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Abstract
Weather extremes are often associated with atmospheric blocking, but how the underlying physical
processes leading to blocking respond to climate change is not yet fully understood. Here we track
blocks as upper-level negative potential vorticity (PV) anomalies and apply a Lagrangian analysis
to 100 years of present-day (∼2000) and future (∼2100, under the RCP8.5 scenario) climate
simulations restarted from the Community Earth System Model–Large Ensemble Project runs
(CESM-LENS) to identify different physical processes and quantify how their relative importance
changes in a warmer and more humid climate. The trajectories reveal two contrasting airstreams
that both contribute to the formation and maintenance of blocking: latent heating in strongly
ascending airstreams (moist processes) and quasi-adiabatic flow near the tropopause with weak
radiative cooling (dry processes). Both are reproduced remarkably well when compared against
ERA-Interim reanalysis, and their relative importance varies regionally and seasonally. The
response of blocks to climate change is complex and differs regionally, with a general increase in
the importance of moist processes due to stronger latent heating (+1K in the median over the
Northern Hemisphere) and a larger fraction (+15%) of strongly heated warm conveyor belt air
masses, most pronounced over the storm tracks. Future blocks become larger (+7%) and their
negative PV anomaly slightly intensifies (+0.8%). Using a Theil–Sen regression model, we propose
that the increase in size and intensity is related to the increase in latent heating, resulting in
stronger cross-isentropic transport of air with low PV into the blocking anticyclones. Our findings
provide evidence that moist processes become more important for the large-scale atmospheric
circulation in the midlatitudes, with the potential for larger and more intense blocks.

1. Introduction

Atmospheric blocking describes the formation of
persistent and quasi-stationary anticyclonic circula-
tion anomalies that disrupt the large-scale westerly
flow and eastward progression of synoptic weather
systems (Berggren et al 1949, Rex 1950). Blocks
are often associated with and contribute to extreme
weather such as heatwaves (Pfahl and Wernli 2012,
Wehrli et al 2019), cold spells (Buehler et al 2011,
Sillmann et al 2011, Brunner et al 2017), heavy
precipitation (Lenggenhager and Martius 2020) and
compound events (Kautz et al 2022). As a result,

there is considerable interest in understanding how
the occurrence of blocks and their contribution to
extreme surface weather might change as the climate
warms (Sillmann and Croci-Maspoli 2009, Brunner
et al 2018, Schaller et al 2018, Woollings et al 2018,
Nabizadeh et al 2021).

The influence of climate change on blocking
remains an open question (Hoskins and Woollings
2015, Woollings et al 2018). Climate models still
struggle in representing present-day blocking statist-
ics and generally underestimate blocking frequency,
particularly over the North Atlantic (e.g. Davini
and D’Andrea 2016, 2020, Woollings et al 2018,
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Figure 1. Schematic illustration of the dry and moist processes that contribute to the formation and maintenance of atmospheric
blocking. Air masses with anomalously low potential vorticity (PV) are transported into the upper-level block either in ascending
warm conveyor belt (WCB) airstreams with strong latent heat release ahead of an extratropical cyclone (red airstream) or
quasi-adiabatically in near-tropopause airstreams along the amplified upper-level jet with weak radiative cooling (blue airstream).

Schiemann et al 2020), which introduces uncer-
tainty in future projections (Hassanzadeh et al 2014).
Enhanced warming in near-surface polar regions
(denoted as polar amplification, Serreze and Barry
2011) and in the tropical upper troposphere (Yin
2005) have competing effects on the midlatitude
large-scale circulation, storm tracks and the propaga-
tion of synoptic Rossby waves (e.g. Barnes and Screen
2015, Harvey et al 2015, Shaw et al 2016), which
are intimately linked to the development of atmo-
spheric blocking (Altenhoff et al 2008, Nakamura
and Huang 2018). Furthermore, projected increases
in atmospheric moisture content (Held and Soden
2006, Schneider et al 2010) and associated increases
in latent heat release (Pfahl et al 2015) and static sta-
bility (O’Gorman and Schneider 2008) have signific-
ant ramifications onmidlatitude weather systems and
the large-scale circulation. Future changes in blocking
are complex and not well understood, but are likely
to be small compared to internal variability (Deser
et al 2012, Barnes et al 2014, Blackport and Screen
2020), and climatemodel ensemble projections indic-
ate a weak reduction or weak spatial shift in blocking
occurrence (e.g. Dunn-Sigouin and Son 2013,Masato
et al 2013, Davini and D’Andrea 2020), depending
on the model and blocking index used (Woollings
et al 2018). Recent studies have further investigated
the effects of climate change on blocking properties,
such as duration (Huguenin et al 2020), propagation
(Riboldi et al 2020) and the size and 3D structure
(Nabizadeh et al 2019, 2021). They showed that dur-
ation and propagation are projected to remain fairly
constant, while blocks are expected to become lar-
ger. The underlying physical processes that may cause
such changes have not yet been fully elucidated.

