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Abstract

In this thesis we prove the existence of m-armed spiral wave solutions

for the complex Ginzburg-Landau equation in the circular and spherical

geometries. Instead of applying the shooting method in the literature, we

establish a functional approach and generalize the known results of exis-

tence for rigidly-rotating spiral waves. Moreover, we prove the existence of

two new patterns: frozen spirals in the circular and spherical geometries,

and 2-tip spirals in the spherical geometry.
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Chapter 1

Introduction

1.1 The paradigm of Ginzburg-Landau spiral waves

Pattern formation of spiral waves on two-dimensional manifolds has been observed

in physiological, chemical, and biological models; see the pioneering investigations

[WiRo46], [Be51], [ZhRo64] and [Wi72]. In physiology, spiral waves of electricity ap-

pear on heart tissues during cardiac arrhythmia and life-threatening fibrillation. In

chemistry, the diffusive Belousov-Zhabotinsky reaction triggers intricate spiral waves

on a petri dish; see the survey [Be&al97]. In biology, spiral waves arise during aggre-

gation of slime mold via chemotactic movement; see [FaLe98].

From a mathematical point of view, spiral waves can be triggered by a mechanism

composed of the Turing instability and symmetry breaking ; see [Tu52], [GoSt03],

and [Mu03]. The Turing instability is induced by a diffusion process, and mostly

together with an excitable or oscillatory reaction kinetic. Hence reaction-diffusion

systems are ideal mathematical models for studying spiral waves. The symmetry of

a reaction-diffusion system is best described as equivariance with respect to certain

group actions. Equivariance of the underlying reaction-diffusion system should be

carefully distinguished from spatio-temporal symmetries of its solutions. For many

more details see the surveys [FiSc03], [GoSt03], and [Fi&al07].

Concerning the mechanism that triggers spiral waves, however, few rigorous re-

sults are available. One of the popular models is the following cubic supercritical

Ginzburg-Landau equation on R2:

∂tΨ = ∆R2Ψ + (1− |Ψ|2 − i β |Ψ|2) Ψ. (1.1)

Here β ∈ R is a prescribed kinetics parameter. The significance of (1.1) is three-

fold. First, it plays a central role in the theory of nonlinear hydrodynamics and con-

densed matter physics; see [Pi06]. Second, it is a normal form for general parameter-
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dependent PDEs near the Hopf instability in reaction kinetics; see [Sc98] and [Mi02].

Third, the solutions reveal a beautiful world of spatio-temporal patterns; see [ArKr02].

One important feature of (1.1) is the global S1-equivariance: Ψ is a solution of

(1.1) if and only if eiϑ Ψ is also a solution, for each ϑ ∈ S1 ∼= R/2πZ. This global

gauge symmetry is closely related to the appearance of rotating wave solutions. More

specifically, it allows one to pursue the following m-armed spiral Ansatz :

Ψ(t, s, ϕ) = e−iΩt
(
A(s) eip(s)

)
eimϕ. (1.2)

Here m ∈ N is fixed and (s, ϕ) ∈ [0,∞) × [0, 2π) denotes polar coordinates on R2;

see [Co&al78], [Gr80], and [KoHo81]. Once a nontrivial solution of (1.1) in the form

of (1.2) exists, its associated spiral pattern consists of a tip and a spiral-like shape.

The tip is a jump discontinuity of the phase field P (t, s, ϕ) := −Ωt+ p(s) +mϕ and

resides at s = 0. The shape is defined as the zero contour of the phase field on R2,{(
s cos(ϕ(t, s)), s sin(ϕ(t, s))

)
: P (t, s, ϕ(t, s)) = 0

}
,

and it takes the form of a rigidly-rotating spiral for our Ansatz (1.2).

Let us substitute the spiral Ansatz (1.2) into (1.1). This results in an ODE system

for the amplitude function A(s) and the phase derivative p′(s):

A′′ +
1

s
A′ − m2

s2
A− A (p′)2 + (1− A2)A = 0, (1.3)

Ap′′ + 2A′ p′ +
1

s
A p′ + (Ω− β A2)A = 0. (1.4)

The rotation frequency Ω ∈ R is an unknown parameter that we have to determine.

The approach developed in [Gr80] and [KoHo81] for solving the resulting ODE

system (1.3–1.4) involves two steps that can be sketched as follows.

• Step 1: shooting method

Begin with the case β = 0. It follows that necessarily Ω = 0 and p′(s) is

identically zero. Hence it suffices to solve a second-order ODE for A(s):

A′′ +
1

s
A′ − m2

s2
A+ (1− A2)A = 0. (1.5)

Notice that the location s = 0 of the tip is a singularity of (1.5). By analyticity,

any bounded nontrivial solution A(s) of (1.5) satisfies the power series expansion

A(s) = ams
m +O(sm+1) as s→ 0.

The shooting method continues this solution globally, with am 6= 0 as the shoot-

ing parameter.
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• Step 2: perturbation arguments

The cases 0 < |β| � 1 can be treated by careful phase portrait analysis. In

particular, it is shown that the shooting manifold and the center-unstable man-

ifold of the trivial solution intersect transversely; see [KoHo81] Theorem 3.1.

Therefore, their intersection, which produces m-armed spirals persists for small

complex perturbations −i β |Ψ|2 Ψ on the reaction kinetic of (1.1).

Motivated by the existence of spiral waves on R2, in [Pa&al94] the authors con-

sidered (1.1) on the unit disk B2 equipped with Neumann boundary conditions

∂tΨ =
1

b
∆B2Ψ + (1− |Ψ|2 − i β |Ψ|2) Ψ,

and added a diffusion parameter b > 0. Based on numerical evidences, they conjec-

tured that m-armed spiral waves exist for all

b > j2
0,m.

Here j0,m is the first positive zero of the derivative of the Bessel function Jm. This

conjecture was confirmed rigorously by the shooting method; see [Ts10].

We have now arrived at the entrance of the thesis. Let us raise the following

questions.

• Question 1: other geometries of spatial domains?

Clearly, the spiral Ansatz (1.2) is based on polar coordinates. So, besides

disks, do m-armed spiral waves exist when the spatial domain M is any two-

dimensional compact manifold that admits polar coordinates?

• Question 2: other topologies?

The unit 2-sphere admits polar coordinates but it differs from disks, topologi-

cally, and by absence of any boundary. So, does topological structure affect the

shape of spiral patterns?

• Question 3: other boundary conditions?

Besides Neumann boundary conditions, do m-armed spiral waves exist whenM
is equipped with Dirichlet boundary conditions or Robin boundary conditions?

Do choices of boundary conditions affect the shape of spiral patterns near the

boundary of M?
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• Question 4: complex diffusion parameter?

Let us introduce the complex diffusion parameter η ∈ R and consider

∂tΨ =
1

b
(1 + i η)∆MΨ + (1− |Ψ|2 − i β |Ψ|2) Ψ. (1.6)

Do spiral wave solutions of (1.6) exist for all small parameters 0 < |η|, |β| � 1?

How does the rotation frequency Ω depend on choices of η and β?

• Question 5: justification of the m-armed spiral Ansatz?

Is the spiral Ansatz (1.2) just a smart guess? Or can one, instead, derive the

spiral Ansatz from systematic considerations based on equivariance of (1.6)?

• Question 6: nodal solutions?

In the literature, so far, only positive solutions A(s) > 0 for s > 0 of (1.5) have

been discussed; see [Gr80] and [KoHo81]. This restriction seems unnatural. So,

can we find nodal solutions, that is, nontrivial solutions A(s) that have zeros

besides the location of tips?

1.2 Main goal: New functional approach

This thesis is devoted to establishing a new functional approach for

pattern formation of Ginzburg-Landau spiral waves.

We accomplish this main goal and answer Questions 1–6. Each question, except

Question 6, possesses a definite complete answer together with rigorous treatments.

We formulate Question 6 as a conjecture and provide a plausible way to solve it.

We now give brief answers to each question. In this thesis we consider

∂tΨ =
1

b
(1 + i η)∆M,(α)Ψ + (1− |Ψ|2 − i β |Ψ|2) Ψ. (1.7)

Here ∆M,(α) is the Laplace-Beltrami operator defined on an admissible surface of

revolution M:

M =
{(
a(s) cos(ϕ), a(s) sin(ϕ), ã(s)

)
: s ∈ [0, s∗], ϕ ∈ [0, 2π)

}
.

Prototypical examples ofM are the unit disk (for a(s) = s and ã(s) = 0) and the unit

2-sphere (for a(s) = sin(s) and ã(s) = cos(s)). If the boundary ofM, denoted by ∂M,

is nonempty, then we consider Robin boundary conditions with the ratio α ∈ [−∞, 0],

that is, ∂nΨ = αΨ on ∂M. Note that α = 0 stands for Neumann boundary conditions

and α = −∞ stands for Dirichlet boundary conditions, symbolically. The ratio α is

4



required to be nonpositive so that solutions do not grow at ∂M.

For a nontrivial solution Ψ = AeiP of (1.7) in the form of the spiral Ansatz (1.2), a

tip of Ψ is a phase singularity, that is, a jump discontinuity of the phase field P . Each

tip is characterized by a nonzero winding number of Ψ. For M without boundary,

we prove that generically the sum of winding numbers is zero. Hence the geometry

ofM affects the global shape of spiral patterns. For instance, the spherical geometry

supports 2-tip spirals.

Based on our symmetry perspective, we describe equivariance of (1.7) with respect

to the following group action of the 2-torus S1 × S1:

((ϑ, γ) · v)(s, ϕ) := e−iϑv(s, ϕ− γ) (1.8)

for all (ϑ, γ) ∈ S1×S1, s ∈ [0, s∗], and ϕ ∈ [0, 2π). A relative equilibrium of (1.7) is a

time orbit that is contained in its group orbit under equivariance (1.8). We interpret

an Ansatz as the form of solutions associated with a relative equilibrium. Then we

justify the m-armed spiral Ansatz (1.2) by the variational structure possessed by (1.7)

with η = β = 0. Moreover, due to the special form of the spiral Ansatz, we show that

every spiral pattern hits boundary points in normal direction, regardless of which

Robin boundary conditions are chosen.

Our functional approach views the spiral Ansatz (1.2) differently:

Ψ(t, s, ϕ) = e−iΩt ψ(s, ϕ), ψ(s, ϕ) := u(s) eimϕ. (1.9)

Here the radial part u(s) of ψ is complex valued. We adopt the L2-functional setting

for the Laplace-Beltrami operator:

∆M,(α) : H2
(α)(M,C) ⊂ L2(M,C)→ L2(M,C),

with H2
(α)(M,C) as its domain. The significance of considering (1.9) is that the closed

L2-subspace

L2
m :=

{
ψ ∈ L2(M,C) : ψ(s, ϕ) = u(s) eimϕ

}
is invariant under ∆M,(α) and also under the nonlinearity of (1.7) due to the global

S1-equivariance. Hence the following restriction is well defined:

∆m,(α) := ∆M,(α)

∣∣∣∣
H2
m,(α)

: H2
m,(α) ⊂ L2

m → L2
m.

Here H2
m,(α) := H2

(α)∩L2
m is a closed H2-subspace. Let us substitute the spiral Ansatz

(1.9) into (1.7). Then we obtain the following elliptic equation for ψ:

(1 + i η) ∆m,(α)ψ + i bΩψ + b (1− |ψ|2 − i β |ψ|2)ψ = 0. (1.10)
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Here parameters η ∈ R, b > 0, and β ∈ R are given and we have to determine the

unknown rotation frequency Ω ∈ R. Moreover, once a solution pair (Ω, ψ) of (1.10)

exists for some prescribed parameters η, b, and β, the following frequency-parameter

relation holds: ∫
M

(
Ω− η + (η − β) |ψ|2

)
|ψ|2 = 0. (1.11)

This relation is easily derived by multiplication of (1.10) with the complex conjugate

ψ, integrating overM, and sorting out the resulting real part and imaginary part. It

is remarkable that we use the relation (1.11) to characterize parameter subregimes of

spiral patterns.

Compared to the ODEs (1.3–1.4) for A(s) and p′(s) treated by the shooting

method, our functional approach treats the rather standard elliptic equa-

tion (1.10). An immediate advantage is that once a weak solution ψ ∈ H2
m,(α) of

(1.10) exists, it becomes smooth by the well-known embedding theorems and the

Schauder elliptic regularity theory; see [He81] and [GiTr83].

We expect nontrivial weak solutions of (1.10) that bifurcate from the trivial so-

lution ψ ≡ 0. Why do we expect so? The reason is that ∆m,(α) shares its spectral

property and nodal property of eigenfunctions with regular Sturm-Liouville operators:

The spectrum of ∆m,(α) consists of simple eigenvalues,

0 > µ
m,(α)
0 > µ

m,(α)
1 > ... > µm,(α)

n > ..., lim
n→∞

µm,(α)
n = −∞,

and each associated eigenfunction e
m,(α)
n (s, ϕ) = u

m,(α)
n (s) eimϕ satisfies a nodal prop-

erty, that is, its radial part u
m,(α)
n (s) possesses exactly n simple zeros in (0, s∗).

The proof based on our functional approach consists of three new steps.

• New Step 1: global bifurcation analysis

Begin with the case η = β = 0. The frequency-parameter relation (1.11) implies

Ω = 0, and thus it suffices to solve the equation

∆m,(α)ψ + b (1− |ψ|2)ψ = 0. (1.12)

The unknown ψ ∈ H2
m,(α) is of the form ψ(s, ϕ) = uR(s) eimϕ where the radial

part uR is real valued. Because the spectrum of ∆m,(α) consists of simple eigen-

values, nontrivial solutions of (1.12) near the bifurcation point b = −µm,(α)
n > 0

form a unique local bifurcation curve Cm,(α)
n , for each n ∈ N0; see [CrRa71].

Moreover, the radial part of any nontrivial solution of Cm,(α)
n possesses exactly

n simple zeros. This nodal structure of bifurcation curves is very crucial to

show that Cm,(α)
n is possibly global, in the sense that it exists for all diffusion

parameters b > −µm,(α)
n .

6



However, in this thesis we can only prove that the principal bifurcation curve

Cm,(α)
0 is global in the above sense. It remains unsolved whether other bifurcation

curves Cm,(α)
n for n ∈ N, which contain nodal solutions of (1.12), are global.

• New Step 2: perturbation arguments

We prove that the principal bifurcation curve Cm,(α)
0 persists for all small param-

eters 0 < |η|, |β| � 1 by the equivariant implicit function theorem of [RePe98].

• New Step 3: determination on the types of pattern

For each solution proved in Step 2, we determine whether it exhibits a spiral

pattern by the frequency-parameter relation (1.11).

We briefly state our main theorem, which generalizes the results in [Ts10] for

Ginzburg-Landau spiral waves.

Theorem. For all diffusion parameters b > −µm,(α)
0 , the cubic supercritical Ginzburg-

Landau equation (1.7) possesses m-armed frozen or rigidly-rotating spiral wave solu-

tions. Moreover, in the spherical geometry every spiral wave exhibits a 2-tip spiral.

It is worth noting that the existence of frozen spirals and 2-tip spirals is new. The

rotation frequency Ω can be zero because it depends on both parameters η and β; see

the frequency-parameter relation (1.11). This explains why the literature could not

find frozen spirals because the complex diffusion parameter η was not introduced.

1.3 Outline

The essence of the thesis is already contained in the sections above. Readers who wish

to see more details about the main results or understand why our functional approach

works can hop to Chapter 4 directly. Readers who like a taste of establishing our

whole mathematical stage are welcome to read the thesis from beginning to end.

In Chapter 2 we establish the basic mathematical setting. Although we consider

the general Ginzburg-Landau equation on admissible surfaces of revolution, readers

may keep in mind that the cubic supercritical case (1.7) on a disk or on a 2-sphere

is the main example that captures the essence of our analysis. The key result is that

∆m,(α) shares its spectral property and nodal property of eigenfunctions with regular

Sturm-Liouville operators. We also prove the existence and uniqueness of solutions for

the initial value problem. We are interested, however, in pattern-forming solutions.

For example, we show that the real Ginzburg-Landau equation possesses a variational

structure, which is crucial to describe the m-armed spirals.
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In Chapter 3 we define spiral patterns and we design spiral Ansätze. Our first

aim is to derive the m-armed spiral Ansatz (1.2) based on our symmetry perspective.

Then we establish a functional setting for solving the resulting elliptic equation. We

next obtain several consequences, once a nontrivial solution exists. For instance, zeros

of the solution neither accumulate at tips nor at boundary points; its phase derivative

possesses a continuous extension to tips and simple zeros; its associated pattern hits

boundary points in normal direction. In the end we obtain a simple criterion that

determines whether a solution exhibits a spiral pattern.

In Chapter 4 we follow the three steps of Section 1.2 to prove our main results:

the existence of Ginzburg-Landau spiral waves. We also provide a plausible way for

finding nodal solutions.

In Chapter 5 we conclude with an overview and we discuss several directions for

future research.
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Chapter 2

Basic mathematical setting

In this chapter we establish the basic mathematical setting. In Section 2.1 we intro-

duce the Ginzburg-Landau equation and propose two assumptions on its nonlinearity

for the existence of spiral wave solutions. In Section 2.2 we conduct linear analysis

based on the L2-spectral decomposition of the Laplace-Beltrami operator. In Section

2.3 we study the Laplace-Beltrami operator on surfaces of revolution that intersect

the axis of rotation, which are spatial domains for our spirals. In Section 2.4 we solve

the initial value problem of the Ginzburg-Landau equation. In Section 2.5 we show

that the real Ginzburg-Landau equation possesses a variational structure.

2.1 Global S1-equivariance

2.1.1 Ginzburg-Landau equation

Consider the Ginzburg-Landau equation (GLe for abbreviation):

∂tΨ =
1

b
(1 + i η) ∆M,(α)Ψ + f(|Ψ|2; β) Ψ, (2.1)

where Ψ(t, x) ∈ C for (t, x) ∈ [0,∞)×M. (2.1) is a complex-valued scalar semilinear

parabolic equation and possesses global S1-equivariance : Ψ is a solution if and

only if the phase shift eiϑ Ψ is a solution, for each ϑ ∈ S1 ∼= R/2πZ. We specify the

spatial domainM of (2.1) as an admissible manifold and keep in mind that disks and

2-spheres are main examples.

Definition. A two-dimensional real analytic manifold M is called an admissible

manifold if it is compact, connected, and oriented. Its boundary ∂M, if being

nonempty, is a one-dimensional real analytic submanifold.

Remark . We require real analyticity of M in the proof of Lemma 2.4 (ii) as we

apply the Frobenius series, only.
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In fact, due to the Whitney embedding theorem, an admissible manifold M is a

hypersurface in R3 and thus a Riemannian manifold. A volume form dVol of M is

globally defined as an orientation is chosen.

We explain objects involved in (2.1).

• b > 0 is a manipulable bifurcation parameter. We use the reciprocal of b for

simplicity of notation in the proof of the main theorems.

• η ∈ R is a given complex diffusion parameter.

• ∆M,(α) is the Laplace-Beltrami operator on M. If ∂M is nonempty, then

we consider Robin boundary conditions with the ratio α ∈ [−∞, 0], that is,

∂nΨ = αΨ on ∂M.

• f ∈ C3([0,∞)×Rd,C) with d ∈ N is a complex-valued nonlinearity that depends

on given kinetics parameters β = (βj)
d
j=1 ∈ Rd. Note that C3-smoothness

of f is required to determine the shape of local bifurcation curves.

Remark (λ− ω system). For a more general nonlinearity f = f(|Ψ|; β), which still

possesses the global S1-equivariance, (2.1) is called the λ− ω system; see [KoHo73].

However, we tend not to solve the λ− ω system because the nonlinearity is not real

Fréchet differentiable at Ψ = 0.

2.1.2 Two assumptions on nonlinearity

We seek spiral wave solutions that bifurcate from the zero equilibrium Ψ = 0. For this

purpose, we require two assumptions on the complex-valued nonlinearity f = fR+i fI ,

where fR and fI are real valued.

(A1) fR(0; 0) = 1, and there exists a constant C(fR) > 0 that only depends on

choices of fR(· ; 0) such that

fR(y; 0)

{
= 0, y = C(fR),
< 0, y > C(fR).

Moreover, we assume

fI(y; 0) = 0 for all y ≥ 0. (2.2)

(A2) ∂yfR(0; 0) < 0 and ∂yfR(y; 0) ≤ 0 for all y ∈ (0, C(fR)).
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y

fR(y; 0)

C(fR)
y

fR(y)

1

Figure: The graph of fR(y; 0) that satisfies (A1–A2). Left : a typical choice of fR(y; 0)
for the general GLe. Right : fR(y) = 1− y for the cubic supercritical GLe.

We explain the meaning of the assumptions. First, although fR(0; 0) > 0 is

sufficient to yield linear instability of the zero equilibrium, we can assume fR(0; 0) = 1

without loss of generality, possibly after a rescaling of time and a transformation of

the unknown Ψ. Second, if η = 0 and β = 0, then the GLe possesses real coefficients

by (2.2). Hence we classify the GLe as follows.

Definition. Under (A1) the Ginzburg-Landau equation (2.1) is called to be real if

η = 0 and β = 0, or complex if η 6= 0 or β 6= 0.

The real GLe reads

∂tΨ =
1

b
∆M,(α)Ψ + fR(|Ψ|2; 0) Ψ. (2.3)

Notice that the unknown Ψ is still complex valued. Third, as we consider the diffusion-

free ODE of (2.3),

DtΦ = fR(|Φ|2; 0) Φ, (2.4)

and apply the polar form Φ(t) = R(t) eiΘ(t), nontrivial solutions satisfy the following

decoupled ODE system:

DtR = fR(R2; 0)R,

DtΘ = 0.

