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SUMMARY

Perceptual history can exert pronounced effects on the contents of conscious
experience: when confronted with completely ambiguous stimuli, perception
does not waver at random between diverging stimulus interpretations but sticks
with recent percepts for prolonged intervals. Here, we investigated the rele-
vance of perceptual history in situations more similar to everyday experience,
where sensory stimuli are usually not completely ambiguous. Using partially
ambiguous visual stimuli, we found that the balance between past and present
is not stable over time but slowly fluctuates between two opposing modes. For
time periods of up to several minutes, perception was either largely determined
by perceptual history or driven predominantly by disambiguating sensory evi-
dence. Computational modeling suggested that the construction of unambiguous
conscious experiences is modulated by slow fluctuations between internally and
externally oriented modes of sensory processing.

INTRODUCTION

Imagine walking down a dark and unfamiliar street. As you struggle to identify potential obstacles, you are

confronted with an ongoing stream of sensory signals, each compatible with multiple interpretations. In

such situations, your previous perceptual experiences may provide valuable clues about how to interpret

the ambiguous sensory data. Yet, relying too heavily on the past is risky, as you may end up overlooking

unexpected changes in the environment.

Experimentally, the influence of preceding experiences on perception is usually investigated in tasks that

require participants to perform perceptual decisions in a sequence of consecutive trials (Bergen and Jehee,

2019; Fründ et al., 2014). Such experiments reveal that, even in the absence of any correlation between the

stimuli that are presented on successive trials, perception is significantly biased toward preceding choices

(Abrahamyan et al., 2016; Fischer andWhitney, 2014; Fritsche et al., 2017; Hsu andWu, 2020; Liberman et al.,

2014; Urai et al., 2017, Urai et al., 2019). Importantly, perceptual history effects increase when sensory infor-

mation becomes unreliable (Bergen and Jehee, 2019; Fründ et al., 2014). This reflects the idea that, when

making perceptual decisions in situations of uncertainty, the brain may rely more strongly on internal pre-

dictions (Friston, 2005, 2010) that reflect the continuity of the sensory environment.

Integrating the internal information provided by perceptual history with the available external stimulus in-

formation may thus benefit perception by preventing erratic responses to unreliable sensory signals (Fris-

ton, 2005, 2010). However, the effects of perceptual history may also become mal-adaptive: when relying

too strongly on preceding experiences, observers may become prone to ignore conflicting stimuli, which

may lead to hallucinatory perceptual states that diverge from the true cause of the sensory data (Horga and

Abi-Dargham, 2019; Powers et al., 2017).

In this work, we studied how visual perception balances external with internal sources of information

in situations where perceptual history has a particularly strong effect. To this end, we investigated how pre-

ceding experiences impact the perception of ambiguous stimuli, i.e., stimuli that are compatible with two

mutually exclusive perceptual states and typically give rise to bistable perception (Leopold et al., 2002).

During bistable perception, observers experience spontaneous transitions between the two perceptual

states, whereas the sensory data remain constant (Logothetis et al., 1996). Importantly, when the ambig-

uous stimuli are presented in successive trials separated by blank intervals, perception tends to stabilize
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Figure 1. Psychophysical staircase

(A)Graded ambiguity. Participants viewed partially ambiguous structure-from-motion stimuli and indicated whether they

perceived 3D rotation to the left or to the right. In runs R1-4, we dynamically adjusted the signal-to-ambiguity ratio (SAR)

according to a staircase procedure that was based on the number of stimulus-congruent trials computed within blocks of

10 successive trials. During the final runs R5 and R6, we fixed the SAR to the average SAR obtained during runs R1-4.

(B) Stimulus-congruent percepts across runs. In runs R1-4 (depicted in red), the staircase procedure introduced dynamic

adjustments in the SAR, reducing the frequency of stimulus-congruent percepts to approximately 75% (R1: 94.88G 1.1%;

R2: 84.92 G 1.55%; R3: 80 G 1.33%; R4: 77.25 G 1.09%). In runs R5-6 (depicted in blue), the SAR was fixed to the average

SAR from the preceding runs R1-4 (60.25 G 2.36%). Stimulus-congruent percepts amounted to 87.21 G 3.23% in R5 and

82.5 G 4.41% in R6.

(C) Stimulus-congruent percepts across levels of SAR. Stimulus-congruent percepts were more frequent at higher levels

of disambiguating sensory information, ceiling at 100%. Pooled data are represented as mean G SEM.
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in one of the two interpretations (Maloney et al., 2005), indicating a pronounced effect of perceptual history

(Pearson and Brascamp, 2008).

Here, we estimated the strength of perceptual history during bistable perception using a staircase proced-

ure that dynamically adjusted the degree of perceptual ambiguity of structure-from-motion stimuli. By

quantifying the effect of perceptual history relative to graded levels of sensory ambiguity, we investigated

the computationalmechanisms of integrating internal with external information during bistable perception.

RESULTS

Tostudyhowperceptual history isbalancedagainst external sensory informationduringbistableperception,we

asked 20 participants to indicate whether they perceived partially ambiguous random-dot-kinematograms as

rotating to the left or the right (Figure 1A and Video S1). At each trial, we attached a 3D signal to a subset of

the stimulus dots. This enabled us to parametrically manipulate the stimulus’ signal-to-ambiguity ratio (Weiln-

hammer et al., 2020) (SAR). Ranging between 0% and 100%, these varying levels of disambiguating sensory in-

formation enforced one of the two stimulus interpretations (i.e., the direction of disambiguation). Within each

experimental run, both directions of disambiguation occurred in equal number and in random sequence.

Perception integrates perceptual history with disambiguating sensory information

In the first four runs (R1-4, Figure 1B), we estimated individual threshold SARs necessary to induce balanced fre-

quencies of stimulus-congruent and stimulus-incongruent percepts (i.e., trials perceived as congruent or incon-

gruent with the disambiguating sensory information, respectively; Figure 2A). To this end, we dynamically

adjusted the SAR based on the proportion of stimulus-congruent responses in consecutive 10-trial blocks.

This psychophysical staircase decreased the SAR if less than 80%of trialswere perceived as stimulus-congruent.
2 iScience 24, 102234, March 19, 2021
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Figure 2. External and internal modes

(A) Stimulus- and history-congruent perceptual states. To visualize the influence of disambiguating sensory information

and perceptual history, the upper panel depicts the time course of presented stimuli (L/R: disambiguating stimulus

information for leftward/rightward rotation; dashed line) and the associated time course of perception (solid line).