The challenge in predicting the future response
of blocking arises from the multiple, competing pro-
cesses involved in blocking formation and mainten-
ance, and the importance of processes can vary for
different regions (Nakamura et al 1997, Drouard
and Woollings 2018, Steinfeld and Pfahl 2019,

Drouard et al 2021, Miller and Wang 2022). Blocks
form when an extended air mass with low poten-
tial vorticity (PV) is advected poleward, related to
synoptic eddies and a meridionally amplified flow
(Colucci 1985, Nakamura and Huang 2018), set-
ting up a large-scale anticyclonic PV anomaly in
the upper troposphere beneath an elevated tropo-
pause (Hoskins et al 1985). Air masses with low PV
are transported into the upper-level block either (a)
in ascending warm conveyor belt (WCB) airstreams
with strong latent heat release (moist processes, see
Pfahl et al 2015, Steinfeld and Pfahl 2019), or (b)
quasi-adiabatically in near-tropopause airstreams
along the amplified upper-level jet (dry processes,
e.g. Shutts 1983, Yamazaki and Itoh 2013, Luo et al
2014), as illustrated schematically in figure 1. As for
moist processes, numerical sensitivity experiments
demonstrated that blocks with a strong contribu-
tion from latent heating are larger and more intense
than their dry (without latent heating) counterparts
(Steinfeld et al 2020), and Nabizadeh et al (2021)
suggested that latent heating upstream of the block
becomes more important in the future. Given the
key role of both dry and moist processes in blocking,
and the expected increase in moisture content in a
warming atmosphere, the question arises how phys-
ical processes in blocking respond to climate change.

In this letter, we quantify the relative importance
of dry and moist processes throughout the block-
ing lifecycle, and analyse how these processes and
their importance will change in a future, warmer cli-
mate. We apply a blocking tracking and Lagrangian
trajectory-based diagnostic to 100 years of present-
day and future climate ensemble simulations. In this
context, we ask three questions: (a) How well are
the aforementioned physical processes that lead to
the formation of blocks represented in the climate
simulations? (b) How does their relative importance
change in a warming climate, and are there seasonal
and regional differences? and (c) How will future
warming change the intensity and size of blocks?
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2. Data andmethods

2.1. Data
To quantify future changes in the presence of internal
variability, we use the output from ten ensemble sim-
ulations performed with the NCAR CESM1 model,
which incorporates the CAM5 Atmospheric Model
(Hurrell et al 2013), for two time slices, 1991–2000
for present-day climate (HIST) and 2091–2100 for
future climate (RCP8.5). The Community Earth Sys-
tem Model–Large Ensemble Project (CESM-LENS)
simulations used in this study were restarted from
the first ten members of the CESM-LENS runs (Kay
et al 2015) in the year 1980 and 2081 to obtain more
comprehensive 6 hourly output fields, such as vertical
velocity on model levels. The 6 hourly outputs are
stored at 1◦ resolution on 30 vertical hybrid sigma-
pressure levels. Historical forcing was applied from
1991 to 2000 and the high-emission Representat-
ive Concentration Pathway 8.5 forcing was used for
future projections from 2091 to 2100. This provides
us with 100 years of simulations for each climate. We
obtain projected changes by subtracting the present-
day simulations (HIST) from the projected future
simulations (RCP8.5).

