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Introduction

Over the last decades, learning the governing equations of a dynamical system from
data has been crucial in gaining insight into many different scientific fields and ap-
plications such as molecular dynamics [HHSN07], climatology [WDKW21], chem-
ical reaction kinetics [SBSR19] or fluid dynamics [BNK20]. Once a mathematical
description of the system is derived, one has the chance to understand relations be-
tween different variables, explain which influences drove the system up to a certain
point and make predictions about its future evolution.

Deriving a mathematical model, however, is a challenge whose degree of dif-
ficulty depends on the complexity of the system, the existence of prior intuition
about the dynamics and the available data. These characteristics also determine
how to best approach the modelling process. It has been shown in innumerably
many publications that many real-world dynamical systems admit a representation
where future states of the system depend solely on its current state and not on its
past memory. Such memoryless models occupy a broad range of model classes, con-
taining, among others, simple Markov State Models [Sar11,HP18], differential equa-
tions [Chi17, WTH+] and their time-discretizations [BD91, BPK16], Kernel meth-
ods [MOW15, SSAB20] and neural networks [BK19, KLL+21, PD18].

However, an accurate model should incorporate all or at least the dominant re-
lations between variables of the system. Often times, not all these variables can be
physically measured. If no data about some of these variables are available, one gen-
erally cannot derive a model which includes these inaccessible variables, so that the
task of modelling the dynamics becomes significantly more difficult. Nevertheless,
it has been discussed from different perspectives how in these cases, while the full
dynamics might admit a memoryless representation, one can still construct a model
for the evolution of the observed variables by utilizing their past, or memory, terms.

One of these perspectives was established by Floris Takens in 1981 [Tak06]. He
proved that under certain, fairly general conditions, by merging a fixed number
of past observations into a new state, called a delay embedding, one can construct
dynamics along the delay-embedded states that are topologically equivalent to the
underlying full dynamics. While Takens gives an upper bound for the required
number of past terms, his result does not inspire a specific model form for the ob-
served dynamics.

Another perspective is the one of the Mori–Zwanzig formalism (MZ) [Zwa01]. It
is more constructive than Takens and explains how the evolution of an observable
of the system can be modelled as a projection of the full dynamics using past values
of the observable. Under certain assumptions, the Mori–Zwanzig formalism even
delivers an explicit model form for these observed dynamics, so-called autoregressive
models [BD91,Bil13]. In contrast to Takens, it technically requires an infinite number
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of past terms.
From a numerical point of view, on the basis of the Takens and MZ approaches,

there have been significant advances in defining methods to model observed dy-
namics from data, extending and even generalizing the previously mentioned mem-
oryless model forms, e.g., in [LL21, BBP+16, HDPCBS18, LLC15, CMCW+20]. Fur-
thermore, over the last ten years several regression methods have been introduced [TRL+14,
WKR14, BPK16] that estimate the Koopman operator, which formalizes the propaga-
tion of observables over time, from data. These methods do not use memory but
function by transforming observations to a suitable higher-dimensional space with
the hope of determining a simple mapping between points in this space and future
states of the observable. Especially interesting in this regard are methods which
generate a sparse and therefore more interpretable model, e.g., Sparse Identification
of Nonlinear Dynamics (SINDy) [BPK16]. This is in contrast to most memory-based
models which require many parameters to describe the influence of all the memory
terms and are typically hardly interpretable.

In this thesis, the task of modelling observed dynamics using memory is ap-
proached from a theoretical, a numerical and an application-centred perspective.
In particular, different numerical methods for the modelling of memory-exhibiting
dynamics are constructed by extending known methods and leveraging memory.
These methods are theoretically and numerically compared to existing methods and
applied to different examples that come from very different areas.

One such new method combines SINDy with memory-based autoregressive (AR)
models. It generates sparse models for memory-exhibiting and potentially nonlin-
ear dynamics and is therefore called Sparse Identification of Nonlinear Autoregres-
sive Models (SINAR). Furthermore, it is shown that if certain conditions are fulfilled,
SINAR, AR models and the Koopman-based methods are in fact mathematically
strongly related and admit equivalent formulations. All these methods are tested
on numerical examples and compared to several other already existing methods,
including neural networks and a Kernel method.

A second new method is especially suited for the modelling of high-dimensional
dynamics. Even if a dynamical system is fully accessible, a high dimension often
makes a direct model identification infeasible. This is a more and more frequent case
in the age of Big Data, when complex systems can be measured and large datasets
are assembled, e.g., in molecular dynamics [RRW20] or climate science [FGL+21].
In such cases, one is usually well-advised to perform a dimension reduction of the
system first, i.e., finding a best-approximative representation of system states in a
lower dimension [CLKB19, JC16, CLL+05]. In general, this entails a loss of informa-
tion since states do not have to permit such a representation in reduced coordinates.
Again, the low-dimensional representation of a state can be interpreted as an ob-
servable of the full system state. Then in order to model the evolution along these
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reduced coordinates, the need for memory terms ensues according to Takens and
MZ. This concept is employed using the low-cost discretization method Scalable
Probabilistic Approximation (SPA) [GPNH20]. SPA can be used to simultaneously
find optimal probabilistic representations of data points while constructing a linear
model between such representations of different variables. When SPA is leveraged
in a certain way, it can be seen as a projection of points to a low-dimensional con-
vex polytope, thus leading to a representation of points in reduced coordinates that
are given with respect to the polytope. A new method called memory SPA (mSPA)
is introduced which estimates the dynamics in this polytope using memory. It de-
ploys a specific nonlinear transformation on points in the polytope and constructs a
mapping forward in time while keeping predicted states inside the polytope. This
guarantees stability of long-term forecasts, distinguishing the method from most of
the previously introduced numerical methods. It is shown that mSPA is capable to
model nonlinear dynamical systems of varying complexity and high dimension.

Most of the examples that these methods are tested on come from mathematics
and natural sciences, where the underlying family of governing equations is known.
However, as a central contribution of this thesis, especially the SINAR method is de-
ployed in connection to dynamics from social science for which merely an intuition
of the governing equations is available. For such cases, agent-based models (ABMs)
have become increasingly prominent [LJMR12, JSW98]. ABMs model each element,
such as a single person within a society, individually by equipping it with specific,
often stochastic, rules that govern its behaviour. From the individual behaviour of
these so-called agents emerges a collective behaviour of the whole society. Usually,
this collective behaviour, measured in the form of aggregated variables or statistics,
is of the main interest in ABMs. In some cases, the ABM serves simply to develop
a suitable equation-based model structure for the dynamics of these statistics in the
real-world setting [WCDC+21]. Interpreting the evolution of the statistics of the
ABM as observed dynamics, this procedure then falls directly into the context of
the results from Takens and MZ which suggest the use of memory for the equation-
based model. This aspect has so far mostly been neglected in research on ABMs and
especially so in the field of opinion dynamics, an emerging field which investigates
the spreading of opinions across a population. In this thesis, it is shown in detail that
in fact the inclusion of memory using SINAR improves the model identification for
the observed dynamics of ABMs. To this end, two new ABMs for opinion dynam-
ics are defined. This should serve as incentive for the use of memory in modelling
observed dynamics in real-world problems that come from outside of the natural
sciences.

The main contributions of this thesis are the following:

• Defining two new numerical methods for the modelling of nonlinear dynami-
cal systems: (1) SINAR, which is suited for memory-exhibiting dynamics and
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can produce sparse models and (2) mSPA, which is suited for high-dimensional
systems and produces stable models.

• Bridging the gap between (1) practical numerical methods to model observed
dynamics using memory and (2) the field of agent-based models. This is done
by formalizing two newly defined ABMs for opinion spreading in the con-
text of the Mori–Zwanzig formalism and deploying the memory-based SINAR
method to model observed dynamics of them.

The first two chapters of this thesis are a comprehensive review of relevant con-
cepts for the modelling of observed dynamics: in Chapter 1, the theoretical concepts
of Takens’ Theorem, including variants proved by other researchers, and the Mori–
Zwanzig formalism are explained in detail. In Chapter 2, several numerical meth-
ods to approximate the observed dynamics from data are discussed, highlighting
the connections between them.

Chapters 3–5 contain work that is either novel or was previously published by
the author of this thesis in articles [WKS21] and [WKSS21] together with co-authors:
Chapter 3 contains the introduction of SINAR, results on the connections between
the Koopman-based methods introduced in Chapter 2 and numerical comparisons
between several numerical methods described in this thesis. Chapter 4 contains a
detailed formalization and analysis of the use of memory to model observed dy-
namics from two newly defined ABMs for opinion spreading. In Chapter 5, mSPA,
the novel method for the modelling of nonlinear dynamics, is formally introduced
and applied to several examples.
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List of essential symbols

Symbol Meaning

General
F Dynamics

φ Observable

p Memory depth

Φ Delay-coordinate map

X Full state space

Y State space of observable

Hφ Set of functions from X to Y needing only φ(X)

Xt Full system state

xt Observed system state

x̂t Delay-coordinate map applied to Xt

ωt Stochastic influence in system

K Koopman operator

ψ Basis functions

εt Noise term

H Hankel matrix

Chapter 1
hk Mori–Zwanzig coefficients

Hk Reformulated Mori–Zwanzig coefficients

Chapter 4
α Agent-based model coefficients

Pt Opinion change probability in ABM

Chapter 5
Σ Matrix of vertices in SPA

Γ Matrix of barycentric coordinates

σ Vertex in SPA

γt Barycentric coordinates of Xt

K Number of vertices in SPA

Λ Transition matrix in SPA

Ψ Path affiliation function

ψ Path affiliation vector



CHAPTER 1

Memory in Observed Dynamical
Systems

Throughout most of this thesis, we will consider the following setting: let a deter-
ministic discrete-time dynamical system be given by F : Rd → Rd while we only
see an observable φ : Rd → Rm for which in general m < d or even m = 1. Ques-
tions arise such as Which properties of the full system can we recover from φ? or Can we
predict the evolution of φ? As it turns out, by not only using the current state of φ but
also including past information, one is often able to give satisfying answers to these
questions.

An intuitive reasoning for this is the following: let the full dynamics F produce
states Xt with t = 0, 1, . . . while we denote φ(Xt) = xt. What does xt tell us about
xt+1? Usually not sufficiently much since xt+1 is a direct result of Xt+1 which de-
pends on the full state Xt. For most observables, xt does not allow us to uniquely
determine Xt, since the preimage of xt under φ consists of more than one point. If
we now also include xt−1 into our considerations, we find possible candidates of
Xt−1 to be points in φ−1(xt−1). Thus, Xt has to lie inside the image of the set of
candidates of Xt−1 under F, so that Xt ∈ φ−1(xt) ∩ F(φ−1(xt−1)). This allows us
to narrow down the set of candidates for Xt subsequently by including more and
more past terms. Assuming that we know F we could now reduce the set of pos-
sible values for Xt+1 and thus xt+1. Even assuming that we do not know F, this at
least illustrates the vital point: information about the full state is encoded in past
states, the memory terms, of the observed states.

Simple example

To build intuition, let us consider a simple example. Let a particle slowly move
inside a one-dimensional interval and let us assume we know both the rule under
which it moves and the distribution of positions inside the interval that it attains.
Suppose we have discretized the interval into several boxes and can only observe in
which box the particle is at any point in time. Our observable then simply takes any
point x inside the interval and maps it onto a natural number denoting the number
of the box it is in. Knowing that the particle is currently in box i then only allows
us to shrink down the distribution from the full interval onto the ith box. But if the
particle was in box i− 1 recently we can suspect that now it should be close to the
border between these two boxes since it could not have moved far inside box i yet.
Hence, in the near future it could well transition back to box i− 1 (see Figure 1.1). If,
however, the particle had been in box i for a long time, it becomes more likely that

13



14 1.1. Takens’ Theorem

currently it is well inside box i and will therefore remain inside the box for some
time. In this way, past information about the observable changes the probabilities
which we have to assign to each exact position of the particle and the future values
of the observable, in this case, the boxes.

Figure 1.1: Example of how past observations (the box the particle is in at respective
points in time) provide additional information on the current exact state. The fact
that the particle switched boxes indicates that currently it should be close to the bor-
der between boxes i and i− 1, making transitions to box i− 1 more likely compared
to being positioned well inside box i.

To place this on a mathematically sound foundation, this chapter will summarize
the two aforementioned perspectives on the emergence of memory in dynamical
systems, Takens and Mori–Zwanzig, starting with the Theorem of Takens and its
implications.

We will at times use results from theory about Markov processes and memo-
ryless dynamical systems. Giving a full introduction to these broad areas would
go beyond the scope of this thesis. For a comprehensive overview, please refer to
[Sar11] and [KR99].

1.1 Takens’ Theorem

The work of Floris Takens discusses under which conditions certain properties of
a dynamical system F can be reconstructed from a scalar-valued observable. The
system has to evolve on a compact smooth manifoldM, an invariant set of the dy-
namics, so that F :M→M.M is often called attractor if one additionally assumes
that trajectories starting outside of M converge to it, enabling one to consider the
dynamics only onM. An attractor is defined as follows.

Definition 1.1 (Attractor). For a function F : Rd → Rd, a set A ⊂ Rd is an attractor
if it fulfils (1) F(X) ∈ A if X ∈ A, (2) there is a neighbourhood U of A so that for all
X ∈ U, lim

t→∞
Ft(X) ∈ A and (3) there is no subset of A that fulfils (1) and (2).

Before we can truly understand the full width of both its prerequisites and im-
plications, we need to clarify what the term ”reconstructed” could mean: the goal is
to create equivalent dynamics where equivalent means preservation of certain prop-
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erties. The existing literature on this topic typically speaks of three different types
of these properties:

• Topological: these are, by definition, all properties that are preserved under
homeomorphisms. They include the dimension, compactness and connected-
ness of the attractor and the number and types of fixed points of the dynamics.

• Dynamical: these pertain the evolution of the constructed dynamics, such as
smoothness or the Lyapunov exponents, which quantify how fast two trajec-
tories that start at slightly perturbed initial values deviate from each other. Of
special interest is typically the predictability of the dynamics. Although not be-
ing a strictly defined mathematical property, it is often the focal point of the
analysis: how precisely can we formulate the dynamics so that we can predict
both its short- and long-term behaviour well?

• Geometric: such properties are in regard to the shape of the attractor. They
include distances between points and its volume. As we will see, preservation
of geometric properties is intimately connected with predictability.

1.1.1 The Theorem and its Variants

Now, with only an observable φ : M → R (Takens explicitly considers the case
of scalar-valued observables but this can be generalized) at hand, we strive to for-
mulate dynamics in φ in such a way that as many of the introduced properties as
possible are preserved. To this end, we will map M to a new manifold using the
image of the observable and define dynamics on it.

As will become clear, a mapping that we should seek for this task is an embedding.
In order to define an embedding, we first need the term immersion:

Definition 1.2 (Immersion). An immersion is a differentiable function between two
differentiable manifolds whose derivative is injective at every point in the manifold.

An embedding then is an injective immersion. This means that an embedding
neither collapses points nor tangent directions. As a consequence, one obtains dy-
namics in the embedded manifold that are equivalent to the full dynamics up to a
mere coordinate change.

An embedding can also be called a smooth diffeomorphism onto its image since
a diffeomorphism is defined as a function between manifolds that is smoothly dif-
ferentiable, invertible and its inverse is also smoothly differentiable. It preserves
all topological properties – this, in fact, is by definition, since a diffeomorphism is a
homeomorphism between manifolds – and is, as it turns out, well-suited to preserve
dynamical and geometric properties to a strong degree.

Takens’ Theorem shows that by leveraging the information in φ in a specific way,
one can in fact create an embedding. Before being able to understand what it is
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motivated from, we first need to turn ourselves to a much older theorem proved
by Hassler Whitney in 1936. It ensures that, given a d-dimensional smooth and
compact manifoldM, typically an arbitrarily chosen smooth (2d + 1)-dimensional
mapping will be an embedding. To be precise, the theorem states

Theorem 1.3 (Whitney, 1936, [Whi36]). LetM be a d-dimensional smooth and com-
pact manifold. Then the set of smooth functions f :M→ R2d+1 that are an embed-
ding is generic.

The term generic means open and dense inside the C1-topology of maps, imply-
ing that around every function that is an embedding, there is a ball with positive
radius whose elements are also embeddings (this pertains to openness) and for ev-
ery function that is not an embedding it only takes an infinitesimal perturbation to
arrive at an embedding (the meaning of denseness).

Remark. Please note that all theorems, lemmas and propositions that were not proved
by the author of this thesis are marked as such by the literature reference where also
the proof can be found. Later, when new results from the author are introduced,
instead of a reference there will be a proof and theorems will be distinguished by
shaded boxes.

Whitney’s Theorem shows that generically smooth mappings, if they are suf-
ficiently high-dimensional, are in fact embeddings of a manifold. He went on to
prove in 1944 that for every smooth, compact manifold of dimension d ≥ 2 there
exists a mapping into R2d that is an embedding which is known under the Strong
Theorem of Whitney.

Delay embedding

Takens managed to build on the foundation laid by Theorem 1.3 and relate it to the
setting that this thesis is concerned with: dynamics of which only some variables
are observed. Although we will mostly consider discrete-time dynamics through-
out this thesis, Takens’ Theorem can be placed into the context of time-continuous
systems of which we take measurements at discrete time steps. This perspective
should allow for a better understanding of certain aspects of the topic. F then is un-
derstood to transport the dynamics by a time step of length τ while the time-discrete
perspective can straightforwardly be taken by setting τ = 1. In both cases, we write

Xt+1 = F(Xt) (1.1)

while Xt denotes the state of the system at the tth time step.
We use sequences of states of the observable φ to construct a topologically equiv-

alent system, as the following steps assert.

Definition 1.4 (Delay-coordinate map). Let φ :M→ R be a smooth, scalar-valued
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observable. Then let us define the delay-coordinate map of φ under a time-τ-map F
with memory depth, or, as we call it here, embedding dimension p by

Φφ,F,p,τ(X) = (φ(X), φ(F−1(X)), . . . , φ(F−(p−1)(X)))T ∈ Rp. (1.2)

Takens’ Theorem reads:

Theorem 1.5 (Takens, 1981, [Tak06]). LetM be a smooth, compact, d-dimensional
manifold. The set of pairs (F, φ) for which Φφ,F,p,τ is an embedding is generic in
Dr(M)× Cr(M, R) if p > 2d for r ≥ 2.

Dr(M) denotes the set of r-times continuously differentiable diffeomorphisms
mapping fromM toM. Takens originally showed this for r = 2 but it was shown
by J. P. Huke [Huk93] that it holds for r = 1. Huke also demonstrated the proof
of Theorem 1.5 in great detail. Takens originally defined the delay-coordinate map
forward in time, i.e., as Φ+

φ,F,p,τ(X) = (φ(X), φ(F(X)), . . . , φ(Fp−1(X)))T, but the
formulation of Theorem 1.5 is equivalent since Φ+

φ,F,p,τ applied to the observable
φ ◦ F−(p−1) ∈ Cr(M, R) gives the delay-coordinate map defined in Definition 1.4.

Takens’ Theorem connects the differential-geometric result of Whitney to dy-
namics. It guarantees a topological equivalence between the original system and
one that is constructed from the memory of an observable. The theorem allows us
to formulate the dynamics on the set Φφ,F,p,τ(M). Denote by x̂t = Φφ,F,p,τ(Xt) a
point on Φφ,F,p,τ(M). We further write Φ for Φφ,F,p,τ when the subscripts are not
decisive. Then the dynamics, which we call the embedded dynamics, on these coordi-
nates are given by

x̂t+1 = f̂ (x̂t) := Φ ◦ F ◦Φ−1(x̂t). (1.3)

An illustration is shown in Figure 1.2. Clearly, the first coordinate of f̂ (x̂t) is equal to

Figure 1.2: Dynamics on Φ(M).

xt+1 by definition of Φ. We therefore define the function f̂1 : Φ(M)→ R as f̂1(x̂t) =

f̂ (x̂t)1 which directly constructs the next value of the observable. If φ ∈ Rm is
multivariate, we define f̂1 as the first m coordinates of f̂ . Note that the multivariate
case is not covered by Takens’ Theorem but will be briefly discussed later.

Since both F and Φ are diffeomorphisms, the same holds for f̂ . This implies that
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from one observable alone one is generically able to reconstruct essential properties
of the dynamics, such as its Lyapunov exponents, number and nature of its fixed
points, and the dimension of the manifold. Note that if F is unknown – which should
generally be assumed, since otherwise one could typically draw most desired con-
clusions from F directly – Takens’ Theorem does not permit a precise model form.
We will discuss various ways to estimate it in Chapter 2.

In his paper, Takens refers to two other publications that were made slightly
earlier. One is by Packard et. al. [PCFS80], where it is discovered from an empiri-
cal point of view that the geometry of an attractor can be recreated from the delay
embedding of an observation or by using derivatives of the observation of differ-
ent degrees. The authors demonstrate this for an example system but do not prove
any theoretical statements. The second publication is by Aeyels [Aey81] and al-
ready discusses the embedding dimension of 2d + 1. It, however, is concerned with
observability of a system, meaning that a delay-coordinate map is injective, in con-
trast to an embedding as Takens showed. Aeyels further discusses the topic from
a control-theoretic point of view. These results point into the direction into which
Takens advanced, but as Takens politely points out, his result is more – he writes ”in
some sense somewhat” – general, since it gives precise statements on the conditions
under which a delay-coordinate map is not just injective but an embedding.

Note that through Takens’ Theorem, we can install dependence of other vari-
ables on observations. Assume there exists a relation Y = G(X), then, similarly to
Eq. (1.3), we find that

Yt = G(Xt) = G ◦Φ−1(x̂t). (1.4)

Remember that generally neither of the functions might be known so that the full
function G ◦ Φ−1 must be estimated. The topological properties of this function,
however, are guaranteed to be the same as those of G, if Φ is an embedding, imply-
ing that if G is ”nice” in a certain sense, than xt can be mapped to Yt in a similarly
nice way. We will exploit this later on in Chapter 5.

Periodic points

In his proof, Takens specifies the conditions under which F can allow Φφ,F,p,τ to be
an embedding: there must be no periodic orbits with period equal to τ. The reason
for this is that it would imply

F(Xt) = F(Xt+τ) (1.5)

so that
Φφ,F,p,τ(Xt) = (φ(Xt), . . . , φ(Xt))

T. (1.6)

With this, an orbit would be mapped to a segment of the diagonal line in Rp. As
a consequence, Φ would not be injective and hence not an embedding. Similarly,
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although following from a slightly more complicated argumentation, there must be
no periodic orbits of period 2τ. For periodic orbits with period kτ for k ≥ 3 it suffices
if their number is finite. Takens showed that almost all, not just generic, choices for
F that fulfil these conditions allow for an embedding under the delay-coordinate
map. Still, the theorem cannot be formulated without using the term generic since
the choice of the observable makes a difference. For example, constant functions
do usually not give an embedding since the manifold would be mapped to a single
point.

Note that Takens’ Theorem can be seen as an extension of Whitney’s Theorem in
the sense that Whitney merely ensures that generic choices of (2d + 1)-dimensional
functions are embeddings but not which. Takens derived that the specific choice of
Φφ,F,2d+1,τ is an embedding (although this is itself only a generic property). A result
that forms a hybrid between both theorems was proved in [DS11] in 2011. It states
that by using multiple different scalar-valued observation functions instead of one
and applying the delay-coordinate map to each one with potentially pairwise dif-
ferent memory depths also generically gives an embedding. The sum of these indi-
vidual memory depths then has to be bigger than 2d. Further, the observables must
show a suitable degree of independence. A similar result was stated as a remark
already by Sauer et. al. in [SYC91], a publication that makes several seminal con-
tributions to the topic. Their observation directly points towards multidimensional
observables, since these can be interpreted as a collection of several scalar-valued
observables.

What Takens’ Theorem gives us is that typically the delay-coordinate map of
already a scalar-valued observation of a dynamical system is enough to create topo-
logically equivalent dynamics when the embedding dimension is bigger than twice
the dimension of the manifold that the dynamics are on. Still, there are several ques-
tions it does not answer, e.g., the form of the dynamics on Φ(M) or a lower instead
of an upper bound on the required embedding dimension.

Nor does it imply geometric properties of Φ(M) or the embedded dynamics
f̂ . Indeed, since Φ is a diffeomorphism and hence differentiable, we know that
neighbourhoods onMmust map to neighbourhoods on Φ(M) so that

‖Φ(X)−Φ(X′)‖
‖X− X′‖ < ∞, (1.7)

but bounds for the amount of perturbation of distances are desirable, e.g., a state-
ment of the form

l ≤ ‖Φ(X)−Φ(X′)‖
‖X− X′‖ ≤ u, (1.8)
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especially in regard to the dynamics f̂ as in

l ≤ ‖Φ(X)− f̂ (Φ(X))‖
‖X− F(X)‖ ≤ u. (1.9)

Eq. (1.8) would shed light on the amount to which, e.g., observations that are con-
taminated with noise would affect the reconstruction. (1.9) refers to the speed of the
embedded compared to the full dynamics, e.g., can the embedded take a long step
while the full dynamics only take a small step and vice versa.

Strange attractors

In some cases, the necessary embedding dimension can be reduced. Work in [SYC91]
yields that for strange attractors, i.e., those with fractal, or non-integer, dimension, an
equivalent statement as Takens’ Theorem can be made. This is important if the dy-
namics evolve not in a manifold but in a set that lies inside only high-dimensional
manifolds while the set itself is much simpler. Then, as shown in [SYC91], the upper
bound for the embedding dimension is determined by the geometry of the set and
not the manifold.

For this, we use the so-called box-counting dimension as a measure of the dimen-
sionality of sets.

Definition 1.6 (Box-counting dimension). The box-counting dimension of a com-
pact set A is defined as

boxdim(A) = lim
ε→0

− log(NA(ε))

log(ε)
, (1.10)

where NA(ε) is the minimal number of cubes with edge length ε needed to cover A.

The box-counting dimension measures the rate in which the minimal number of
boxes needed to cover a set increases when decreasing their size. If A is in fact a
d-dimensional manifold, then NA(ε) is proportional to ε−d so that boxdim(A) = d.
For sets that are not a manifold, this number is generally non-integer.

The authors of [SYC91] additionally use the notion of prevalence, which in finite-
dimensional spaces means that the complement of a set has zero measure. With
this, they managed to prove a variant of Takens’ Theorem with slightly stronger
conditions on the periodic orbits of the full dynamics F but with potentially lower
embedding dimension:

Theorem 1.7 (Fractal Delay Embedding Prevalence Theorem, 1991, [SYC91]). Let
F be a flow on an open subset U ⊂ Rd and let A be a compact subset of U of
box-counting dimension dboxdim. Let p > 2dboxdim be an integer, and let τ > 0.
Assume that A contains at most a finite number of equilibria, no periodic orbits of
F of period τ or 2τ, at most finitely many periodic orbits of period 3τ, 4τ, ....pτ, and
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that the linearizations of those periodic orbits have distinct eigenvalues. Then for
almost every smooth function φ on U, the delay coordinate map Φφ,F,p,τ : U → Rp

is injective on A and an immersion on each compact subset C of a smooth manifold
contained in A.

This theorem, although seeming like only a slight modification of Takens’ origi-
nal theorem, provides strong practical benefits. Firstly, it replaces the term generic
with almost every. Moreover, instead of being only valid for dynamics on compact,
smooth manifolds, this theorem holds for sets in Rd with a box-counting dimension
that might be much lower than d. For example, let F drive a dynamical system on
a set A inside Rd while boxdim(A) � d. Then Takens’ Theorem forces us to choose
the embedding dimension as 2d + 1 while Theorem 1.7 allows us to use the much
smaller embedding dimension of 2boxdim(A)+ 1. As pointed out in [SYC91], the re-
sult of the delay-coordinate map being injective and an immersion on each compact
subset is only slightly weaker than the embedding property.

This perspective becomes immediately helpful when considering one of the most
prominent examples for the implications of Takens’ Theorem: the Lorenz-63 sys-
tem. The Lorenz-63 system describes three-dimensional dynamics, whose trajecto-
ries form a butterfly-shaped attractor. It has several properties that showcase the
usefulness and shortcomings of Takens’ Theorem. Introduced by and named after
the American mathematician and meteorologist Edward Lorenz, the Lorenz-63 sys-
tem is a model for atmospheric convection. Depending on initial conditions and
parameters, it can show strongly chaotic behaviour (meaning that trajectories from
two different initial values diverge form each other exponentially quickly) and is
thus a frequently chosen example for such systems. It is given by

dx
dt

= σ(x− y),
dy
dt

= x(ρ− z)− y,
dz
dt

= xy− βz. (1.11)

A trajectory is depicted in Figure 1.3. From Takens’ Theorem, an embedding dimen-
sion of 7 should be chosen so that a delay-coordinate map of observations of the
system are an embedding. The Lorenz attractor is a strange attractor with a box-
counting dimension of approximately 2.06, so that Theorem 1.7 implies that already
an embedding dimension of 5 should suffice. For this system, it can be shown that
already an embedding dimension of 3 is enough for the delay-coordinate maps of
the x- and y-coordinates to give embeddings (remember that 2d + 1 is only an up-
per bound). This does not hold for the z-coordinate: as can straightforwardly be
computed, the Lorenz system has fixed points inside the two lobes of the butterfly-
shaped attractor. When using a delay-coordinate map of the z-coordinate, both fixed
points are collapsed into one, yielding that Φz,F,p,τ is no embedding for any p. By
choosing as observation only a slight perturbation of the z-coordinate – this is guar-
anteed by both the genericity condition in Takens’ Theorem and the almost every
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Figure 1.3: The Lorenz-63 system. Full system (left) and individual coordinates
along with three-dimensional delay embeddings with τ = 0.1.

statement in Theorem 1.7 – one can obtain an embedding again. Note that the delay
embeddings of x and y with sampling rate τ = 0.1 are similar in shape to the origi-
nal attractor. This is a fortunate artefact of the Lorenz-63 system but, as mentioned
before, this does not have to be the case. To see this, one may choose as observation
φ(x, y, z) = z + x

2 or the x-coordinate with the sampling rate τ = 0.01 or τ = 0.2,
which all give an embedding but very different shapes.

We have now seen that the upper bound in the embedding dimension from Tak-
ens’ Theorem is optimal neither in theory nor in practice. However, the simple ex-
ample shown in Figure 1.4 illustrates that even Theorem 1.7 cannot be made with a
lower condition for the embedding dimension. The figure shows dynamics on an at
least one-dimensional set. Using the x-coordinate as observation yields an overlap
in the trajectory of the delay-coordinate map with embedding dimension of 2. As
a consequence, the dynamics under the delay-coordinate map are not injective and
not even well-defined at the point of the intersection. Small perturbations to the
observable would not remedy this.

Filtered delay embeddings

The authors of [SYC91] further prove results on filtered delay embeddings. They ar-
gue that using an embedding dimension w that is much higher than theoretically
necessary can have the benefit of reducing the influence of noise in observed data.
However, it also yields additional cost in most ensuing computations. The authors
of [SYC91] show that for p > 2boxdim(A) and a rank-p-matrix B ∈ Rp×w, the fil-
tered delay embedding

Φφ,F,p,τ,B(X) = BΦφ,F,w,τ(X) ∈ Rp (1.12)
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Figure 1.4: Taking the x1-coordinate as the observation from the two-dimensional
dynamics on the left results in an overlap between two segments of the trajectory
of the delay-coordinate map. The trajectory on the left has box-counting dimension
1 but an embedding dimension of 2 is apparently not sufficient. 3 should suffice.
Example taken from [SYC91].

still is an embedding as long as stricter conditions on the periodic orbits of F are
fulfilled.

Theorem 1.8 (Filtered Delay Embedding Prevalence Theorem, 1991, [SYC91]). Let
U be an open subset of Rk, F be a smooth diffeomorphism on U, and let A be a
compact subset of U, boxdim(A) = dboxdim. For a positive integer p > 2dboxdim, let B
be a (p×w)−matrix of rank p. Assume F has no periodic points of period less than
or equal to w. Then for almost every smooth function φ, the delay coordinate map
Φφ,F,p,τ,B : U → Rp is injective on A and an immersion on each closed subset C of a
smooth manifold contained in A.

This theorem allows us to use a large embedding dimension and compress the
delay embedding back to a lower-dimensional space.

Systems with control and stochastic systems

Although Theorems 1.5 and 1.7 imply that delay-coordinate maps of most – mean-
ing generic, respectively almost all – choices for F and φ give embeddings, in general
this statement has to be proved for specific sets of functions. Let us consider forced
systems, i.e., dynamical systems of the form

Xt+1 = F(Xt, Yt) ∈ M
Yt+1 = G(Xt, Yt) ∈ N .

(1.13)

As an example why the theorems that were stated until now do not have satisfying
implications for such systems, let us consider the following example (taken from
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[Sta99]). Let
dXt

dt
= Ψ(Xt, t), Ψ(·, t) = Ψ(·, t + T) (1.14)

describe a non-autonomous dynamical system with a period of T for each fixed
state. We observe the state of the system after time intervals of length τ, so that we
can write this with respect to the time-τ-flow F as

Xt+1 = F(Xt, t), F(·, t
τ
) = F(·, t + T

τ
). (1.15)

This can be written as a forced system by

Xt+1 = F(Xt, θtT)

θt+1 = (θt +
τ

T
) mod 1

(1.16)

When asking whether an observable of the system generates a delay embedding,
the answer from Theorems 1.5 and 1.7 is yes – for generic, respectively almost all,
functions that observe both X and the time parameter θ. However, in practice, an
observation generally only measures a quantity of the state and is independent of
the time. This case is not covered by Theorems 1.5 and 1.7 and, therefore, it is unclear
whether it is possible to generate an embedding by applying the delay-coordinate
map to an observation of the state.

In more formal terms: the set of ((F, G), φ) for which the Φφ,(F,G),p,τ are embed-
dings is generic inD(M×N )×C(M×N , R). What we seek are conditions under
which the set of (F, φ) is generic in D(M×N , M)× C(M, R).

An answer was given in [Sta99] in the form of the following theorem:

Theorem 1.9 (Takens’ Theorem for Forced Systems, 1999, [Sta99]). Let M and N
be compact manifolds of dimensions d and e, respectively. Suppose that the pe-
riodic orbits of period smaller than 2p of G ∈ Dr(N ) are isolated and have dis-
tinct eigenvalues, where p > 2(d + e). Then for r ≥ 1, there exists a generic set of
(F, φ) ∈ Dr(M×N ,M)× Cr(M, R) for which the map Φφ,F,p is an embedding.

Thus, under certain conditions on the forcing G, we are in fact generically able to
construct an embedding of the forced system with a delay-coordinate map. For the
example above, this means: if the period T is long enough, Theorem 1.9 implies that
generic delay-coordinate maps of an observation of the state Xt will be an embed-
ding. What if T is too short? In this case, if possible, one could decrease the length
of τ, i.e., take observations more frequently. This directly connects the theoretical
perspective, dominated by the theorems, with the more practical view for which
we may ask how different choices for parameters, e.g., the embedding dimension
and the sampling rate, influence the practicality of delay-coordinate maps. We will
discuss this shortly.

Theorem 1.9 is of immediate help when stating a similar result for stochastic
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systems. As such a system we denote

Xt+1 = F(Xt, ωt) (1.17)

where ωt ∈ N is randomly drawn under a law µ from the set N . Clearly, this is a
forced system so Theorem 1.9 could apply. However, the ωt are not generated under
a diffeomorphism G as above but stochastically drawn from N . As such, one could
write ωt+1 = G(ωt) but G does not have to be injective, since ωt = ωt′ might occur.
To remedy this problem, we may use a shift space, meaning that we define

ω̄ = [. . . , ω−1, ω0, ω1, . . . ] ∈ NZ, (1.18)

and equip it with the shift map

σ(ω̄t)i = (ω̄t)i+1. (1.19)

We can then write Eq. (1.17) as

Xt+1 = F(Xt, (ω̄t)0)

ω̄t+1 = σ(ω̄t).
(1.20)

where now ω̄0 is drawn from Σ := NZ according to a law µΣ. In the case of inde-
pendence of the ωt, this would be the product measure.

