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1 Introduction

Hip replacement surgeries are a frequent procedure in developed countries, e.g., more
than 167,000 cases were reported to the EPRD (Endoprosthesis register Germany) for
Germany in 2018 [73] of which 10% are replacement surgeries. Eurostat* even lists as
many as 257,487 hip replacement surgeries for Germany in 2018. The trend of increasing
replacement surgeries has been rising since 2006 not only in Germany, but also in the
USA [20, 165]. Unfortunately, most joint reconstructions have to be replaced after 10–15
years, with at least 10% failing within the first ten years [15, 73]. The necessary secondary
replacements are particularly expensive and burdensome for the patient.

Reasons for failure include wear, loosening, and migration of the implant. To some
extent these factors are affected by the positioning of the implant during surgery. Current
practice of surgery planning is based on planar X-ray images, with recent developments
to take the 3D patient anatomy into account [43]. While kinematics, in particular range
of motion and impingement, have been considered in the research literature [4, 28, 151,
152], even including hip joint implants [29, 30], the mechanical loading due to day-to-
day motions notably addressing the issue of stress shielding has not been included in
surgery planning so far. Yet it is the mechanical situation in the joint that drives bone
remodeling and micro fractures and therefore mainly determines implant loosening and
migration. A model based optimization of implant positioning, taking the mechanical
loads into account, can therefore be expected to improve implant life time and to reduce
the number of secondary replacements.

Here we investigate a comprehensive approach to mathematical optimization of implant
position optimization. As a starting point, we set up a complete optimization problem
in Sec. 2.1 that would ideally be solved, specifying design variables, objective, loads, and
state equation.

Since this problem will turn out to be out of reach of reasonable computing power and
availability of patient-specific data in the foreseeable future, we will consider pragmatic
model simplifications and end up with a reduced optimization problem that is still de-
manding, but not beyond current computing capacities. An approach will be explained
how to model the motion parameter domain to implicitly include the time component and
which allows for patient-specific optimization. The simulation also needs to incorporate a
contact condition, which will be briefly introduced.

Subsequently, we will develop efficient algorithmic approaches for solving this opti-
mization problem. Since the main source of computational demand is the integration over
a moderately high-dimensional load domain, we consider appropriate surrogate modeling
with Kriging for objective and gradient evaluation in Sec. 2.2, with adaptive selection of
Kriging evaluation points, treating smooth and irregular parts of the objective separately,
and Monte Carlo integration on the surrogate model further explained in Sec. 3.

A gradient-based optimization algorithm exploiting the accuracy-effort trade-off pro-
vided by the surrogate model is then considered in Sec. 4, and particular attention paid
to line search in the presence of grid topology-induced discontinuities of the objective.

Finally, preliminary numerical results are given in Sec. 5.
The last section will give a summary and an outlook to possible future research.

*https://ec.europa.eu/eurostat/de/web/health/data/database, table: hlth co proc2, codes: ICD-
9-CM81.51-81.53
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Fig. 1: The 2D setup of the hip including ligaments next to longitudinal
and tangential forces and torsion.

1.1 Problem setting and computational challenges

Before we explain the computational and algorithmic issues and how to deal with them,
we will first introduce the geometric setup and some notations. Looking at Fig. 1, we see
a cross-section of a hip joint with a part of the pelvis on the top and the upper end of the
femur on the bottom. In this exemplary 2D setting, the depicted loads are the longitudinal
fz ∈ Fz and tangential forces fx ∈ Fx next to torsion my ∈ My. Motions m ∈ M are
trajectories in the load domain L, i.e., they map from a time interval [0, Tm] to smooth
curves in L with

L := Fx × Fy × Fz ×Mx ×My ×Mz.

The intricate ligaments (cf. Fig. 2) are approximated in a rather simplistic way of four
lines. The setup including the implant can be seen in Fig. 3 while Fig. 4 gives an example
of a coarse FE-discretization. Here, it becomes clear that a finer discretization in the
estimated contact region and possibly along the fixed contact between implant and bone
is needed. For this we need to apply adaptive refinement of the discretization.

On the other hand, utilizing the measured load data from the open database Or-
thoLoad� (see, e.g., [13, 14]) we find that loads need to at least have the range (in N for
the forces and Nm for the moments)

L := Fx × Fy × Fz ×Mx ×My ×Mz (1.1)

= [−4000, 0]× [−200, 3000]× [0, 10,000]× [−4, 5]× [−2, 3]× [−2, 2].

�https://orthoload.com/
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Fig. 2: Hip anatomy: bones and ligaments [125]. Top: ventral distal; bottom: dorsal.
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Fig. 3: 2D hip joint with an initial implant position including the used coordinate system
for the applied forces Fx, Fy, Fz and exemplary moment My around the Fy axis.

Fig. 4: Example of a coarse triangulation.
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Computing the stress distribution in the cases with and without the implant and mini-
mizing the difference of both for as many loads as possible needs to be accurate enough,
leading to the necessity of a fine enough discretization – both the geometry as well as the
load domain. Since the stress distribution is the solution to a partial differential equation
(PDE) coupled with a contact problem, finding a minimum to this optimization problem
is very expensive. Hence we need to find a way to reduce the computation cost, especially
since the ultimate aim of the implant position’s optimization is its clinical application. In
order to contrast this research from the work others have done, as will be stated below, it
is important to mention that we will be integrating all load tuples from the load domain
L and not only a small number of exemplary loads.

1.2 State of the art

The approach pursued in this work will be presented in Sec. 1.3. Before doing so, other
research in the area of implant optimization and surrogate models will be presented in
order to better contextualize and contrast present work from other past or current studies
in this field.

1.2.1 Implant optimization

Current research of implants and positioning takes a variety of approaches. One is to
prevent stress shielding through shape optimization [35, 55, 160], but does not take motions
into account. Lubkoll [101, 103] and Lubkoll et al. [102, 104] is also concerned with implant
shape design, but the focus is on facial implants where he largely needs not concern himself
with stress distribution due to external forces, but is able to concentrate on general function
restoration and an unobtrusive aesthetic outcome. Still he includes elasticity and contact
calculation along with an extensive mathematical background.

A different approach limits the optimization of implant positioning to very few loads
from daily motion [136] with looking only at the implant without the surrounding bone
[36] or using a precomputed, fixed implant-bone geometry [38]. This research, as opposed
to the presented work in this thesis, is not intended to improve patient-specific surgeries
and accompanying computer tools such as “Software-Guided Hip Surgery” from Brainlab�,
but aims at better implants and their performance on a general basis.

Herrmann et al. [77] combine hardware and software in order to test total hip arthro-
plasty (THA) stability with this hybrid approach, yet also in the hardware setup without
the bone-surrounding soft tissue, muscles, or ligaments.

For studies that deal with computational aspects of implantation, i.e., that aim to
improve computer assistance tools such as the above mentioned “Software-Guided Hip
Surgery”, it is advisable to turn to [8, 57]. Barbič et al. [8] in particular investigate “real-
time” computation of deformed objects including nonlinear stress computation combined
with contact. Galloway et al. [57] on the other hand focus on the generation of a population
of FE models from two statistical models – one for the shape and elastic modulus of the
tibia, the other for the tibiofemoral joint loads over a gait cycle. With this, a method was
developed to automatically size, position, and implant the tibial try in each tibia.