As a reference data set, we use the 6 hourly
ERA-Interim reanalysis (ERA-I) product for the time
period 1979–2018 with a spatial resolution of 1◦ and
60 vertical levels (Dee et al 2011). The blocking and
trajectory climatology of ERA-Interim is described in
Steinfeld and Pfahl (2019).

Only the Northern Hemisphere is considered in
this letter. We analyse blocks in all seasons, but high-
light seasonal differences between winter (DJF) and
summer (JJA).

2.2. Atmospheric blocking
Atmospheric blocks are identified and tracked as neg-
ative PV anomalies in the upper-level flow (vertically
averaged between 150–500 hPa). We use the block-
ing index of Schwierz et al (2004), with an intens-
ity exceeding −1.3 pvu (PV unit) and 70% contour
overlap between consecutive 6 hourly time steps for
at least 5 days (for more details, see Croci-Maspoli
et al 2007, Steinfeld andPfahl 2019). PV anomalies are
determined by subtracting a climatological monthly
mean for each corresponding climate and tempor-
ally smoothed with a two day running mean filter
to remove higher frequency components. We define
the blocking size as the spatial extent of the block-
ing region and blocking intensity as the area-averaged
upper-level negative PV anomaly. The advantage of
the PV-based index is that it captures the core of the
anticyclonic anomaly, allowing us to directly invest-
igate the origin of these air masses and the associated
physical processes. We analyse a total of 5900 blocks
in HIST, 5500 blocks in RCP8.5 and 2600 blocks in
ERA-I.

CESM has been studied in great detail with
respect to blocking occurrence and jet stream vari-
ability in previous studies (e.g. Kwon et al 2018).
Like most CMIP5 models, CESM-LENS shows
the well-described underestimation of the occur-
rence of blocking and an overly strong eddy-driven
jet in winter, particularly over the North Atlantic
(Woollings et al 2018, Davini and D’Andrea 2020),
but performs reasonably well compared to other
CMIP5 models (Huguenin et al 2020).

2.3. Trajectory calculation to quantify physical
processes
Lagrangian analysis of blocking air masses allows us
to identify and quantify the relative importance of
different physical processes that govern the forma-
tion andmaintenance of blocks (e.g. Pfahl et al 2015).
We use the Lagrangian analysis tool ‘LAGRANTO’
(Wernli and Davies 1997, Sprenger and Wernli 2015)
to calculate kinematic 3 day backward trajectories ini-
tiated inside the blocking region every 80 km and
vertically every 50 hPa between 500 and 150 hPa. We
exclude points located in the stratosphere by selecting
air masses with a PV value smaller than 1 pvu. Hori-
zontal position, pressure, moisture content, poten-
tial temperature and PV are traced along the tra-
jectories. The origin of the low PV within the block
can be attributed to either adiabatic advection or
cross-isentropic transport (Croci-Maspoli andDavies
2009). Therefore, we calculate the maximum change
in potential temperature (∆θ) along each backward
trajectory following the procedure of Steinfeld and
Pfahl (2019). We will show that trajectories with pos-
itive∆θ experience cross-isentropic ascent primarily
associated with latent heating during cloud forma-
tion (moist processes), and trajectories with negative
∆θ experience radiative cooling and quasi-adiabatic
advection (dry processes). This characterization by
the sign of ∆θ will be useful to identify two categories
of airstreams with strongly different properties, both
contributing to the block’s negative PV anomalies (see
again figure 1).

3. Results and discussion

3.1. Representation of physical processes in
present-day blocking
In order to classify the relative importance of differ-
ent physical processes that contribute to the block’s
negative PV anomalies, figure 2(a) shows statistical
distributions of ∆θ for HIST (blue, across all ten
members), RCP8.5 (orange, across all ten members),
and ERA-I (dashed black) for all trajectories dur-
ing the entire blocking lifecycle (onset, maturity, and
decay). As known from Steinfeld and Pfahl (2019),
∆θ reveals a bimodal distribution with two contrast-
ing airstreams that can be associated with blocking: a
cooling airstream (∆θ < 0K) with a Gaussian normal
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Figure 2. (a) Probability density distributions of the potential temperature changes (∆θ) for 3 day backward trajectories from the
blocks for HIST (blue), RCP8.5 (orange) and ERA-I (black dashed). The vertical grey line denotes the 0K border separating the
heating and cooling airstreams. The inset illustrates the distributions for the range between 10 and 40K, values typically observed
in WCB. (b) Percentage change in the fraction of trajectories within bins of 5 K between HIST and RCP8.5 for annual (ANN),
winter (DJF) and summer (JJA). Hatching indicates bins with a non-significant (p> 0.05) difference in∆θ values between HIST
and RCP8.5 based on the nonparametric Mann–Whitney-U-test.