With this, we have drawn all stochastic terms in advance and transformed the
stochastic system into a deterministic system. The manifold Σ that contains the ω̄t

is compact if N is compact by the so-called Tychonoff’s Theorem. Therefore, we
could apply Theorem 1.9 here and derive that for generic choices of F and φ, we
obtain an embedding. However, Σ is infinite-dimensional, making the theorem as it
is unusable.

Nevertheless, the infinite dimension of Σ is not transported further, since the
delay-coordinate map Φφ,F,p depends on only finitely many components of ω̄. This
enabled the authors of [SBDH03] to modify Theorem 1.9 and derive the following
result.

Theorem 1.10 (Taken’s Theorem for Stochastic Systems, 2003, [SBDH03]). Let M
and N be compact manifolds of dimension d ≥ 1 and e respectively and let µΣ

be an invariant measure on Σ = NZ that is absolutely continuous with respect to
Lebesgue measure on N p−1. Suppose that p > 2d. Then for r ≥ 1, there exists a
residual set of (F, φ) ∈ Dr(M×N ,M)× Cr(M, R) such that for any (F, φ) in this
set Φφ,F,p is an embedding for µΣ almost every ω̄.

A residual set is the complement of a countable union of nowhere dense sets.
Note that the embedding dimension does not depend on the dimension of N . With
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this, Theorem 1.10 provides a strong result on the applicability of delay-coordinate
maps on stochastic systems.

If N consists of finitely many points, this theorem has immediate implications.
In this case ”almost every” is equivalent to ”every”. Further, the authors of [SBDH03]
show that in this case the term ”residual set” can be replaced by ”generic” which is
a stronger statement.

Theorem 1.11 (Taken’s Theorem for Iterated Function Systems, 2003, [SBDH03]).
Let M and N be compact manifolds of dimension d ≥ 1 and e = 0 respectively.
Suppose that p > 2d and r ≥ 1. Then there exists an open and dense set of
(F, φ) ∈ Dr(M×N ,M) × Cr(M, R) such that for any (F, φ) in this set Φφ,F,p is
an embedding for every ω̄.

Note that there exist various other variants of Takens’ Theorem that loosen some
of the restrictions. We have seen already which conditions we have to enforce if we
want to apply the result of the theorem to specific dynamics, e.g., on compact sets
instead of manifolds, time-dependent or stochastic systems. It was also mentioned
that the theorem can be modified to permit multivariate observables [DS11]. In
[Rob05] and [Gut16], conditions are shown for which the delay-coordinate map of a
non-differentiable but Lipschitz continuous observable is injective (it can naturally
not be smooth if the observable is not smooth but injective is a strong property in its
own right – it yields that we can at least invertably map between the original system
and the delay embedding).

This being said, in future years there is a solid amount of work left in prov-
ing theorems which cover all different scenarios that might exist in regard to F and
φ. As of now, one is likely to face a lack of ”combinations” between the different
extensions of Takens’ Theorem: there do exist statements on smooth multivariate
observables and on Lipschitz continuous scalar-valued ones, but what about multi-
variate, Lipschitz continuous observables? Although some of these ”combinations”
seem straightforward to prove if understanding of the individual proofs exists, it
would be commendable if in the near future more theorems of this style could be
proved.

1.1.2 Finding Embedding Parameters

Up to this point, we have summarized results which allow generation of topologi-
cally equivalent dynamics using the delay-coordinate map of an observable. We also
discussed under which conditions on the dynamics and the observable the delay-
coordinate map is an embedding. These conditions, to a good part, refer to the em-
bedding dimension and sampling rate. Naturally the question arises: how do we
find these parameters if we do not assume them to be known? There exist practical
methods which take as input a time series of the system, i.e. states φ(X0), . . . , φ(XN)
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from a trajectory of φ(Xt), representing either N + 1 subsequent observations of a
time-discrete system or observations sampled at N + 1 time steps of a fixed length
τ over a time span of length Nτ. The case of time series with non-uniform sampling
rate is discussed in [JM98].

As it turns out, geometric properties such as the bounds in Eq. (1.8) are indeed
affected by the choices of p and especially τ.

The embedding dimension

So far, we have argued that we either know the dimension of the manifold of the
dynamics or we can compute the box-counting dimension of their domain. How-
ever, if we can only access an observable of the dynamics, it is generally non-trivial
to find out the dimension of the manifold of the true dynamics. Plus, computation
of the box-counting dimension is very expensive for high-dimensional dynamics.
Therefore, the need for a simpler method to compute the embedding dimension
arises.

False Nearest Neighbours For this reason is now explained the false nearest neigh-
bour method (FNN) [KBA92]. It is based on the assumption that embeddings gener-
ally preserve neighbourhoods, i.e., points that are close in one set should be close in
the embedded set.

As a consequence, if the embedding dimension is large enough for Φ to be an
embedding, a point Xt ∈ M should have the same neighbours in Φ(M) for in-
creasing embedding dimension. If, however, the embedding dimension is lower
than required for an embedding, this does not have to be the case. Then the geomet-
ric structure of the manifold is not preserved and points that are close to each other
in Φ(M) might not have been neighbours in M. This is utilized in the following
way:

Define the squared Euclidean distance between two points in Φp(M) by

Dp(Φp(Xt), Φp(Xt)
′) := ‖Φp(Xt)−Φp(Xt)

′‖2
2. (1.21)

Let Φp(Xt)′ be the nearest neighbour of Φp(Xt), i.e., the minimizer of Dp(Φp(Xt), ·).
Then compare this term with the distance in the delay embedding for the embed-
ding dimension increased by 1 and compute

|Dp+1(Φp+1(Xt), Φp+1(Xt)′)− Dp(Φp(Xt), Φp(Xt)′)|
Dp(Φp(Xt), Φp(Xt)′)

=
‖φ(Xt−p)− φ(Xt′−p)‖2

2

Dp(Φp(Xt), Φp(Xt)′)
.

(1.22)
If this ratio exceeds a certain tolerance threshold Rtol, then apparently these neigh-
bours in Φp(M) are not neighbours in Φp+1(M) and are therefore deemed false
nearest neighbours. Once the necessary embedding dimension is reached, neigh-
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bours should remain neighbours so that the number of points which violate (1.22) –
the false nearest neighbours – should plateau at a small value.

Using the box-counting dimension Another way to estimate a sufficient embed-
ding dimension is to use the fact that embeddings preserve the dimension of man-
ifolds (while this is not true for the box-counting dimension of sets). If a delay-
coordinate map is in fact an embedding then increasing the embedding dimen-
sion will still lead to an embedding. Thus, the box-counting dimension of the de-
lay embedding will plateau, once an embedding is generated. These same should
approximately happen when using the box-counting dimension. As illustrated in
[GWSP82], it can be both difficult and expensive to compute for high-dimensional
sets.

The sampling rate

We have seen in the conditions on the periodic orbits that the sampling rate τ has
to avoid certain values, namely certain multiples of period of periodic orbits of the
dynamics. But the sampling rate has a practical effect on the delay embedding even
apart from these periods as we will observe shortly. The aim in choosing τ is to make
the different memory terms contain as much independent information as possible.
For a trajectory a simple method to achieve this is by minimising the autocorrelation
function. Let us assume here, for notational purposes, that we possess a time series
x0, xυ, x2υ, . . . , xT ∈ R and we seek to choose τ as a prefactor for the fine sampling
rate υ (this is a slight change in notation: we seek τ ∈ N and not from R+ as in
the theoretical setting but assume we have access to measurements of the system,
separated by the time υ). Any sampling rate should then be a multiple of υ. The
autocorrelation function – for scalar-valued observables – is given by

A(τ) =
1

N − τ

N−τ

∑
i=1

xixi+τυ. (1.23)

The value for τ that minimizes this term minimizes the linear dependence between
time-shifted states of X. For multivariate observables one would receive an autocor-
relation matrix and would optimize the sampling rate according to a suitable metric
of this matrix.

An alternative is given by minimizing the average mutual information (AMI) [FS86,
AMRT01]. The AMI is a nonlinear function that measures the amount of information
between time-shifted states of a trajectory by

AMI(τ) =
N−τ

∑
i=0

p̂(xi, xi+τυ) log2

( p̂(xi, xi+τυ)

p̂(xi) p̂(xi+τυ)

)
. (1.24)

p̂(xt) is the empirically estimated probability of the occurrence of xt, e.g., as the
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relative frequency of xt being inside a certain bin of a histogram. If xt and xi+τυ are
independent of each other, AMI(τ) will be 0, which is its minimal value.

Since the AMI is nonlinear, it should generally be a stronger method to find τ that
gives maximal independence than the autocorrelation function which only detect
linear independence. However, unlike the autocorrelation, the computation of the
AMI is subject to how one estimates the probability density p̂ and should therefore
only be employed if a sufficiently long time series is provided. For multivariate
observables, it can only entail infeasible computational cost.

Although it might seem intuitive to choose the sampling rate so that subsequent
observations are independent, there exists surprisingly little information in the lit-
erature as to whether the minimizers of the autocorrelation function and the AMI
guarantee any properties, not even the necessary one regarding the periodic orbits.
In the absence of theoretical answers to such questions until recently [EYWR18],
there does exist a strong body of experimental research that sheds light on them,
e.g., [PD20,DBGM20] to only name a few. This research indicates that the geometry
of the image of the delay-coordinate map strongly depends on τ (which will have
practical implications later on). In essence, we can already observe in Figure 1.5 the
effect of different sampling rates on delay embeddings of the Lorenz-63 system.

Figure 1.5: Delay embeddings of the x-coordinate of the Lorenz-63 system with three
different sampling rates. Although the attractors are topologically equivalent, their
geometries are very different from each other.

If the geometry of a manifold is not preserved under the delay embedding, then
close points in the original system could be mapped far apart in the delay embed-
ding and vice versa. As a consequence, small perturbations, e.g., if the observation
is subject to noise, may significantly affect the delay embedding. This, of course,
would be a contradiction to the assumption made in the FNN method, which relies
on neighbourhoods to be preserved under a delay embedding. Thus, – in extreme
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cases – the FNN method is not practical (although for most dynamical systems in-
vestigated in the literature, it is). In this light, it immediately becomes desirable to
possess statements about metric properties, i.e., under which conditions distances
or at least the ratios between them are (approximately) preserved. Note that an
embedding is bi-Lipschitz continuous, meaning that Eq. (1.8) holds and distances
cannot be arbitrarily strongly perturbed. An exact quantification, however, e.g., by
specifying the bounds u and l, is desirable.

With these objections in mind, the presented methods to find embedding pa-
rameters do not truly give reliable quantitative statements but may appear rather
vague, although being common practice. The following results will lead to more
precise statements about good choices for τ and p.

1.1.3 Metric Properties of Delay Embeddings

In [EYWR18], a theorem is proven that gives for each u and l the probability with
which an observation function that is drawn under a specific randomness gives an
embedding that fulfils Eq. (1.8). Such a delay embedding is then called a stable em-
bedding if u ≈ l. From this, the authors derive a way to determine embedding
dimension and sampling rate needed for a stable embedding.

The authors construct an observation φ as a linear combination of basis func-
tions h1, . . . , hL with coefficients from a vector α ∈ RL that is drawn from a certain
subgaussian distribution, i.e.,

φ(X) = α[h1, . . . , hL]
T(X). (1.25)

For an embedding dimension p, they introduce the matrix

Ah,τ,p(X) =
[
Φh1,F,p,τ, . . . , ΦhL,F,p,τ.

]
∈ Rp×L (1.26)

and define the stable rank of a matrix as

R(A) =
‖A‖2

F
‖A‖2 =

p
∑

i=1
σ2

i

σ2
1

(1.27)

where σi is the ith biggest singular value [GHS87] of A. They then define the stable
rank of the manifoldM as

Rh,τ,p(M) = inf
X,Y∈M,X 6=Y

R(Ah,τ,p(X)− Ah,τ,p(Y)). (1.28)
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From this, they prove a theorem that – roughly – states that if

Rh,τ,p(M) & dim(M) log
(vol(M)

1
dim(M)

rch(M)

)
(1.29)

they can state a probability with which u and l can be set to certain - close - val-
ues. rch is the reach of the manifold which can be understood as the inverse of its
maximal curvature. The full result is difficult to comprehend without first being ac-
quainted to some differential-geometric terms, but in essence it says: the richer the
observation, i.e., the more evenly it captures different variables of the dynamics, the
closer are u and l to each other because in this case the stable rank is high. A good
choice for the sampling rate τ also contributes to this effect: if it is too small, the
rows of Ah,τ,p(X) − Ah,τ,p(y) will be too similar to each other and the stable rank
small, too. If τ is similar to the Lyapunov exponents of the dynamics, then, as the
authors point out, the rows of Ah,τ,p(X)− Ah,τ,p(y) have different lengths and again
the stable rank is small. It is therefore vital to choose a good sampling rate. This will
be discussed shortly.

Moreover, the manifold should be of simple form, including that it has a high
reach, which means that it is not close to overlapping itself.

Further, the authors present an algorithmic way to determine p and τ so that the
delay embedding is in fact stable. They observe that under Eq. (1.8), it holds that

(pl)
dim(M)

2 ≤ vol(Φφ,F,p,τ(M)) ≤ (pu)
dim(M)

2 . (1.30)

It follows that if l ≈ u for a certain range of values for p and τ, then the term
vol(Φφ,F,p,τ(M))

p
dim(M)

2
should remain almost constant over this range. They deduce that vice

versa if over a certain range of p and τ this term does stay almost constant, it could
indicate that for this range in fact l ≈ u and those values for p and τ generate a
stable embedding.

Results such as those demonstrated in [EYWR18] help to place methods such
as FNN or the AMI minimization on a more solid theoretical basis and even find
improvements of them. Further research in this direction should be expected and
could be of practical help.

We have now discussed the implications that Takens’ Theorem and its variants
yield and the formal conditions they demand. They allow us to infer various prop-
erties of a dynamical system from only a scalar-valued observation. Plus, we have
seen how we can influence the geometric and dynamical properties of delay em-
beddings. As might have become clear by now – also by the extensive use of the
term ”properties” –, through the view point taken by Takens we rather gain insight
into the structure of the full dynamics and the manifold they are on from the delay-
embedded dynamics, than we are able to predict the delay embedded dynamics
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(we merely know they are given by f̂ in Eq. (1.3) but a precise formulation of the
dynamics eludes us).

In Chapter 2, we will see how delay embeddings can be put into practice in order
to draw a benefit in the understanding of a given dynamical system. For this, the
geometric and dynamical properties will play a crucial role. For now, however, we
will take a different view point on memory effects in partially observed dynamical
systems.

1.2 The Mori–Zwanzig Formalism

In this section, we will approach the modelling of observables of dynamical systems
from a different perspective. One the one hand it is, in some sense, more practical
then the view point taken by Takens, since it permits an approximative model form
of the dynamics. On the other hand, it is not as strongly focused on preserving
properties of the dynamics.

The Mori–Zwanzig formalism (MZ) describes a mathematical framework that
stems from statistical physics. It was originally introduced in order to separate slow
from fast variables in dynamical systems with different time scales but generalizes
to a wide range of systems. As we will see, the main benefit it generates is a closed
formulation of the dynamics of a multivariate observable. There exists a large body
of literature on the topic, including, obviously, the initial source [Zwa01]. Typically,
the literature deals exclusively with either the time-continuous setting, e.g., [CHK00,
CHK02,LTLA21,HEVEDB10] or the time-discrete one [LL21,CL15,LLC15]. We will
focus on the latter.

Again, we consider the scenario of

dynamics Xt+1 = F(Xt) ∈ X

with an observable xt : = φ(Xt) ∈ Y
(1.31)

with sets Y ⊂ Rm and X ⊂ Rd. MZ aims at first constructing an operator that ap-
proximates the evaluation of an observable g (that can be different from φ) at X with
only the information in φ(X) and second using this operator to find a representation
of the dynamics of the observable.

1.2.1 Derivation of the Dynamics of an Observable Using Mori–

Zwanzig

Technical preparations for the Mori–Zwanzig formalism

In order to introduce the ideas from the Mori–Zwanzig formalism, we need to make
a few technical definitions: the set of functions which map states from X into Y –
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which φ belongs to – is denoted by

G := {g : X→ Y}. (1.32)

Further, we define as Hφ ⊂ G the subset of observations that depend only on these
relevant variables and map to Y, i.e.,

Hφ := {h ∈ G|∃h̃ : φ(X)→ Y : h = h̃ ◦ φ}. (1.33)

Functions in Hφ still depend on X ∈ X but it suffices to know x ∈ Y to evaluate
them. In other words, for every X ∈ φ−1(x), h(X) is identical so that x can be seen as
representing an equivalence class. We will therefore write h(x) for x ∈ Y to denote
evaluating h(X) for an arbitrary X ∈ φ−1(x), in other words, evaluating only h̃ at
φ(X). An example is

X = R2, φ(X) = X1 + X2, h(X1, X2) = (X1 + X2)
2 = φ(X)2.

It is easy to see that Hφ is only a small subset of G. For example, consider the
setting

X = R2, φ(X) = X1 + X2, g(X) = X2
1 + X2.

Here knowledge only of φ(X) does not permit a direct computation of g(X). For
functions g ∈ G \Hφ, the term g(x) is generally not defined.

For this reason, we define a projection operator P : G → Hφ which maps func-
tions that depend on X to functions depending on x. Its aim is to approximate g ∈ G
by h ∈ Hφ so that h is close to g according to a given metric. In addition to P, we
define its complement Q := Id− P.

An intuitive choice for P is the conditional expectation

(Pg)(x) = E[g(X) | φ(X) = x]. (1.34)

This definition of P gives a reasonable answer to our question: it says what we expect
g(X) to be if we know that φ(X) = x. In order to define the conditional expectation,
we assume that states in X obey an F-invariant probability distribution µ.

An alternative choice for P is the orthogonal projection onto the span of linearly
independent functions ψ := [ψ1, . . . , ψL] where ψi ∈ Hφ for all i. Then P is given by

(Pg)(x) := ψ(x)〈ψ, ψ〉−1〈ψ, g〉 (1.35)

where the scalar product 〈·, ·〉 is defined for matrix-valued functions f1 : X→ Rm×a
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and f2 : X→ Rm×b as

〈 f1, f2〉 :=
∫

X
f1(X)T︸ ︷︷ ︸
∈Ra×m

f2(X)︸ ︷︷ ︸
∈Rm×b

dµ(X) ∈ Ra×b, (1.36)

which itself is matrix-valued. The term 〈ψ, ψ〉−1 is called a mass matrix and guaran-
tees that P is in fact an orthogonal projection. This projection has the property that
Pg is the closest function in span(ψ) to g with respect to 〈·, ·〉, i.e., Pg minimizes for
all h ∈ span(ψ),

〈g− h, g− h〉 =
∫

X
(g− h)T(X)(g− h)(X)dµ(X). (1.37)

which is the expected squared difference between g and h.

Note that the conditional expectation minimizes the expression in Eq. (1.37) for
all functions inHφ while the orthogonal projection does so for all function in span(ψ).
The latter can therefore be seen as a more practical approximation of the former (see
[CHK02] for further investigations of this relation). If span(ψ) = Hφ, both projec-
tions are equivalent. In practice, this is unrealistic ifHφ is infinite-dimensional since
one would need an infinite number of functions. In this case one would choose a
sufficiently rich finite set of functions so that span(ψ) ≈ Hφ or it at least covers the
parts of Hφ that are of interest. The conditional expectation is often expensive to
compute as illustrated in [GGH21]. As we will see, the orthogonal projection leads
to a formulation of the dynamics of xt that can be estimated in a much simpler way.

Representation of the dynamics

The function that we are interested in evaluating is one that transports xt to xt+1. It
is, however, unclear whether such a function actually exists. A function that comes
close to this wish is φ ◦ F since it transports Xt to xt+1. However, we assumed not to
possess knowledge of Xt and generally φ ◦ F /∈ Hφ. We therefore will need to apply
a projection operator P to φ ◦ F to generate a function which transports observations
over time. In the form of the diagram below: instead of transporting the dynamics
on the full state X by F and then evaluating φ at F(X), we only know φ(X) and want
to find φ(F(X)).

X F //

φ
��

F(X)

φ
��

φ(X) = x
?
// φ(F(X))

(1.38)

In order to make the framework of projection operators compatible with dynam-
ics, let us introduce the Koopman operator, which will be more extensively dis-
cussed in Chapter 2, and which plays a prominent role whenever observations of
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dynamical systems are investigated:

Definition 1.12 (Koopman operator). The Koopman operator K : L∞(X) → L∞(X)

corresponding to a discrete-time dynamical system F : X → X maps an observable
g : X→ Y to the function K ◦ g := g ◦ F.

Lr(X) is the space of r-Lebesgue integrable functions on the bounded space X

for 1 ≤ r ≤ ∞. The Koopman operator fulfils

(Ktφ)(X0) = (φ ◦ Ft)(X0) = φ(Xt) = xt. (1.39)

With these definitions, we consider the so-called Dyson formula

Kt+1 =
t

∑
k=0
Kt−kPK(QK)k + (QK)k+1. (1.40)

The Dyson formula denotes an iterative splitting of the Koopman operator into dif-
ferent parts PK and QK. We now follow the procedure from [WKS21] and [LL21]
and apply both sides of Eq. (1.40) to φ. Evaluating them at the initial value of the
full dynamics X0 yields

(Kt+1φ)(X0) =
t

∑
k=0
Kt−k[PK(QK)kφ](X0) + (QK)t+1φ(X0)

so that xt+1 =
t

∑
k=0

[PK(QK)kφ](xt−k) + (QK)t+1φ(X0)

Setting ρk := (QK)kφ gives: xt+1 =
t

∑
k=0

[PKρk](xt−k) + ρt+1(X0)

=
t

∑
k=0

[P(ρk ◦ F)](xt−k) + ρt+1(X0).

(1.41)

We could replace Xt−k by xt−k since PK(QK)kφ ∈ Hφ.
ρ0 = φ gives that P(ρ0 ◦ F) = P(φ ◦ F). This term is typically called the optimal

prediction term since it is the best memoryless approximation of xt+1 because it min-
imizes Eq. (1.37) for g = φ ◦ F. The terms of the form [PKρk](Xt−k) for k ≥ 1 are
called memory terms, since they use information from previous values of x.

If P is given by the orthogonal projection onto basis functions ψ1, . . . , ψL, then
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we find

[P(ρk ◦ F)(xt−k)] = ψ(xt−k)〈ψ, ψ〉−1〈ψ, ρk ◦ F〉

= ψ(xt−k)︸ ︷︷ ︸
∈Rm×L

〈ψ, ψ〉−1︸ ︷︷ ︸
∈RL×L

∫
X

ψ(φ(X))T︸ ︷︷ ︸
∈RL×m

ρk(F(X))︸ ︷︷ ︸
∈Y⊂Rm

dµ(X)

︸ ︷︷ ︸
∈RL

=: ψ(xt−k)hk ∈ Rm

(1.42)

with vector-valued coefficients

hk = 〈ψ, ψ〉−1
∫

X
ψ(φ(X))Tρk(F(X))dµ(X). (1.43)

In the absence of information of µ, the integral in hk is generally not accessible,
either. In Chapter 3, we will discuss how it can be approximated.

The term ρt+1(X0) in Eq. (1.41) depends on the full state X0 itself and is often
called noise, because one does not have explicit access to it and can often only treat
it as a stochastic influence. It is generally non-accessible so that we have not yet
reached a closed formulation of the dynamics of xt, i.e., one which only depends on
xt but not on Xt. Approximating the noise term generally provides a challenge. As
the authors of [LTLA21] put it, ”identifying the [...] noise model is often from ed-
ucated guesses supported by domain-specific knowledge”. The degree of difficulty
typically depends on properties of F, as is discussed in [LC17, HEVEDB10, KDG15].
Often, ρt+1(X0) is replaced by a stochastic noise term εt+1 ∈ Y (as we will do
from here onwards), especially by a zero-mean Gaussian random variable as, e.g.,
in [LL21, LBL16].

The last row of Eq. (1.41) is called the Mori–Zwanzig equation. Taking as projection
P the orthogonal projection onto basis functions in ψ, we can reformulate it as

xt+1 =
t

∑
k=0

ψ(xt−k)hk + εt+1. (1.44)

Through the Mori–Zwanzig formalism, we have now derived a closed form of the
dynamics of the observation xt. As we can see in Eq. (1.44), future states depend on
memory terms. MZ therefore formalises how we can replace the missing informa-
tion about the full state by memory terms of the observations, similarly to what is
suggested by Takens’ Theorem and its variants, but derive a more concrete model
formulation.

Strength of the influence of memory terms

So far we have seen how through MZ we obtain the structure of the dynamics of
the observable but we have not yet discussed the amount of influence that memory
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terms have on the dynamics compared to the optimal prediction term. More gener-
ally, we should ask the question how the influences of the individual memory terms
differ from each other. As we will see now, the answer to this question is intimately
connected to the richness and relevance of information contained in the observable
φ.

Case 1: Knowledge of φ(X) is enough to evaluate φ ◦ F(X) If φ(Xt) suffices to
evaluate (φ ◦ F)(Xt), this simply means that [P(φ ◦ F)](Xt) = (φ ◦ F)(Xt). Thus, for
the complement projection it holds that Q(φ ◦ F) = (Id − P)(φ ◦ F) ≡ 0. This in
turn yields for the Mori–Zwanzig equation that all terms involving k ≥ 1 vanish,
including ρt+1(X0), since they contain QKφ = Q(φ ◦ F) = (Id− P)(φ ◦ F). We are
then left with

xt+1 = φ(F(Xt)) (1.45)

which we assumed to be a function depending on xt.

Example 1.1. Let

φ(Xt) = (Xt)1 +(Xt)2, F(Xt) = (− (Xt)1 + (Xt)2

2
,− (Xt)1 + (Xt)2

2
)T, X0 = (1, 1)T.

(1.46)
Then F(Xt) = (−φ(Xt)

2 ,−φ(Xt)
2 )T so that xt+1 = φ(F(Xt)) = −xt. Let us choose as

basis functions for the orthogonal projection simply ψ(x) = x.
Of course, this example is trivial, but for completion, let us compute [P(φ ◦

F)(xt)] as in Eq. (1.42): since the full dynamics oscillate between the states (1, 1)T

and −(1, 1)T, µ simply is given by

µ((1, 1)T) = µ(−(1, 1)T) = 0.5. (1.47)

Observe that

φ((1, 1)T) = ψ(φ((1, 1)T)) = 2, φ(−(1, 1)T) = ψ(φ(−(1, 1)T)) = −2. (1.48)

Thus, with ψ(x) = x,

〈ψ, φ ◦ F〉 =
∫

X
ψ(φ(X))Tφ(F(X))dµ(X)

= 0.5 · ψ(φ((1, 1)T))T · φ(−(1, 1)T) + 0.5 · ψ(φ(−(1, 1)T))T · φ((1, 1)T)

= 0.5 · 2 · (−2) + 0.5 · (−2) · 2 = −4.

(1.49)

Analogously, it can be shown that 〈ψ, ψ〉 = 1
4 . Therefore,

[P(φ ◦ F)](xt) = ψ(xt)〈ψ, ψ〉−1〈ψ, φ ◦ F〉 = −xt. (1.50)
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This should not come as a big surprise. It simply formalizes that in case our
observation already contains all necessary information to describe its evolution, we
do not require memory terms.

In this example, the relation between observable and full state are such that
knowing the state of the observable directly gives us the full state, making this ex-
ample especially simple. This does not even have to be the case in order to describe
the dynamics of the observable without memory, as the following example shows.

Example 1.2. Consider dynamics given by F and as observable simply φ(X) ≡ 0.
Then if the image of the projection operator P contains 0, we find that [P(φ ◦ F)] =
φ ◦ F ≡ 0. Thus, all memory terms vanish (since Q(φ ◦ F) = 0) and it can easily be
checked that h0 = 0 so that correctly the Mori–Zwanzig equation reads xt+1 = 0.
Apparently, we cannot reconstruct the full state from the observable but still do
not need memory. The point of this example, together with the previous one, is to
show that the observable must contain the relevant information for its own evolution
in order to not impose the need for memory terms. In this example, one does not
require any information about the full state since the observable maps any state to
0.

In Chapter 4, we will consider a similar example of much higher complexity.
However, the two examples considered here are rather extreme cases and chosen in
order to build intuition. In most scenarios of given dynamics F and observable φ,
the MZ equation does not simplify so easily, including the following example.

Case 2: Knowledge of xt is not enough to evaluate φ ◦ F(Xt)

Example 1.3. Consider the setting

F(Xt) = λXt, λ ∈ [0, 1), φ(X) =
1

10
b10Xc, X0 = 1. (1.51)

These dynamics describe a simple exponential decay while the observation simply
rounds down the system state to the next-lowest multiple of 0.1. From φ(X) alone
we cannot say whether X is close to a multiple of 0.1 and thus will enter the next
”box” in the next time step. Essentially, this example is analogous to the one given
at the beginning of this chapter. It then holds that [P(φ ◦ F)](Xt) 6= (φ ◦ F)(Xt) so
that the terms ρk do not vanish, regardless of the choice of the projection. Then the
memory terms do play a role in the dynamics. As can be observed, if Q(φ ◦ F) has a
large norm, i.e., if typically the best approximation in Hφ for a function φ ◦ F ∈ G is
far away from it, then the influence of the memory terms is big, too. This also holds
for the noise term ρt+1(X0). Although the noise term might seem like only a minor
addition to the dynamics described by the sum in the MZ equation, if Q is large
then this term actually dominates. Intuitively speaking, if φ provides us with little
information about the state of the full dynamics, we can only model its evolution as
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stochastic. However, if Q is small then (QK)k should decay fast with increasing k,
so that only the first few memory terms truly impact the dynamics.

Summary

This analysis should clarify two things:

1. We can approximate the dynamics of an observable by using transformations
of memory terms of it.

2. The memory depth that is required for a good approximation of the observed
dynamics depends on the observable and the dynamics.

However, it must be stressed that the memory is introduced here in a different
way than in Takens’ Theorem: through delay embedding, we construct dynamics
that (typically) are topologically equivalent to the full dynamics if sufficiently many
memory terms of the observation are used. In MZ, we have performed two es-
sential steps. The first step was to split up the Koopman operator and arrive at
the Mori–Zwanzig equation, i.e., the last row of Eq. (1.41). There already, memory
terms of x play a role. But we have merely derived an alternative way to phrase
the action of the Koopman operator. After all, we apply an operator – Kt+1 – to
a function – φ – and apply this to a state X0. To illustrate this: we could write
F(Xt) = (Kt+1 ◦ F)(X0) with the Koopman operator now defined as applicable to
functions mapping from X to X. Would the dynamics now have memory since X0

occurs? No, we simply have rewritten the memoryless dynamics of F with an oper-
ator that encapsulates its evolution across t time steps, making it dependent on X0.
In the MZ equation, since the noise term is not accessible we cannot gain a closed
formulation of the dynamics of xt. Therefore, a second step was needed in which
we approximated the MZ equation and obtained Eq. (1.44). This equation now does
describe closed dynamics with memory – but they are only an approximation of the
true evolution of xt. Observe also how the two perspectives complement each other
and their downsides: Takens gives us that with a finite amount of memory we can
construct topologically equivalent dynamics but do not know their structure. MZ
yields that, requiring infinite memory, we can specify the structure of the dynamics.

Building on this observation, in practice, the infinite memory depth quickly be-
comes inapplicable because one would arrive at a large, thus computationally in-
feasible and usually non-interpretable, representation. Moreover, in every time step
one would have to compute a new coefficient. For this reason, one typically seeks
to truncate terms of the dynamics starting at a suitably chosen memory depth p and
obtain

xt+1 =
p−1

∑
k=0

ψ(xt−k)hk + εt+1. (1.52)
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This formulation is called nonlinear autoregressive model. Future terms of x depend
on a fixed number p of memory terms with fixed coefficients h0, . . . , hp−1. It will
play a prominent role in the remainder of this thesis.

1.2.2 Extensions and Technical Details of Mori–Zwanzig

We have now discussed and analysed the main steps of the Mori–Zwanzig formal-
ism. For the topics that will be considered later in this thesis, it will be helpful to
consider several special cases and reformulations, as we will do now. Now follow
several rather technical extensions and modifications of MZ, which can mostly be
found in [WKS21], whose results will be deployed later on.

Stochastic systems

Similarly to when we investigated Takens’ Theorem, in case the dynamics underlie
stochastic influences, in MZ it is sufficient to make several adjustments to the objects
involved to use the same argumentation as in the non-stochastic case.

Let us consider stochastic dynamics

Xt+1 = F(Xt, ωt) (1.53)

where the ωt are drawn randomly – we assume independent and identically dis-
tributed – from Σ according to a law µΣ. F is now defined as F : X× Σ → X. In
this case we attempt to predict the expected evolution of φ. For this, we define the
Koopman operator for stochastic systems as

(K ◦ g)(X) = EµΣ [g(F(X, ω))]. (1.54)

Both the sets G andHφ and the projection P are unchanged. Now the last step in
(1.41) has to be modified to

[PKρk](xt−k) = ψ(xt−k)〈ψ, ψ〉−1
∫

Σ

∫
X

ψ(φ(X))Tρk(F(X, ω))dµ(X)dµΣ(ω). (1.55)

Observe that through simple modifications to the definition of F as mapping from
X× Σ to X we can quite naturally obtain the same structure of the observed dy-
namics as in Eq. (1.44). For the computation of the coefficients hk in Eq. (1.43) the
expectation with respect to µΣ had to be added.

Dynamics of other observables

Although most of the literature on MZ is concerned with deriving the dynamics
for values of an observation function φ which one assumes to be able to access, the
formalism, in fact, leads to more general results. Note that two different observables
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play a role in MZ: firstly, φ, which is the observation of the system that we see.
Secondly, we derived the Mori–Zwanzig equation by applying both sides of the
Dyson formula to φ. But we could as well apply the Dyson formula to a different
observation function η : X → Y. The ensuing equation then answers the question:
if φ(Xt), φ(Xt−1), . . . are given, how do we compute η(Xt+1)?

Indeed, we can quite straightforwardly perform the same steps as in Eq. (1.41)
and arrive at

η(Xt+1) =
t

∑
k=0

[P((QK)kη ◦ F)](xt−k) + (QK)t+1η(X0)

=
t

∑
k=0

ψ(xt−k)hk(η) + (QK)t+1η(X0)

(1.56)

with hk(η) := 〈ψ, ψ〉−1〈ψ, (QK)kη ◦ F〉.

Reformulation of the observed dynamics to matrix-vector product form

In Chapter 2, we will investigate in detail how the dynamics in Eq. (1.44), or rather
the truncated dynamics in Eq. (1.52), can be estimated from data. There we will
use techniques that estimate systems which come in the form of coefficient-matrix
times vector, instead of coefficient-vector times matrix as is the case in Eq. (1.44). For
this reason, let us reformulate the dynamics: selecting scalar-valued basis functions
ψ̃1, . . . , ψ̃K ∈ Hφ and denoting ψ̃ = [ψ̃1, . . . , ψ̃K]

T : X → RK, we define dynamics
given by

xt+1 =
t

∑
k=0

Hkψ̃(xt−k) + εt+1, (1.57)

with Hk ∈ Rm×K.
The difference between the two formulations for the dynamics is the follow-

ing: in Eq. (1.44) the dynamics are expressed with different basis functions and the
same coefficients across all coordinates (one chooses L m-dimensional basis func-
tions and finds L-dimensional coefficients). In Eq. (1.57), scalar-valued basis func-
tions ψ̃1, . . . , ψ̃L are used for each coordinate while the coefficients for all coordinates
can be different, given by the different rows of the Hk (one chooses K 1-dimensional
basis functions and finds (m× K)-dimensional coefficients). An illustration is given
in Figure 1.6.

Of course, one might, and should, ask whether Eq. (1.57) is still consistent with
the Mori–Zwanzig formalism. In fact, it can be directly derived through MZ by
choosing the basis functions ψ in a suitable way depending on ψ̃. Then Eq. (1.57) is
equivalent to Eq. (1.44). For the backward direction, one can define the matrices Hk

suitably to have the desired effect of the scalar-valued hk. In [WKS21] Appendix A2,
a technical proof for these results is given. Note that this does not mean that both



42 1.2. The Mori–Zwanzig Formalism

Figure 1.6: Illustration of different formulations for the dynamics derived from the
MZ equation. Top: form of Eq. (1.44) with matrix-valued basis functions and vector-
valued coefficients. Bottom: form of Eq. (1.57) with matrix-valued coefficients and
vector-valued basis-functions.

model formulations are always equivalent. One can merely always choose ψ and
hk in dependence of ψ̃ and Hk, respectively vice versa, in a way that makes the
dynamics equivalent.