Perception is stimulus-congruent when the presented stimulus matches the associated perceptual state (i.e., overlap

between the dashed and the solid line). History-congruent perception occurs when the perceptual state at a given trial

matches the perceptual state at the preceding trial. The lower panel depicts the dynamic probabilities of stimulus-

congruent percepts (green) and history-congruent percepts (orange) computed in sliding windows of G5 trials for a

representative participant. Perceptual processing switched between prolonged intervals of internal mode (green line

below orange line), external mode (green line above orange line), and intermediate mode (overlap between green an

orange line).

(B) Average autocorrelation coefficients of stimulus- and history-congruence. Despite constant SAR at threshold, both

stimulus and history congruent were highly autocorrelated. If the index trial was perceived as congruent with visual

stimulation (left panel) or perceptual history (right panel), the observer was more likely to experience stimulus- or history-

congruent perceptual states, respectively, for approximately 25 trials. After that, the observer was more likely to

experience incongruent states. The opposite relation holds for incongruent perceptual states at the index trial. Group-

level averages were fitted using local polynomial regression fitting. Purple dots indicate trials at which the autocorrelation

coefficients differed significantly from chance level (p < 0.05, two-sided one-sample t tests).

(C) Stimulus-congruent percepts during internal and external mode for SAR at threshold. During external mode,

stimulus-congruent percepts made up for almost 100% of trials (95.49 G 1.28%) but, interestingly, did not differ

significantly from chance level during internal mode (54.71 G 3.39%).

(D) Stimulus-congruent percepts during internal and external mode across the full range of SAR. Linear mixed effects

modeling indicated that the frequency of stimulus-congruent percepts increased with levels of SAR. Internal mode was

associated with a strong reduction of stimulus-congruent percepts (main effect ofmode), which was more pronounced at

low levels of SAR (mode3 SAR interaction). Please note that anymain effect ofmodewas expected, because external and

internal mode were defined based on the dynamic probability of stimulus congruence. Pooled data are represented as

mean G SEM.
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Conversely, we increased the SAR if the proportion of stimulus-congruent trials fell below 80%. As expected,

stimulus-congruent percepts were less frequent at lower SARs (F(1, 265.07) = 181.5, p = 7:253 10�32, BF10 =

5:223 1028, main effect of SAR, Figure 1C). In runs R5-6, stimuli were presented at the individual threshold

SAR (i.e., the average SAR from runs R1-4), which yielded stimulus-congruent percepts in 84.85G 3.12%of trials

(Figure 1B).

Conversely, higher SARs reduced the impact of perceptual history (Figure S1). This resulted in a strong inverse

relationship between stimulus- and history-congruent percepts (i.e., trials perceived in congruence with the

immediately preceding percept), which were anti-correlated both within (average Pearson correlation coeffi-

cient r = �0.9 G 0.02, T(19) = �49.25, p = 1:663 10�21, BF10 = 1:343 1018, one-sample t test; Figure S2A)

and across participants (r = �0.77, p = 7:23 10�5, BF10 = 203:27, Pearson correlation; Figure S2B).
iScience 24, 102234, March 19, 2021 3
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We did not find any systematic bias toward one of the two perceptual interpretations (average probability

of rightward rotation: 51.86G 3.04%; T(19) = 0.61, p = 0.55, BF10 = 0:27, one-sample t test). Absolute biases

were small, amounting to 13.99G 1.57% across participants. Error responses were negligible, occurring in

only 1.6 G 1.57% of trials. Unclear percepts were not reported by the participants.

In logistic regression applied to each individual participant’s behavioral data, trial-wise perceptual re-

sponses were best predicted based on both the current sensory information and the previous percept,

as compared with reduced logistic regression models (Figure S2C) that used only stimulus information

(T(19) = �9.39, p = 1:453 10�8, BF10 = 8:893 105, paired t test) or only perceptual history (T(19) =

�16.46, p = 1:063 10�12, BF10 = 6:543 109) for prediction.

Two additional control analyses confirmed that both disambiguating sensory information and perceptual

history significantly modulated the perception of partially disambiguated stimuli. Firstly, general linear

mixed effects modeling with a binomial link function indicated a highly significant effect of both disambig-

uating sensory evidence (z = 45.55; p = 0) and perceptual history (z = 28.51; p = 8:623 10�179), while con-

trolling for the within-participant correlations using random intercepts.

A second possibility for this group-level inference is provided by general estimating equations (Hanley,

2003), which offer a non-parametric way of accounting for within-participant correlation by estimating pop-

ulation average effects. Likewise, this approach revealed a highly significant effect of disambiguating sen-

sory evidence (Wald = 38.6; p = 5:23 10�10) and perceptual history (Wald = 74.33; p = 0, correlation struc-

ture = ‘‘independence’’).

These results indicate that the effect of perceptual history is not limited to fully ambiguous stimuli (Pearson

and Brascamp, 2008) but modulates perception through a weighted integration with varying levels of

disambiguating sensory information (Bergen and Jehee, 2019). This finding aligns with the well-known

observation that perception is co-determined by both sensory data and past experiences (Chopin andMa-

massian, 2012; Fischer and Whitney, 2014; Fritsche et al., 2017; Hsu and Wu, 2020; Liberman et al., 2014).

Perceptual history may benefit perception as an internal representation (Friston, 2005, 2010; Körding and

Wolpert, 2004; Teufel and Fletcher, 2020) that stabilizes conscious experience when external sensory infor-

mation is incomplete or unreliable. On your night-time walks, previous experiences may thus help you to

avoid responding to irrelevant fluctuations in the ongoing stream of ambiguous sensory signals.
Perception fluctuates between temporally extended modes that are biased toward either

external or internal information

In a next step, we examined how the probabilities of stimulus- and history-congruent percepts evolved

within individual runs of the experiment (Figure 2A). Intriguingly, we found that both stimulus- and his-

tory-congruence were significantly autocorrelated (Figure 2B), indicating that the integration of perceptual

history with sensory information was highly variable over time. For partially ambiguous stimuli presented at

constant SARs (R5-6), we observed marked switches between intervals in which perception was either

strongly driven by disambiguating sensory information (external mode, 73.25 G 6.17% of trials) or deter-

mined by perceptual history (internal mode; 23.94 G 5.84%), in addition to shorter intermediate intervals

(2.81 G 0.77%; Figure 2A, lower panel). Switches between these modes occurred on average every 39.9 G

7.31 trials (179.53 G 32.91 s).

Our analyses therefore revealed prolonged intervals of alternating biases toward either internal or external in-

formation. This finding is incompatible with the view that perception is best explained by integrating uncertain

sensory data with only the immediately preceding perceptual state. As indicated by simulation analyses (Fig-

ure S3), such aMarkovian assumptiondid not reproduce theautocorrelation of stimulus andhistory congruence

(FigureS3B) andpredicted longerexternal (T(19)=2.75,p=0.01,BF10 = 4:17,paired t test; FigureS3C)aswell as

shorter internal modes (T(19) = �3.49, p = 2:443 10�3, BF10 = 16:92).