distribution, and a skewed heating airstream (∆θ >
0K)with awide range of values up to 40K. The distri-
butions of ∆θ look very similar for ERA-I andCESM-
LENS and confirm the main features known from
previous studies. For HIST (blue curve), about 47.2%
of the trajectories belong to the heating airstream,
and consequently, 52.8% to the cooling airstream.
These high fractions demonstrate the overall import-
ance of latent heating for atmospheric blocking (see
again Pfahl et al 2015, Steinfeld and Pfahl 2019).
The trajectories of the heating airstream are governed
by moist processes. They exhibit strong heating of
9.6 K in the median, and the concurrent loss of spe-
cific humidity of −2.9 g kg−1 and ascent of around
−282 hPa in the 3 days (see table 1) indicate that lat-
ent heat release during cloud formation is the dom-
inant physical process. The trajectories in the cool-
ing airstream are radiatively cooled by −3.7 K in the
median and governed by dry (quasi-adiabatic) advec-
tion with the upper-level westerlies. They are initially
dry, and stay approximately on the same pressure
level (∆p = −1 hPa) in the 3 days before arriving in
the upper-level blocks. 23% of all blocking trajector-
ies (and 48% of the heating trajectories) experience
intense heating of more than 10K in 3 days, which

corresponds to values typically observed inWCB (see
Madonna et al 2014). WCBs are moist airstreams that
ascend rapidly from the midlatitude cyclone’s warm
sector to the upper troposphere with strong latent
heat release. Overall, latent heating is a more intense
and rapid process compared to cooling. The traject-
ories of the heating airstream, in particular WCBs,
typically reach higher altitudes and generate stronger
negative PV anomalies within the blocking region
compared to the cooling airstream (see table 1).

CESM-LENS exhibits biases in the representa-
tion of blocks (Kwon et al 2018, Athanasiadis et al
2020). Therefore, we compare the ∆θ distribution
of CESM-LENS HIST with ERA-I reanalysis data
more closely (figure 2(a) and table 1). HIST repro-
duces the distribution and fraction of heating and
cooling airstreams remarkably well. There is a slight
underestimation of weaker heating between 2 and
10K, which is compensated by an overestimation
of stronger heating between 10 and 25K. Con-
sequently, HIST slightly overestimates the intensity
of the median heating by about +1.3 K, but agrees
with ERA-I on the wide range of positive ∆θ val-
ues in the heating airstream. Despite weaker heat-
ing and ascent in ERA-I, the heating airstream in
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Table 1. Fraction of blocking trajectories (%) belonging to the cooling (∆θ < 0K) and heating airstream (∆θ > 0K), ensemble-median
of maximum potential temperature change (∆θ, in K), pressure change (∆p, in hPa) and moisture change (∆q, in g kg−1) in the 3 days
before arriving in the block, and PV anomaly inside the block at t= 0 (PV′, in pvu). These values are calculated along 3 day trajectories
throughout the entire blocking lifecycle.

Cooling Heating

% ∆θ ∆p ∆q PV′ % ∆θ ∆p ∆q PV′

HIST 52.8 −3.7 −1 −0.1 −0.95 47.2 9.6 −282 −2.9 −1.27
RCP8.5 50.7 −4.0 6 −0.1 −0.84 49.3 10.6 −260 −3.1 −1.29
ERA-I 52.8 −3.8 −1 0 −1.22 47.2 8.3 −232 −2 −1.43

ERA-I produces more intense negative PV anomalies
than in HIST. The biases in the cooling airstream
are smaller (0.1 K in the median). These differences
are probably related to the lower vertical resolution
of CESM-LENS with 30 levels compared to ERA-I
with 60 levels. Overall, physical processes in blocks
are well simulated in CESM-LENS, which was also
observed in Nabizadeh et al (2021). Therefore, we
are confident in drawing inferences about future
changes in these physical processes based on CESM
projections.