Ensuing Research Questions

Takens and MZ formalize and prove that generally memory terms are required to
formulate the dynamics of an observable. However, in the future it would be de-
sirable if research could generate answers to the following questions: (1) Can gen-
eralizations of Takens’ Theorem be proved so that for more settings, i.e., type of
dynamics, state space and observable, similar statements can be readily made? (2)
Can the Takens and MZ perspectives be incorporated into a unified theory? Poten-
tially this could help to develop a structure for the observed dynamics (as in MZ)
that at the same time preserves topological properties (as in Takens’ Theorem).



CHAPTER 2

Numerical Methods to Model a
Dynamical System from Data

In the previous chapter we have analysed under which conditions we can formulate
the dynamics of an observable of a dynamical system (Takens) and investigated
the structure of these dynamics (Mori–Zwanzig). We can view this as a forward
direction, i.e., as defining a dynamical system. Now we will consider the backward
direction of learning several characteristics of the dynamics from data. For this aim,
we will discuss several approaches to this learning process in detail. Many of these
approaches are not necessarily inspired by memory but are intimately connected to
approaches which take the need for memory terms into account.

The aim of the learning process – what exactly is learned from the data – can have
very different faces. A predominant goal is to acquire the ability to make predictions
of future states of the system. Another typical goal is to find an understanding of
the dynamics, e.g., which parts of it influence each other, what happens in the long-
term or which characteristics are preserved over time. For both goals there exists
an abundance of approaches which are mostly based on constructing a model of
the dynamics, meaning that one approximates a system function F of a dynamical
system by a function, the model,W . Typically, one chooses the structure ofW first,
i.e., the class of functions it comes from, and then determines parameters θ which
exactly specifyW , calledWθ. The choice of the function class is the main difference
between the different modelling approaches.

The demands set on such a model differ depending on the overall goal the mod-
eller has. In many cases, one is interested in plain accuracy of the model, meaning
that the distance betweenWθ(·) and F(·) should be as small as possible, often ignor-
ing any costs by building more and more precise but also more and more complex
models.

In order to generate understanding of the true dynamics, one often seeks a model
that is interpretable. This means that from the model and its parameters the modeller
can learn something about the relations between the different variables which play a
role in the system. Sometimes the values of the parameters directly send a message,
e.g. by suggesting a strong relationship between variables of the model. Often times,
however, one has to work harder, e.g., using specific algorithms to extract certain
dominant characteristics of the model and, thereby, the dynamics, assuming that
the model describes them well.

Another desired property of a model is scalability. This means that the computa-
tional cost of a model does not increase too quickly given an increase of fixed values
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such as the dimension of the system or the number of data points used to construct
the model. Scalability is important to make a model applicable even to complex and
high-dimensional problems.

Depending on the desired benefit that the model should yield in practice in a
specific real-world problem, different model forms are suitable. There are mod-
els which generate tremendous accuracy but are non-interpretable and scale badly.
Others yield immediate interpretation but might not represent the dynamics accu-
rately. Some are simple and scale well but give a mediocre prediction accuracy and
admit only a superficial level of interpretation. Typically, one needs to specify the
desired balance between these demands and then select a model.

As we have seen in Chapter 1, if we can only make certain observations from
the system from which we cannot directly reconstruct the true system state, the
dynamics which push the state of the observable forward in time require memory
terms. When constructing a model, one has to take that into account and make it
dependent on memory terms, too. Thus, in this setting one is focused on finding a
model, including its parameters, which fulfils xt+1 ≈ Wθ(xt, . . . , xt−p+1).

One could write thousands of pages on different perspectives, approaches and
techniques of the modelling of dynamical systems. The aim of this chapter and the
next one is to illustrate methods which identify memory-exhibiting dynamics which
fulfil the different demands mentioned. Further, we will see how they are inspired
from Takens’ Theorem or the Mori–Zwanzig formalism. In the following chapter,
we will formally establish relations between some of these methods, introduce a
novel method and compare their applicability on examples.

This chapter is divided into three parts: at first, an overview of different state-of-
the-art models and related research is presented in the context of memory. Secondly,
we will discuss methods which directly emerge from theory on Takens’ Theorem to
model dynamics of observables and understand the relation between them. Third,
we will in detail analyse methods which are based on projecting the dynamics into
the span of suitably chosen basis functions to discover the best approximation of
the dynamics in this space. The latter resemble simple regression problems but can
be leveraged in effective ways to gain understanding of dynamics. As we will see,
these methods are closely related to methods inspired from the Mori–Zwanzig for-
malism which will help us to connect theoretic to practical approaches on modelling
dynamical systems with memory.

Note that xt = f (xt−1, . . . , xt−p) is not truly a dynamical system because in-
put - the tuple (xt−1, . . . , xt−p) - and output - the state xt - come from different sets
but we can simply augment the system to [xt, . . . , xt−p+1] = f̂ (xt−1, . . . , xt−p) =

[ f (xt−1, . . . , xt−p), xt−1, . . . , xt−p+1]. We will therefore still use the term ”dynamics”
or ”dynamical system” if multiple past states are mapped to a future one.
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2.1 A Collection of Methods to Model Dynamics with

Memory

Firstly, a brief summary of research on numerical methods for the investigation of
memory-exhibiting dynamics is given, simply to illustrate the broad width of pos-
sible research questions.

For example, in [KHN19, KDB+18, LKN20], the mean first passage times of barrier
crossing in Physical processes is estimated using the assumption of a specific formu-
lation of time-continuous memory-exhibiting dynamics, the Generalized Langevin
Equation (GLE). A time-approximation of the GLE is sought in [HHSN07] with the
aim of quantifying the memory effects in an example of molecular dynamics. The
effects of memory terms are further estimated for biological systems in [GHS08]
and in the context of climate change in [MGO10]. Attempts to model complex sys-
tems with memory have been conducted with different approaches, such as Mem-
ory Markov State Models to find the master equation of discretized dynamics of a
protein network [CMCW+20]. Methods for modelling memory-exhibiting dynam-
ics by separating between different types of behaviour, so-called regimes, are in-
troduced in [Hor10, PGSH18]. Moreover, discrete-space modelling methods with
memory have been developed such as Cellular Automata [ASM03] or discrete au-
toregressive models [DHH03].

One could extend this list endlessly with specific, seemingly unconnected exam-
ples. In contrast, we will now start discussing and comparing three different specific
classes of models which are dominant in the field of estimating memory-exhibiting
dynamics in discrete time and continuous state space.

2.1.1 Neural Networks

Many real-world problems nowadays are tackled with so-called neural networks
(NNs). Although they are not meant to be an integral part of this thesis, it is worth
getting acquainted with them since they denote state-of-the-art techniques directed
towards many problems. It can be said already, that considering the trade-off be-
tween accuracy, interpretability and scalability, most versions of them can be placed
far in the accuracy-corner with shortcomings in the other two categories. Knowing
this should help us gain perspective on strengths and weaknesses of methods that
are of more interest to this thesis. In this light, the next few pages can be seen as an
argumentation as to why neural networks do not automatically solve all problems.

Neural networks are inspired by the human brain, which functions by sending
signals from neuron to neuron to process information and enable action of the body.
After first attempts at utilizing such processes mathematically in the 1940s [MP43],
NNs have seen first incremental advances towards the 1990s [Ros58, Fuk80, Hop82]
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and over the last 25 years have surged to being a crucial class of methods to solve
problems of different types.

In contrast to the popular perception of NNs as emulating brain processes, from
a mathematical point of view they can simply be perceived as a concatenation of
functions. An input x is pushed through a concatenation of affine transformations
and scalar-valued nonlinear activation functions until it is mapped to an output y.
Their general form is as follows:

h(0) := x

for k = 1, . . . , L : h(k) := fk−1(W(k−1)h(k−1) + b(k−1))

y := fL(W(L)h(L) + b(L))

(2.1)

Layers h(1), . . . , h(L) are called hidden layers, while h(0) = x is called the input layer.
The entries of the layers are called neurons. The matrices W(k−1) are called weights
and the vectors b(k−1) are called biases. θ denotes all W(k) and b(k) in the network.
The fk : R→ R denote the activation functions, which we define as being applied to
each coordinate individually. In the end, g(x, θ) denotes the output of the network
with input x and parameters θ.

The number of hidden layers L and the dimensions of every layer have to be
specified in the beginning. Moreover, the activation functions have to be chosen.
The weights and biases however, are estimated on the basis of a data set with which
the network is trained. Figure 2.1 sketches the typical structure of an NN.

Figure 2.1: Top: structure of a neural network. An input vector x is mapped to the
entries of a hidden layer h(0) by affine transformations (W, b), followed by nonlinear
activation functions f . Arbitrarily many hidden layers can follow, again generated
by the application of affine transformation and activation function to the previous
layer. In the end, an output vector y is constructed. Bottom: three typical activation
functions. Green: sigmoid. Purple: tanh. Orange: ReLU.

In contrast to many more classical techniques in modelling, the form of a neu-
ral network does usually not use any a priori knowledge about the problem, al-
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though research in this direction exists in the field of Physics-inspired NNs (see, e.g.,
[HSN20]). It rather relies on a brute-force approach of using a sufficient number of
neurons and layers to capture the connection between input to output accurately.

A very helpful result which connects NNs with more classical techniques is the
Universal Approximation Theorem [Cyb89]. It states that any smooth function can
be arbitrarily well approximated with an NN with only one hidden layer. However,
in theory, the required number of neurons in the hidden layer can become infeasibly
high. It actually seems advisable to use deep networks, i.e., with many layers, in-
stead of shallow networks with few but large layers [LTR17,RT17]. Still, the theorem
asserts that, while many complex problems exist in which NNs are superior, even
if the problem is intrinsically simple, there still exists an NN which is suitable for
it. In other words, NNs are not restricted to complex problems but the technique in
general is highly applicable.

That said, one has to determine its parameters, i.e., the weights and biases. This
is typically done by minimization of an objective function L which measures the
distance between network output with given input and parameters and the desired
output. The minimization is typically done by one of various forms of the gradient
descent method [Rud16], yielding the need to compute the gradient of L. Although
often an analytical formulation of the gradient can be derived, the search for the
global minimum of L poses many difficulties, since it is usually not convex but
rather has many local minima, yielding the typical problems one faces in parameter
estimation. Further, the number of parameters is high for many networks – from
multiple thousands to several billions in commercially used NNs – making the min-
imization process very cost-intensive. Plus, in order to determine parameters in a
robust way, one usually requires a large amount of data.

Neural networks for dynamics

NNs can be used for different tasks, such as image or speech recognition, e.g.,
[KSH12], translation, e.g., [Sta20] or complex Physics problems such as Schrödinger
equations [HSN20] or protein folding [SEJ+20], to only name a few. These problems
are all concerned with dynamics. To solve such problems, there are special classes
of NNs.

Recurrent neural networks The most fundamental class is called Recurrent neural
networks (RNNs) and was introduced first as early as the mid-1980s in [RHW86,
Jor97]. An RNN constructs a sequence of outputs yt−1, yt, . . . , depending on inputs
xt−1, xt, . . . at each time step. To generate sequential dependencies, there exists a
hidden state ht at each time step which depends on the input and the hidden state
from the previous time step.

It can, however, be analytically shown that due to their structure typical RNNs
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are generally unable to install long-term dependencies, i.e., between a future state
and one that lies far in the past. The reason for that is that the gradient of the
loss function in dependence on past states can in- or decrease exponentially quickly
which is known as the exploding/vanishing gradient problem. This diminishes the use-
fulness of this generic form of RNNs in many practical applications, e.g., translation,
where the meaning of a word can depend on the context given by another word
much earlier. In the context of dynamical systems with memory, this means that
RNNs will generally not be a good choice to model those systems.

We will now consider a special class of RNNs which better captures the influence
of states from the past.

Long short-term memory networks Long short-term memory networks (LSTMs)
were introduced in 1997 in [HS97] but more thoroughly put into practice only in
the 2010s. An up-to-date review of the method including applications can be found
in [VHMN20].

LSTMs circumvent the exploding/vanishing gradient problem by storing infor-
mation in a hidden layer, called memory cell, for multiple time steps. Multiple parts
of the LSTMs, all networks on their own, decide whether new input is included
into the memory cell and if previous information is discarded. From the new input
and the information in the memory cell, an output is constructed. An example is,
again, text translation. For a new word, the input, the LSTM has to decide whether
the word is important for the translation and if it makes the previous information
obsolete, e.g., by creating a new context. On this basis it is decided which transla-
tion of the word best captures its meaning at the current position. A study of the
application of LSTMs on a more theoretic example can be found in [MWE18].

As can analytically by shown, by storing information, LSTMs can be trained to
uncover long-term dependencies between states of a dynamical system. This makes
them a powerful class of methods in various applications.

Although the quality of many variants of neural networks is assessed on the
basis of practical real-world examples, there exists literature on benchmarking of
different NNs on well-known problems. For example, a combination of an LSTM
and a so-called Convolutional NN (see [LBBH98]) is used in [TZ19] to predict states
of the Lorenz-63 system introduced in Chapter 1 with strong accuracy.

An NN variant that is competing with LSTMs is theso-called transformer [VSP+17]
which, unlike LSTMs, does not take into account the time-order of inputs. At least
on the basis of many experiments (see, e.g., [ZBI+19]), the transformer seems to be
an often superior alternative in terms of accuracy and scalability. It does have weak-
nesses, such as that the maximal memory depth has to be fixed (unlike in LSTMs).
For definitive statements on comparisons to LSTMs, however, it seems that more
theoretical research is required.
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Summary of neural networks

In summary, neural networks have been used to solve problems where many rather
classical methods failed, generating a high level of accuracy in countless examples.
Their architecture allows for a modelling of complex phenomena, using a very high
number of parameters, harnessed in defining affine transformations and nonlinear
activation functions so that the relevant features are extracted from an input. This
structure can successfully be utilized for the modelling of dynamical systems. How-
ever, their architecture yields significant drawbacks: firstly, the parameter estima-
tion requires large, sometimes unrealistic amounts of data. Secondly, given their
high number of parameters, they are hardly interpretable, therefore functioning as
black box models, so that they are often of little help in understanding dominant re-
lations in a system. For these reasons, despite the quick progress NNs have made
over the last years, the need for different techniques to model dynamical systems
exists.

2.2 Methods Based on Takens’ Theorem

In the literature on memory-based data-driven methods, often times Takens’ Theo-
rem is used as a justification for the use of memory by the mere mention of the name.
Its implications in practice, however, do not far exceed the existence of memory-
exhibiting dynamics of the observable. As illustrated in this section, the smoothness
of the delay embedding does allow for modelling of dynamics. One does not, how-
ever, obtain an analyzable or interpretable operator. In this section we will briefly
review three different numerical methods which are based on the idea of Takens’
Theorem in order to point out which numerical methods it induces but also its short-
comings in practice.

Recall that according to Takens, there exists a diffeomorphism between states X
in the original state space and points of the form x̂ := Φφ,F,p(X). Therefore, the
embedded dynamics f̂ = Φφ,F,p ◦ F ◦ Φ−1

φ,F,p are diffeomorphic, too. A diffeomor-
phism is smooth by definition, yielding that neighbourhoods map to neighbour-
hoods. More precisely, using that any differentiable function on a compact space is
Lipschitz continuous, we find

‖ f̂ (x̂)− f̂ (x̂′)‖2 ≤ u f̂ ‖x̂− x̂′‖2 for a u f̂ < ∞. (2.2)

If u f̂ is small, this helps to learn about both future states of observed dynamics and
detect causalities between different variables of a system, as we will see next.
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2.2.1 Nearest Neighbours Regression

For a dynamical system on a compact space X with dynamics given by a smooth
function F : X→ X and a smooth observable φ : X→ Rm, a simple method to pre-
dict future states of the form φ(Xt) is the nearest neighbours regression method, see
e.g., [CS18, ZLY+13, AQC13]. It is not to be confused with the k-nearest neighbours
method introduced in Chapter 1, nearest neighbour classification [ANT19] or graph-
related nearest neighbour methods although the general approach, also suggested
by the title of the method, is similar.

The intuition behind nearest neighbours prediction is as follows: in order to pre-
dict what the next observed state, xt+1, should be, we consider states in the delay-
embedded trajectory that are similar to x̂t, denoted by x̂t1 , . . . , x̂tL (in ascending or-
der by their distance to x̂t). Since the delay-embedded dynamics f̂ are assumed to
be smooth, xt+1 = f̂1(x̂t) should also be close to f̂1(x̂t1), . . . , f̂1(x̂tL). Formally, if f̂1

is Lipschitz continuous with upper Lipschitz constant u f̂1
, it holds

‖x̂t − x̂ti‖2 ≤ ε⇒ ‖xt+1 − xti+1‖2 = ‖ f̂1(xt)− f̂1(x̂ti)‖2 ≤ u f̂1
ε. (2.3)

Based on this, the method works as follows: choose a number L ∈ N of nearest
neighbours. Then given a trajectory x1, . . . , xt, consider x̂p, . . . , x̂t and determine the
L nearest neighbours of x̂t, i.e. the points closest to x̂t according to a given distance
metric, e.g., the Euclidean norm. Then approximate xt+1 by

x̃t+1 =
1
L

L

∑
i=1

xti+1. (2.4)

The approximation of the future observed state is thus constructed as an average
of subsequent states of points similar to x̂t, using the smoothness of the delay-
embedded dynamics. Alternatively to using L nearest neighbours one could define
a threshold c and use all points – denoted by Lt – whose distance to x̂t is not bigger
than c or even make the number of nearest neighbours itself depend on x̂t. For this
reason, from now on we denote this number by Lt. Lt ≡ L is then a special case.

Takens-based nearest neighbours regression [MLC17, OAH20, SM90] then func-
tions in the following way: Let x̂t1 , . . . , x̂tLt

be the Lt nearest neighbours of x̂t accord-
ing to a given metric. Then the Takens-based nearest neighbours prediction of xt+1

is given by

x̃t+1 =
1
Lt

Lt

∑
i=1

xti+1. (2.5)

An illustration is given in Figure 2.2. For the prediction error we can derive the
following result:

Proposition 2.1. LetM be a smooth, compact, d-dimensional manifold. Let x̂Lt be
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the Ltth nearest neighbour of x̂t. Then for a generic set of pairs (F, φ) ∈ D1(M)×
C1(M, R), it holds that the prediction error of Takens-based nearest neighbours
regression with memory depth p > 2d and the Euclidean distance as metric is
bounded by

‖xt+1 − x̃t+1‖2 ≤ u f̂1
‖x̂t − x̂tLt

‖2 (2.6)

for a constant u f̂1
that depends on F, φ,M and the memory depth p.

Proof. The assumptions in the proposition are exactly the ones from Takens’ The-
orem (see Theorem 1.5). They imply the generic existence of a smooth map f̂ as
defined in Eq. (1.3). Over a compact finite-dimensional manifold, f̂ is Lipschitz
continuous. Clearly, this also holds for its first m coordinates, f̂1, having Lipschitz
constant u f̂1

. u f̂1
clearly depends on F, φ and p since f̂ is constructed with them, and

further on its domainM. It then holds,

‖xt+1 − x̃t+1‖2 ≤ ‖xt+1 −
1
Lt

Lt

∑
i=1

xti+1‖2

≤ 1
Lt

Lt

∑
i=1
‖xt+1 − xti+1‖2

=
1
Lt

Lt

∑
i=1
‖ f̂1(x̂t)− f̂1(x̂ti)‖2

≤ u f̂1

1
Lt

Lt

∑
i=1
‖x̂t − x̂ti‖2

≤ u f̂1
‖x̂t − x̂tLt

‖2.

(2.7)

Proposition 2.1 establishes a direct connection from demanded properties of dy-
namics, observable, memory and state space to an error-bound of the Takens-based
nearest neighbours regression. We have used the assumptions from the original the-
orem of Takens. Of course, one could replace these with any suitable variant of the
theorem presented in Chapter 1 and derive an analogous result for the method.

Observe that the Lipschitz constant of the delay-coordinate map Φ, and subse-
quently the embedded dynamics f̂ , determines the quality of the Takens-based near-
est neighbours regression. The Lipschitz constant of Φ directly regards the preser-
vation of the geometry of the state space under Φ. As explained in Chapter 1, an
embedding guarantees the preservation of topological properties. We can see here
that for practical purposes, the geometric ones are of highest relevance, too.

Note that there exist variants, e.g., in [MLC17], in which the neighbours x̂ti are
given a weighting wt,i according to their distance to x̂t. The weighting coefficients
are bigger for close distances, e.g., given by wt,i = exp(‖x̂t − x̂ti‖2) and the predic-
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Figure 2.2: Illustration of the Takens-based nearest neighbours regression. Neigh-
bours of x̂t are identified in the delay embedding of X. One considers the time-
propagated counterparts of these neighbours and identifies the pre-images of the
delay-coordinate map in X. One then computes their average to obtain a prediction
of xt+1.

tion scheme reads

x̃t+1 =

Lt
∑

i=1
wt,ixti+1

L
∑

i=1
wt,i

, (2.8)

resulting in the computation of x̂t+1 as a weighted average of other points.

2.2.2 Kernel Regression

A prediction method which is a close variant to nearest neighbours regression is
Kernel regression, also called Kernel smoothing [HTF09,Gho18]. In order to predict
subsequent states of the observable, it does not truncate the sum in Eq. (2.8) after
the L nearest neighbours of a point, but takes all points in the data into account.
In order to control the influence of different points one selects a Kernel function
K : Rmp ×Rmp → R – non-negative and symmetric – which measures closeness
between two points in the image of the delay-coordinate map. The motivation is
that in nearest neighbours regression, by truncating the sum after L neighbours,
one might lose potentially vital influence of the truncated terms. Instead, in Kernel
regression, one includes all terms but accounts for the different distances to the point
of interest by the Kernel as a weighting function. As is argued in [GGH21], a smooth
function f̂1 : Rmp → Rm can be written as

f̂1(x̂) =
∫

Rmp
δ(x̂− x̂′) f̂1(x̂′)dµ(x̂′), (2.9)
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assuming the states x̂ are distributed by µ. δ denotes the Dirac-delta distribution.
One can then try to approximate this integral by replacing the Dirac-delta distribu-
tion by a Kernel function and the integral by a normalized sum. Thus, one makes a
prediction using

xt+1 =
∫

Rmp
δ(x̂t − x̂) f̂1(x̂)dµ(x̂) ≈

∫
Rmp

K(x̂t, x̂) f̂1(x̂)dµ(x̂) ≈

t−1
∑

i=1
K(x̂t, x̂i) f̂1(x̂i)

t
∑

i=1
K(x̂t, x̂i)

.

(2.10)
Typically, one chooses a family of Kernels and parametrises them using a so-called
bandwidth parameter h. For example, let

K̃(x̂) = exp(‖x̂‖2) and set K(x̂, x̂′) = K̃
(

x̂− x̂′

h

)
= exp

(
‖x̂− x̂′‖2

h

)
. (2.11)

h should be selected so that Kernel regression generates the optimal prediction ac-
curacy. A higher value for h makes the weights of all points in the data more similar
regardless of their distance to x̂t while a small value for h makes the prediction
strongly dependent on the closest points. The latter is advantageous if data points
are sufficiently close to each other but if this is not the case, predictions might be too
sensitive to the positions of the data points (as is the problem with the truncation in
nearest neighbours regression).

Kernel regression can be used not only in the context of the prediction of ob-
servations of a dynamical system, but more generally to approximate the value of
a function g evaluated at x if information of the form g(x1), . . . , g(xN) is available.
A typical approach to obtain an optimal value for h is by cross-validation, i.e., by
tuning h on the basis of the data at hand. For more information, see [SSMZK11].

Observe that by choosing the Kernel function as

K(z, z′) =

0 if ‖x̂− x̂′‖2 > c

K̃(‖x̂− x̂′‖2) otherwise,
(2.12)

for a suitably chosen K̃, Kernel regression is equivalent to weighted nearest neigh-
bours regression in which one truncates all points further away from z than c.

An advantage of both nearest neighbours and Kernel regression is that, despite
being conceptually simple, they can produce a low prediction error, if the underly-
ing dynamics are sufficiently smooth and one possesses sufficiently much data. Fur-
ther, they demand almost no prior intuition about the dynamics, since one needs to
specify only the number of nearest neighbours, respectively the distance threshold
and a Kernel, including the bandwidth parameter, for the weighting coefficients.
Good choices for these parameters can be estimated by fitting them to data at hand.
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Theoretical results on the accuracy of Kernel regression in the limit of memory depth
and data can be found in [Gia21].

However, these two methods do not come without significant drawbacks. Firstly,
one can hardly deduce interpretations about the dynamics from the application of
the method, since there exists no closed model formulation. Rather, the data are
directly used to make predictions. We will see later that this forces these methods
to usually require many data points to function well when other methods survive
with much less data points. Moreover, the methods can only interpolate since every
prediction must lie between the data points used to construct it. This makes the
method unsuitable for cases in which the data at hand come from one part of the
state space but would admit identification of dominant structures that hold up in
other parts of the state space. While on this basis other methods might be able to
predict the dynamics across the whole state space, the two methods discussed here
will always predict into the domain that the data came from.

2.2.3 Convergent Cross Mapping

We have now seen two related methods to make predictions of observables of a dy-
namical system, directly supported by the neighbourhoods-map-to-neighbourhoods
property of delay-coordinate maps. As discussed, the degree to which this prop-
erty is true determines the quality of nearest neighbours and Kernel regression. In
[SMY+12], a method is presented which directly quantifies this quality with the aim
of detecting strength of causation between different variables of a system.

The argumentation of the authors of [SMY+12] is as follows: let a smooth dy-
namical system F work on states of the form (X, Y) in a d-dimensional manifoldM.
Let two observables be given by

φX(X, Y) = X, φY(X, Y) = Y. (2.13)

For a memory depth p > 2d, we consider their delay-coordinate maps. Now, If
X and Y influence each other – the authors of [SMY+12] say they are dynamically
coupled –, e.g., as parts of the same dynamical system, then similar to the nearest
neighbours regression, neighbourhoods in the image of ΦφX should map to neigh-
bourhoods in the image of ΦφY and vice versa. If X and Y are not coupled but
are variables of separate dynamical systems, the delay-coordinate maps generally
are not diffeomorphisms so that this does not hold. The method Convergent Cross
Mapping (CCM) introduced in [SMY+12] performs a quantitative test whether this
property holds to see if two variables are coupled. Since we do not further use it in
this thesis, we refer to [SMY+12] for its precise formulation.

If there is directional coupling, i.e., X forces Y but not vice versa, then the states
in ΦφX(M) encode no information about Y. The map ΦX is therefore no diffeomor-
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phism while ΦY is one. This generally yields that the prediction of Yt on the basis of
nearest neighbours on ΦφX(M) is not precise while the prediction of Xt on the basis
of nearest neighbours on ΦφY(M) is. Potentially contrary to intuition, according to
CCM, if X can be predicted from Y this indicates that X causes Y, not vice versa.

With this, CCM can serve as a method to detect which variables influence which.
For example, in [SMY+12] it is tested whether presence of fish of different species
in an ecosystem impact each other strongly (the authors find that rather sea surface
temperature is the main driver of populations). Further examples can be found in
[SBK20, PKJC18, BZF+18].

However, it must be said that when deducing interpretations from results of the
method, one has to be cautious. If one variable is too strongly forced by the other,
so that it is close to being a direct copy, then by the construction of the method the
directionality of the coupling will not be uncovered. More details can be found in
[YDGS15] where the authors acknowledge this.

Instead of detecting causalities between different variables of a system, one could
alternatively try to find memory effects in the dynamics of one variable. Note that,
as we have learned, since the influence of other variables is stored in the memory
of one variable, one should be able to detect dependencies between memory terms.
In the future, it could be a worthwhile endeavour to conduct research in this di-
rection and test whether one can determine an optimal memory depth for nearest
neighbours- or Kernel regression or the methods which are to follow in this chapter.

2.2.4 Summary of the Takens-based Methods

In this section, we have seen three data-driven methods which are based on Tak-
ens’ Theorem. The first two, nearest neighbours and Kernel regression provide a
non-parametric way to predict states of observables at future time steps. The lat-
ter, Convergent Cross Mapping, aims at identifying causation between the variables
of a dynamical system. All methods use the property of smooth diffeomorphisms
that neighbourhoods map to neighbourhoods. They exploit this property by consid-
ering delay-embeddings of observables which, firstly, represent information worth
the one from the original system states and, secondly, generate smooth mappings
both along the delay-embedded states and to the original state space. This allows to
approximate unknown states, such as xt+1 or Yt, on the basis of known ones, such
as neighbours x̂ti together with xti+1 (in regression) or Yti (in CCM).

In the next section, we will discuss in detail a branch of modelling techniques
which is based on finding a suitable projection space from where estimation of the
dynamics becomes simpler. They denote parametric models for which data is re-
quired to estimate their parameters rather than functioning directly on the data as
in the Takens-based methods. As we will see, they complement the previously in-
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troduced methods nicely and strongly contribute to the range of techniques of dy-
namical systems. We will in fact focus on them in the following two chapters.

2.3 Koopman-based Methods

In this section we will introduce several related methods, which are based on trans-
forming states into a different, typically higher-dimensional, space from which one
can determine a linear mapping to the state one time step in the future. Again, we
consider dynamics F : X → X and a uniformly bounded observable φ : X → Rm.
We will first introduce the general concept, building on the so-called Koopman opera-
tor, and then discuss several methods. Afterwards, in the following chapter, we will
define a novel extension and prove relations between them.

Remark. Please note that for the next few pages we assume that φ is scalar-valued,
i.e., m = 1, since this makes the derivation of results notationally easier. Afterwards
it is shown how to extend them to multidimensional functions in a natural way.

2.3.1 The Koopman Operator

Recall the Koopman operator, defined in Definition 1.12 as K : L∞(X) → L∞(X),
depending on the dynamics F, with

K ◦ φ = φ ◦ F ∀φ ∈ L∞(X). (2.14)

The Koopman operator was introduced in 1931 by B. O. Koopman in [Koo31]
(its name was, of course, only later attached to Koopman). Although seeming like
only a formalization of the propagation of an observable through time, it provides a
crucial shift of perspective: it does not map a value of the observable φ to its value at
a future time step, but the function φ to the function φ ◦ F. This has many practical
implications, as we will learn from the following considerations.

It can be quickly observed that the Koopman operator is linear,

K ◦ (a1φ1 + a2φ2) = a1φ1 ◦ F + a2φ2 ◦ F = a1K ◦ φ1 + a2K ◦ φ2. (2.15)

Further, the operators Kk, k = 0, . . . , form a semi-group, since

Kk ◦ Kl ◦ φ = Kk ◦ φ ◦ Fl = φ ◦ Fl ◦ Fk = φ ◦ Fl+k = Kl+k ◦ φ. (2.16)

While the Koopman operator is commonly defined for scalar-valued functions, we
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define for a multidimensional function ψ = [ψ1, . . . , ψN]
T : X→ RN,

K ◦ ψ =


K ◦ ψ1

...
K ◦ ψN

 . (2.17)

Note that the Koopman operator is linear regardless of any nonlinearity of the dy-
namics. However, even if the dynamics are finite-dimensional, the Koopman oper-
ator is not. By adapting the perspective of the Koopman operator, one replaces a
finite-dimensional but potentially nonlinear system by an infinite-dimensional but
linear system. The decisive element of the applicability of the Koopman perspective
thus is whether one can find an accurate finite-dimensional representation of it.

Propagation of observables through matrix representation of the Koopman oper-
ator

Let us make the usually unrealistic but for now convenient assumption that there
exists a Koopman-invariant subspace with scalar-valued basis functions ψ1, . . . , ψN :
X → Rm, corresponding to which we denote ψ = [ψ1, . . . , ψN]

T, meaning that if
φ ∈ span{ψ1, . . . , ψN} then also K ◦ φ ∈ span{ψ1, . . . , ψN}. Therefore, there exist
coefficients bij ∈ R so that

K ◦ ψi =
N

∑
j=1

bijψj. (2.18)

Writing B = (bij) ∈ RN×N, this implies
K ◦ ψ1

...
K ◦ ψN

 = Bψ,


Kk ◦ ψ1

...
Kk ◦ ψN

 = Bkψ. (2.19)

We see that for finite-dimensional invariant spaces, the action of the Koopman op-
erator can be reduced to a matrix multiplication. Let us assume for now that our
observable φ can be constructed using the basis provided by these functions, i.e.,
there are coefficients a = [a1, . . . , aN]

T ∈ RN so that

φ =
N

∑
i=1

aiψi = aTψ. (2.20)

Then Eq. (2.18) yields

K ◦ φ = K ◦
N

∑
i=1

aiψi =
N

∑
i=1

aiK ◦ ψi =
N

∑
i=1

ai

N

∑
j=1

bijψj = aTBψ. (2.21)
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This observation should give hope that, even if one does not have a Koopman-
invariant subspace at hand, one can at least approximate K by a matrix. The task
is to make a good choice of basis functions ψ1, . . . , ψN for which, on the one hand,
the action of K in their span can be approximated by a matrix, B, and, on the other
hand, the desired observable φ can be constructed from these basis functions with
coefficients in the vector a. Figure 2.3 illustrates the propagation of φ by transform-
ing it into span{ψ1, . . . , ψN}, transporting these forward in time by the matrix B and
recomposing φ by multiplication with a.

Remark. For multidimensional observables φ : X → Rm, we can follow the same
argumentation using basis functions ψi : X → Rm with ψ = [ψ1, . . . , ψN] : X →
Rm×N. Modifying Eq. (2.20) with a ∈ RN to

φ = (aTψT)T (2.22)

and assuming Eq. (2.18), we obtain in Eq. (2.19)

[Kk ◦ ψ1, . . . ,Kk ◦ ψN]
T = BkψT ∈ RN×m (2.23)

and in Eq. (2.21)
K ◦ φ = (aTBψT)T. (2.24)

Figure 2.3: Illustration of propagation of observables with the Koopman operator in
a Koopman-invariant subspace span{ψ1, . . . , ψN}.

Eigenvalues of the Koopman operator

Since the Koopman operator is linear, it has eigenvalues λi and corresponding eigen-
functions ϕi, i = 1, 2, . . . which span L∞(X). Representing an observable in this
basis as

φ =
∞

∑
i=1

ai ϕi, ai ∈ R, (2.25)
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we find that we can easily obtain an alternative representation for the propagation
of observables as

φ ◦ F = K ◦ φ =
∞

∑
i=1

aiK ◦ ϕi =
∞

∑
i=1

aiλi ϕi,

φ ◦ Fk = Kk ◦ φ =
∞

∑
i=1

aiλ
k
i ϕi.

(2.26)

If φ can be represented by only N of these eigenfunctions, the propagation of ob-
servables becomes even simpler compared to Eq. (2.21):

Let φ =
N

∑
i=1

ai ϕi ⇒ Kk ◦ φ =
N

∑
i=1

aiλ
k
i ϕi. (2.27)

For this, one does not even have to perform a matrix multiplication, since merely
multiplication with scalars, the eigenvalues λi, is sufficient.

In this section, we will discuss several different methods which all aim at finding
a suitable finite-dimensional approximation of the action of K onto functions. This
is done either by estimating the matrix B, or directly estimating aTB or by detect-
ing eigenvalues and eigenfunctions of K to utilize the observation from Eq. (2.27).
Some of these methods are directly suitable without memory – note that the above
considerations did not involve memory either – but some do require memory terms.
Although some of these methods come from very distinct fields of research, we will
see that they are intimately connected and can in fact be seen as special cases of the
same problem. We will also see how the Mori–Zwanzig formalism directly inspires
some of the methods.