In sum, these results imply that a stable moment-by-moment integration of current sensory information

with the immediately preceding percept is not sufficient to explain the perceptual dynamics during graded

ambiguity. Rather, our findings suggest that participants transition between temporally extended percep-

tualmodes (Honey et al., 2017) that are biased toward either external information (i.e., disambiguating sen-

sory information) or internal information (i.e., perceptual history).
4 iScience 24, 102234, March 19, 2021
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Importantly, switches between internal and external modes could not be attributed to small fluctuations in

the participants’ sensitivity to disambiguating sensory information. At threshold (R5-6), stimulus-congruent

percepts were close to 100% during external mode but ranged at chance level during internal mode

(T(12) = 1.39, p = 0.19, BF10 = 0:61, one-sample t test, Figure 2C). Please note that the overall difference

in stimulus-congruency between modes is expected, because external and internal mode were defined

based on the dynamic probability of stimulus-congruent perceptual states.

Moreover, internal mode suppressed the sensitivity to disambiguating sensory information not only at the

threshold but across the full range of SAR (F(2, 484.41) = 35.26, p = 5:043 10�15, BF10 = 4:783 1066; main

effect ofmode; Figure 2D). During runs in which the SAR was adjusted dynamically (R1-R4), transitions from

internal to mode were more likely to occur when the available sensory information was reduced (F(2,

472.71) = 5.25, p = 5:583 10�3, BF10 = 3:57,mode3 SAR interaction). In sum, these control analyses argue

against the view that between-mode transition may result exclusively from a threshold phenomenon.

As a second caveat, we asked whether the observed transitions between internal and external mode constitute a

perceptual phenomenon or, alternatively, occur only due to cognitive processes that are situated downstream of

perception (Brascamp et al., 2018). In this context, it may be argued that the participants’ attention to the experi-

mental taskmay have fluctuated over time (Rosenberg et al., 2013; Zalta et al., 2020), leading to intervals of stereo-

typic reporting behavior. We addressed this potential confound by analyzing response times (RTs, see Figure S4),

which have been shown to link closely with on-task attention (Prado et al., 2011; Rosenberg et al., 2013).

In contrast to stimulus and history congruence, response times remained stable across the experimental runs

(Figure S4A) and did not vary across levels of SAR (R1-R4; F(1, 261.5) = 0.05, p = 0.82, BF10 = 0:15; Figure S4B).

At threshold, RTs did not differ between external and internalmode (T(12) = 0.74, p = 0.48,BF10 = 0:35, paired t

test; Figure S4C). Moreover, when analyzing RTs according to the factors mode and SAR in runs R1-R4 (Fig-

ure S4D), we found that, during internal mode, RTs increased for escalating levels of SAR. Speculatively, this

mode3 SAR interaction (F(2, 476.5) = 10.73, p= 2:773 10�5,BF10 = 538:42) could reflect the increase in conflict

between the history-congruent state and the available sensory information (Weilnhammer et al., 2020).

At the same time, both the absence of any mode effect on RTs at threshold as well as the sensitivity of in-

ternal-mode RTs to levels of SAR argue against the notion that internal mode is caused by the participants

paying less attention to the experimental task. In line with this observation, we found no changes in the dis-

tribution of normalized RTs, as participants transitioned between internal and external mode (see Figure 4E

for group RTs collapsed across participants and Figure 4F for individual distributions).

As a final control analysis, we checked whether internal mode was associated with an enhanced impact of

the perceptual state experienced at the preceding trial (i.e., perceptual history), as opposed to the disam-

biguating sensory information presented at the preceding trial (i.e., stimulus history). As expected, history-

congruent perceptual states dominated periods of internal mode processing (94.15 G 1.03%), whereas

stimulus history had no detectable influence on perception in these intervals (49.79 G 1.03%; T(19) =

�0.2, p = 0.84, BF10 = 0:24, one-sample t test).

During internal mode, perceptual history thus strongly determines conscious experience, overriding other-

wise effective sensory information. As you interpret ambiguous sensory information on your walk through

the dark, relying on an internal representation of your surroundings may dramatically increase the energy

efficiency of perception. However, this is only adaptive in stable environments, i.e., when sensory events are

highly auto-correlated. In volatile environments, internally biased sensory processing may cause percep-

tion to get stuck in the past, resulting in hallucinatory experiences that ignore relevant conflicts (Weilnham-

mer et al., 2020) with sensory information (Horga and Abi-Dargham, 2019).
Computational modeling indicates that between-mode transitions are best explained by a

fluctuating impact of accumulating perceptual history

How can perception achieve an adaptive balance between external and internal mode? To address this

question, we investigated the potential computational mechanisms that could lead to the observed oscil-

lations between internally and externally biased modes of perceptual processing. To this end, we con-

structed a set of four generative behavioral models (Wilson and Collins, 2019) (Figure 3) that differed across

two dimensions.
iScience 24, 102234, March 19, 2021 5
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Figure 3. Computational modeling: Modelspace

To investigate the computational mechanisms of between-mode transitions, we constructed a space of four behavioral

models that differed along two dimensions. Each model’s quantities are shown in three separate panels. Along a first

dimension (horizontal arrow), we manipulated whether perceptual history effects were represented exclusively by the

perceptual state at the preceding trial (left side) or, alternatively, dynamically accumulated according to a learning rate u

(right). Perceptual history and its updating are displayed in the upper panel of each model. The blue line represents m2,

i.e., the tendency to expect rightward (above zero) or leftward (below zero) rotation at the upcoming trial. The red line

depicts dynamic precision-weighted prediction errors ε2 that update m2 in response to the sequence of perceptual

experiences. Along a second dimension (vertical arrow), we contrasted models that assumed a stable influence of

perceptual history on perception (top) against models that assumed a systematic fluctuation in the impact of perceptual

history. k (green line; middle panel) represents the weight at which perceptual history impacts on perception. The lower

panel shows the perceptual prediction cm2 (blue line, provided by a sigmoid transform of m � k), the disambiguating

sensory information u (red) and the participants’ response y (black).
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On the first dimension, we asked whether biases toward internal mode arise from the sequence of pre-

vious experiences. We reasoned that, if perceptual history effects dynamically accumulate over time

(Brascamp et al., 2008; Pearson and Brascamp, 2008), perception would be more strongly biased toward

a perceptual state if the current trial was preceded by a long sequence of history-congruent trials. Accu-

mulating perceptual history effects could eventually become strong enough to override otherwise effec-

tive sensory information, thereby creating intervals during which perception is strongly determined by

internal information.

