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Abstract22

Accurate assessment of TCR-antigen specificity at the whole immune repertoire level lies at23

the heart of improved cancer immunotherapy, but predictive models capable of high-throughput24

assessment of TCR-peptide pairs are lacking. Recent advances in deep sequencing and crystal-25

lography have enriched the data available for studying TCR-p-MHC systems. Here, we introduce26

a pairwise energy model, RACER, for rapid assessment of TCR-peptide affinity at the immune27

repertoire level. RACER applies supervised machine learning to efficiently and accurately re-28

solve strong TCR-peptide binding pairs from weak ones. The trained parameters further enable29

a physical interpretation of interacting patterns encoded in each specific TCR-p-MHC system.30

When applied to simulate thymic selection of an MHC-restricted T-cell repertoire, RACER ac-31

curately estimates recognition rates for tumor-associated neoantigens and foreign peptides, thus32

demonstrating its utility in helping address the large computational challenge of reliably identify-33

ing the properties of tumor antigen-specific T-cells at the level of an individual patient’s immune34

repertoire.35
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1 Introduction36

The advent of new strategies that unleash the host immune system to battle malignant cells represents37

one of the largest paradigm shifts in treating cancer and has ushered in a new frontier of cancer38

immunotherapy [1]. Various treatments have emerged, including checkpoint blockade therapy [2,39

3, 4], tumor antigen vaccine development [5, 6], and the infusion of a donor-derived admixtures of40

immune cells [7]. A majority of successful treatments to-date rely on the anti-tumor potential of the41

CD8+ T-cell repertoire, a collection of immune cells capable of differentiating between malignant42

cells and normal tissue by recognizing tumor-associated neoantigens (TANs) detectable on the cell43

surface [8]. Therefore, accurately assessing a T-cell repertoire’s ability to identify cancer cells by44

recognizing their tumor antigens lies at the heart of optimizing cancer immunotherapy.45

A complete understanding of adaptive immune recognition and the tumor-immune interaction46

has remained a formidable task, owing in part to the daunting complexity of the system. For example,47

antigens and self-peptides contained in an epitope (i.e. recognizable peptide sequences) space of48

size ∼ 209 are presented to ∼ 107 unique T-cell clones in each individual [9], a small fraction of49

the upper limit of TCR diversity (∼ 1020) [10, 11]. Moreover, their behavior is tempered via an50

elaborate thymic negative selection process in order to avoid auto-recognition [12, 13]. Here, T-cell51

clones, each with uniquely generated T-cell receptors (TCRs), interface with numerous (∼ 104) self-52

peptides presented on the major histocompatibility complex (p-MHC) of thymic medullary epithelial53

cells via TCR CDR3α and β chains, and survive only if they do not bind too strongly [14, 15, 16].54

This process, together with systems-level peripheral tolerance [17, 18], imparts T-cells with durable55

tolerance to major self-peptides and influences many of the recognition properties of the resultant56

repertoire. The complexity of the adaptive immune system has attracted numerous mathematical57

modeling efforts quantifying the mechanisms underlying T-cell immune response. Collectively, the58

field has made significant progress in understanding the population-level effects of tolerance on T-59

cell recognition and self vs. non-self discrimination [14, 19]. This includes the T-cell repertoire’s60

effectiveness at discerning tumor from self-antigens [20], its ability to impart immunity against61

current and future threats [21, 22], and the extent of selection pressure that it exerts on an evolving62

cancer population [23, 24].63

Any attempt at better understanding these system-scale properties must start with a reliable64

method to evaluate the interaction between specific TCR-p-MHC pairs. Despite this, a compre-65

hensive, biophysical model capable of learning the energy contributions of each contact pair in a66

TCR-p-MHC system and applying them to new predictions remains elusive. To-date, experimental67

research has integrated solved crystal structures [25, 26] with peptide sequencing [27, 28, 29] to68

probe the physiochemical hallmarks of epitope-specific TCRs. Publicly available crystal structures69

have enabled researchers to identify detailed structural features that influence the binding specificity70
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of TCR-p-MHC pairs, and machine learning algorithms have made progress on the complementary71

task of accurately predicting peptide-MHC binding [30, 31, 32, 33, 34, 35, 36] as well as TCR-72

peptide binding [37, 38]. However, the limited number of available structures relative to the diver-73

sity in MHC alleles and TCR-peptide combinations complicates extrapolation to unsolved systems.74

Alternate template-based structural modeling [39] and docking [40] approaches are limited by cal-75

culation speeds (at best one structure per minute), thus it is unlikely in the foreseeable future that76

such strategies can be used to investigate the number of TCR-peptide interactions necessary to study77

the problem at the immune-repertoire level, as this task easily requires the assessment of more than78

109 pairs simultaneously [16]. Prior attempts have approximated binding affinity by implementing79

statistical scores calculated from docking algorithms [40]. These scores are trained using examples80

of generic protein binding and thus lose the unique aspects of the TCR-peptide interactions.81

To deal with this challenge, we develop a systematic TCR-p-MHC prediction strategy for rapid82

and accurate assessment of TCR specificity. Our strategy, which we refer to as the Rapid Coarse-83

grained Epitope TCR (RACER) model, is capable of differentiating between self and foreign anti-84

gens and can evaluate 109 TCR-peptide pairs in the setting of TCR-peptide combinations restricted85

to a single MHC allele. This method we develop employs supervised machine learning on known86

TCR-peptide structures and experimental data to derive a coarse-grained, chemically-accurate en-87

ergy model governing TCR-p-MHC interaction. This strategy was adapted from earlier efforts to88

predict protein folding [41, 42, 43, 44, 45, 46] and to screen the binding of small molecules [47, 48].89

The MHC loci, while polymorphic, bind comparable numbers of peptides across various alleles90

[49]. Our calculations are restricted to a fixed MHC allele, but could be generalized with the use of91

additional training data. Confining our predictions to TCRs with a given MHC restriction enables92

the transferability of the method to TCRs that are not included in the training set. The approach93

provides a tractable means to extract pertinent TCR-peptide interactions so that affinity may be94

predicted based on similarly restricted TCR-peptide primary sequence data. RACER accurately dis-95

tinguishes binding peptides across various TCRs and validation tests. Lastly, as a preliminary test of96

the usefulness of our approach, we simulate thymic selection and show agreement with previously97

established estimates of T-cell binding energy distributions, tumor neoantigen and foreign peptide98

recognition rates for a given class of MHC-restricted TCRs [50, 51]. Our in silico results share99

several features observed in experimental data including the degree to which post-selection TCRs100

preferentially recognize foreign antigen and TANs, in addition to the sequence diversity of epitope-101

specific TCRs. [52, 28]. Taken together, our results demonstrate RACER’s utility in learning the102

interactions relevant for high-throughput TCR-epitope binding predictions.103
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2 Results104

2.1 RACER can distinguish peptides that bind strongly to a given TCR from105

those that bind weakly106

The RACER optimization protocol (Fig. 1A) utilizes high-throughput deep sequencing data on107

TCR-peptide interactions across a large peptide library [27], together with known physical con-108

tacts between TCRs and peptides obtained from deposited crystal structures [53]. The training109

data comes from cases where all the peptides are displayed by the same allele of the mouse MHC110

class II molecule. The binding energy between TCRs and peptides, calculated based on a solvent-111

averaged coarse-grained pairwise model [46], was used as the metric to assess the TCR-peptide112

binding affinity. The interaction parameters for this solvent-averaged energy model were reopti-113

mized here specifically for recognizing strong TCR-peptide interactions. Adapting an approach114

previously implemented for studying folding of proteins [54, 45], the RACER optimization strat-115

egy trains a pairwise energy model which maximizes TCR-peptide binding specificity. The energy116

model was optimized by maximizing the Z-score defined to separate the affinities of experimentally117

determined strong-binding peptides, called “strong binders” hereafter, from computationally gener-118

ated, randomized decoys1. The optimized residue type-dependent energy model can then be used119

to calculate the binding energies of an ensemble of new TCR-peptide systems. As will be shown120

below, we performed three different levels of test (Fig. 1B), and find the predicted binding ener-121

gies can differentiate strongly binding peptides from weak ones, provided they are displayed by the122

same MHC allele as that of the training set. Crucially, accurate predictions can be made even without123

knowledge of the actual crystal structure, although the predictions are improved when this additional124

information is available.125

Fig. 2 summarizes RACER’s predictive performance for a specific TCR (Case I in Fig. 1B).126