Thus we interpret that the GLe is weakly coupled for all parameters 0 < |η|, |β| � 1.

Last, (A1–A2) admit a stable limit cycle of (2.4) that connects the unstable zero

equilibrium and the stable circle of equilibria {z ∈ C : |z| =
√
C(fR)}.

Remark . We see in Chapter 4 that (A1) yields a C0-bound for solutions of the real

GLe. This bound is crucial to obtain global bifurcation curves of nontrivial solutions.

We require (A2) for our perturbation arguments to solve the complex GLe.
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Example. The main example is the cubic supercritical GLe with the nonlinearity

f(y; β) = 1− y − i β y, β ∈ R.

Thus fR(y) = 1− y, and the minus sign stands for supercriticity. Clearly, C(fR) = 1

and (A1–A2) are fulfilled.

2.2 Linear analysis

We conduct linear analysis on the GLe by studying the Laplace-Beltrami operator.

Due to compactness of admissible manifolds, the Laplace-Beltrami operator yields an

L2-spectral decomposition, which is significant for our bifurcation analysis.

2.2.1 Laplace-Beltrami operator

To define the Laplace-Beltrami operator, the coordinates-free approach constructs

the Hodge star operator (see [Ro97] Chapter 1), while the coordinates-dependent ap-

proach relies on choices of local coordinates (see [Ec04] Appendix A). Both approaches

define the Laplace-Beltrami operator as composition of the divergence operator and

the gradient operator. We adopt the coordinates-dependent approach because we

need polar coordinates to solve differential equations related to spiral wave solutions.

Let M be an admissible manifold locally parametrized by a smooth mapping

E : D →M, x = E(p) = E(p1, p2).

Here D is a subset of R2 with bounded interior. The vectors ∂p1E(p) and ∂p2E(p) form

a basis of the tangent space of M at x = E(p), denoted by TxM. The Riemannian

metric g of M is given by

g(p) := (gjk(p)) =

(〈
∂pjE(p), ∂pkE(p)

〉
R3

)
, j, k = 1, 2,

where 〈·, ·〉R3 is the standard dot product of R3. The volume of the parallelepiped

spanned by the tangent vectors is equal to
√

det(g(p)). Thus the volume form ofM
induces the inner product

〈v1, v2〉g :=

∫
D

v1(E(p)) v2(E(p))
√

det(g(p)) dp. (2.5)

Let T ∗xM denote the dual space of TxM, and Λ1(T ∗xM) denote the space of

smooth 1-forms on T ∗xM. The gradient operator is by definition the exterior derivative
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∇g : C∞(M,C)→ Λ1(T ∗xM). Since T ∗xM is isomorphic to TxM as vector spaces, as

we express a cotangent vector in T ∗xM with respect to the basis of TxM, the inverse

matrix (gjk(p)) of g(p) appears. It follows that the gradient operator is given by

∇gv(p) =
2∑

j,k=1

gjk(p) ∂pjv(E(p)) ∂pkE(p).

The divergence operator is the adjoint of the gradient operator with respect to

(2.5). For a cotangent vector w(p) =
∑2

j=1wj(p) g
jk(p) ∂pkE(p), the divergence oper-

ator is given by

divgw(p) =
1√

det(g(p))

2∑
j,k=1

∂pk

(√
det(g(p)) gjk(p)wj(p)

)
.

It can be verified that ∇g and divg are independent of choices of parametrizations.

We now define the Laplace-Beltrami operator on M by

∆Mv(p) := divg(∇gv)(p)

=
1√

det(g(p))

2∑
j,k=1

∂pk

(√
det(g(p)) gjk(p) ∂pjv(p)

)
. (2.6)

2.2.2 Embedding theorems

We define Sobolev spaces Hq(M,C) for q ≥ 0 and collect the embedding theorems,

which reduce the problem of proving smooth solutions to finding weak solutions.

Sobolev spaces and standard (e.g., Sobolev, Rellich-Kondarachov) embedding the-

orems have been established for the Euclidean space; see [He81] and [GiTr83]. Since

regularity of a function is a local property, and locally a smooth manifold is diffeo-

morphic to a bounded set in the Euclidean space, the embedding theorems can be

generalized for admissible manifolds by using a partition of unity.

Remark (argument using a partition of unity). SinceM is compact, it is covered by

finitely many coordinates charts {Dj, ζj}`j=1. Here ζj : Dj →M and Dj is a subset

of R2 with bounded interior. Let {Pk}k∈K be a partition of unity subordinated to the

covering {Dj}`j=1. Then any statement regarding regularity of a function v :M→ C
is reduced to regularity of the function∑

k∈K

Pk(·) v(ζj(·)) : Dj → C,

for each j ∈ {1, 2, ..., `}. Thus we can apply the known embedding theorems for the

Euclidean space.
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It is known that the Sobolev space Hq(R2,C) is completion of smooth functions

with compact support under the norm

|v|2Hq(R2) :=

∫
R2

|v̂(σ)|2 (1 + |σ|2)q dσ.

Here v̂(σ) is the Fourier transform defined by

v̂(σ) :=
1

2π

∫
R2

eix·σ v(x) dx.

To define the Sobolev space Hq(M,C) onM, using a partition of unity it suffices to

considerM as a subset D of R2 with bounded interior. It is known that the Sobolev

space on D is defined as

Hq(D,C) :=
{
v : D → C : there exists a ṽ ∈ Hq(R2,C) such that ṽ

∣∣
D

= v
}

equipped with the norm

|v|Hq(D) := inf
{
|ṽ|Hq(R2) : ṽ ∈ Hq(R2,C), ṽ

∣∣
D

= v
}
.

It can be verified that the above norm is independent of choices of partitions of unity.

We collect embedding theorems after introducing the following concepts.

Definition. Let X and Y be Banach spaces and F : Y → X be a (typically nonlinear)

mapping. F is called to be bounded (or compact) if F maps each bounded set in

Y into a bounded (or precompact) set in X.

Definition. Let X and Y be Banach spaces. Y is called to be continuously (or

compactly) embedded into X if Y ⊂ X and the inclusion operator E : Y → X,

Ew = w, is bounded (or compact).

Lemma 2.1 (embedding theorems). Let M be an admissible manifold. Then the

following statements hold:

(i) Hq1(M,C) is continuously embedded into Hq2(M,C) if q1 ≥ q2 ≥ 0. The

embedding is compact if q1 > q2 ≥ 0.

(ii) If q− 1 > k+ ν for some k ∈ N0 and ν ∈ (0, 1], then Hq(M,C) is continuously

embedded into Ck,ν(M,C). In particular, H2(M,C) is continuously embedded

into C0,ν(M,C) for any ν ∈ (0, 1).

Proof. See [Ro97] Theorem 1.20 and Theorem 1.22. ./
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2.2.3 L2-spectral decomposition

Let L2(M,C) := H0(M,C). Consider the following L2-functional setting for the

Laplace-Beltrami operator:

∆M,(α) : D(∆M,(α)) ⊂ L2(M,C)→ L2(M,C).

Here D(∆M,(α)) denotes the domain of ∆M,(α), which is

• H2(M,C) if ∂M is empty;

or if ∂M is nonempty, then we consider Robin boundary conditions with the ratio α:

• H2
α(M,C) := {v ∈ H2(M,C) : ∂nv = α v on ∂M}.

Here n is the unit outer normal vector field on ∂M; the normal derivative is defined

by ∂nv = ∇gv · n. Throughout this thesis we assume

α ∈ [−∞, 0].

Note that Robin boundary conditions become Neumann boundary conditions if α = 0.

Notation . Symbolically α = −∞ stands for Dirichlet boundary conditions.

Notation . We use the notations ∆M,(α) and H2
(α)(M,C) for the two cases:

• ∆M,(α) = ∆M and H2
(α)(M,C) = H2(M,C) if ∂M is empty;

• ∆M,(α) = ∆M,α and H2
(α)(M,C) = H2

α(M,C) if we consider Robin boundary

conditions with the ratio α ∈ [−∞, 0].

We need the following concepts to illustrate the L2-spectral structure of ∆M,(α).

Definition. Let X be a Banach space and L : X → X be a linear operator.

• The resolvent set of L is defined as the set

ρ(L) :=
{
λ ∈ C : L − λ is bijective and its inverse is bounded

}
.

• The spectrum of L is defined as σ(L) := C \ ρ(L).
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• The point spectrum of L is defined as the set

σp(L) :=
{
λ ∈ C : L − λ is not injective

}
.

Elements of σp(L) are called eigenvalues. The geometric multiplicity of

an eigenvalue λ is defined by the dimension of ker(L − λ). The algebraic

multiplicity of λ is defined by

dim

( ∞⋃
j=1

ker(L − λ)j
)
.

λ is called to be simple if its algebraic multiplicity is one.

• The essential spectrum of L is defined as σ(L) \ σp(L).

Definition. Let X be a Banach space and L : X → X be a linear operator. L
is called to have compact resolvent if for all λ ∈ ρ(L), the resolvent operator

(L − λ)−1 : X → X is compact.

We now collect the well-known L2-spectral decomposition of the Laplace-Beltrami

operator. The motivation is to solve the Schrödinger equation on 2-spheres, which

models motion of an electron in the hydrogen atom; see [Ki08] Section 4.9.

Lemma 2.2 (L2-spectral decomposition). Let M be an admissible manifold. Then

the following statements hold:

(i) ∆M,(α) is self-adjoint on L2(M,C) and has compact resolvent.

(ii) The spectrum of ∆M,(α) consists of eigenvalues of finite multiplicity. Counting

multiplicity all eigenvalues can be listed as

0 ≥ λ
(α)
0 > λ

(α)
1 ≥ λ

(α)
2 ≥ ... ≥ λ(α)

n ≥ ..., lim
n→∞

λ(α)
n = −∞.

In particular, the essential spectrum of ∆M,(α) is empty.

Remark .

(i) Since ∆M,(α) is self-adjoint, the geometric multiplicity and the algebraic multi-

plicity of each eigenvalue are equal. Thus multiplicity results in no ambiguity.

(ii) The L2-spectral decomposition may not exist ifM is not compact. For instance,

the spectrum of the Laplace operator on R2 consists of essential spectrum,

only. We emphasize that absence of the essential spectrum of ∆M,(α) plays a

significant role in our bifurcation analysis.

Proof. See [Ro97] Theorem 1.29. ./
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2.3 Laplace-Beltrami operator on admissible sur-

faces of revolution

In this section we analyze the Laplace-Beltrami operator on a surface of revolution

M that is admissible, in the sense that it intersects the axis of rotation. The rota-

tional symmetry ofM admits the L2-subspace L2
m that consists of radially symmetric

functions multiplied by a fixed Fourier mode eimϕ of the azimuthal angle. The key

observation is that L2
m is invariant under the Laplace-Beltrami operator. Thus we

study the Laplace-Beltrami operator restricted on L2
m, for which we call the projected

operator ∆m,(α). We show that ∆m,(α) shares its spectral property and nodal property

of eigenfunctions with regular Sturm-Liouville operators. In the end we collect the

spectral information of ∆m,(α) on the unit disk and on the unit 2-sphere.

2.3.1 Admissible surfaces of revolution

Let M be symmetric with respect to all rotations around a fixed axis. Then M
is a surface of revolution. Since the Laplace-Beltrami operator commutes with ro-

tations, reflections, and translations, we assume without loss of generality that the

x3-axis in (x1, x2, x3) ∈ R3 is the axis of rotation. Hence M admits the following

parametrization by polar coordinates (s, ϕ):

M =
{(
a(s) cos(ϕ), a(s) sin(ϕ), ã(s)

)
: s ∈ [0, s∗], ϕ ∈ [0, 2π)

}
, (2.7)

where a(s) ≥ 0 for all s ∈ [0, s∗]. Since M is real analytic, a(s) and ã(s) are real

analytic functions. We callM an admissible surface of revolution if it intersects

the axis of rotation.

Lemma 2.3. Let M be an admissible surface of revolution. Then a(s) and ã(s)

satisfy the following conditions:

(i) (a′(s))2 + (ã′(s))2 = 1 for all s ∈ [0, s∗].

(ii) a(0) = 0, a′(0) = 1, and a(s) > 0 for all s ∈ (0, s∗).

(iii) If ∂M is nonempty, then a(s∗) > 0; if ∂M is empty, then a(s∗) = 0 and

a′(s∗) = −1.

Proof: For (i), for the generatrix J = (a(s), 0, ã(s)) of M we choose s to be the

arclength parameter. For (ii) and (iii), since M intersects the axis of rotation and

is connected, there are at least one, but at most two distinct points of intersection
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between J and the x3-axis. Such points are the end points of J . We can always let

a(0) = 0. If ∂M is empty, then also a(s∗) = 0. Smoothness of M implies a′(0) = 1,

and a′(s∗) = −1 if in addition a(s∗) = 0. The proof is complete. ./

Disks and 2-spheres are main examples of admissible surfaces of revolution.

Example (unit disk). Polar coordinates for the unit disk are given by a(s) = s and

ã(s) = 0 for s ∈ [0, 1]. Indeed every admissible surface of revolution with boundary

is diffeomorphic to the unit disk.

Example (unit 2-sphere). Polar coordinates for the unit 2-sphere are given by

a(s) = sin(s) and ã(s) = cos(s) for s ∈ [0, π]. Indeed every admissible surface of

revolution without boundary is diffeomorphic to the unit 2-sphere.

Observe that a 2-sphere is also symmetric with respect to the reflection of its

equatorial plane. This leads to the following definition.

Definition. An admissible surface of revolution without boundary is called to possess

the reflection symmetry if a(s) = a(s∗ − s) for all s ∈ [0, s∗].

2.3.2 Projected operator ∆m,(α)

LetM be an admissible surface of revolution. By (2.6) the Laplace-Beltrami operator

on M is given by

∆M = ∂ss +
a′(s)

a(s)
∂s +

1

a2(s)
∂ϕϕ.

For each fixed m ∈ Z \ {0}, we define the following closed L2-subspace:

L2
m :=

{
ψ ∈ L2(M,C) : ψ(s, ϕ) = u(s) eimϕ

}
.

Note that each function ψ ∈ L2
m is multiplication of a radially symmetric function

u(s) by the fixed Fourier mode eimϕ of the azimuthal angle. The Laplace-Beltrami

operator restricted on L2
m is given by

∆Mψ =

(
u′′ +

a′

a
u′ − m2

a2
u

)
eimϕ, ψ(s, ϕ) = u(s) eimϕ,

and thus L2
m is invariant under ∆M. The domain of ∆M,(α) restricted on L2

m is

• H2
m := H2(M,C) ∩ L2

m equipped with the H2-norm if ∂M is empty;

• H2
m,α := H2

α(M,C) ∩ L2
m equipped with the H2-norm if we consider Robin

boundary conditions with the ratio α ∈ [−∞, 0].
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Definition. The projected operator ∆m,(α) is defined by

∆m,(α) := ∆M,(α)

∣∣∣∣
H2
m,(α)

: H2
m,(α) ⊂ L2

m → L2
m. (2.8)

Note that due to the volume form of M, ψ ∈ L2
m if and only if

|ψ|2L2
m

:=

∫ s∗

0

|u(s)|2 a(s) ds <∞. (2.9)

2.3.3 Spectral property of ∆m,(α)

The projected operator ∆m,(α) is a singular Sturm-Liouville operator because a(0) = 0

(and also a(s∗) = 0 if ∂M is empty). However, it is singular merely due to polar

coordinates. We show that indeed ∆m,(α) shares its spectral property with regular

Sturm-Liouville operators (see [Har02] Chapter XI).

Lemma 2.4 (spectral property). Let M be an admissible surface of revolution and

m ∈ Z \ {0} be fixed. Then the following statements hold:

(i) ∆m,(α) is self-adjoint on L2
m and has compact resolvent.

(ii) The spectrum of ∆m,(α) consists of simple eigenvalues, which can be listed as

0 > µ
m,(α)
0 > µ

m,(α)
1 > µ

m,(α)
2 > ... > µm,(α)

n > ..., lim
n→∞

µm,(α)
n = −∞.

In particular, ∆m,(α) : H2
m,(α) → L2

m is a linear homeomorphism.

Proof: For (i), ∆m,(α) is self-adjoint on L2
m, since it is restriction of the Laplace-

Beltrami operator on the closed invariant L2-subspace L2
m. Furthermore, ∆m,(α) has

compact resolvent due to the L2-spectral decomposition; see Lemma 2.2. This proves

the item (i).

By the item (i), the spectrum of ∆m,(α) consists of real eigenvalues. The restriction

(2.8) implies

σ(∆m,(α)) ⊂ σ(∆M,(α)),

so counting the multiplicity, eigenvalues of ∆m,(α) can be listed as

0 ≥ µ
m,(α)
0 ≥ µ

m,(α)
1 > µ

m,(α)
2 ≥ ... ≥ µm,(α)

n ≥ ..., lim
n→∞

µm,(α)
n = −∞.

Since eigenvalues of ∆m,(α) are real, as we consider the eigenvalue problem

∆m,(α)ψ = µψ, ψ(s, ϕ) = u(s) eimϕ,
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it suffices to assume that u is real valued.

For (ii), we first show that zero is not an eigenvalue of ∆m,(α). Suppose the con-

trary that ψ ∈ H2
m,(α) were nontrivial and would satisfy ∆m,(α)ψ = 0. Then ψ would

also satisfy ∆M,(α)ψ = 0. Hence zero is the principal eigenvalue of ∆M,(α), which im-

plies that ψ(s, ϕ) cannot have sign changes in (0, s∗)× [0, 2π); see [GiTr83] Theorem

8.38. However, since ψ(s, ϕ) = u(s) eimϕ and m 6= 0, ψ(s, ϕ) must have a sign change,

which is a contradiction.

We next prove that all eigenvalues are simple. The eigenvalue problem is equiva-

lent to the second-order ODE

u′′ +
a′

a
u′ − m2

a2
u = µu. (2.10)

We have four observations. First, since M is real analytic, it is well known that

L2-eigenfunctions of ∆m,(α) are real analytic. Second, (2.10) is a linear second-order

ODE, so there are two linearly independent solutions. Third, since ∆m,(α) is self-

adjoint, an eigenvalue is simple if and only if its geometric multiplicity is one. Thus

it suffices to show that one of the two linearly independent solutions is unbounded

in L2
m. Four, from the weighted inner product (2.9), a solution u(s) of (2.10) is

unbounded in L2
m if there is an r− ≤ −1 such that u(s) = u0 s

r− + o(sr−) as s → 0,

where u0 6= 0 is some constant.

Since a(s) is real analytic and a(s) = s+ o(s) as s→ 0, s = 0 is a regular-singular

point of (2.10). Thus there exists a radius of convergence δ > 0 such that every

solution u(s) of (2.10) can be expanded by the Frobenius series

u(s) =
∞∑
j=0

uj s
j+r, u0 6= 0,

for all s ∈ (0, δ); see [Har02] Corollary 11.1. Substituting the series into (2.10) and

equating the coefficients, we obtain the leading exponents

r+ = |m|, r− = −|m|.

Therefore, as s → 0, the two linearly independent solutions of (2.10) admit the

following expansion:

u1(s) = u0 s
|m| + o(s|m|), u2(s) = u0 s

−|m| + o(s−|m|).

Hence u2(s) is unbounded in L2
m. The proof is complete. ./
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2.3.4 Nodal property of eigenfunctions of ∆m,(α)

We show that the projected operator ∆m,(α) also shares its nodal property of eigen-

functions with regular Sturm-Liouville operators (see [Har02] Chapter XI).

Definition. Let u : [0, s∗] → C be a smooth function and s0 ∈ [0, s∗] be a zero of u,

that is, u(s0) = 0. We call s0 to be simple if u′(s0) 6= 0, or multiple if u′(s0) = 0.

Lemma 2.5. Let e
m,(α)
n (s, ϕ) = u

m,(α)
n (s) eimϕ be the L2

m-normalized eigenfunction as-

sociated with the eigenvalue µ
m,(α)
n of the projected operator ∆m,(α). Then the following

statements hold:

(i) (nodal property) u
m,(α)
n (s) possesses exactly n simple zeros in (0, s∗).

(ii) If M possesses the reflection symmetry, then

um,(α)
n (s) = (−1)n um,(α)

n (s∗ − s)

for all n ∈ N0 and s ∈ [0, s∗]. Consequently, u
m,(α)
n (s) satisfies a Neumann

boundary condition (or a Dirichlet boundary condition) at s = s∗
2

if n ∈ N0 is

even (or odd).

Proof: To treat the singularity s = 0 in the eigenvalue problem (2.10), the weighted

inner product (2.9) hints the Euler multiplier(
ds

dτ
=

)
ṡ = a(s). (2.11)

Let us apply (2.11) on (2.10). Then we obtain the extended ODE system

u̇(τ) = v(τ),

v̇(τ) = m2 u(τ) + µ a2(s(τ))u(τ),

ṡ(τ) = a(s(τ)),

(2.12)

for all τ ∈ (−∞, τ∗). Note that we can recover the original variable s ∈ [0, s∗] via the

mapping τ = τ(s) such that τ ′(s) = 1
a(s)

and the following conditions hold:

• lims→0 τ(s) = −∞.

• If ∂M is nonempty, that is, a(s∗) > 0, then τ∗ = τ(s∗) ∈ R.

• If ∂M is empty, that is, a(s∗) = 0, then τ∗ = lims→s∗ τ(s) =∞.
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For (i), we first show that all zeros of a nontrivial solution u(τ) of (2.12) in (−∞, τ∗)
are simple. Suppose the contrary that there were a nontrivial solution u(τ) of (2.12)

that possesses a multiple zero τ̃ ∈ (−∞, τ∗). Then (0, 0, a(s(τ̃))) is evaluation of the

vector field of (2.12) at τ = τ̃ . Since (u, v, s)(τ) = (0, 0, s(τ)) for all τ ∈ (−∞, τ∗)
is also a solution that satisfies (u̇, v̇, ṡ)(τ̃) = (0, 0, a(s(τ̃))), the uniqueness of ODE

initial value problems implies that u(τ) is identically zero, which is a contradiction.