To this end, we adopted a Bayesian modeling approach that frames perception as an inferential process in

which perceptual decisions are determined by posterior distributions (Friston, 2010). Following Bayes’ rule,

such posterior distributions are computed by integrating a likelihood distribution representing the sensory

evidence (i.e., disambiguating sensory information for left- or rightward rotation at a given SAR) with the

prior probability of perceptual states (i.e., perceptual history).

The null model MLearning�=Oscillation� (see transparent method section and Figure 3 for details) assumes that

the effect of perceptual history (i.e., the estimated prior probability of perceptual states) depends only on
6 iScience 24, 102234, March 19, 2021
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the perceptual state at the immediately preceding trial. Its weight on perception is determined by the

parameter k. The impact of sensory information, in turn, depends on the sensitivity parameter a.

By contrast, in the alternative model MLearning+ =Oscillation�, the estimated prior probability of perceptual

states depends not only on the response at the preceding trial but dynamically accumulates over time ac-

cording to a two-level Hierarchical Gaussian Filter (Mathys et al., 2014). Thus, the implicit belief in the prob-

ability of perceiving leftward rotation increases as a function of the number of preceding trials that have

been experienced as rotating toward the left (and vice versa). The second-level accumulation of perceptual

history is governed by the learning-rate parameter u.

In this model, switches between modes can only be driven by experience. Once perceptual history effects

have accumulated and caused the estimated probability of leftward rotation to increase significantly above

chance level, switches to external mode are enabled by prediction errors that are caused by the experience

of rightward rotation (and vice versa).

As an alternative explanation, we reasoned that switches between modes could additionally be facilitated

by systematic fluctuations in k, the parameter governing the impact of perceptual history on perception.

When k is low, perceptual states are more likely to be history incongruent, increasing the likelihood of pre-

diction errors that enable the transition from internal to external mode. To test whether such fluctuations

provide a plausible explanation of our behavioral data, we introduced a second dimension to our model

space by constructing MLearning+ =Oscillation+ and MLearning�=Oscillation+ . Instead of estimating k as a stable

parameter, these models enable oscillations in k that are governed by parameters for amplitude amp, fre-

quency f (in nb trials�1), and phase p.

We inverted all models based the trial-wise perceptual responses given by our participants and used

random-effects Bayesian model family selection (Stephan et al., 2009) to determine whether the dynamic

accumulation of perceptual history (dimension 1) and systematic fluctuations in its impact (dimension 2)

were likely to represent a computational mechanism of mode switches.

On the first dimension, we found that models assuming a dynamic accumulation of perceptual history

(Learning+) outperformed Learning�models at a protected exceedance probability of 100%. On the sec-

ond dimension, Bayesian model selection indicated that our data were better explained by models that

assumed a fluctuating impact of perceptual history (Oscillation+) as compared with Oscillation� models

at a protected exceedance probability of 99.98%. MLearning+ =Oscillation+ was therefore identified as the clear

winning model (protected exceedance probability = 99.82%; see Figure 4A for model-level inference at the

participant level and Figure 4B for posterior parameter estimates).

With this, our computational approach suggests that switches between internal and external mode are

governed by two interlinked processes: In line with previous findings (Brascamp et al., 2008; Pearson and

Brascamp, 2008), we found that perceptual history accumulates over time. Eventually, accumulating

perceptual history may override disambiguating sensory information, causing a transition to from

external to internal mode. In isolation, however, such a process falls short of explaining transitions in

the opposite direction. Because perceptual history effects continue to accumulate during internal

mode, they should eventually become impossible to overcome (Wexler et al., 2015). Crucially, our

modeling results propose that fluctuations in the impact of perceptual history enable transition from in-

ternal to external mode by temporarily de-coupling the perceptual decision from implicit internal repre-

sentations of the environment.
DISCUSSION

In this work, we show that perceptual historymodulates perception through a weighted integration (Bergen and

Jehee, 2019) with varying levels of sensory information. Perceptual history therefore acts as an internal represen-

tation (Friston, 2005, 2010; Teufel and Fletcher, 2020) that stabilizes perception when sensory signals are ambig-

uous. Intriguingly, we found that the balance between perceptual history and disambiguating sensory informa-

tion slowly alternates between internally and externally oriented modes of sensory processing. Computational

modeling indicated that between-mode transitions were likely to be caused by fluctuations in how strongly

perception was driven by the accumulating effects of perceptual history.
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Figure 4. Computational modeling: Results

(A) Model-level inference. Random-effects Bayesian model selection identified MLearning+ =Oscillation+ as the clear winning

model (group-level protected exceedance probability = 99.82%).

(B) Parameter-level inference. This model assumes that the external sensory signals is detected with a sensitivity

parameter of a = 0.11 G 0.01. The internal representation derived from perceptual history is updated as a function of the

sequence of percepts according to learning rate u = 0.05 G 0.11. k, the impact of accumulating perceptual history on

perception, fluctuated according to a sine function with an amplitude of 1.27G 0.06, a frequency of 0.09G 3:413 10�3 (in

nb trials�1), and a phase of 2.37 G 0.2. Pooled data are represented as mean G SEM.
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It may be argued that temporally extended biases toward internal information are not generic but specific

to the class of structure-from-motion stimuli (Longuet-Higgins, 1986) investigated here. Indeed, structure-

from-motion induces relatively long perceptual dominance durations (Weilnhammer et al, 2014, 2016,

2020). In addition, individual observers have been shown to exhibit stable idiosyncratic biases toward

one of the two stimulus interpretations (Mamassian and Wallace, 2010; Weilnhammer et al., 2020), which

can become strong enough to override disambiguating 3D cues (Wexler et al., 2015).

In thiswork, however, two factors speakagainst the view that transitions to internalmodewere causedexclusively

by strong perceptual biases. Firstly, we found relatively weak imbalances between the two possible states

inducedby our partially ambiguous structure-from-motion stimulus (see Results section). Secondly, weobserved

frequent transitions from internal to external modewhile sensory informationwas held constant at threshold (see

Figure 2), arguing against stablebiases as theprimarydeterminantof internally biasedprocessingduringgraded

ambiguity. Yet, to empirically assess this caveat, future work should investigate whether between-mode transi-

tions occur also for ambiguous stimuli that induce shorter dominance durations, such as the Necker cube (Korn-

meier and Bach, 2005). This would help understand whether fluctuations between internal and external mode

depend on the type, strength, and temporal characteristics of bistable perception or, alternatively, occur inde-

pendently of these factors and thus constitute a more general feature of perceptual processing.