For this fixed TCR, pre-identified strong binding peptides and decoy peptides with randomized se-127

quences were used to train the energy model (See Methods section for details). Another set of128

peptides independently verified experimentally as weak binders constitutes the testing set. The re-129

sulting energy model was then applied to calculate binding energies for the strong binders in the130

training set as well as the peptides in the testing set. This approach was repeated on three indepen-131

dent TCRs that are associated with the IEk MHC-II allele: 2B4, 5CC7 and 226 (Details of these three132

TCRs are provided in Table S1). Although the experimentally identified weak binders were omitted133

from the training set, RACER effectively resolves binding energy differences between experimen-134

tally determined strong and weak binders having Z-scores, calculated in an analogous way as above135

1The Z-score is defined as the difference between the average binding energies of strong binders versus decoys,
divided by the standard deviation of the decoy energies. Throughout this manuscript, we report the absolute value of the
calculated Z-score, except for Fig. 5C.
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by replacing decoys with experimentally-determined poor binders, larger than 3.5 in all cases (Fig.136

2A), thus highlighting the predictive power of this approach.137

Despite their relative sparsity in antigen space, strong binders play a central role in T-cell epi-138

tope recognition. It is obviously more difficult to predict strong binders than weak binders. To139

test RACER’s ability to identify strong binders, we performed a leave-one-out cross-validation140

(LOOCV) test, using data from TCR 2B4 as an example. For each test iteration, one known strong141

binder was withheld from the training set of 44 strong binders. Our optimization protocol was ap-142

plied to train the energy model by using the remaining 43 peptides and then predicting the binding143

energy of the withheld peptide. This prediction was then compared to predicted binding energies of144

known weak binders, and the procedure was repeated for each of the 44 peptides. Our model is able145

to accurately distinguish the withheld strong binder in 43 cases (Fig. 2B). This is in stark contrast146

to a cluster-based attempt at strong binder identification based on peptide sequences alone, which at147

best correctly identifies 19 out of 44 strong binders (Supplementary note S1). The same LOOCV148

test was performed for TCR 5cc7 and 226, which correctly identified 120 out of 126 strong binders149

of 5cc7, and 267 out of 274 strong binders of 226. To further test the limit of RACER in detecting150

strong binders that have a more diverse sequence coverage, we performed a more demanding set of151

hold-out tests on a more comprehensive set of data from [27]. RACER can recognize peptides shar-152

ing little to no sequence identity with the native peptide (Figs. S1, S3), and is still able to recognize153

strong binders when a substantial portion of the training data is withheld (Supplementary note S2,154

S3 and Fig. S2, S3).155

In order to further characterize RACER’s predictive power, an independent set of Kd values156

measured by surface plasmon resonance (SPR) [27] were compared with predicted affinities. The157

SPR experiments were performed on 9 independent peptide tests for each of the aforementioned158

three TCRs. RACER was used to predict the binding energies of each of those TCR-peptide pairs,159

each modeled with the structure of the corresponding TCR as the template. The free energies,160

kBT log(Kd), were compared with calculated binding energies from RACER as a quantitative test161

of binding affinity prediction accuracy. Lower binding energies indicate stronger binding affinity so162

that a positive correlation between the kBT log(Kd) values and calculated binding energies implies163

a successful prediction. As shown in Fig. 2C, RACER’s prediction of binding affinities for these164

9 peptides correlates well with experimental measurement, with an average Pearson correlation co-165

efficient of 0.74. The predicted order of binding affinities is also consistent with those from the166

experiment, with an average Spearman’s rank correlation coefficient of 0.65.167
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2.2 RACER’s residue type-dependent interactions are optimized specifically168

for TCR-peptide recognition169

The data utilized by RACER includes strong binders and an input crystal structure, as well as TCR170

and peptide primary sequences, which determine an interaction pattern that was then used to con-171

struct a system-specific force field. To illustrate this, we focus on the 2B4 TCR as an example (Fig.172

3). The crystal structure of TCR 2B4 (Fig. 3A) reveals that there can be many threonine (T) and173

asparagine (N) residues on the CDR loops region of the TCR. In the strong binder set, these residues174

tend to interact with specific peptide residues such as alanine (A), as seen for the specific peptide175

given in the figure. This notion can be formalized by showing the matrix of observed probabilities176

of close proximity of specific residue pairs. Thus, we see that certain pairs such as A-T and A-N177

are significantly enriched in the set of strong binders, while much less so in the decoy set (Fig. 3B).178

This then will mean that the optimized energy model shows the strongest attractions between the179

A-T, A-N residue pairs (Fig. 3C). This relative enrichment contrasts with the TCR tryptophan (W)180

residue which frequently interacts with alanine (A) in both strong binders and decoy peptides. As a181

result, the optimized energy model does not favor the A-W interaction.182

This energy matrix is rather distinct from those typically used for studying protein folding. In183

order to compare the RACER-derived interaction matrix to well-established force fields described184

in the protein folding literature, we substitute for our interaction matrix either the standard AWSEM185

[46] (optimized on deposited folded proteins) force field or the Miyazawa-Jernigan (MJ) statistical186

potential [55] (constructed using the probability distribution of contacting residues from deposited187

proteins) and calculate the corresponding binding energy predictions for the TCR 2B4 peptides. We188

find that neither of them effectively resolves these groups, with Z-scores of 0.69 and 1.28, respec-189

tively (Supplementary note 4 and Fig. S4). Similar trends were observed utilizing the peptides190

corresponding to the 5CC7 and 226 TCRs, demonstrating the necessity of RACER’s de novo identi-191

fication of pertinent structural information for studying the TCR-peptide system.192

2.3 RACER’s interactions enable accurate predictions across various TCRs193

restricted to a given MHC allele194

Given RACER’s accuracy in resolving test peptides presented to the specific TCR used for training,195

we next explored the feasibility of extending predictions to additional TCR-peptide pairs albeit with196

the same MHC restriction. Toward this end, we assessed whether the physical contacts implicitly197

encoded in RACER’s optimized force field were conserved within IEk-restricted TCR-peptide pairs.198

The three IEk-restricted TCRs considered in our analysis all have been tested with peptides bound to199

the IEk mouse MHC molecule. The available crystal structures have a significant degree of structural200
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similarity at the TCR CDR3-peptide binding interface (see Fig. 5 of [27]). We further quantified201

the TCR CDR3-peptide contacts for each pair, constructing a contact map based on their crystal202

structures (see Methods section for full details). Our results suggest that, despite differences in TCR203

and peptide primary sequences, the set of strong binding TCR-peptide pairs share common structural204

features which should aid in imparting transferability of the trained interaction matrix for accurate205

extrapolation to unknown pairs (Fig. 4). We find however that these features are not preserved across206

different MHC class II genes (Fig. S5), again indicative of the importance of incorporating structural207

information.208

RACER’s ability to accurately identify strong binders based on training with a fixed TCR,209

together with the fact that a majority of the contact structure is preserved within a given MHC-210

restricted set of TCRs, suggested that we assess RACER’s ability to accurately predict binding pep-211

tides for other similarly restricted TCRs. Toward this end, we apply the energy model optimized212

using binding data for one of the three TCRs to predict the TCR-peptide binding energies of the213

remaining two holdout TCRs (Case II in Fig. 1B). To do this, we initially use a known structure214

for each of the holdouts, and the interaction matrix learned on the training TCR to predict the bind-215

ing energies of the experimentally determined strong and weak binders for each of those holdout216