Remark. On the previous pages we defined the basis functions ψi as maps from
X to Rm. When introducing practical methods in the next few pages, we will de-
fine them as coming from the set Hφ from Eq. (1.33). This is no contradiction, since
functions in Hφ also map from X to Rm but with the property that information of
φ(X) = x is enough to evaluate them. For this reason, we can also apply them to
values of the observable φ and write ψi(x), as we did when introducing the Mori–
Zwanzig formalism. Then this simply means ψi(φ(X)). For the practical methods
introduced in this chapter and the next, one can therefore perceive these basis func-
tions as mapping from Rm to Rm without danger and in Chapters 3 and 4, we will
use them as such. For some theoretical results that follow the introduction of the
methods, we will utilize that the functions actually map from X to Rm.

2.3.2 Dynamic Mode Decomposition (DMD)

Dynamic Mode Decomposition (DMD) is a method that was developed in the con-
text of fluid dynamics in 2010 [Sch10]. It aims at identifying a linear mapping which
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propagates states of an observable without further basis functions. The observable
can also be the identity so that the method is applicable – and actually originates
from – outside of the context of the propagation of observables. Please note that in
this section we will always assume to be given data of the observable φ evaluated at
states X, giving φ(X) =: x ∈ Rm, even when a method, such as DMD, is often used
on the full states. In this case simply assume φ(X) = X.

Given data

X =
[

x0 . . . xT−1

]
∈ Rm×T, X′ =

[
x1 . . . xT

]
∈ Rm×T, (2.28)

one tries to find a matrix KDMD ∈ Rm×m which fulfils

KDMD = arg min
K∈Rm×m

‖X′ −KX‖F, (2.29)

where ‖ · ‖F is the Frobenius norm. For linear dynamics driven by a function F(X) =

AX with a matrix A, one finds that A is a minimizer of Eq. (2.29) with a loss of 0. For
nonlinear dynamics, a linear mapping will usually not suffice, so that there remains
an error between X′ and KX. Nevertheless, the minimizer is given by

KDMD = X′X+ (2.30)

where X+ is the Moore-Penrose pseudo-inverse of X [Pen55] (it can directly be com-
puted using the Singular Value Decomposition of X). If m, rank(X) ≤ T, the matrix
XXT is invertible and the then unique solution can equivalently be written as

KDMD = X′XT(XXT)−1 (2.31)

by constructing the so-called normal equation.
One then defines dynamics

x̃t+1 = KDMDxt. (2.32)

At this point, DMD is not more than a multidimensional linear regression for
sequential data points. The eventual aim of DMD, however, goes beyond that. It
was mentioned that DMD stems from analysis of fluid dynamics. In this field, the
dimension d of the states can be very high and in fact exceed the number of avail-
able data points T. As a result, the minimizer of the problem in Eq. (2.29) is not
unique. One can, however, determine T pairs of eigenvalues λi and eigenvectors vi

of all minimizers with the help of specifically designed algorithms. This helps to,
firstly, uncover dominant structures of the dynamics through interpretation of the
eigenvectors and, secondly, allows to compute the evolution of the dynamics start-
ing at initial states which can be written in the basis of the available eigenvectors.
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Let v1, . . . , vm be right eigenvectors of KDMD and let

x1 =
m

∑
i=1

aivi, then Kk
DMDx1 =

m

∑
i=1

aiλ
k
i vi. (2.33)

Note that through a linear modelling of dynamics, there are only three possi-
bilities for the long-term behaviour of predictions. Let x1 be given as in Eq. (2.33)
with ai 6= 0 for all i = 1, . . . , m. Then we must distinguish the following three cases
whose results are directly implied by Eq. (2.33).

1. There exists an eigenvalue λi with |Re(λi)| > 1 with ai 6= 0. Then lim
k→∞

Kk
DMDx1 =

±∞.

2. |Re(λi)| < 1 for all ai 6= 0. Then lim
k→∞

Kk
DMDx1 = 0.

3. |Re(λi)| ≤ 1 for all i and equal to 1 for λi1 , . . . , λil . Depending on the complex
part of the eigenvalues, this prediction then either converges to a fixed point
or oscillates.

These observations imply that for nonlinear dynamics a linear model is typically ill-
suited for long-term predictions. Still, for short-term predictions, they can provide
a sufficiently accurate approximation.

Let us turn back to algorithmic aspects of prediction with linear models: Even if
we can find a unique minimizer in Eq. (2.29), prediction as in Eq. (2.32) yields the
multiplication with a large matrix, which can be computationally time-consuming.
The representation of a state through eigenvectors is hence valuable even if T ≥ m
because the computation becomes much simpler through Eq. (2.33).

For the determination of eigenpairs of minimizers of Eq. (2.29), there exist several
algorithms. Although these algorithms represent a vital addition to the method and
in the case T < m are even its focal point, we will not use them in the continuation
of this thesis and therefore refer to [WKR14, TRL+14, KNK+18].

2.3.3 Extended Dynamic Mode Decomposition (EDMD)

In the previous subsection we have seen that through DMD one can find eigenpairs
of the best linear approximation of the dynamics F. As previously explained, the
Koopman operator provides a way to transform a nonlinear dynamical system into
an infinite-dimensional linear one. It would be tempting to expect the existence of
a method similar to DMD which discovers not eigenvalues and -vectors of a linear
approximation of the dynamics but instead eigenvalues and -functions of the Koop-
man operator. This would be valuable to be able to employ Eq. (2.26) and propagate
observables using these eigenpairs. There exists an extension of DMD, simply called
Extended Dynamic Mode Decomposition (EDMD) [WKR14], which aims at this.
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Let us remember the function space Hφ from Eq. (1.33) where here Y = Rm.
For EDMD one chooses a set of N scalar-valued basis functions ψ1, . . . , ψN ∈ Hφ,
denoted by ψ = [ψ1, . . . , ψN]

T, and replaces the matrices X and X′ by

ψ(X) =
[
ψ(x0) . . . ψ(xT−1)

]
∈ RN×T,

ψ(X′) =


(K ◦ ψ1)(x0) . . . (K ◦ ψ1)(xT−1)

...
...

(K ◦ ψN)(x0) . . . (K ◦ ψN)(xT−1)

 =
[
ψ(x1) . . . ψ(xT)

]
∈ RN×T.

(2.34)

Note that this should remind us of Eq. (2.19) where we could connect both these
matrices by multiplication with a matrix B under the assumption that the basis func-
tions form a Koopman-invariant subspace.

In fact, in EDMD, one strives to solve

KEDMD = arg min
K∈RN×N

‖ψ(X′)−Kψ(X)‖F. (2.35)

In the rare case that these basis functions actually form a Koopman–invariant sub-
space, the loss function in Eq. (2.35) can be set to 0 due to the relation in Eq. (2.19).
Generally, KEDMD is the matrix approximation to the action of the Koopman operator
on span{ψ1, . . . , ψN}. Analogously to DMD, EDMD goes beyond that. As the fol-
lowing proposition shows, with the left eigenvectors of KEDMD we can approximate
eigenfunctions of the Koopman operator:

Proposition 2.2. Let KEDMDψ(·) = K ◦ ψ where K is the Koopman operator asso-
ciated with F. Let u be a left eigenvector of KEDMD with eigenvalue λ. Then the
function uTψ is an eigenfunction of K with the eigenvalue λ.

Proof. As demonstrated in [KKS16], it holds,

K ◦ (uTψ) = uT(K ◦ ψ) = uTKEDMDψ = λuTψ. (2.36)

Note that in the proposition we assumed exactness of the linear mapping KEDMD

to K in the space spanned by the basis functions ψ1, . . . , ψN. Normally, this will be
an approximation so that the functions uTψ are only approximations of Koopman
eigenfunctions, too.

Still, utilizing the following observation, the possibility to approximate some
Koopman eigenfunctions leads to further opportunities:

Lemma 2.3. Let ϕ1, . . . , ϕn be eigenfunctions of K to the eigenvalues λ1, . . . , λn.
Then the function ϕ̃ := ∏n

i=1 ϕi is an eigenfunction of K to the eigenvalue ∏n
i=1 λi.
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Proof. As done in [KKS16], we can assert,

K ◦ ϕ̃ = K ◦
n

∏
i=1

ϕi =
n

∏
i=1

ϕi ◦ F =
n

∏
i=1
K ◦ ϕi =

n

∏
i=1

λi ϕi = ϕ̃
n

∏
i=1

λi. (2.37)

These two results imply that from the eigenvectors of the matrix KEDMD we
can construct a toolbox of eigenfunctions of K through the products of the ensu-
ing eigenfunctions. This helps to model the action of the Koopman operator in the
economic format using the representation of observables in the basis of these eigen-
functions as in Eq. (2.27). Using ϕi = uT

i ψ and K ◦ ϕi = λiuT
i ψ, Eq. (2.27) gives

Kk ◦ φ =
N

∑
i=1

λk
i aiuT

i ψ. (2.38)

In this light, let us reconsider the non-extended DMD method: although here
being motivated as a method to find eigenvectors of the best linear approximation
to a dynamical system, we can simply view it as EDMD with d = m and the d-
dimensional identity function as the vector of basis functions ψ. We then find linear
eigenfunctions of the form ϕ(X) = uTX. Using Lemma 2.3, this is especially helpful
since from this we can find polynomial eigenfunctions in all orders, allowing us to
build a rich toolbox of usable eigenfunctions. The question now might arise: why
then even use nonlinear basis functions since they do not easily allow construction
of simple lower-order functions, e.g., linear ones. The answer is that the quality of
approximation of the true eigenfunctions of the Koopman operator hinges on the
quality of the approximation of its action on span{ψ1, . . . , ψN} with KEDMD. For a
linear basis and a nonlinear system, this approximation is prone to be poor. There-
fore, one is tasked with selecting a suitable set of basis functions so that the loss
function in Eq. (2.35) is small. Then the approximations of Koopman eigenfunctions
can be good.

For the coefficients a = [a1, . . . , aN]
T that are used in order to project the basis

functions onto the observable of interest φ : X→ Rm, one should additionally solve
the following optimization problem,

aEDMD = arg min
a∈Rm×N

‖X− aψ(X)‖F. (2.39)

Note that contrary to the motivation of the Koopman framework previously, for
m > 1, aEDMD is a matrix and not a vector. The reason is that in EDMD, the basis
functions are N × 1-dimensional while the observable φ is m-dimensional. Still, a
few reformulations can align EDMD precisely with the Koopman framework.
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2.3.4 Sparse Identification of Nonlinear Dynamics (SINDy)

In EDMD, we tried to map the value of a vector-valued basis function ψ evalu-
ated at a point xt to its subsequent value ψ(xt+1) through a matrix KEDMD. From
there, ψ(xt+1) is mapped to xt+1 by multiplication with a coefficient matrix aEDMD.
The main point of EDMD was to extract eigenpairs of the Koopman operator from
the matrix KEDMD, offering a way to construct observables whose evolution can be
computed in a simple way. If one is rather interested in predicting a specific ob-
servable – again, this can include the original state – then this two-step procedure
might not be optimal since one requires an accurate mapping from ψ to K ◦ ψ and
then one from K ◦ ψ to K ◦ φ. The set of those mappings is thus only a subset
of the set of all mappings from ψ to K ◦ φ while the benefit of this self-constraint
is the identification of eigenpairs of K. A similar method which determines a di-
rect linear mapping from ψ to K ◦ φ is Sparse Identification of Nonlinear Dynamics
(SINDy) [BPK16, BLK16, KKB18]. It works in the following way:

Given data from an m-dimensional observable and N scalar-valued basis func-
tions,

ψ(X) =
[
ψ(x0) . . . ψ(xT−1)

]
∈ RN×T, X′ =

[
x1 . . . xT

]
∈ Rm×T, (2.40)

one solves
ASINDy = arg min

A∈Rm×N
‖X′ − Aψ(X)‖F + c‖A‖1. (2.41)

The first term represents a nonlinear dynamic least squares regression since coef-
ficients are found which map ψ(xt) to xt+1 in an optimal way regarding the data,
according to the Frobenius norm. The second term denotes a sparsity constraint
since it rewards choosing matrices with few non-zero entries. Sparse models typi-
cally admit a readier interpretation of the model. c > 0 is a sparsity regularization

parameter which has to be specified. We further denote ‖A‖1 =
m
∑

i=1

N
∑

j=1
|Aij|. The

optimization problem is solved using the LASSO algorithm [Tib96].
With ASINDy determined, one can approximate the evolution of x by

x̃t+1 = ASINDyψ(x̃t). (2.42)

While in EDMD we are forced to select basis functions which give a closed linear
system between them, in SINDy we can choose any set of basis functions. By in-
cluding more functions into the basis, the loss of the optimal solution in Eq. (2.41)
cannot get bigger. In order to still obtain an economic and interpretable model, one
enforces the sparsity constraint. However, there is a danger of overfitting: the opti-
mal coefficients in the matrix ASINDy might not be unique and put emphasis on basis
functions which are only suitable in the region of the state space where the training
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data lie. For other regions, they might not be applicable and yield nonsensical fore-
casts, often diverging ones. As we will see later on, this is one of the weakest points
of SINDy.

The following results assert the sensitivity of SINDy on its basis functions and
the available data:

Theorem 2.4. Let A be the solution of Eq. (2.41) with c = 0. Let ∆X ∈ Rm×N

and let A + ∆A be the solution of the perturbed Eq. (2.41) with X′ replaced by
X′ + ∆X′ and ψ(X) replaced by ψ(X + ∆X). Define

‖X‖kΣ :=

√√√√T−1

∑
t=0
‖xt‖k

F and ‖X, X′‖kΣ :=

√√√√T−1

∑
t=0
‖xt‖k

F‖xt+1‖k
F.

Further let the following assumptions hold

(A1) There exist ψmax, ψmin > 0 with

ψmin ≤
|ψi(x)− ψi(y)|
‖x− y‖2

≤ ψmax for all i = 1, . . . , N and all x 6= y,

ψmin ≤
|ψi(x)|
‖x‖2

≤ ψmax for all i = 1, . . . , N and all x 6= 0 ∈ Rm.

(A2) ψ(X) has full row-rank.

(A3) ‖∆X‖4Σ < 1
‖(ψ(X)ψ(X)T)−1‖Fψ2

max N
.

Then it holds,

‖∆A‖F

‖A‖F
≤ ‖(ψ(X)ψ(X)T)−1‖Fψ2

maxN‖X‖4Σ

1− ‖(ψ(X)ψ(X)T)−1‖Fψ2
maxN‖∆X‖4Σ

(
ψmax(‖X′‖F‖∆X‖F + ‖∆X′‖F‖X‖F + ‖∆X′‖F‖∆X‖F)

ψmin‖X, X′‖2Σ
+

ψ2
max‖∆X‖4Σ

ψ2
min‖X‖4Σ

).

(2.43)

Proof. The proof can be found at the end of this thesis in the Appendix.

All technicalities of Theorem 2.4 aside, it shows that the maximal relative per-
turbation of the SINDy result under perturbations of the data points in X, which are
then translated to values in ψ(X), is generally large if the ratio ψmax/ψmin is large.
Therefore, one should ideally choose well-balanced basis functions, i.e., ones that
scale similarly. This makes intuitive sense: if k < N basis functions dominate in
magnitude, then ψ(X) will be close to a rank-k matrix. From standard perturba-
tion analysis (see, e.g., [GVL96]), the result of the regression problem will be more
sensitive to perturbation.
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Remark. Note that in Eq. (2.43) there occur three different metrics and we divide
‖X′‖F‖∆X‖F by ‖X, X′‖2Σ (Σ is chosen as symbol since one sums up the norms of
the columns of a matrix). The orders of magnitude are comparable, since in both
terms we take the square root across a sum of degree-4 monomials. The ratio be-
tween the two then roughly scales with the average ratio between ‖∆xt‖2 and ‖xt‖2.
Regarding the assumptions, (A1) seems to be quite strong and is not true for many
families of basis functions. However, it does hold for all monomials if restricted to
a bounded domain. Important for the proof is that we can upper- and lower-bound
the action of each ψi on a point x. If only one of the two inequalities in (A1) is ful-
filled, additional affine terms are introduced in the result but the general theme is
preserved.

We can further observe:

Proposition 2.5. Let the basis functions ψ1, . . . , ψN be linearly dependent. Then the
solution to Eq. (2.41) is not unique.

Proof. Let without loss of generality ψ1 =
N
∑

i=2
biψi and let A be the minimizer of

Eq. (2.41). Then one can subtract an arbitrary real value d from each entry in the
first column of A and for each i add bid to each value in the ith column of A and the
product with ψ(X) remains unchanged.

In Figure 2.4 is depicted a conceptual comparison of the way in which models de-
termined by DMD, EDMD and SINDy propagate observables over time. Note that
there exists recent literature on the application of SINDy on low-dimensional rep-
resentations of points. The low-dimensional representation is obtained separately
through a neural network in [FMZF21] and found simultaneously with the model
for the propagation in a single optimization problem in [CLKB19]. In Chapter 5, we
will introduce a novel method which follows a similar intuition.

Note that all methods discussed in this section so far are Markovian. Since in
Chapter 1 we concluded that generally we require memory to propagate observ-
ables over time, do they actually fit into the setting? Although not using memory, in
these three methods the hope is that not through additional (by memory) but through
transformed (by basis functions) information we can model the dynamics. We will
now discuss similar alternative methods that do use memory and later on show
that the inclusion of memory can be seen as a transformation with basis functions,
bridging the gap to the so-far introduced methods.

2.3.5 Autoregressive Moving Average Models (ARMA)

In this section, we have so far discussed multiple least squares based regression
methods which model a dynamical system without memory, regardless of whether
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Figure 2.4: Illustration of the ways in which DMD, EDMD and SINDy propagate
observables. It shows how the algorithms approximate the action of the Koopman
operator and the multiplication with the coefficient vector a shown in Figure 2.3.
Note that in this figure a is a matrix and not a vector. DMD propagates states directly
with a linear mapping KDMD. Often times, in DMD φ is the identity. EDMD seeks
a matrix KEDMD which progresses basis functions over time. From there, one can
construct observables in the span of the basis functions through multiplication with
a coefficient matrix. In SINDy, one seeks a direct mapping from the basis functions
to a desired observable at the future time step and transforms back by application
of ψ.

the system exhibits memory effects or not. Next, we will discuss a class of meth-
ods which is designed specifically for uncovering memory-exhibiting dynamics that
are predominantly linear. These are the so-called Autoregressive Moving Average
(ARMA) models, consisting of two essential subclasses, the autoregressive (AR) and
moving-average (MA) models. They read

ARMA: xt+1 = θ1xt + · · ·+ θpxt−p+1+β1εt + · · ·+ βqεt−q+1 (2.44)

AR: xt+1 = θ1xt + · · ·+ θpxt−p+1+εt+1 (2.45)

MA: xt+1 = β1εt+1 + · · ·+ βqεt−q+2 (2.46)

with θi, β ∈ Rm×m, εt ∼ N (µ, ΣTΣ), µ ∈ Rm, Σ ∈ Rm×m.
In AR models, past states influence future ones in the short term linearly accord-

ing to the θi for small i while long-term influences are characterised by the θi for
large i. Note that if µ 6= 0, we can always add the term µ to the model formulations
and define εt as zero-mean noise terms. MA models produce entirely stochastic
processes by using a fixed number q of random noise terms to construct subsequent
states.

One could easily devote a book on its own to ARMA methods and go into more
detail (as done in [BD91]). In this thesis it is explicitly chosen to explain AR models
as one class of Koopman-based data-driven modelling methods to show the rela-
tions between them and others and since their partly-deterministic structure better
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positions them in the context of dynamical systems modelling compared to MA
models, which are entirely stochastic. For more information on both AR, MA and
ARMA models, together with the relation between AR and MA models – includ-
ing the option to transform one into the other – consider, e.g., [BD91, Bil13, Neu16].
Moreover, there exist model families which are extensions of ARMA models, such as
ARIMA [Hyn18], GARCH [Bol86] or ARMAX [CVM04] models or combinations of
these. Note that all these are linear models while later on we will present nonlinear
extensions.

AR models

As a seemingly technical observation, let us record that an m-dimensional AR(p)
model can be reformulated as an mp-dimensional AR(1) model,

xt+1 = θ1xt + · · ·+ θpxt−p+1 + εt+1

⇔


xt+1

...
xt−p+2

 =


θ1 . . . θp

1 0 . . . 0
. . .

0 . . . 1 0


︸ ︷︷ ︸

=:C


xt
...

xt−p+1

+


εt+1

0
...
0



resulting in x̂t+1 = Cx̂t + ε̂t+1.

(2.47)

The matrix C is called a companion matrix. Eq. (2.47) implies that we can formulate
an AR(p) model as a memoryless linear dynamical system. Denote by v1, . . . , vpm

the right eigenvectors of C. If E[εt+1] = 0, then in expectation we find analogously
to linear models without memory,

x̂t =
pm

∑
i=1

aivi ⇒ E[x̂t+k] = Ck x̂t =
pm

∑
i=1

aiλ
k
i vi. (2.48)

In the way illustrated in Subsection 2.3.2 on DMD, from the eigenvalues of C we can
observe the expected long-term behaviour of predictions of the AR(1) model above
and thus of the AR(p) model in Eq. (2.46).

If E[εt+1] 6= 0, the evolution becomes slightly more complex. Let E[εt] = µ for
all t > 0 and let µ = ∑

pm
i=1 bivi. Then

E[x̂t+k] = Ck x̂t +
k−1

∑
j=0

Cjµ =
pm

∑
i=1

aiλ
k
i vi +

k−1

∑
j=0

pm

∑
i=1

λ
j
ibivi. (2.49)

If the terms Cjµ in the above equation decay fast, i.e., the eigenvalues of C are suffi-
ciently smaller than 1, it becomes clear that after many iterations the ensuing long-
term behaviour is in expectation dominated by the most recent noise terms and not
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by the starting value. More precisely, with l < k,

E[x̂t+k] =
l

∑
j=0

pm

∑
i=1

λ
j
ibivi + o(λl+1

1 ), (2.50)

where λ1 denotes the largest eigenvalue of C. If any eigenvalue with non-zero coef-
ficients is bigger than 1, we can see that the process will diverge in expectation.

Parameter estimation of AR models

Let us now investigate how to estimate AR models which best approximate the
dynamics behind a given time series. Let data points x0, . . . , xT be given and define

H =


xp−1 . . . xT−1

...
...

x0 . . . xT−p

 =
[

x̂p−1 . . . x̂T−1

]
∈ Rmp×T−p+1,

X′ =
[

xp . . . xT

]
∈ Rm×T−p+1.

(2.51)

H is called a Hankel matrix.
To construct an AR(p) model, we determine coefficients θ = [θ1, . . . , θp] ∈ Rm×mp

by solving
θAR = arg min

θ∈Rm×pm
‖X′ − θH‖F. (2.52)

The solution to this is
θAR = X′H+. (2.53)

If the matrix HHT is invertible, the solution can equivalently be written as

θAR = X′HT(HHT)−1. (2.54)

Clearly, the minimization problem in Eq. (2.52) seems not to take the noise terms
into account. However, if the data actually come from an AR(p) model with co-
efficients θ? = [θ?1 , . . . , θ?p] and noise terms distributed by N (0, ΣTΣ), the solution
given in Eq. (2.53) is the best linear unbiased estimator (BLUE) of the coefficients by
the Gauss-Markov-Theorem [BH05]. This means that it is the best estimator of the
true underlying coefficients θ? whose expectation is equal to θ? and that can be con-
structed using a linear combination of the data. If the noise terms have a non-zero
mean µ, one can always augment the Hankel matrix by a row of ones to estimate an
affine term as the estimate of µ.

For convergence results of the estimator θAR, please see [Lie03, Yao00]. The re-
sults therein assert that with enough data, a simple least squares estimate generally
produces a good estimate of the coefficients of an AR process.

Taking the reformulation of an AR model as a memoryless linear system into
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account, we can view the AR regression problem in an alternative way by defining

H′ =


xp . . . xT
...

...
x1 . . . xT−p+1

 =
[

x̂p . . . x̂T

]
∈ Rmp×T−p+1. (2.55)

Then the matrix
CAR = arg min

C∈Rpm×pm
‖H′ − CH‖F. (2.56)

connects columns of H and H′ in a linear way. We are thus in the same setting as in
DMD where we seek a linear mapping between points in Rm. In this case, we view
sequences of the form xt−1, . . . , xt−p ∈ Rm as points of the form [xT

t−1, . . . , xT
t−p]

T ∈
Rpm to arrive at a memoryless linear regression problem. CAR is itself a companion
matrix with the estimate θAR from Eq. (2.53) in the first m rows, as the following
theorem states.

Theorem 2.6. Let x0, . . . , xT ∈ Rm and let H and H′ be defined as before. Then
CAR from Eq. (2.56) is a companion matrix whose first m rows are given by θAR

from Eq. (2.53).

Proof. Define a matrix C ∈ Rpm×pm and denote its first m rows by θ and the remain-
ing rows by E. Denote the rows m + 1, . . . , pm of H′ by H′>m.

It trivially holds that arg min
θ∈Rpm×pm

‖H′ − CH‖F = arg min
θ∈Rpm×pm

‖H′ − CH‖2
F. The latter

can be written as

‖H′ − CH‖2
F =

T−p+1

∑
j=1

pm

∑
i=1

(H′ij − (CH)ij)
2

=
T−p+1

∑
j=1

m

∑
i=1

(H′ij − (CH)ij)
2 +

T−p+1

∑
j=1

pm

∑
i=m+1

(H′ij − (CH)ij)
2

= ‖X′ − θH‖2
F + ‖H′>m − EH‖2

F.

(2.57)

We have thus split Eq. (2.56) into two separate minimization problems. Clearly, the
first of these terms is the minimization problem from Eq. (2.53) while in the latter E
should simply copy the first pm−m entries of a column of H into a column of H′>m.
In total, we derive

CAR =



θAR

1 0 . . . 0
0 1 0 . . . 0

. . .

0 0 . . . 1 0


. (2.58)
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With Theorem 2.6, we have established an equivalence between DMD an AR
models. AR models are essentially linear memoryless models, as determined by
DMD, only in an augmented space. This yields the opportunity to exploit the DMD
algorithms used to determine eigenvalues of the companion matrix CAR in order to
simulate AR models more efficiently in the eigenvector basis.

As stated in [AM17], the eigenvalues of CAR converge to true eigenvalues of the
Koopman operator for the dynamical system in the data limit. The authors denote
DMD applied to the Hankel matrix by Hankel-DMD and derive further theoretical
results.

Note that the covariance of the noise terms can be estimated by the statistical
covariance

Σ̃ =
1

T − p + 1

T−1

∑
i=p

(xi − θARx̂i)(xi − θARx̂i)
T. (2.59)

If one does not assume that the expectation of the noise terms is 0 one should include
an affine term into the parameter estimation, i.e., add a row of ones to the Hankel
matrix. The ensuing minimization problem is then not equivalent to the DMD prob-
lem any more since we try to map [1, x̂T

t ] to [x̂T
t+1]. This is no contradiction to the

arguments made before since DMD estimates linear, not affine, models. To reestab-
lish equivalence in order to exploit the eigenvalues of the system matrix, one could
also append a row of ones to H′ and obtain a quadratic matrix again.

There are alternative methods to estimate the model coefficients, such as the
Yule-Walker method [SS11], whose solution converges to θAR in the data limit. There
also exist algorithms for the numerically efficient computation of θAR such as Burg’s
method [RKEV03] or the Levinson-Durbin method [Fra85].

The condition of parameter estimation and memory estimation

Until here, we have always assumed a fixed memory depth p. Generally, when
tasked with estimating a suitable AR model one does not know an appropriate
memory depth a priori. A bad choice can yield significant problems: if we choose
the memory depth too low, we will be unable to derive a good fit between data
points with any model coefficients. The error in Eq. (2.52) will indicate this and we
would be urged to increase the memory depth. However, as it turns out, choosing
the memory depth too high can also be problematic:

Proposition 2.7. Let x0, . . . , xT come from an AR(p) model without noise. If the
memory depth used in the optimization problem in Eq. (2.52) is bigger than p, then
its solution is not unique.

Proof. If the memory depth is given by p + k for a k > 0, then in the ensuing Han-
kel matrix H, rows will be linearly dependent, since xt+p+k depends linearly one
xt+p+k−1, . . . , xt+k, bounding the rank of H from above by p. Then analogously to
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the proof for Proposition 2.5, we can subtract an arbitrary real value y from each
entry in the first column of the coefficient matrix θ, which is multiplied with the first
row of H′, so with the terms xp+k−1, . . . , xT−1, and find suitable coefficients for the
other rows so that the product between θ and H does not change.

Let us assume the less extreme case that the data do not actually come from a
noise-free AR model and that a memory depth of p does produce a good fit. Then
with higher memory depths, while HHT might not be of rank p, its numerical rank
will be close to it, meaning that it has only p singular values which are not almost
0. As a consequence, its condition number, given by the ratio between its biggest
and smallest singular values, will be high, yielding high sensitivity to the data and
thus an ill-conditioned parameter estimation problem with many very different but
similarly good solutions. This is problematic and would require further uncertainty
quantification, e.g., in the form of a Bayesian view on the parameter estimation. For
an overview of the interplay between parameter estimation based on single opti-
mization problems and uncertainty quantification consider, e.g., [WTH+].

At this point there arises a similarity to the previously presented method SINDy.
For SINDy, we noted the danger of overfitting when using too many different basis
functions and asserted non-uniqueness of the optimal coefficient matrix in Propo-
sition 2.5. Viewing the determination of AR coefficients as SINDy without sparsity
constraint and with linear time-delayed basis functions, more precisely, ψ(X) =

[φ(X), (K−1 ◦ φ)(X), . . . , (K−p+1 ◦ φ)(X)], the same danger lures in this setting: too
large a memory depth essentially means using too many basis functions and can
yield non-unique solutions.

It is therefore desirable to estimate the minimal required memory depth for an
acceptable model accuracy. For this aim, common ways are the Akaike Information
Criterion (AIC) and the Bayesian Information Criterion (BIC) for which we refer
to [Aka74, WHR12]. Additionally, it would be advantageous if methods used to
determine the memory depth in the context of Takens’ Theorem could be leveraged
to find a suitable memory depth for AR methods. The synchronisation of these two
methods is left for future research.

The last few pages have provided an introduction of existing methods for the es-
timation of dynamical systems, especially those that focus on estimating the action
of the Koopman operator. Most of it has been a summary of previous literature. In
the next chapter, we will state novel results that show how they can easily be aug-
mented to nonlinear forms and estimated using previously introduced techniques.
Afterwards, we are prepared for a summarizing comparison and application of all
presented Koopman-based methods.
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Ensuing Research Questions

In the future, there seems to be large potential to combine the different model classes
to produce more powerful methods. This is already happening, as, e.g., in [LKB18]
where a neural network is used to determine eigenfunctions of the Koopman op-
erator, in [MFM+20, DR20] where the expensive training process of a neural net-
work is interpreted as a dynamical system and approximated through Koopman
eigenfunctions, in autoregressive neural networks [BNNB20] or in Kernel-based
EDMD [MOW15]. For this, it seems important that the respective communities are
in lively exchange.



CHAPTER 3

Extension, Connection and
Application of the Koopman Methods

In the previous chapter, we have become acquainted with different classes of nu-
merical methods which can be used to model memory-exhibiting dynamics. Spe-
cial focus was placed on the Koopman-based methods and the Koopman operator
perspective. In this chapter, we will present a novel extension to these methods, for-
mally establish connections between the Koopman-based methods and apply them
and others of the previously presented ones to two examples. While in the first two
chapters most of the results stemmed from prior research, most of the results over
the next three chapters have been derived by the author.

3.1 Sparse Identification of Nonlinear Autoregressive

Models (SINAR)

In this section, we will introduce a novel method (see also [WKS21] by the author
of this thesis and co-authors) in order to estimate nonlinear variants of AR models.
While AR models are linear models, let us analogously define a nonlinear autoregres-
sive model (NAR) by specifying basis functions ψ̂ = [ψ1, . . . , ψN]

T : Rpm → RN and
defining

xt+1 = θψ̂(xt, . . . , xt−p+1) + εt+1 = θψ̂(x̂t) + εt+1 ∈ Rm, (3.1)

where θ ∈ Rm×N. Please find more information on NAR models in [Bil13, LLC15,
LL21].

With data matrices

ψ̂(H) =
[
ψ̂(x̂p−1) . . . ψ̂(x̂T−1)

]
∈ RN×T−p+1

X′ =
[

xp . . . xT

]
∈ Rm×T−p+1

(3.2)

the typical least squares way to estimate model parameters is by solving

ANAR = arg min
A∈Rm×N

‖X′ − Aψ̂(H)‖F. (3.3)

As in SINDy, let us add a sparsity constraint to the model to obtain the dominant
basis functions - which could hint at characteristics of the dynamics - and solve

ASINAR = arg min
A∈Rm×N

‖X′ − Aψ̂(H)‖F + c‖A‖1. (3.4)

74
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Note that the minimization of Eq. (3.4) is equivalent to SINDy with memory terms
to which the basis functions are applied (more details on this relation will be shown
later on). We therefore denote the process of solving Eq. (3.4) by Sparse Identification
of Nonlinear Autoregressive Models (SINAR) [WKS21]. The name is chosen explicitly
to highlight the close connections to SINDy on the one hand and AR models on the
other hand (it must be said that there seems to exist a competitive spirit among re-
searchers in the dynamical systems field to showcase creativity with method names,
as also in SINDy, MANDy [GKES19] or VAMP [MPWN18]).

A similar method to SINAR was previously introduced in [BBP+16] in which
SINDy is applied to nonlinear transformations of the Singular Value Decomposition
(SVD) of the Hankel matrix of a scalar-valued observable φ. This procedure was
called Hankel-alternative View of Koopman (HAVOK). Note that this procedure is
in line with Theorem 1.8 about filtered delay embeddings which says that applying
a linear mapping to the delay-coordinate map of a scalar-valued observable gives
an immersion of the original dynamics under certain conditions. The case that the
linear mapping represents finding the SVD of the Hankel matrix – as in HAVOK – is
actually already referred to in the publication by Sauer et. al. in 1991 [SYC91], page
21. SINAR is a generalization of HAVOK.

Note that while the formulation of NAR models in Eq. (3.1) is very general, a
typical structure is

xt+1 = θ1ψ(xt) + · · ·+ θpψ(xt−p+1) + εt+1 ∈ Rm, (3.5)

with ψ : Rm → RN, θi ∈ Rm×N. Remember that the term ”nonlinear autoregressive
model” was previously introduced in this thesis in Section 1.2.1, Eq. (1.52). There
an NAR model emerged naturally from the Mori–Zwanzig formalism by choosing
as projection the orthogonal projection onto the span of m-dimensional basis func-
tions ψ1, . . . , ψL ∈ Hφ. It was shown later on in Section 1.2.1 how to replace these
by scalar-valued basis functions and obtain an equivalent model (Eq. (1.57)) with
the additive structure of Eq. (3.5). For this special case, SINAR can be formulated
accordingly by denoting

ψ̂(H) =


ψ(xp−1) . . . ψ(xT−1)

...
...

ψ(x0) . . . ψ(xT−p+1)

 ∈ RpN×T−p+1 and A = [θ1, . . . , θp] ∈ Rm×pL.

(3.6)
Therefore, while the MZ formalism explains how to construct dynamics of observ-
ables of a dynamical system, with SINAR we can estimate a sparse approximation
of the coefficients of the ensuing MZ equation.
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3.1.1 Relating SINAR to Mori–Zwanzig

One might notice a slight inconsistency between MZ and SINAR at this point: in
MZ, each coefficient, hk, of the NAR model Eq. (3.5) is computed separately, i.e.,
without respect to the others by calculating 〈ψ, ψ〉−1〈ψ, ρk ◦ F〉. In SINAR, all co-
efficients are computed at once. In fact, the results of the two computations are
generally not equal to each other. From this perspective, MZ merely gives the struc-
ture of the dynamics whose coefficients are then estimated with SINAR. This is ac-
knowledged in the recent publications [LL21] and [LTLA21]. In the latter an iterative
scheme to estimate the hk from data is presented. It also references [LL21] in which,
similarly to but more complex than SINAR, a NARMAX model is constructed on
the basis of a delay-embedded MZ: the authors assume invertible dynamics and use
augmented basis functions given by

ψ̂ = [ψT,K−1 ◦ψT, . . . ,K−p+1 ◦ψT]T so that ψ̂(xt) = [ψ(xt)
T, ψ(xt−1)

T, . . . , ψ(xt−p+1)
T]T

(3.7)
on which they define the orthogonal projection

(P̂g)(x) = ψ̂(x)〈ψ̂, ψ̂〉−1〈φ̂, g〉 (3.8)

to derive the Mori–Zwanzig equation Eq. (1.41). For the MZ equation, this means
that the optimal prediction term is given by

P̂(φ ◦ F)(xt−1) = ψ̂(xt−1)〈ψ̂, ψ̂〉−1〈ψ̂, φ ◦ F〉 = ψ̂(xt−1)ĥ0. (3.9)

Remembering that the basis functions ψi that compose ψ lie in Hφ, we can use that
they map from X to Rm and apply the inverse of the Koopman operator to them.