Still in the broader scope of surgery assistance tools, here for the acquisition of the pa-
tient’s geometry, Lamecker [96] is discussing the setup of a pipeline for 3D reconstruction

�https://www.brainlab.com/surgery-products/orthopedic-surgery-products/hip-navigation-

application
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for clinics. He touches on statistical shape models and deals with (automated) segmen-
tation of medical images to increase computation speed before he combines the different
techniques to present a means of 3D reconstruction from 2D X-ray images.

Improving computer-aided surgery to automate preoperative planning in THA based
on a statistical implant plan atlas is the aim of Kagiyama et al. [85]. Though one should
note, that the statistics are based on preoperative plans by experienced surgeons and the
outcome may not fit the specific patient at all if he or she is not represented. For a further
discussion of possible drawbacks and pitfalls not addressed in [85] we refer to the extensive
discussion of statistical shape models in [96, 139] which pose a similar idea.

The article by Wang et al. [159] gives a good overview of the current state of hip
implant research, though concentrating on topological design and additive manufacturing,
i.e., 3D printing of implants. Although new implant designs need to be extensively tested
before they can be used in medical practice, this issue is only briefly mentioned in the
chapter “Challenges and future directions”. One main focus of implant optimization is the
prevention of stress shielding, which primarily occurs due to the noticable difference in the
Young’s moduli of bone and implant. The approach is to weaken the implant by increasing
its porosity and permeability, which then allows for bone ingrowth (osseointegration). This
contradicts the aim of a stiff implant with a good mechanical strength. The in silico testing
for osseointegration calls for a dynamical testing environment with daily loading over a
period of time in which the ingrowth is to happen. This setup is not mentioned as part of
the past research.

Similar to 3D printing is the idea that Bram pursues in his habilitation treatise [18].
Focusing on powder metallurgy, he analyzes different materials and their usability in
production of porose implants for an increase of osseointegration.

In the paper by Cilla et al. [35] the focus lies on the prevention of stress shielding
through changing the implant design. The difference in approach here is to alter the
mechanical parameters and study the change in stress shielding along with lightening the
implant up along the coronal and sagittal section. The alteration of parameters gave
the result of very little change in stress shielding. Even reducing Young’s modulus and
the Poisson ratio to bone properties showed the perseverance of stress shielding though
highly reduced. A change (increase and decrease) in the implant’s top and intermediate
cross-section had very little effect on the stress shielding. Only the lightening along the
coronal and sagittal section had bigger and mainly positive effects on the shielding. Cilla
et al. [35] identify a number of drawbacks of their own research, being that only loads of
walking are included, only one bone geometry and one implant position are considered as
well as the neglect of cartilage and the simplified bone-implant interface that assumes full
implant integration into the bone without friction.

A different approach still is taken by Quental et al. [126] in looking at total shoulder
arthroplasty, and specifically modeling the change of bone while considering different im-
plants and implant types. This, on the other hand, is done with a fairly simple model for
bone resorption combined with a 3D geometry of the shoulder joint with implant. The
model for bone remodeling was developed by Fernandes et al. [51], assuming rectangu-
lar holes in the discretized bone grid, the change of which affects the bone density and
the fourth-order bone material tensor. A change over time due to repeated loading and,
e.g., cellular adaption is not integrated and the applied static loads are with 12 still very
limited.

Research from a more (bio-)engineer perspective was conducted by Effenberger [47]
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and Oldani et al. [117]. While the former reports on different hip implant styles for stem
and cup including, e.g., their stability and disadvantages of different designs, the latter
cover the topic of titanium as a biomaterial for implants, its mechanical properties, but
also present an FE analysis for fatigue test. The test is done for one load only and aims
to compare the three alloys under regard.

1.2.2 Surrogate models

Concerning the surrogate model for the stress response surface resulting from the different
loads, we will be working with Kriging coupled with an adaptive strategy that takes
advantage of a trade-off between global exploration and local exploitation. The usage of
Kriging in combination with deformation and contact, but excluding equations of elasticity,
can be found in Forsberg et al. [53].

Iuliano [83] uses the same surrogate model as well as radial basis functions to compare
with, next to a variety of criteria to adaptively enlarge the included samples and improve
the surrogate. While Iuliano’s aim – finding a minimum of an essentially unknown function
– differs from our aim – approximating a response surface whose integral renders one point
on the objective function to be minimized – the overall target in improving the accuracy of
the surrogate is the same. In general terms, Iuliano describes the setup and improvement
of a surrogate model in three steps: starting with the design exploration over the given
domain (initial samples), the second step is that of adaptive sampling, completed by a
sequential metamodel optimization. For the initialization stage, Iuliano suggests common
techniques such as Latin hypercube sampling or Latinized central Voronoi tessellation
techniques. In our case, the initialization samples in the force domain will be driven by
the probability field and will be described later in the Sec. 2.2.2. For the second step,
Iuliano describes a variety of factorized infill and expected improvement criteria. The
common idea is to achieve a balance between exploration, i.e., sampling in undersampled
areas, and exploitation.

For factorized infill, the evaluation function for new samples is split into two function
parts h and g, one for the exploration, the other for the exploitation criterion, which are
multiplied with each other. If exploration is favored, new samples will be chosen in areas
that were previously unsampled – unexplored. If the concentration is on exploitation,
then a new sample will be close to an already used sample. This is the case, if some
area contains more information than already extracted. He describes the approaches of
leave-one-out, weighted leave-one-out, where function values with lower value are heavier
weighted, Lipschitz constant, concentrating on areas with high complexity, i.e., larger first
derivative, and weighted distance criterion, which favors domain exploration.

For the expected improvement-based infill, Iuliano again describes two functions for
exploration and exploitation. Here they are mostly coupled by addition. One term scores
a new sample point higher, the closer they are to low, already sampled function values,
bearing in mind that Iuliano wants to find a minimum value of the unknown function. The
second term gives a higher score to samples which have a high uncertainty, i.e., a higher
variance. Should the model setup not naturally provide a value for the variance, this can
be approximated with the expected improvement-like criterion. The expected improvement
for global fit (EIGF) does not focus on finding a minimum, but to produce a good (global)
function fit. Lastly, in the generalized EIGF, the square (h+ g)2 is used rendering a part
where the two functions interact by multiplication 2hg driving the selection of new samples
to areas where both factors are amplified.
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As for Iuliano’s third step – the sequential metamodel optimization – this is useful
if one wants to find an optimum on the approximated function, but is irrelevant in the
present context.

Other possible surrogate models are gradient-enhanced Kriging, radial basis functions,
polynomial response surfaces, support vector machines, and artificial neural networks be-
sides others. In the following, the description of their different characteristics ensues. See
also [140] for an overview of further surrogate models.

The gradient-enhanced Kriging uses adjoint solvers for gradient computation. The
inclusion of more information leads to an improved response surface. The downside is
that this method does not scale well with the number of sampling points due to the rapid
growth in the size of the correlation matrix. It is unclear whether a possible gain in
the response surface is achieved next to numeric errors induced through contact surface
discretization and contact order§ in contact calculation.

Radial basis functions are a class of functions whose function response depends on the
distance of a predefined sample. With their fixation to a priori given locations, they are
less flexible than, e.g., the samples in Kriging. This means if an area is unsupported by
radial basis functions, an extra function needs to be introduced. The shape parameters
can be adjusted but this infers extra work. See Driscoll et al. [45] for more information on
radial basis functions, here in combination with collocation methods.