TCRs. Although the Z-scores measured for these alternate TCRs are lower than those found pre-217

viously in Sec 2.1, RACER still successfully distinguishes a majority of strong binders from weak218

binders, with an average Z-score of 1.8 (Fig. 5A). This demonstrates that, despite CDR3 primary219

sequence diversity, distinct TCR-p-MHC systems associated with the same MHC allele still share220

similar structural-sequence patterns.221

In order to test whether the incorporation of additional TCR structural information in the op-222

timization step could improve RACER’s predictive accuracy, we next included crystal structures223

for the remaining TCRs (5cc7 and 226) together with a single strong binder for each case into the224

training set comprised of 2B4 peptide pairs (See Methods section for details). This procedure was225

repeated three times by substituting for the training set TCR and peptide pairs. We find that the new226

energy model demonstrates significant improvement in Z-scores. These results suggest that future227

incorporation of additional crystal structures of target TCRs may lead to improved resolution of228

strong and weak binders via refinement of the optimized energy model.229

To provide an additional test and to quantify our discrimination capability, we used an indepen-230

dent dataset from [56]. Four independent TCRs (PDB ID: 3QIB, 3QIU, 4P2Q, 4P2R) from their231

curated benchmark dataset are associated with the IEk allele; note that three of these overlap with232

the TCRs in our current study. To test the performance of RACER for different TCR-peptide pairs,233

we used the energy model trained based on 2B4 (3QIB) to predict the binding energies of both234

strong and weak binders for the three remaining TCRs. This calculation again uses the structure235

found for the one strong binding peptide for each of the 3 TCRs. Our calculation re-emphasizes236

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 22, 2021. ; https://doi.org/10.1101/2020.04.06.028415doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.06.028415
http://creativecommons.org/licenses/by-nc-nd/4.0/


that RACER can successfully distinguish strong binders even when it is trained based on a different237

TCR (Fig. 5C), with an AUC of 0.89. Of note, when we tested data from the same study involving238

TCR-p-MHCs with different MHC alleles, RACER cannot pick out strong binders, presumably due239

to the markedly different TCR-peptide interacting patterns (Fig. S5). As a more comprehensive test240

of RACER’s transferability, we included other TCR-peptide pairs from [56]. RACER is capable of241

recognizing the strong binders across TCRs with different Vα and Vβ genes, and does so more ef-242

fectively when there are multiple copies of TCR-peptide pairs available for training (Supplementary243

note S5, Fig. S6).244

Next we address the question of the extent to which it is necessary to have at hand at least one245

TCR-p-MHC crystal structure in order to use RACER’s interaction matrix to identify other good246

binders (Case III in Fig. 1B). Of course to evaluate the binding energy we must have a structure; the247

alternative to having a measured structure for a new sequence is to thread that new CDR3 sequence248

into the crystal structure used for the training data, which potentially introduces an uncertainty in249

registration. For the cases at hand, this issue arises only for the α chain as the β chains for all three250

TCRs are all of length 12 and there is no residual ambiguity. We tested the simplest possible assump-251

tion, namely that we start at the same place where all three chains have the first two residues AA and252

leave no gaps. Fig. S8 shows that this procedure again leads to successful discrimination between253

good and poor binders, with an average Z-score of 2.36. As a comparison, the best performance of254

a recent sequence-based predictor trained by using artificial neural networks [38] can recognize the255

strong binders of TCR 5CC7, but not TCR 2B4 and 226 (Supplementary note S6 and Fig. S9). Sim-256

ilar tests were also performed for the TCR-peptide pairs from [56]. RACER still capably recognize257

the strong binders across TCRs with different Vα and Vβ genes (Supplementary note S5, Fig. S7).258

Thus, we conclude that the structures are sufficiently similar that not only can we use the interaction259

matrix derived from a single TCR training set for other TCRs but we can also use the same structure.260

This then allows us to make estimates at the repertoire scale without the impossible task of creating261

extremely large numbers of TCR-p-MHC structures.262

2.4 RACER-optimized T-cell repertoire binding assessment accurately rep-263

resents thymic selection264

Using RACER, we can determine general properties of TCR-p-MHC binding distributions and com-265

pare to empirical observations. These results highlight the advantage of a method capable of high-266

throughput analysis. The basic idea follows from the fact shown above that we can make reasonable267

assessments of binding strength by using only one structure and its associated interaction matrix.268

Our focus here is the process of negative selection and its effect on the surviving repertoire. Toward269

this end, we utilized the crystal structure of the 2B4 TCR-peptide contact region to create 105 simu-270
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lated TCRs and 104 self-peptides by randomizing uniformly the CDR3 and peptide sequences over271

amino acid space. To avoid registration issues, we always choose simulated TCRs to have exactly272

the same number of α and β chain residues as does the 2B4 TCR. This was repeated using 104 self-273

peptides and 2000 TCRs, this time weighting the CDR3-peptide interactions by each of the the three274

contact maps in Fig. 4. The same approach was applied to a model that assumes a strictly diagonal275

contact map motivated by previous analytical work [20], with randomization of the TCR sequence276

taken over all possible positions in the contact map.277

A given TCR survives only if it binds to all self-peptides below a fixed activation threshold. The278

maximum binding energy over the set of self-peptides for each TCR defines a selection curve (Fig.279

6A), which describes the percentage of negatively-selected T-cells as a function of the cutoff energy280

threshold. Selection curves for the three TCR sets using the contact maps in Fig. 4 utilized the281

RACER energy matrix and compare reasonably to the diagonal contact map motivated by previous282

analytical work (Fig. 6A red curve). While the variance in each case is similar, mean-shifts in each283

selection curve correlate directly with the number of contacts in the CDR3 α and β chains (Fig.284

4). These findings further reinforce the relevance of TCR-p-MHC-specific structural interactions285

encoded in the RACER-derived energy potential for binding prediction and T-cell repertoire gen-286

eration. Although empirical estimates of the percentage of surviving TCRs during thymic negative287

selection vary between 20% and 50% [57, 58, 59], we calculate relevant recognition behavior for all288

selection rates, restricting our analysis to 50%, when applicable.289

Most self-peptides present in thymic selection are expected to participate in the deletion of self-290

reactive T-cells. Previous work has suggested that this desideratum can be used to determine if291

a high-throughput model is behaving in a statistically sensible manner; specifically, a reasonable292

model of thymic selection would feature a majority of self-peptides contributing to the selection of293

immature T-cells. A rank order of these self-peptides based on their ability to recognize unique T-294

cells, or potency, characterizes the extent to which each self-peptide is utilized in thymic selection.295

The RACER-derived rank order using the 2B4-optimized data generates reasonable behavior with296

respect to this criterion (Fig. S10A).297

One key issue influencing adaptive immune recognition of tumor-associated neoantigens (TANs)298

is the recognition efficiency of peptides closely related to self (e.g. point mutants) relative to for-299

eign peptide recognition. The fact that the immune system can in fact be enlisted to attack tumors300

suggests that negative selection leaves intact the ability to bind strongly to tumor associated anti-301

gens. Comparison of a post-selection TCR’s individual recognition potential shows relatively minor302

differences between foreign and point-mutant self-peptides (Fig. 6B), with variances of these es-303

timates overlapping with one another and in line with previous theoretical estimates (Fig. S10B).304

While individual recognition probability measure a single TCR’s ability to recognize antigen, reper-305

toire recognition probability estimates a particular MHC-restricted post-selection repertoire’s ability306
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to recognize antigen. An analogous comparison of the post-selection TCR repertoire recognition307

probability of foreign and mutant peptides demonstrates that this minimal difference is maintained308

at the aggregate immune system level (Fig. 6C). This then explains the observed ability of adaptive309

immune targeting of tumors in a manner that depends on the mutational load of the malignant cells.310