As a second alternative explanation of our results, itmay beproposed that fluctuating biases toward internal

or external mode do not represent a perceptual phenomenon but, conversely, occur only due to processes

that are situated downstream of perception, such as changes in reporting behavior (Brascamp et al., 2018)

that are caused by periodic changes in how well participants attended to the experimental task (Zalta et al.,

2020). Our analysis of response times (Figure S4), which are classically linked to fluctuating attention in par-

adigms such as the Continuous Performance Task (Rosenberg et al., 2013), did not yield any evidence for

systematic differences in response behavior between internal and external mode. Yet, future experiments

should apply no-report paradigms (Frässle et al., 2014), pupillometry (Lawson et al., 2020), or experimental

manipulations of on-task attention (Alais et al., 2010) to dissociate post-perceptual processes from the

perceptual phenomenon of mode-switching proposed in this work.
8 iScience 24, 102234, March 19, 2021
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In a similar vein, it may be argued that slow fluctuations between externally and internally biased perception

reflect epiphenomena that may arise from arbitrary constraints of neural processing (Honey et al., 2017). On

the other hand, there may also be a specific computational benefit to slow transitions between external and

internal model (Honey et al., 2017; Palva and Palva, 2011; VanRullen, 2016): In stable environments, internal

mode may come with the benefit of a dramatic reduction in the energy demands of perception (Friston,

2010). Periodic switches to external mode may ensure that internal representations are updated in response

to potential changes in the environment (Honey et al., 2017). In contrast to simultaneous processing, periodic

modeswitchesmayallow thebrain todifferentiatebetween internal andexternal sourcesof information (Honey

et al., 2017). Thismay helpperception to solve the credit-assignmentproblem, i.e., decidingwhether to update

internal representations of the environment or, alternatively, to modify beliefs about the reliability of sensory

information (Weilnhammer et al., 2018). Thus,mode switchingmay represent a process that helps constructing

stable representations of the environment despite ongoing sensory inputs (Bengio et al., 2015).

Indeed, fluctuations between externally and internally biased processing have been described in a variety

of cognitive domains, including perception (Monto et al., 2008), episodic memory (Duncan et al., 2012), and

waking state (McGinley et al., 2015). Switching between external and internal processing modes may thus

represent a general computational mechanism that helps to adaptively integrate prior predictions with new

information (Honey et al., 2017). Alterations in the temporal dynamics of mode switching may therefore

represent the neurocomputational basis of psychotic experiences that often co-occur across cognitive

domains, such as hallucinations, delusions, and altered sense of agency (Horga and Abi-Dargham, 2019;

Sterzer et al., 2018).

To test the hypothesis that mode switches represent an adaptive mechanism that occurs across cognitive do-

mains, future research should investigate whether transitions between external and internal mode can be

induced experimentally. Based on the results of our computational modeling analysis, it may be hypothesized

that participants shouldbemoreprone to transition from internal to externalmodewhen repeatedly confronted

with information that contradicts past experiences. Conversely, transitions from external to internal mode

should occur more swiftly when participants receive information that is in line with prior predictions. Further

down the line, itmay be speculated that the overall frequency ofmode switches could be alteredby experimen-

tally manipulating the volatility of the input data (Iglesias et al., 2013; Mathys et al., 2014).

Likewise, the existence of mode switches should be further substantiated by investigating whether external

and internal modes can be determined based onmarkers that are independent of the perceptual response

such as pupillary response or heart rate (Lawson et al., 2020). Together with an experimental manipulation

of between-mode transitions, such markers could help to understand whether transitions between internal

and external modes indeed represent an adaptive cognitive strategy that aids learning, or, alternatively,

result from independent phenomena such as adaption (Chopin and Mamassian, 2012), attention (Alais

et al., 2010), or response behavior (Frässle et al., 2014).

Limitations of the study

In this study, we have shown that bistable perception cycles through prolonged periods of enhanced and

reduced sensitivity to disambiguating stimulus information. This finding suggests that conscious experience

is characterized by slow fluctuations between internally and externally oriented modes of sensory processing.

As a first limitation, our work investigated between-mode transitions only for a specific class of bistable stimuli

(ambiguous structure-from-motion). Futurework should test whether alternations between internally and exter-

nally orientedmodes of processing also occur in other bistable stimuli, in particular in relation to paradigms that

induce shorter dominancedurations.Asa second limitation,ourworkdefines internal andexternalmodes solely

on thebasisofbehavior. Futurestudies should apply independentmarkers for internal andexternalmodes (such

as pupillometry) to probe between-mode transitions irrespective of behavioral reports. As a third limitation, our

study does not provide an experimental control of pre- and post-perceptual processes such as attention or

response behavior. Future experiments should use no-report paradigms or experimental manipulations of

on-task attention to confirm that mode-switching represents a perceptual phenomenon rather than a process

that occurs up- or downstream of perception.
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1 Transparent Methods1

1.1 Participants2

We recruited a total of 20 participants (9 female; age: 27.45 ± 1.01 years). All participants3

had (corrected-to-) normal vision, were naive to the purpose of the study and gave informed,4

written consent prior to the experiment authorized by the Charité ethics committee.5

1.2 Apparatus6

Stimuli were presented on a 98PDF-CRT-Monitor (60 Hz, 1040 x 1050 pixels, 60 cm viewing7

distance, 41.38 pixels per degree [°] visual angle) using Psychtoolbox 3 and Matlab R2007b8

(MathWorks). 3D stimulation was achieved using 3D red-blue filter glasses. The blue filter9

was placed over the right eye.10

1.3 Heterochromatic Flicker Photometry11

Subjective differences in luminance can induce 3D effects based on the Pulfrich effect. To12

preclude that this phenomenon induces biases with regard to direction of rotation in partially13

ambiguous structure-from-motion stimuli, we conducted a separate pre-test experiment. We14

used Heterochromatic Flicker Photometry to estimate subjective equiluminance between red15

and blue. We presented red and blue circles (diameter: 6.45° visual angle) alternating at a16

frequency of 15 Hz. In case of subjective differences in luminance, participants perceived a17

flicker, which they reduced by adjusting the luminance of the blue stimulus initially presented18

at a random luminance between 0 and 125% relative to the red stimulus presented at a19

fixed luminance of 100%. Average equiluminance estimated across 10 such trials determined20

the monitor- and participant-specific luminance of the red- and blue-channels (average blue21
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luminance: 110.85 ± 4.74%).22

1.4 Main experiment23

The main experiment assessed how perceptual history was integrated with varying levels of24

disambiguating sensory information. To induce bistable perception, we generated rotating25

discontinuous structure-from-motion stimuli by placing a total of 2000 dots (each subtending26

0.08° visual angle, overall stimulus size: 14.5° x 14.5°) on the surface of a Lissajous band (see27

Figure 1A and additional Supplementary Video V1). The Lissajous band was formed by the28

perpendicular intersection of two sinusoids (x(t) = sin(A ∗ t) and y(t) = cos(B ∗ t+ δ) with29