Polynomial response surfaces is a different term to polynomial regression. While this
approach is – depending on the polynomial degree – generally able to interpolate smooth
functions, extrapolation is not a strong feature with even the danger of oscillatory behavior
close to the boundary. This technique is not fit for adaptive sample refinement or able to
capture locally high nonlinear behavior, or dramatic changes in the response in simpler
cases. Forsberg et al. [53] compare ordinary Kriging with a linear polynomial response
surface approach and conclude that Kriging performs better. For a comparison between
Kriging and a quadratic polynomial interpolation model see Giunta et al. [62].

Another possibility for a surrogate model is the sparse grid approach, see, e.g., [24,
59]. This method allows to overcome the curse of dimension to some extent, as the
authors themselves put it. With the sparse grid approach, the number of degrees of
freedom can be reduced while the accuracy stays high. The authors demonstrate the
method’s application in the solution of PDEs and show that the grid can be optimized
to the appropriate underlying space of the target function. Besides the linear ansatz
functions, locally adaptive methods, higher order polynomial or wavelet discretizations
can be applied. Even for numerical integration this technique can be used.

When comparing sparse grids to Kriging it is a priori unclear which method performs
better – if hierarchical basis combined with a pre-optimized (sparse) grid outperforms an
adaptive Kriging scheme, that adds samples and thus complexity in areas of problem-
defined interest or vice versa. Additionally, it is unclear whether a dominance of one
technique over the other is true for all – accuracy, computation time, and convergence –
or just a number of those criteria. The answer to this question needs more investigation.

The idea behind support vector machines (SVM) is that of linearly dividing two classes
of objects. When applying the kernel-trick a nonlinear hyperplane can be constructed.
Similarly in our case this dividing plane can be compared with the response surface.
While in the present case, not two classes of objects are classified, but much rather a

§The contact order determines the number of discrete points on a contact boundary. An increasing
order refines the precision of the contact solution.
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hyperplane is aimed at, the extension of a SVM for regression poses a possible surrogate
model candidate. With the expected nonlinearities between the responses, only support
vector regression (SVR) or Bayesian SVM can be applied analogously, both including the
kernel-trick and the adjustment of several parameters. When adding new samples in SVR,
a regression problem needs to be solved every time where the solving of a matrix-vector
problem is more straight forward in Kriging. Depending on the kernel function, e.g., (in-
homogeneous) polynomial, Gaussian radial basis, or hyperbolic tangent, the computation
of the interpolate is more expensive than the matrix-vector product of Kriging.

One last surrogate model to be mentioned here is artificial neural networks (ANN).
The network is made up of interconnected units or nodes, each representing a function
(linear or nonlinear depending on the user setup). More intricate neural networks are
described with deep learning (or deep neural networks (DNN)) include multiple hidden
layers, i.e., intermediate nodes between input and output. The nodes can be trained,
i.e., the function parameters adjusted, to fit the desired input-output. In order to train
the nodes, usually a lot of training data is needed. Past research has already achieved
the solution of a classification problem, e.g., identifying the depicted animal or object on
pictures. Through supervised learning the ANN or DNN are trained to best fit a given
input to an output, similar to a generic function f : X → Y from pairs (x, y)i.

1.3 Our approach

The given problem of optimizing the hip implant position to increase the implant’s longevi-
ty is indeed an interlacement of different subproblems and subalgorithms. The aim of
preventing stress shielding not only for as many as possible daily motions, but for all
possible motions leads to a moderately high dimensional load domain for which the equa-
tions of motion have to be solved repeatedly. That becomes increasingly computationally
expensive the more degrees of freedom (DOF) are added to the geometric grid.

Here, the first two problem relaxations will be applied: first, the solving of the PDE will
be done on a geometric grid with relatively little DOF that are to be extended throughout
the optimization; second, the PDE is solved for only a few loads. The results will be
interpolated to a response surface using Kriging interpolation.

Since high stresses are to be prevented as to sustain the bone as healthy as possible,
locally high stresses will be penalized leading itself to locally high nonlinearities in the
response surface that is to be integrated. These locally high stresses may stem from mo-
tions like stumbling or worse. To keep both the interpolation and the integration efficient,
these two operations will be separated. Therefore, the locally high stress responses will
be interpolated and the evaluation of the interpolate with the penalty function will be
integrated.

As the load domain is moderately high dimensional, standard quadrature rules were to
suffer the curse of dimension if applied. This curse will be avoided by utilizing Monte Carlo
integration. Monte Carlo itself has a comparatively low rate of convergence, but it benefits
from its independence of the space dimension d, thus needs less function evaluations to
achieve a certain accuracy and thus proves more efficient than standard quadrature rules.

A possible application of sparse grids as in Bungartz et al. [24] was considered, but
Kriging in combination with Monte Carlo is much more straight forward and offers less
function evaluations.

All three, the precision of the solution of the PDE as well as the accuracy of the Krig-
ing surface and the Monte Carlo integral will be adaptively increased depending on the
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geometric discretization of bone and implant, which is to be refined throughout optimiza-
tion.

For the adaptive refinement of Kriging, the approach by Iuliano [83] will be applied,
making use of local exploitation and global exploration. The exploitation part will be
evaluated via the cross-validation strategy, while the exploration is added through the
variance term inherent to Kriging interpolation. Both are multiplied with a factor that,
depending on the last added sample, favors either the one or the other, but in smooth
transition from one to the other also allows for a balancing of both aspects.

Concerning the geometry discretization, it is to be said that for the bone-implant
geometry, we start with a finer discretization at the contact boundary than the interior
of the domain and the non-contact boundary. The pure bone geometry will be finer
discretized from the start than the bone-implant geometry, since the stress computation
for each applied load only needs to be computed once, as opposed to the bone-implant
geometry. Here the stress response to the applied loads needs to be recomputed every
time the implant position is changed.

Last but not least, implant position changes may lead to a remeshing of the bone-
implant geometry. This results in discontinuities in the target function which will in
optimization be dealt with special line search.
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2 Mathematical Modeling

In this chapter, the complete mathematical model with its aim of optimization, the design
variables, and the constraints will be introduced. This optimization problem will prove
to be too difficult to solve, necessitating model simplifications that will be established in
Sec. 2.2, and the subsequent use of efficient solution algorithms which will be the focus of
Sec. 3.

2.1 Implant position optimization

The insertion of implants as it is the clinical practice takes place with very little automation
and relies heavily on the experience of the surgeons. With X-ray or CT information about
the patient’s geometry, they can estimate a good position of the implant but they fail to
incorporate the dynamic loads as there is no means to deduce those merely from images.
One does not fail to notice that the cyclic loading of the joint and hence the implant
is intrinsic and its negligence can lead to undesired results. Hence it is the aim here
to approach and overcome this problem with the only admissible means – mathematical
optimization. In order to do so, the translation of the given problem into a mathematical
setting is mandatory.

2.1.1 Design variables

For a coordinate system fixed in the femur head with axes (x, y, z) in 3D, see Fig. 3,
the initial degrees of freedom that can be used to optimize the implant’s position in the
patient’s joint are the translatory variables t := (tx, ty, tz), transitioning the femur implant
along the axes, as well as the torsion angles α := (αx, αy, αz) around three coordinate axes
(e.g., αy along the same path as moment My as depicted in Fig. 3). In total, they account
for six degrees of freedom.

With the objective of retaining the center of motion, the design variable t is already
fixed leaving the torsion angles as the only degrees of freedom.