We next prove that u
m,(α)
n (τ) possesses exactly n zeros in (−∞, τ∗). Since there

are no multiple zeros, the Prüfer transformation

u(τ) = R(τ) cos(θ(τ)),

v(τ) = R(τ) sin(θ(τ)),

is well defined for all τ ∈ (−∞, τ∗). Note that zeros of u(τ) are points of intersection

between the phase portrait of (2.12) and the v-axis. We differentiate the following

angle function with respect to τ :

θ(τ) := arctan

(
v(τ)

u(τ)

)
,

and use (2.12). Then we obtain the following first-order ODE system:(
θ̇ =

)
θ̇µ = − sin2(θ) +

(
m2 + µ a2(s)

)
cos2(θ),

ṡ = a(s).
(2.13)

Notice that (2.13) is decoupled with R(τ) and we have two crucial properties.

(P1) The angle function θµ(τ) is strictly decreasing at points where the phase portrait

intersects the v-axis, since θ̇µ(τ̃) < 0 holds for any τ̃ ∈ (−∞, τ∗) such that

cos2(θµ(τ̃)) = 0.

(P2) If µ1 < µ2 and limτ→−∞ θµ1(τ) = limτ→−∞ θµ2(τ), that is, θµ1 and θµ2 share the

same initial angle at τ = −∞, then θµ1(τ) < θµ2(τ) for all τ ∈ (−∞, τ∗).

We now study the behavior of an eigenfunction ψ(τ, ϕ) = u(τ) eimϕ near τ = −∞
where u(τ) is a nontrivial solution of (2.12). We claim

lim
τ→−∞

u(τ) = 0, lim
τ→−∞

v(τ) = 0. (2.14)

To prove the claim, note that τ = −∞ corresponds to s = 0 by the Euler multiplier

(2.11). Continuity of eigenfunctions at s = 0 implies lims→0 u(s) = 0, and hence

limτ→−∞ u(τ) = 0. On the other hand, by the chain rule v(τ) = u′(s) a(s), where

s = s(τ) is solved by (2.11), it is equivalent to show lims→0 u
′(s) a(s) = 0. Smoothness
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of eigenfunctions, and in particular |∇gψ|C0 < ∞ implies that u′(0) exists. Hence

lims→0 u
′(s) a(s) = 0 because a(0) = 0.

As a result of the claim, we can without loss of generality impose the asymptotic

conditions (2.14) on the ODE system (2.12). Then limτ→−∞(u, v, s)(τ) = (0, 0, 0) for

every solution of (2.12), that is, the phase portrait of (2.12) converges backwards to

the equilibrium (0, 0, 0) as τ → −∞. Calculating the Jacobian shows that the equi-

librium is hyperbolic and (1, |m|) is the (u, v)-component of the expanding direction

at τ = −∞. Hence the initial angle satisfies

lim
τ→−∞

tan(θµ(τ)) = |m|, (2.15)

which is fixed for all µ ∈ R and depends on the choice of m 6= 0, only.

We deal with two cases: Either ∂M is empty or not.

Suppose that ∂M is nonempty. The radial part u(τ) of an eigenfunction is given

by a point of intersection between the phase portrait of (2.12) at τ∗ ∈ R and the

line Lα := {(u, v, s∗) : v = α a(s∗)u}, due to Robin boundary conditions. Since

the slope of Lα is nonpositive, as τ → −∞ the initial angle (2.15) implies that the

(u, v)-component of the phase portrait stays in the interior of the first or the third

quadrant of the (u, v)-phase-plane. Moreover, by (2.13) we see that if µ ≥ 0, then

the (u, v)-component of the phase portrait gets trapped in the interior of the first or

the third quadrant for all τ ∈ (−∞, τ∗). Using (P1) and (P2), since the slope of Lα

is nonpositive, we can tune µ ↘ −∞ and assure that u
m,(α)
n (τ) possesses exactly n

zeros in τ ∈ (−∞, τ∗).
Suppose that ∂M is empty. By similar arguments, the phase portrait of (2.12)

converges forwards to the hyperbolic equilibrium (u, v, s) = (0, 0, s∗) as τ → ∞. At

τ =∞, the (u, v)-component of the contracting direction is given by (1,−|m|), whose

slope is negative. Hence we use (P1) and (P2) and tune µ ↘ −∞ to imply that

u
m,(α)
n (τ) possesses exactly n zeros in (−∞, τ∗). This proves the item (i).

For (ii), the reflection symmetry assures that (2.10) is unchanged as we apply the

new variable s 7→ s∗− s. Since all eigenvalues are simple (see Lemma 2.4 (ii)), either

u
m,(α)
n (s) = u

m,(α)
n (s − s∗) or u

m,(α)
n (s) = −um,(α)

n (s − s∗) for all s ∈ [0, s∗]. Since

u
m,(α)
n (s) possesses exactly n zeros in (0, s∗) by the item (i), we see that n ∈ N0 is

even if and only if s∗
2

is not a zero of u
m,(α)
n (s), and thus if and only if u

m,(α)
n (s) =

u
m,(α)
n (s∗ − s) for all s ∈ [0, s∗]. The completes the proof. ./
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2.3.5 Example: Disks and associated Bessel functions

Let M be the unit disk. The eigenvalues of the projected operator ∆m,(α) are

µm,(α)
n = −j2

n,m,(α),

where jn,m,(α) is the (n+ 1)th positive zero of the equation

(J|m|)
′(s) = αJ|m|(s).

Here J|m| is the Bessel function of the first kind of index |m| and can be expressed by

J|m|(s) =
∞∑
k=0

(−1)k

22k+|m| k! (k + |m|)!
s2k+|m|;

see [Be68] Section 4.1. The eigenfunctions of ∆m,(α) are

em,(α)
n (s, ϕ) = J|m|(jn,m,(α) s) e

imϕ,

where J|m|(jn,m,(α) s) is the associated Bessel function.

2.3.6 Example: Spheres and associated Legendre functions

Let M be the unit 2-sphere. The eigenvalues and eigenfunctions of the projected

operator ∆m possess the following closed form:

µmn = −(|m|+ n)(|m|+ n+ 1), emn (s, ϕ) = Pm
|m|+n(cos(s)) eimϕ.

Here Pm
|m|+n is the associated Legendre function . The Rodrigues’ Formula writes

Pm
|m|+n explicitly:

Pm
|m|+n(σ) =

(1− σ2)
m
2

2|m|+n (|m|+ n)!

dm+|m|+n

dσm+|m|+n (σ2 − 1)|m|+n

for σ := cos(s) ∈ [−1, 1]; see [Be68] Section 3.8.

2.4 Initial value problem of Ginzburg-Landau equa-

tion

In this section we prove that the initial value problem of the GLe possesses unique

smooth local (in time) solutions. This result of existence and uniqueness is a prereq-

uisite for seeking pattern-forming solutions.

We adopt the analytic semigroup theory. Because the Laplace-Beltrami operator
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generates an analytic semigroup, the problem of finding strong solutions is reduced to

studying regularity of the underlying nonlinearity; see [He81]. We then gain smooth-

ness of strong solutions by the embedding theorems and the Schauder elliptic regu-

larity theory.

Let X = L2(M,C). It is well known that the fractional space of X with an

exponent ζ ∈ (0, 1) is

Xζ = H2ζ(M,C).

The nonliearity Nβ : Xζ → X of the GLe is a superposition mapping defined by

Nβ(v)(x) := f(|v(x)|2; β) v(x). (2.16)

We determine exponents ζ ∈ (0, 1) such that Nβ is locally Lipschitz continuous,

because it is a sufficient condition for the existence of strong solutions.

Notation . The dependence on β ∈ Rd is irrelevant to our analysis in this section,

so we denote by f(y; β) = f(y) and also Nβ = N .

Lemma 2.6. Let X = L2(M,C) and ζ > 1
2

be fixed. Then N : Xζ → X defined in

(2.16) is locally Lipschitz continuous.

Proof. The mapping Ñ : C → C defined by Ñ (z) := f(|z|2) z is locally Lipschitz

continuous because f is C1. Hence there is a continuous componentwise increasing

function B : [0,∞)× [0,∞)→ [0,∞) such that

|Ñ (z1)− Ñ (z2)| ≤ B(|z1|, |z2|) |z1 − z2|

for all z1, z2 ∈ C.

Since ζ > 1
2
, Xζ is continuously embedded into C0(M,C) (see Lemma 2.1 (ii)),

that is, there is a constant C1 > 0 such that |v|C0 ≤ C1 |v|Xζ for all v ∈ Xζ .

Let C2 > 0 be a fixed constant. Given any v1, v2 ∈ Xζ with |v1|Xζ ≤ C2 and

|v2|Xζ ≤ C2, then |v1|C0 ≤ C1C2 and |v2|C0 ≤ C1C2, and so

|N (v1)−N (v2)|X ≤
√

Vol(M)B(|v1|C0 , |v2|C0) |v1 − v2|C0

≤
√

Vol(M)B(C1C2, C1C2)C1 |v1 − v2|Xζ

=: C3 |v1 − v2|Xζ ,

where C3 depends only on M, C1, and C2, which is the desired conclusion. ./

Lemma 2.7. Let X = L2(M,C) and ζ ∈ (1
2
, 1) be fixed. Then the Ginzburg-Landau

equation (2.1) possesses a unique classical local solution for each initial condition

Ψ0 ∈ Xζ.

25



Proof. For each b > 0 and η ∈ R, we define the infinitesimal generator

∆b,η :=
1

b
(1 + i η) ∆M,(α)

with the domain D(∆b,η) := D(∆M,(α)). Since ∆M,(α) is sectorial (see [Em09] Lemma

3.2) and b > 0, ∆b,η is also sectorial. Since ζ > 1
2
, by Lemma 2.6 the nonlinearity

N : Xζ → X of the GLe is locally Lipschitz continuous. Therefore, for each initial

condition Ψ0 ∈ Xζ , there exists a unique strong local solution Ψ ∈ C0([0, T ], Xζ)

such that ∂tΨ ∈ C0((0, T ), Xζ), where T = T (Ψ0) > 0 is the maximal time interval

of existence; see [He81] Theorem 3.3.3 and Theorem 3.5.2.

We show that the strong solution is smooth. Since Xζ is continuously embedded

into C0,κ(M,C) for any κ ∈ (0, 2ζ − 1) (see Lemma 2.1 (ii)), for each fixed t ∈ (0, T )

we have

∆b,ηΨ(t, ·) = ∂tΨ(t, ·)−N (Ψ(t, ·))(·) ∈ C0,κ(M,C).

Using a partition of unity, the Schauder elliptic regularity theory yields a classical

local solution Ψ ∈ C0((0, T ), C2,κ(M,C)) such that ∂tΨ ∈ C0((0, T ), C0,κ(M,C));

see [GiTr83] Theorem 6.14 for the case α = −∞ and Theorem 6.31 for the other

cases α ∈ (−∞, 0]. The proof is complete. ./

2.5 Variational structure of real Ginzburg-Landau

equation

An evolution PDE system is said to possess a variational structure if it can be derived

by variation of a Lyapunov functional, and thus its global dynamics are fairly simple:

All bounded trajectories converge to local extreme points of the Lyapunov functional.

In this section we obtain a variational structure for the real GLe, which is a crucial

ingredient to design our spiral Ansatz.

Let us introduce the following concepts in dynamical systems.

Definition. Let Y be a Banach space and Z ⊂ [0,∞) × Y . A mapping S : Z → Y

is called a local semiflow on Y if the following conditions hold.

• Z is open in [0,∞) × Y and the projection of Z onto the second component is

equal to Y .

• For each v ∈ Y , there exists a maximal time interval of existence T (v) > 0

such that S(t, v) ∈ Z for all t ∈ [0, T (v)).
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• (semigroup property) For each v ∈ Y , S(0, v) = v and

S(t1 + t2, v) = S(t1,S(t2, v)) = S(t2,S(t1, v))

for all t1 + t2 ∈ [0, T (v)) such that t1 ∈ [0, T (S(t2, v))) and t2 ∈ [0, T (S(t1, v))).

• (strong continuity) The mapping

(t, v) ∈ [0, T (v))× Y 7→ S(t, v) ∈ Y

is continuous.

Definition. Let S be a local semiflow on a Banach space Y and v ∈ Y . Then we

define the following:

• The forward time orbit of v is defined as O+(v) := {S(t, v) : t ∈ [0, T (v))}.

• v is called an equilibrium if O+(v) =
{
v
}

.

• O+(v) is called a nontrivial periodic orbit if v is not an equilibrium and

there exists a period tp > 0 such that S(tp, v) = v.

Definition. Let S be a local semiflow on a Banach space Y . A continuous mapping

E : Y → R is called a strict Lyapunov functional if it is bounded from below,

and the mapping t ∈ [0, T (v)) 7→ E [S(t, v)] ∈ R is strictly decreasing for every v ∈ Y ,

except at equilibria.

We now study the GLe (2.1) for every fixed b > 0 and α ∈ [−∞, 0].

First, for each η ∈ R and β ∈ Rd, the GLe generates a local semiflow S(η,β) on

Y := Xζ = H2ζ(M,C) with ζ ∈ (1
2
, 1), that is,

S(η,β)(t,Ψ0) = Ψ(t, ·)

for all Ψ0 ∈ Xζ and t ∈ [0, T (Ψ0)); see Lemma 2.7.

Second, the GLe can be associated with the following complex-valued functional :

E(η,β)[v] :=
1 + i η

b

∫
M
|∇gv|2 −

∫
M
F (|v|2; β)− 1 + i η

b α

∫
∂M
|v|2, (2.17)

where F (y; β) =
∫ y

0
f(σ; β) dσ is a primitive function of f . The functional (2.17) is

well defined and continuous on Xζ , since Xζ is continuously embedded into C0(M,C);

see Lemma 2.1 (ii). Notice that the boundary integral vanishes if ∂M is empty, or

if we consider either Neumann boundary conditions (α = 0) or Dirichlet boundary
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conditions (α =∞ in symbol).

Third, every solution Ψ is smooth, and due to the Euler-Lagrange equation the

GLe is equivalent to the variational equation

∂tΨ = −
δE(η,β)

δΨ
.

Here Ψ denotes the complex conjugate of Ψ. Moreover, applying the divergence

theorem it is straightforward to obtain

d

dt
E(η,β)[Ψ(t, ·)] = −2

∫
M

∣∣(∂tΨ)(t, ·)
∣∣2. (2.18)

However, the set of complex numbers is not an ordered field, so the range of E(η,β),

as long as it is complex valued, can possibly be extremely complicated along some

forward time orbits. This observation reflects the difficulty to analyzing the complex

GLe, but explains why it yields abundant and intricate spatio-temporal patterns; for

instance see [ChMa96] and [ArKr02] for phase diagrams.

Lemma 2.8 (variational structure). Suppose that (A1) holds. Then the real Ginzburg-

Landau equation (2.3) is associated with a strict Lyapunov functional. Consequently,

there is no nontrivial periodic orbit.

Proof: Since η = 0 and β = 0, the functional E := E(0,0) : Xζ → R defined in

(2.17) is real valued. Thus by (2.18), E is strictly decreasing along every forward

time orbit, except at equilibria. Moreover, E is bounded from below due to (A1) and

α ∈ [−∞, 0]. This proves that E is a strict Lyapunov functional.

To prove the consequence, suppose the contrary that v ∈ Y were not an equilib-

rium and S(0,0)(tp, v) = v for some period tp > 0. Since E is strictly decreasing in

time and bounded from below, we have −∞ < E [v] = E [S(0,0)(tp, v)] < E [v], which is

a contradiction. This completes the proof. ./

2.6 Summary

We have set up the mathematical stage: the Ginzburg-Landau equation as the main

equation; the two assumptions for the existence of spiral wave solutions. We have

shown that the projected operator shares its spectral property and nodal property of

eigenfunctions with regular Sturm-Liouville operators, due to the L2-spectral decom-

position of the Laplace-Beltrami operator. Having solved the initial value problem

of the Ginzburg-Landau equation, we go further and seek pattern-forming solutions.

Moreover, in Chapter 3 we derive our spiral Ansatz by the variational structure of

the real Ginzburg-Landau equation.
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Chapter 3

Spiral patterns and spiral Ansätze

In this chapter we design spiral patterns and their associated spiral Ansätze. In

Section 3.1 we define tips as phase singularities, which are characterized by nonzero

winding numbers. We prove that generically the sum of winding numbers is zero

for admissible manifolds without boundary. In Section 3.2 we define spatio-temporal

patterns. Based on equivariance, in Section 3.3 we interpret an Ansatz as the form

of solutions associated with a relative equilibrium. In Section 3.4 we show that

relative equilibria of the Ginzburg-Landau equation are quasi-periodic with at most

two frequencies. Then we derive a relation between frequencies and parameters of the

Ginzburg-Landau equation. In Section 3.5 we seek rigidly-rotating spiral patterns.

We justify the popular m-armed spiral Ansatz by the variational structure of the real

Ginzburg-Landau equation. In the end we derive a simple criterion for parameters of

the Ginzburg-Landau equation that support spiral patterns.

3.1 Tips

A spiral pattern is composed of tips and a spiral-like shape. In this section we propose

two equivalent definitions for tips. The study of tips plays a key role in the dynamics

of nonlinear (e.g., fluid, optical, electromagnetic) fields. In different contexts tips are

also called phase singularities, co-dimension two topological defects, wave dislocations,

or quantized vortices; see [Pi99], [De01], [ArKr02] and references therein.

3.1.1 Jump discontinuities of phase field

Let Ψ : [0, T )×M→ C be a smooth solution of the initial value problem of the GLe,

where T > 0 is the maximal time interval of existence; see Lemma 2.7. We express

Ψ = ΨR + iΨR where ΨR and ΨI are real valued.
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Let t ∈ [0, T ) be fixed and Z[Ψ](t) denote the set of zeros of Ψ(t, ·). Let x0 ∈
Z[Ψ](t). We call x0 an isolated zero if there is an open subset U ⊂ M such that

Z[Ψ](t) ∩ U = {x0}. All isolated zeros of Ψ(t, ·) form a set Ziso[Ψ](t). For each

x0 ∈ Ziso[Ψ](t), we can apply the polar form

Ψ(t, x) = A(t, x) eiP (t,x) (3.1)

pointwisely for all x ∈ U \ {x0}. Here A =
√

Ψ2
R + Ψ2

I > 0 is the amplitude

function and P is the real-valued phase field . Note that A(t, ·) and P (t, ·) inherit

the same smoothness of Ψ(t, ·) in U \ {x0}; see [Bo&al00] Theorem 3. Clearly, the

phase field P (t, ·) is indeterminate at x0, so we classify Ziso[Ψ](t) as follows:

• isolated zeros at which P (t, ·) is continuously extendable, that is, there exists a

continuous function P̃ (t, ·) : U → R such that P̃ (t, x) = P (t, x) holds for all

x ∈ U \ {x0}.

• isolated zeros at which P (t, ·) undergoes a jump discontinuity. We call such

zeros tips.

3.1.2 Nonzero winding numbers

We characterize tips by a topological invariant: the winding number. For each isolated

zero x0 ∈ Ziso[Ψ](t), there is a smooth positively-oriented loop L ⊂ M around x0,

which does not pass through any other zeros of Ψ(t, ·). Hence in the polar form (3.1)

the phase field P (t, ·) is smooth in an open neighborhood of L in M. We call such

loops L permissible.

It follows that the net change of P (t, ·) along any permissible loop yields the

same integer multiple of 2π. Therefore, the winding number of Ψ(t, ·) at x0 is well

defined and derived by the formula

w(Ψ(t, ·), x0) :=
1

2π

∮
L

dP (t, ·) =
1

2π

∮
L

∇gP (t, ·) · dl, (3.2)

where dl is the arclength element. Note that the winding number is also called the

topological charge; see [ArKr02].

It is well known that the winding number coincides with the topological degree

Deg(·) for continuous self-mappings on the unit circle ∂D. Here D is the open unit

disk; see [Hat02] and [OuRu09] IV.. Homotopy invariance implies that the wind-

ing number does not change as permissible loops smoothly shrink to the point x0.

Therefore, from the formula (3.2) we expect w(Ψ(t, ·), x0) 6= 0 if and only if ∇gP (t, ·)
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diverges as permissible loops L shrink to x0, and thus P (t, ·) undergoes a jump dis-

continuity at x0. This observation results in the following definition.

Definition. The set of tips of Ψ(t, ·) at time t ∈ [0, T ) is given by

T [Ψ](t) :=
{
x ∈ Ziso[Ψ](t) : w(Ψ(t, ·), x) 6= 0

}
.

Let us justify the definition. We call a continuous self-mapping h : ∂D → ∂D to

be continuously extendable to H : D ∪ ∂D → ∂D if H is a continuous function

and H
∣∣
∂D = h.

Lemma 3.1. The following statements hold:

(i) A continuous self-mapping h : ∂D → ∂D is continuously extendable to H :

D ∪ ∂D → ∂D if and only if Deg(h) = 0.

(ii) Let x0 ∈ Ziso[Ψ](t). Then the phase field P (t, ·) of the solution Ψ(t, ·) undergoes

a jump discontinuity at x0 if and only if w(Ψ(t, ·), x0) 6= 0.

Proof. For (i), suppose that H : D ∪ ∂D → ∂D is a continuous extension of

h : ∂D → ∂D. Then h is homotopic to the constant function H(0) by the ho-

motopy H̃1 : [0, 1]× ∂D → ∂D defined by H̃1(σ, x) := H(σx). Hence Deg(h) = 0.