Our prior theoretical model posited thymic selection as an optimization problem with a sur-311

vival cutoff near 1/e resulting in the production of maximally efficient thymic selection [9, 20].312

Calculating the product of survival and recognition probabilities yields a broad curve with large313

values located at intermediate survival cutoffs, including the previously predicted optimal survival314

cutoff (Fig. S10C). We also can compare our RACER-derived output to immunogenicity scores of315

experimentally-determined thymic self-peptides, foreign peptides, and TANs [52]. To accomplish316

this, we calculate the maximal binding energy of post-selection T-cells against each peptide class,317

a repertoire-level measure of immunogenicity. We find that our model is in broad agreement with318

other studies [52] that have placed the immunogenicity of TANs intermediary to that of foreign and319

self-peptides with a distribution closer to the foreign group (Fig. 6D).320

For additional evaluation of RACER predictions against known experimental findings, we stud-321

ied the similarity of T-cell CDR3 sequences at the repertoire level generated by RACER-derived322

TCR-p-MHC specificity maps. These were then compared to the properties of experimentally as-323

sessed TCR repertoires of known specificity against pre-identified antigens [28]. In our simulation,324

post-selection TCRs recognizing the top 10 foreign antigens were collected and clustered using a325

similar discrete Hamming metric that weighted the CDR3 sequences as in [28]. Dendrograms ob-326

tained from hierarchical clustering identified a diverse set of specific TCRs (Fig. S11A). Because327

our model only considered a small (105) number of TCRs relative to the allowable diversity of CDR3328

primary sequence space, we then augmented our T-cell repertoire by in silico site-directed mutage-329

nesis to include 100 additional, closely related TCRs for each of the 10 aforementioned peptides,330

each undergoing identical selection and recognition tests. This augmented list of T-cells accurately331

recapitulates the empirical observation of a mixed set of specific T-cells, comprised of diverse and332

homologous clusters of TCR sequences (Fig. S11B), and demonstrates RACER’s utility for identi-333

fying largely diverse TCRs with specificity against a known antigen. Taken together, these results334

agree with previous studies and reinforce the utility of RACER for performing repertoire-level anal-335

yses.336
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3 Discussion337

We have introduced RACER, an optimized molecular energy model that can be utilized to quickly338

assess TCR-peptide interactions and distinguish strong-binding pairs. RACER requires only∼0.02s339

for evaluating one TCR-peptide pair, thousands of times faster than available alternative approaches,340

while preserving reasonable prediction accuracy (Figs. 2, 5). Consequently, our method can be used341

to study large collections of MHC-restricted TCR-peptide pairs, enabling in silico studies of thymic342

selection and prediction of T-cell antigen recognition based on primary sequence data.343

3.1 Specificity vs. Generality of the optimized energy model344

The unique topology of the TCR-p-MHC structure encodes a system-specific residue-type dependent345

interaction matrix for TCR-peptide pairs. Significantly, the sequences and structures of TCR-peptide346

systems were found experimentally to be relatively conserved among various peptides [27, 28, 26].347

The preserved sequence and structural features dramatically limit the physiochemical space ex-348

plorable by TCR-peptide residue pairs. Moreover, since RACER is optimized on a TCR-peptide349

system, the arrangement of the contacts between TCR and its cognate peptide (Fig. 4) gives rise to a350

post-optimization energy model (Fig. 3) rather distinct from the traditional hydrophobic-hydrophilic351

interaction patterns [61] used for studying protein folding, such as the MJ potential [55]. This352

hypothesis is strongly supported by the observation that RACER is capable of identifying strong353

binders of corresponding TCRs (Fig. 2) while previous methods fall short (Fig. S4).354

The departure of RACER from a typical protein-folding force field also results from the opti-355

mization performed for TCR-peptide systems. Because we are interested in resolving strong binders356

from weak ones with a finite dataset, our optimization distinguishes between these two sets of binders357

by enlarging their energetic gap in the training process. By maximizing the Z-score between strong358

and weak binders, RACER learns an effective binding energy which likely amplifies small differ-359

ence in thermo-stability among candidate binders. Such amplification, however, affects neither the360

identification of the strong binders of a specific TCR nor the subsequent ensemble study of peptide361

recognition, since only the order of binding affinities among individual TCR-p-MHC pairs matters362

for our results.363

3.2 Structural information from available crystal structures improves the pre-364

dictive power of RACER365

Our pairwise RACER model offers a novel avenue for developing models that incorporate infor-366

mation contained in available protein structures. Prior investigations have applied artificial neural367

networks for predicting strong binders of TCR [37, 38] and MHC [30] molecules based only on368

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 22, 2021. ; https://doi.org/10.1101/2020.04.06.028415doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.06.028415
http://creativecommons.org/licenses/by-nc-nd/4.0/


the primary sequences. Although deep learning can implicitly account for higher-order interactions,369

such approaches may still be limited by the available sequences that can be identified from exper-370

iments. RACER alleviates the high demands for primary sequences by including existing crystal371

structures in a pairwise potential. In order to provide a comprehensive characterization of RACER’s372

predictive power using each of our predictive assessments, our training set was limited to cases that373

had pre-identified TCR-peptide pairs given their known crystal structure [56]. While RACER effec-374

tively resolved strong and weak binders in all cases where the training and test peptide were identical,375

approximately half of test cases derived from this set contained training and test peptides that were376

dissimilar. In these cases alone, RACER correctly predicts 67% of the examples (Z-score > 1.0).377

The resulting predictive accuracy demonstrates that our structurally informed pairwise model is able378

to resolve TCR-p-MHC specificity in a majority of available test cases. Further experimental val-379

idation will be required to definitively assess RACER’s ability to resolve TCR-p-MHC specificity380

across all possible TCR-peptide pairs within a given MHC allele. This challenge remains a top pri-381

ority for future investigations on repertoire-level TCR-peptide assessment.In designing RACER to382

achieve rapid and accurate predictions, our calculation only includes pairwise energetic interactions,383

while omitting contributions from conformational entropy. While RACER maintains reasonably384

high predictive accuracy, more accurate assessments of the TCR-p-MHC binding free energy will385

likely lead to improvements and is a focus of subsequent work.386

In cases with available crystal structures, contact map analysis revealed a largely conserved in-387

teraction pattern reproduced across a variety of TCR-peptide pairs associated with the IEk MHC388

II allele (Fig. 4), providing an explanation for the transferability of RACER-derived interactions389

when trained on a particular crystal structure. Moreover, these results contributed to variety in the390

selection behavior of individual TCRs in that TCR-peptide systems having more interactions in their391

corresponding contact map were correlated with systematic shifts in their mean binding energies,392

which subsequently correspond to differences in their post-thymic selection inclusion probability393

(Fig. 6). Previous investigations have characterized the probability distribution for generating par-394

ticular TCR sequences in VDJ recombination, and have even suggested that the a posteriori observed395

post-selection TCRs had greater generation probabilities [15, 62], with so-called “public” TCR se-396

quences being observed in multiple individuals. Incorporation of contact maps into our generative397

model contributes to variations in T-cell survival probability, and may offer a physical interpretation398

of why public repertoires may survive thymic selection at higher rates[63], in addition to providing399

an explicit means of estimating post-selection T-cell prevalence within a given MHC-class restric-400

tion.401

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 22, 2021. ; https://doi.org/10.1101/2020.04.06.028415doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.06.028415
http://creativecommons.org/licenses/by-nc-nd/4.0/


3.3 Recognition of foreign and point-mutated self-peptides402

RACER, which leverages structural information to assess binding strength, can be used to simulate403

the influence of selection on the resulting T-cell repertoire and, hence, on the recognition of TANs404

across patients and cancer subtypes. Applying our model to CDR3 α, β chains obtained from T-cell405

sequencing, together with possible TAN lists generated by deep sequencing of cancer populations406

could provide a rapid method of generating clinically actionable information for cancer specific407