3.2. Future changes in physical processes
Projected future changes (see again figure 2 and
table 1) are relatively small, but show that the over-
all fraction of the heating airstream increases by 2%,
while the median ∆θ increases by +1K. A posit-
ive shift within the heating airstream from mod-
erate towards more intense latent heating is pro-
jected, and consistent with this, an increase in the
fraction of WCB trajectories (with more than 10K
heating) by +15%. The fraction of trajectories with
∆θ > 20K increases by +56%, and this increase is
even stronger for very large ∆θ values, especially
in winter (see figure 2(b)). The median changes in
the cooling airstream are smaller with −0.3 K. While
both types of processes are projected to increase in
magnitude, this increase is more pronounced for
the heating, and moist processes thus become even
more active and important in the projected future
climate. The hemispheric-wide changes in median
∆θ by season (not shown) indicates that the largest
(andmost robust) increase occurs in winter (+1.1 K),
while the increase in summer amounts to +0.6 K.
This enhanced latent heating in ascending airstreams
can be expected because of the increasing mois-
ture content in a warming atmosphere following the
Clausius–Clapeyron relationship (Trenberth 1999,
Held and Soden 2006). A similar increase in latent
heating and associated PV modification, i.e. stronger
PV production in the lower troposphere in extratrop-
ical cyclones and persistent anomalies, was found
in CESM-LENS future projections (Dolores-Tesillos
et al 2022) and in idealized climate change simu-
lations (Tamarin and Kaspi 2016, Büeler and Pfahl
2019, Tierney et al 2021).

3.3. Spatial and seasonal distribution
Our results so far reveal an overall increased import-
ance of latent heating and a larger contribution of
WCBs in future blocks. To further assess how blocks
dynamically change in different regions and seasons,
we show present-day (HIST) spatial distributions of
∆θ and their future changes for winter and summer
in figure 3.

Figure 3(a) for winter and figure 3(b) for sum-
mer illustrate a large spatial and temporal variabil-
ity of physical processes in blocking in HIST. From
Steinfeld and Pfahl (2019) for ERA-I we know that
there are distinct regions where blocks are gener-
ally more affected by heating (mean positive ∆θ)
or cooling (mean negative ∆θ). HIST confirms that
heating dominates in blocks over the oceans, in the
storm track regions of the North Pacific and North
Atlantic, throughout the year. Continental blocks
exhibit strong seasonality: heating dominates over the
northern Asian continent in summer, while cooling
dominates in Ural blocks in winter, European blocks
in summer, and high-latitude blocks over the Arc-
tic. We assume that soil moisture availability plays
an important role in this seasonality over land (e.g.
Fischer et al 2007), which is not explored further here.
In most regions, the magnitude of heating is much
stronger than cooling, reaching mean ∆θ values of
up to 8K over the oceans in both seasons. These
regions of intense latent heating coincide with the
main blocking regions over the oceans (black con-
tours in figure 3(a) and (b)).

Projected future changes (RCP8.5–HIST) in
mean ∆θ for winter and summer are shown in
figures 3(c) and (d). In winter,∆θ increases over large
parts of the NH. This increase is larger than+2K and
consistent between the ensemble members over parts
of the North Pacific, North Atlantic, North America
and Europe. In contrast to this general increase, a
decrease in ∆θ occurs over the Asian continent and
parts of the higher latitudes, mostly in regions where
mean ∆θ is already negative in HIST (figure 3(a)).
However, the decrease has a weaker magnitude of
about−0.5 K and the ensemble members mostly dis-
agree on the sign of changes. In summer,∆θ is again
projected to increase strongly over the North Pacific
and North Atlantic, while ∆θ decreases over land

5



Environ. Res. Lett. 17 (2022) 084020 D Steinfeld et al

Figure 3. Spatial distribution of the ensemble mean∆θ in HIST during DJF (a) and JJA (b) and ensemble mean change in∆θ
between HIST and RCP8.5 (RCP8.5–HIST) during DJF (c) and JJA (d). Only regions where blocking frequency exceeds 1% are
shown. Black contours show seasonal blocking frequency (4% and 6%, relative to the total number of days per season) for HIST
(upper panel) and RCP8.5 (lower panel). Black dots denote regions of model agreement on the sign of changes (i.e. more than
80% of the members displaying the same sign).

and in parts of the higher latitudes. The agreement
between the ensemble members is weaker during
summer, but a robust increase in ∆θ is projected
over the North Atlantic. Regions with a positive ∆θ
coincide with the main blocking regions in RCP8.5,
which are projected to shift eastward in winter and
poleward in summer.