The authors of [LL21] use Wiener filters which can be seen as a generalization
of the NAR model (3.5) and line out arguments why delay-embedded MZ is a spe-
cial case of MZ. They further mention orthogonality properties between observed
and unresolved terms in delay-embedded MZ which are advantageous over those
of the traditional MZ. We will now make the relation between SINAR and delay-
embedded MZ more precise and show that the SINAR solution without sparsity
constraint converges to the first coefficient ĥ0 = 〈ψ̂, ψ̂〉−1〈ψ̂, φ ◦ F〉 of the delay-
embedded MZ equation if the system is invertible and ergodic (ergodicity denotes
a usually very desirable property of dynamics [CFS82]). Recall the reformulation
of MZ from matrix-valued basis functions and vector-valued coefficients to vector-
valued basis functions and matrix-valued coefficients from Chapter 1. We will now
formulate a theorem that establishes an equivalence between SINAR and MZ but
uses the former formulation. It can thus be directly related to the latter formulation
used in SINAR.
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Theorem 3.1. Let F : X → X, φ : X → Rm and define xt = φ(Xt−1) for all
t > 0. Let ψ1, . . . , ψL ∈ Hφ, let ψ : X → Rm×L = [ψ1, . . . , ψL] be a bounded
function and let K be the Koopman operator of ergodic and invertible dy-
namics F. Define ψ̂ = [ψ,K−1 ◦ ψ, . . . ,K−p+1 ◦ ψ] : X → Rm×pL. Let a scalar
product 〈·, ·〉 be defined as in Eq. (1.36) and ‖ · ‖2 be the Euclidean norm. Then
for a time series x0, . . . , xT, it holds that

lim
T→∞

arg min
Â∈RpL×1

1
T

T

∑
t=p
‖xt − [ψ(xt−1), . . . , ψ(xt−p)]Â‖2

2 = 〈ψ̂, ψ̂〉−1〈ψ̂, φ ◦ F〉.

(3.10)

Proof. As a preparatory step, let data x1, . . . , xT come from an ergodic system xt =

f (xt−1) ∈ X with stationary distribution µ and let ψ : X → RN×L be a bounded
function. Consider the term

1
T

T

∑
t=1
‖xt+1 − ψ(xt)A‖2

2, A ∈ RL. (3.11)

By the Birkhoff Ergodic Theorem [CFS82], it holds

lim
T→∞

1
T

T

∑
t=1
‖xt+1 − ψ(xt)A‖2

2 =
∫

X
‖ f (x)− ψ(x)A‖2

2dµ(x)

=
∫

X
( f (x)− ψ(x)A)T( f (x)− ψ(x)A)dµ(x).

(3.12)

It is well known that this is minimized across all choices for A by choosing A =

〈ψ, ψ〉−1〈ψ, f 〉 so that ψ(x)A is the orthogonal projection of f (x) onto the span of
the basis ψ.

Now, let F, φ and ψ be given as in the theorem. For a given matrix Â, the mini-
mization function on the left-hand side of Eq. (3.10) then converges to

lim
T→∞

1
T

T

∑
t=p
‖xt − [ψ(xt−1), . . . , ψ(xt−p)]Â‖2

2

= lim
T→∞

1
T

T

∑
t=p
‖φ(F(Xt−1))− ψ̂(Xt−1)Â‖2

2

=
∫

X
‖φ(F(Xt−1))− ψ̂(Xt−1)Â‖2

2dµ(X).

(3.13)

Analogously to above, this is minimized if we choose Â = 〈ψ̂, ψ̂〉−1〈ψ̂, φ ◦ F〉.

Naturally the question arises, what the influence of the terms ψ̂(xt−k) is for
k = 2, . . . , p. In [LL21], it is shown that for invertible ergodic dynamical systems
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and using the projection from Eq. (3.8) with an infinite memory depth, these terms
vanish and what remains is the same structure as in Eq. (1.44) but with favourable
orthogonality properties. It is at this point unclear what the influence of the terms
ψ̂(xt−k) is if the chosen memory depth is finite but it can be suspected that it is neg-
ligible for sufficiently high memory depth. Similar observations are also made in
[GGH21].

The relation of the left-hand side of Eq. (3.10) to the SINAR problem is directly
given by applying the straightforward reformulations detailed at the end of Chap-
ter 1. With this we have derived consistency between the data-driven method SINAR
(without sparsity constraint) and the theoretical basis of MZ.

3.2 Connection Between the Koopman-based Methods

In the previous chapter, we have seen several data-driven methods which aim to
estimate the dynamical equations for the evolution of an observable φ over time:
DMD, EDMD, SINDy, AR and NAR (with possible, so far partly mentioned, exten-
sions Hankel-DMD, Tensor-based DMD [KGPS16], Reactive SINDy [HFN19], ARX,
ARMA, GARCH, ARIMA or NARMAX [LL21]). Although neither their names sug-
gest it nor is it frequently emphasised in the majority of the literature, all of the pre-
sented methods are intimately connected and solve variants of the same problem:
one seeks a mapping between φ and φ ◦ F. Such a mapping exists and it is given by
the Koopman operator K. On the downside, K is infinite-dimensional. Therefore,
one transforms points of the form x = φ(X) into a new space by the use of basis
functions ψ and hopes that there exists a finite-dimensional linear mapping which
relates points of the form ψ(xt) to points of the form xt+1 (see Figure 3.1). This linear
mapping is chosen to be optimal with respect to the Euclidean distance of points in
the data at hand. Since all these methods are built around solving a least squares
problem, Section 2.3 could have been called Least squares based methods. However,
the name is meant to explicitly emphasise the concept of transforming into a new
space with the use of basis functions with the aim of approximating the Koopman
operator.

In its purest form, this is done in SINDy, although with an additional sparsity
constraint. As the following theorem shows, by a specific choice of the basis func-
tions, SINDy can be made equivalent to DMD, AR models and SINAR. The con-
dition on the dynamics F is that they are invertible. This is naturally the case for
diffeomorphisms as in Takens’ Theorem. Intuitively, it simply means that for each
element of the state space there is exactly one that is mapped onto it by F. In partic-
ular, this avoids two branches of the dynamics merging together so that each initial
state induces a unique trajectory (although trajectories can approach each other ar-
bitrarily closely). We formalize the relations in the following theorem.



Chapter 3. Extension, Connection and Application of the Koopman Methods 79

Figure 3.1: Illustration of general approach of the Koopman-based methods: in or-
der to approximate the typically complex direct mapping from xt to xt+1 one trans-
forms points into the space span{ψ} and determines a linear mapping to points in
the original space.

Theorem 3.2. Let F : X→ X denote invertible dynamics and let X→ Rm and
denote xt = φ(Xt). Let K be the Koopman operator associated to F. Then a
minimizer of the SINDy problem Eq. (2.41) is a minimizer of

(a) Eq. (2.29) (DMD) if ψ(X) = φ(X) and c = 0

(b) Eq. (2.52) (AR) if ψ(X) = Φφ,F,p(X), c = 0 and omitting the first p − 1
columns

(c) Eq. (3.4) (SINAR) if ψ(X) = ψ̂(Φφ,F,p(X)) and omitting the first p − 1
columns.

Proof. Firstly, while ψ was applied to observed states x in the introduction of the
methods, applying it to full states X is no contradiction by definition of the basis
functions as lying inHφ. Please refer to the remark on page 59.

(a): Eq. (2.41) with c = 0 and basis ψ(X) = φ(X) reads

arg min
A∈Rm×N

‖X′ − AX‖F

which is the problem in Eq. (2.29).
(b): With basis ψ(X) = Φφ,F,p(X), c = 0 and omitting the first p− 1 columns, the
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Name Minimization problem Model

DMD KDMD = arg min
K∈Rm×m

‖X′ −KX‖F, xt+1 = KDMDxt,

EDMD KEDMD = arg min
K∈RN×N

‖ψ(X′)−Kψ(X)‖F, ψ(xt+1) = KEDMDψ(xt),

SINDy ASINDy = arg min
A∈Rm×N

‖X′ − Aψ(X)‖F + c‖A‖1 xt+1 = ASINDyψ(xt)

AR θAR = arg min
θ∈Rm×pm

‖X′ − θH‖F, xt+1 = θARx̂t

SINAR ASINAR = arg min
A∈Rm×N

‖X′ − Aψ̂(H)‖F + c‖A‖1, xt+1 = ASINARψ̂(x̂t)

Table 3.1: Summary of the Koopman-based methods

minimization problem in Eq. (2.41) reads

arg min
A∈Rm×pm

‖
[

xp . . . xT

]
− A

[
Φφ,F,p(Xp−1) . . . Φφ,F,p(XT−1)

]
‖F

= arg min
A∈Rm×pm

‖
[

xp . . . xT

]
− A


xp−1 . . . xT−1

...
...

x0 . . . xT−p

 ‖F

which is the problem in Eq. (2.52).
(c): With basis ψ̂(X) = ψ(Φφ,F,p(X)) and omitting the first p − 1 columns, the

minimization problem in Eq. (2.41) reads

arg min
A∈Rm×N

‖
[

xp . . . xT

]
− A

[
ψ̂(Φφ,F,p(Xp−1) . . . Φφ,F,p(XT−1)

]
‖F + c‖A‖1

= arg min
A∈Rm×N

‖
[

xp . . . xT

]
− A

[
ψ̂(x̂p−1) . . . ψ̂(x̂T−1)

]
‖F + c‖A‖1

which is the problem in Eq. (3.4).

In Table 3.1 the minimization problems and ensuing forward models of the five
methods presented in this section are summarized. An illustration of the connec-
tions between the methods can be found in Figure 3.2.
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Figure 3.2: Illustration of relation between Koopman-based methods as explained
in Chapter 2.

3.3 Numerical Experiments

We will now apply several of the so far presented methods to two different dynam-
ical systems to see how they compare in different scenarios and for different pur-
poses. In each example, we will use different sets of coordinates as the observables
and investigate how the performances of the individual methods vary dependent on
the observable. Further, we will vary the memory depth for the memory-dependent
methods. The methods we will apply in the examples are Kernel regression, RNNs
and LSTMs, DMD, SINDy and AR models and SINAR.

We will compare them based on their forecasting capacity using (1) the error
between predicted and true future values and (2), for the first example, the sets of
points in the predicted long-term trajectory and the true trajectory. For the former,
we consider the average Euclidean k-step forecasting error

Ek(W) :=
1
L

L

∑
i=1
‖xti − x̃ti‖2 (3.14)

where time points t1, . . . , tL are selected for comparison and x̃ti was predicted by a
modelW with a trajectory starting at xti−k.

For the latter, we use the Hausdorff distance which measures the maximal mini-
mal distance between non-empty compact sets. It is defined in the following way:
from two trajectories X = [x0, . . . , xT] and Y = [y0, . . . , yT], we construct the delay
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embeddings with embedding dimension p as

Φp(X) =




xp−1
...

x0

 ,


xp
...

x1

 , . . .

 , Φp(Y) =




yp−1
...

y0

 ,


yp
...

y1

 , . . .

 . (3.15)

We then calculate their Hausdorff distance as

Hp(X, Y) := max( max
x̂∈Φp(X)

min
ŷ∈Φp(Y)

‖x̂− ŷ‖2, max
ŷ∈Φp(Y)

min
x̂∈Φp(X)

‖x̂− ŷ‖2). (3.16)

Comparing the images of the delay-coordinate map between two trajectories gives
additional insight into the underlying dynamics of the trajectories: consider two dif-
ferent one-dimensional trajectories which move inside the interval [−1, 1] but with
a very different distribution of visited states. If both cover the entire interval their
Hausdorff distance will be 0 although the trajectories are different. By using a de-
lay embedding, we compare whether pairs of subsequent points in both trajectories
match. If the dynamics underlying each trajectory are very different then a point x is
followed by a different point in both trajectories. Therefore, the Hausdorff distance
of the delay embeddings should uncover these differences.

3.3.1 An Extended Hénon System

We consider the Hénon system [Hé76], a two-dimensional chaotic dynamical sys-
tem. It is given by the equations

xt+1 = 1− ax2
t + yt

yt+1 = bxt,
(3.17)

This system can serve as a simple example to see how memory of one variable can
substitute missing information of other variables. Suppose we can only observe the
x-coordinate, then

xt+1 = 1− ax2
t + bxt−1. (3.18)

Since y is merely a delayed and scaled copy of x, one can straightforwardly replace
yt in the equation for xt+1. However, to make matters less trivial, let us now consider
an extended version of the Hénon system, defined by the author in [WKS21]

xt+1 = 1− ax2
t + yt

yt+1 = bxt + cyt.
(3.19)
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Then we can see,

xt+1 = 1− ax2
t + bxt−1 + cyt−1

= 1− ax2
t + bxt−1 + cbxt−2 + c2yt−2

= 1− ax2
t + bxt−1 + cbxt−2 + c2bt−3 + c3yt−3

= 1− ax2
t +

t

∑
j=1

cj−1bxt−j + ct+1y0.

(3.20)

We have therefore derived a Mori–Zwanzig-like formulation for the dynamics of x:

1− ax2
t is the Markovian term, the sum

t
∑

j=1
cj−1bxt−j contains the memory terms of

x and the term ct+1y0 is unobservable and denotes the ”noise” in the MZ equation.
For certain parameters, both the classical and the extended Hénon systems con-

verge to an attractor, which denotes a set which is invariant under the dynamics and
to which nearby trajectories must converge. We consider the extended Hénon sys-
tem with parameters a = 1.3, b = 0.3, c = 0.3. See Figure 3.3 for images of both the
classical and the extended Hénon system. Note that for c < 1, memory terms decay
exponentially quickly towards 0 with increasing memory.

We will aim to predict subsequent values of the observables given by (1) the full
system state and (2) only the x-coordinate. We will use different amounts of data
to determine parameters of the methods and compare them both in short-term pre-
diction using the average Euclidean prediction error and their ability to reconstruct
the attractor of the extended Hénon system in the long-term with the Hausdorff
distance.

Let us turn towards the specifications of the used methods to reconstruct the
dynamics of the extended Hénon system from data: for Kernel regression, we use a
Gaussian Kernel and a bandwidth h = 0.01. For SINDy, we use as basis function

ψSINDy(x) = [1, x, x2, x3, y, xy, y2, y3︸ ︷︷ ︸
in case (1)

]. (3.21)

For SINAR we use ψSINAR(x̂t−1) = [ψSINDy(xt−1), . . . , ψSINDy(xt−p)]. We omit the
sparsity constraints by setting c = 0. One must note that this choice is well suited
for the given system since it contains the right basis functions already and not many
more. As memory depths we use p = 1, . . . , 10. For the RNN, we use a hidden
state net without control input and consisting of a layer with 100 neurons, a Recti-
fied Linear Unit activation function and another layer with the number of neurons
equal to the output dimension, i.e., 2 for both coordinates and 1 for the x coordi-
nate. For the LSTM, each sub-network (the different parts of an LSTM) consists of a
layer with 100 neurons and a regression layer. For both neural networks we use an
implementation provided by Matlab.
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The results concerning the short-term forecasting are shown in Figure 3.4 and
the results regarding the long-term forecast in Figure 3.5.

Figure 3.3: Left: Hénon system with a = 1.4, b = 0.3. Right: extended Hénon system
with a = 1.3, b = 0.3, c = 0.3. Trajectories in the two-dimensional plot consist of
5000 points each.

Results

DMD and AR We can see that with information about the full system state and
for only the x-coordinate, DMD and AR models do not produce accurate predic-
tions even for only one time-step ahead (Figure 3.4, left, I–IV), since they are linear
models while the system is nonlinear to a degree that makes linear approximations
immediately imprecise. For AR models, a higher memory depth at least gives bet-
ter forecasts (see Figure 3.4, right, I–IV). Long-term predictions are very inaccurate,
too, as shown in Figure 3.5, VI and VIII. The predictions of both models naturally
converge to a fixed point since the eigenvalues of their system matrices, KDMD for
DMD and the companion matrix CAR for AR, are smaller than 1 in absolute value.

SINDy and SINAR Introducing nonlinearity with SINDy and SINAR however
yields much better accuracy. SINDy, equipped with the right basis functions is very
precise when considering the full state both in the short- and in the long-term (see
Figure 3.4, I,II and Figure 3.5, V, VI). With only the x-coordinate, however, the loss
of information of the y-coordinate makes SINDy imprecise (see Figure 3.4, III,IV
and Figure 3.5, VII, VIII). SINAR generates the best results for all settings. For little
training data, the estimated model yields predictions with a high error but with
even 50 data points, the forecasts become very precise. We can further see how
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an increase in memory depth improves the prediction accuracy for both short- and
long-term forecasts (see Figure 3.4, right, I–IV and Figure 3.5, right, V–VIII). This
is because the model coefficients can gradually approximate Eq. (3.20) increasingly
well.

Kernel regression The accuracy of Kernel regression strongly depends on the amount
of training data. This should not be surprising since its precision depends on the
closeness of points in the training data to a point from which one wants to predict
future states as shown in Section 2.2. If the attractor is filled more densely by the
training data, the accuracy should thus increase. It further constructs a reasonable
approximation of the attractor for the case φ(X) = x while seems to visit only a
small set of points for the full-state observable.

Neural networks The RNN produces good accuracy for the full system with suffi-
cient training data and manages to reconstruct the attractor well. However, similar
to SINDy, for only the x-coordinate it cannot overcome the loss of information about
the y-coordinate and the results are comparable to the one of SINDy. The LSTM,
surprisingly, produces imprecise short-term forecasts which are worse than those of
the RNN even with only the x-coordinate. It, however, manages to reconstruct the
attractors in both settings well if sufficient data is provided.
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Figure 3.4: Performance results of different methods on the extended Hénon System.
Left: 1- and 5-step forecasting error over number of training data points for both
coordinates (I and II) and x-coordinate only (III and IV). Kernel regression, AR and
SINAR with memory p = 10. Right: error over memory depth for 5000 training data
points.
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Figure 3.5: V and VII: Hausdorff distance (3.16) of attractors from long-term predic-
tion over training data (left) and dependence on memory (right; for Kernel regres-
sion, AR and SINAR). H1 for both coordinates and H2 for only the x-coordinate.
VI and VIII: predicted attractors with each method for both coordinates and x-
coordinate only (delay embedding).
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3.3.2 Simulation of a Gene Regulatory Network

Next, we will consider simulated dynamics of the concentrations of substances from
a Gene Regulatory Network (GRN). The GRN describes the following processes:
DNA from the nucleus of a cell is transcribed into messenger RNA (mRNA) which
is then translated to a protein outside of the nucleus. The expressed proteins can in-
fluence – regulate – the transcription of the DNA of other proteins so that commonly
the term GRN is used to describe the set of relations between genes of an organism.
In summary, the reactions which we consider are:

DNA trancribed to→ mRNA translated to→ Protein and mRNAi
regulates
 DNAj.

Further, typically mRNA and proteins decay over time due to control mechanisms
of the organism. We assume the concentration of DNA to stay constant since it
generally does not decay by transcription.

We assume that transcription, translation, regulation and decay occur at constant
rates. All reactions and their rates are given in Table 3.2. We assume three proteins,
A, B, and C, and use the same rate coefficients as in [HFN19], except for the ones re-
garding regulation. In contrast to the procedure in [HFN19], we assume the ensuing
dynamics of concentrations to be deterministic.

With the constant reaction rates and making convenient assumptions on the mix-
ing of the substances, we can derive the expression for the evolution of the concen-
trations by the nonlinear Ordinary Differential Equations in Eq. (3.22).
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Reactant Product Rate Description

DNAA → mRNAA 1.8 Transcription of DNAA

mRNAA → A 2.1 Translation to protein A

mRNAA → ∅ 1.3 Decay of mRNAA

A → ∅ 1.5 Decay of protein A

DNAB → mRNAB 2.2 Transcription of DNAB

mRNAB → B 2.0 Translation to protein B

mRNAB → ∅ 2.0 Decay of mRNAB

B → ∅ 2.5 Decay of protein B

DNAC → mRNAC 3.2 Transcription of DNAC

mRNAC → C 3.0 Translation to protein C

mRNAC → ∅ 2.3 Decay of mRNAC

C → ∅ 2.5 Decay of protein C

mRNAA + B → ∅ 1.0 Regulation of mRNAA by B

mRNAB + C → ∅ 2.0 Regulation of mRNAB by C

mRNAC + A → ∅ 1.0 Regulation of mRNAC by A

Table 3.2: Rate equations for the reactions we assume in the GRN.

d mRNAA

dt
= 1.8 DNAA − 1.3 mRNAA − 1.0 mRNAAB

dA
dt

= 2.1 mRNAA − 1.5 A

d mRNAB

dt
= 2.2 DNAB − 2.0 mRNAB − 2.0 mRNABC

dB
dt

= 2.0 mRNAB − 2.5 B

d mRNAC

dt
= 3.2 DNAC − 2.3 mRNAC − 1.0 mRNAC A

dC
dt

= 3.0 mRNAC − 2.5 C

d DNAA

dt
=

d DNAB

dt
=

d DNAC

dt
= 0.

(3.22)

We use various initial conditions which we design by

X0 = [ 1
DNAA

, 1
DNAB

, 1
DNAC

, ε4
mRNAA

, 0
mRNAB

, 0
mRNAC

, 0
A

, ε8
B

, 0
C
]T (3.23)

where ε4 ∼ N (2, 0.09), ε8 ∼ N (3, 0.09). With this, we start with an initial condition



90 3.3. Numerical Experiments

and perturb entries corresponding to mRNA and protein concentration by a nor-
mally distributed number. The variance of 0.09 of the relative perturbation comes
from a standard deviation of 0.3 that was used. For four different initial conditions,
the ensuing trajectories are depicted in Figure 3.6.

Figure 3.6: Evolution of concentrations of mRNA and protein concentrations for all
three proteins for four different initial conditions. Matching colors denote the same
initial conditions with straight lines denoting the protein and dashed lines denoting
the mRNA concentration.

We then investigate the accuracy of the methods used in the previous example
with varying number of trajectories used for parameter estimation while we start
with one trajectory and subsequently add further ones. The data of the trajectories
comes with a step size of 0.01 and each trajectory contains 501 time steps.

We use 20 trajectories for testing for which we make forecasts with each model
starting at different points of the testing trajectories. We then evaluate the average
Euclidean k-step forecast error for one time step and 200 time steps.

As in the example on the Hénon system, we use for Kernel regression a Gaussian
Kernel and a bandwidth h = 0.01. For SINDy, we use as basis function ψSINDy all
monomials of degree 1 and 2 and the constant 1 function. For SINAR the basis func-
tions are given by ψSINAR(x̂t−1) = [ψSINDy(xt−1)

T, . . . , ψSINDy(xt−p)T]T. Again we
omit the sparsity constraints in SINDy and SINAR by choosing c = 0. While pre-
viously the Koopman-based methods were introduced as estimating a model based
on one trajectory., they can straightforwardly be modified for multiple trajectories
X1, . . . , Xr by defining X = [X1, . . . , Xr], X′ = [X′1, . . . , X′r] and H = [H1, . . . , Hr] with
corresponding Hankel matrices H1, . . . , Hr.

We consider two different observables: (1) DNA, mRNA and protein concentra-
tion of A and (2) protein concentrations of A, B and C.
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Results

Since from neither observable we possess the full state information, it should not
be surprising that in both settings memory is decisive in improving the prediction
accuracy.

AR and SINAR We can see that AR and SINAR predictions – both with a mem-
ory of up to 4 time steps – give similarly good performances. With sufficient data,
SINAR is slightly better, especially in the 1-step forecasts due to the nonlinearity of
the system induced by the mRNA regulation. The system is, however, almost linear
as indicated by the good accuracy AR yields for the 200-step forecast error. In case
(1) with DNA, mRNA and protein A, SINAR overfits and identifies nonlinear terms
which do not contribute decisively to the dynamics. Therefore, it often diverges in
the long-term so that the 200-step forecast error in the first setting cannot be shown
(Figure 3.7, II). For the second setting SINAR requires at least 10 training trajectories
to find a non-diverging model (IV).

DMD and SINDy DMD and SINDy perform similarly well in both settings but
their performances do not match the ones of their memory-using counterparts AR
and SINAR. SINDy does not diverge, in contrast to SINAR with memory.

Kernel regression Kernel regression is not competitive with the Koopman-based
methods. The reason for that, one could suspect, is that contrary to the Hénon sys-
tem, the trajectories are not on an attractor of the system. All trajectories seem to
converge to different fixed points (see Figure 3.6) so that the set of fixed points de-
pending on the initial conditions might in fact assemble an attractor. However, at
the start of the trajectories, this attractor is not reached, meaning that all trajectories
come from the so-called transient phase of the system. Kernel regression requires
that the domain of interest is densely filled with points so that a prediction from a
point x is made on the basis of nearby points to x. In this example, the trajectories
seem not to be sufficiently close to each other. Therefore, since Kernel regression
does not learn governing equations as the Koopman-based methods do but works
with weighted averages of the training data, it is ill-suited for this example.

Neural networks RNN and LSTM do not perform well in this example. Merely
the RNN gives accuracy that is comparable to DMD and SINDy for the 1-step pre-
dictions. The accuracy of LSTM is worse than that of all methods for most amounts
of training data. However, please note that this thesis does not strongly focus on
neural networks and spending much more effort in determining the optimal net-
work structure, one could be able to generate better accuracy. The point here is to
show that neural networks do not immediately out-perform Kernel regression and
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Koopman-based methods and also suffer from lack of information if certain vari-
ables are not observed.

Influence of perturbations of the data

Given the similar performances of AR and SINAR, let us investigate what happens if
the data are perturbed by noise. To that end, we multiply each value in the training
data by a factor given by εti ∼ N (1, σ2) with different values for σ. We use 20 train-
ing trajectories for training and compare the forecasting accuracy for AR(4), SINAR
with memory 4 without sparsity constraint and Kernel regression with memory of
4. For comparison, we generate predictions of 50 time steps starting at 4 different
starting points in each of the 20 testing trajectories. We can see (Figure 3.8) that the
performances of all methods decrease with increasing noise. The AR and Kernel
regression predictions, however, do not diverge as we can see in the non-diverging
error graphs. For SINAR the predictions diverge regularly. Further, the higher the
noise level, the earlier the divergence occurs. We therefore see that since the under-
lying system is almost linear, AR models can give comparably good performance
as SINAR but are less prone to suffer from noise. This is in line with the message
deduced from Theorem 2.4: we argued that the more different the chosen basis func-
tions are in their magnitude, the less robust is the parameter estimation under per-
turbations. Note that the theorem is not directly applicable here since in SINAR
we used the constant-1-function for which assumption (A1) from the theorem only
holds for ψmin = 0 and ψmax = ∞, making the ensuing inequality ill-defined. Still,
the general message is validated here since in SINAR we used linear and quadratic
monomials of memory terms and in AR we only used linear memory terms. The
Lipschitz constant ψmax needed to bound the action of the quadratic monomials
from above is higher than for linear terms only, making parameter estimation in
SINAR less robust.



Chapter 3. Extension, Connection and Application of the Koopman Methods 93

Figure 3.7: Forecasting accuracy of different methods for the GRN. 1- and 200-step
(with step size 0.01) forecasting error over number of different trajectories in the
training. Kernel regression, AR and SINAR use memory p = 4. Right: error over
memory depth for 50 training trajectories. I and II: observed and predicted are the
concentration of DNA (constantly 1), mRNA and Protein of A. III and III: observed
and predicted are protein concentrations of A, B and C.
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Figure 3.8: Forecasting error with SINAR, AR and Kernel regression with protein
concentration of A, B and C observed and predicted. Training data (20 training tra-
jectories) was contaminated with normally distributed relative noise with standard
deviation between 0 and 0.3. We choose for the memory depth p = 4.
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3.3.3 Summary of the Experimental Results

In this experimental section, we discussed two different scenarios in which we com-
pared different dynamical modelling methods: (1) a chaotic attractor for which we
considered the short-term prediction precision and the ability to reconstruct the
shape of the attractor of the methods and (2) a non-chaotic almost linear system
with many short trajectories from different initial conditions. We further used dif-
ferent subsets of the system variables as our observables.

It should have become clear that the various methods have varying applicabil-
ity depending on the setting: memory generally needs to be incorporated if the full
state information is not available. For nonlinear systems, it generally does not suf-
fice to use linear models. However, one has to be cautious when using nonlinear
methods such as SINDy and SINAR due to the danger of overfitting and unsta-
ble models. The neural network approach with an RNN and LSTM gave mediocre
short-term predictions, possibly because they often require tremendous amounts of
training data, but in the case of the extended Hénon system, gave good long-term
predictions. Kernel regression was well-suited for the extended Hénon system since
the training trajectory densely filled the attractor but ill-suited when training trajec-
tories in the GRN example came from the transient phase of the system and were
apart from each other.

We have therefore seen structurally different methods, which in part can be di-
rectly deduced from different modelling assumptions (Kernel regression from Tak-
ens, AR and SINAR from MZ), in action on two examples which came in a classical
fashion of low-dimensional, deterministic equations. In the next chapter, we will
consider the significantly different scenario of an agent-based model, which consti-
tutes a high-dimensional, stochastic description of opinion changes in a population
of human individuals. This will help to connect the research field of these agent-
based models to the field of modelling memory-exhibiting dynamics.

Ensuing Research Questions

For further research it would be desirable if the equivalence between the Koopman-
based methods was more strongly exploited so that results on one method could
ideally be translated to other methods, letting several communities of research ben-
efit. For example, the implications of the observation of the long-term behaviour
of linear DMD models for the long-term behaviour of linear AR models were al-
ready mentioned. Additionally, Theorem 2.4, the perturbation theorem for SINDy,
could be applied to the other methods to obtain bounds for the perturbation of the
estimated coefficients under perturbation of the data.

Moreover, systematic comparisons between numerical methods could shed more
light on the question for which type of problem which method is the most suited.



CHAPTER 4

Uncovering Agent-based Dynamics
with Memory

In the previous chapter, we have been introduced to multiple conceptually differ-
ent methods for the modelling of dynamical systems and tested them on two low-
dimensional examples. In this chapter, we will bring them into the context of a
thematically very different research field: agent-based models (ABMs).

4.1 Introduction to Agent-based Models

In the field of modelling complex systems, agent-based models have seen a tremen-
dous rise in prominence over the last several decades. This is especially true for sys-
tems which human behaviour is involved in, e.g., from the social sciences. While in
problems from the natural sciences one can often formulate a set of equations based
on a physical intuition about the problem, such an intuition often does not exist
for systems outside of them. In agent-based modelling, instead of modelling rele-
vant quantities directly, one rather, in absence of a physical intuition about which
family of equations could capture the dynamics of those quantities well, models all
elements which play a role individually. These elements are then called agents and
are equipped with mathematically formulated rules which govern their behaviour.
One then tries to observe patterns that emerge, i.e., statistics of the full population
of agents. Remembering the Gene Regulatory Network example in Chapter 3, we
directly modelled the concentrations of substances by imposing implicit modelling
assumptions that lead to the formulation of an ODE. In contrast, an ABM would
model the involved particles directly and simulate their individual interactions.

ABMs are often used to model real-world processes in which human behaviour
is involved, such as in economics (see [Han17] for an overview), traffic modelling [HRR15]
including evacuation [TCP06] and archaeology [CHZ+18]. The goal typically is to
make predictions about how the behaviour of a society changes with respect to cer-
tain, naturally occurring or imposed, events. The interest usually does not lie in
investigating the resulting behavioural changes of individual persons, the so-called
microscale, but rather of the society overall, the so-called macroscale. The goal of
many ABMs is hence to model the behaviour of synthetic populations in order to
draw conclusions of the evolution of relevant statistics in the real world.

However, since ABMs demand the simulation of actions of all agents, they can
yield high computational cost. It can therefore be worthwhile to use realisations
of the ABM simply to find an equation-based model for the direct modelling of
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the evolution of the statistics over time and deploy this on the real-world problem,
e.g., as similarly done in the context of pandemic modelling in [WCDC+21]. For an
equation-based model of the macrostates, it has to be taken into account that since
the macrostates emerge from statistics of the microscale, they can also be seen as
observables in the sense of the previous three chapters. Therefore, it becomes im-
mediately advisable that in order to model their evolution one should use memory
terms. The main point of this chapter is to show that in order to model observations
of ABMs and complex phenomena in human populations, one generally requires
memory for the same reasons as introduced in Chapter 1.

4.1.1 Opinion Dynamics

A specific application area of ABMs is social dynamics. The research on social dynam-
ics is the attempt to characterize patterns of social interaction and their implications.
Of particular interest in the literature on this field has been opinion dynamics. It cov-
ers the investigation of how opinions spread across a population or how significant
sudden events on the distribution of opinions in a population are. Over the last 15
years, there has been progress in this field on a mathematical basis, as can be found
in, e.g., [CS73, Ban16, KLT07, CFL09, SLST17].

Many of these models serve to simulate events on the micro- but not the macroscale.
When considering the macroscale, of particular interest in the literature are the opin-
ion concentrations inside the population, as in opinion polls. While there exists lit-
erature on the modelling of opinions with memory on the microscale, e.g., [JSW18,
CDFB18, BCK20], literature that indeed discusses modelling ideas for these opinion
concentrations, such as in [NWWS21,WWS18,RHLD19,DBB+19], ignores the use of
memory terms, with the exception of [Ban14]. However, the arguments in [Ban14]
are of combinatorial nature and although a strong contribution to the topic, they
give no practical way to model the evolution of the opinion concentrations. Hence,
in this chapter we hope to fill this gap with some of the tools which have been in-
troduced in this thesis so far on two new ABMs for opinion spreading. Some of the
work on the first of the two ABMs in this chapter was done by the author of this
thesis in [WKS21] together with co-authors. The rest, including the entire work on
the second ABM, is previously unpublished.

4.2 Opinion Dynamics ABM I: Discrete Opinions

In the first ABM, we simulate N agents out of which each has exactly one out of
m opinions at the time which it can change over discrete time steps. Agents are
connected, we say they are neighbours, governed by a symmetric adjacency matrix
A ∈ {0, 1}N×N which stays constant over time. An agent is always neighbouring to
itself. The opinion changes happen upon a stochastic rule but will be influenced by
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the opinions of the neighbours of each agent. The higher the number of neighbours
of an agent with a certain opinion, the higher the probability that the agent adapts
this opinion.

4.2.1 The Microdynamics of ABM I

Formally, let Xt denote the vector of opinions of each agent at the tth time step. Then
Xt ∈ X = {1, . . . , m}N. Agents i and j are neighbours of each other if and only if
Aij = Aji = 1. Denote by Ni = #(j : Aij = 1) the number of neighbours of agent
i. Further let us introduce opinion change coefficients αm′m′′ ∈ [0, 1] for all pairs of
m′, m′′ ∈ {1, . . . , m}. They regulate the likelihood for an agent to switch from one
specific opinion to another. This ABM is inspired from the time-continuous ABM in
[Mis12].

Now, in each time step, the probability of an agent i with opinion Xi = m′ to
change its opinion to m′′ is given by

P[(Xt+1)i = m′′|(Xt)i = m′] = αm′m′′
#(j : Aij = 1 and (Xt)j = m′′)

Ni
for m′ 6= m′′.