TCRs in the form of putative TCR-TAN pairs, provided those TANs are similarly presented on the408

original MHC [50, 51]. While we focused our analysis on a single MHC restriction, our approach409

could also be applied to the crystal structure of another TCR-p-MHC pair, together with several410

known strong and weak binder candidates. More generally, our results also provide credence to the411

linear constitutive assumption which enables us to sum binding energies of individual residue pairs412

for quantifying TCR-peptide interactions [20, 14]. Moreover, the predictive accuracy of RACER can413

be further improved by including additional strong binders from crystal structures that are deposited414

in the database (Fig. 5B), thus providing a mechanism for additional refinement and improvements415

in predictive accuracy as more sequence and structural data become available.416

The relative efficacy of targeting TANs remains an important question with significant clinical417

implications. We have shown that RACER can readily simulate full-scale thymic selection to pro-418

duce an MHC-restricted T-cell repertoire. The overall agreement in post-selection behavior between419

this study and our previous theoretical analysis is reassuring for both approaches, in addition to the420

general properties of T-cell immunogenicity (Fig. 6D) and recognizing the balance between TCR421

diversity and similarity observed in experimental data (Fig. S11). Taken together, our findings sug-422

gest that thymic selection affords little to no recognition protection of peptides closely related to423

self, thus supporting the notion that T-cells undergoing central tolerance to thymic self-peptides are424

essentially memorizing a list of antigens to avoid. Given that a large class of TANs are generated425

via point mutations in self-peptide, this result also provides a quantitative argument for the efficacy426

of immunotherapies which target point-mutated neoantigens. When compared to experimentally ob-427

served TCR specificity, the identified antigen-specific T-cells highlights the power of RACER, when428

assigned a known epitope target, to identify a diverse set of antigen-specific TCRs within high-429

dimensional TCR primary sequence space. We expect this approach to accelerate therapeutic T-cell430

discovery by providing a quick and inexpensive screening tool that can then inform more costly431

confirmatory TCR repertoire sequencing and affinity tests. Currently, we have focused on predicting432

binding affinities of TCR-peptide pairs restricted to a particular MHC allele, offering a proof-of-433

principle for epitope identification. This procedure can in general be repeated for other MHC alleles434

and could be applied to a broad set of clinical scenarios by training on a relatively small number435

of the most common HLA Class-I alleles, which have been well-studied and have ample available436
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crystal structure data. Toward this end, an immediate future goal will be to generalize RACER for437

predictions across MHC alleles and gene classes.438

While important, studying TCR-p-MHC pairwise interactions on the scale of an entire T-cell439

repertoire is only one factor influencing adaptive immune system recognition. Signaling between440

other adaptive immune system elements (including helper T-cells and natural killer cells) and intra-441

cellular factors which influence antigen generation, abundance, and availability on the cell surface442

also affect recognition rates. Encouraged by the RACER model’s reasonable selection and recogni-443

tion behavior, we propose this optimized framework as the first of its kind tool for tackling general444

questions regarding the interactions between the T-cell repertoire and relevant antigen landscape. Al-445

though we calculate static antigen recognition probabilities, the temporal tumor-immune interaction446

leads to dynamic co-evolution [24] reliant on the quality, abundance, and systems-level signaling of447

antigens [64]. In the setting of stem cell transplantation approaches, the availability of time series as-448

sessments of immune cell repertoires, self-peptides, and tumor antigens promises to inform optimal449

treatment strategies based on the donor immune system and host cancer population.450
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4 Methods451

4.1 Details of the energy model used in our optimization452

To evaluate the binding energies on the basis of a structurally motivated molecular energy model,453

the framework of a coarse-grained protein energy model, AWSEM force field [46], was utilized for454

calculating the binding energies between the T-cell receptors (TCRs) and the peptide displayed on455

top of a MHC molecule. AWSEM is a coarse-grained model with each residue described by the456

positions of its 3 atoms – Cα, Cβ and O atoms (except for glycine, which does not have Cβ atoms)457

[46]. We used the Cβ atom (except for glycine, where the Cα atom was used) of each residue to458

calculate inter-residue interactions. The original AWSEM energy includes both bonded and non-459

bonded interactions.460

Vtotal = Vbonded + Vnonbonded (1)

Since those residue pairs that contribute to the TCR-peptide binding energy, specifically those from461

the CDR loops and peptides, are in separate protein chains, only non-bonded interactions are con-462

sidered. Vnonbonded is composed of three terms:463

Vnobonded = Vpairwise + Vburial + Vdatabase (2)

Among them, Vburial is a one-body term describing the propensity of residues to be buried in or464

exposed on the surface of proteins. Vdatabase is a protein sequence-specific term that uses information465

from existing protein database, such as secondary and tertiary interactions, to ensure locally accurate466

chemistry of protein structure. Since the TCR-p-MHC system features pairwise interactions between467

a TCR and its corresponding peptide, only the term Vpairwise is used for this study.468

The pairwise energy of AWSEM potential describes the interactions between any two non-469

bonded residues and can be further separated into two terms:470

Vpairwise = Vdirect + Vmediated (3)

Vdirect captures the direct protein-protein interaction of residues that are in between 4.5 and 6.5 Å.471

The functional form of Vdirect is472

Vdirect =
∑
i∈TCR
j∈peptide

γij(ai, aj)Θ
I
ij (4)

in which ΘI
ij = 1

4
(1 + tanh[5.0 · (rij − rImin)])(1 + tanh[5.0 · (rImax − rij)]) is a switching function473

capturing the effective range of interactions between two residues (here taken between rImin = 4.5Å474
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and rImax = 6.5Å). Thus, two residues are defined to be “in contact” if their distance falls between475

4.5 Å and 6.5 Å. γij(ai, aj) describes the residue-type dependent interaction strength, and is the476

most important parameter that enters the optimization of RACER. Vmediated describes the longer477

range interactions of two residues and is not used in this study.478

4.2 Optimization of RACER to maximize specificity of TCR-peptide recogni-479

tion480

For each interaction type, the γij(ai, aj) parameters constitute a 20-by-20 matrix of parameters that481

describes the pairwise interaction between any two residues i, j, each with one of the 20 residue482

types, ai, aj . Guided by the principle of minimum frustration [43], γij(ai, aj) was previously op-483

timized self-consistently to best separate the folded states from the misfolded states of proteins.484

Distilled into mathematical details, the energy model was optimized to maximize the functional485

δE/∆E, where δE is the energy gap between folded and misfolded proteins, and ∆E measures the486

standard deviation of the energies of the misfolded states. An energy model was optimized based on487

a pool of selected protein structures [65], where a series of decoy structures were generated by either488

threading the sequences along the existing crystal structures, or by biasing the proteins into molten489

globule structures using MD simulations [45]. The resultant γ parameter thus determines an energy490

model that facilitates the folding of proteins with given sequences.491

Motivated by this idea, RACER was parameterized to maximize the Z-scores for fully sepa-492

rating TCR strong binders from weak ones. Strong binders were chosen to be those top peptides493

that survive and were amplified to contain to at least 50 copies after four rounds of experimental494

deep sequencing processes (details in Section Data used in our analyses) [27], together with the495

peptides present in the deposited crystal structures [53]. In the experiment of [27], to ensure the496

correct display of peptides on the MHC, limited diversity was introduced for most distal residues497

and anchoring residues of peptides. The decoy binder sequences were generated by randomizing498

the non-anchoring residues of each strong binder thereby generating 1000 copies, and excludes the499

strong-binder sequences. The γ parameters were then optimized to maximize the stability gap be-500

tween strong and randomized set of decoy binders, δE = ATγ, and the standard deviation of decoy501

energies, ∆E2 = γTBγ, where the vector A and matrix B are defined as:502

A = 〈〈φdirect〉db − φsb
direct〉

B = 〈〈φdirectφdirect〉db − 〈φdirect〉db〈φdirect〉db〉
(5)