A = 3, B = 8). Within each trial, the stimulus was presented for 2 sec, while δ increased30

from 0 to 0.5π. The width of the Lissajous band was set to 0.04π ° rotational angle. Fixation31

intervals between trials were uniformly jittered around 2.5 ± 0.25 sec.32

To generate parametric 3D stimuli, we attached a stereo-disparity signal to a fraction of the33

dots on the Lissajous band. Dots that carried stereo-disparity information were represented34

on separate monocular channels. To this end, corresponding pairs of red (left eye) and blue35

(right eye) dots were shifted against each other by 0.01π rotational angle. Dots without stereo-36

disparity information were presented binocularly. The wavelength of binocular dots (purple)37

was defined by adding the individual wavelengths of red and blue (see Heterochromatic Flicker38

Photometry). Throughout the experiment, we varied the signal-to-ambiguity ratio (SAR)39

by manipulating the fraction of dots that carried stereo-disparity information (see below).40

The direction of disambiguating sensory information (i.e., whether the front surface of the41

partially disambiguated sphere moved to the left or to the right) was randomized across trials.42

We instructed participants to indicate the perceived direction of rotation of the Lissajous43

band by pressing the arrow-keys on a standard keyboard (right index finger: rotation of the44

front surface of the Lissajous to the left; right ring finger: rotation to the right; middle finger:45

unclear or mixed direction of rotation). Error responses were defined for trials at which46
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participants did not respond before the end of stimulus presentation or indicated more than47

one perceptual response.48

Within one run, participants viewed a total of 120 trials. In runs R1-4, we adjusted the49

SAR dynamically based on a staircase procedure (Figure 1A; see Gekas et al. for a similar50

approach that manipulated the ambiguity of Gabor stimuli by parametrically varying their51

orientation (Gekas et al., 2019)). To this end, we defined checkpoint-trials that occurred52

in intervals of 10 trials, starting at the 11th trial of each run. At each checkpoint-trial, we53

computed the number of stimulus-congruent trials in the block of 10 trials preceding the54

checkpoint-trial. If more than 8 trials within the preceding block were stimulus-congruent (i.e.,55

perceived in congruence with disambiguating sensory information), we decreased the SAR for56

the upcoming block by 5%. For 8 stimulus-congruent trials, the SAR remained unchanged in57

the upcoming block. If we observed less than 8 and more than 5 stimulus-congruent trials, we58

increased the SAR by 5% in the upcoming block. For less than 6 stimulus-congruent trials,59

we increased the SAR by 10% in the upcoming block. Run R1 started at an initial SAR of60

100%. Runs R2-4 started at the final SAR obtained in the preceding run. During the final61

runs R5 and R6, we fixed the SAR to the average SAR obtained during runs R1-4.62

1.5 Analyses63

As dependent variables-of-interest, we computed the proportion of stimulus-congruent trials64

(i.e., trials perceived in congruence with disambiguating sensory information) and history-65

congruent trials (i.e., trials perceived in congruence with the immediately preceding percept).66

At every trial, we recorded the specific perceptual response (left, right, unclear or error) and67

response time (difference between the button-press indicating the percept and trial onset).68

Directed biases in perception were assessed via the probability of trials perceived as rotating69

to the right (ranging from 0 to 100%). We computed absolute biases by taking the absolute70

difference between the probability of trials perceived as rotating to the right and chance level71

at 50%. For summary statistics, we computed the dependent variables within runs R1-6 or72
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for levels of SAR, respectively, and averaged across participants. For dynamic analyses, we73

computed the dependent variables at each trial within a sliding window of ± 5 trials. Trials74

were allocated to the internal mode of perceptual processing if the sliding probability of75

history-congruent percepts was above the sliding probability of stimulus-congruent percepts76

(vice versa for external mode). Intermediate mode was designed as a rest category accounting77

for the fraction of trials where the sliding probabilities of history- and stimulus-congruent78

percepts were equal (see Supplementary Figure 1C for a representative time course). In 679

participants, we detected runs in which no mode-switch occurred. These runs were excluded80

when computing the average duration between mode-switches.81

Statistical procedures were carried in R (summary statistics) and Matlab (computational82

modeling). We conducted group-level pair-wise comparisons using two-sided paired t-tests.83

Differences from chance-level were evaluated using two-sided one-sample t-tests. We performed84

correlative analyses using Pearson correlation. We applied the R-method glm with a binomial85

link-function for logistic regression and used the R-packages lmer and afex for linear mixed86

effects modeling.87

Bayes factors were computed using the R-package BayesFactor, using the function ttestBF88

and lmBF for linear models. For t-tests, we placed a noninformative Jeffreys prior on the89

variance of the normal population and a Cauchy prior (rscale = 0.71) on the standardized90

effect size. Linear models used g-priors (fixed effects: rscale = 0.71; random effects = 1). To91

obtain Bayes factors for main effects and interactions, we estimated full and reduced models92

and divided the respective Bayes Factors.93

1.5.1 Logistic regression and simulation analyses94

In simulation analyses, we asked whether logistic regression reproduced the overall probability95

of stimulus- and history-congruent percepts. Moreover, we used these simulations to test96

whether the Markovian assumption of logistic regression (i.e., that the percept at trial t97

depends exclusively on the current sensory information at trial t and the percept at the98
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immediately preceding trial t-1 ) could explain the observed fluctuations between external99

and internal modes of perceptual processing. Prior to simulation analysis, we estimated100

logistic regression models that predicted the perceptual response p at each trial t based the101

dependent variables h (perceptual history) and d (disambiguating sensory information):102

p(t) = βh ∗ h(t) + βd ∗ d(t) (1)

The dependent variable perceptual history (h(t)) was defined by the perceptual response p(t)103

(0: leftward rotation; 1: rightward rotation) at the preceding trial:104

h(t) = p(t− 1) (2)

The dependent variable Disambiguating sensory information (d(t)) was defined by a linear105

transform of the Direction of disambiguation (DIR, 0: leftward rotation; 1: rightward rotation)106

and the signal-to-ambiguity ratio (SAR, ranging from 0 to 100%) at trial t:107

d(t) = 0.5 + (DIR(t)− 0.5) ∗ SAR/100 (3)

By setting either βh or βd to zero, we created reduced logistic regression models that were108

compared based on Akaike Information Criterion (AIC). As indicated by equation (1), none109

of the logistic regression models contained an interaction term. For simulation, we used the110

full logistic regression model, with SAR set to the individual threshold SAR used in run111

R5 and 6. DIR was chosen at random for every simulated trial. In analogy to the actual112

experiment, we simulated 120 trials per run. The total number of simulated runs amounted113

to 1000 for each participant.114
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1.5.2 Computational modeling115

We constructed all models using the Hierarchical Gaussian Filter toolbox (Mathys et al.,116