The decomposition into cooling and warming
trajectories allows us to directly assess their con-
tributions to the projected regional changes. For
example, while both types of processes are projected
to intensify, it is mainly the latent heating that intens-
ifies strongly in the main blocking regions over the
oceans, while cooling intensifies primarily over land.
These are the distinct regions where heating and cool-
ing already dominate in the present-day climate (see

again figures 3(a) and (b)). The strongest increase
in latent heating in the oceanic storm tracks is con-
sistent with Li et al (2014), Yettella and Kay (2017),
who found an increase in cyclone-associated precip-
itation primarily due to increased moisture availabil-
ity in a warming atmosphere. Because these regions
also coincide with the main regions where blocks
intensify (Steinfeld and Pfahl 2019), latent heating
will become even more important for the onset and
re-intensification (‘maintenance’) of blocks (see next
section).

There are regional exceptions to these general
findings. Over Europe, for example, latent heating
will replace cooling as the dominant process for
winter blocks.On the other hand, a reduced contribu-
tion of latent heating is projected for summer blocks
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Figure 4. Temporal evolution of∆θ (averaged over all trajectories), intensity (area-averaged negative PV anomaly, pvu) and size
(spatial extent, 106 km2) for all blocks in HIST (blue, mean over all ten members) and RCP8.5 (orange, mean over all ten
members) as a function of blocking age. Gray shading indicates the 95% confidence interval for the ensemble mean.

over the northern Asian continent, where mean ∆θ
is positive in HIST, even though atmospheric mois-
ture content will increase in this region (not shown).
This reduction might be related to a drying of the
land surface (reduction of available soil moisture) in a
warming climate (Seneviratne et al 2010). Potentially,
thismight increase the importance of sensible heating
for maintaining blocks over land (Fischer et al 2007,
Miller et al 2021), which warrants further studies.

3.4. Response of blocking size and intensity to
climate change
The projected changes in the physical processes have
the potential to change blocking properties such as
intensity, size and duration, which in turn may affect
future weather extremes (Nabizadeh et al 2021). Here
we examine how the intensity and size of blocks
respond to increases in∆θ, since latent heating typic-
ally amplifies blocks (Grams and Archambault 2016,
Steinfeld et al 2020). We will not discuss blocking
duration further as it remains nearly constant in
the CESM projections analysed here, which was also
observed by Barnes et al (2012). To assess potential
future changes in intensity and size of blocks, we track
individual blocks from onset to decay and show the
mean temporal evolution of∆θ, intensity and size as
a function of blocking age in figure 4.

Figure 4 shows the typically observed lifecycle of
blocks (e.g. Dole 1986, Steinfeld and Pfahl 2019), with

a rapid increase in intensity and size during onset,
peak intensity and size during the mature phase,
and relatively fast decrease in size and intensity until
decay. The importance of ∆θ varies throughout the
lifecycle: latent heating dominates and is strongest
during the onset and then gradually declines to an
almost negligible contribution (heating and cooling
are equally important) when a block decays. The life-
cycle averaged over many blocking events is charac-
terized by a gradual evolution. However, individual
blocks experience multiple intensification phases and
a fluctuation in size, intensity and ∆θ during their
lifecycle (Lenggenhager et al 2019, Steinfeld et al
2020).