Conversely, suppose Deg(h) = 0. By the Hopf degree theorem (see [Hat02]

Corollary 4.25), h is homotopic to a constant function h0, so there is a homotopy

H̃2 : [0, 1]× ∂D → ∂D such that H̃2(0, x) = h(x) and H̃2(1, x) = h0. Since

D ∪ ∂D =
{

(σ, x) ∈ [0, 1]× ∂D : |x| = σ
}
,

H̃2 is a continuous extension of h. This proves the item (i).

For (ii), observe that the formula (3.2) involves P (t, ·) only, and each permissible

loop L is diffeomorphic to ∂D. Thus to calculate the winding number, it suffices

to consider Ψ̃(t, ·) := eiP (t,·) as a self-mapping on ∂D. Since the winding number

coincides with the topological degree, by the item (i), w(Ψ(t, ·), x0) 6= 0 if and only if

Ψ̃(t, ·) is not continuously extendable to D ∪ ∂D, or equivalently, P (t, ·) undergoes a

jump discontinuity at x0. The proof is complete. ./

Remark . Time t ≥ 0 is a homotopy parameter, so the winding number is a conserved

quantity before an annihilation of tips occurs.
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3.1.3 Zero sum constraint

In this subsection we restrict our attention to admissible manifolds without boundary.

We prove that generically the sum of winding numbers is zero.

Our starting point is that the Brouwer degree is well defined for Ψ(t, ·) :M→ C
because bothM and C are real two-dimensional and without boundary. Moreover, it

shares all properties with the standard Brouwer degree on open sets in the Euclidean

space. In particular, if 0 ∈ C is a regular value, then the Brouwer degree is equal to

the sum of winding numbers; see [Vä12] Chapter 9.

Lemma 3.2 (zero sum constraint). Let M be an admissible manifold without bound-

ary and t ≥ 0 be fixed. Assume Z[Ψ](t) = T [Ψ](t) = {x1, ..., x`}. Then

∑̀
j=1

w(Ψ(t, ·), xj) = 0.

In particular, T [Ψ](t) contains at least two tips if T [Ψ](t) is nonempty.

Remark .

(i) The assumption is a generic condition for smooth functions on M due to the

Morse-Sard Theorem.

(ii) The sum of winding numbers is independent of the genus of M. Nevertheless,

Lemma 3.2 does not contradict the Poincaré-Hopf Theorem because Ψ(t, ·) is

not a tangent vector field on M.

(iii) M needs to be compact and without boundary because there are patterns with

only one tip on R2 or on disks.

Proof. Since M is compact, Ψ(t, ·) : M → C is homotopic to a constant function

h0 via the homotopy H : [0, 1]×M→ C defined by H(σ, x) := σΨ(t, x) + (1−σ)h0;

see [Vä12] Definition 9.36. Hence the Brouwer degree of Ψ(t, ·) is zero. Since all zeros

of Ψ(t, ·) are tips by assumption, the sum of their winding numbers is zero. ./

One can use triangulation onM to prove the zero sum constraint; see [Da&al04].

Due to this constraint, an annihilation of tips must involve anti-rotating spirals, that

is, spirals whose tips are associated with equal winding numbers of opposite signs.
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3.2 Spatio-temporal patterns

We see patterns in the physical space of experiments or numerical simulations. In

this section we define spatio-temporal patterns, following [GoSt03] Section 6.6.

Let Ψ : [0, T )×M→ C be a smooth solution of the GLe. Let us interpret M as

an observable region and seek a real-valued observation function

Ψobs : [0, T )×M→ R

such that the mapping Ψ(t, x) 7→ Ψobs(t, x) is well defined, continuous, and respects

equivariance of the GLe (see Section 3.3.1 for more details). For each t ∈ [0, T ), a

spatial pattern is defined as the level set

Pspa[Ψ](t) :=
{
x ∈M : Ψobs(t, x) = `0

}
.

Here `0 ∈ R is a level of measurements. Choices of observable functions are not

unique. We choose

Ψobs(t, x) := Im(Ψ(t, x))

and `0 = 0 in order to see the location of tips. One may choose Ψobs := Re(Ψ),

however, such a choice yields a constant phase-shift of spatial patterns, only.

Definition. The spatial pattern of Ψ(t, ·) at time t ≥ 0 is defined as

Pspa[Ψ](t) :=
{
x ∈M : Im(Ψ(t, x)) = 0

}
.

The spatio-temporal pattern of Ψ is defined as

Pspa−tem[Ψ] :=
{
Pspa[Ψ](t) : t ∈ [0, T )

}
.

In the polar form Ψ = AeiP = A cos(P ) + i A sin(P ), the relation Im(Ψ) = 0

results in the equivalent definition

Pspa[Ψ](t) = Z[Ψ](t) ∪
{
x ∈M : P (t, x) = 0 (mod π)

}
. (3.3)

Thus the spatial pattern of Ψ(t, ·) consists of zeros of Ψ(t, ·) and zero curves (mod-

ulo π) of its phase field P (t, ·). We are particularly interested in rigidly-rotating

patterns, that is,

Pspa[Ψ](t) = RΩt

(
Pspa[Ψ](0)

)
for all t ≥ 0. Here RΩt is a rotation through the angle Ωt around a fixed center and

Ω 6= 0 is the rotating frequency.
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3.3 Ansätze: Symmetry perspective

An Ansatz is a desired form of special solutions. To design Ansätze based on system-

atic considerations, we adopt symmetry perspective and interpret an Ansatz as the

form of solutions associated with a relative equilibrium, that is, a group orbit that is

invariant under the semiflow of the underlying evolution PDE. Hence our design of

Ansätze shall rely on equivariance. In this section we review necessary background

knowledge from the theory of equivariant dynamical systems; see [ChLa00], [FiSc03],

and [GoSt03]. We then obtain equivariance of the GLe.

3.3.1 Equivariance, relative equilibria, and Ansätze

In this subsection our aim is to reach the definition of relative equilibria and their

associated Ansätze. Moreover, we prove that every relative equilibrium is group iso-

morphic to a torus.

Continuous symmetries can be described by Lie groups. Because admissible man-

ifolds are compact, we restrict our attention to compact Lie groups.

Definition. A compact Lie group is a group that is also a smooth compact mani-

fold such that the group operations of multiplication and inversion are smooth.

Let X and Y be Banach spaces and Y ⊂ X. Typically Y is equipped with a

stronger topology than the topology of X. Let (Γ, ·) be a compact Lie group, and

GL(X) be the group of bounded linear invertible operators on X with composition

as the group operation.

Definition. We define the following:

• An action of Γ on X is a group homomorphism ρX : Γ→ GL(X), that is,

ρX(γ1 · γ2) = ρX(γ1) ρX(γ2)

for all γ1, γ2 ∈ Γ.

• The pair (X, ρX) is called a representation of Γ on X.

• An action ρX is called to be strongly continuous if the mapping

(γ, v) ∈ Γ×X 7→ ρX(γ)v ∈ X

is continuous.

34



Let (X, ρX) and (Y, ρY ) be two representations of Γ on X and Y , respectively.

Due to topology considerations we always assume

ρX

∣∣∣∣
Y

(γ) = ρY (γ) (3.4)

for all γ ∈ Γ.

Definition. A mapping Q : Y → X is called to be Γ-equivariant if

Q(ρY (γ)v) = ρX(γ)Q(v)

for all γ ∈ Γ and v ∈ Y .

Example (Γ-equivariant evolution equation). Consider the Γ-equivariant evolution

equation on Y :

∂tv(t) = Q(v(t)), v(0) = v0 ∈ Y. (3.5)

Here Q : Y → X is a Γ-equivariant mapping. Assume the existence of a local

semiflow S on Y , that is, S(t, v0) = v(t) for all t ∈ [0, T (v0)). From Γ-equivariance

and the topological condition (3.4), we see that v(t) is a solution of (3.5) if and only

if ρY (γ)v(t) is also a solution, for each γ ∈ Γ and t ∈ [0, T (v)).

We specify the meaning of symmetry in two slightly different ways.

Definition. Let (X, ρX) be a representation of Γ on X and v ∈ X. Then we define

the following:

• The isotropy subgroup of v is defined as

Σv :=
{
γ ∈ Γ : ρX(γ)v = v

}
.

• Given a subgroup H of Γ, the H-fixed subspace of X is defined as

FixX(H) :=
{
v ∈ X : ρX(γ)v = v for all γ ∈ H

}
.

Evidently, Σv assembles all symmetries of the element v, and the H-fixed subspace

collects all elements that satisfy the symmetry property H. One important feature

of the H-fixed subspace is the invariance under any Γ-equivariant mapping.

Lemma 3.3. Let Q : Y → X be Γ-equivariant and H be a subgroup of Γ. Then

Q(FixY (H)) ⊂ FixX(H).
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Proof. [see [ChLa00] Chapter 2] Given any v ∈ FixY (H) and γ ∈ H, by Γ-

equivariance we have ρX(γ)Q(v) = Q(ρY (γ)v) = Q(v), so Q(v) ∈ FixX(H). ./

From now on we consider the Γ-equivariant evolution equation (3.5). We are

interested in those group orbits that are invariant under the local semiflow S.

Definition. Consider the Γ-equivariant evolution equation (3.5). Let (Y, ρY ) be a

representation of Γ on Y . Then we define the following:

• The group orbit of v0 ∈ Y is defined as Γv0 := {ρY (γ)v0 : γ ∈ Γ}.

• A group orbit Γv0 is called a relative equilibrium if T (v0) =∞ and it contains

the time orbit of v0, that is,{
S(t, v0) : t ≥ 0

}
⊂ Γv0.

Hence there exists a one-parameter family in time {γt ∈ Γ : t ≥ 0} such that

Γv0 =
{
ρY (γt)v0 : t ≥ 0, γt ∈ Γ

}
.

• The Ansatz of a relative equilibrium Γv0 is the form of solutions

S(t, v0) := ρY (γt)v0, t ≥ 0.

It follows by definition that a relative equilibrium Γv0 is invariant under the semi-

flow, that is, S(t̃,Γv0) ⊂ Γv0 for all t̃ ≥ 0. Typical examples of relative equilibria are

equilibria when Γ consists of the group identity only, traveling waves when Γ consists

of translations along a line, and rotating waves when Γ consists of rotations around

a center.

The one-parameter family in time {γt ∈ Γ : t ≥ 0} realizes the Ansatz. Therefore,

the key to design Ansätze is to answer the question: What is time?

Our answer is based on the semigroup property of semiflows: Time is a contin-

uous (typically nonlinear) action of the abelian semigroup (R≥0,+) on the space Y .

So, we expect that the one-parameter family in time, and thus its associated relative

equilibrium, is group isomorphic to an abelian subgroup of Γ.

We justify our observation with the following terminology.

Definition. We define the following:

• A Lie group is called a torus it is compact, connected, and abelian (see [ChLa00]

Theorem 7.2.2 that justifies this definition).
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Let Γ be a compact Lie group.

• A torus of Γ is called to be maximal if it is maximal among all subgroups of Γ

under set-theoretic inclusion.

Since it is well known that all maximal tori lie in a single conjugacy class, we define:

• The rank of Γ is the dimension of its maximal tori.

Lemma 3.4. Let Γ be a compact Lie group and Γv0 ⊂ Y be a relative equilibrium

of the Γ-equivariant evolution equation (3.5). Then the closure of Γv0 in Γ is group

isomorphic to a torus.

Definition. A relative equilibrium is called to be quasi-periodic with n frequen-

cies if it is group isomorphic to a torus of dimension n.

Proof. [see [ChLa00] Theorem 7.2.4] Let Γv0 = {ρY (γt)u0 : t ≥ 0, γt ∈ Γ}. We

identify Γv0 as a subset of Γ via the mapping ρY (γt)v0 ∈ Γv0 7→ γt ∈ Γ. It suffices

to prove that H := {γt ∈ Γ : t ≥ 0} is a torus of Γ. First, since Γv0 is a relative

equilibrium, the semigroup property implies that H is an abelian subgroup of Γ.

Second, strong continuity of the semiflow yields connectedness of H. Last, since Γ is

compact, the closure of H in Γ is also compact. The proof is complete. ./

3.3.2 Application to Ginzburg-Landau equation

In this subsection we obtain a standard strongly continuous representation and show

equivariance of the GLe

∂tΨ = Q(b|Ψ; η, β) :=
1

b
(1 + i η)∆M,(α)Ψ + f(|Ψ|2; β) Ψ.

Notation . Since b > 0, η ∈ R, α ∈ [−∞, 0], and β ∈ Rd are irrelevant to our

analysis in this subsection, we consider without loss of generality

∂tΨ = Q(Ψ) := ∆MΨ + f(|Ψ|2) Ψ. (3.6)

Let X = L2(M,C). Recall that (3.6) generates a local semiflow on any fractional

space Y = Xζ with ζ ∈ (1
2
, 1); see Lemma 2.7.

Let ΓM be a Lie group that assembles all symmetries ofM, that is, γM =M for

all γ ∈ ΓM. Then ΓM is a Lie subgroup of the real orthogonal group O(3,R), which

consists of all 3× 3 real matrices γ such that γ−1 = γT . The group action on M,

(γ, x) ∈ ΓM ×M 7→ γ−1x ∈M,

37



induces the following action of ΓM on X:

(ρX(γ)v)(x) := v(γ−1x)

for all γ ∈ ΓM, v ∈ X, and x ∈ M. Note that the inverse γ−1 appears so that ρX

becomes an action. Together with the global S1-equivariance, the symmetry group

of the GLe is

Γ := S1 × ΓM.

Note that the inverse of (ϑ, γ) ∈ Γ is given by (−ϑ, γ−1). We now consider the

following action ρX of Γ on X:(
ρX((ϑ, γ))v

)
(x) := e−iϑ v(γ−1x) (3.7)

for all (ϑ, γ) ∈ Γ, v ∈ X, and x ∈ M. Accordingly, we define the action ρY of Γ on

Y also by (3.7), so the topological condition (3.4) is trivially fulfilled.

Lemma 3.5. The following statements hold:

(i) The action (3.7) of Γ on X and Y is strongly continuous.

(ii) The Ginzburg-Landau equation (3.6) is Γ-equivariant under the action (3.7).

Remark . Lemma 3.5 (i) does not necessarily hold if Γ is not a compact Lie group;

for instance, if Γ contains translations.

Before the proof, we denote by L(Y,X) the space of bounded linear operators that

map Y into X equipped with the operator norm ‖ · ‖.

Proof. For (i), it suffices to prove the case for ρX because the proof of the other case

ρY is the same, due to the topological condition (3.4). Since ‖ρX(ϑ, γ)‖L(X,X) = 1 for

all (ϑ, γ) ∈ Γ, and∣∣ρX(ϑ1, γ1)v1 − ρX(ϑ2, γ2)v2|X ≤ |v1 − v2|X + |ρX((ϑ2, γ2)−1 · (ϑ1, γ1))v2 − v2|X ,

it remains to prove that lim(ϑ,γ)→ (0,id) |ρX(ϑ, γ)v−v|X = 0 holds for each fixed v ∈ X.

Here (0, id) ∈ Γ is the group identity.

Given v ∈ X and ε > 0, since C1(M,C) is dense in X, there is a smooth function

w such that |v − w|X < ε. Since M is compact, w is uniformly continuous, so there

is a δ > 0 such that |w(x)−w(x̃)| < ε whenever x, x̃ ∈M satisfy |x− x̃| < δ. Hence,

as (ϑ, γ)→ (0, id) in Γ, we have |(ϑ, γ)−1x− x| < δ for all x ∈M. Therefore,

|ρX(ϑ, γ)v − v|X ≤ ‖ρX(ϑ, γ)‖L(X,X) |v − w|X + |ρX(ϑ, γ)w − w|X + |w − v|X
≤ Cε,
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where C > 0 is a constant that depends on M and δ, only. This proves the item (i).

For (ii), observe thatQ defined in (3.6) is S1-equivariant and the Laplace-Beltrami

operator as well as the nonlinearity defined as a superposition mapping commute with

rotations, reflections, and translations. The proof is complete. ./

3.4 General Ansatz for Ginzburg-Landau equation

In this section we show that all relative equilibria of the GLe are quasi-periodic with

at most two frequencies. Moreover, we derive a relation between frequencies and

parameters of the GLe.

3.4.1 General Ansatz and surfaces of revolution

Consider the GLe under the action (3.7). Since every relative equilibrium is group

isomorphic to a torus of a compact Lie group Γ, the rank of Γ determines the maximal

number of frequencies.

For the maximality, it suffices to consider thatM possesses the full symmetries in

R3, that is, ΓM = O(3,R) and thus Γ = S1 ×O(3,R). It follows that the rank of Γ

is two, since S1 is a one-dimensional torus and SO(2,R) ∼= S1 is a maximal torus of

O(3,R); see [ChLa00] Example 7.23. Hence S1 × SO(2,R) is a maximal torus of Γ.

As a result, all relative equilibria are quasi-periodic with at most two frequencies. We

call an Ansatz to be general if its associated relative equilibrium is quasi-periodic

with exactly two frequencies.

To classify all maximal tori of Γ, we have two observations. First, it is well known

that maximal tori of a compact Lie group form a single conjugacy class. Second, by

Euler’s rotation theorem, every element of O(3,R) is a rotation around some axis.

Therefore, up to a rotation, S1 × SO(2,R) is the unique maximal torus of Γ. Hence

we can assume without loss of generality that the action of SO(2,R) is described by

all rotations around the x3-axis in (x1, x2, x3) ∈ R3. Consequently, the general Ansatz

requires M being a surface of revolution. Moreover, by the action (3.7) the general

Ansatz is defined by

Ψ(t, s, ϕ) = e−iΩt ψ(s, ϕ− ct). (3.8)

Here (s, ϕ) denotes polar coordinates on M; see (2.7).

We immediately see that in the co-rotating frame with the rotation frequency

Ω ∈ R, (3.8) is the form of a periodic traveling wave solutions for the complex-valued

profile ψ with the wave speed c ∈ R. Notice that Ω and c are unknown frequencies.

39



3.4.2 Frequency-parameter relation

The general Ansatz (3.8) yields a relation between the unknown frequencies and

parameters of the GLe. To see the derivation, we first introduce the co-moving frame

ξ := ϕ− ct

and substitute (3.8) into the GLe (2.1). The global S1-equivariance yields the follow-

ing elliptic equation for ψ:

− iΩψ − c ∂ξψ =
1

b
(1 + i η) ∆M,(α)ψ + f(|ψ|2; β)ψ. (3.9)

Second, we multiply (3.9) by the complex conjugate ψ, integrate over M, and use

the divergence theorem and Robin boundary conditions. Then we obtain

iΩ

∫
M
|ψ|2 +c

∫
M

(∂ξψ)ψ =
1

b
(1+i η)

(∫
M
|∇gψ|2−α

∫
∂M
|ψ|2

)
−
∫
M
f(|ψ|2; β) |ψ|2.

(3.10)

Note that all integrals are taken over the volume form with respect to polar coordi-

nates. Third, since ψ(s, ξ + 2π) = ψ(s, ξ) for all s ∈ [0, s∗] and ξ ∈ R, we have∫
M

Re
(
(∂ξψ)ψ

)
=

1

2

∫
M
∂ξ(|ψ|2) = 0

and thus
∫
M(∂ξψ)ψ is purely imaginary. We now sort out the real part and imaginary

part in (3.10):

1

b

(∫
M
|∇gψ|2 − α

∫
∂M
|ψ|2

)
=

∫
M
fR(|ψ|2; β) |ψ|2, (3.11)

Ω

∫
M
|ψ|2 + c

∫
M

Im
(
(∂ξψ

)
ψ
)

=
η

b

(∫
M
|∇gψ|2 − α

∫
∂M
|ψ|2

)
−
∫
M
fI(|ψ|2; β) |ψ|2.

(3.12)

Then (3.11–3.12) yield the following frequency-parameter relation :∫
M

(
Ω− η fR(|ψ|2; β) + fI(|ψ|2; β)

)
|ψ|2 + c

∫
M

Im
(
(∂ξψ

)
ψ
)

= 0. (3.13)

3.5 Spiral Ansatz for Ginzburg-Landau equation

In this section we considerM as an admissible surface of revolution because of our tip

assumption for rigidly-rotating spirals. We justify the popular m-armed spiral Ansatz

by the variational structure of the real GLe. We then establish a functional setting
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to solve the resulting elliptic equation. We next obtain several consequences, once a

nontrivial solution exists. For instance, zeros of the solution neither accumulate at

tips nor at boundary points; its phase derivative possesses a continuous extension to

tips and simple zeros; its associated pattern hits boundary points in normal direction.

In the end we obtain a criterion that determines whether a nontrivial solution exhibits

a spiral pattern.

3.5.1 Tip assumption: Rigidly-rotating spirals

Let Ψ be a solution of the GLe on an admissible surface of revolution M; see (2.7).

We propose an assumption on tips so that Ψ can exhibit rigidly-rotating spirals.

Tip Assumption (rigidly-rotating spirals). We assume that tips of Ψ reside on the

x3-axis, that is,

• there is only one tip (0, 0, ã(0)) if ∂M is nonempty;

• there are two distinct tips (0, 0, ã(0)) and (0, 0, ã(s∗)) if ∂M is empty.

Moreover, tips are pinned for all time.

Since each tip is associated with a nonzero winding number, we assign m ∈ Z\{0}
as the winding number of Ψ at the tip (0, 0, ã(0)). Up to a change of directions

ϕ 7→ −ϕ, we assume without loss of generality

m ∈ N.