2.1.2 Objective functional

In order to achieve an increased longevity of the implant and thus reduction of pain and
complications for the patient, the issues of the retention of the center of motion, stress
shielding (cf. [43]), and risk of fracture needs to be addressed. Failing to retain the center
of motion would lead to a reduced range of motion for the patient and consequently to a
change in the usual movements. This can lead to a misuse of the joint and hence to pain
and failure of the implant.

Preventing stress shielding means, that the stress distribution Σ in the (remaining)
bone pre- and post-operative is unchanged for all of the patient’s movements m ∈ M.
Note that the motion load domain M represents time-dependent trajectories in the load
domain as opposed to the load domain L which describes time-independent loads. The
transition from the former to the latter will be explained in Sec. 2.2. In the context ofM,
Tm is the final time of the given motion m.

A change in the stress distribution Σ in the remaining bone would otherwise lead to
a restructuring of the bone, bearing the immanent risk of implant loosening or shifting
the center of motion. To measure the change in stress distribution define Σ̄ as the stress
distribution in the patient’s healthy bone before the surgery – as well as this can be
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retained. With the domain Ω defining the whole bone-implant (or bone) domain, the
stress difference is computed in remaining bone

Ωbone(α) := Ω\Ωimplant(α), (2.1)

which depends on the implant’s position. Lastly, preventing fracture will be incorporated
by penalizing motion loads that induce stresses that exceed the threshold of bone stability
Σthres. This is done by a function p : R → R that receives Σmax

(
m(t);α

)
as an input.

The value Σmax is determined for each time t ∈ [0, Tm] by evaluating the maximum of the
Frobenius norm defined for tensors.

For all admissible implant positions α optimize for those minimizing the integral over
the motion load domain M (cf. Sec. 2.1.4)

min
α
j(α) =∫
m∈M

(∫ Tm

0

∫
x∈Ωbone(α)

1

2

∥∥Σ(m(t);α)− Σ̄(m(t))
∥∥2

F
dx+ p

(
Σmax

(
m(t);α

))
dt

)
dm.

(2.2)

2.1.3 Dynamic contact equilibrium constraints

Elastodynamics. This section will give an introduction to finite strain theory. For
further reading, the following literature is recommended: For a basic introduction to finite
strain theory, Wriggers [172] poses a good starting point, while for in-depth theory Ciarlet
[34] or Altenbach [3] are suggested, who directly include mathematical theory. For the
objective (2.2) the stress distribution Σ needs to be computed.

To obtain the stress distribution, one needs to solve a PDE describing the equilibrium
of forces, see, e.g., [34, Ch. 2],

ρü− div (FΣ) = f, in Ω× [0, Tm], (2.3)

u = 0, on ΓD ⊆ Γ = ∂Ω, (2.4)

FΣn = gN , on ΓN ⊆ Γ = ∂Ω, (2.5)

u(x, 0) = u0(x), ∀x ∈ Ω, (2.6)

u̇(x, 0) = u̇0(x), ∀x ∈ Ω. (2.7)

The quantity P := FΣ defines the first Piola-Kirchhoff stress tensor, with Σ = Σ(u)

denoting the second Piola-Kirchhoff stress tensor, with u ∈
(
H1(Ω)

)d ∀t ∈ [0, Tm] being
the displacement. The matrix F := ∇ϕ denotes the gradient of deformation ϕ(x) (see
Eq. (2.8) below for a definition) with respect to x. Further details will be elaborated
shortly. For reasons of readability when writing Σ(u) the dependency of u on x, t, and α
is left out. The space H1(Ω) is the Sobolev space W 1,2(Ω). The functions f and gN are
vector fields and denote a body force in Ω or a surface force on ΓN , the Neumann boundary.
For the right hand side functions square integrability in their respective domains is assumed
(cf. [150]). The parameter ρ is the mass density of the regarded material, i.e., bone or
implant in the present case, and Tm > 0 is the final time of the considered motion. With
the addition of the Dirichlet boundary condition (2.4) on ΓD mathematical well-posedness
is ensured (cf. [135]).
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Table 1: Lamé constants of the bone and titanium implant.

λ [Pa] µ [Pa]

Bone 9.81·109 6.54·109

Implant 83.92·109 43.23·109

When the body is transformed under the influence of body and surface forces, this
transformation is given in terms of the displacement u resulting in the deformation function

ϕ(x) := x+ u(x). (2.8)

Its gradient, the deformation gradient, is used describe the Green-St. Venant strain tensor
E. With F = ∇ϕ as before and with I the identity the tensor E is

E(u) :=
1

2
(F TF − I) =

1

2

(
∇u+∇uT +∇uT∇u

)
. (2.9)

Note that in the present context, the second order term∇uT∇u is kept and no linearization
is presumed. The displacement may be small, but rotations are to be expected which can
only be treated correctly in the nonlinear setting.

Also note, that the gradient of the deformation ∇ϕ is written, but this is due to
notational imprecision. As it can be found in Deuflhard et al. [42, Ch. 2.3] the geometric
nonlinearity in the Green-Lagrange strain tensor in its usual form is not described by the
gradient ∇u, but by the derivative u′, i.e., (u′)Tu′ = ∇u∇uT . Due to its common use
the usual notation will be used here, too, but the reader is advised to be aware of the
difference in notation and (later) implementation.

Assuming the case of an isotropic material, the second Piola-Kirchhoff stress tensor Σ
has the form

Σ(u) = λ
(
trE(u)

)
I + 2µE(u) = C : E(u). (2.10)

The parameters λ, µ are the Lamé constants. The Lamé constants for bone and titanium
can be found in Tab. 1. The Hooke tensor C is the fourth-order elasticity tensor [17]

Cijkl = λδijδkl + µ(δikδjl + δilδjk)

with δij being the Kronecker symbols. The ’:’-notation denotes the contraction of two
tensors:

Σ(u)ij = CijklE(u)kl,

see, e.g., [171, Ch. 3.3.2].
Materials that obey the relationship in Eq. (2.10) are called St. Venant-Kirchhoff ma-

terials. Let it be noted here, that St. Venant-Kirchhoff materials with Σ defined as in
Eq. (2.10) are hyperelastic with stored energy function [34, Ch. 4.4]

W
(
E(u)

)
=
λ

2

(
trE(u)

)2
+ µ trE(u)2. (2.11)

Inside the respective bodies of bone and implant homogeneity is assumed.
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Fig. 5: Visualization of a contact mapping between the femur and the pelvis.

Remark. This condition marks a huge model simplification, since bone is an inhomoge-
neous and anisotropic material. The implementation of the correct material model would
generally be possible (inhomogeneous, anisotropic material parameters can, e.g., be found
here [52, 167] for bone and here [7, 105, 115] for titanium) and lead to a better approxima-
tion of bone but it would also lead to an increase in computation time. Since the interest
in the current work is in relative optimization results and not in rebuilding a rigorous bone
or bone-implant model, the simplified model is used here.

With this now solve the equation of equilibrium only in terms of the displacement u as
(2.3) now reads

ρü− div
(
FC : E(u)

)
= f.

The derivation of the stress principle of Euler and Cauchy is extensively studied in liter-
ature such as [17, 34, 135].