Figure 4 confirms the general increase in ∆θ
between HIST and RCP8.5 by about +1K averaged
over the entire blocking lifecycle, with the increase
being largest during the onset phase. Blocks are pro-
jected to become larger and slightly more intense,
with an average increase in peak intensity (strongest
negative PV anomaly during the lifecycle) of +0.8%
and peak size (largest spatial extent during the life-
cycle) of +7%. This increase in intensity and size is
stronger in summer (size:+11.9%, intensity:+0.9%)
than in winter (size: +5.4%, intensity: +0.63%),
although the ensemble agreement is most robust for
winter blocks over the ocean basins (not shown),
where ∆θ increases most. The magnitude of the size
increase is consistent with Nabizadeh et al (2019),
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Figure 5. Scatter plot of∆θ and peak size (106 km2, upper panel) and peak intensity (area-averaged negative PV anomaly in pvu,
lower panel) for blocks in HIST (blue, square) and RCP8.5 (orange, circle) in winter (a), (c) and summer (b), (d). Green markers
indicate the ensemble mean of HIST (square) and RCP8.5 (circle). Theil–Sen regression model for HIST (black solid) is shown
with the 95% confidence interval (black dashed), and slope and Spearman correlation are indicated in the panels. Note that more
negative PV values indicate a stronger block.

Tierney et al (2021), Bacer et al (2022), who used dif-
ferent blocking indices and models. Nabizadeh et al
(2021) also observed a strengthening of Z500 for
winter blocks in CESM-LENS, but small and spatially
nonuniform changes for summer blocks.

Given that ∆θ and both size and intensity of
blocks increase with climate change, one might spec-
ulate that increased heating may actually be a driv-
ing factor for changes in the size and intensity of
future blocking events. Indeed, Steinfeld and Pfahl
(2019) observed that moist blocks in ERA-I, defined
as blocks with a strong contribution from latent heat-
ing, develop faster than dry blocks and are more
intense and larger. To test this positive relationship,
we fit a non-parametric regression model using the
robust Theil–Sen method (Theil 1950, Sen 1968) to
see if there is a linear relationship between∆θ (aver-
aged over the blocking lifecycle) and peak intensity
or peak size. The Theil–Sen models are fitted separ-
ately for winter and summer blocks in CESM-LENS
HIST and are shown in figure 5, where each block is
a marker. We see that blocks with large∆θ values are
larger and more intense, and winter blocks are often
larger and more intense than summer blocks, which
is also observed in ERA-I (Steinfeld and Pfahl 2019).
Forwinter (figures 5(a) and (c)), the Theil–Senmodel
estimates a slope of 0.18 (106 km2 K−1) for size and

−0.016 (pvuK−1) for intensity (for each additional
1 K of∆θ) with a moderate Spearman correlation of
about 0.4. Based on the projected increase in ∆θ of
+1K between HIST and RCP8.5, this results in an
estimated increase in size of +5.8% and intensity of
+0.9%, which agrees well with the projected mean
changes betweenHIST and RCP8.5 (greenmarkers in
figure 5 denote the ensemble mean of HIST (square)
and RCP8.5 (circle)). In summer (figures 5(b) and
(d)), the Theil–Senmodel agrees well with the projec-
ted changes in intensity (+0.5%), but less well with
size, as it estimates weaker increases in size (+4%)
than projected by RCP8.5–HIST, but at least the sign
of the change is consistent. This difference between
winter and summer may be because winter blocks
often form over the oceans, where latent heating
dominates and projected changes in ∆θ are robust,
while most summer blocks occur at higher latitudes
in the Asian sector, where they form with little con-
tribution from latent heating and projected changes
in∆θ are not robust (see again figure 3).

Of course, we acknowledge that figure 5 shows lin-
ear correlations, andnot necessarily causality between
size and intensity on the one hand and ∆θ on the
other. Recently, however, controlled numerical sens-
itivity experimentswithmodified latent heating in the
upstream region of the block demonstrated a causal
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effect of latent heating on blocking intensity and size
(see figure 11 in Steinfeld et al 2020). Strong latent
heating in rising airstreams and associated diabatic
PV reduction and divergent outflow aloft enhance the
intensity (negative PV anomaly) and size of blocks
in all experiments when compared to their counter-
partswithout latent heating. Furthermore,Nabizadeh
et al (2021) attributed changes in temperature anom-
alies under future blocks to enhanced upstream lat-
ent heating. Nevertheless, there are other, even com-
peting processes that we have not studied here, but
that are known to be important for the occurrence
and properties of blocking. These are, most notably,
changes in the mean flow and storm tracks due to
Arctic amplification and tropical upper-tropospheric
warming, and the underlying dynamical processes,
which are the subject of ongoing investigations (e.g.
Yin 2005, Barnes and Polvani 2013, Harvey et al 2014,
Peings et al 2018). Nabizadeh et al (2019) derived a
scaling law for the size of blocks, which shows that
size scales with the width, strength and latitude of the
jet. However, also their scaling law is not able to cap-
ture the magnitude of the projected increase in size of
summer blocks in CESM-LENS.