In the general Ansatz (3.8), since by definition a tip is an isolated zero of Ψ, there

is an ŝ ∈ (0, s∗] such that ψ admits the polar form,

ψ(s, ξ) = A(s, ξ) eiP (s,ξ), ξ = ϕ− ct,

for all s ∈ (0, ŝ) and ξ ∈ R. Thus the formula of winding numbers (3.2) yields

2πm =

∮
Cs

∇gP · dl =

∫ 2π

0

(∂ξP )(s, σ + ξ0) dσ, (3.14)

where Cs is the positively-oriented circle given by the intersection ofM and the plane

{(x1, x2, x3) : x3 = ã(s), s ∈ (0, ŝ)} and ξ0 ∈ R is any reference point. From (3.14)

we have

P (s, ξ0 + 2π) = P (s, ξ0) + 2πm (3.15)

for all s ∈ (0, ŝ) and ξ0 ∈ R.
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3.5.2 The m-armed spiral Ansatz

In this subsection we assume that only the location of tips are zeros of Ψ. Hence we

can apply one polar form in the general Ansatz (3.8), that is, ŝ = s̃ and thus

Ψ(t, s, ϕ) = e−iΩtA(s, ξ) eiP (s,ξ), ξ = ϕ− ct, (3.16)

for all s ∈ (0, s∗) and ξ ∈ R. We now consider the real GLe (2.3). Since η = 0 and

β = 0, the frequency-parameter relation (3.13) reads

Ω

∫
M
|ψ|2 + c

∫
M

Im
(
(∂ξψ

)
ψ
)

= 0.

We are interested in nontrivial solutions, so c = 0 implies Ω = 0. In this case (3.16)

transforms the real GLe into its equilibrium equation, only. Thus we consider c 6= 0.

Lemma 3.6 (m-armed spiral Ansatz). Consider the real Ginzburg-Landau equation

(2.3) on an admissible surface of revolutionM. Suppose that Ψ is a smooth nontrivial

solution in the form of (3.16). Assume c 6= 0 and Ω and c are rationally dependent.

Then the following statements hold:

(i) Ω +mc = 0.

(ii) A(s, ξ) = A(s), that is, the amplitude function A is radially symmetric.

(iii) P (s, ξ) = p(s) + mξ. Hence the phase field P (s, ·) is a linear circle mapping

with m ∈ N as its rotation number, for each fixed s ∈ (0, s∗).

Proof: Since c 6= 0, (3.15) implies

Ψ

(
t+ k

2π

c
, s, ϕ

)
= e−ik( Ω

c
+m)2π Ψ(t, s, ϕ) (3.17)

= e−i2k
Ω
c
π Ψ(t, s, ϕ)

for all t ≥ 0, s ∈ (0, s∗), and ϕ ∈ [0, 2π). Since t is nonnegative, we choose k ∈ N (or

k ∈ −N) if c > 0 (or c < 0). We assume c > 0 without loss of generality.

Since Ω and c are rationally dependent, Ψ(t, ·) is periodic in time by (3.17). The

variational structure of the real GLe implies that Ψ(t, ·) is independent of time; see

Lemma 2.8. Thus (3.16) reads

e−iΩtA(s, ϕ− ct) eiP (s,ϕ−ct) = A(s, ϕ) eiP (s,ϕ). (3.18)
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Hence A(s, ϕ − ct) = A(s, ϕ) for all t ≥ 0, s ∈ (0, s∗), and ϕ ∈ [0, 2π). Since c 6= 0,

continuity of A implies A(s, ϕ) = A(s). This proves the item (ii).

Now (3.18) reads

A(s) ei
(
−Ωt+P (s,ϕ−ct)

)
= A(s) eiP (s,ϕ).

Since A(s) > 0 for all s ∈ (0, s∗), continuity of P implies

− Ωt+ P (s, ϕ− ct) = P (s, ϕ). (3.19)

Let us plug t = 2π
c
> 0 into (3.19) and use (3.15). Then we obtain Ω +mc = 0. This

proves the item (i).

For (iii), we differentiate (3.19) with respect to t, which yields

−Ω− c ∂ξP (s, ϕ− ct) = 0.

Thus ∂ξP (s, ϕ−ct) = −Ω
c

= m, by the item (i). Hence P (s, ϕ−ct) = p(s)+m(ϕ−ct).
This completes the proof. ./

In view of Lemma 3.6, we define the m-armed spiral Ansatz by

Ψ(t, s, ϕ) = e−iΩ̂t ψ(s, ϕ), ψ(s, ϕ) = u(s) eimϕ,

where Ω̂ := Ω +mc and u is complex valued.

Notation . Since Ω̂ is the only unknown frequency in the m-armed spiral Ansatz,

from now on we omit the hat, so we consider

Ψ(t, s, ϕ) = e−iΩt ψ(s, ϕ), ψ(s, ϕ) = u(s) eimϕ. (3.20)

Accordingly, the frequency-parameter relation (3.13) reads∫
M

(
Ω− η fR(|ψ|2; β) + fI(|ψ|2; β)

)
|ψ|2 = 0. (3.21)

Remark . Lemma 3.6 justifies that the m-armed spiral Ansatz (3.20) is the unique

rigidly-rotating spiral Ansatz for the real GLe, if the unknown frequencies Ω and c

are rationally dependent. However, it is unclear whether other spiral Ansätze are

possible if Ω and c are irrationally dependent. To treat this case by our proof, the

difficulty is that the set of equilibria is not discrete due to the global S1-equivariance.

Thus the relation (3.17) is fruitless, even all ω-limit sets are contained in the set of

equilibria by the LaSalle’s invariance principle; see [Sa76] Theorem 3.1.
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3.5.3 Functional setting

In the m-armed spiral Ansatz (3.20), observe that the profile ψ is an element of the

closed L2-subspace L2
m. Thus the resulting elliptic full equation for ψ reads

F(b|Ω, ψ; η, β) := (1 + i η) ∆m,(α)ψ + i bΩψ + b f(|ψ|2; β)ψ = 0; (3.22)

see (3.9) with c = 0. Here ∆m,(α) : H2
m,(α) ⊂ L2

m → L2
m is the projected operator; see

Section 2.3.2. Notice that we have to determine the unknown frequency Ω ∈ R.

Notation . We use the notation (b|Ω, ψ; η, β) to distinguish b > 0 as the bifurcation

parameter; Ω ∈ R and ψ ∈ H2
m,(α) as the unknowns of the full equation (3.22); η ∈ R

and β ∈ Rd as the parameters of the GLe.

We establish our functional setting based on the following simple fact.

Lemma 3.7 (invariance). The range of F in (3.22) is contained in L2
m, that is,

F : (0,∞)× R×H2
m,(α) × R× Rd → L2

m is well defined.

Proof: Let ψ ∈ H2
m,(α) and ψ(s, ϕ) = u(s) eimϕ. Then ψ is continuous, becauseH2

m,(α)

is a H2-closed subspace and H2(M,C) is continuously embedded into C0(M,C); see

Lemma 2.1 (ii). By the global S1-equivariance, we have

f(|ψ(s, ϕ)|2; β)ψ(s, ϕ) =
(
f(|u(s)|2; β)u(s)

)
eimϕ.

Since f is continuous, we see f(|ψ|2; β)ψ ∈ L2
m. ./

3.5.4 A priori smoothness

In our functional setting, once a weak solution ψ ∈ H2
m,(α) of the full equation (3.22)

exists, it becomes smooth by the embedding theorem and the Schauder elliptic regu-

larity theory.

Lemma 3.8 (a priori smoothness). Let ψ ∈ H2
m,(α) be a weak solution of the full

equation (3.22). Then ψ ∈ C2,ν(M,C) for any ν ∈ (0, 1).

Proof: Since H2(M,C) is continuously embedded into C0,ν(M,C) for any ν ∈ (0, 1),

we have ψ ∈ C0,ν(M,C); see Lemma 2.1 (ii). Since f ∈ C1, from the full equation

we see ∆M,(α) ψ ∈ C0,ν(M,C). Hence ψ ∈ C2,ν(M,C) by using a partition of unity

and the Schauder elliptic regularity theory; see [GiTr83] Theorem 6.14 for the case

α = −∞, and Theorem 6.31 for the other cases α ∈ (−∞, 0]. ./

We often use a by-product of smoothness: If ψ ∈ C2,ν(M,C), then in particular

|∇gψ|C0 = sup
s∈[0,s∗]

(
|u′(s)|2 +

m2

a2(s)
|u|2
)
<∞. (3.23)
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3.5.5 Dynamics near tips and boundary

Lemma 3.9. Suppose that ψ ∈ C2,ν(M,C) and ψ(s, ϕ) = u(s) eimϕ is a nontrivial

solution of the full equation (3.22). Let u(s) = uR(s) + i uI(s) where uR and uI are

real valued. Then the following statements hold:

(i) (near the tips) s = 0 is an isolated zero of u(s). If in addition ∂M is empty,

then s = s∗ is also an isolated zero of u(s).

(ii) (near the boundary) Let ∂M be nonempty. Then s = s∗ cannot be a multiple

zero of u(s).

Proof: Let ψ(s, ϕ) = ψR(s, ϕ)+i ψI(s, ϕ) where ψR(s, ϕ) = uR(s) eimϕ and ψI(s, ϕ) =

uI(s) e
imϕ. We show that s = 0 is an isolated zero of both uR(s) and uI(s).

The full equation is equivalent to the following system:

∆m,(α)ψR − η∆m,(α)ψI + b
(
− ΩψI + fR(|ψ|2; β)ψR − fI(|ψ|2; β)ψI

)
= 0,

η∆m,(α)ψR + ∆m,(α)ψI + b
(
ΩψR + fI(|ψ|2; β)ψR + fR(|ψ|2; β)ψI

)
= 0,

(3.24)

where |ψ|2 = u2
R + u2

I . Using the Euler multiplier(
ds

dτ
=

)
ṡ = a(s),

it follows that (3.24) is equivalent to the extended ODE system:

u̇R = vR,

˙vR = m2 uR − b a2(s)
(
G1 + η G2

)
,

u̇I = vI ,

v̇I = m2 uI − b a2(s)
(
− η G1 +G2

)
,

ṡ = a(s).

(3.25)

Here G1 and G2 are defined as follows:

G1 = G1(uR, uI ; Ω, η, β) :=
1

1 + η2

(
− ΩuI + fR(|ψ|2; β)uR − fI(|ψ|2; β)uI

)
,

G2 = G2(uR, uI ; Ω, η, β) :=
1

1 + η2

(
ΩuR + fI(|ψ|2; β)uR + fR(|ψ|2; β)uI

)
.

For (i), note that τ = −∞ corresponds to s = 0. Continuity of ψR(τ) and ψI(τ)

at τ = −∞ implies limτ→−∞ uR(τ) = limτ→−∞ uI(τ) = 0.

We next show limτ→−∞ vR(τ) = 0 and the proof for limτ→−∞ vI(τ) = 0 is analo-

gous. By the chain rule u̇R(τ) = u′R(s) a(s). Since ψ ∈ C2,ν(M,C), by (3.23) we see
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that u′R(0) exists. Hence limτ→−∞ u̇R(τ) = lims→0 u
′
R(s) a(s) = 0 because a(0) = 0.

Observe Gj(0, 0; Ω, η, β) = 0 for all j = 1, 2, Ω ∈ R, η ∈ R, and β ∈ Rd.

Thus limτ→−∞ uR(τ) = limτ→−∞ uI(τ) = 0 and (3.25) imply that as τ → −∞, the

phase portrait of (3.25) converges to the equilibrium (uR, vR, uI , vI , s) = (0, 0, 0, 0, 0).

Since the equilibrium is hyperbolic and the expanding direction at τ = −∞ is given

by (1,m, 1,m, 1), we see that τ = −∞ is an isolated zero of both uR(τ) and uI(τ),

or equivalently, s = 0 is an isolated zero of both uR(s) and uI(s).

If ∂M is empty, then similar arguments show that the phase portrait of (3.25)

converges to the hyperbolic equilibrium (uR, vR, uI , vI , s) = (0, 0, 0, 0, s∗) as τ →∞,

and follows its contracting direction (1,−m, 1,−m,−1). This proves the item (i).

For (ii), suppose the contrary that s = s∗ were a multiple zero of u(s), that is,

u(s∗) = u′(s∗) = 0. Then u(τ∗) = u̇(τ∗) = 0, where τ∗ = τ(s∗) ∈ R is solved by the

Euler multiplier. Since a(s∗) > 0, and thus s = s∗ is not a singularity of (3.25), the

uniqueness of ODE initial value problems implies that u(s) is identically zero, which

is a contradiction. The proof is complete. ./

3.5.6 Continuous extension of phase derivative

Let ψ ∈ C2,ν(M,C) be a nontrivial solution of the full equation (3.22) and ψ(s, ϕ) =

u(s) eimϕ. Suppose that s̃ ∈ [0, s∗] is an isolated zero of u(s). Then there is a δ > 0

such that ψ admits the polar form

ψ(s, ϕ) =

(
A(s) eip(s)

)
eimϕ, s ∈ (s̃, s̃+ δ)

(or consider (s̃ − δ, s̃) if s̃ = s∗). We substitute the polar form into (3.22) and then

obtain the following ODE system:(
A′′ +

a′

a
A′ − m2

a2
A− A (p′)2

)
− η
(
Ap′′ + 2A′ p′ +

a′

a
Ap′

)
+ b fR(|A|2; β)A = 0,

(3.26)(
Ap′′ + 2A′ p′ +

a′

a
Ap′

)
+ η

(
A′′ +

a′

a
A′ − m2

a2
A− A (p′)2

)
+ b

(
Ω + fI(|A|2; β)

)
A = 0.

(3.27)

Observe that the phase derivative p′(s) is an independent variable in (3.26–3.27).

We ask if p′(s) admits a unique continuous extension to the isolated zero s = s̃.

To answer it, we combine (3.26) and (3.27) and then obtain

(1 + η2)

(
Ap′′ + 2A′ p′ +

a′

a
Ap′

)
= −b

(
Ω− η fR(|A|2; β) + fI(|A|2; β)

)
A. (3.28)
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The trick is to apply the following identity:

(aA2 p′)′ = aA

(
Ap′′ + 2A′ p′ +

a′

a
Ap′

)
.

Let us multiply (3.28) by a(s)A(s) and use the above identity. Then we obtain

(aA2 p′)′ =
−b

1 + η2
aA2

(
Ω− η fR(|A|2; β) + fI(|A|2; β)

)
. (3.29)

To integrate (3.29) over (s̃, s) with s ∈ (s̃, s̃ + δ), we need to show that the one-

sided limit lims↘s̃ a(s)A2(s) p′(s) exists. Since u′(s) = (A′(s) + i A(s) p′(s)) eip(s) for

all s ∈ (s̃, s̃+ δ), and |u′(s)| <∞ for all s ∈ [0, s∗] by (3.23), we have

|u′(s)|2 = (A′(s))2 + (A(s) p′(s))2 (3.30)

and so lims↘s̃A(s) p′(s) exists. Therefore, lims↘s̃A(s) = 0 and (3.30) imply

|u′(s̃)| = lim
s↘s̃
|A′(s)|, (3.31)

lim
s↘s̃

a(s)A2(s) p′(s) = 0. (3.32)

Consequently, we can integrate (3.29) over (s̃, s) for any s ∈ (s̃, s̃+ δ), which yields

p′(s) =
−b

(1 + η2) a(s)A2(s)

∫ s

s̃

a(σ)A2(σ)

(
Ω− η fR(|A(σ)|2; β) + fI(|A(σ)|2; β)

)
dσ.

(3.33)

Lemma 3.10. Suppose that ψ ∈ C2,ν(M,C) and ψ(s, ϕ) = u(s) eimϕ is a nontrivial

solution of the full equation (3.22). Let s̃ ∈ [0, s∗] be either the location of a tip

or a simple zero of u(s), then in the polar form of ψ the phase derivative p′(s) is

continuously extendable to s = s̃ by the one-sided limit lims→s̃ p
′(s) = 0.

Proof: Let s̃ be the location of a tip, that is, a(s̃) = 0. We apply L’Hôpital’s rule

on (3.33). It follows that lims→s̃ p
′(s) = 0 if the one-sided limit

lim
s→s̃

a(s)

a′(s) + 2 a(s)A
′(s)
A(s)

(3.34)

is also zero. Suppose s̃ = 0. Then a′(0) = 1, and by definition lims↘0A
′(s) ≥ 0. Thus

the denominator in the limit (3.34) is positive as s ↘ 0. Since a(0) = 0, this limit

(3.34) exists and is equal to zero. Our proof is also valid for the case s̃ = s∗, since

a′(s∗) = −1 and lims↗s∗ A
′(s) ≤ 0.

On the other hand, let s̃ ∈ (0, s∗) be a simple zero of u(s), that is, u(s̃) = 0
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and u′(s̃) 6= 0. Then lims→s̃A(s) = 0, and lims→s̃A
′(s) 6= 0 by (3.31). We apply

L’Hôpital’s rule on (3.33). Then lims→s̃ p
′(s) = 0 because a(s̃) > 0 and thus

lim
s→s̃

a(s)A(s)

a′(s)A(s) + 2 a(s)A′(s)
= 0.

This completes the proof. ./

3.5.7 Types of pattern

In this subsection we classify spatio-temporal patterns associated with the m-armed

spiral Ansatz (3.20). Consider a nontrivial solution Ψ of the GLe in the polar form

Ψ(t, s, ϕ) = e−iΩt
(
A(s) eip(s)

)
eimϕ.

The spatio-temporal pattern exhibited by Ψ is determined by the zero contour of the

phase field, that is,

− Ωt+ p(s) +mϕ = 0 (mod π) (3.35)

for t ≥ 0, s ∈ [0, s∗], and ϕ ∈ [0, 2π); see (3.3). Since ϕ ∈ [0, 2π), (3.35) is equivalent

to the following relation:

ϕ = ϕ(t, s) =
Ωt− p(s) + kπ

m
, k = 0, 1, ..., 2m− 1. (3.36)

We obtain the spatio-temporal pattern via polar coordinates:

(t, s) 7→
(
a(s) cos(ϕ(t, s)), a(s) sin(ϕ(t, s)), ã(s)

)
∈M.

From (3.36) we readily see that m ∈ N is the number of arms and the phase

function p(s) determines the shape of the spatio-temporal pattern. Evidently, a pat-

tern looks straight if p(s) is a constant function, or equivalently, the phase derivative

p′(s) is identically zero. This leads to the following definition.

Definition. Consider a spatio-temporal pattern associated with the m-armed spiral

Ansatz (3.20). Then we define the following:

• Such a pattern is called to be rotating if Ω 6= 0, or frozen if Ω = 0.

• Such a pattern is called a spiral pattern if p′(s) is not identically zero, or a

meridian pattern if p′(s) is identically zero.

For instance, if M is a 2-sphere, then a meridian pattern is seen as a union of

usual meridians; if M is a disk, then it is seen as a pinwheel centered at the origin.
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3.5.8 Shape of pattern near boundary

In this subsection we focus on an admissible surface of revolutionM with boundary.

Given a pattern associated with the m-armed spiral Ansatz (3.20), we study the angle

between the tangent vector along the pattern and the tangent vector of the boundary,

at a common boundary point.

First, the unit tangent vector field on ∂M is given by

t(ϕ) =
(
−a(s∗) sin(ϕ), a(s∗) cos(ϕ), 0

)
,

where a(s∗) > 0 because ∂M is nonempty. Second, a pattern is parametrized by

r(t, s) :=
(
a(s) cos(ϕ(t, s)), a(s) sin(ϕ(t, s)), ã(s)

)
,

where by (3.36)

ϕ(t, s) =
Ωt− p(s) + kπ

m
.

The boundary angle is determined by the dot product

∂sr(t, s∗) · t(ϕ(t, s∗)) = −a
2(s∗) p

′(s∗)

m
. (3.37)

Lemma 3.11. Let ∂M be nonempty. Suppose that ψ ∈ C2,ν(M,C) and ψ(s, ϕ) =

u(s) eimϕ is a nontrivial solution of the full equation (3.22). Then in the polar form

of ψ it follows p′(s∗) = 0. Consequently, the pattern of ψ hits boundary points in

normal direction, by (3.37).

Proof: Suppose α ∈ (−∞, 0). Then u(s∗) = 0 if and only if u′(s∗) = 0. Since ψ

is nontrivial, by Lemma 3.9 (ii), s = s∗ cannot be a multiple zero of u(s). Hence

u(s∗) 6= 0 and so we can translate Robin boundary conditions in the polar form:

A′(s∗) = αA(s∗) and A(s∗) p
′(s∗) = 0. Since A(s∗) > 0, we see p′(s∗) = 0.

Suppose α = 0. Then u(s∗) 6= 0 by Lemma 3.9 (ii) and we apply the previous

arguments.

Suppose α = −∞, that is, u(s∗) = 0. Then s = s∗ is a simple zero of u(s) by

Lemma 3.9 (ii). Hence p′(s∗) = 0 by Lemma 3.10. The proof is complete. ./

3.5.9 Decoupling effect for real Ginzburg-Landau equation

We show that the real GLe yields frozen meridian patterns, only. Consequently, to

solve the real GLe, we consider without loss of generality the simpler Ansatz

ψ(s, ϕ) = uR(s) eimϕ,

where uR(s) is real valued. We call this result a decoupling effect.
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Lemma 3.12 (decoupling effect). Consider the full equation (3.22) with η = 0 and

β = 0. Suppose that ψ ∈ C2,ν(M,C) and ψ(s, ϕ) = u(s) eimϕ is a nontrivial solution.

Then Ω = 0, and in the polar form of ψ it follows that p′(s) is identically zero.