Contact problem. Naturally when applying forces that move two bodies together con-
tact occurs. For the problem to be physically stable, non-penetration has to be enforced.
Mathematically this incurs the inclusion of a contact inequality condition, as the two ge-
ometries are allowed to touch, but not to interpenetrate. Following, e.g., [135] an inequality
condition is introduced with ΓC ⊆ ∂Ω denoting the contact boundary. It is assumed, that
ΓD∪ΓN∪ΓC = Γ and that the boundary sets are respectively disjoint. The non-penetration
condition coupled with the assumption of small strain and little tangential motion at the
contact boundary are known as the Signorini conditions for contact problems [46, 87].
Youett et al. [177] investigated the contact model with nonlinear contact constraints al-
lowing its application in a nonlinear elasticity setting. For the non-penetration condition, a
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bijective and smooth mapping φbone between the femur and the pelvis needs to be defined,
and a mapping φimplant with the same characteristics between the implant components.
These contact mappings identify the two respective contact boundaries with each other as
depicted in Fig. 5. With the contact mapping, one can define the reference gap function

g ∈
(
L2(ΓC)

)d
between the bodies

gi : Γpel(i),C → R, gi(x) := |x− φi(x)|, i ∈ {bone, implant}

and the relative displacement in normal direction

[u · n]φi :=
(
upel(i)(x)− ufe(i)

(
φi(x)

))
· n(x), x ∈ Γpel(i),C .

Denote with Γpel(i),C the contact boundary of the pelvis geometry and let upel(i), ufe(i)

describe the displacement of the pelvis and femur geometry, respectively. With this, the
inequality condition denoting the contact inequality

[u · n]φ ≤ g on ΓC (2.12)

is added as a further constraint to the PDE (2.3).

2.1.4 Motion loads

Motions m ∈M are defined as trajectories in L. That is to say, that m maps from a time
interval [0, Tm] to L

m : [0, Tm]→ L, t 7→ l = m(t),

with the load domain L as previously given in Eq. (1.1)

L = Fx × Fy × Fz ×Mx ×My ×Mz.

The motion loads m ∈ M enter the PDE (2.3) through surface traction gN . The trans-
latory and tangential forces as well as torsion are modeled as acting on the Neumann
boundary. Ideally the motion load domain M is made up of recorded loads from the
patient’s healthy state.

Here, one can already see a difficulty of the model, since in the diseased patient,
there is no means of measuring the (contact) forces and moments from the healthy state.
Contrariwise, in a healthy person, one would not prophylactically measure the contact
forces and moments not to mention that this is not yet possible altogether. Moreover, a
healthy person would not have their motion forces measured. Therefore, an approximation
of the domain M will be needed.

2.1.5 Penalty function

The function p penalizes exceeding stresses. The quantity Σmax

(
m(t);α

)
is defined as

Σmax

(
m(t);α

)
:= max

x∈Ωbone

∥∥Σ
(
u(x)

)∥∥
F

(2.13)

again leaving out the dependency of u on t and α. The stress tensor Σ (2.10) is a symmetric
d × d matrix, thus the Frobenius norm is well-defined. Note, that without further proof
we expect no stress singularities in the bone since the implant is always stiffer and we
assume the bone surface to be smooth. The maximum norm could be approximated by
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the Lp-norm with sufficiently big p. This idea of approximating the maximum norm will
return when computing the derivative in Sec. 4.3. The function p is thus defined as

p
(

Σmax

(
m(t);α

))
:= b · exp

(
c
(

Σmax

(
m(t);α

)
− Σthres

))
. (2.14)

Here, Σthres is chosen well below 200 MPa where bone is susceptible to fracture. The
factor b is chosen as such the penalty term is of little influence on the objective function,
if Σmax is below Σthres. For a sharp increase of p when the value of Σmax approaches that
of Σthres, set c to a high value. The maximum Σmax is taken for all times t ∈ [0, Tm] and
only the bone geometry, since the material of the implant is much more durable.

2.1.6 Complete optimization problem

With the given specifications above, the following optimization problem has to be solved

min
α
j(α) =∫
m∈M

(∫ Tm

0

∫
x∈Ωbone(α)

1

2

∥∥Σ(m(t);α)− Σ̄
(
m(t)

)∥∥2

F
dx+ p

(
Σmax

(
m(t);α

))
dt

)
dm

(2.15)

s.t.

ρü− div (FΣ) = f, in Ω× [0, Tm], (2.16a)

u = 0, on ΓD × [0, Tm], (2.16b)

FΣn = gN , on ΓN × [0, Tm], (2.16c)

u(x, 0) = u0(x), in Ω, (2.16d)

u̇(x, 0) = u̇0(x), in Ω, (2.16e)

[u · n]φ ≤ g, on ΓC . (2.16f)

This problem setting admits some difficulties and some impossibilities. One impos-
sibility is the acquisition of the healthy patient’s motion load domain M as mentioned
before in Sec. 2.1.4.

Difficult or at least unsuitable for the clinical application is the solution of the full
problem (2.15)–(2.16). Even though the equations (2.16) can be solved for a given angle
α and a given motion m, one solve alone is, depending on the required accuracy, com-
putationally expensive. With the optimization problem (2.15), the PDE (2.16) has to be
solved for several (possibly infinite) motions m and resolved when the implant position
changes. The storage of results or parts thereof may become increasingly difficult the more
positions are evaluated. At least, this issue could be countered by applying compression
and storage results found in [65, 72, 164].

Summing up, model simplifications are inevitable.
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2.2 Modeling simplifications

Since on the one hand solving dynamic contact problems incurs a high computational
effort, and on the other hand the inertia of the bone and implant are negligible compared
to the surrounding soft tissue and the limb as a whole, a quasi-static approximation of the
motion trajectory is an attractive approach. This lays out the course for model simplifi-
cation. This approach also fits well to the problem setting, because the displacements in
the given geometry are small and plastic deformation does not take place. The transition
from a dynamic to a quasi-static motion model moreover allows, as will be seen below, for
a different and much simpler parameterization of the loads experienced by the joint. This
is why it is omitted from Eq. (2.16a), turning a parabolic PDE into an elliptic PDE.

2.2.1 Quasi-static approximation

As inertia is relatively small, ρü is negligible and will be omitted from Eq. (2.16a) meaning
that the time component can be completely erased including the initial conditions (2.16d)
and (2.16e). Additionally, one changes over from time-dependent motion m(t), i.e., load
trajectories, to single loads l ∈ L. Hence the notation changes from, e.g., Σ̄

(
m(t)

)
with

m ∈ M, t ∈ [0, Tm] to Σ̄(l), l ∈ L. This results in the use of the spatial equilibrium
equation rather than the equation of motion

min
α
j(α) =

∫
l∈L

π(l)

∫
x∈Ωbone(α)

1

2

∥∥Σ(l;α)− Σ̄(l)
∥∥2

F
dx+ p

(
Σmax(l;α)

)
dl (2.17)

s.t.

−div (FΣ) = f, in Ω, (2.18a)

u = 0, on ΓD, (2.18b)

FΣn = gN , on ΓN , (2.18c)

[u · n]φ ≤ g, on ΓC , (2.18d)

with f ∈
(
L2(Ω)

)d
, gN ∈

(
L2(ΓN )

)d
, and g ∈

(
L2(ΓC)

)d
as above. For the displacement

u it is assumed that u ∈
(
H1

0 (Ω)
)d

.
The concise change over from motions m ∈M to l ∈ L which implicates the introduc-

tion of a probability density function π is the focus of the next section.

2.2.2 From trajectories to load densities

As already mentioned in Sec. 2.1.4, an approximation of the motion domain M is needed
as one cannot achieve the true M for reasons stated before. Therefore one has to start
with a discretized Mq which only includes the measured motions.

The forces and momenta from different daily motions, such as walking and stair climb-
ing, acting on the hip joint were measured and recorded for different persons in the open
database https://orthoload.com/.

