models obtained by
repeated nested cross-validation
with 25 tumor samples in fresh
frozen and FFPE tissue. The
numbers indicate how many of
the five samples of each tumor
type are classified on average in
each class. The corresponding
percentages are visualized by the
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high). b Classification results of Fresh frozen FEPE
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samples. COAD colorectal
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and neck squamous cell
carcinomas, LUAD lung
adenocarcinomas, LUSC lung
squamous cell carcinomas,
PAAD pancreatic
adenocarcinomas.
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true class

and COAD, the accuracy was at least 20% higher in fresh ~ Overall, the SVM classifier performed better in the inde-
frozen than in FFPE samples. In contrast, the classification  pendent validation cohort than in the initial 25 FFPE sam-
of HNSC yielded better results with FFPE samples. ples from the paired set (88% vs. 77.6% overall accuracy).
Finally, we tested the performance of the SVM classifier
in an independent validation cohort of 25 FFPE primary
tumor samples, containing five cases per tumor type. This Discussion
yielded an overall accuracy of 88%. The classification
results and their probability scores are visualized in Fig. 4b. ~ Protein analysis in FFPE tissue is known to be challenging,
All COAD, HNSC, and LUAD cases were correctly  as formaldehyde fixation induces cross-links, and proteins
assigned to their tissue of origin. In total, only three tumor = must be recovered before the analysis. In this study, we
samples were misclassified. One LUSC and one PAAD  demonstrated that DigiWest multiplex protein analysis is
were categorized as COAD, while another PAAD was  feasible in FFPE samples and can be used for diagnostic
classified as LUAD. Concerning the histological grade, 17  cancer classification. By comparing the performance of 303
out of 18 moderately (G2) and five out of seven poorly (G3) antibodies in fresh frozen and FFPE tissue, we identified
differentiated tumor samples were correctly predicted. The 102 antibodies that yielded sound and comparable results in
mean probability scores for the correct class in poorly dif-  both. Importantly, this also included 14 antibodies against
ferentiated cases were slightly lower than in moderately = phosphoproteins, which allows getting better insights into
differentiated tumor samples (mean 0.45 vs. 0.61, p =0.03).  protein activation and oncogenic signaling.
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We identified proteins that were best suited for the
pairwise distinction of tumor types. Some of these proteins
are well known to be relevant in the corresponding tumor
types. Exemplarily, we found that TTF-1 was highly
expressed in many LUAD and was a useful protein to dif-
ferentiate LUAD from every other tumor type both in fresh
frozen and in FFPE tissue, consistent with its wide use in
diagnostics. TTF-1 is usually used in immunohistochem-
istry to identify LUAD and to discern primary tumors of the
lung from metastases [47]. According to our results, both
Cytokeratin 5 and c-Myc were able to distinguish squamous
cell carcinomas from adenocarcinomas, and their signal was
particularly strong in LUSC and HNSC. Cytokeratin 5 is
commonly used as an immunohistochemical marker for
squamous cell carcinomas [48]. However, although c-Myc
is often expressed in those tumor types, it is not known to
be a specific marker for squamous cell carcinomas and has
been detected in other tumor types before [49-52]. The
expression of these proteins might not only be useful for
diagnostic purposes but could further insight into the
tumor’s biology and indicate potential therapeutic targets.

Based on the 102 selected antibodies, we developed two
approaches for cancer classification in the set of paired
tumor samples. First, an unsupervised hierarchical cluster-
ing method and second a supervised SVM algorithm, which
classified the tumors according to their tissue of origin. Both
methods achieved a better distinction between the five
tumor types in fresh frozen samples than in FFPE tissue.
This is probably due to a higher sensitivity of DigiWest
analysis in fresh frozen samples. Although the same 102
antibodies were used in both tissue types, the signals were
generally detected more frequently in fresh frozen than in
FFPE samples. Furthermore, the mean signal intensities
were higher, and more proteins were suited for the pairwise
distinction of tumor types in fresh frozen samples. Overall,
the SVM algorithm reached an accuracy of 90.4% in fresh
frozen and 77.6% in FFPE samples.

The reduced overall accuracy in FFPE samples from the
paired set was mainly due to misclassification between
squamous cell and adenocarcinomas of the lung, which
accounted for 11.6% of all errors. These tumor types are
closely related, arise in the same organ, and nonneoplastic
cells may contribute to the signal. This could make them
more difficult to distinguish, even though it does not fully
explain the lower accuracy for lung cancer in FFPE com-
pared with fresh frozen samples. If LUSC and LUAD were
considered as only one cancer type, the overall accuracy of
the FFPE classifier increased to 89.2%, which is very close
to that in fresh frozen specimens.