Proof: Since η = 0 and β = 0, fI is identically zero (see the assumption (2.2)), and

thus Ω = 0 by the frequency-parameter relation (3.21). Then p′(s) is identically zero

by (3.33) and Lemma 3.10. ./

3.5.10 Criterion for spiral patterns

For each fixed b > 0, the type of pattern exhibited by a nontrivial solution of the full

equation (3.22) depends on parameters η ∈ R and β ∈ Rd. We derive a criterion that

characterizes a parameter subregime of spiral patterns.

Assume that nontrivial solutions of the full equation are parametrized in an open

subset U of the parameter regime (η, β) ∈ R× Rd, that is,

Ω = Ω̃(η, β) ∈ R, ψ = ψ̃(η, β) ∈ C2,ν(M,C)

for all (η, β) ∈ U . Let p̃′(η, β) be the phase derivative of ψ̃(η, β) in the polar form.

The parameter regime of spiral patterns is defined as

Uspiral :=
{

(η, β) ∈ U : p̃′(η, β) is not identically zero
}
.

Lemma 3.13. Suppose that (Ω̃(η, β), ψ̃(η, β)) ∈ R× C2,ν(M,C) is a solution of the

full equation (3.22). If in the polar form of ψ̃(η, β) the phase derivative p̃′(η, β) is

identically zero, then

Ω̃(η, β)− η fR(0; β) + fI(0; β) = 0. (3.38)

Consequently, {(η, β) ∈ U : (3.38) is violated} is a parameter subregime of spiral

patterns.

Proof: Since p̃′(η, β) is identically zero, s = 0 is an isolated zero of Ã(s) := |ψ̃(η, β)(s)|,
and a(s) > 0 for s ∈ (0, s∗), by (3.29) there is a δ > 0 such that

Ω̃(η, β)− η fR(|Ã(s)|2; β) + fI(|Ã(s)|2; β) = 0 (3.39)

for all s ∈ (0, δ). Since lims↘0 Ã(s) = 0, by continuity of Ã, fR, and fI , we let s↘ 0

in (3.39) and then obtain (3.38). ./
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3.6 Summary

We have defined the constituents of spiral patterns: tips by nonzero winding numbers;

spiral-like shapes by spatio-temporal patterns. As we seek rigidly-rotating spiral

patterns, we have justified the popular m-armed spiral Ansatz by equivariance and

the variational structure of the real Ginzburg-Landau equation. Moreover, we have

derived the frequency-parameter relation and a criterion for spiral patterns; they are

crucial to prove the existence of spiral patterns in the next chapter.
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Chapter 4

Existence of Ginzburg-Landau
spiral waves

In this chapter we prove the existence of Ginzburg-Landau spiral waves. In Section

4.1 we combine all necessary ingredients from the previous chapters and establish a

functional approach to prove our main theorems. In Section 4.2 we solve the real

Ginzburg-Landau equation by global bifurcation analysis. In Section 4.3 we solve

the complex Ginzburg-Landau equation by the equivariant implicit function theo-

rem. Then we determine parameter subregimes of spiral patterns by the frequency-

parameter relation. In Section 4.4 we provide a plausible way to solve the conjecture

on the existence of nodal solutions.

4.1 Functional approach

4.1.1 Preliminaries

Consider the Ginzburg-Landau equation

∂tΨ =
1

b
(1 + i η)∆M,(α)Ψ + f(|Ψ|2; β) Ψ. (4.1)

• b > 0 is a manipulable bifurcation parameter. We use the reciprocal of b for

simplicity of notation in the proof of the main theorems.

• η ∈ R is a given complex diffusion parameter and β ∈ Rd are given kinetics

parameters.

The Laplace-Beltrami operator ∆M,(α) is defined on an admissible surface of revolution

M. If ∂M is nonempty, then we consider Robin boundary conditions with the ratio

α ∈ [−∞, 0], that is, ∂nΨ = αΨ on ∂M.
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Notation . In the functional setting ∆M,(α) : H2
(α)(M,C) ⊂ L2(M,C)→ L2(M,C):

• ∆M,(α) = ∆M and H2
(α)(M,C) = H2(M,C) if ∂M is empty;

• ∆M,(α) = ∆M,α and H2
(α)(M,C) = H2

α(M,C) if we consider Robin boundary

conditions with the ratio α ∈ [−∞, 0].

More precisely, M admits the parametrization by polar coordinates

M =
{(
a(s) cos(ϕ), a(s) sin(ϕ), ã(s)

)
: s ∈ [0, s∗], ϕ ∈ [0, 2π)

}
,

where a(s) and ã(s) are real analytic functions, a(s) ≥ 0 for all s ∈ [0, s∗], and

moreover, the following conditions hold (see Lemma 2.3):

• (a′(s))2 + (ã(s))2 = 1 for all s ∈ [0, s∗].

• a(0) = 0, a′(0) = 1, and a(s) > 0 for all s ∈ (0, s∗).

• If ∂M is nonempty, then a(s∗) > 0; if ∂M is empty, then a(s∗) = 0 and

a′(s∗) = −1.

For each fixed m ∈ N and α ∈ [−∞, 0], we substitute the following m-armed spiral

Ansatz into the GLe (4.1):

Ψ(t, s, ϕ) = e−iΩt ψ(s, ϕ), ψ(s, ϕ) := u(s) eimϕ,

where u(s) is complex valued. Then we obtain the elliptic full equation for ψ:

F(b|Ω, ψ; η, β) := (1 + i η) ∆m,(α)ψ + i bΩψ + b f(|ψ|2; β)ψ = 0, (4.2)

and the rotation frequency Ω ∈ R is an unknown parameter that we have to determine.

Here ∆m,(α) : H2
m,(α) ⊂ L2

m → L2
m is the projected operator ; see Section 2.3.2. Note

that L2
m := {ψ ∈ L2(M,C) : ψ(s, ϕ) = u(s) eimϕ} is a closed L2-subspace and

H2
m,(α) := H2

(α)(M,C)∩L2
m is a closed H2-subspace. The domain and the range of F

are given by

F : (0,∞)× R×H2
m,(α) × R× Rd → L2

m.

Notation . We use the notation (b|Ω, ψ; η, β) to distinguish b > 0 as the bifurcation

parameter; Ω ∈ R and ψ ∈ H2
m,(α) as the unknowns of the full equation (4.2); η ∈ R

and β ∈ Rd as the parameters of the GLe.
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We consider the complex-valued nonlinearity f ∈ C3([0,∞)× Rd,C) and express

f = fR+i fI where fR and fI are real valued. Then the following frequency-parameter

relation holds (see Section 3.4.2):∫
M

(
Ω− η fR(|ψ|2; β) + fI(|ψ|2; β)

)
|ψ|2 = 0. (4.3)

We require two assumptions on the nonlinearity f .

(A1) fR(0; 0) = 1, and there exists a constant C(fR) > 0 such that

fR(y; 0)

{
= 0, y = C(fR),
< 0, y > C(fR).

Moreover, we assume

fI(y; 0) = 0 for all y ≥ 0. (4.4)

(A2) ∂yfR(0; 0) < 0 and ∂yfR(y; 0) ≤ 0 for all y ∈ (0, C(fR)).

4.1.2 Main theorems: Existence of spiral patterns

A solution pair (Ω, ψ) of the full equation (4.2) is called to be nontrivial if ψ is not

identically zero. A nontrivial solution pair exhibits a spiral pattern if in the polar

form of ψ, that is,

ψ(s, ϕ) =

(
A(s) eip(s)

)
eimϕ,

the phase derivative p′(s) is not identically zero. Otherwise it exhibits a meridian

pattern. Moreover, a pattern is called to be rotating if the rotation frequency

Ω 6= 0, or frozen if Ω = 0.

Theorem I (Ginzburg-Landau equation). Let µ
m,(α)
0 < 0 be the principal eigenvalue

of ∆m,(α). Then for each b > −µm,(α)
0 , there exists an ε > 0 such that the full

equation (4.2) possesses nontrivial solution pairs (Ω(η, β), ψ(η, β)) parametrized by

all (η, β) ∈ R× Rd and 0 ≤ |η|, |β| < ε. Moreover, the following statements hold:

(i) (Ω(η, β), ψ(η, β)) exhibits a rotating spiral pattern if (η, β) 6= (0,0) lies in

a small cone with (0,0) as the vertex and {(η,0) : 0 ≤ |η| < ε} as the axis.

(ii) Suppose d = 1. Assume ∂βfI(y; 0) 6= 0 for all y ∈ (0, C(fR)) and fI(0; β) = 0

for all β ∈ R. Then (Ω(η, β), ψ(η, β)) exhibits a rotating spiral pattern if

(η, β) 6= (0, 0) lies in a small cone with (0, 0) as the vertex and {(0, β) : 0 ≤
|β| < ε} as the axis.
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Remark .

(i) Theorem 4.1.2 (ii) generalizes Theorem 2 in [Ts10] for the GLe nonlinearity, in

the sense that we allow M to be without boundary or equipped with Robin

boundary conditions, and more importantly, we also introduce the complex

diffusion parameter η.

(ii) The constant ε > 0 depends on choices of admissible surfaces of revolution

M, α ∈ [−∞, 0], f ∈ C3([0,∞) × Rd,C) satisfying (A1–A2), m ∈ N, and

b > −µm,(α)
0 . One may derive a lower bound for this constant; see [Ts10] forM

being a disk equipped with Neumann boundary conditions.

Proof: See the proof of Theorem 4.11 and Theorem 4.12. ./

Theorem II (cubic supercritical Ginzburg-Landau equation). Suppose d = 1 and

f(y; β) = 1 − y − i β y. Then there exists a smooth strictly decreasing function η̃ :

(−ε, ε) → R with η̃(0) = 0 such that (Ω(η, β), ψ(η, β)) exhibits a rotating spiral

pattern if η 6= β and η 6= η̃(β), or a frozen spiral pattern if η 6= β and η = η̃(β).

Proof: See the proof of Theorem 4.13. ./

4.1.3 Global bifurcation analysis

Our proof consists of three steps.

• Step 1: global bifurcation analysis

We first solve the real GLe, that is, η = 0 and β = 0. Then Ω = 0 due to

the frequency-parameter relation (4.3) and the assumption (4.4). Thus the full

equation (4.2) becomes the reduced equation

F(b| 0, ψ; 0,0) = ∆m,(α)ψ + b fR(|ψ|2; 0)ψ = 0. (4.5)

The unknown ψ is of the form ψ(s, ϕ) = uR(s) eimϕ where the radial part uR is

real valued ; see Lemma 3.12. Thus ψ exhibits a frozen meridian pattern.

We seek nontrivial solutions of (4.5) that bifurcate from the trivial solution.

Since the spectrum of ∆m,(α) consists of simple eigenvalues µ
m,(α)
n < 0 for each

n ∈ N0, local bifurcation curves Cm,(α)
n of nontrivial solutions exist. Moreover,

uR(s) solves a second-order ODE, so we can characterize each local bifurcation

curve by the nodal property of its associated eigenfunction. We then adopt

open-closed-arguments to prove that the principal bifurcation curve Cm,(α)
0 is

global and undergoes no secondary bifurcations.
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β ∈ R
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Figure: Types of pattern in the (η, β)-parameter space. The origin (η, β) = (0,0)
always supports frozen spiral patterns. Each parameter in the shaded gray region
supports rotating spiral patterns. Upper left : Theorem I (i), for which we only assume
(A1–A2). Upper right : Theorem I (ii), for which we need the additional assumptions
on fI . Lower : Theorem II. We can completely classify the types of pattern for the
cubic supercritical GLe. Each parameter on the diagonal green line η = β supports
frozen meridian patterns. Each parameter on the blue curve η = η̃(β) supports frozen
spiral patterns.
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• Step 2: perturbation arguments

We solve the complex GLe and prove that Cm,(α)
0 persists under all small param-

eters 0 < |η|, |β| � 1 by the equivariant implicit function theorem in [RePe98].

• Step 3: determination on the type of pattern

For each nontrivial solution pair proved in Step 2, we determine whether it

exhibits a frozen or rotating spiral pattern by the frequency-parameter relation

(4.3) and the criterion (3.38) of spiral patterns.

4.1.4 Linearization

The spirit of bifurcation analysis is a reduction of a nonlinear problem to its linear

one. Thus we study properties of the linearization of F in the full equation (4.2).

The first concern is whether F is Fréchet differentiable. Notice that the mapping

ψ ∈ H2
m,(α) 7→ |ψ|2 ∈ L2

m is not complex Fréchet differentiable. Nevertheless, the

complex differentiability is not required in bifurcation analysis, so we identify C as a

real vector space; the inner product of L2
m, now as a real vector space, is defined by

〈ψ1, ψ2〉L2
m

:= Re

(∫ s∗

0

u1(s)u2(s) a(s) ds

)
,

where ψj(s, ϕ) = uj(s) e
imϕ for j = 1, 2. Thus a Fréchet derivative is a bounded linear

operator over R.

Notation . We do not identify C as R2 because multiplication by complex numbers

yields simplicity of notations.

Lemma 4.1. F in the full equation (4.2) is C3 real Fréchet differentiable.

Proof: It suffices to show that all k-times (k ≤ 3) real Gâteaux derivatives of F
exist and are bounded; see [ChHa82] Theorem 1.3. Since f ∈ C3, it remains to show

that the nonlinear part, ψ ∈ H2
m,(α) 7→ f(|ψ|2; β)ψ ∈ L2

m, is k-times real Gâteaux

differentiable with respect to ψ and β. The proof is straightforward by induction and

the continuous embedding of H2(M,C) into C0(M,C); see Lemma 2.1 (ii). ./

We study the real Gâteaux derivative

L(b|ψ) := DψF(b| 0, ψ; 0,0) : H2
m,(α) ⊂ L2

m → L2
m.

Definition. Let X and Y be Banach spaces. A bounded linear operator L : Y → X

is called to be Fredholm if dim kerL and dim cokerL are finite. The index of L is

defined by dim kerL − dim cokerL.
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Lemma 4.2. L(b|ψ) is self-adjoint on L2
m and Fredholm of index zero.

Proof: L(b|ψ) is self-adjoint on L2
m because F does not possess first-order differential

operators. Being a linear elliptic operator, L(b|ψ) is Fredholm; see [Ag&al97] Theorem

2.4.1. Its index is zero due to self-adjointness. ./

4.2 Frozen meridian patterns for real Ginzburg-

Landau equation

In this section we prove the existence of frozen meridian patterns for the real GLe.

We first obtain local bifurcation curves by the bifurcation results from simple eigen-

values. We next label each bifurcation curve by the nodal property of its associated

eigenfunction. Then we show that the principal bifurcation curve is global.

4.2.1 Local bifurcation from simple eigenvalues

To solve the reduced equation (4.5), note that the unknown ψ is of the form ψ(s, ϕ) =

uR(s) eimϕ where the radial part uR is real valued ; see Lemma 3.12.

Notation . For simplicity of notation, in the subsequent analysis we simply write

ψ(s, ϕ) = u(s) eimϕ where u is real valued. Let us introduce the closed L2
m-subspace

L2
m,R :=

{
ψ ∈ L2

m : ψ(s, ϕ) = u(s) eimϕ where u is real valued
}

and H2
m,(α),R := H2

m,(α) ∩ L2
m,R.

It is straightforward to obtain the linearization L(b|ψ) := DψF(b| 0, ψ; 0,0):

L(b|ψ)U = ∆m,(α)U + b fR(|ψ|2; 0)U + 2 b ∂yfR(|ψ|2; 0) |ψ|2 U, (4.6)

where U ∈ H2
m,(α),R. We now obtain nontrivial solutions of (4.5) that bifurcate from

the trivial solution.

Lemma 4.3 (local bifurcation curves). For each n ∈ N0, nontrivial solutions of the

reduced equation (4.5) near (−µm,(α)
n | 0) form a unique C2 local bifurcation curve

Cm,(α)
n :=

{
(bn(σ)|σ em,(α)

n + vn(σ)) : 0 ≤ |σ| � 1
}
⊂ (0,∞)×H2

m,(α),R.

Here e
m,(α)
n is the L2

m-normalized eigenfunction associated with the eigenvalue µ
m,(α)
n

of ∆m,(α). Moreover, the following statements hold:

59



(i) The shape of the local bifurcation curve is a supercritical pitchfork, because

bn(0) = −µm,(α)
n , Dσbn(0) = 0, D2

σbn(0) > 0.

(ii) vn(σ) satisfies 〈
vn(σ), em,(α)

n

〉
L2
m

= 0, (4.7)

vn(0) = 0, and Dσvn(0) = 0. In particular, the local bifurcation curve intersects

R× {0} only at the bifurcation point (−µm,(α)
n | 0).

(iii) ((Z2×Z2)-equivariance) Suppose thatM is without boundary and possesses the

reflection symmetry, that is, a(s) = a(s∗ − s) for all s ∈ [0, s∗]. Then

ψn(σ)(s, ϕ) = (−1)n ψn(σ)(s∗ − s, ϕ)

for all 0 ≤ |σ| � 1, s ∈ [0, s∗], and ϕ ∈ [0, 2π).

Proof: Except the proof of Dσbn(0) = 0 and D2
σbn(0) > 0, the item (i) and (ii)

follow from the well-known local bifurcation results from simple eigenvalues. To see

why, note fR(0; 0) = 1 by (A1), so by (4.6) the linearization at the trivial solution is

L(b| 0)U = ∆m,(α)U + b U . Hence local bifurcation curves exist by [CrRa71] Theorem

1.7, since the spectrum of ∆m,(α) consists of simple eigenvalues µ
m,(α)
n < 0 for each

n ∈ N0; see Lemma 2.4 (ii). These bifurcation curves are C2 because F is C3 real

Fréchet differentiable; see Lemma 4.1.

To calculate Dσbn(0) and D2
σbn(0), we substitute ψ = ψ(σ) = σ e

m,(α)
n + vn(σ)

into (4.5), differentiate (4.5) with respect to σ, use self-adjointness of ∆m,(α), and use

(4.7). Then it follows

Dσbn(0) = −2
〈
Dσvn(σ), em,(α)

n

〉
L2
m

= 0,

D2
σbn(0) = 2µm,(α)

n ∂yfR(0; 0)

∫ s∗

0

∣∣um,(α)
n (s)

∣∣4 a(s) ds > 0,

since ∂yfR(0; 0) < 0 by (A2). Here u
m,(α)
n (s) is the radial part of the eigenfunction

e
m,(α)
n . This proves the item (i–ii).

For (iii), with the reflection symmetry, (4.5) is (Z2 × Z2)-equivariant under the

following actions:

(ρL2
m,R

(γN)ψ)(s, ϕ) := ψ(s∗ − s, ϕ), (ρL2
m,R

(γD)ψ)(s, ϕ) := −ψ(s∗ − s, ϕ).

Here γN (or γD) generates ΓN := {id, γN} ∼= Z2 (or ΓD := {id, γD} ∼= Z2). We

consider the action γN only, because the proof for the other action γD is analogous.
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Let us denote by FN0 the restriction of F(b| 0, ψ; 0,0) on the ΓN -fixed subspace.

By Lemma 3.3, we see

FN0 : (0,∞)× FixH2
m,(α),R

(ΓN)→ FixL2
m,R

(ΓN).

If n ∈ N0 is even, then (−µm,(α)
n | 0) is a bifurcation point of the restricted equation

FN0 (b|ψ) = 0; see Lemma 2.5 (ii). Hence Cm,(α)
n is contained in (0,∞)×FixH2

m,(α),R
(ΓN)

due to the uniqueness of local bifurcation curves. The proof is complete. ./

For each n ∈ N0, since the local bifurcation curve Cm,(α)
n intersects R × {0} only

at the bifurcation point (−µm,(α)
n | 0), the following decomposition holds:

Cm,(α)
n = Cm,(α)

n,+ ∪ Cm,(α)
n,− ∪

{
(−µm,(α)

n | 0)
}
.

Here Cm,(α)
n,+ is the subset of Cm,(α)

n that collects all σ > 0, and similarly Cm,(α)
n,− collects

all σ < 0.

Notation . The notation ι always applies for both cases + and −.

Since the shape of Cm,(α)
n is a supercritical pitchfork, taking |σ| sufficiently small

if necessary, we have the following characterization for Cm,(α)
n,ι :

• monotone parametrization in b ∈ (−µm,(α)
n ,−µm,(α)

n + δn].

There exists a δn > 0 and a smooth function

ψ̂n,ι : (−µm,(α)
n ,−µm,(α)

n + δn]→ H2
m,(α),R

such that (b|ψ) ∈ Cm,(α)
n,ι if and only if b ∈ (−µm,(α)

n ,−µm,(α)
n +δn] and ψ = ψ̂n,ι(b).

Our main task is to prove that δn extends to infinity, and thus Cm,(α)
n is global and

undergoes no secondary bifurcations in (0,∞)×H2
m,(α),R.

The main idea is to show that the set of δ > 0 such that Cm,(α)
n,ι admits a monotone

parametrization in b ∈ (−µm,(α)
n ,−µm,(α)

n + δ] is open and closed in (0,∞). For open-

ness, we apply the implicit function theorem. However, we can only prove openness

for the principal bifurcation curve Cm,(α)
0 . Nevertheless, we can prove closedness

for every bifurcation curve.
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4.2.2 Nodal structure of bifurcation curves

In this subsection we label each bifurcation curve by the number of simple zeros of

its associated eigenfunction, as long as it admits a monotone parametrization.

Lemma 4.4 (nodal structure). Suppose that Cm,(α)
n,ι admits a monotone parametriza-

tion in b ∈ (−µm,(α)
n ,−µm,(α)

n + δ] for some δ > 0. Then for each (b|ψ) ∈ Cm,(α)
n,ι and

ψ(s, ϕ) = u(s) eimϕ, u(s) possesses exactly n simple zeros in (0, s∗).