In the above Eq. 5, “direct” stands for the interaction type, Vdirect. φdirect is the functional form503

for Vdirect. φdirect also summaries the probability of contacts formation (interaction matrix) between504
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pairs of amino acids in a specific TCR-peptide system. The subscripts “db” stands for “decoy505

binders” and “sb” stands for “strong binders”. The first average is over the 1000 decoy binders506

generated from one specific strong binder. The second average is over all the strong binders. The507

maximization of δE/∆E = ATγ/
√
γTBγ can be performed effectively by maximizing the func-508

tional objective R(γ) = ATγ − λ1∆, where ∆2 = γTBγ. The solution of this optimization gives509

γ ∝ B−1A. A is a vector containing the difference in the number of interactions of each type in the510

strong and decoy binders. B is a covariance matrix, which contains information about which types of511

interactions tend to co-occur in the decoy binders. Finally, γ is a vector that encodes the optimized512

strengths of the interactions. The dimension of the vector A is (1, 210), that of the matrix B is (210,513

210), and that of the vector γ is (210, 1). To aid visual presentation, we reshape the γ vector into514

a symmetric 20 by 20 matrix in Fig. 3C. Finite sampling of decoy binders introduces noise in the515

optimization process, particularly in B. As such, a filter is applied to reduce the effects of the noise.516

The filtering scheme was performed by first diagonalizing the B matrix such that B−1 = PΛ−1P−1,517

where P is composed of the eigenvectors of B and Λ is made up of B’s eigenvalues. The first N modes518

of B (sorted in descending order by eigenvalue) are retained and the other (210 - N) eigenvalues in519

Λ are replaced with the Nth eigenvalue of B. The final result is robust to the choice of N. In practice,520

N is chosen so that no eigenvalue is close to zero. The Wolynes group performed this optimization521

in an iterative way where the optimized parameters were used for generating a new set of decoy522

protein structures [66]. In this study, since different peptides are structurally degenerate on top of523

MHC as observed from experiments [27], only one round of optimization was performed. Since524

the optimization leaves a scaling factor as a free parameter, throughout this manuscript, the binding525

energies are presented with reduced units. To obtain binding energies that have physical units, the526

scaling factor can be further calibrated to fit the experimentally determined binding affinities, such527

as the Kd values measured by SPR experiments (Fig. 2C).528

4.3 Data input used in our analyses529

A deep-sequencing technique was developed to assess the binding affinity of a diverse repertoire of530

MHC-II-presented peptides towards a certain type of TCR [27]. Specifically, 3 types of TCRs: 2B4,531

5CC7 and 226, were used for selecting peptides upon four rounds of purification. The peptides that532

survived and enriched with multiple copies bind strongly with the corresponding TCR. In contrast,533

the peptides present initially but become extinct during purification represent experimentally deter-534

mined weak binders. For each of the 3 TCRs, the peptides that end up with more than 50 copies535

after the purification process, together with the peptides presented in the crystal structures, were536

selected as strong binders. 1000 decoy sequences were generated for each of the strong binders by537

randomizing the non-anchoring residues. Both strong binders and decoys were included in the train-538
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ing set. In addition, to test the performance of RACER, peptides having at least 8 copies initially but539

disappearing during purification were selected as experimentally determined weak binders and were540

assigned to the test set for each TCR. To test the transferability of the model, we used weak-binding541

peptides of two different TCRs (e.g., 5CC7 and 226) as additional test sets distinct from the TCR542

used in training (e.g., 2B4).543

When structural data for a specific TCR-peptide pair of interest is unavailable, we built the544

structure by homology modeling [67], based on a known TCR-peptide crystal structure incorporating545

the same TCR. Since potential steric clashes after switching peptide sequences may disfavor the546

strong binders used in our training set, we used Modeller [67] to refine the structures located at the547

TCR-peptide interface of strong binders before including them in the training process. Likewise, the548

binding energies of the experimentally determined weak binders were also evaluated after structural549

relaxation. The structural relaxation adds several seconds of computational time for each TCR-550

peptide pair, and thus poses a challenge for large scale repertoire analysis. However, the coarse-551

grained nature of RACER framework may significantly reduce the probability of side-chain clashes552

after switching peptide sequences. To test the accuracy of our model prediction without structural553

relaxation, we calculated the binding energies of strong and weak binders of TCR 2B4 by only554

switching the peptide sequences, omitting any structural adjustment. Our result (Fig. S12) shows555

comparable accuracy in separating strong from weak binders, similar to that reported in Fig. 2A. In556

the same vein, the transferability of RACER was also maintained without structural relaxation (Fig.557

S8). Encouraged by the accuracy of our coarse-grained model without relaxation, we modeled large558

pairwise collections of TCR-peptide interactions by only altering their corresponding sequences.559

For blind assessment of TCR transferability, we ask whether we can improve prediction accuracy560

if there are available strong binders determined in crystal structures of the target TCRs. To test this,561

we added interaction matrices calculated from the crystal structures of the other two TCRs as two562

additional strong binders in the training set. For example, in the case of TCR 2B4, the interaction563

matrices from the crystal structures of TCR 5CC7 and 226 were added into the training set of TCR564

2B4, constituting a total of 46 strong binders. The test shows a significant improvement in predicting565

the binding specificity of TCR 5CC7 and 226 (Fig. 5B).566

For an additional independent test of the transferability of RACER under the same MHC allele,567

we used the benchmark set reported in [56]. Four crystal structures are curated in their benchmark568

set, including three TCRs: 3QIB (2B4), 3QIU (226), 4P2Q (5CC7) and 4P2R (5CC7). Each of them569

have one strong-binding peptide presented in the crystal structure, and 4 weakly binding peptides.570

All the TCR-peptide pairs are associated with MHC-II allele IEk, and three of them overlap with571

the main dataset reported in [27]. We therefore used the energy model previously trained from TCR572

2B4 to test its transferability for the other three TCR-peptide pairs. The calculated binding energies573

were converted into a Z score by referencing to a set of 1000 randomized peptides of corresponding574
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TCRs: Z =
Ebinding−Edecoys

σ(Edecoys)
, with σ(Edecoys) being the standard deviation of Edecoys. The ROC curve575

and AUC score were calculated by scanning through different thresholds of the Z score. A further576

test by including more examples from [56] is available at Supplementary note S5, Fig. S6 and S7.577

4.4 Accuracy of RACER predictions omitting the crystal structure of target578

TCR-peptide pairs579

To test the transferability of RACER without requiring any measured structure for a new TCR, we580

threaded the sequences of the CDR3 loops of the new TCR on the TCR structure used in our train-581

ing. The length of CDR3β chain is the same among three TCRs (2B4: ASSLNWSQDTQY; 5cc7:582

ASSLNNANSDYT, 226: ASSLNNANSDYT), but the length of CDR3α chain is different (2B4:583

AALRATGGNNKLT; 5cc7: AAEASNTNKVV; 226: AAEPSSGQKLV). In order to accommodate584

such difference when threading the CDR3α sequences, we used a simple approach: aligning them585

based on the first two AA residues, leaving two gaps for TCR 5cc7 and 226. Modeller[67] was used586

to build the new loop structure based on these aligned new sequence, using the single structure in587

the training set as the template. These homology-modeled structures were then used for calculating588

the binding energies of the strong and weak binders of the new TCRs, using the trained interaction589

matrix. We also omitted the step of structural relaxation when replacing a new peptide sequence on590

the built structure. Such approach is unlikely to reduce RACER’s performance, as demonstrated in591

Fig. S12.592

4.5 The leave-one-out cross validation593

The Leave-one-out cross validation (LOOCV) was used to test the predictive power of RACER on its594

ability to identify strong binders. Specifically, one of the 44 strong binders of TCR 2B4 was removed595

from the training set, and its predicted binding energy Epred was compared with the experimentally596

determined weak binders. If the median of the weak binders’ binding energies is larger than Epred597