4. Conclusion

Weather extremes are often associated with atmo-
spheric blocking (e.g. Schaller et al 2018, Kautz et al
2022), but how the underlying physical processes
in blocking and their relative importance respond
to climate change is not yet fully understood (e.g.
Woollings et al 2018). In this study, we track blocks
and apply trajectory analysis to 100 years of present-
day and future (∼2100, RCP8.5) climate simulations
from the CESM large ensemble (CESM-LENS) to
identify different physical processes in blocking and
quantify how their relative importance changes in a
warmer and moisture climate. Consistent with pre-
vious studies based on reanalysis data (Pfahl et al
2015, Steinfeld and Pfahl 2019), the trajectories reveal
two contrasting airstreams: air masses with anom-
alously low PV are transported into the upper-level
block either (a) in ascending airstreams with strong
latent heat release (moist processes), or (b) quasi-
adiabatically in near-tropopause airstreams along the
upper-level jet with weak radiative cooling (dry pro-
cesses), as illustrated schematically in figure 1. Both
moist and dry processes are equally important in
present-day climate simulations and are well repres-
ented in CESM-LENS when compared against ERA-I
reanalysis (Steinfeld and Pfahl 2019), despite the
underestimation of blocking activity in CESM-LENS
(Davini and D’Andrea 2020).

As known from Steinfeld and Pfahl (2019), the
relative importance of moist and dry processes varies
regionally and seasonally. The formation and main-
tenance of blocks over the oceans throughout the year
and over the northern Asian continent in summer

are dominated by moist processes (red airstream in
figure 1), whereas dry processes dominate in Ural
blocks in winter, European blocks in summer, and
high-latitude blocks over the Arctic (blue airstream
in figure 1).

With a warmer and more humid climate in
the future (RCP8.5), moist processes become more
important for blocks. Latent heating (+1K in the
median) and the number of strongly ascending WCB
airstreams (+15%) increase in winter and summer
over large areas of the midlatitudes, but there are
pronounced regional and seasonal differences in the
changes in physical processes. The increase in latent
heating is strongest and most robust in the storm
track regions over the oceans, and near-tropopause
cooling becomes slightly more important for Ural
blocks over land.We further show that the size (+7%)
and intensity (+0.8%) of blocks are projected to
increase with climate change. Fitting a Theil–Sen
regression model, we demonstrate that the changes
in the size and intensity of blocks scale well with the
increase in latent heating, especially for winter blocks
over the oceans. This agrees with previous work
that demonstrated the causal effect of latent heating
on block intensity and size in numerical case study
experiments (Croci-Maspoli et al 2007, Grams and
Archambault 2016, Maddison et al 2020, Steinfeld
et al 2020, Neal et al 2022).

While consensus on future atmospheric circula-
tion changes in the Northern Hemisphere has not
yet been reached (e.g. Shaw et al 2016, Woollings
et al 2018), this study provides further evidence that
future changes in blocks are related to moist pro-
cesses and stronger latent heating (Nabizadeh et al
2021). A better understanding of the underlying phys-
ical processes in climatemodels is critically important
to improve confidence in climate projections of atmo-
spheric blocking and associated weather extremes.

Data and code availability statement

The blocking identification code CONTRACK
(Schwierz et al 2004) is available from https://github.
com/steidani/ConTrack (Steinfeld 2022). The code
and information on how to use the Lagrangian ana-
lysis tool LAGRANTO (Wernli and Davies 1997,
Sprenger and Wernli 2015) can be found from www.
lagranto.ethz.ch. ERA-Interim data can be down-
loaded from the ECMWF web page at: https://apps.
ecmwf.int/datasets/data/interim-full-daily/.

The data of the CESM-LENS reruns that support
the findings of this study are available upon reason-
able request from the authors.
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