The motion trajectories m ∈M are intrinsically dynamic, mapping from [0, Tm] to the
load domain L. Now, the point of view will be turned around and instead of m defining
the loads l, determine for any load l ∈ L its probability of belonging to a given motion m,
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Fig. 6: The probability density function πm (schematic) for two exemplary
motion trajectories with mean value µm and covariance Sm (here projected
to 2D); the gray scale denotes the patient specific weight w(m).

i.e., determine πm(l). In order to compute this quantity, we utilize the motion’s inherent
density.

Realizing that motion trajectories are indeed not deterministic, each motion gait is
much rather a realization of a probability distribution Pm described by a density function
πm. Naturally one could equip each load l = m(t) for t ∈ [0, Tm] with a load density
1/
∥∥ṁ(t)

∥∥
2
. However, the motion m is not measured for all t ∈ [0, Tm], but at discrete

time instances 0 = t0 < t1 < · · · < tk = Tm, k ∈ N, defining

lm0
:= m(t0), . . . , lmk := m(tk).

With the same time discretization t0, . . . , tk for one motion, but for multiple measurements
(from the same person and other people), one can compute a sample mean µmj and
covariance matrix Smj for each j = 0, . . . , k.

With πmj = N (µmj , Smj ) sufficiently given, now the functions πm and π need to be
defined.

Quantifying probability densities. Considering the discretization 0 = t0 < t1 <
· · · < tk = Tm, k ∈ N, of a motion’s time interval [0, Tm] with associate loads lmj = m(tj)
and with mean load µmj and a covariance matrix Smj for each tj , then a discrete set of
normal distributions is given

Πm = {N (µm0 , Sm0), . . . ,N (µmk , Smk)}. (2.19)
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Per normal distribution for j ∈ {0, . . . , k}, the probability density function πmj ∈ Πm is
given by (d denoting the number of dimensions; with l ∈ L ⊂ R6 it is d = 6)

πmj (l) =
1√

(2π)d det
(
Smj

) exp
(
−1

2

(
l − µmj

)T
S−1
mj

(
l − µmj

))
, j ∈ {0, . . . , k}.

With this, one evaluates the probability of any load l ∈ L ⊂ R6, with L as in Eq. (1.1),
to be acting during a certain motion by summing

πm(l) :=
1

k + 1

k∑
j=0

πmj (l). (2.20)

Now one does not want to integrate over Mq but over L. Hence one needs to generalize
from a specific πm to an m-independent π that applies for all l ∈ L. In order to compute
such a general probability function, one needs to take the average over the motions m.
This average is necessarily a weighted one, as each motion has a different daily frequency
w(m). This frequency introduces, next to the patient-specific hip joint geometry, another
level of patient-specificity to the implant positioning problem. Thus one computes

π(l) :=

∑
m∈Mq

w(m)πm(l)∑
m∈Mq

w(m)
. (2.21)

The data from OrthoLoad allows to set up probability distributions πm as described above.
In combination with setting up the patient-specific w(m), e.g., by filling in a questionnaire
which allows an estimation on the distribution of daily motions, this allows to determine
π(l) which finalizes the shift from a dynamic to a static problem definition.

Looking at Fig. 6, two exemplary weighted density functions w(m)πm for the motions
of walking and climbing the stairs are schematically depicted. The visible lines represent
the mean value µm and the clouds around the line represent the covariance Sm projected
to 2D. The gray scale denotes the respective weight w(m). Thus one sees a representation
of π(l) limited to two recorded motions in Mq.

2.2.3 Closing remarks

With the model simplification, suitable algorithms to solve (2.17)–(2.18) efficiently need
to be applied. Though the problem to solve is a simplified one, one solve of (2.18) is still
expensive. This said, it is to be expected that for optimization a solution u of PDE (2.18)
needs to be computed many times which still results in an infeasible long solution time to
find α. Similar to Erway et al. [50], a trade-off between function evaluations and accuracy
of the solution is the focus of the following section.
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3 Efficient Objective Evaluation

One of the main challenges in optimizing the implant position Eq. (2.17) under regard
of motion loads is the long computation time for single loads combined with the need to
integrate over the whole of the load domain L:

min
α
j(α) =

∫
L

π(l)

∫
Ωbone(α)

1

2

∥∥Σ(l;α)− Σ̄(l)
∥∥2

F
dx+ p

(
Σmax(l;α)

)
dl.

Reducing the accuracy for the computation of the PDE solution, coarsening the discretiza-
tion of the FE-grid and the load domain, or relaxing the stopping criterion for different
computations, is a common approach; a balance of computation time and accuracy needs
to be attained.

First and foremost, solving the contact problem is the most expensive part in the
optimization problem (2.17). Thus, the main effort needs to be spent in reducing the
number of PDE solves.

On the other hand, the load domain L is moderately high dimensional so that a
reasonable discretization would result in a very high number of loads. This is why Monte
Carlo (MC) integration will be applied to compute the integral circumventing the curse
of dimension. The advantage on the one side, i.e., the error between the approximate and
the real integral value diminishing with increasing number of Monte Carlo samples and the
independence of the dimension, poses also the disadvantage of needing many evaluations
of the function under the integral – the rate of convergence will be given in Sec. 3.2. With
this the need is defined to evaluate the stress response to a given load l efficiently. The
need will be satisfied by using the interpolation method of Kriging. When computing
only a few solutions of the contact problem (2.18), one retains the option of keeping the
accuracy of one solve high.

The penalty function introduces local high nonlinearities which is why not the function
under the integral of the load domain L, i.e.,

π(l)

∫
Ωbone(α)

1

2

∥∥Σ(l;α)− Σ̄(l)
∥∥2

F
dx+ p

(
Σmax(l;α)

)
will be interpolated, but the difference of stress responses

∫
Ωbone(α)

1
2

∥∥Σ(l;α)− Σ̄(l)
∥∥2

F
dx

and Σmax(l;α). This is relevant in that way that the so-called response surface, i.e., the
interpolated surface will be a smooth one that will not capture distinct features like locally
high gradients. Either those local features would not be represented at all, or if one of the
Kriging samples was in a spot of such a localized high nonlinearity, the smooth surface
would be distorted to comply with the distinct feature of the response.

The already named interpolation method of Kriging has the following setup: a priori,
one has to choose a drift model and a model for the local interdependence of function
responses, the so called variogram, in more detail explained below. These model choices
define parameters θ which are fitted by solving a maximum likelihood problem to the
given samples and responses. Now the interpolation value in an arbitrary location is a
weighted addition of responses where the weights are estimated through few matrix-vector
products. This calculation involves the computation of matrix inversions which can be
precomputed once the model parameters θ are known and which stay unchanged as long
as the samples and responses are unchanged.
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Some of the advantages of Kriging are, that it needs little work to set up interpolation,
i.e., relatively simple parameter estimation, the computation of interpolation is realized by
rather simple matrix-vector products, it can directly compute a variance which is utilized
in adaptive sampling, and it allows for a sequential built of response surface. Generally, a
down side of this model is the need for computing one or more inverse matrices. Compared
to the effort of one PDE solve this is in the present work negligible. A variety of other
possible surrogate models and a reasoning why Kriging is favored over these models has
been given in Sec. 1.2.2.

Yet another possibility to increase the efficiency of the solution algorithm were to apply
model reduction such as Proper Orthogonal Decomposition (POD) or Discrete Empirical
Interpolation Method (DEIM) [31, 60, 79, 156]. The combination of model reduction with
surrogate models and possibly Monte Carlo integration will be left for future work.