2014) as implemented in the HGF 4.0 toolbox (distributed within the TAPAS toolbox;117

https://www.tnu.ethz.ch/de/software/tapas). At each trial t, the possible perceptual states118

y were coded as119

y(t) =


1 : → (rotation)

0 : ← (rotation)
(4)

The input to the model u was provided a linear combination of the direction of disambiguation120

(DIR) and the signal-to-ambiguity ratio (SAR):121

u(t) = 0.5 + (DIR(t)− 0.5) ∗ SAR/100 (5)

To predict the participants’ trial-wise perceptual responses, we combined input u with the122

prior probability of the perceptual states µ̂1(t) into the first-level posterior µ1.123

η1(t) = exp(−(u(t)− 1)2/(2 ∗ α)) (6)

η0(t) = exp(−(u(t))2/(2 ∗ α)) (7)

µ1(t) = µ̂1(t) ∗ η1(t)
µ̂1(t) ∗ η1(t) + (1− µ̂1(t)) ∗ η0(t)

(8)

In these equations, the influence of disambiguating sensory information on perception scales124

with the sensitivity parameter α, which was estimated as a free parameter in all models.125

When α approaches zero, µ1(t) is close to the binary values of u(t) (i.e., 0: stimulation with126
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3D-information for leftward rotation; 1: rightward rotation), signaling high sensitivity to127

sensory information. Conversely, for α increasing toward infitiy, µ1(t) is close to µ̂1(t) (see128

below), reflecting low sensitivity to sensory information.129

The influence of perceptual history, in turn, is represented by µ̂1(t). The value of µ̂1(t) depends130

on the dynamic accumulation of history effects in µ2 (i.e, the estimated prior probability of131

perceptual states represented at the second level of the HFG), which represents the tendency132

of the first level posterior towards µ1(t) = 1. For higher values of κ, the prior probability of133

perceptual states µ2 has a stronger impact on µ̂1(t). The influence of perceptual history on134

the participants’ experience therefore scales with κ:135

µ̂1(t) = s(κ ∗ µ2(t− 1)) (9)

Importantly, the models considered in this manuscript differ with respect to the computation136

of µ2 (Dimension 1) and κ (Dimension 2).137

1.5.2.1 Dimension 1138

For models MLearning+/Oscillation− and MLearning+/Oscillation+, µ2 is updated via precision-139

weighted prediction errors that are generated by the sequence of perceptual states:140

µ2(t) = µ̂2(t) + 1
π2(t)

∗ δ1(t) (10)

µ̂2(t) = µ2(t− 1) (11)

The precision of the second-level representation of perceptual history is governed by π2(t)141

π2(t) = π̂2(t) + 1
π̂1(t)

(12)
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The difference between the first level perceptual prediction µ̂1(t) and the first-level posterior142

µ1(t) yields the prediction error δ1(t):143

δ1(t) = µ(t)− µ̂1(t) (13)

δ1(t) is combined with the second level precision π2, yielding the precision-weighted prediction144

error ε2(t), which updates the second level prediction µ̂2(t):145

ε2(t) = 1
π2
∗ δ1(t) (14)

In addition to κ and α,MLearning+/Oscillation+ andMLearning+/Oscillation− incorporate a learning146

rate ω. This free parameter determines how swiftly µ2 is updated in response to predicition147

errors, thereby controlling the speed at which the second-level precision π̂2(t) changes over148

time.149

π̂1(t) = 1
µ̂1(t) ∗ (1− µ̂1(t))

(15)

π̂2(t) = 1
1

π2(t) + exp(ω2)
(16)

By contrast, for models MLearning−/Oscillation− and MLearning−/Oscillating+, µ2(t) is defined by150

the immediately preceding perceptual state:151

µ2(t) =


1 : y(t) = 1

−1 : y(t) = 0
(17)

Thus, MLearning−/Oscillation− and MLearning−/Oscillating+ do not incorporate any second-level152

accumulation of perceptual history and are thus governed only by the parameters κ and α.153
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1.5.2.2 Dimension 2154

For models MLearning−/Oscillation− and MLearning+/Oscillating−, κ is estimated as a stable param-155

eter. By contrast, for models MLearning−/Oscillation+ and MLearning+/Oscillating+, κ fluctuates156

dynamically according to the frequency parameter f (in nb trials−1), the phase parameter p157

and the amplitude parameter amp158

κ = (amp ∗ sin(f ∗ t+ p) + 1)
2 (18)

1.5.3 Model inversion159

We used a free energy minimization approach for model inversion (Friston, 2010), maximizing a160

lower bound on the log-model evidence for the individual participants’ data. Parameters were161

optimized using quasi-Newton Broyden-Fletcher-Goldfarb-Shanno minimization. Parameters162

were inverted using the following priors:163

• Dimension 1: κ = prior mean of log(1) and prior variance of 1; α = prior mean of164

log(0.1) and prior variance of 1; ω = prior mean of 0 and prior variance of 16.165

• Dimension 2: α = prior mean of log(0.1) and prior variance of 1; f = prior mean of166

log(0.1 and prior variance of 0.1; p = prior mean of π/2 and prior variance of π/2; amp167

= prior mean of log(1) and prior variance of 1.168

1.5.4 Model-level inference169

Models were compared using random-effects Bayesian model selection (Stephan et al., 2009)170

as implemented in SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12). We report171

protected exceedance probabilities for group-level inference and individual exceedance proba-172

bilities at the participant-level.173
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2 Supplementary Figures174

2.1 Supplementary Figure S1175
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Supplementary Figure S1. A. Perceptual history across runs. Related to Figure177

1 and 2. As the SAR was dynamically adjusted in runs R1-4 (shown in red), we observed178

a progressive increase in the frequency of history-congruent percepts (F(3, 57) = 57.96, p179

= 2.58 × 10−17, BF10 = 9.69 × 1015; R1: 49.88 ± 1.41%; R2: 62.46 ± 2.1%; R3: 70.42 ±180

1.5%; R4: 70.5 ± 1.43%). In runs with fixed SAR (R5-6, depicted in blue), history-congruent181

percepts amounted to 56.25 ± 3.74% in R5 and 63.42 ± 3.46% in R6. B. Perceptual182

history across levels of SAR. As expected, perceptual history had a stronger influence on183

perception at lower levels of SAR (F(1, 265.07) = 181.5, p = 7.25× 10−32, BF10 = 5.2× 1028,184

main effect of SAR) and ranged at chance-level when disambiguating sensory information185

was strong. C. Perceptual history during internal and external mode for SARs at186
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threshold. During internal mode, the frequency of history-congruent percepts approached187

100% (90.57 ± 2.76%), but was reduced below chance level during external mode (48 ±188