(a larger binding energy is associated with smaller affinity), the testing strong binder is successfully598

identified. Similar tests were performed for TCR 5cc7 and TCR 226. The performance of RACER is599

compared with that from the clustering of peptide sequences using the algorithm from CD-Hit [68]600

(See Supplementary note 1 for details).601

4.6 Comparing the correlation of binding energies with the Kd from SPR602

experiments603

Surface plasmon resonance (SPR) was performed to assess the binding affinities of the three TCRs604

towards 9 selected peptides [27]. The correlation between the predicted binding energies from605
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RACER and the dissociation constant Kd evaluated from the SPR experiments thus constitutes a606

separate set of tests for the accuracy of RACER. We first built a relaxed structure with Modeller [67]607

for each of those TCR-peptide pairs, using the corresponding TCR structure as the template. We608

then used the optimized energy model of the corresponding TCR to evaluate the binding energy of609

each of those TCR-peptide pairs. The Kd values were obtained from fitting the SPR titration curves610

(Fig. S4F of [27]) using equation Req = C·Rmax

C+Kd
with C, Kd and Rmax as free parameters. The Pear-611

son correlation coefficient and the Spearman’s rank correlation coefficient between kBT log(Kd) and612

predicted binding energies were used to quantify this correlation.613

4.7 Evaluation of contact residues of MHC-restricted TCR-peptide pairs614

The contact map of a given TCR-peptide structure was constructed by measuring the proximity Wi,j615

between each residue of peptide (residue i) and CDR loops (residue j) based on their mutual distance,616

using a smoothed step function:617

Wij =
1− tanh (d− dmax)

2
, with dmax = 6.5Å. (6)

Only Cβ atoms were included in our calculation (except for glycine, where the Cα atom was618

used). The CDR3 loops were utilized as defined in the IEDB database [69]. The constructed contact619

map represents those residues that are spatially close to each other in the given crystal structure.620

4.8 Evaluation of different TCR-p-MHC interactions used for statistical study621

In order to assess the statistical behavior of the inferential model, we calculated the pairwise binding622

interactions between a simulated T-cell population of size Nt and collection of Nn = 104 thymic623

self-peptides. For this proof-of-principle study, we used TCR 2B4 as an example, uniformly varying624

the 104 amino acids of the peptides, as well as those residues from the TCR that are in spatial625

contact with the peptide. TCR-peptide pairwise energies were calculated for Nt = 105 randomized626

TCR sequences using the RACER energy matrix optimized for TCR 2B4, and Nt = 2000 for each627

of the TCR-p-IEk systems given in Fig. 4 using energies weighted according to their contact maps,628

along with a model using a contact map with diagonal interactions (Fig. 6A). Substitution of TCR-629

peptide sequences with the newly generated ensemble yielded a total ofNt∗Nn (109 in the 2B4 case;630

2∗107 for each of the cases involving the TCR-p-IEk and diagonal contact maps) TCR-peptide pairs631

representing interactions occurring during thymic selection. Given our previous results (Fig. S12),632

we avoid the computationally expensive task of structural relaxation, and instead calculate pairwise633

interactions with the original structure, requiring 5,000 CPU hours on an Intel(R) Xeon(R) CPU634

E5-2650 v2 for the large-scale 2B4-optimized simulation.635
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4.8.1 Thymic selection636

Each T-cell survives if the maximal interaction over all self-peptides does not exceed some up-637

per threshold. Selection thresholds were chosen to achieve 50% [11]. In all cases, the RACER-638

optimized energy matrix was used for energy assignment. Thymic selection was performed for each639

of the TCR-p-IEk examples and their corresponding contact maps given in Fig. 4 (Fig. 6A). For640

each TCR-p-IEk example, Nt = 2000 pre-selection TCRs were created by varying uniformly the641

original TCR CDR3 α and β sequences over amino acid space, keeping the sequence lengths un-642

changed. A similar randomization yielded Nn = 104 randomized peptide sequences representing643

self-peptides. For each of the 2000 randomized TCRs, binding energies were calculated against644

the 104 self-peptides by selecting the corresponding entries in the RACER-optimized energy matrix645

weighted by the original TCR-p-IEk contact maps, and the maximum energy was recorded. The646

fraction of TCRs whose maximal binding energy exceeded the selection threshold En traces the647

survival curves. This procedure, utilizing the RACER-optimized energy matrix, was repeated for a648

simplified model that utilizes only adjacent contacts (i.e. a strictly diagonal contact map with each649

entry having weight one) in the TCR-peptide interaction. The number of diagonal elements in the650

diagonal contact model was taken to be 20 (10 for each of the CDR3α-peptide and CDR3β-peptide651

pairs).652

4.8.2 Self-peptide potency653

Most self-peptides present in thymic selection are expected to participate in the deletion of self-654

reactive T-cells. Thus, a reasonable model of thymic selection would feature a majority of self-655

peptides contributing to the selection of immature T-cells. A rank order of these self-peptides based656

on their ability to recognize unique T-cells, or potency, characterizes the extent to which each self-657

peptide is utilized in thymic selection. The rank order of potency was created for the RACER model658

utilizing the crystal structure of the 2B4 TCR (PDB ID: 3QIB) and its corresponding energy matrix659

derived from the set of experimentally determined good-binders. The thymic selection process using660

104 self-peptides and 105 TCRs for the 2B4-optimized RACER model described above generates a661

total of 109 pairwise binding energies. The negative selection thresholdEn was selected to yield 50%662

selection, resulting in ∼ 5 · 104 deleted TCRs. The number of TCRs deleted by each self-peptide663

was recorded. The peptide deleting the most TCRs defines the most potent self-peptide. TCRs664

recognized by this peptide are removed from the list of total TCRs, and this peptide is similarly665

removed from the list of self-peptides. This process is repeated on the smaller TCR and self-peptide666

list to determine the second most potent peptide. Additional iteration until no TCRs remain provides667

the rank order of self-peptides in decreasing order of potency. The cumulative fraction of deleted668

relative to total TCRs is plotted in decreasing order of peptide potency.669
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4.8.3 Antigen recognition probabilities for individual T-cells and T-cell repertoires670

Utilizing the same post-selection T-cell repertoire from the previous section, post-selection T-cells671

were quantified for their ability to recognize random non-self-antigens and tumor neoantigens that672

differ from one of the Nn thymic self peptides by one residue. 50% selection of TCRs result in673

approximately 5 · 104 surviving, for which pairwise interactions are generated against 103 random674

and 103 point-mutated self-peptides, representing foreign and tumor-associated neoantigens, respec-675

tively (randomly generated peptides were checked to ensure non-membership in the set of thymic676

self-peptides). Estimates of individual TCR recognition probability were calculated by averaging677

the 5 · 104-by-103 indicator matrix, having values of 1 (resp. 0) corresponding to recognition (resp.678

no recognition). The previous quantity estimates an individual TCR’s antigen recognition ability.679

Estimates of the corresponding recognition probability for the entire post-selection MHC-restricted680

T-cell repertoire was calculated by assessing the 1-by-103 vector indicating the presence or absence681

of at least 1 recognizing TCR. The post-selection individual and repertoire T-cell recognition prob-682

abilities of random and point-mutant antigens were then compared with previously derived analytic683

results for two random energy models [20].684
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6 Data Availability690