This chapter will cover existence and uniqueness results of the (linearized) Green-
St. Venant strain tensor and how the contact problem will be solved. Also the design
of both, Monte Carlo integration and Kriging interpolation, will be explained next to
stating known convergence results. Section 3.4 will introduce error estimators that are
used to adaptive refine the solving of the PDE, MC integration, or Kriging, respectively.
The chapter will finish with giving the complete algorithm to compute the objective in
Sec. 3.5.

3.1 Elastostatic contact solution

In this section current results for existence and uniqueness results for Eq. (2.18) are stated.
For the linearized counterpart of (2.9) – with and without contact – with

ε(u) =
1

2

(
∇u+∇uT

)
and with the associated linearized second Piola-Kirchhoff stress tensor σ

σ(u) = λ
(
tr ε(u)

)
I + 2µε(u) = C : ε(u)

there exists extensive research on existence and uniqueness results for a displacement u,
cf. [16, 48, 91, 134, 135]. There is further literature and results for the quasistatic contact
(with friction), see for example [5, 25, 26, 123, 128, 143, 148]. For an existence and
uniqueness result in linear elastodynamics see, e.g., Antonietti et al. [6]. More on contact
problems and their numerical solution can yet be found in [41, 70, 89, 90, 98, 145, 146,
147, 168, 169], which partly includes error estimates and convergence results.

Turning towards existence and uniqueness results for the geometric nonlinear case, i.e.,
Eq. (2.18) with nonlinear tensors Σ and E, results become sparse. Ciarlet [34, Thm. 6.4-1]
found, that for linear St. Venant-Kirchhoff material as given in Eq. (2.10) in case of pure
displacement, i.e., homogeneous Dirichlet boundary conditions, without other boundary
or contact conditions, with sufficiently smooth boundary Γ and function f , the existence
of a locally unique solution can be proven.

For the case of the displacement-traction problem with a unilateral boundary condition,
i.e., a problem setting with a Dirichlet boundary condition next to a Neumann boundary
and a contact condition, under rigorous assumptions Ciarlet proves existence of a solution
[34, Thm. 7.8-1].

As to uniqueness of a solution, results are even less satisfying. It can be found in
Weiser et al. [163, Sec. 5, Ex. 1–2] even without contact the uniqueness is not given.
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An existence and uniqueness result utilizing canonical duality theory and the algebraic
(tensor) equation in stress-space, additionally to the requirement of the second Piola-
Kirchhoff stress Σ being positive definite, can be found in Gao et al. [58].

SQP to solve the contact problem. The current setting is solved with the discretize-
then-optimize approach which means that all quantities in Eq. (2.18) – spaces, functions,
and the control – are discretized a priori and then the PDE is written in the discrete,
numerically programmable form.

In practice, this means that the geometry Ω is discretized resulting in the grid Th with
grid elements T ∈ Th. The quantity h is defined as

h := max
T∈Th

diam(T ).

According to the resulting grid Th, define finite-dimensional subspaces of L2 and H1
0 ,

cf. [21, 33], with a piecewise linear finite element discretization. Rewrite the PDE (2.18)

in a typical weak form, cf. [21, 34, 74, 150], so that uh ∈
(
H1(Ω)

)d
solves∫

Th
Σ(uh) : E′(uh)[vh] dx =

∫
Th
fhvh dx+

∫
TN,h

gN,hvh ds+

∫
TD,h

γDuhvh ds (3.1)

for all test functions vh ∈
(
H1(Ω)

)d
, where both uh and vh satisfy the contact condition

(2.18d), with functions fh, gN,h, gh, and uh being the finite-dimensional equivalents of
f, gN , g, and u and with discrete Neumann TN,h and Dirichlet boundary TD,h. Note, that
E′(uh)[vh] is the directional derivative of the Green-St. Venant strain tensor E(uh) (2.9)
in direction vh

E′(uh)[vh] =
1

2

(
∇vh +∇vTh +∇vTh∇uh +∇uTh∇vh

)
.

Also, the homogeneous Dirichlet boundary condition directly enters the weak form of the
PDE with penalty parameter γD ∈ R.

As mentioned in Sec. 2.1.3, the material is presumed to be St. Venant-Kirchhoff which is
therefore hyperelastic [34, Ch. 4.4] and has a stored energy function W

(
E(u)

)
as written in

Eq. (2.11). It is known, that solving the equilibrium equations (2.18) is formally equivalent
to finding a stationary point of the total energy function I, i.e., find admissible uh ∈(
H1(Ω)

)d
such that I ′(uh)vh = 0 for all vh ∈

(
H1(Ω)

)d
(cf. [34]). For this to be true,

one needs that the applied forces are conservative, i.e., if there exist functionals F and G,
such that F ′(uh)vh =

∫
Th fhvh dx and G′(uh)vh =

∫
TN,h gN,hvh ds. This holds true in the

present context with F(uh) :=
∫
Th fhuh dx and G(uh) :=

∫
TN,h gN,huh ds. One can further

define a functional D(uh) := 1
2

∫
TD,h γDu

2
h ds with D′(u)v =

∫
TD,h γDuv ds. Thus, defining

the total energy function

I(uh) :=

∫
Th
W
(
(E(uh)

)
dx−F(uh)− G(uh)−D(uh) (3.2)

solving the weak form of PDE (2.18) is equivalent to solving I ′(uh)vh = 0 for all admissible

vh ∈
(
H1(Ω)

)d
.

This results in a discrete nonlinear problem (NLP) (e.g., [40, Ch. 4]) which is solved
by the well-known sequential quadratic programming (SQP) method, cf. [116, Ch. 18] or
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[150, Ch. 4.11]. The linear approximation I ′(uh)vh of I(uh) is as given by Eq. (3.1). It
renders a vector that will be defined as c := I ′(uh)vh. The quadratic approximation reads
as

I ′′(uh)[vh, wh] =

∫
Th

Σ(uh) : E′′(uh)[vh, wh] + E′(uh)[vh] : C : E′(uh)[wh] dx

−
∫
TD,h

γDvhwh ds
(3.3)

for vh, wh ∈
(
H1(Ω)

)d
. The resulting matrix is defined as A := I ′′(uh)[vh, wh]. The second

directional derivative E′′(uh)[vh, wh] of the tensor E(uh) is

E′′(uh)[vh, wh] =
1

2

(
∇vTh∇wh +∇wTh∇vh

)
.

The contact inequality in discrete form reads as Buh ≤ b. The SQP is formulated as the
Powell-Hestenes-Rockafellar (PHR) variant of the augmented Lagrangian (cf. [129]). It
solves for an update p to uh

min
p

1

2
pTAp+ cT p+

γC
2

∥∥∥∥Bp− (b+
λ

γC

)∥∥∥∥2

+

(3.4)

where ‖x‖+ := max{x, 0} and with penalty parameter γC ∈ R+. Compared to the stan-
dard augmented Lagrangian where a linear term λT (Bp − b) is added, the PHR version
with shifted penalties has the advantage that in the inner non-smooth, piecewise quadratic
minimization problems that are to be solved the strongly active penalties remain strongly
active. In the standard formulation, they become weakly active in the course of the aug-
mented Lagrangian iteration, which can induce frequent switching of penalties between
strongly and weakly active. The resulting problem (3.4) is in each SQP iteration solved
using the semismooth Newton method [78, 82, 130, 153].

Convergence. As SQP is a standard method, convergence results from [116] – first a
global convergence result, then results on local rate of convergence – will be informally
stated.