(4.1)
We denote this term by Pt

i (m
′, m′′). The probability for an agent to maintain its

opinion then is
Pt

i (m
′, m′) = 1− ∑

m′′ 6=m′
Pt

i (m
′, m′′). (4.2)

The ABM can then be written in the following algorithmic form:

Algorithm 1: Agent-based opinion change model 1

1 Choose end time T, number of agents N, network adjacency matrix A,
opinion change coefficients αm′m′′ , initial opinions X0

2 for t = 0, . . . , T do
3 for i = 1, . . . , N do
4 Draw j from {j : Aij = 1} uniformly at random (Choose neighbour)
5 Draw ui ∼ U [0, 1]
6 If ui < α(Xt)i(Xt)j

: (Xt+1)i = (Xt)j (Adapt neighbour’s opinion)

7 end

8 end

In order to align the definitions and observations in Eqs. (4.1)–(4.2) with the no-
tation of the previous two chapters, we define

Xt+1 = F(Xt, ωt). (4.3)

We define the random influence ωt as follows:

ωt = [j1, . . . , jN, u1, . . . , uN], ji ∼ U{j : Aij = 1}, ui ∼ U [0, 1]. (4.4)
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We then define F by

(Xt+1)i = F(Xt, ωt)i =

(Xt)ji if ui < α(Xt)i,(Xt)ji

(Xt)i otherwise.
(4.5)

It might seem unnecessarily complex to define the random influences in this way
compared to simply letting them denote the new opinion of each agent. However,
in this case the distribution that the ωt are drawn from would change over time
since the distribution of opinions of an agent’s neighbours is subject to change in
each time step. This would contrast the way in which we introduced both Takens’
Theorem and the Mori–Zwanzig formalism in Sections 1.1.1 and 1.2.2 where the dis-
tribution of the ωt was fixed over time. With the way we defined both ωt and F here,
we make the mathematical definition of the ABM consistent with the previously de-
rived theory.

4.2.2 The Macrodynamics of ABM I

Social dynamics and opinion dynamics in particular are typically concerned with
how the concentrations of different opinions evolve over time in contrast to who ex-
actly has which opinion. We therefore define as the opinion concentrations the func-
tion

φ(X) =
1
N


#Xi = 1

...
#Xi = m

 (4.6)

whose evolution we will attempt to model. For a complete network, i.e., Aij = 1
∀i, j, the ensuing expected macrodynamics can be derived analytically and without
the need for memory terms in the limit of the number of agents. They read

E[(xt+1)m′ | xt] = (xt)m′ + ∑
m′′ 6=m′

(αm′′m′ − αm′m′′)(xt)m′′(xt)m′ for m′ = 1, . . . , m.

(4.7)
The derivation of this equation uses arguments similar to that used to construct
predator-prey or SIR infection models: if all agents are neighbouring to each other,
the opinion concentrations of all agents’ neighbours are identical so that Pt

i (m
′, m′′) ≡

Pt(m′, m′′) = αm′m′′(xt)m′′ is independent of i. In any given time step, the number of
agents with opinion equal to m′ is equal to N · (xt)m′ . Hence the expected absolute
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number of agents that change their opinion from m′ to m′′ is given by

E[#Agents changing opinion from m′ to m′′]

= ∑
i:(Xt)i=m′

Pt(m′, m′′)

= N · (xt)m′ · Pt(m′, m′′)

= N · (xt)m′ · αm′m′′ · (xt)m′′ .

(4.8)

Since this is the absolute number of agents expected to change their opinion from m′

to m′′, dividing the last term by N gives the change in xt which is αm′m′′(xt)m′′(xt)m′ .
We have to subtract the analogous term which covers the amount of agents changing
their opinion from m′′ to m′. This results in the factor (αm′′m′ − αm′m′′) in Eq. (4.7). We
see that for a complete network where all agents are neighbours of each other, the
expected evolution admits a memoryless analytical representation. The main argu-
ment is that the concentration of opinions among an agent’s neighbours is identical
for all agents, since all agents are neighbours of each other. For other networks than
a complete one, this does not have to be and, as we will see, generally is not the case.

4.2.3 Modelling the Macrodynamics for Different Networks

We now strive to model macrodynamics of this ABM under different networks. To
this end, we create r realisations of the form [X0, . . . , XT] and deduce [x0, . . . , xT]

from each. We denote the trajectories of the macrodynamics by [X1, . . . , Xr], divided
into training data [X1, . . . , Xtrain] and testing data [Xtrain+1, . . . , Xr]. We choose the
number of opinions to be m = 3.

Since the entries of each xt sum up to 1, we model only the dynamics of the first
2 entries, i.e., the concentrations of the first two opinions, as the concentrations of
the third opinion can always be deduced from those of the first two ones. In order to
model these macrodynamics, we use only the SINAR method with basis functions
given by

ψ(x̂t−1) =[(xt−1)1, (xt−1)2, (xt−1)
2
1, (xt−1)

2
2, (xt−1)1(xt−1)2︸ ︷︷ ︸

Markovian terms

,

(xt−2)1, (xt−2)2, (xt−2)
2
1, (xt−2)

2
2, (xt−2)1(xt−2)2, . . . ]︸ ︷︷ ︸

Memory terms

.
(4.9)

These are inspired from the macrodynamics for the complete network in Eq. (4.7).
Surely one could use other methods of the ones introduced in Chapters 2 and 3
but the point of this chapter is to demonstrate that memory generally improves the
modelling of the evolution of macrostates of an ABM. Since SINAR produced sound
results in Chapter 2, we use it in this chapter. We deploy SINAR both without the
sparsity constraint (c = 0) and with c = 0.05.
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For each memory depth p = 1, . . . , 10, we estimate a SINAR model with the
basis function given above. We then evaluate its accuracy in the following way: we
divide each trajectory Xi of testing data into blocks of length l ≥ p, with the jth
block given by x(j)

i = [xjl, . . . , x(j+1)l−1]. We then use the last p states as starting

values for a reconstruction with SINAR, denoted by x̃(j)
i = [x̃jl, . . . , x̃(j+1)l−1]. The

relative Euclidean error between data and this reconstruction is calculated for each
block by

E(x̂(j)
i ) =

‖x(j)
i − x̃(j)

i ‖F

‖x(j)
i ‖F

. (4.10)

Finally, we compute the mean over all E(x̂(j)
i ).

Please note that with this choice of basis functions there is no guarantee that
the predicted opinion concentrations remain non-negative and always sum up to
1. However, we will always make short-term predictions so that violation of this
property should typically be at most negligible.

As opinion change coefficients, we specifyα11 α12 α13

α21 α22 α23

α31 α32 α33

 =

 0 0.165 0.03
0.03 0 0.165

0.165 0.03 0

 . (4.11)

In each experiment, we create r = 20 realisations out of which 12 are used for train-
ing and 8 for testing and use as block length in the testing process l = 20.For this
thesis, new realisations of the ABM have been performed compared to the ones used
in [WKS21]. They admit interpretations which are consistent with the ones derived
in [WKS21].

A complete network

To begin, we use a complete network, i.e., Aij = 1 for all i, j. We choose N = 5000
and T = 300. The initial opinions are chosen so that φ(X0) = [0.45, 0.1, 0.45]T in
each realisation of the ABM.

The results are depicted in Figure 4.1. The number of agents seems to be high
enough so that macrostates of the realisations are close to the expected macrody-
namics: we can see oscillating behaviour of the opinion concentrations since agents
with opinion 1 are likely to move to opinion 2 (see α in Eq. (4.11)), from 2 to 3 and
from 3 to 1. Unsurprisingly, the inclusion of memory terms does not yield an im-
provement in accuracy, since for a complete network, the expected dynamics can
be formulated without memory. We can further observe that enforcing the spar-
sity constraint while using memory even gives an improvement, possibly because it
prevents overfitting. For the one-step prediction error we can see only a negligible
improvement with memory. It is unclear as to why there is an improvement at all.
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Comparing the estimated model with the analytically derived expected macro-
dynamics using Eq. (4.7) (see Appendix C.1 in [WKS21]), we can see that the amount
of data and number of agents used is enough to allow a very precise reconstruction
of the model coefficients: the analytic model reads

E[(xt+1)1 | xt] = 1.135(xt)1 − 0.135(xt)
2
1 − 0.27(xt)1(xt)2,

E[(xt+1)2 | xt] = 0.865(xt)2 + 0.135(xt)
2
2 + 0.27(xt)1(xt)2.

(4.12)

while the estimated one (with p = 1) reads

(xt+1)1 = 1.1353(xt)1 − 0.1351(xt)
2
1 − 0.2709(xt)1(xt)2 ,

(xt+1)2 = 0.8655(xt)2 + 0.1344(xt)
2
2 + 0.2699(xt)1(xt)2 ,

(4.13)

Figure 4.1: Results for the complete network. Top left: microstates of one realisation
of ABM I over time. Each column denotes the individual opinions of all agents
at a given time step. Top right: macrodynamics corresponding to this realisation.
Bottom left: 20-step relative Euclidean prediction errors for SINAR with memory
depths p = 1, . . . , 10 with and without sparsity constraint. Bottom right: one-step
relative prediction error.

A two-cluster network

In this experiment, we maintain the number of agents at N = 5000 but divide the
network into two clusters. In each cluster, all agents are neighbours of each other
while there are few such links between the clusters. Links between clusters are as-
signed randomly with a probability of 10−4 for each pair of agents. With clusters
of size 2500 each, there are 25002 = 6.25 · 106 possible links between agents from
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different clusters so that we expect 625 links to exist between both clusters. We set
T = 600. For the initial macrostate, opinions in the first cluster are distributed by
[0.8, 0.1, 0.1] and in the second cluster by [0.1, 0.1, 0.8]. In order to demonstrate the
difference in the macrodynamics compared to the full network, it is important to
start the microdynamics in each cluster with different opinion concentrations. Oth-
erwise the macrostates in each cluster would develop almost identically, yielding
the macrodynamics across all agents to be almost identical to the one in the previ-
ous example.

We can see in Figure 4.2 that in this case, memory does improve the short-term
predictions. The sparse model is slightly less accurate but more interpretable since
only few coefficients are non-zero:

c = 0 : ASINAR =[
2.04 0.03 −0.07 −0.08 0.02 −1.05 −0.02 0.07 0.07 −0.02
−0.05 1.88 0.00 0.11 0.06 0.06 −0.89 −0.01 −0.12 −0.05

]

c = 0.05 : ASINAR =

[
1.9691 0 0 0 0 −0.9700 0 0 0 0

0 1.9662 0 0 0 0 −0.9671 0 0 0

]
(4.14)

yielding a linear model of the form (with c = 0.05)

(xt+1)1 = 1.9691(xt)1 − 0.9700(xt−1)1

(xt+1)2 = 1.9662(xt)2 − 0.9671(xt−1)2
(4.15)

For higher memory depths however, the models become nonlinear.
There is an intuitive reason for the importance of memory here and it is concep-

tually identical to the one given in the simple example at the beginning of Chapter 1:
Assume for now that the clusters are fully distinct, i.e., no links between them ex-

ist. In this setting, the macrodynamics for the opinion concentrations in each cluster
can be formulated without memory as explained previously. Across the full net-
work, the opinion concentrations are then given by the averages of the cluster-wise
concentrations, denoted by x(i)t , so that xt =

1
2(x(1)t + x(2)t ). Obviously there exists a

range of different pairs of x(1)t , x(2)t which fulfil this. Now, additionally given xt−1,
we could now find x(1)t−1 and x(2)t−1 so that these equations would yield those values

for x(1)t and x(2)t whose average is xt. There are much fewer pairs of x(1)t and x(2)t

compared to all pairs whose average is xt. From these x(i)t subsequent values of x(i)t+1

could be computed. We have therefore derived a more precise estimate of x(1)t and
x(2)t and therefore of xt+1. The evolution of xt is stochastic so that one would not
search for those x(i)t−1 which exactly yield xt but rather get different probabilities for

the x(i)t depending on what xt−1 is.
The numerical example on the two-cluster network thus demonstrates both the
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Figure 4.2: Results for the two-cluster network. Analogously to Figure 4.1, the fig-
ure in the top left shows one realisation of the microdynamics. We can see the di-
vision into two almost distinct evolutions between the two clusters. Top right: the
corresponding macrostates evolve much more irregularly than in the full-network
setting. Bottom: 20- and one-step prediction errors show that memory generally im-
proves the prediction accuracy. For the 20-step predictions, the non-sparse model is
slightly better.

intuitive and the practical indication that memory improves the estimation of the
macrodynamics. We have formulated the ABM and the macrostate such that the
setting is consistent with the Mori–Zwanzig formalism from which a nonlinear au-
toregressive model emerges which we estimate with SINAR. In future work on the
modelling of statistics of ABMs and real-world social phenomena, this combina-
tion of theory and numerical examples should emphasise that a modelling method
which uses memory is advisable to deploy.

A five-cluster network

We further demonstrate this theme on a network with five clusters. Again N = 5000,
while the initial concentrations per cluster are given by [0.8, 0.1, 0.1], [0.1, 0.1, 0.8],
[0.1, 0.8, 0.1], [0.3, 0.4, 0.3] and [0.5, 0.3, 0.2]. We set T = 800. All other simulation
parameters are identical to the ones used in the previous two examples. We can see
even more clearly than in the two-cluster network setting that memory improves
the predictions. For p = 3, the non-sparse SINAR model reads,
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Figure 4.3: Results for the five-cluster network. Top left: one realisation of the mi-
crodynamics. Top right: corresponding macrostates over time. We can see more
complex behaviour than in the first two examples. Bottom: 20-step and one-step
relative Euclidean prediction errors of SINAR for different memory depths p with
c = 0 and c = 0.05.

(xt+1)1 = 1.4662(xt)1 − 0.1188(xt)2 + 0.0552(xt)
2
1 + 0.1318(xt)1(xt)2 + 0.2309(xt−1)2

− 0.1899(xt−1)1(xt−1)2 − 0.2021(xt−1)
2
2 − 0.4658(xt−2)1 − 0.1060(xt−2)2

+ 0.1206(xt−2)
2
1 + 0.0644(xt−2)

2
2

(4.16)

which clearly is a highly nonlinear model. Figure 4.3 shows that again memory
drastically improves the prediction accuracy.

Figure 4.4 is an exemplary illustration of predictions using different memory
depths. While the memoryless models are imprecise approximations – they actually
seem linear – with a higher memory depth the predictions become more and more
accurate.

4.2.4 Dependence of Performance on Amount of Training Data

Let us now investigate how the prediction accuracy behaves under varying amounts
of training data.

For the five-cluster network, we subsequently increase the number of time steps
in the 12 realisations used for training. We then calculate the prediction errors with
the ensuing SINAR models analogously to previously. Figure 4.5 shows the predic-
tion errors over the amount of training data used for p = 1, 2, 10.

We can see that the one-step prediction error decreases logarithmically with data
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Figure 4.4: Predicted (dashed lines) and observed (solid lines) opinion concentra-
tions over 40 time steps using p = 1, 2 and 20 and c = 0 in SINAR. Observed
concentrations are shown in thin lines and predicted concentrations with lines with
crosses.

size. For low amount of training data, the models with p = 10 are much less precise
than the others, potentially since they are more complex and require more data.
For sufficient data, they are better than the ones with little or no memory. For the
20-step prediction error, errors which are higher than 0.7 are left out in the figure
for the sake of visualisation. The models determined with less than 125 time steps
per realisation diverge for all three depicted memory depths. For p = 10, even
with 250 time steps the model is inaccurate and gives a high error. These results
indicate that the more complex high-memory models also require more data for the
parameter estimation. As we have previously seen in SINAR, if the data quality is
not sufficient, then ensuing models are prone to induce diverging dynamics.

4.2.5 Analytical and Numerical Search for the Expected Two-cluster

Macrodynamics

After tackling the macrodynamics from a numerical point of view using simulated
realisations of ABM I, let us now try to determine an analytical solution for the
expected macrodynamics for non-complete networks. This could shed light on the
numerical results and bring further research question to the surface.
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Figure 4.5: Prediction error of SINAR without sparsity constraint for macrodynam-
ics from ABM I over size of training data for the five-cluster network. Left: 20-step
prediction error. Right: one-step prediction error.

Intra-cluster macrodynamics for two clusters

Let us first derive a closed expression for the evolutions of opinion concentrations
in each of the clusters of a two-cluster network, i.e., the intra-cluster macrodynam-
ics for x(1)t and x(2)t . It turns out that as in the case of the complete network, letting
the number of agents converge towards infinity, we can state memoryless expected
intra-cluster macrodynamics. Let the probability for agents between different clus-
ters to be neighbours be given by plink while all agents in the same cluster are con-
nected. For N → ∞, the distribution among clusters of an agent’s neighbours is
then given by

ρ :=
plink

1 + plink
in the other cluster and 1− ρ =

1
1 + plink

(4.17)

in the same cluster. The probability for an agent with opinion m′ in cluster 1 to adapt
opinion m′′ is thus given by

Pt
1(m

′, m′′) = αm′m′′((1− ρ)(xt)
(1)
m′′ + ρ(xt)

(2)
m′′). (4.18)

Let us denote the indices corresponding to the agents in cluster 1 by C1. We can then
observe for the expected number of agents changing their opinion from m′ to m′′ in
cluster 1, without loss of generality,

E[#Agents changing opinion from m′ to m′′ in cluster 1]

= ∑
i∈C1:(Xt)i=m′

Pt
1(m

′, m′′)

=
N
2
· (xt)

(1)
m′ · αm′m′′((1− ρ)(xt)

(1)
m′′ + ρ(xt)

(2)
m′′)).

(4.19)
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For the intra-cluster macrodynamics, this means, by dividing by N
2 and collating

terms from Eq. (4.19),

E[(xt+1)
(1)
m′ ] =

(xt)
(1)
m′ + ∑

m′′ 6=m′
(xt)

(1)
m′′(xt)

(1)
m′ (1− ρ)(αm′′m′ − αm′m′′)︸ ︷︷ ︸

(I)

+ ρ((xt)
(1)
m′′(xt)

(2)
m′ αm′′m′ − (xt)

(1)
m′ (xt)

(2)
m′′αm′m′′)︸ ︷︷ ︸

(II)

.

(I): win minus loss of agents which adapted opinion of neighbour from same cluster

(II): win minus loss of agents which adapted opinion of neighbour from other cluster

(4.20)

and analogously for the second cluster. The derivation is analogous to the one for
the macrodynamics for the full network in Eq. (4.8).

We can see in Figure 4.6 that with a value of plink = 0.05, the intra-cluster
macrostates quickly converge towards each other component-wise. In the numer-
ical examples above we chose plink = 10−4 so that this did not happen in the de-
picted time frame and instead the dynamics seemed more irregular due to the more
stochastic influences from the low number of links.

Figure 4.6: Evolution of intra-cluster macrostates (top) and full macrostates (bottom)
from an ABM realisation with 5000 agents (left) and analytical solution (right) with
the same parameters as in the numerical example on the two-cluster example but
with plink = 0.05 and initial values x(1)0 = [0.8, 0.1, 0.1], x(2)0 = [0.1, 0.8, 0.1]. After
approximately 200 time steps the intra-cluster macrostates are almost congruent in
both clusters. This happened regardless of the initial values. In this ABM realisation,
the opinion concentrations converge unlike the expected dynamics.
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For completion, we can also formulate the intra-cluster macrodynamics for a
general number of clusters and different numbers of links between the clusters.
Let us denote the probability of a link between agents between clusters i and j by
(plink)ij. Then for cluster i, the expected ratio of neighbours in other clusters is

ρij :=
(plink)ij

1 + ∑k 6=i(plink)ik
for i 6= j and ρi := 1−∑

j 6=i
ρij (4.21)

in the same cluster where (plink)ii = 1. Then it follows,

E(xt+1)
(i)
m′ ] =

(xt)
(i)
m′ + ∑

m′′ 6=m′
ρi(xt)

(i)
m′′(xt)

(i)
m′ (αm′′m′ − αm′m′′)︸ ︷︷ ︸

(I)

+ ∑
j 6=i

ρij((xt)
(i)
m′′(xt)

(j)
m′ αm′′m′ − (xt)

(i)
m′ (xt)

(j)
m′′αm′m′′)︸ ︷︷ ︸

(II)

.

(I): win minus loss of agents which adapted opinion

of neighbour from same cluster

(II): win minus loss of agents which adapted opinion

of neighbour from other clusters

(4.22)

In order to formulate the evolution for the case of directed networks or varying
number of agents inside a cluster, one can simply modify the terms for the ρij ac-
cordingly.

Further numerical examples showed that in the long term, the intra-cluster macrostates
converge towards each other. This happened the earlier the larger the values for the
(plink)ij were. These observations do not answer the question how to formulate the
exact expected macrodynamics for two clusters, but they should serve as a start-
ing point for the influence of the number of links on the expected macrodynamics.
Findings could be generalized to observed dynamics for clustered networks in other
contexts, e.g., gene regulatory networks [HDPCBS18].

Analytical macrodynamics for two clusters

To approach the analysis of ABM I from a different persepctive, let us now attempt
to derive closed memory-exhibiting equations for the full macrodynamics, i.e., the
evolution of the opinion concentration across the full network of agents as done in
[WKS21]. For simplification, let us assume separated clusters, i.e., plink = 0. Then
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the intra-cluster dynamics are given as in Eq. (4.7) by

(x(i)t+1)1 = (1 + α31 − α13)(x(i)t )1 + (α13 − α31)(x(i)t )2
1 + (α21 − α12 − α31 + α13)(x(i)t )1(x(i)t )2

(x(i)t+1)2 = (1 + α32 − α23)(x(i)t )2 + (α23 − α32)(x(i)t )2
2 + (α12 − α21 − α32 + α23)(x(i)t )1(x(i)t )2.

(4.23)

With xt =
1
2(x(1)t + x(2)t ) and, for simplification, denoting a = α31 − α13, b = α21 −

α12 − α31 + α13, c = α32 − α23, d = α12 − α21 − α32 + α23, we can reformulate this to

(xt+1)1 = (1 + a)
1
2
((x(1)t )1 + (x(2)t )1)︸ ︷︷ ︸

(xt)1

− a
2
((x(1)t )2

1 + (x(2)t )2
1)

+
b
2
((x(1)t )1(x(1)t )2 + (x(2)t )1(x(2)t )2)

(xt+1)2 = (1 + c)
1
2
((x(1)t )2 + (x(2)t )2)︸ ︷︷ ︸

(xt)2

− c
2
((x(1)t )2

2 + (x(2)t )2
2)

+
d
2
((x(1)t )1(x(1)t )2 + (x(2)t )1(x(2)t )2).

(4.24)

For coefficients chosen in the numerical examples, it holds a = −c and b = −d =

−2a. This gives

(xt+1)1 = (1 + a)
1
2
((x(1)t )1 + (x(2)t )1)︸ ︷︷ ︸

(xt)1

− a
2
((x(1)t )2

1 + (x(2)t )2
1)

− a((x(1)t )1(x(1)t )2 + (x(2)t )1(x(2)t )2)

(xt+1)2 = (1− a)
1
2
((x(1)t )2 + (x(2)t )2)︸ ︷︷ ︸

(xt)2

+
a
2
((x(1)t )2

2 + (x(2)t )2
2)

+ a((x(1)t )1(x(1)t )2 + (x(2)t )1(x(2)t )2).

(4.25)

It proved infeasible to further derive a closed expression for the macrodynamics
from here onwards so that this would require further research. However, the fol-
lowing numerical results give intuition on the structure of the macrodynamics. For
certain initial conditions, already a memory depth of p = 2 is enough to almost
exactly model the macrodynamics.

Symmetric initial conditions Let us assume so-called symmetric initial conditions
for which it holds

(x(1)0 )1 = (x(2)0 )2 = 1− 2(x(1)0 )2, (x(2)0 )1 = (x(1)0 )2 = 1− 2(x(2)0 )2. (4.26)
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so that they are completely determined by the value (x(1)0 )1. As in the examples, we
choose a = 0.135.

We generate trajectories of length T = 1000 for (x(1)0 )1 = 0.01, 0.02, . . . , 0.99, and
for each value train an NAR model of memory depth p = 2 with SINAR without
sparsity constraint and the same basis functions as used before, using the first 500
time steps. The second 500 time steps are used to assess the quality of the models
by computing one-step and long-term predictions on trajectories from each initial
condition, giving us 99 different testing trajectories. We then consider the average
relative one-step and 500-step prediction errors as defined in Eq. (4.10) on all testing
trajectories. The trajectory for (x(1)0 )1 = 0.25 is shown in Figure 4.7. We can see
that the trajectory spirals outwards onto a triangular attractor. For higher values of
(x(1)0 )1, the trajectory starts closer to the attractor and reaches it earlier.

Figure 4.7: Trajectory of the two-cluster macrodynamics with (x(1)0 )1 = 0.25, di-
vided into training data (time steps 1–500), testing data (501–1000) and further time
steps not used in the results but depicted for illustration. The starting value of the
macrodynamics is given by (0.3125, 0.3125) (see Eq. (4.26)).

We obtain various different models which all give a one-step error close to the
machine precision of 10−16 (Figure 4.8). The long-term prediction error is higher but
usually smaller than 10−5. For p = 2, some predicted trajectories diverge but this
seems due to numerical errors. For p = 10, the errors are comparable in the short-
term and slightly smaller in the long-term and no predictions diverge. Considering
the detected models for p = 2 obtained using trajectories from different starting
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Figure 4.8: One-step and 500-step prediction error of models produced with trajec-
tories from different symmetric initial conditions and memory depths p = 2, 10 in
SINAR. For p = 1, the one-step prediction error is approximately 10−2.

values, for example, for (x(1)0 )1 = 0.8 and 0.25, we find for the coefficient matrices,

(x(1)0 )1 = 0.8 :

[
0.91 −0.96 0.27 0.54 0 0 1.05 −0.08 −0.54 −0.19
−0.04 2.09 0 −0.54 −0.27 0 −1.05 0.08 0.54 0.19

]

(x(1)0 )1 = 0.25 :

[
1.83 −0.03 0.27 0.54 0 −0.80 0 −0.33 −0.54 0.0642
−0.97 1.17 0 −0.54 −0.27 0.80 0 0.33 0.54 −0.06

]
.

(4.27)

Both models occur for many other initial conditions although it was not possible
to detect a structure as to which initial condition produced which model form. Al-
though the models do not admit an immediate or obvious interpretation, the coeffi-
cients 0.27 and −0.27 for the basis functions (xt)2

1, (xt)2
2 and 0.54,−0.54 for the basis

functions (xt)1(xt)2 and (xt−1)1(xt−1)2 occur for all values of (x(1)0 )1. The others are
generally different but the latter 5 coefficients (the ones corresponding to the mem-
ory terms) are usually equal for both coordinates but with a different sign. Only
the coefficients for (xt)1 and (xt)2 show no apparent structure. Using basis func-
tions of degree 3 by additionally including all products of the form (xt)i(xt)j(xt)k,
their coefficients are estimated as 0. Apparently, for symmetric initial conditions, the
two-cluster dynamics allow for an exact description with the degree 1 and 2 basis
functions as in Eq. (4.9) and a memory depth of p = 2.

Non-symmetric initial conditions For non-symmetric initial concentrations, NAR
models with the chosen basis functions for p = 2 are generally much less accurate.
We construct initial conditions by starting with symmetric ones and adding a value
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δ to (x(1)0 )2 so that

(x(1)0 )1 = (x(2)0 )2 = 1− 2((x(1)0 )2 − δ), (x(2)0 )1 = (x(1)0 )2 − δ = 1− 2(x(2)0 )2. (4.28)

We then conduct the same analysis as above and consider the one-step and 500-step
prediction error for p = 2 with different values for δ (Figure 4.9a). The testing trajec-
tories are again the ones from symmetric initial conditions. The one-step prediction
error increases by a factor of 10 for an increase of δ by a factor of 10. Long-term
predictions diverge regularly within 500 steps for δ ≥ 1e− 7 so that the long-term
prediction error is not shown. We can see that the highest error comes from the
model generated with (x(1)0 )1 = 0.33. The reason is that for (x(1)0 )1 = 1/3 all initial
concentrations are equal and the macrostate stays constant so that SINAR cannot
learn the model properly. For initial values close to this fixed point of the macrody-
namics, the dynamics apparently take long to reach behaviour from which a correct
model can be inferred.

These observations indicate that for non-symmetric initial conditions a memory
depth of p = 2 is not enough to capture all relevant features of the dynamics.

For higher memory depths, we can observe in Figure 4.9b an improvement al-
though even for the one-step error, no model generates accuracy which is better
than 10−11. Although this may seem precise, the obtained models regularly diverge
within 100 steps. The model coefficients also differ from the ones obtained with
symmetric initial conditions. The training trajectories, however, do not seem very
different from the ones starting at symmetric trajectories (see Figure 4.10). Appar-
ently the dynamics themselves are not chaotic but either the ensuing parameter es-
timation problem in SINAR is badly conditioned or the set of model coefficients for
which the resulting long-term predictions do not diverge is very small.

It is, however, unclear at this point whether the models are error-prone or the
testing trajectories unsuited. Therefore, we compare model performances from dif-
ferent initial conditions and on different testing trajectories. Figure 4.9c shows a
comparison of the one-step prediction errors for models obtained with symmetric
and non-symmetric (δ = 1e− 3) initial conditions on testing trajectories starting at
symmetric, non-symmetric (δ = 1e − 3) and randomly chosen (uniformly) initial
conditions for p = 2. For the testing data from symmetric initial conditions, the
model from symmetric initial conditions fairs better and vice versa. For random
initial conditions, the models for non-symmetric starting values are slightly better
while still giving a large error of approximately 10−2.

In summary, finding an analytical expression for the macrodynamics for non-
complete networks requires further research. It seems that the initial hope that the
macrodynamics can be described with an NAR model consisting of the basis func-
tions used here and a memory depth of 2 was deceptive. Apparently, only for a
small domain of initial conditions, yielding a small domain of trajectories, a simple



114 4.2. Opinion Dynamics ABM I: Discrete Opinions

(a) From different non-symmetric initial conditions with different values for δ and p = 2.

(b) From different non-symmetric initial conditions with δ = 1e− 3 and for different mem-
ory depths.

(c) From symmetric and non-symmetric (δ = 1e− 3) initial conditions and memory depth
p = 2 in SINAR. As testing trajectories, ones from symmetric, non-symmetric and randomly
chosen initial conditions were used.

Figure 4.9: One-step prediction error of models produced with trajectories from
varying initial conditions, different memory depths in SINAR and different testing
trajectories.
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Figure 4.10: Trajectories with (x(1)0 )1 = 0.25 and 0.8 for symmetric initial conditions
and δ = 1e − 3. Only small differences depending on the initial conditions are
apparent. For example, for (x(1)0 )1 = 0.25 and δ = 1e− 3, the trajectory only touches
the boundary of the depicted domain on the corners.

model is sufficient while generally a high memory depth is required to find even
an approximation of the macrodynamics. Remembering that the dynamics investi-
gated here are the expected macrodynamics of the agent-based model, this analysis
should emphasise that for ABMs, parameter estimation can strongly depend on the
initial conditions of the realisations.

4.3 Opinion Dynamics ABM II: Continuous Opinions

We will now introduce a second ABM which is constructed under modifications
of ABM I. It assumes that opinions are continuous instead of discrete. The set of
possible opinions for an agent is not longer given by {1, . . . , m} but by the convex
hull of a d-dimensional polytope with equidistant vertices v1, . . . , vm, i.e., by the area
inside these vertices. The vertices denote the extremes in the opinion space. One
could view them as the discrete opinions from ABM I while now space in between
is introduced.

As in ABM I, at each time step every agent i is influenced by a neighbour with
a given probability and changes its opinion into the direction of the opinion of the
neighbour j. Both of these agents are assigned closeness measures to each vertex,
given by a function K : Rd × Rd → R+. The closeness to each vertex is com-
puted by K((Xt)i, vl) for l = 1, . . . , m and the values are normalized by dividing

by
m
∑

l=1
K((Xt)i, vl), yielding values kt(i) = [kt(i, 1), . . . , kt(i, m)]. One then assigns

each of the agents to a vertex randomly drawn from the distributions kt(i) resp.
kt(j), denoted by li and lj. Then, as in ABM I, with a probability of αli,lj , agent i
changes its opinion to

(Xt+1)i = (1− ∆t)(Xt)i + ∆t(Xt)j (4.29)

for a ∆t ∈ [0, 1].
The intuition behind this is that people can have opinions on multiple related
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topics and while they might not change their opinion from one extreme to the other,
they might adjust their opinion towards the one of the person they are interacting
with. Not all opinions are compatible with each other so that the likelihoods for ad-
justing one’s opinion after interaction with another person depend on the opinion
state of both persons. The reason this second ABM is introduced here is to demon-
strate the need for memory terms on an example which comes from continuous
space, potentially making it more realistic than ABM I. Moreover, in the next chap-
ter we will introduce a novel method which models high-dimensional dynamics in a
reduced way so that this ABM might be a good example for its applicability. Plus, as
every field of research in dynamical systems modelling has its standard examples,
such as the harmonic oscillator or the Lorenz-63 system, in the ABM community
this ABM might be of interest to test and validate novel methods on.

In algorithmic form, ABM II reads

Algorithm 2: Agent-based opinion change model 2

1 Choose end time T, number of agents N, network adjacency matrix A,
opinion change coefficients αm′m′′ , step size ∆t ∈ [0, 1], initial opinions X0,
vertices v1, . . . , vl

2 for t = 0, . . . , T do
3 for i = 1, . . . , N do
4 for l = 1, . . . , m do

5 Compute kt(i, l) = K((Xt)i, vl)/
m
∑

k=1
K((Xt)i, vk)

6 end

7 end
8 for i = 1, . . . , N do
9 Draw j from {j : Aij = 1} uniformly at random (Choose neighbour)

10 Draw ui, w(1)
i , w(2)

i ∼ U [0, 1]

11 Define li so that kt(i, l1) < w(1)
i ≤ kt(i, l1 + 1) (Draw from kt(i))

12 Define lj so that kt(j, l1) < w(2)
i ≤ kt(j, l1 + 1) (Draw from kt(j))

13 If ui < αli,lj : (Xt+1)i = (1− ∆t)(Xt)i + ∆t(Xt)j (Change opinion)

14 end

15 end

For ωt we can make a straightforward definition as in Eq. (4.4) for ABM I, letting

ωt = [j1, . . . , jN, u1, . . . , uN, w(1)
1 , w(2)

1 , . . . , w(1)
N , w(2)

N ] (4.30)

with

(Xt+1)i = F(Xt, ωt)i =

(1− ∆t)(Xt)i + ∆t(Xt)j if ui < αli,lj

(Xt)i otherwise.
(4.31)
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We choose as closeness measure K((Xt)i, vl) = exp(−1
2
‖(Xt)i−vj‖2

2
0.05 ). We let m = 3 and

define the vertices by v1 = [0, 0]T, v2 = [1, 0]T and v3 = [0.5,
√

0.75]T, making the
opinions two-dimensional and apart from each other by a distance of 1. The opinion
change coefficients α are the same as the ones we used in ABM I. This defines a
dynamical system in R2N.

As the observable we choose the average opinion across all agents, i.e.,

φ(Xt) =
1
N

N

∑
i=1

Xt ∈ R2. (4.32)

A complete network

At first, we again use a complete network with N = 3000 agents out of which two
thirds have opinion equal to v1 = [0, 0]T and one sixth each has opinion v2 and v3.
For the opinion change time step, we choose ∆t = 0.5, so that if an agent is suc-
cessfully influenced by its neighbour, its new opinion will be in the middle between
their opinions.

As for ABM I, we attempt to model the ensuing macrodynamics with SINAR,
using the same basis functions as before. In contrast to ABM I, we have not derived
a closed form for the expected macrodynamics, leaving us with merely an educated
guess for suitable basis functions. Since both ABMs are conceptually similar, the
hope is that the same basis functions are still well-suited.

The results are shown in Figure 4.11. The agents behave quite similarly to each
other (I,II left), yielding the macrostate to oscillate (I,II right).

The discovered Markovian models are unable to generate good prediction accu-
racy and a memory depth of 2 immediately yields a significant improvement (III). If
the 60-step prediction error of a model was higher than 1.5, it was not included into
the figure. We can see that most of the non-sparse models generated high errors,
regardless of the memory depth. The sparse models, with c = 0.2, have signifi-
cantly fewer non-zero coefficients, but yield sound accuracy which converges with
memory.

Apparently, unlike in ABM I, the here defined macrodynamics do not admit a
simple Markovian formulation, at least not with the given basis functions. Further
tests using additional basis functions such as trigonometric ones and higher order
monomials have not revealed any different outcome.

Two- and five-cluster networks

We now divide the N = 3000 agents into two respectively five equally-sized clus-
ters. Again, between each pair of agents a link is installed with probability 10−4.