Proof. By the Schauder elliptic regularity theory (see Lemma 3.8), ψ ∈ C2,ν(M,C)

for any ν ∈ (0, 1) and u(s) is a nontrivial solution of the following second-order ODE:

u′′ +
a′

a
u′ − m2

a2
u+ b fR(u2; 0)u = 0. (4.8)

Our proof is based on the following facts.

• Since identically zero is a solution of (4.8), the uniqueness of ODE initial value

problems implies that all zeros of u(s) in (0, s∗) are simple; see the proof of

Lemma 2.5 (i).

• Simple zeros of u(s) neither accumulate at s = 0 nor at s = s∗; see Lemma 3.9.

Hence there are finitely many simple zeros of u(s) in (0, s∗).

• Since Cm,(α)
n,ι admits a monotone parametrization, the mapping b 7→ u = u(·; b)

is well defined for all b ∈ (−µm,(α)
n ,−µm,(α)

n + δ] and smooth. Thus we have the

ODE smooth dependence of solutions on the parameter b.

The above three facts imply that all nontrivial solutions u(s; b) of (4.8) with

b ∈ (−µm,(α)
n − µm,(α)

n + δ] possess the same number of simple zeros in (0, s∗). Recall

that the radial part u
m,(α)
n (s) of the eigenfunction e

m,(α)
n possesses exactly n simple

zeros in (0, s∗); see Lemma 2.5 (i). Therefore, nontrivial solutions u(s; b) with b

sufficiently near −µm,(α)
n possess exactly n simple zeros in (0, s∗); see Lemma 4.3 (ii).

This completes the proof. ./

4.2.3 C0-bound

We obtain an important C0-bound for solutions of the reduced equation.

Lemma 4.5 (C0-bound). Let (b|ψ) ∈ Cm,(α)
n and ψ(s, ϕ) = u(s) eimϕ. Then

|ψ|C0 = sup
s∈[0,s∗]

|u(s)| ≤
√
C(fR). (4.9)
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Proof. By the Schauder elliptic regularity theory (see Lemma 3.8), ψ ∈ C2,ν(M,C)

and u(s) satisfies the ODE

u′′ +
a′

a
u′ − m2

a2
u+ b fR(u2; 0)u = 0. (4.10)

Suppose the contrary that |ψ|C0 >
√
C(fR). Then there would be an sM ∈ [0, s∗] such

that |u(sM)| >
√
C(fR). Since [0, s∗] is compact, we assume without loss of generality

that sM is a global extreme point: |u(sM)| ≥ |u(s)| for all s ∈ [0, s∗]. We consider

the case u(sM) >
√
C(fR) because the proof for the other case u(sM) < −

√
C(fR)

is analogous.

We show sM ∈ (0, s∗) by dealing with the following four cases:

• Case 1: ∂M is empty.

u(0) = u(s∗) = 0 by Lemma 3.9 (i), so sM ∈ (0, s∗).

If ∂M is nonempty, then u(0) = 0 by Lemma 3.9 (i).

• Case 2: Dirichlet boundary conditions.

In this case u(s∗) = 0, so sM ∈ (0, s∗).

• Case 3: Robin boundary conditions with the ratio α ∈ (−∞, 0).

Suppose the contrary sM = s∗. Since α < 0, Robin boundary conditions imply

u′(s∗) < 0, and thus s = s∗ cannot be a global extreme point of u(s), which is

a contradiction. Hence sM ∈ (0, s∗).

• Case 4: Neumann boundary conditions.

Suppose the contrary sM = s∗. We aim at a contradiction from the equation

(4.10). Since u(s∗) >
√
C(fR) and u′(s∗) = 0, by continuity there would exist

a δ > 0 such that u(s) >
√
C(fR) and

|u′(s)| < m2

maxs∈[0,s∗] a(s)

√
C(fR) (4.11)

hold for all s ∈ (s∗ − δ, s∗). Thus (A1) implies fR(|u(s)|2; 0) < 0 for all s ∈
(s∗ − δ, s∗). Since b > 0, from (4.10) the following inequalities hold for all

s ∈ (s∗ − δ, s∗):

u′′(s) ≥ m2

a2(s)
u(s)− |a

′(s)|
a(s)

|u′(s)|

≥ m2

a2(s)

√
C(fR)− 1

a(s)
|u′(s)|

=
1

a2(s)

(
m2
√
C(fR)− a(s) |u′(s)|

)
> 0.
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We have used sups∈[0,s∗] |a′(s)| ≤ 1 (see Lemma 2.3 (i)) for the second inequality,

and (4.11) for the last inequality. Since u′(s∗) = 0 and u′′(s) > 0 for all

s ∈ (s∗ − δ, s∗), we see u′(s) < 0 for all s ∈ (s∗ − δ, s∗). Thus s = s∗ cannot be

a global extreme point of u(s), which is a contradiction. Hence sM ∈ (0, s∗).

Therefore, sM ∈ (0, s∗), that is, sM lies in the interior of [0, s∗], so u′(sM) = 0 and

u′′(sM) ≤ 0, yielding a contradiction as we plug s = sM into (4.10). ./

4.2.4 Hyperbolicity: Comparison of principal eigenvalues

We aim at proving openness of a monotone parametrization. More precisely, if Cm,(α)
n,ι

admits a monotone parametrization in b ∈ (−µm,(α)
n ,−µm,(α)

n +δ] for some δ > 0, then

we need to show that it extends to b ∈ (−µm,(α)
n ,−µm,(α)

n + δ̃) for some δ̃ > δ.

We obtain such an extension by the implicit function theorem. Thus for each

(b|ψ) ∈ Cm,(α)
n,ι , we need to show that the linearization L(b|ψ) defined in (4.6) is a

linear homeomorphism. Because L(b|ψ) is Fredholm of index zero (see Lemma 4.2), it

suffices to show that kerL(b|ψ) is trivial, or equivalently, zero is not an eigenvalue of

L(b|ψ). In this case ψ is called to be hyperbolic because it is a hyperbolic equilibrium

of the real GLe restricted on H2
m,(α),R:

∂tΨ = ∆m,(α)Ψ + b fR(|Ψ|2; 0) Ψ. (4.12)

However, we can only prove openness for the principal bifurcation curve Cm,(α)
0 .

We leave the question of openness for other bifurcation curves as a conjecture and

provide a plausible way to solve it; see Section 4.4.

Lemma 4.6. Suppose that there is a δ > 0 such that Cm,(α)
0,ι admits a monotone

parametrization in b ∈ (−µm,(α)
n ,−µm,(α)

n + δ]. Then there exists a δ̃ > δ such that the

monotone parametrization extends to b ∈ (−µm,(α)
n ,−µm,(α)

n + δ̃).

Proof: We denote by b0 := −µm,(α)
n +δ and ψ0 := ψ̂n,ι(b0) where ψ̂n,ι is the monotone

parametrization of Cm,(α)
0,ι . Once we prove hyperbolicity of (b0|ψ0), this lemma follows

from the the implicit function theorem; see [ChHa82] Theorem 2.3.

By (4.6) the linear equation L(b0|ψ0)U = 0 for U ∈ H2
m,(α),R reads(

∆m,(α) + b0 fR(|ψ0|2; 0) + 2 b0 ∂yfR(|ψ0|2; 0) |ψ0|2
)
U = 0.

To show that U is identically zero, we compare the principal eigenvalues of two

different but related systems. To see it, let µ∗1 be the principal eigenvalue of the
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following eigenvalue problem:(
∆m,(α) + b0 fR(|ψ0|2; 0)

)
V1 = µ1 V1. (4.13)

Since ψ0 ∈ H2
m,(α),R is a nontrivial solution of (4.13) for µ1 = 0, and by Lemma 4.4

its radial part u0(s) does not possess zeros in (0, s∗), we see µ∗1 = 0 and kerL(b0|ψ0) =

spanR〈ψ0〉; see [GiTr83] Theorem 8.38.

Compare µ∗1 with the principal eigenvalue µ∗2 of the following eigenvalue problem:(
∆m,(α) + b0 fR(|ψ0|2; 0) + 2 b0 ∂yfR(|ψ0|2; 0) |ψ0|2

)
V2 = µ2 V2. (4.14)

Since ψ0 satisfies the C0-bound (4.9), by (A2), we have ∂yfR(|ψ0(s, ϕ)|2; 0) ≤ 0 for

all s ∈ (0, s∗] and ϕ ∈ [0, 2π). Moreover, s = 0 is an isolated zero of any nontrivial

solution V2(s, ϕ) of (4.14); see the proof in Lemma 3.9 (i). Since ∂yfR(|ψ0(0, ϕ)|2; 0) =

∂yfR(0; 0) < 0 by (A2), we have∫
M
∂yfR(|ψ0|2; 0) |ψ0|2 |V2|2 < 0.

Hence the Rayleigh quotient for principal eigenvalues (see [CaCo03] Theorem 2.1)

implies µ∗2 < µ∗1 = 0 and so U is identically zero. ./

Remark (stability). The proof in Lemma 4.6 tells us more than hyperbolicity: The

principal eigenvalue of (4.14) is negative for every (b|ψ) ∈ Cm,(α)
0,ι . Since the real GLe

(4.12) generates a local semiflow on H2ζ
m,(α),R for any ζ ∈ (1

2
, 1) (see Lemma 2.7), ψ is

a locally asymptotically stable equilibrium of (4.12) under H2ζ
m,(α),R-perturbations. It

is interesting to determine the stability of ψ under full H2ζ
(α)-perturbations.

4.2.5 Monotone extension of bifurcation curves

We prove closedness of a monotone parametrization for every bifurcation curve. As

a result, a bifurcation curve is global if we can prove openness of its monotone

parametrization.

Lemma 4.7. Suppose that there is a δ̃ > 0 such that Cm,(α)
n,ι admits a monotone

parametrization in b ∈ (−µm,(α)
n ,−µm,(α)

n + δ̃). Then the monotone parametrization

extends to b = −µm,(α)
n + δ̃.

Proof: Let bn := −µm,(α)
n + δ̃, and (bj|ψj)j∈N be a sequence in Cm,(α)

n,ι such that

bj ↗ bn. We show that there exists a ψn ∈ H2
m,(α),R such that limj→∞ ψ

j = ψn
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holds in H2
m,(α),R and (bn|ψn) ∈ Cm,(α)

n,ι and the monotone parametrization extends to

b = bn.

The key of proof is the C0-bound (4.9), that is, |ψj|C0 ≤
√
C(fR) for all j ∈ N.

First, we have the uniform L2-bound

|ψj|2L2 =

∫
M
|ψj|2 ≤ C(fR) Vol(M).

Second, let us multiply (4.5) by the complex conjugate ψ, integrate over M, apply

the divergence theorem, and use Robin boundary conditions. Then∫
M
|∇gψ

j|2 = α

∫
∂M
|ψj|2 + bj

∫
M
fR(|ψj|2; 0) |ψj|2

≤ |α|C(fR) Vol(∂M) + bj C(fR) Vol(M).

In the inequality we have used supy∈[0,C(fR)] |fR(y; 0)| = 1 due to (A1–A2). Thus

we have a uniform H1-bound on every compact b-subinterval. Since H1(M,C) is

compactly embedded into L2(M,C) (see Lemma 2.1 (i)), passing to a subsequence if

necessary, there exists a ψn ∈ L2
m,R such that limj→∞ ψ

j = ψn holds in L2
m,R

Third, since fR is C1, it follows by the triangle inequality and the C0-bound (4.9)

that limj→∞ b
j fR(|ψj|2; 0)ψj = bn fR(|ψn|2; 0)ψn holds in L2

m,R. By Lemma 2.4 (ii),

∆m,(α) : H2
m,(α),R → L2

m,R is a linear homeomorphism, so

lim
j→∞

∆−1
m,(α)

(
bj fR(|ψj|2; 0)ψj

)
= ∆−1

m,(α)

(
bn fR(|ψn|2; 0)ψn

)
holds in H2

m,(α),R. Since every (bj|ψj) is a solution of (4.5), limj→∞ ψ
j = ψn holds in

H2
m,(α),R and (bn|ψn) is also a solution of (4.5).

Last, near each bifurcation point, nontrivial solutions of (4.5) form a unique local

bifurcation curve whose shape is a supercritical pitchfork; see Lemma 4.3. Thus ψn

is not identically zero by the implicit function theorem. Hence (bn|ψn) ∈ Cm,(α)
n,ι by

Lemma 4.4, and the monotone parametrization extends to b = bn by Lemma 4.6. The

proof is complete. ./

Lemma 4.8. The principal bifurcation curve Cm,(α)
0 is global and undergoes no sec-

ondary bifurcations in (0,∞)×H2
m,(α),R.

Proof: The set of δ > 0 such that Cm,(α)
0,ι admits a monotone parametrization in

b ∈ (−µm,(α)
n ,−µm,(α)

n + δ] is nonempty by Lemma 4.3, open in (0,∞) by Lemma 4.6,

and closed in (0,∞) by Lemma 4.7. ./
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b ∈ R

ψ ∈ H2
m,(α),R

−µm,(α)
0

Cm,(α)
0,+

Cm,(α)
0,−

−µm,(α)
1

Cm,(α)
1,+

Cm,(α)
1,−

−µm,(α)
2

Cm,(α)
2,+

Cm,(α)
2,−

Figure: Bifurcation diagram (b|ψ) ∈ R × H2
m,(α),R of the reduced equation (4.5).

Notice that the ψ-component of each bifurcation curve may be unbounded, since the
H2-bound of solutions is not guaranteed by the C0-bound (4.9).

4.3 Spiral patterns for complex Ginzburg-Landau

equation

In this section we prove the existence of genuine spiral patterns for the complex GLe.

We adopt perturbation arguments and use the equivariant implicit function theorem.

We then determine parameter subregimes of spiral patterns.

4.3.1 Perturbation arguments

We solve the unknowns Ω ∈ R and ψ ∈ H2
m,(α) of the full equation (4.2):

F(b|Ω, ψ; η, β) = 0.

Let (bn|ψn) ∈ Cm,(α)
n,ι be a solution of the reduced equation (4.5):

F(bn| 0, ψn; 0,0) = 0.

We need to parametrize the unknowns Ω ∈ R and ψ ∈ H2
m,(α) by parameters b > 0,

η ∈ R, and β ∈ Rd in the vicinity of (bn| 0,0). Such perturbation arguments lead us

to study the real Gâteaux derivative

L(bn|ψn) := DψF(bn| 0, ψn; 0,0) : H2
m,(α) ⊂ L2

m → L2
m.

67



Since ψn(s, ϕ) = un(s) eimϕ where un is real valued, it is straightforward to derive

L(bn|ψn)U = ∆m,(α)U + bn fR(|ψn|2; 0)U + 2 bn ∂yfR(|ψn|2; 0) |ψn|2 UR eimϕ. (4.15)

Here U = (UR + i UI) e
imϕ ∈ H2

m,(α) where UR and UI are real valued. Recall that

L(bn|ψn) is self-adjoint on L2
m and Fredholm of index zero; see Lemma 4.2.

To study kerL(bn|ψn), we recall the (S1×S1)-equivariance of F : ψ(s, ϕ) = u(s) eimϕ

is a solution of the full equation (4.2) if and only if e−iϑ ψ(s, ϕ−γ) is also a solution, for

each (ϑ, γ) ∈ S1 × S1. Since e−iϑ ψ(s, ϕ− γ) = e−i(ϑ+mγ) ψ(s, ϕ), we identify without

loss of generality that F possesses S1-equivariance. This S1-equivariance implies that

kerL(bn|ψn) contains a nontrivial subspace Tψn(S1ψn), that is, the tangent space along

the group orbit of ψn. It follows Tψn(S1ψn) = spanR〈i ψn〉 and hence

spanR〈i ψn〉 ⊂ kerL(bn|ψn).

Therefore, the standard implicit function theorem is not applicable. This situation,

however, is amendable to the following equivariant implicit function theorem, because

Ω ∈ R is a real one-dimensional unknown.

Lemma 4.9 (equivariant implicit function theorem). Let X, Y , and Λ be Banach

spaces. Suppose that H ∈ Ck(Y × Λ, X) for k ≥ 2 and H(v0, 0) = 0. Let Γ be a

compact Lie group and ρX (resp. ρY ) be an action of Γ on X (resp. on Y ). Suppose

that H(·, λ) is Γ-equivariant, that is, H(ρY (γ)v, λ) = ρX(γ)H(v, λ) for all γ ∈ Γ,

v ∈ Y , and λ ∈ Λ. Assume the following:

• L := DvH(v0, 0) is Fredholm of index zero.

• The isotropy subgroup is trivial, that is, Σv0 = {id}.

• Assume Λ = Λ1 × Λ2 such that

dim Λ1 = dim kerL (4.16)

and

X = LY ⊕DλH(v0, 0)Λ1. (4.17)

Then there exist neighbourhoods W ⊂ Y of the group orbit Γv0 and Wj ⊂ Λj of λj = 0

for j = 1, 2, and Ck-mappings ṽ : W2 → Y0 and λ̃1 : W2 → Λ1 with ṽ(0) = v0 and

λ̃1(0) = 0 such that for each (v, λ1, λ2) ∈ W ×W1 ×W2, H(v, λ1, λ2) = 0 if and only

if v = ρY (γ)ṽ(λ2) for some γ ∈ Γ and λ1 = λ̃1(λ2).
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Proof: See [RePe98] Theorem 3.1. ./

To apply Lemma 4.9, we choose

H := F , X := L2
m, Y := H2

m,(α), Ω ∈ Λ1 := R, (b| η, β) ∈ Λ2 := Rd+2

Moreover, we take

v0 := ψn, Γ := S1, L := L(bn|ψn).

Then it follows Σψn = {0}. Let us denote by Bd+1
ε2

(0) the (d + 1)-dimensional ball

with radius ε2 > 0 centered at the origin.

Lemma 4.10 (perturbation arguments). Let (b0|ψ0) ∈ Cm,(α)
0,ι . Then there exists an

ε1 > 0 and smooth functions

ψ̃ : (b0 − ε1, b0 + ε1)×Bd+1
ε1

(0)→ H2
m,(α), ψ̃(b0| 0,0) = ψ0,

Ω̃ : (b0 − ε1, b0 + ε1)×Bd+1
ε1

(0)→ R, Ω̃(b0| 0,0) = 0,

such that for each (b| η, β) ∈ (b0 − ε1, b0 + ε1) × Bd+1
ε1

(0), F(b|Ω, ψ; η, β) = 0 if and

only if Ω = Ω̃(b| η, β) and ψ = ψ̃(b| η, β).

Proof: We apply Lemma 4.9 and it suffices to verify (4.16) and (4.17).

To verify (4.16), since Λ1 = R is real one-dimensional and spanR〈i ψ0〉 ⊂ kerL(b0|ψ0),

we need to show spanR〈i ψ0〉 = kerL(b0|ψ0).

By (4.15), the linear equation L(b0|ψ0)U = 0 for U = (UR + i UI) e
imϕ ∈ H2

m,(α) is

equivalent to the following decoupled system:(
∆m,(α) + b0 fR(|ψ0|2; 0) + 2 b0 ∂yfR(|ψ0|2; 0) |ψ0|2

)
UR e

imϕ = 0,(
∆m,(α) + b0 fR(|ψ0|2; 0)

)
UI e

imϕ = 0.

Since (b0|ψ0) ∈ Cm,(α)
0,ι , the same proof in Lemma 4.6 shows that UR e

imϕ is identically

zero and UI e
imϕ = ψ0. Hence U = i ψ0 and so kerL(b0|ψ0) ⊂ spanR〈i ψ0〉.

We next verify (4.17). Let us calculate the Gâteaux derivative

D(Ω; η,β)F(b0| 0, ψ0; 0,0)(Ω∗; 0,0) = i b0 Ω∗ ψ0.

Suppose that V = (VR+ i VI) e
imϕ ∈ H2

m,(α) solves the equation L(b0|ψ0)V = i b0 Ω∗ ψ0.

Then the equation for VI e
imϕ,(

∆m,(α) + b0 fR(|ψ0|2; 0)

)
VI e

imϕ = b0 Ω∗ ψ0,

implies b0 Ω∗〈ψ0, ψ0〉L2
m

= 0, due to self-adjointness. Hence Ω∗ = 0 and so (4.17) is

verified. The proof is complete. ./
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4.3.2 Determination on spiral patterns

We prove that nontrivial solution pairs obtained by our perturbation arguments can

exhibit spiral patterns.

Theorem 4.11. Let b0 > −µm,(α)
0 be fixed. By Lemma 4.10, let (Ω̃(η, β), ψ̃(η, β)) be

nontrivial solution pairs of the full equation (4.2). Then there exists an ε > 0 such

that the following statements hold as (η, β) ∈ Bd+1
ε (0):

(i) There exists a smooth function η̃ : Bd
ε (0)→ R, η̃(0) = 0, such that Ω̃(η, β) = 0

if and only if η = η̃(β).

(ii) There exists a smooth function κ1 : (−ε, ε) → [0,∞) such that κ1(η) > 0 if

η 6= 0, and (Ω̃(η, β), ψ̃(η, β)) exhibits a rotating spiral pattern for all η 6= 0 and

0 ≤ |β| ≤ κ1(η).