Of note, in the independent validation cohort of 25 FFPE
samples, the SVM classifier reached an overall accuracy of
88%, which is slightly higher than in the FFPE samples
from the paired set (77.6% overall accuracy). This is likely
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to be due to the larger number of training samples available
to the classifier (25 instead of the 20 samples used in the
nested cross-validation of the paired set). Furthermore, it
was associated with a better distinction between LUSC and
LUAD. The SVM classifier was also applicable to poorly
differentiated tumor samples. Five of the seven poorly dif-
ferentiated tumor samples were correctly assigned to their
tissue of origin. However, as expected from tumor biology,
the probability scores for the correct class of poorly dif-
ferentiated tumor samples were, on average, slightly lower
than those of moderately differentiated cases.

Our classifier was able to distinguish with high accuracy
between squamous cell carcinomas of different origins. In a
previous study, Bohnenberger et al. [17] developed a clas-
sifier based on quantitative mass spectrometry data in FFPE
samples, which differentiated between HNSC and LUSC
with an accuracy of 86.8% in an independent test set [17].
However, more than 1100 proteins were necessary to
achieve these results, and the accuracy decreased to 76.8%
when only 100 proteins were included [17]. We demon-
strated, based on the data of 102 antibodies, that it is pos-
sible to generate a classifier with comparable accuracy for
discriminating five tumor types (77.6% accuracy in the
paired set and 88% in the independent validation cohort)
with DigiWest multiplex protein profiling. In our study, no
misclassifications occurred between LUSC and HNSC in
FFPE samples. As patients with a primary HNSC often
develop distant metastasis in the lungs, but at the same time
have an increased risk for the occurrence of a second pri-
mary tumor of the lungs, the classifier might be used to
complement current diagnostic methods.

The overall accuracy of our classifier is comparable with
those of previous studies establishing a multiclass cancer
classifier based on protein profiles, even though those had
only been carried out on fresh frozen samples. On the one
hand, our classifier performed slightly better in fresh frozen
samples (90.4% accuracy) than two studies that each clas-
sified six types of adenocarcinomas using MALDI mass
spectrometry with an average accuracy of 82% [20, 21]. On
the other hand, the accuracy of our classifier was slightly
lower than that of Zhang et al., which reached an accuracy
of 93.6% [22]. However, they used a considerably
larger number of samples for training, originating from
RPPA data of ten tumor types from The Cancer Proteome
Atlas [22]. While this accuracy is relatively high, RPPA is
not applicable in the typical clinical setting, as
outlined below.

Altogether, our classifier achieved a high accuracy
using only a modest number of samples for training. A
greater number of samples might better represent
various differentiation statuses or molecular subtypes
within each tumor type, possibly leading to increased
accuracy.
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A further advantage of DigiWest analysis is that only a
low amount of material is required, as 20 ug of protein
was sufficient for the measurement of 303 antibodies (resp.
10 pg for 102 antibodies). This makes DigiWest particularly
useful for clinical samples, which are often limited in their
amounts and routinely collected as FFPE tissue. RPPA
represents another approach for the multiplex analysis of
proteins, with the advantage that several hundreds of sam-
ples can be measured in parallel [25]. However, RPPA is
less appropriate for the analysis of single or only few
samples as is the case in routine diagnostics where samples
have to be processed as they accrue for timely diagnoses. In
contrast to RPPA, the proteins in DigiWest analysis are
separated according to their molecular weight, which
enables direct quality control of the raw data for each
antibody in each sample to rule out unspecific signals. This
step of identification and interpretation of the specific sig-
nals remains critical, as seen in the above-mentioned case of
anti-rabbit secondary antibody cross-reaction at 50 kDa in
HNSC samples. This emphasizes the need for a careful
selection of antibodies.

In summary, our study demonstrates that DigiWest
multiplex protein profiling can be performed on FFPE tissue
specimens. We identified 102 antibodies against a variety of
proteins and phosphoproteins that showed expression in
both fresh frozen and FFPE samples, as well as correlating
signals between the two. These 102 analytes were used to
develop an SVM algorithm capable of classifying samples
of five tumor types according to their tissue of origin with
high accuracy in both fresh frozen and FFPE samples. Thus,
DigiWest analysis constitutes a promising approach for
analyzing the protein expression of FFPE samples, which
can be used for diagnostic cancer classification and might
also help to identify novel biomarkers or potential ther-
apeutic targets in the future.
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