For the two-cluster network, the initial opinions are such that in the first cluster
two thirds start at v1 (with the rest equally distributed to v2 and v3) and in the second
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Figure 4.11: Results for the full network in ABM II: I and II show the evolution of the
microdynamics (left) and macrodynamics (right). The two-dimensional macrostates
are coloured according to time, developing from blue to yellow to illustrate the path
of the macrostates in one realisation. III shows the 60- and one-step prediction error
of the macrostates over memory depth using SINAR.

cluster, two-thirds start at v2. In Figure 4.12 we can see that similarly to the two-
cluster scenario in ABM I, the microdynamics run in parallel to each other for some
time and then one cluster influences the other so that the micro- and macrodynamics
become irregular (I,II).

Again, the accuracy of the models improves drastically with memory. For one-
step predictions, already a memory depth of 2 gives a vast improvement over the
Markovian models. In contrast to the full-network case, the non-sparse models pro-
duce good accuracy. This could indicate that in the full-network case, they overfit
the training data, rendering them useless for the testing data. The sparse models are
slightly worse this time.

For the five-cluster network, the initial opinions are such that agents are dis-
tributed onto the vertices of the triangle with different distributions per cluster,
given by [2/3, 1/6, 1/6], [1/6, 2/3, 1/6], [1/6, 1/6, 2/3]], [0.45, 0.45, 0.1], [0.45, 0.1, 0.45].
The corresponding micro- and macrodynamics seem even more irregular. The find-
ings regarding the model accuracies are analogous to the previous networks (Fig-
ure 4.13). Memory vastly improves the prediction quality. In this case, a memory
depth of more than 2 does not give a large improvement for the 60-step error.

Considering the two-dimensional evolution of the average opinions, we can see
some intricacies: for the complete network, the macrodynamics follow a path ap-
proximately on a triangle (the polytope spanned by the vertices). For two and five
clusters, the macrostates from evolution follow different paths, covering different
geometrical shapes (Figure 4.14). We can see that for the two clusters, generally in
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the long term the boundary of the polytope is covered with a smaller triangle in be-
tween, both connected with short transient phases. Tests have shown that this gen-
erally is the outcome of long-term trajectories. For the five-cluster network, more
regions inside the triangle are covered and the trajectory is much more complex.
The figures above showed that for the 60-step predictions, the error on the com-
plete network was higher for the other two networks. This seems surprising since
Figure 4.14 reveals the more complex and seemingly more nonlinear behaviour in
the multi-cluster networks. Moreover, the fact that higher memory depth does not
yield a large improvement compared to small memory depths indicates that one
might need different nonlinear basis functions to uncover to macrodynamics. An
investigation in this direction would require further research.

Figure 4.12: Results for the two-cluster network in ABM II: I and II show the evo-
lution of one realisation of the microdynamics (left) and macrodynamics (right). III
shows the 60- and one-step prediction error of the macrostates over memory depth
using SINAR.

This analysis of the two ABMs signals the following: (1) in order to model macro-
dynamics of ABMs, one should generally incorporate memory terms into the model
identification. This should generalize to complex real-world systems where many
individual particles are involved and where the observable does not already capture
all relevant information for its own evolution. (2) Sparse models can circumvent
potential overfitting of data from stochastic ABM realisations. (3) The model identi-
fication can be strongly dependent on the training data and their initial conditions.
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Figure 4.13: Results for the five-cluster network in ABM II: I and II show the evo-
lution of one realisation of the microdynamics (left) and macrodynamics (right). III
shows the 60- and one-step prediction error of the macrostates over memory depth
using SINAR.

Figure 4.14: Macrodynamics from long-term realisation of ABM II for the complete,
the two-cluster and the five-cluster network. The colors denote time evolution, run-
ning from blue to yellow.
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Ensuing Research Questions

In the future, it should be interesting to see how strong the inclusion of memory is
in practice to model observed social dynamics in the real world and which philo-
sophical results can be derived from this. Furthermore, analyses of the macrody-
namics dependent on the network structure underlying the microdynamics as in
Section 4.2.5 could improve the understanding of how to model real-world macro-
dynamics if the structure of the network is at least approximately known. From a
more theoretical point of view, it would be of great help if a precise mathematical
generalization of ABMs could be developed and theoretically connected with MZ
in a general form. This could in turn contribute to develop an intuition about which
model class is suited to model the macrodynamics from complex social systems in
the real world.



CHAPTER 5

Memory SPA – a Novel Method for
Dynamical Systems Modelling

In the previous chapters we have approached the problem of propagating an observ-
able of a dynamical system over time from different view points: a theoretical one
using Takens’ Theorem and the Mori–Zwanzig formalism, a numerical one using
different classes of methods to infer a model and in application to an agent-based
model. In this chapter a novel method for dynamical systems modelling will be pre-
sented that is based on the same perspective: now, to fully accessible dynamics, we
voluntarily deploy a specific low-dimensional observable, use memory to propagate
it over time and relate predicted states of the observable back to predicted values of
the actual state of the system.

The concept of projecting a dynamical system onto lower-dimensional coordi-
nates, the dimension reduction, is not new. There exist various methods such as the
linear Singular Value Decomposition as used in [BBP+16], neural network autoen-
coders as in [CLKB19] or the detection of a low-dimensional manifold with non-
linear reaction coordinates as in [BKK+17]. All these methods, however, require
the dynamics to admit a bijective transformation to a low-dimensional subspace or
manifold.

For the method that is introduced, points are projected onto a low-dimensional
polytope. Then inspired from Takens’ Theorem, it uses memory to counteract the
potential loss of information on system states that the projection results in. On the
polytope the projected dynamics are estimated and its states are transformed back
to the original state space.

For this we use the recently introduced method Scalable Probabilistic Approxi-
mation [GPNH20] (SPA). SPA is a versatile method, suited for (1) optimal discretiza-
tion of the state space using probabilistic representations, including low-dimensional
ones, and (2) constructing a probabilistic linear model between two variables X and
Y. For the latter aspect, SPA is especially suited in comparison to other methods
when X and Y are high-dimensional, stochastic and little intuition about their re-
lation exists. Dynamics constitute a special case, mapping Xt to Xt+1. SPA has
achieved strong performance in both representing high-dimensional data using low-
dimensional coordinates and predicting states of variables. This could be achieved
in both purely mathematical and real-world contexts of varying dimension and with
only a low amount of data available. Moreover, its numerical complexity is compa-
rable to the simple clustering method K-means [Mac67]. For dynamics, SPA is can
be suitable but generally not for long-term forecasts of nonlinear dynamics, as will
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be shown shortly. For this reason, in this chapter a new method called memory SPA
(mSPA) is introduced which uses the SPA representations of points and is suited for
nonlinear dynamics.

5.1 Scalable Probabilistic Approximation (SPA)

The main aim of SPA is to perform the transformation of points into a new coordi-
nate system. It then constructs a mapping between these new coordinates for two
generally different variables. To this end, it tackles two distinct optimization prob-
lems, one for the representation of points and one for the mapping, which can also
be simultaneously solved in one problem. We refer to them as SPA I and SPA II.

5.1.1 SPA I: Transformation of Coordinates

Given data X = [X0, . . . , XT] ∈ Rd×T+1 with points Xt ∈ M ⊂ Rd, choose K ∈ N

and find matrices Σ ∈ Rd×K and Γ ∈ RK×T+1 which fulfil

[Σ, Γ] = arg min
Σ∗,Γ∗

‖X− Σ∗Γ∗‖F,

subject to,

Σ := [σ1| · · · |σK] ∈ Rd×K, Γ := [γ1| · · · |γT] ∈ RK×T+1,

with
K

∑
k=1

(γt)k = 1 and (γt)k ≥ 0 for all t ∈ {0, . . . , T} and k ∈ {1, . . . , K}.

(SPA I)

With this, SPA I seeks a matrix Σ so that the data can be well approximated by
convex combinations of its columns. This is strongly related to Principal Component
Analysis [JC16] where one seeks a similar decomposition but without constraining it
to convex combinations. Note that the set of all convex combinations of the columns
of Σ, the convex hull, denoted by

MΣ := conv(Σ) = {X ∈ Rd : ∃γ with
K

∑
k=1

γk = 1, γk ≥ 0 s.t. X = Σγ} (5.1)

is a convex polytope with vertices given by σ1, . . . , σK. A vector γ corresponding to
a state X is then called the barycentric coordinate of X. The dimension of a polytope
with K vertices is at most K− 1 so that the dimension of the data determines whether
SPA I can be solved without loss, i.e., so that Xt ∈ MΣ ∀t, yielding that each point is
exactly represented by barycentric coordinates, or not. The following lemma details
this relation.
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Lemma 5.1. For X ∈ Rd×T+1, there exist Σ ∈ Rd×K, Γ ∈ RK×T+1 so that (SPA I) can
be solved exactly if and only if K > rank(X).

Proof. If rank(X) = r then the data lie in a bounded subset of an affine-linear r-
dimensional subspace of Rd. If K > r the polytope can naturally be chosen to be at
least r-dimensional and big enough to contain this subset in its interior.

If K ≤ r, then the polytope can only cover a subset of an (r − 1)-dimensional
subspace so that there exists a point Xt that lies outside of the polytope, yielding a
positive projection loss between Xt and Σγt.

Note that depending on the relation between K and d, the interpretations of SPA I
which present itself strongly differ. Assuming that K < d, one achieves a dimension
reduction. SPA I then seeks a polytope to which states are projected orthogonally
with minimal total error:

Lemma 5.2. Let MΣ be a polytope with vertices given by the columns of Σ, let
X /∈ MΣ and let γ be the minimizer of ‖X − Σγ‖2. Then Σγ is the orthogonal
projection of X ontoMΣ.

Proof. By construction, Σγ minimizes the Euclidean distance of points inMΣ to X
and hence must be the unique orthogonal projection of X ontoMΣ.

Such a projection is always unique but it is not injective. Multiple points can be
collapsed onto the same point on the polytope, yielding a potential loss of informa-
tion of states.

If K > d, the barycentric coordinates can be interpreted as closeness or affiliation
measures of a state to each vertex. One does not reduce the dimension of states but
represents them in dependence of landmark points. Therefore, SPA I can be seen
as generating a fuzzy discretization of the state space similarly as in PCCA+ [DW05].
With a suitable choice of Σ, (SPA I) can be solved without loss. However, a point
X might admit non-unique representations as barycentric coordinates (see Exam-
ple 5.1).

Example 5.1. Let X = [0, 0]. Let Σ =

[
−2 2 1 −1
1 1 −1 −1

]
. Let γ = (3/8, 1/8, 1/2, 0)T

and γ̃ = (1/8, 3/8, 0, 1/2)T. Then X = Σγ = Σγ̃ (see Figure 5.1).

5.1.2 SPA II: Dynamics Reconstruction

SPA contains a second step which estimates a model between two potentially dif-
ferent variables. To this end, SPA I is solved for two variables, X and Y, giving
barycentric coordinates of dimensions KX and KY with respect to vertices ΣX and
ΣY. Then an optimal column-stochastic matrix is determined which maps barycen-
tric coordinates of one variable to those of the other.
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Figure 5.1: Non-uniqueness of SPA I if K > rank(X) + 1. X lies inside the convex
hull of two sets of vertices and can hence be represented exactly with two different
barycentric coordinates.

We consider the special case of dynamics, i.e., X = Xt and Y = Xt+1, having
barycentric coordinates with respect to the same vertices Σ. In order to estimate the
dynamics in the barycentric coordinates one solves SPA II, which reads

Λ = arg min
Λ∗∈RK×K

‖[γ1| · · · |γT]−Λ∗[γ0| · · · |γT−1]‖F,

subject to

Λ ≥ 0 and
K

∑
k=1

Λk,• = 1.

(SPA II)

Λ is column-stochastic, meaning that it fulfils the conditions imposed on it in (SPA II).
Therefore, Λγ is always a barycentric coordinate, too, i.e., ΣΛγ ∈ MΣ as the follow-
ing lemma asserts.

Lemma 5.3. Let γ ∈ RK be a stochastic vector, i.e., with ‖γ‖1 = 1, γk ≥ 0 ∀k. Let
Λ ∈ RK×K be a column-stochastic matrix. Then Λγ is a column-stochastic vector.

Proof.
K

∑
j=1

(Λγ)j =
K

∑
i=1

K

∑
j=1

Λijγj =
K

∑
j=1

γj

K

∑
i=1

Λij =
K

∑
j=1

γj = 1. (5.2)

Therefore, Λ is a linear propagator of the dynamics on the polytope.
This small observation on the product of a column-stochastic matrix and a stochas-

tic vector is fundamental in the theory of Markov Chains. In essence, SPA II con-
structs a Markov State Model (see, e.g., [Sar11, HP18]) along the vertices where a
state can be interpreted as the strength of affiliation of a point to each vertex. In
[GPNH20] this probabilistic interpretation is emphasised and illustrated in detail.

For K ≤ d this model should generally be imprecise for two reasons: it works
only on the reduced coordinates which might not admit identification with the states
in Rd and it is linear, making it ill-suited if the dynamics are not approximately
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linear, too. Note that Markov State Models typically work with a fine enough dis-
cretization of the state space to generate accuracy.

For K > d, however, Λ can be a good approximation of the dynamics. Firstly,
there is generally no projection loss and, secondly, SPA has been shown in [GPNH20]
to give strong accuracy for nonlinear dynamics if K is large enough. For this it re-
quires the dynamics F to act similarly on a vertex as on points close to it. Let Λ|i
denote the ith column of Λ. Then SPA yields the forward model

γt+1 = Λ|1(γt)1 + · · ·+ Λ|K(γt)K. (5.3)

Thus, the dynamics at one point are approximated by a mixture – more precise, a
convex combination – of the approximated dynamics at the nearby vertices.

Remark. The notation of SPA I and SPA II was not taken from [GPNH20], where
SPA rather denotes only SPA I but with an elegant way of augmenting it so that both
problems that are here denoted by SPA I and SPA II can be solved simultaneously
(see Theorem 2 in [GPNH20]). This comes at the cost of adding a constraint to the
search for Σ. Still, both approaches produce linear models.

5.1.3 SPA in the Context of Dynamical Systems

Let us formalize the intuition of SPA in the case of dynamics. As explained above,
for K ≤ d we can generally derive a unique representation of points in barycentric
coordinates but with a loss of information about the states. For K > d, there is no
loss of information but generally no unique representation. We therefore make the
following definition.

Definition 5.4 (Polytope projection function). LetM ⊂ Rd be a compact manifold,
X ∈ M and let γ be a K-dimensional barycentric coordinate. The mapping of X into
a polytope with vertices given by the columns of Σ ∈ Rd×K is defined as follows:

Case 1: K ≤ d:

ρΣ(X) := arg min
γ∗∈RK

‖X− Σγ∗‖2, s.t. γ∗• ≥ 0, ‖γ∗‖1 = 1. (5.4)

Case 2: K > D :

ρΣ(X, γ) := arg min
γ∗∈RK

‖γ− γ∗‖2

s.t. γ∗ = arg min
γ′∈RK

‖X− Σγ′‖2 with γ′•, γ∗• ≥ 0 and ‖γ′‖1, ‖γ∗‖1 = 1.
(5.5)

For K ≤ d, ρΣ(X) is given by the barycentric coordinate of the orthogonal projec-
tion of X ontoMΣ. For K > d, we choose ρΣ(X) as the barycentric coordinate which
defines X that is closest to a reference coordinate γ. With this, ρΣ is well-defined if
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there is a unique closest suitable barycentric coordinate to the reference coordinate.
Now, for a dynamical system given by the function F :M→M and for K > d,

let us use as reference coordinate the respective previous barycentric coordinate,
i.e., define γt = ρΣ(Xt, γt−1). Then subsequent steps of the projected dynamics will
always make the smallest step that is necessary with the aim of generating smooth
dynamics. This also enables us to derive,

γt = ρΣ(Xt, γt−1) = ρΣ(F(Xt−1), γt−1) = ρΣ(F(Σγt−1), γt−1) =: v(γt−1) (5.6)

by substituting Xt by F(Xt−1) and using the representation of Xt−1 dependent on
γt−1. We obtain a closed dynamical system on the barycentric coordinates.

This shows that we can construct well-defined smooth dynamics on the poly-
tope. Furthermore, the SPA II propagator Λ is a linear approximation of v, leaving
us with the options for the long-term behaviour explained in Chapter 2. Since Λγ

is a barycentric coordinate, too, the dynamics are kept inside the polytope. Note
that the substitution of Xt−1 by Σγt−1 is not possible if ρ is not bijective so that for
K ≤ d we generally cannot formulate closed dynamics in γ. For high-dimensional
systems, choosing K > d would not generate an economic representation of points
and thus potentially entail enormous difficulty in estimating the dynamics. There-
fore, in the following we will use memory to derive a reformulation of the dynamics
on the polytope and present a method which estimates these dynamics.

Again, note that for short-term predictions and mappings from one variable to
another, the observations regarding long-time dynamical behaviour are unimpor-
tant and the strengths of SPA hold up.

5.2 mSPA: Extending SPA to Model Nonlinear Dynam-

ics

In this section, a novel method is presented which estimates the dynamics on the
lower-dimensional barycentric coordinates. It has recently been submitted by the
author of this thesis together with co-authors [WKSS21]. Most of the theoretical
results explained here can also be found in the article.

In the previous section, we have seen that if K ≤ d there is a loss of informa-
tion when projecting points to the polytopeMΣ. This prohibited us from defining
a closed dynamical system on the polytope. Viewing the projection to the polytope,
ρΣ, simply as an observable of the dynamical system F, it should now be natural to
deploy Takens’ Theorem to derive a one-to-one mapping from states of the dynam-
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ics to sequences of barycentric coordinates. We therefore define the product polytope

Mp
Σ :=MΣ × . . .MΣ︸ ︷︷ ︸

p times

(5.7)

and the delay-coordinate map

ΦρΣ,F,p :M→Mp
Σ, ΦρΣ,F,p(Xt−1) := (γT

t−1, . . . , γT
t−p)

T. (5.8)

We will later on use ΦρΣ,F,p to modify Eq. (5.6) suitably to derive memory-exhibiting
dynamics v onMΣ. For now, a method is presented which uses Takens’ Theorem to
model nonlinear dynamics inMΣ. Since the theory is meant to justify the method,
it will be easier to follow the former if the latter has already been introduced.

5.2.1 The mSPA Method

We define a specific function which transforms sequences of barycentric coordinates
into a high-dimensional polytope from where we then find a mapping back into
the polytope MΣ. With this we construct a dynamical system along the reduced,
barycentric, coordinates. We call this function the path affiliation function Ψ. It is
defined as follows:

Definition 5.5 (Path affiliation function). Let ρΣ be the orthogonal projection of
points X ∈ M ⊂ Rd to a polytope MΣ with vertices given by the columns of
Σ ∈ Rd×K. For a dynamical system Xt+1 = F(Xt) denote γt := ρΣ(Xt). Then the
function Ψ, defined as

Ψp(γt−1, . . . , γt−p)i := (γt−1)i1 · (γt−2)i2 · · · (γt−p)ip

J(i) = [i1, . . . , ip],
(5.9)

is the path affiliation function of barycentric coordinates in the polytopeMΣ for the
dynamics F.

The entries of Ψp(γt−1, . . . , γt−p) are given by all products of combinations of
entries from γt−1 to γt−p. The function J is an ordering of the set {1, . . . , K}p (it does
not induce a loss of generality). The path affiliation function maps into RKp

.
For example, with K = 2 and p = 2,

Ψ2(γt, γt−1) =


(γt)1 · (γt−1)1

(γt)1 · (γt−1)2

(γt)2 · (γt−1)1

(γt)2 · (γt−1)2

 . (5.10)

The path affiliation function can also be written in the form of a sequence of outer
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products,

Ψp(γt−1, · · · , γt−p) := γt−1 ⊗ · · · ⊗ γt−p,

u⊗ v := vec(uvT).
(5.11)

The intuition behind the path affiliations is the following: they measure the affil-
iation of the path of projected points to each possible path of length p along the
vertices. This measuring is given by the product of the affiliations to each vertex of
each point in the path. Interpreting the barycentric coordinates as an affiliation of a
point to the vertices, the affiliation of (Xt−2, Xt−1) with the path (σi, σj) is quantified
as (γt−2)i(γt−1)j.

As with the delay-coordinate map in Chapter 1, we write Ψ if the superscript p
is of no importance.

The image of Ψ on the product polytope is a unit simplex with Kp vertices, mean-
ing that it consists of stochastic vectors again, as the following two propositions
assert:

Proposition 5.6. For K, p < ∞, let γ1, . . . , γp be a sequence of barycentric coordi-
nates. Then for ψ := Ψp(γ1, . . . , γp) it holds,

Kp

∑
i=1

ψi = 1, ψi ≥ 0 for all i = 1, . . . , Kp. (5.12)

Proposition 5.7. Let K, p < ∞. Let y ∈ RKp
with ∑Kp

i=1 yi = 1 and yi ≥ 0 for all
i = 1, . . . , Kp. Then there exists a sequence of barycentric coordinates γ1, . . . , γp so
that y = Ψp(γ1, . . . , γp).

From Proposition 5.6 it follows that no points outside of the unit simplex can be
constructed with Ψp restricted to the product polytope. Proposition 5.7 implies that
Ψp is surjective onto this unit simplex. We denote the unit simplex with Kp vertices
as the path affiliation polytope. For convenience of the reader, the proofs for the results
in this section will be given at its end.

Furthermore, Ψp is injective onMp
Σ:

Proposition 5.8. For K, p < ∞, Ψp as defined in Eq. (5.9) is injective on the product
polytopeMΣ.

With the path affiliation function, we can map paths of barycentric coordinates
into a Kp-dimensional space in a nonlinear way. Similarly to SPA II, we want to
map points from the image of the path affiliation function into the polytope MΣ

to construct subsequent barycentric coordinates of the dynamics. Specifically, we
want Ψp(γt−1, . . . , γt−p) to map to γt. In order to guarantee that Ψ maps toMΣ, we
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determine a column-stochastic matrix Λ̂M ∈ RK×Kp
so that

γt = Λ̂p Ψp(γt−1, . . . , γt−p). (5.13)

The hope is that the path affiliation function provides sufficient nonlinearity to ac-
curately predict nonlinear dynamics using Eq. (5.13).

Analogously to SPA II, we therefore formulate the following optimization prob-
lem to obtain a suitable matrix Λ̂p. Let [Σ, Γ] be the solution to (SPA I) for data points
X0, . . . , XT ∈ Rd. We further denote from now on

ψ
p
t−1 := Ψp(γt−1, . . . , γt−p). (5.14)

Then we define as the mSPA problem,

Λ̂p := arg min
Λ̂∗∈RK×Kp

∥∥∥[γp| · · · |γT]− Λ̂∗[ψp
p−1| · · · |ψ

p
T−1]

∥∥∥
F

,

subject to

Λ̂p ≥ 0 and
K

∑
k=1

Λ̂p
k,• = 1.

(mSPA)

From here onwards, we call Λ̂p the mSPA propagator. Note that for p = 1, Ψ1(γ) = γ

and (mSPA) is equivalent to (SPA II). Furthermore, for p > 1 we can always define
an mSPA model which is equivalent to SPA II:

Proposition 5.9. For every column-stochastic matrix Λ ∈ RK×K and every p ≥ 1,
there exists a column-stochastic matrix Λ̂p so that Λγt−1 = Λ̂pΨp(γt−1, . . . , γt−p)

for all γt−1, . . . , γt−p.

We can straightforwardly close the dynamical system in Eq. (5.13) by augment-
ing the mSPA propagator, denoting γ̂t−1 := [γT

t−1, . . . , γT
t−p]

T and defining

γ̂t = ΘpΨp(γ̂t−1) = Θpψ
p
t−1, (5.15)

where Θp =
[

Λ̂p

E

]
∈ RKp×Kp

. E ∈ {0, 1}Kp×Kp
is a matrix that copies γt−1, . . . , γt−p+1

from ψ
p
t−1 into γ̂t (see [WKSS21] for details).

Since Ψp is bijective between the product polytope and the unit simplex in Kp,
we can define an equivalent dynamical system on the path affiliations by

ψ
p
t = Ψp(Θpψ

p
t−1). (5.16)

In summary, we use the path affiliation function to measure closeness of a se-
quence of points inside the polytope to each sequence of vertices. We then construct
the mSPA propagator to derive a stable dynamical system.
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Example 5.2. Lorenz-96 model Let us consider the Lorenz-96 model, a time-continuous
dynamical system with states X = (X1, . . . , Xd)

T ∈ Rd, given by the equations

dXi

dt
= (Xi+1 − Xi−2)Xi−1 − Xi + G for i = 1, . . . 5, (5.17)

with initial state X0 = (3.8, 3.8, 3.8, 3.8, 3.8001) and parameter G = 3.8. We generate
a trajectory of length 2500 time steps with step size 0.1. We discard the first 500 time
steps to give the trajectory time to converge towards its attractor which resembles
a figure-eight. In order to investigate mSPA on low-dimensional data, we consider
only the X1 and X4 coordinates, giving data x1, . . . , xT ∈ R2 (see Figure 5.2). We
then solve SPA I with K = 3, meaning that it can be solved without loss to derive a
trajectory of barycentric coordinates. On these we train mSPA models with varying
memory depth with the first 1000 time steps of the data and consider their resulting
forward simulations.

We consider the forecasting error for the short term and compare the shape of
the long-term predictions with the original attractor. For the k-step forecasting er-
ror, we define a forecasting length of L = 30, select N points from the testing data
(xt1 , . . . , xtN) = (x1001, x1031, . . . , x1991) and from these create forward simulations
x̃ti+1, . . . , x̃ti+L, starting with the previous p points. The k-step forecasting error is
then defined as

Ek =
1
N

N

∑
t=1
‖x̃ti+k − xti+k‖2. (5.18)

We can see in Figure 5.3 that the k-step forecasting error drastically decreases start-
ing at a memory depth of 5 and becoming even better with p = 6. For the long-term
predictions, p = 1 generates a fixed point, p = 5 produces a slight resemblance
of the attractor shape but no figure-eight as desired, p = 6 gives an approximate
reproduction of the shape and with p = 7 mSPA is able to precisely recreate the
attractor. Note that the Lorenz-96 studied here is 5-dimensional, so that according
to Takens’ Theorem, we should need at most a memory depth of 5 to create topo-
logically equivalent dynamics since the barycentric coordinates with K = 3 contain
two independent coordinates, giving 2 · 5 + 1 = 11. The improvement with higher
memory depths seems to stem from the richer set of basis functions given by the
path affiliation function.

Remark. In all numerical examples for mSPA, the data were normalized into the
unit cube [−1, 1]d by a linear transformation to give each dimension equal weight.

5.2.2 mSPA in the Context of Dynamical Systems

Now that the mSPA method is introduced, let us investigate its theoretical foun-
dations in light of Takens’ Theorem. It can be shown that the dynamical system
Eq. (5.16) on the path affiliations is in fact generically topologically equivalent to the
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Figure 5.2: Visualisation of the attractor of the Lorenz-96 system with 5 dimensions
and G = 3.8. We can see that the system is periodic. Projecting onto the x1 and x4
coordinate, however, results in an overlap of the trajectory.

original dynamical system F. As explained at the end of Section 5.1.3, in order to
define an equivalent dynamical system on the barycentric coordinates in the case
K > d, we could use an injection from the original states to the barycentric coordi-
nates. For K ≤ d such an injection does generally not exist but the corresponding
delay-coordinate map could be one. In order to show when this is the case, let us
introduce the following variant of Takens’ Theorem from [Rob05].

Theorem 5.10 (Delay embedding Theorem for Lipschitz maps [Rob05]). Let A be a
compact subset of a Hilbert space H with upper box-counting dimension dbox, which
has thickness exponent σ, and is an invariant set for a Lipschitz map F : H → H.
Choose an integer p > 2(dbox + σ), and suppose further that the set Ap of p-periodic
points of F satisfies dbox(Ap) < p/(2 + σ). Then a prevalent set of Lipschitz maps
φ : H → R make the delay-coordinate map Φφ,F,p : H → Rp injective on A.

The contribution of Theorem 5.10 lies in extending the class of observables for
which the delay-coordinate is injective from differentiable to Lipschitz continuous
functions. In [DHvMZ15] it is observed that the Theorem can be generalized to
multivariate observables with a modified value for the memory depth, given by the
following: if the observable is m-dimensional, consisting of m independent scalar-
valued observables then the memory depth should be p > 2(dbox+σ)

m . In our case, the
barycentric coordinates are K-dimensional but since their sum always has to be 1,
they denote K− 1 independent observables so that a memory depth of p > 2(dbox+σ)

K−1

should be enough.
We can observe that the projection ρΣ is suited for the application of Theorem 5.10:
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Figure 5.3: Forecasting results for the Lorenz-96 system using mSPA with memory
p = 1, . . . , 7. We can see that for p ≤ 4 the forecasting error is comparably high
for 15 time steps ahead. It is significantly better with p ≥ 5. For the long-term
predictions, with p = 6 the figure-eight shape of the attractor can be reconstructed,
although more precisely with p = 7.

Lemma 5.11. The function ρΣ as defined in Eq. (5.4) is Lipschitz continuous.

This enables us to show that the delay-coordinate map of ρΣ defined in Eq. (5.8)
is typically injective:

Theorem 5.12. Let A and F be given as in Theorem 5.10. Let the projection ρΣ

from Eq. (5.4) be inside the prevalent set of Lipschitz maps from Theorem 5.10.
Then for a sufficient memory depth p, the delay-coordinate map ΦF,ρΣ,p is an
injection from A toMp

Σ.

This result implies that the sequences of barycentric coordinates should be equiv-
alent representations of states of the original system. This result can be extended to
the path affiliations. To this end, we can first state the following corollary.

Corollary 5.13. The function Ψp ◦ΦF,ρΣ,p is an injection from A into the path affilia-
tion polytope.

We are now in position to state a theorem which yields the equivalence between
the dynamics on the path affiliation polytope and the original dynamics.
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Theorem 5.14. Let A be given as in Theorem 5.10 and let F : A→ A generate
a discrete-time dynamical system on A, denoted by Xt+1 = F(Xt). Let the
projection ρΣ onto barycentric coordinates of the SPA I polytope be inside the
prevalent set of maps from Theorem 5.10. Then there exists an operator v so
that for a path affiliation vector ψ

p
t−1 = Ψp(γt−1, . . . , γt−p), it holds v(ψp

t−1) =

ρΣ(F(Xt−1)) = γt.

Since this theorem is the main result of the Section 5.2.2, its proof is given here
directly.

Proof. We can rewrite
γt = ρΣ(Xt) = ρΣ(F(Xt−1)). (5.19)

Since Φ is injective, thus bijective on its image, this is equal to

ρΣ(F(Xt−1)) = [ρΣ ◦ F ◦Φ−1](γt−1, . . . , γt−p). (5.20)

The injectivity of Ψp and the resulting existence of its inverse on the path affiliation
polytope gives

[ρΣ ◦ F ◦Φ−1 ◦ (Ψp)−1]︸ ︷︷ ︸
=:v

(ψ
p
t−1). (5.21)

In mSPA, we therefore approximate the operator v by the matrix Λ̂p.

Remark. An alternative way to approximate v is sketched in the Appendix of [WKSS21].
There instead of a column-stochastic matrix a neural network which outputs stochas-
tic vectors is used.

Moreover, note that the dynamics on the path affiliations are topologically equiv-
alent to the original dynamics F,

ψ
p
t = [Ψp ◦ΦF,ρΣ,p ◦ F ◦Φ−1

F,ρΣ,p ◦ (Ψ
p)−1](ψ

p
t−1). (5.22)

5.2.3 Proofs from Section 5.2

As promised, now are delivered the proofs of the previous results.

Proof of Proposition 5.6 (path affiliations are stochastic vectors)

Let γt, . . . , γt−p+1 be stochastic vectors, i.e., all entries are at least 0 and sum up to
1. Then by induction on p it can be shown that that the path affiliation vectors are
stochastic vectors, too.
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Let u, v be arbitrary stochastic vectors. Then

∑
i

Ψ2(u, v) = ∑
i1,i2

ui1vi2 = ∑
i1

ui1 ∑
i2

vi2 = ∑
i1

ui1 = 1, (5.23)

so that

∑
J(i)=[i1,i2]

Ψ2(γt−1, γt−2)i = ∑
i1,i2

(γt−1)i1(γt−2)i2 = ∑
i1

(γt−1)i1 ∑
i2

(γt−2)i2 = ∑
i1

(γt−1)i1 = 1.

(5.24)
For every p > 1, we find

Ψp+1(γt−1, . . . , γt−p, γt−p−1) = Ψ2(Ψp(γt−1, . . . , γt−p), γt−p−1) (5.25)

(at least up to permutation of the entries).
By the induction hypothesis that Ψp(γt−1, . . . , γt−p) is a stochastic vector, the in-

duction start in Eq. (5.23) yields that Ψp+1(Ψp(γt−1, . . . , γt−p), γt−p−1) is a stochastic
vector, too.

Proof of Proposition 5.7 (the image of Ψp is a polytope)

Each point Ψp(γ1, . . . , γp) is a Kp-dimensional stochastic vector, so that it is con-
tained in a unit simplex with Kp vertices. These vertices are the Kp-dimensional
unit vectors. It is left to show that each point in this polytope can be generated by
application of Ψp to a point [γ1, . . . , γp] ∈ Mp

Σ.
Let [u1, . . . , uKp ] ∈ Mp

Σ. We then need to prove the existence of γ1, . . . , γp so that
u1
...

uKp

 =


(γ1)1 · · · (γp)1

...
(γ1)K · · · (γp)K

 . (5.26)

For this, several relations between the entries of γ1, . . . , γp need to be satisfied: the
first entry of the above equation yields for the value for (γ1)1 that

(γ2)1 · · · (γp)1 =
u1

(γ1)1
, (γ2)1 · · · (γp)2 =

u2

(γ1)1
, . . . (γ2)K · · · (γp)K =

uKp−1

(γ1)1

⇒ (γ1)1((γ2)1 · · · (γp)1 + · · ·+ (γ2)K · · · (γp)K︸ ︷︷ ︸
=∑j Ψp−1(γ2,...,γp)j=1

) = u1 + · · ·+ uKp−1 .

(5.27)

This can be done equivalently for all entries of γ1, . . . , γp. For all entries of γ1, the
sets of terms required to construct it are disjoint (for (γ1)1, u1, . . . , uKp−1 are required,
for (γ1)2 one needs uKp−1+1, . . . , u2Kp−1 ,...). Moreover, the entries of u sum to one by
definition so that this holds for γ1 as desired. This can analogously be observed for
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γ2, . . . , γp, where again the entries from u needed are disjoint between the entries of
a γi.

With this, we can see that for each vector u in the path affiliation polytope, we
can find, even construct, points γ1, . . . , γp ∈ MΣ so that the path affiliation function
applied to them gives u. Therefore, the path affiliation function Ψp is surjective onto
the unit simplex with Kp vertices. The entries of Ψp always sum up to 1 (see Propo-
sition 5.6) so that no other points lie in its image.

Proof of Proposition 5.8 (Ψp is injective)

Let Ψp be defined as in Eq. (5.10) on all stochastic vectors γ ∈ RK. Since the concate-
nation of injective functions is injective again it is sufficient to show that one outer
product as defined in Eq. (5.11) is injective on the set of the barycentric coordinates:

Let u, ũ ∈ Rn and v, ṽ ∈ Rm be given. If u ⊗ v = ũ ⊗ ṽ it holds that ũ1 =

(u1v1)/ṽ1. This yields that the condition u1vi = ũ1ṽi yields for all i = 2, . . . , K

u1vi = ũ1ṽi = (u1v1)ṽi/ṽ1 so that ṽi = vi(ṽ1/v1). (5.28)

As a consequence, ṽ must be a scaled version of v with an arbitrary scaling constant
given by ṽ1/v1. Therefore ũ can only be a scaled version of u. Since the entries of all
barycentric coordinates must sum to 1 this means that u = ũ and v = ṽ.

Thus, Ψp is injective. As consequence, the inverse of Ψp exists on its image.