Proof: For (i), the main idea is to use the frequency-parameter relation (4.3)

J (Ω̃(η, β), ψ̃(η, β), η, β) :=

∫
M

(
Ω̃− η fR(|ψ̃|2; β) + fI(|ψ̃|2; β)

)
|ψ̃|2 = 0. (4.18)

Using Ω̃(0,0) = 0, ψ̃(0,0) = ψ0, and the assumption (4.4): fI(y; 0) = 0 for all y ≥ 0,

we differentiate J with respect to η and evaluate at (η, β) = (0,0). Then we obtain

∂ηΩ̃(0,0) =

∫
M fR(|ψ0|2; 0) |ψ0|2∫

M |ψ0|2
. (4.19)

Since ψ0 satisfies the C0-bound (4.9): |ψ0|C0 ≤
√
C(fR), (A1–A2) and (4.19) imply

0 < ∂ηΩ̃(0,0) < 1. (4.20)

Since Ω̃(0,0) = 0 and 0 < ∂ηΩ̃(0,0), the implicit function theorem yields the

existence of η̃. This proves the item (i)

For (ii), recall the criterion (3.38) for spiral patterns, that is, (Ω̃(η, β), ψ̃(η, β))

exhibits a spiral pattern if

Ω̃(η, β)− η fR(0; β) + fI(0; β) 6= 0. (4.21)

Since fR(0; 0) = 1 by (A1), we have ∂ηΩ̃(0,0) < fR(0; 0) by (4.20). Since Ω̃(0,0) =

0, by smoothness of Ω̃, we see Ω̃(η,0) 6= η fR(0; 0) for all η 6= 0 sufficiently near

zero. By the assumption (4.4) and smoothness of fR and fI , there exists a smooth

function κ1 = κ1(η) such that (4.21) holds for all η 6= 0 sufficiently near zero and

0 ≤ |β| ≤ κ1(η). The proof is complete. ./
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Notice that Theorem 4.11 (ii) does not assure the existence of spiral patterns if η is

almost zero, but β 6= 0 is large. Such a result of existence requires more assumptions

on fI . For instance, suppose d = 1, that is, β ∈ R. Then a prototype considered

in [KoHo81] and [Ts10] is fI(y; β) = β ω(y), where ω(0) = 0 and ω(y) 6= 0 for all

y ∈ (0, C(fR)). Evidently, the cubic supercritical GLe nonlinearity fI(y; β) = −β y
is the simplest example of the prototype. Based on the prototype we impose the

following two assumptions:

∂βfI(y; 0) 6= 0 for all y ∈ (0, C(fR)); (4.22)

fI(0; β) = 0 for all β ∈ R. (4.23)

Theorem 4.12. Suppose d = 1 and under the same assumptions of Theorem 4.11.

Then the following statements hold:

(i) Assume (4.22). Then η̃ proved in Theorem 4.11 (ii) is invertible.

(ii) Assume (4.22) and (4.23). Then there exists a smooth function κ2 : (−ε, ε) →
[0,∞) such that κ2(β) > 0 if β 6= 0, and (Ω̃(η, β), ψ̃(η, β)) exhibits a rotating

spiral pattern for all β 6= 0 and 0 ≤ |η| ≤ κ2(β).

Proof: For (i), we differentiate J in (4.18) with respect to β and evaluate at (η, β) =

(0, 0). Then (4.22) implies

∂βΩ̃(0, 0) =
−
∫
M ∂βfI(|ψ0|2; 0) |ψ0|2∫

M |ψ0|2
6= 0. (4.24)

Thus η̃ is invertible. This proves the item (i).

For (ii), by (4.23) the criterion (4.21) now reads

Ω̃(η, β)− η fR(0; β) 6= 0. (4.25)

By Ω̃(0, 0) = 0 and (4.24), we have Ω̃(0, β) 6= 0 for all β 6= 0 sufficiently near zero. By

smoothness of fR, there exists a smooth function κ2 = κ2(β) such that (4.25) holds

for all β 6= 0 sufficiently near zero and 0 ≤ |η| ≤ κ2(β). This completes the proof. ./

Although nontrivial solution pairs of the full equation are parametrized by all

parameters (η, β) in Bd+1
ε (0), the main question is to determine the type of pattern

for each (η, β) in Bd+1
ε (0). For general GLe, the local information of (η, β) = (0,0)

is not sufficient for the criterion (4.21) to give a definite answer. But still, we have a

definite answer for the cubic supercritical GLe.
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Theorem 4.13. Under the same assumptions of Theorem 4.11, consider the cubic

supercritical Ginzburg-Landau equation, that is, d = 1 and f(y; β) = 1 − y − i β y.

Then the following statements hold as (η, β) ∈ B2
ε (0):

(i) p̃′(η, β)(s) is identically zero if and only if η = β.

(ii) The smooth function η̃ = η̃(β) proved in Theorem 4.11 (ii) is strictly decreasing.

Consequently, (Ω̃(η, β), ψ̃(η, β)) exhibits a rotating spiral pattern if η 6= β and η 6=
η̃(β); it exhibits a frozen spiral pattern if η 6= β and η = η̃(β).

Proof: For (i), suppose that p̃′(η, β) is identically zero. The criterion (3.38) for spiral

patterns and the specific form of nonlinearity imply Ω̃(η, β) = η. Therefore, (4.18)

reads
∫
M(η − β) |ψ̃|4 = 0. Since ψ̃ is not identically zero, we see η = β.

Conversely, suppose η = β. Then (4.18) reads
∫
M(Ω̃(η, η) − η) |ψ̃|2 = 0 and so

Ω̃(η, η) = η. Thus the m-armed spiral Ansatz is of the form Ψ(t, s, ϕ) = e−iηt ψ̃(s, ϕ),

where Ψ solves the equation

∂tΨ =
1

b0

(1 + i η)∆M,(α) Ψ + (1− |Ψ|2 − i η |Ψ|2) Ψ.

It is easy to verify that ψ̃ solves the real GLe:

∆m,(α)ψ̃ + b0 (1− |ψ̃|2) ψ̃ = 0.

Therefore, p̃′(η, η)(s) is identically zero due to the decoupling effect; see Lemma 3.12.

This proves the item (i).

For (ii), since fI(y; β) = −β y fulfills the assumption (4.22), Theorem 4.12 (i)

implies that η̃ is invertible. It remains to show Dβ η̃(0) < 0. We differentiate the

relation Ω̃(η̃(β), β) = 0 with respect to β and evaluate at β = 0. Then we obtain

Dβ η̃(0) = −∂βΩ̃(0, 0)

∂ηΩ̃(0, 0)
.

By (4.20) we have ∂ηΩ̃(0, 0) > 0. Moreover, since ∂βfI(y; 0) = −y2, by (4.24) we see

∂βΩ̃(0, 0) > 0. Hence Dβ η̃(0) < 0. The proof is complete. ./

4.4 Nodal solutions

We propose a conjecture that all other bifurcation curves are also global and provide

a plausible way to solve it. In the end we present a partial result of the conjecture.
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4.4.1 Conjecture

Consider (bn|ψn) ∈ Cm,(α)
n,ι for n ∈ N and ψn(s, ϕ) = un(s) eimϕ where the radial part

un(s) is real valued and possesses n simple zeros in (0, s∗); see Lemma 4.4. Recall the

linear equation L(bn|ψn)U = 0 for U = (UR + i UI) e
imϕ ∈ H2

m,(α), which is equivalent

to the following decoupled system:(
∆m,(α) + bn fR(|ψn|2; 0) + 2 bn ∂yfR(|ψn|2; 0) |ψn|2

)
UR e

imϕ = 0, (4.26)(
∆m,(α) + bn fR(|ψn|2; 0)

)
UI e

imϕ = 0. (4.27)

Let us review the logic chain of proof for the existence of spiral wave solutions.

• Cm,(α)
n,ι is global and undergoes no secondary bifurcations if UR e

imϕ is identically

zero for every (bn|ψn) ∈ Cm,(α)
n,ι ; see Lemma 4.6, 4.7, and 4.8.

• Spiral wave solutions exist for the bifurcation parameter b = bn if UR e
imϕ is

identically zero and ψn is the unique nontrivial solution of (4.27) up to multi-

plication by real numbers; see Lemma 4.10 and notice that verification of (4.17)

requires self-adjointness, only.

• Determination on the types of pattern is a direct consequence of perturbation

arguments; see Lemma 4.10.

Indeed (4.26–4.27) are equivalent to the following second-order linear ODEs:

U
′′

R +
a′

a
U ′R −

m2

a2
UR + bn fR(u2

n; 0)UR + 2 bn ∂yfR(u2
n; 0)u2

n UR = 0, (4.28)

U
′′

I +
a′

a
U ′I −

m2

a2
UI + bn fR(u2

n; 0)UI = 0. (4.29)

If we assume that fR is real analytic, then by the Frobenius series it follows that

both (4.28) and (4.29) possess at most one bounded nontrivial solution; see the proof

in Lemma 2.4 (ii). Since un already solves (4.29), it remains to show that UR is

identically zero.

Conjecture. For each (bn|ψn) ∈ Cm,(α)
n,ι with n ∈ N, if UR e

imϕ ∈ H2
m,(α) is a solution

of (4.26), then UR is identically zero.

Remark .

(i) Once the conjecture is solved, we obtain 2(n+ 1) different spiral wave solutions

for each b > −µm,(α)
n and suitable choices of parameters η and β.
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(ii) Comparison of principal eigenvalues used in the proof of Lemma 4.6 is fruitless,

since un(s) possesses simple zeros in (0, s∗), and thus µ∗1 > 0.

(iii) For m = 0, the conjecture has been solved if ∂M is either equipped with

Dirichlet boundary conditions or empty; see [Na83] and [La17].

Here is a logic for solving the conjecture: Suppose that there were a nontrivial

solution UR e
imϕ ∈ H2

m,(α) of (4.26). Then UR(s) would be a bounded nontrivial

solution of (4.28), and thus s = 0 is an isolated zero of UR(s); see Lemma 3.9 (i). We

would reach a contradiction if we could show that any bounded nontrivial solution v

of (4.28) satisfies

• either v′(s∗) 6= α v(s∗) if u′n(s∗) = αun(s∗), that is, when ∂M is equipped with

Robin boundary conditions with the ratio α ∈ [−∞, 0];

• or v(s∗) 6= 0 if un(s∗) = 0, that is, when ∂M is empty;

• or that v violates certain symmetries of un.

One plausible way to solve the conjecture is phase portrait analysis and the idea of

proof is comparison of angle functions of solutions. Let v be a bounded nontrivial

solution of (4.28). We define the associated angle functions of solutions by

θn(s) := arctan

(
u′n(s)

un(s)

)
, θv(s) := arctan

(
v′(s)

v(s)

)
.

Note that θn and θv are well defined because all zeros of nontrivial solutions of (4.28)

or (4.29) are simple.

Since s = 0 is an isolated zero of both un(s) and v(s), by linearity we consider

without loss of generality un(s) > 0 and v(s) > 0 for all s > 0 sufficiently near zero.

Then by analyticity the power series expansion holds

un(s) = C1 s
m +O(sm+1), v(s) = C2 s

m +O(sm+1), as s→ 0, (4.30)

for some C1, C2 > 0. Hence the initial angles are equal and satisfy

lim
s→0

θn(s) = lim
s→0

θv(s) =
π

2
.

Since ∂yfR(0; 0) < 0 and ∂yfR(u2
n(s); 0) ≤ 0 for all s ∈ (0, s∗] by (A2), from (4.28)

and (4.29) we obtain the following comparison:

θn(s) < θv(s) for all s ∈ (0, s∗]. (4.31)
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In other words, the phase portrait (un(s), u′n(s)) rotates faster than (v(s), v(s)).

We have three observations. First, θn(s) (and θv(s)) is strictly decreasing at the

u′n-axis (and the v′-axis) in the phase plane. Second, if v eimϕ ∈ H2
m,(α) is a nontrivial

solution of (4.26), then by (4.31) there exists a k ∈ N such that the difference of angle

functions at s = s∗ satisfies

θv(s∗)− θn(s∗) = kπ. (4.32)

Third, since un(s) possesses exactly n simple zeros in (0, s∗), we have

− π

2
− nπ ≤ θn(s∗) <

π

2
− nπ,

and thus by (4.31),

−π
2
− nπ < θv(s∗) <

π

2
.

We readily see that if n = 0, then 0 < θv(s∗)−θ0(s∗) < π and hence (4.32) cannot

hold. Therefore, for n = 0 the conjecture is true because v eimϕ /∈ H2
m,(α). For general

n ∈ N, however, (4.32) can still possibly hold.

To violate (4.32), one way is to show that v(s) also possesses exactly n simple

zeros in (0, s∗). Then −π
2
− nπ < θv(s∗) <

π
2
− nπ, and so 0 < θv(s∗) − θn(s∗) < π.

Therefore, the conjecture is true if we can solve the following problem.

Problem . For (bn|ψn) ∈ Cm,(α)
n,ι , show that every bounded nontrivial solution v(s)

of (4.28) possesses exactly n zeros in (0, s∗).

If un(s∗) = 0, then the problem has been solved in [Na83] for m = 0, and in [Sc97]

for m 6= 0 but subcritical nonlinearity. For m 6= 0 and supercritical nonlinearity, the

problem remains open. The main difficulty is lack of a correct sign that allows us to

apply the maximum principles on suitable auxiliary functions for comparison.

4.4.2 Partial result

Partial results of the conjecture are available, say, when the full equation (4.2)

possesses certain equivariance so that solutions obey certain symmetries. For in-

stance, consider that n = 1 and M is without boundary and possesses the reflection

symmetry. Then s = s∗
2

is the unique zero of u1(s), and also a zero of UR(s) if

UR(s) eimϕ ∈ H2
m,(α) is a nontrivial solution of (4.26); see Lemma 4.3 (iii). This

symmetry of solutions yields a contradiction, because from (4.31) we already know

v( s∗
2

) > 0 if v is any bounded nontrivial solution of (4.28). Let us give a proof.
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Theorem 4.14. The conjecture is true if n = 1 and M is without boundary and

possesses the reflection symmetry.

Proof: Let v be any bounded nontrivial solution of (4.28) and v(s) > 0 for all s > 0

sufficiently near zero. By the Z2-equivariance induced by the reflection symmetry,

u1(s) > 0 for all s ∈ (0, s∗
2

) and u1( s∗
2

) = 0. It suffices to show v( s∗
2

) 6= 0. Indeed we

prove more: v(s) > 0 for all s ∈ (0, s∗
2

].

Suppose the contrary that there were a first zero s̃ ∈ (0, s∗
2

] of v(s), that is,

v(s) > 0 for all s ∈ (0, s̃) and v(s̃) = 0. Then by definition

v′(s̃) ≤ 0. (4.33)

To compare the angle functions of u1 and v, it is natural to consider the auxiliary

function of Riccati type

W :=
v

u1

.

Note that W (s) is bounded in (0, s̃] due to the power series expansion (4.30) as s→ 0,

and the fact that all zeros of u1(s) or v(s) in (0, s∗) are simple.

It is straightforward to verify that W (s) satisfies the following ODE for s ∈ (0, s̃):(
u1W

′′ + 2u′1W
′ +

a′

a
u1W

′
)

= −2 bn ∂yfR(u2
1; 0)u3

1W. (4.34)

Multiplying (4.34) by a(s)u1(s), we obtain

(a u2
1W

′)′ = −2 bn a ∂yfR(u2
1; 0)u4

1W. (4.35)

Using a(0) = 0, a(s) > 0 for all s ∈ (0, s̃), (A2), and W (s) > 0 for all s ∈ (0, s̃), we

integrate (4.35) over (0, s̃) and obtain

lim
s→s̃

u2
1(s)W ′(s) > 0.

Since u2
1(s)W ′(s) = u1(s)v′(s)− u′1(s)v(s), using u1(s̃) ≥ 0, (4.33), and v(s̃) = 0, we

reach a contradiction: lims→s̃ u
2
1(s)W ′(s) ≤ 0. The proof is complete. ./
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Chapter 5

Conclusion

In this chapter we present a brief overview of this thesis. Then we discuss an issue

related to our analysis and indicate four directions for future research.

5.1 Overview

In this thesis we establish a functional approach to prove the existence of Ginzburg-

Landau spiral waves. Based on systematic considerations, we justify the popular

m-armed spiral Ansatz by equivariance and the variational structure of the real

Ginzburg-Landau equation. This spiral Ansatz transforms the Ginzburg-Landau

equation into an elliptic equation. To solve this elliptic equation by our functional

approach, we adopt global bifurcation analysis and the result of existence is essentially

a consequence of compactness.

The advantage of our functional approach is threefold. First, it avoids smart,

but tricky, estimates used in the shooting method. Second, it works for more gen-

eral underlying spatial domains, not only in the circular geometry, but also in the

spherical geometry. Third, it permits the occurrence of a mixed diffusion process

when a complex diffusion parameter is introduced. Thus our result of existence of

rigidly-rotating spiral waves greatly generalizes those in the literature; see [KoHo81]

and [Ts10]. Moreover, we prove the existence of two new patterns: frozen spirals in

circular and spherical geometries, and 2-tip spirals in the spherical geometry.

5.2 Discussion and outlook

The Ginzburg-Landau spiral waves we have proved typically possess two features:

slowly rotating and possibly slightly twisting, due to perturbation arguments; see
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Lemma 4.10. Such spiral waves are very different from those observed in the Belousov-

Zhabotinsky equation; see [Be&al97]. These two features are rooted in the global

S1-equivariance, and also in the assumption (4.4) by which the Ginzburg-Landau

equation is weakly coupled for all small parameters 0 < |η|, |β| � 1. To seek fast

rotating or greatly twisting spiral waves, we need to either consider sufficiently large

|η|, |β| (see the heuristic attempts in [Ha82]) or replace (4.4).

Finally, we indicate four directions for future research.

• Direction 1: nodal solutions

We can ask whether Theorem I and II hold for n ∈ N; see the discussion in

Section 4.4.

• Direction 2: Ginzburg-Landau scroll waves

Pattern formation of scroll waves requires three-dimensional spatial domains;

see the survey [FiSc03]. We can ask whether Ginzburg-Landau scroll waves

exist, for instance, on the three-dimensional unit ball

B =
{(
r sin(s) cos(ϕ), r sin(s) sin(ϕ), r cos(s)

)
: r ∈ [0, 1], s ∈ [0, π], ϕ ∈ [0, 2π)

}
.

Analogously, consider the m-armed scroll wave Ansatz :

Ψ(t, r, s, ϕ) = e−Ωt ψ(r, s, ϕ), ψ(r, s, ϕ) = u(r, s) eimϕ.

The major difference is that the resulting elliptic equation is not equivalent to

a second-order ODE, because u(r, s) depends on both r and s. In particular,

not all eigenvalues of ∆m,(α) are simple. But still, the principal eigenvalue of

∆m,(α) is simple. Thus for the case η = 0 and β = 0, the principal bifurcation

curve Cm,(α)
0,B always exists, at least locally. This curve would be global if we

could prove that it possesses the nodal structure; see Lemma 4.4.

• Direction 3: stability of Ginzburg-Landau spiral waves

The Ginzburg-Landau spiral waves we have proved is locally asymptotically

stable under H2ζ
m,(α)-perturbations for any ζ > 1

2
. We can ask their stability

under the full H2ζ
(α)-perturbations. Note that formal asymptotic expansions and

numerical evidences suggest that the one-armed spiral waves be stable, while

multi-armed ones be unstable; see [Ha82] and [Ts10].

• Direction 4: spatio-temporal feedback (de-)stabilization

Once the stability of a spiral wave solution Ψ̃ is known, we can study whether
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the stability changes when noninvasive spatio-temporal feedback control is in-

troduced, that is, when we consider the delay Ginzburg-Landau equation:

∂tΨ =
1

b
(1 + i η)∆M,(α)Ψ +f(|Ψ|2; β) +kg

(
Ψ− eik0 Ψ(t−kt, s, ϕ−kϕ)

)
. (5.1)

Here kg ∈ C is the feedback gain, ko ∈ S1 is the transformation of the output,

kt > 0 is the time delay, and kϕ ∈ S1 is the spatial delay on the azimuthal angle;

see the method of control triple established recently in [Sch16]. It is worth

noting that the framework of feedback control is indeed model-independent.

The main task is to prove the existence of parameters (ko, kt, kϕ) such that

(5.1) is noninvasive, that is, the introduced control term vanishes if Ψ = Ψ̃, and

more importantly, there exist a kg ∈ C such that Ψ̃ changes its stability under

the dynamics of (5.1).
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Deutsche Zusammenfassung

In dieser Arbeit etablieren wir eine funktionalanalytische Methode, um die Existenz

von Ginzburg-Landau Spiralwellen zu beweisen. Auf der Grundlage von systemati-

schen Erwägungen rechtfertigen wir den beliebten m-armigen Spiralansatz mit Hilfe

von Äquivarianz und der variationellen Struktur der reellen Ginzburg-Landau Glei-

chung. Dieser Spiralansatz verwandelt die Ginzburg-Landau-Gleichung in eine ellip-

tische Gleichung. Um diese elliptische Gleichung mit unserer funktionalanalytischen

Methode zu lösen, führen wir eine globale Bifurkationsanalyse durch, und das Ergeb-

nis der Existenz ist im Wesentlichen eine Folge der Kompaktheit.

Aus unserer funktionalanalytischen Methode ergeben sich drei Vorteile: Erstens

vermeidet sie die raffinierten, aber heiklen Abschätzungen der shooting-Methode. Zwei-

tens funktioniert sie für allgemeinere zugrunde liegende räumliche Bereiche, und dies

nicht nur in der Kreisgeometrie, sondern auch in der sphärischen Geometrie. Drittens

ermöglicht sie das Auftreten eines gemischten Diffusionsprozesses, wenn ein komple-

xer Diffusionsparameter eingeführt wird. In diesem Sinne ist unser Ergebnis eine große

Verallgemeinerung der Existenzresultate in der Literatur. Insbesondere beweisen wir

die Existenz von zwei neuen Mustern; den gefrorenen Spiralwellen in der Kreisgeome-

trie und der sphärischen Geometrie, sowie den 2-Spitzen Spiralen in der sphärischen

Geometrie.
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Selbstständigkeitserklärung

Hiermit bestätige ich, DAI, Jia-Yuan, dass ich die vorliegende Dissertation

mit dem Thema

Spiral waves in circular and spherical geometries

The Ginzburg-Landau paradigm
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