0.8%; T(19) = -2.51, p = 0.02, BF10 = 2.74, one-sample t-test). D. History-congruent189

percepts during internal and external mode across the full range of SAR. Linear190

mixed effects modeling indicated that frequency of history-congruent percepts was significantly191

affected by the factor mode (green: external; yellow: internal; F(2, 484.03) = 23.87, p =192

1.3 × 10−10, BF10 = 2.43 × 1070) and showed a trend for an effect of SAR (F(1, 188.7) =193

3.42, p = 0.07, BF10 = 1.1). We observed no between-factor interaction with respect to194

history-congruent percepts (F(2, 469.91) = 0.07, p = 0.93, BF10 = 0.05). Please note that195

any main effect of mode was expected, since external and internal mode were defined based196

on the dynamic probability of stimulus-congruence. Pooled data are represented as mean ±197

SEM.198
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2.2 Supplementary Figure S2199
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Supplementary Figure S2. A. Within-participant correlations of stimulus- and201

history-congruent percepts. Related to Figure 1 and 2. In individual participants,202

Pearson correlation coefficients between the frequencies of stimulus- and history-congruent203

percepts (runs R5-6; fixed SAR) amounted to -0.9 ± 0.02 (T(19) = -49.25, p = 1.66× 10−21,204

BF10 = 1.34 × 1018, one-sample t-test). This strong inverse relationship suggested that205

perceptual history and disambiguating sensory information compete with each other to206

determine conscious experience. B. Across-participants correlation of stimulus- and207

history-congruent percepts. Inter-individual differences in the frequency of history-208

congruent percepts strongly predicted the frequency of stimulus-congruent percepts (ρ =209

-0.77, p = 7.2 × 10−5, BF10 = 203.27, Pearson correlation for runs R5-6). This negative210

association indicated that, overall, perceptual history had a stronger impact in participants211

who were less sensitive to disambiguating sensory information. C. Predicting perceptual212
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responses using logistic regression. In each participant, the Akaike Information Criterion213

(AIC) of logistic regression models based on both disambiguating sensory information and214

perceptual history (309.95 ± 18.81) was lower than the AIC for models based on sensory215

information only (419.95 ± 27.84; T(19) = -9.39, p = 1.45 × 10−8, BF10 = 8.89 × 105,216

paired t-test) or perceptual history only (867.86 ± 21.58; T(19) = -16.46, p = 1.06× 10−12,217

BF10 = 6.54× 109). Pooled data are represented as mean ± SEM.218
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2.3 Supplementary Figure S3219
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Supplementary Figure S3. A. Simulating the overall frequencies of stimulus- and221

history-congruent percepts with logistic regression. Related to Figure 1 and 2.222

We estimated logistic regression models based on both disambiguating sensory information223

and perceptual history in individual participants and used the regression weights to simulate224

perceptual responses. These simulations revealed that logistic regression reproduced the225

overall frequencies of history-congruent percepts observed in the actual experiment (simulated226

data in purple: 60.9 ± 1.69%; actual data in light green: 59.83 ± 2.69%; T(19) = 0.78, p227

= 0.44, BF10 = 0.31, paired t-test) as well as the overall frequency of stimulus-congruent228

percepts (simulated: 87.69 ± 1.81%; actual data: 84.85 ± 3.12%; T(19) = 1.48, p = 0.16,229

BF10 = 0.59). B. Simulated autocorrelations of stimulus- and history-congruence.230

When simulating perceptual responses from logistic regression, we detected no autocorrelation231

of stimulus- or history-congruence. Real trial-wise autocorrelation coefficients are plotted232
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for comparison. C. Simulating the relative proportions of external, internal and233

intermediate modes with logistic regression. Likewise, logistic regression did not234

reproduce the relative proportion of trials spent in external mode (simulated: 81.43 ±235

4.52%; actual: 73.25 ± 6.17%; T(19) = 2.75, p = 0.01, BF10 = 4.17, paired t-test), internal236

mode (simulated: 11.85 ± 3.66%; actual: 23.94 ± 5.84%; T(19) = -3.49, p = 2.44× 10−3,237

BF10 = 16.92) and intermediate mode (simulated: 6.72 ± 1.05%; actual: 2.81 ± 0.77%; T(19)238

= 3.73, p = 1.41× 10−3, BF10 = 27.07). Pooled data are represented as mean ± SEM.239
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2.4 Supplementary Figure S4240
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Supplementary Figure S4. A. RTs across runs. Related to Figure 1 and 2. In242

runs R1-4 (depicted in red), we adapted the SAR based on a staircase procedure, which did243

not affect RTs (R1: 0.87 ± 0.03 sec; R2: 0.88 ± 0.03 sec; R3: 0.87 ± 0.04 sec; R4: 0.87 ±244

0.04 sec). In runs R5-6 (depicted in blue), the SAR was fixed to the average SAR from the245

preceding runs R1-4 (60.25 ± 2.36 sec). RTs amounted to 0.81 ± 0.04 sec in R5 and 0.81246

± 0.03 sec in R6. B. RTs across levels of SAR. Globally, the level of disambiguating247

sensory information did not have a significant effect on RT (F(1, 261.5) = 0.05, p = 0.82,248

BF10 = 0.15, main effect of SAR). C. RTs during internal and external mode for249

SAR at threshold. In Runs R5 and R6, RTs did not differ between external and internal250

mode (T(12) = 0.74, p = 0.48, BF10 = 0.35, paired t-test): D. RTs during internal and251

external mode across the full range of SAR. Linear mixed effects modeling indicated252

that, during internal mode, response times increased significantly for higher levels of SAR253
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(F(2, 476.5) = 10.73, p = 2.77× 10−5, BF10 = 538.42, mode x SAR interaction), driving a254

main effect of SAR in this analysis (F(1, 488.29) = 21.98, p = 3.57 × 10−6, BF10 = 1.73).255

Response times were longer during internal mode (F(2, 474.05) = 5.28, p = 5.39 × 10−3,256

BF10 = 18.9, main effect of mode). E. Collapsed RTs. During both internal and external257

mode, normalized RTs were better explained by a log-normal distribution (internal mode:258

AIC = 1.07× 104, external mode: AIC = 2.79× 104) as compared to a Gaussian distribution259

(internal mode: AIC = 1.08× 104, external mode: AIC = 2.81× 104), a gamma distribution260

(internal mode: AIC = 1.08× 104, external mode: AIC = 2.8× 104) or a Weibull distribution261

(internal mode: AIC = 1.24× 104, external mode: AIC = 3.39× 104). F. Individiual RT262

distributions. Within individual participants (y-axis), the distributions of normalized RTs263

were largely overlapping between internal and external mode. Pooled data are represented as264

mean ± SEM.265
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