The data comprised of the peptides recognized by the three TCRs, used for RACER training and691

testing, are available from [27]. An extended data set of these three TCRs were uploaded at Github:692

https://github.com/XingchengLin/RACER.git. The additional data used for training and testing on693

different MHC-II TCRs can be found in [56]. All other output from this study are available from the694

corresponding author upon reasonable request.695

7 Code Availability696

The full code, along with a demo for predicting TCR-peptide interaction, as well as being applied to a697

collection of randomly-generated TCRs and peptides, can be found at https://github.com/XingchengLin/RACER.git.698
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Figure 1: Summary of the modeling approach employed in this study. A. The optimization of RACER starts
from a series of TCR binders obtained from the deep-sequencing experiments [27], as well as the correspond-
ing TCR-p-MHC crystal structures deposited in the database [53]. The sequences of the strong binders, as
well as the generated decoy binders from randomizing the non-anchoring sequences of the strong binders, are
collected for parameterizing a pairwise energy model which maximizes the energetic gap between the strong
binders and a randomized set of decoys. The resulting energy model can be used to quickly evaluate the
binding affinities of an ensemble of TCR-peptide interactions at the population level. The calculated binding
affinities can be used for simulating the negative selection process in the thymus, as well as measuring the
recognition probability of the post-selection TCRs. Finally, this kind of ensemble study can be used for im-
munogenic applications that require input from an entire T-cell repertoire. B. Three tests were conducted to
evaluate the performance of RACER. Case I: the training set includes one TCR-p-MHC structure and multiple
peptide sequences. The test set includes the same TCR structure and a separate set of peptide sequences. Case
II: the training set includes one TCR-p-MHC structure and multiple peptide sequences. The test set includes
two different TCR structures (restricted on the same MHC allele) and two separate sets of peptide sequences.
Structures for the two additional test TCRs are included in predictions. Case III: The training set includes
one TCR-p-MHC structure and multiple peptide sequences. The test set includes only the sequences of two
different TCRs (restricted on the same MHC allele) and two separate sets of peptides. Only the structure from
the original training TCR was used in prediction (The interactions of interest are indicated by double-sided
arrows between TCR and p-MHC). 31
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Figure 2: RACER can fully separate the strong binders of a specific TCR from its weak binders. A. For three
TCRs (2B4, 5CC7 and 226) whose strong and weak binders have been experimentally determined [27], the
RACER-derived calculated binding energies can well separate strong binders from weak ones of each indi-
vidual TCR. B. In the leave-one-out-cross-validation exemplified using TCR 2B4, RACER can successfully
recognize the withheld strong binders in 43 out of 44 tests, where the predicted binding energies of the with-
held test binder (green) is lower than the median (red bar) of the experimentally determined weak binders.
The only exception is marked as a black square. The whiskers are placed at the first and last datum points that
fall within (m, M), where m = Q1 - 1.5IQR and M = Q3 + 1.5IQR, IQR = Q3 - Q1 represents the interquartile
range. C. In a completely independent testing data measured by surface plasmon resonance (SPR) [27], the
calculated binding energies of testing peptides correlate well with their experimentally determined dissocia-
tion constant Kd. Best-fit linear regression is depicted for each case. Corr: Pearson correlation coefficient.
S-Corr: Spearman’s rank correlation coefficient. The p-value of each correlation coefficient is reported in the
parenthesis.
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Figure 3: The specific contact pattern from the TCR-peptide structures dictates a optimized energy model
different from those of a typical protein-folding force field. A. The 3D crystal structure of the 2B4 TCR
bound to a specific peptide (PDBID: 3QIB). The parts of the structure that are in contact between the TCR
and peptide are color-highlighted as green (TCR) and orange (peptide). Also shown are residues alanine
(blue), threonine (magenta) and asparagine (tan) which are prevalent in this structure (CPK representation
[60]). B. The probability of contact formation between each two of the 20 amino acids in the set of strong
binders (left) and the set of randomized decoy binders (right) of TCR 2B4. C. The residue-based interaction
strength determined by RACER for TCR 2B4. A more negative value indicates a stronger attractive interaction
between the corresponding two residues.
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Figure 4: The contact maps of TCR-peptide pairs within the same MHCII allele share structural similarity.
Contact maps are calculated using distances from each pairwise TCR-peptide amino acid combination us-
ing Eq. 6 for the following MHC-II IEk-restricted TCR-peptide pairs: 3QIB - peptide ADLIAYLKQATK
with TCR 2B4 A. CDR3α (AALRATGGNNKLT) and B. CDR3β (ASSLNWSQDTQY) chains; 3QIU - pep-
tide ADLIAYLKQATK with TCR 226 C. CDR3α (AAEPSSGQKLV) and D. CDR3β (ASSLNNANSDYT)
chains; 4P2R - peptide ADGVAFFLTPFKA with TCR 5cc7 E. CDR3α (AAEASNTNKVV) and F. CDR3β
(ASSLNNANSDYT) chains. Similarity in interaction topology across TCR-peptide pairs is observed by com-
paring the contact silhouette of interacting coordinates for the α (top row) and β (bottom row) TCR sequences.
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Figure 5: RACER shows transferability in terms of predicting TCR-p-MHC interactions across different
TCRs. A. The energy model trained based on one TCR (e.g. 2B4) is capable of resolving the experimen-
tally determined strong binders from weak binders of the other two TCRs (e.g., 5CC7 and 226). B. By adding
strong binders from crystal structures of the other two TCRs into training sets, RACER can be further im-
proved for identifying the experimentally determined strong binders. The title of each figures follows the
format of “target training TCRs”, e.g., “2B4 5CC7” means using the energy model trained from TCR 5CC7
for predicting the peptide binding affinities of TCR 2B4. “Xtals” means the strong binders from the crystal
structures of the other two TCRs were added into the training set. C. Upper panel: The energy model trained
on TCR 2B4 is used to predict the binding energies of sequences from other TCRs associated with the IEk-
associated TCRs [56]. Z-scores of known strong binders (grey) and weak binders (orange) provided by [56]
were calculated referenced to a set of 1000 decoy peptides with randomized sequences (blue violin plot), with
lower Z-scores indicating better predictive performance. Lower panel: The calculated Z-scores of each TCR
were used to depict Corresponding ROC curve and AU-ROC (0.89, lower panel).
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Figure 6: T-cell repertoire simulations of thymic selection and antigen recognition in the RACER model.
RACER-derived simulations of TCR recognition exhibit sensible thymic selection and similarity in the recog-
nition rates of foreign and point-mutated self antigens. A. Simulated thymic selection curves (T-cell recog-
nition probability as a function of negative selection binding energy cutoff) incorporating the effects of non-
adjacent contacts (given in Fig. 4) using Nn = 104 uniformly randomized self-peptides and Nt = 2000
randomized IEk-restricted TCRs. 4P2Q and 4P2R (purple) use T-cells generated by randomizing the CDR3
region of TCR 5cc7, while 3QIB (blue) randomizes the CDR3 of TCR 2B4, and 3QIU (yellow) randomizes
the CDR3 of TCR 226 (in all cases, randomized CDR3 lengths were unchanged from the original TCR) (red
curve uses RACER energy using a diagonal contact map model whose study here is motivated by previous
work [20]). B. Utilizing RACER-derived energy assessments from the 2B4 crystal structure, the probability
of recognizing foreign and point-mutant antigens for individual post-selection T-cells is plotted as a function
of the percentage of TCRs surviving negative selection (ordinate of the graph in panel a, simulations averaged
over all post-selection TCRs with pairwise interactions amongst 103 random peptides and 103 point-mutant
peptides). C. The recognition probability of foreign (black) and mutant (red) peptides by the entirety of
the TCR repertoire is plotted as a function of pre-selection TCR repertoire diversity, with negative selection
thresholds giving 50% survival. D. RACER-derived immunogenicity of foreign, mutant, and self antigen. The
maximum binding affinity over all post-selection T-cells for immunogenic random (gray) and point-mutated
self-peptides (red) is compared to that of thymic self-peptides (green) (There were 28 point-mutated pep-
tides that had at least one T-cell recognition event. To keep an equal number of peptides in each distribution,
we compared these with the top 28 similarly ordered foreign peptides and 28 randomly chosen self-peptide
groups).
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