Proof of Proposition 5.9 (relation between mSPA and SPA II)

Let Λ be a minimizer mSPA and let p ≥ 1. Then for all paths i1, . . . , ip, define
Λ̂p ∈ RK×Kp

so that Λ̂p
ji = Λji1 where i is the index in the vector of path affiliations ψt

corresponding to the path i1, . . . , ip. This means that for each sequence of p indices,
Λ̂p

ij is equal to the value in the jth column of Λ that corresponds to the first entry of
this sequence. Then from

∑
i2,...,ip

(γt)i1(γt−1)i2 · · · (γt−p+1)ip

=(γt)i1 ∑
i2,...,ip

(γt−1)i2 · · · (γt−p+1)i2 = (γt)i1 ,
(5.29)
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it follows that

(Λ̂pψ
p
t )j = ∑

J(i)=[i1,...,ip]

Λ̂p
ji(ψ

p
t )i

= ∑
J(i)=[i1,...,ip]

Λ̂p
ji(γt)i1(γt−1)i2 . . . (γt−p+1)ip

=∑
i1

Λji1(γt)i1 ∑
i2,...,ip

(γt)i1(γt−1)i2 · · · (γt−p+1)ip

=∑
i1

Λji1(γt)i1 = (Λγt)j.

(5.30)

Therefore, a Λ̂p defined as above is equivalent to applying a solution of the SPA II
problem. As a direct consequence, the training error of mSPA is always bounded
from above by the training error of the solution of the standard SPA II problem.

Proof of Lemma 5.11 (ρΣ is Lipschitz continuous)

By construction, the polytopeMΣ is closed and convex. The orthogonal projection
onto such a set is always Lipschitz continuous with Lipschitz constant 1.

Proof of Theorem 5.12 (ΦF,ρΣ,p is injective)

By Lemma 5.11, ρΣ is Lipschitz continuous, mapping from A toMΣ, while Φ maps
from A toMp

Σ. Then the claim follows directly from Theorem 5.10 and the assump-
tion that ρΣ is inside the prevalent set of Lipschitz maps.

Proof of Corollary 5.13 (Ψp ◦ΦF,ρΣ,p is injective)

We map a point X ∈ A to ΦF,ρΣ,p and apply Ψp. The result lies inside the path affil-
iation polytope by definition of Ψp. Φp is injective by Theorem 5.12. Ψp is injective
by Proposition 5.8. The concatenation of injective functions is injective again so that
Ψp ◦ΦF,ρΣ,p is injective on A.

5.2.4 Using mSPA to Model Systems in the Full Space

We have seen how mSPA can model the evolution of the barycentric coordinates
from SPA I. The question naturally arises: how to transform the barycentric coordi-
nates back into the original state space? For K > d, the answer to this question is
simply by multiplication with Σ. For K ≤ d however, ρΣ is not injective and hence
admits no simple back-transformation. For this reason we utilize the same ideas as
in mSPA to compute an additional mapping from the path affiliation polytope to
the original space. Again, from Takens’ Theorem, or rather Theorem 5.14, directly
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results an injective mapping

Xt = [Φ−1
F,ρΣ,p ◦ (Ψ

p)−1]︸ ︷︷ ︸
=:w

(ψ
p
t ). (5.31)

The task is now to approximate this function.
This is done by defining an additional polytope, called the lifting polytope, arising

from SPA I with K′ vertices Σ′ and barycentric coordinates γ′. K′ should be chosen
so that the projection error is low or, if K′ > d, equal to 0. We then solve

Λ̂′p = arg min
Λ∗

‖[γ′p| · · · |γ′T]−Λ∗[ψp| · · · |ψT]‖F,

subject to

Λ̂′p ≥ 0 and
K

∑
k=1

Λ̂′pk,• = 1.

(SPA Lifting)

The low-dimensional polytope defined previously is in this context called the learn-
ing polytope since the dynamics are learned in it. Their states are lifted to the original
state space.

Clearly, there exist various ways to approximate w. The reason why this partic-
ular one is proposed is the following: if the data in the full state space admit a low-
dimensional representation, e.g., approximately lying inside a lower-dimensional
subspace, the task of finding a direct linear mapping from ψt to Xt, e.g., by (SPA Lifting)
without the constraints, would be badly conditioned, yielding error-prone or unsta-
ble models. This also became apparent when examining this way in practice. The
intermediate step of the lifting polytope therefore serves as a preconditioning step.

The complete mathematical forward model of the dynamics we derive thus is
given in the following way:

ψ
p
t = Ψp(γt, . . . , γt−p+1)

Xt = Σ′Λ̂′pψ
p
t

γt+1 = Λ̂pψ
p
t .

(5.32)

A conceptualization of the learning and lifting approach is shown in Figure 5.4. More-
over, an algorithmic form of the sequence of modelling steps to approximate dynam-
ics is given in Algorithm 3. The colors in the algorithm and figure classify steps into
the groups projection with SPA I transformation (green), learning and prediction of
the dynamics (orange) and lifting (purple).

Remark. When discussing optimal parameters for the delay-coordinate map in Chap-
ter 1, we found that the time lag, respectively sampling rate, between points can
severely affect the geometry of the image of the delay-coordinate map. For small
time lags, subsequent states can be strongly correlated so that the image of the delay-
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Figure 5.4: After performing dimension reduction with SPA I, we use mSPA to ap-
proximate the dynamics on the learning polytope. From the path affiliation poly-
tope, points are lifted to the full state space using the lifting polytope.

coordinate map is close to the low-dimensional subspace given by

{[φ(X), φ(F−1(X)), . . . , φ(F−p+1(X))] s.t. φ(X) = · · · = φ(F−p+1(X))}. (5.33)

In order to unfold the geometry of the true system well, it is therefore not always ad-
visable to use a small time lag. However, modelling complex dynamics with a large
time steps is often a too challenging problem. We therefore distinguish between
the forward time step τforward – typically small – and a memory time step τmemory. We
then construct ΦF,φ,p,τmemory and map ΦF,φ,pτmemory(Xt) to Xt+τforward . For mSPA, this
yields that we compute path affiliations ψt = Ψp(γt, . . . , γt−(p−1)τmemory) and solve
the optimization problem

Λ̂p = arg min
Λ∗

‖[γp+τforward | · · · |γ
′
T]−Λ∗[ψp| · · · |ψT−τforward ]‖F,

subject to

Λ̂p ≥ 0 and
K

∑
k=1

Λ̂p
k,• = 1.

(5.34)

This is illustrated in Figure 5.5. Fortunately, this procedure can be justified with

Figure 5.5: Illustration of the concept of a forward and a memory time step.
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Algorithm 3: Numerical scheme

Input: data points X1, . . . , XT ∈ Rd, K, K′, p ∈N

Learning of operators:
1 Solve (SPA I) for K to obtain [Σ, Γ] (learning polytope)

2 Solve (SPA I) for K′ to obtain [Σ′, Γ′] (lifting polytope)

3 Solve (mSPA) for Γ to obtain Λ̂p (learn propagator on learning polytope)

4 Solve (SPA Lifting) to obtain Λ̂′p (learn map from learning to lifting polytope)
Prediction :

5 For starting values γ1, . . . , γp on learning polytope compute ψ
p
p as in

Eq. (5.10)
6 for t = p + 1 : Tend do
7 γt ← Λ̂pψ

p
t−1 (Propagation on learning polytope as in Eq. (5.13))

8 ψ
p
t ← Ψp(γt, . . . , γt−p+1) (Computation of path affiliation)

9 γ′t ← Λ̂′pψ
p
t (Mapping to lifting polytope)

10 Xt ← Σ′γ′t (Lifting to original space)

Theorem 5.14 analogously as the definition of the dynamics on the path affiliations
simply by considering Eq. (5.22), replacing F with Fτforward and ΦF,ρΣ,p,τmemory . The
crucial point to observe is that the delay-coordinate map is an injection between
spaces and not times, almost regardless of the time lag. We can therefore compose
it together with a suitable injective function, say F, which happens to also repre-
sent a dynamical system, and preserve the injectivity, thereby defining a dynamical
system.

In [WKSS21] are shown several numerical examples of the learning and lifting
approach with mSPA, including a comparison to AR and SINDy models in both the
short and the long term. We do not provide a detailed comparison here but rather
show results of the mSPA results from these experiments to illustrate the capacity of
this method. Additional details on some of the examples can be found in [WKSS21].
Afterwards, we will apply mSPA to ABM II from the previous chapter.

Example 5.3. Kuramoto-Sivashinsky equation The Kuramoto-Sivashinsky equa-
tion (KS) denotes a one-dimensional fourth-order partial differential equation de-
fined in the 1970s which often serves as an example for complex dynamical systems
(see [LL21]). We consider the following variant,

ut + 4uxxxx + 16uxx + 8(u2)x = 0, t ≥ 0 (5.35)

for u ∈ [0, 2π] with periodic boundary conditions. The domain is now discretized
into 100 equidistant grid points and the PDE is numerically integrated using a fourth-
order exponential time differencing Runge-Kutta method with a time step of 0.001.
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As initial values we choose u(x) = 0.0001 cos(x)(1 + sin(x)). We integrate until
a time of T = 8 and discard the data until T = 4 because of an apparent strong
dependence on initial values in the beginning. This gives the trajectory of a 100-
dimensional dynamical system with 4000 time steps. We use the first 3000 for train-
ing of mSPA.

We can see that the KS PDE with the chosen parameters describes a travelling
wave (see Figure 5.6, top left). For SPA I, we choose K = 3 to project the data onto a
triangle and K′ = 8 since this gives a low relative projection error of approximately
0.04. We then apply mSPA with p = 3, . . . , 6 and find that we can well recreate the
dynamics in the long term starting with p = 4. Over time, the prediction error in
the barycentric coordinates and the full state space stays in the same order of magni-
tude for long-term predictions on the testing data (Figure 5.6, right). The travelling
wave shape of the trajectory is also recreated with mSPA (Figure 5.6, bottom left).
The frequency of the travelling was not precisely met, however. This could not be
remedied by training on longer time series data, either.

Figure 5.6: Top left: numerical solution of the KS PDE (5.35). Bottom left: mSPA
prediction with K = 3, K′ = 8, p = 6. Right: forecasting error over time in barycen-
tric coordinates (top; absolute Euclidean error) and full space (bottom; relative Eu-
clidean error).

Example 5.4. Chua circuit As a second example we consider the Chua circuit. Orig-
inally published in the 1980s in [CKM86,Wu87], Chua circuits describe models of an
electric circuit with chaotic behaviour. We consider the following three-dimensional
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variant:

Ẋ1 = αX2 − µ0X1 −
µ1

3
X3

1

Ẋ2 = X1 − X2 + X3

Ẋ3 = −βX2

α = 18, β = 33, µ0 = −0.2, µ1 = 0.01

(5.36)

Integrating with a Runge-Kutta-4 scheme with a time step of 0.001 until T = 20, we
obtain a trajectory of 20000 time steps. Figure 5.7 (top left) shows the lobe-switching
behaviour of the system.

We use K = 3 and K′ = 4 in SPA I, yielding no loss in the lifting polytope since
K′ > 3. Since the system evolves more slowly than the KS PDE, we choose a for-
ward time step of τforward = 0.001 and a memory time step 30-fold this size, i.e.,
τmemory = 0.03 for a better unfolding of the Chua attractor by the delay-coordinate
map (see Figure 5.7, bottom left). Since the Chua circuit is a chaotic system, making
precise short-term predictions is especially hard and typically not the goal for nu-
merical methods. Instead, we compare the shape of the attractor with the one from
the mSPA prediction to assess whether mSPA can recreate the long-term behaviour.
Chua is especially interesting in this regard since its attractor consists of two con-
nected components between which the dynamics switch. Figure 5.7, right, shows
that especially for the barycentric coordinates this is successful with p = 7. In the
full space, the difference in geometry between original and reconstructed attractors
is stronger, but the lobe-switching behaviour is reconstructed, too.

Example 5.5. Lorenz-96, chaotic regime In order to demonstrate that mSPA can
recreate statistical properties of chaotic dynamical systems in the short term, we
consider the Lorenz-96 system introduced in Example 5.2 but with different param-
eters. We choose d = 10 and set the parameter G = 5 to obtain a chaotic behaviour
of the dynamics. This can be checked by noting that the maximal Lyapunov expo-
nent [CCV09] of the dynamics is positive.

We use a time step of length 0.05 and create one trajectory of length 100 (2000
time steps) for training in mSPA and 50 trajectories of length 7.5 (150 time steps)
each, starting at randomly chosen points close to the Lorenz-96 attractor for testing.
We find learning and lifting polytopes using SPA I with K = 3 and K′ = 8. The
lifting polytope induces a relative projection error of 0.23.

After fitting the mSPA model and making predictions starting at the starting
values of the testing trajectories, we compute the autocorrelations of the predictions
with those from the testing trajectories. For a set of Ntest trajectories of length T time
steps each in the learning polytope, the autocorrelation of the ith coordinate for a
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Figure 5.7: Top left: numerical realisation of the Chua circuit (5.36). Bottom left:
delay-coordinate map of the first entry of the barycentric coordinates gives a similar
geometric shape as the true attractor. Left: mSPA predictions with p = 7 in full
space (top) and baycentric coordinates (bottom, together with true trajectory).

time lag of l time steps is defined as

al
i :=

1
Ntest(T − l)

Ntest

∑
r=1

T−l

∑
t=1

((γr
t)i − γ̄i)((γ

r
t−l)i − γ̄i). (5.37)

γ̄ is the mean of γ among all testing trajectories and γr
t is the tth point in the rth

testing trajectory. The definition is analogous for γ′ (lifting polytope) and x (full
space).

The results are shown in Figure 5.8. mSPA gives accurate predictions in the learn-
ing polytope (Figure 5.8, I.). In the lifting polytope and the full space, the predic-
tions are not as precise through the additional approximation error from the non-
trivial lifting step. The autocorrelations are well recreated (Figure 5.8, II.–IV.) in
both learning and lifting polytopes and the full space. Only for short time lags for
lifting polytope and full space there is a larger difference. As demonstrated in the
Chua example, mSPA precisely predicting the evolution of chaotic dynamics is gen-
erally too challenging for mSPA, but, as this example shows, it is able to reproduce
quantities related to the statistical behaviour.

Example 5.6. Opinion dynamics ABM II As a last example, let us apply the learn-
ing and lifting approach with mSPA to ABM II from Chapter 4. ABM II described
the evolution of opinions among agents in a bounded two-dimensional space, re-
sulting in a high-dimensional stochastic dynamical system. This example is meant
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Figure 5.8: Results for mSPA on the chaotic Lorenz-96 system. I. Examples of fore-
casts. Prediction in blue (with p = 7), true data in grey. II.–IV. Autocorrelations
in learning and lifting polytopes and full space. Only the first three coordinates of
each are shown for the sake of visualization.

to bridge the two distinct chapters, illustrating that mSPA is directly suitable for
certain problems in agent-based modelling.

To this end, in contrast to Chapter 4 we assume to be able to assess the microstate,
i.e., the individual opinions of each agent, use SPA I to project this high-dimensional
state onto a low-dimensional polytope and deploy mSPA to predict the evolution of
the microstate.

Let us consider a complete network first with N = 3000 agents. The agents
are distributed onto the three vertices with the ratio [2/3, 1/6, 1/6]. We create one
realisation of length T = 1000 and use K = 3 for the learning polytope, K′ = 8
for the lifting polytope. For computational memory reasons, we include only every
tenth agent into the data, yielding a 600-dimensional system.

We find (Figure 5.9) that the microdynamics show periodic behaviour. This pe-
riodicity is also translated to the barycentric coordinates on the learning and lifting
polytopes (Figure 5.9, bottom right). mSPA reconstructs the oscillating behaviour
although the frequency is not precisely met (bottom left and right). Lifting back to
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the full state space creates qualitatively similar dynamics as the true microdynamics
in the long term (bottom left).

Figure 5.9: Learning and lifting with mSPA on ABM II (full network). For simplicity,
only the first coordinate of opinions is shown. Left: true and predicted microstates.
Top right: vertices of learning and lifting polytope. Bottom right: first entry of true
and predicted barycentric coordinates in learning and lifting polytopes.

For two clusters, we again create one realisation but with different distributions
between the two clusters (the ones from Chapter 4). The realisation of the micro-
dynamics is not as regular as for one cluster, with the periodicity inside the clusters
occasionally interrupted (Figure 5.10, top left). Still, mSPA manages to reconstruct
the periodicity, although again with the wrong frequency compared to the true mi-
crodynamics (bottom right). Clearly, mSPA does not recreate the used realisation
precisely but the creation of it underlay stochastic influences. Rather, it captures the
overall behaviour well, describing time-lagged oscillations of the opinions inside
each cluster. Furthermore, while the amplitudes of the true barycentric coordinates
in the learning polytope approximately are matched by the prediction, the lifting
does not produce a good approximation of the amplitude in the lifting polytope
and, as a consequence, in the full state space. Note that the solutions of SPA I for
both the learning and the lifting polytope detected the differences in clusters since
the vertices represent a separation of microstates between the clusters (top right).

In summary, SPA I manages to find typical patterns in the microstates. mSPA
manages to detect the periodicity in the dynamics of the ensuing barycentric coor-
dinates for both the one- and more complicated two-cluster case. The lifting step
produces a reasonable, if not perfect, approximation of the microstates in the full
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Figure 5.10: Learning and lifting with mSPA on ABM II (two clusters). For sim-
plicity, only the first coordinate of opinions is shown. Left: true and predicted mi-
crostates. Top right: vertices of learning and lifting polytope. Bottom right: first
entry of true and predicted barycentric coordinates in learning and lifting polytopes.

state space.
Overall, the examples show that mSPA with the learning and lifting approach

can model systems of very different complexity and dimension on the basis of the
SPA representations of points. After proving that under general conditions on a
dynamical system, there exists a topologically equivalent dynamical system on the
path affiliations, we estimated these dynamics solving the (mSPA) problem. We then
evaluated mSPAs ability to model dynamical systems of varying dimensions that
are periodic, chaotic and stochastic and saw that while it did not always generate
exact recreations of the true dynamics, it could be utilized to recreate dominant long-
term behaviour or short-term statistics.

Ensuing Research Questions

mSPAs shortcomings could be tackled using, e.g., more potent functions for the ap-
proximation of the operator v, e.g., a neural network or other nonlinear functions
that map into a unit simplex. Moreover, it has to be investigated why certain down-
falls exists, e.g., the imperfect recreation of the frequency for periodic systems.

Some first answers on how to choose the polytope are given in [WKSS21]. They
include that the polytope should be chosen so that its boundary is tight around
the points that are projected onto it. Moreover, an orientation for the choice of the
memory time step would be desirable. As explained in [WKSS21], it should be
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chosen such that the geometry of the trajectory in the product polytope is similar to
the one of the true attractor. A more precise answer does not yet exist.

Especially in regard to high-dimensional systems such as ABMs, mSPA could be
a valuable tool for the modelling of complex dynamics.

5.3 SPA and mSPA as Connecting Links Between Tak-

ens and Mori–Zwanzig

The mSPA method has now been introduced and its capacities and shortcomings
demonstrated on various examples. The last example was meant to illustrate its
connection to other aspects of this thesis: it can be used to model high-dimensional
dynamical systems by projecting to lower-dimensional coordinates, modelling their
evolution over time and lifting back to the full space. As motivated in the beginning
of this chapter, this procedure is in line with the core theme of this thesis: in mSPA
we voluntarily project to a lower-dimensional polytope. The then inaccessible infor-
mation of the full state is substituted by memory terms of the accessible variables,
the barycentric coordinates with respect to the polytope.

As a final step of this thesis, let us discuss where mSPA can be placed in regard
to the previously introduced numerical methods and the theoretical perspectives.

The connection between mSPA and the Koopman-based methods can be formu-
lated as follows. In the Koopman context, the barycentric coordinates denote an
observable and the path affiliation function denotes a high-dimensional basis. One
then solves a least squares problem to find a matrix which connects this basis func-
tion, evaluated at one time step of the dynamics, to a future state of the observable.
In mSPA, a constraint is imposed on this matrix that it be column-stochastic so that
subsequent steps of the dynamics are guaranteed to lie in the domain of the path
affiliation function. The ensuing dynamics are of the form

γt = f (γt−1, . . . , γt−p) where f = Λ̂pΨp (5.38)

and are therefore a nonlinear autoregressive model in γ. Here arises a direct simi-
larity to SINAR which also estimates such models and, as we saw, emerges from the
Mori–Zwanzig formalism. To combine mSPA with SINAR, it could be worthwhile
to impose a sparsity constraint on the determination of Λ̂p and possibly find more
interpretable models.

Analogously, it can be observed that the standard SPA II problem can be seen as a
DMD problem with a constraint to column-stochastic matrices. Since the projection
to barycentric coordinates ρΣ is an observable of underlying dynamics, one could
equivalently view this as EDMD, too, remembering that EDMD is simply DMD with
observations instead of full states.
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Moreover, SPA itself can be seen in connection to Kernel regression or nearest
neighbours regression, which itself were directly inspired from Takens’ Theorem.
In Kernel regression, subsequent states were constructed by a weighted average
of data points. The weights were chosen according to the closeness of the current
dynamical state to other points. In SPA II, we use as weights the closeness to vertices
of a polytope and compute a weighted average of the columns of the matrix ΣΛ.
Eq. (5.39) recaps the nearest neighbour regression and the SPA II model.

Nearest neighbour regression: xt+1 =
L

∑
i=1

xti+1wi, SPA II: xt+1 =
K

∑
i=1

(ΣΛ|i)γi

(5.39)
where Λ|i denotes the ith column of Λ. In mSPA, the weights are the entries of the
path affiliation function. Like Kernel and nearest neighbours regression, SPA and
mSPA therefore rely on the smoothness of the projected dynamics to construct a
reasonable approximation of it. In contrast to them, however, SPA II and mSPA do
not directly use data for predictions but construct a parametric model, although, in
mSPA, with many parameters.

Given that establishing connections between topics is an integral part of this the-
sis, this small section is meant to illustrate how the different theoretical approaches
and numerical methods are connected. Takens’ Theorem directly inspires Kernel
and nearest neighbours regression. Mori–Zwanzig justifies NAR models. SPA and
mSPA function as conceptual hybrids of both approaches. See the diagram below
for illustration.

A rigorous theory on the connections between Takens and Mori–Zwanzig does,
as of now, not exist. The perspective presented here should at least inspire further
research in this direction and, furthermore, illustrate that in the field of dynamical
systems modelling, there exist innumerable approaches to the same problem that,
often times, are more strongly linked than one might suspect at first glance.



Summary

Detecting the governing mathematical rules of a dynamical system from data per-
sists to be a challenge. It becomes particularly difficult when the variables of the
system can only be partially observed in the form of a so-called observable func-
tion. In this case information about variables that can be vital for the prediction of
future states is missing. In order to still formulate the dynamics of the observable,
it can be shown that by exploiting its memory terms one can make up for the lost
information. This can be placed on a mathematical ground by the delay embedding
theorem of Takens and the Mori–Zwanzig formalism (MZ).

In this thesis, novel numerical methods for the modelling of the observed dy-
namics were developed by using Takens and MZ to extend known methods used
for memoryless systems. Firstly, the method Sparse Identification of Nonlinear Dy-
namics (SINDy) was combined with the family of autoregressive (AR) models to de-
fine Sparse Identification of Autoregressive Models (SINAR) which seeks a sparse
representation of memory-exhibiting dynamics. It was compared to various others
theoretically and on examples coming from different fields.

Another new numerical method was introduced in which a high-dimensional
dynamical system is projected onto a low-dimensional convex polytope using the
Scalable Probabilistic Approximation (SPA) algorithm. The projection to the poly-
tope was interpreted as an observable and memory was used to estimate the pro-
jected dynamics in a newly introduced method called memory SPA (mSPA). It was
shown that mSPA can generate strong prediction accuracy for various dynamical
systems while guaranteeing stability by keeping the dynamics inside the polytope.

As another contribution of this thesis, the identification of memory-exhibiting
dynamics was connected with the field of agent-based modelling. To this end, two
new ABMs were defined, the high-dimensional representation of the states of all
individual agents was interpreted as the full system state and a low-dimensional
statistic as the observable. Then the ABM was translated into the setting introduced
before. It was shown in a detailed numerical analysis using SINAR that including
memory generally improves the accuracy of the model identification, moreover, that
adding a sparsity constraint can improve the model and that the model fitting can
strongly depend on the data.

The thesis was concluded with a small note on how along the different methods
discussed, the seemingly unrelated theoretical perspectives of Takens and Mori–
Zwanzig could be connected.
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Zusammenfassung

Die dominanten mathematischen Regeln eines dynamischen Systems aus Daten zu
ermitteln ist weiterhin eine Herausforderung, welche besonders schwierig wird,
wenn die Variablen eines Systems nur in Form einer so genannten Observablenfunk-
tion partiell beobachtet werden können. Um trotzdem die Dynamik der Observ-
ablen formulieren zu können, ist es möglich, die Gedächtnisterme der Observablen
zu benutzen, um das Fehlen der Information über die nicht-beobachtbaren Vari-
ablen auszugleichen. Dies kann auf ein mathematisches Fundament gestellt werden
durch das (eng.) Delay-Embedding-Theorem von Takens und den Mori–Zwanzig
Formalismus (MZ).

In dieser Arbeit wurden neue numerische Methoden für die Modellierung der
beobachteten Dynamik entwickelt, indem mithilfe von Takens und MZ bereits bekan-
nte Methoden für gedächtnislose Dynamiken erweitert wurden. Zunächst wurde
die Methode Sparse Identification of Nonlinear Dynamics (SINDy) mit autoregres-
siven (AR) Modellen kombiniert, um Sparse Identification of Autoregressive Mod-
els (SINAR) zu definieren – eine Methode, die eine (eng.) sparse Darstellung einer
gedächtniszeigenden Dynamik zu finden versucht. Diese Methoden wurden un-
tereinander und mit anderen auf theoretischer Basis und anhand verschiedener Beispiele
verglichen.

Eine weitere numerische Methode wurde eingeführt, mit der durch den Scalable
Probabilistic Approximation (SPA) Algorithmus eine hochdimensionale Dynamik
auf ein niedrigdimensionales Polytop projiziert wird. Die Projektion auf das Poly-
top wurde als Observable interpretiert und Gedächtnis benutzt, um die projizierte
Dynamik mit der neuen Methode memory SPA (mSPA) zu schätzen. Es wurde
gezeigt, dass mSPA gute Genauigkeit für verschiedene dynamische Systeme erre-
ichen kann und gleichzeitig Stabilität garantiert, indem die Dynamik innerhalb des
Polytops bleibt.

Als ein weiterer Beitrag dieser Arbeit wurde die Identifikation von gedächt-
niszeigender Dynamik mit dem Feld von agentenbasierter Modellierung (ABM)
verbunden, wofür zwei neue ABMs definiert wurden. Die hochdimensionale Darstel-
lung der Zustände ihrer einzelnen Agenten wurden als den vollen Systemzustand
und eine niedrigdimensionale Statistik als die Observable interpretiert und die ABMs
wurden in das zuvor eingeführte Konzept übersetzt. Es wurde mit SINAR u.a. de-
tailliert gezeigt, dass das Hinzunehmen von Gedächtnis im Allgemeinen die Genauigkeit
der Modellidentifikation verbessert.

Diese Arbeit wurde mit einer Beobachtung darüber abgeschlossen, wie durch
die verschiedenen untersuchten Methoden die scheinbar nicht verwandten theo-
retischen Perspektiven von Takens und Mori–Zwanzig verbunden werden könnten.
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Appendix

It was originally not planned to relegate any results or proofs to an Appendix. How-
ever, the length and technical nature of the proof of Theorem 2.4 demands it.

Proof of Theorem 2.4

Proof. For the proof we will use several results from classic linear algebra. For de-
tails, please refer to, e.g., [GVL96].

The minimizer y of a term of the form ‖yD̃ − b̃‖2 is equal to the solution of the
normal equation yD = b with D = D̃D̃T, b = b̃D̃T. Let us further assume the per-
turbed system (y + ∆y)(D + ∆D) = b + ∆b. One can show the relations

‖(Id− B)−1‖F ≤
1

1− ‖B‖F
if ‖B‖F < 1, D + ∆D = D(Id + D−1∆D),

and if ‖∆D‖F <
1

‖D−1‖F
, the above lead to ‖(D + ∆D)−1‖F ≤

‖D−1‖F

1− ‖D−1‖F‖∆D‖F
.

From this, we can derive from the perturbed system

(y + ∆y)(D + ∆D) = b + ∆b⇒ ∆y(D + ∆D) = (∆b− y∆D)

⇒∆y = (∆b− y∆D)(D + ∆D)−1 = (∆b− y∆D)(Id + D−1∆D)−1D−1

⇒‖∆y‖F ≤ ‖(Id + D−1∆D)−1‖F‖D−1‖F(‖∆b‖F + ‖∆Dy‖F)

⇒‖∆y‖F

‖y‖F
≤ ‖D−1‖‖D‖F

1− ‖D−1‖‖∆D‖F
(
‖∆b‖F

‖b‖F
+
‖∆D‖F

‖D‖F
).

For the last step it was used that yD = b yields ‖y‖F‖D‖F ≥ ‖b‖F. Further, for the
function ‖ · ‖2Σ, it holds

‖B‖2
2Σ =

T

∑
t=1
‖bt‖2

F =
T

∑
t=1

m

∑
i=1

(bt)
2
i = ‖B‖2

F. ∀B ∈ Rm×T.

where bt is the tth column of B.
Translating to the setting of the theorem, we want to minimize ‖X′ − Aψ(X)‖F,

or equivalently solve Aψ(X)ψ(X)T = X′ψ(X)T, assuming that ψ(X) has full row-
rank (assumption (A2)). We therefore identify D with ψ(X)ψ(X)T, b with X′ψ(X)T

and y with A.
Let us define

∆(ψ(X)ψ(X)T) := ψ(X + ∆X)ψ(X + ∆X)T − ψ(X)ψ(X)T

∆(X′ψ(X)T) := (X′ + ∆X′)ψ(X + ∆X)T − X′ψ(X)T.
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Then we obtain from the considerations above

‖∆A‖F

‖A‖F
≤ ‖(ψ(X)ψ(X)T)−1‖F‖ψ(X)ψ(X)T‖F

1− ‖(ψ(X)ψ(X)T)−1‖F‖∆(ψ(X)ψ(X)T)‖F
(
‖∆(X′ψ(X)T)‖F

‖X′ψ(X)T‖F
+
‖∆(ψ(X)ψ(X)T)‖F

‖ψ(X)ψ(X)T‖F
).

(A.1)
We can further prove the following helpful relations:

‖ψ(X)‖2
F =

N

∑
i=1

T−1

∑
t=0

ψ(xt)
2
i ≤

N

∑
i=1

T−1

∑
t=0

ψmax‖xt‖2
F ≤ ψmaxN‖X‖2

F

⇒ ‖ψ(X)‖F = ψmax
√

N‖X‖F.

(A.2)

‖ψ(X + ∆X)T − ψ(X)T‖2
F =

N

∑
i=1

T−1

∑
t=0

(ψ(xt + ∆xt)− ψi(xt))
2

(A1)
≤

N

∑
i=1

T−1

∑
t=0
‖∆xt‖2

Fψ2
max = Nψ2

max‖∆X‖2
F

⇒ ‖ψ(X + ∆X)T − ψ(X)T‖F ≤
√

Nψmax‖∆X‖F.

(A.3)

and thus

‖ψ(X + ∆X)‖F = ‖ψ(X) + (ψ(X + ∆X)− ψ(X))‖F

≤ ‖ψ(X)‖F + ‖ψ(X + ∆X)− ψ(X)‖F ≤ ‖ψ(X)‖F +
√

Nψmax‖∆X‖F.

(A.4)

We can now derive the following upper and lower bounds for the numerators and
denominators of Eq. (A.1):

1.

‖X′ψ(X)‖2
F =

N

∑
i=1

m

∑
j=1

T−1

∑
t=0

(xt+1)
2
j ψi(xt)

2

≥
N

∑
i=1

m

∑
j=1

T−1

∑
t=0

(xt+1)
2
j ‖xt‖2

Fψ2
min

=
N

∑
i=1

T−1

∑
t=0

ψ2
min‖xt‖2

F‖xt+1‖2
F

= Nψ2
min‖X, X′‖2

F

⇒ ‖X′ψ(X)‖F ≥
√

Nψmin‖X, X′‖F.
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2.

‖∆(X′ψ(X)T)‖F = ‖(X′ + ∆X′)ψ(X + ∆X)T − X′ψ(X)T‖F

= ‖X′(ψ(X + ∆X)T − ψ(X)T) + ∆X′ψ(X + ∆X)‖
≤ ‖X′‖‖ψ(X + ∆X)T − ψ(X)T‖F + ‖∆X′‖F‖ψ(X + ∆X)‖F

(A.3),(A.4)
≤ ‖X′‖F‖∆X‖Fψmax

√
N + ‖∆X′‖F(‖ψ(X)‖F + ‖∆X‖Fψmax

√
N)

(A.2)
≤ ‖X′‖F‖∆X‖Fψmax

√
N + ‖∆X′‖F(

√
Nψmax‖X‖F + ‖∆X‖Fψmax

√
N)

≤ ψmax
√

N(‖X′‖F‖∆X‖F + ‖∆X′‖F‖X‖F + ‖∆X′‖F‖∆X‖F)

3.

‖ψ(X)ψ(X)T‖2
F =

N

∑
i,j=1

T

∑
t=1

ψi(xt)
2ψj(xt)

2 ≥
N

∑
i,j=1

T

∑
t=1

ψ4
min‖xt‖4

F

⇒ ‖ψ(X)ψ(X)T‖F ≥ Nψ2
min‖X‖4Σ

‖ψ(X)ψ(X)T‖F ≤ Nψ2
max‖X‖4Σ analogously.

4.

‖∆(ψ(X)ψ(X)T)‖2
F = ‖ψ(X + ∆X)ψ(X + ∆X)T − ψ(X)ψ(X)T‖2

F

=
N

∑
i,j=1

T

∑
t=1

(ψi(xt + ∆xt)ψj(xt + ∆xt)− ψi(xt)ψj(xt))
2

≤
N

∑
i,j=1

T

∑
t=1

ψ4
max‖∆xt‖4

F = ψ4
maxN2‖∆X‖2

4Σ

⇒‖∆(ψ(X)ψ(X))T‖F ≤ ψ2
maxN‖∆X‖4Σ.

Substituting into Eq. (A.1), we can derive

‖∆A‖F

‖A‖F
≤ ‖(ψ(X)ψ(X)T)−1‖Fψ2

maxN‖X‖4Σ

1− ‖(ψ(X)ψ(X)T)−1‖Fψ2
maxN‖∆X‖4Σ

(
ψmax(‖X′‖F‖∆X‖F + ‖∆X′‖F‖X‖F + ‖∆X′‖F‖∆X‖F)

ψmin‖X, X′‖2Σ
+

ψ2
max‖∆X‖4Σ

ψ2
min‖X‖4Σ

).

Assumption (A2) was needed to guarantee the existence of (ψ(X)ψ(X)T)−1 and as-
sumption (A3) was needed to guarantee that the denominator in the first term is
positive.
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K. Nagel, and C. Schütte. Prediction of Covid-19 spreading and op-
timal coordination of counter-measures: From microscopic to macro-
scopic models to pareto fronts. PLOS ONE, 16(4):1–29, 04 2021.

[WDKW21] N. Wunderling, J. F. Donges, J. Kurths, and R. Winkelmann. Inter-
acting tipping elements increase risk of climate domino effects under
global warming. Earth System Dynamics, 12(2):601–619, 2021.

[Whi36] H. Whitney. Differentiable manifolds. Annals of Mathematics, 37, 6
1936.

[WHR12] E. Wit, E. v. d. Heuvel, and J.-W. Romeijn. ‘all models are wrong...’:
an introduction to model uncertainty. Statistica Neerlandica, 66(3):217–
236, 2012.

[WKR14] M. Williams, I. Kevrekidis, and C. Rowley. A data-driven approxima-
tion of the Koopman operator: Extending Dynamic Mode Decompo-
sition. Journal of Nonlinear Science, 25, 2014.



Bibliography 167

[WKS21] N. Wulkow, P. Koltai, and C. Schütte. Memory-based reduced mod-
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