First, recall the idea of SQP. For a given target function f and constraint functions
ci, where i ∈ E denotes the equality constraints and i ∈ I the inequality constraints,
the Lagrangian L(u, λ) is defined as L(u, λ) := f(u) − λT c(u). The SQP method sets
up a problem, where the Lagrangian is approximated quadratically and the constraints
linearly. In each iteration k a search direction pk is computed. The Hessian ∇uuL is either
computed directly or approximated by some symmetric and positive definite matrix Bk.
Then, citing [116, Thm. 18.3], it is assumed that the quadratic problem is feasible, the
solution pk is bounded, and the sequences {uk} and {uk + pk} are contained in a closed,
bounded, convex region of design space in which the functions f and ci have continuous
first derivatives. Furthermore one needs, that the matrices Bk and multipliers λk are
bounded for all k. Then all limit points of the sequence {uk} are KKT points of the given
problem, i.e., the first-order necessary conditions are fulfilled. As Nocedal and Wright
state, these conditions for the conclusion of the theorem are restrictive. They hint to
more realistic conditions surveyed by Conn, Gould, and Toint [37] and their – Nocedal’s
and Wright’s – own usage of those results in Thm. 19.2.
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Depending on the computation of the second derivative in the quadratic program, dif-
ferent rates of convergence can be achieved. Before citing those results, three assumptions
need to hold which are stated first.

Assumption 3.1. [116, Ass. 18.2] Let u∗ be a local solution of the given problem at which
the following conditions hold.

1. The functions f and ci are twice differentiable in a neighborhood of u∗ with Lipschitz
continuous second derivatives.

2. The active constraint gradients with respect to u are linearly independent at u∗.
This condition implies that the KKT conditions (first-order necessary conditions)
are satisfied for some vector of multipliers λ∗.

3. The second-order sufficient conditions hold at (u∗, λ∗) (i.e., the Hessian is strictly
positive definite in (u∗, λ∗) for all (non-zero) vectors from the critical cone).

In the present application, the second derivative is computed exactly. In this case and
with Ass. 3.1 holding, the rate of convergence is quadratic, when the iterates (uk, λk) are
close enough to a local solution (u∗, λ∗).

Generally, if one did not have the exact Hessian, one could achieve only slower rates
of convergence. Were one to use a quasi-Newton approximate Hessian Bk, one can show
at best superlinear convergence of uk to u∗. If the reduced-Hessian SQP was applied, the
sequence {uk}k∈N method converges at most two-step superlinearly to u∗ [116].

3.2 Monte Carlo objective integration

Writing (2.17) in short as j =
∫
π(l)h(l) dl with

h(l) :=

∫
x∈Ωbone(α)

1

2

∥∥Σ(l;α)− Σ̄(l)
∥∥2

F
dx+ p

(
Σmax(l;α)

)
for a fixed α and assuming the evaluation of both functions π and h is efficiently possible,
Monte Carlo integration is applied to evaluate the integral.

As a first approach, one draws NMC ∈ N samples l(i) independently and identically
distributed (iid) in the integration domain L, i.e., one computes

jNMC
=
|L|
NMC

NMC∑
i=1

π
(
l(i)
)
h
(
l(i)
)
.

This form of the Monte Carlo integration renders inefficient when the probability measure
π is concentrated in small regions. This issue is theoretically easily overcome by drawing
the samples directly from the density function π, giving

jNMC
=

1

NMC

NMC∑
i=1

h
(
l(i)
)
, l(i)

iid∼ π. (3.5)

Following [40, 119], jNMC
converges to the sought after quantity j for NMC →∞ (see, e.g.,

Owen [119, Thm. 9.1]), i.e., jNMC
−−−−−−→
NMC→∞

j.

The drawing of samples from the inherent density function π is “theoretically” easy
because the theory, on the one hand, is easy, but generally the drawing is not possible.
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In this case the function needs to be approximated by a proposed density distribution q
from which a drawing of samples is easy then. This variant of Monte Carlo integration
is known as importance sampling. More about the theory and application of importance
sampling can be found in [40, 49, 54, 75, 119, 149].

Luckily in the present case, the application of importance sampling is not necessary as
the given probability density function π is a composite of numerous normal distributions
(see Eq. (2.19) and (2.20)). This allows a drawing of samples in the following composite
way:

First, for the given ordered list of motions Mq = {m1,m2, . . .} the cumulative sum of
frequencies w(mi) is computed. That is, for the number M = |Mq| of motions, the vector
Ŵ stores

Ŵk :=

k∑
i=1

w(mi), mi ∈Mq, k = 1, . . . ,M.

If ŴM 6= 1 – say not all daily motions are measured and included – each frequency w(mi)
is divided by ŴM thus giving the normalized cumulative sum

Wk :=
1

ŴM

k∑
i=1

w(mi), mi ∈Mq, k = 1, . . . ,M.

With this normalized cumulative sum W one can draw a sample u1 from a uniform dis-
tribution U(0, 1) and the biggest index i in W for which u1 ≤ Wi defines the motion
mi.

In a similar second step, the time step tj is sampled from mi using a normalization
of the recorded (equidistant) time steps for motion mi for which a second sample u2 is
drawn again from a uniform distribution.

Given lij = mi(tj), a random load l is drawn from the normal distribution N (lij , Slij ),
as previously elaborated in Eq. (2.19).

Convergence. The interest here lies with the rate of convergence of jMC from Eq. (3.5)
to the true objective value j. The convergence of Monte Carlo integration is given by the
strong law of large numbers, cf. [40, Ch. 8.2]. The rate of convergence is in low dimensions
comparatively slow with an error bound of O(1/

√
NMC) (see, e.g., [111, 141]), but this

error bound is independent of the space-dimension d which makes Monte Carlo integration
the powerful tool it is. For these results to apply, the involved probability distributions
need to be continuous which in the present case they are. While this error bound may not
be as good as error bounds of other quadrature rules, e.g., that of the simple trapezoidal
rule is O(N−2d), the number of function evaluations to achieve a certain accuracy does
not scale with the dimension d [40, Ch. 9.8].

Hence, with Monte Carlo, one has a relatively low convergence rate, but prevents to
suffer the curse of dimension by evaluating a multitude of function responses.

This said, it is yet unclear how to choose NMC. A suitable estimator will be presented
in Sec. 3.4.

3.3 Kriging interpolation of stresses

The overall aim of optimizing the implant position bears the problem of repeated solves
of the contact problem (2.18). This time-consuming contribution to the optimization
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algorithm is to be strongly reduced. Therefore the input of the contact problem in the
objective function (2.17), namely the quantities∫

x∈Ωbone(α)

1

2

∥∥Σ(l;α)− Σ̄(l)
∥∥2

F
dx and Σmax(l;α),

will be interpolated, such that after the interpolation model is set up, one function solve
will be comparatively cheap as opposed to solving the PDE (2.18). Note, that the inter-
polation surface is smooth and cannot capture discontinuities or local high nonlinearities.
This is why not the penalty function p itself is interpolated, but the penalty function input
Σmax.

Since in the following Kriging interpolation will be comprehensively introduced and
explained, the section will be structured in the following way: after a general summary of
the idea of Kriging interpolation, different Kriging methods will be briefly presented with
their interpolation aims and the involved assumptions. Depending on the interpolation
approach, the kernel involved in this technique can be a correlation/covariance function
C or a variogram function γ. The relationship between these functions, under what
conditions they are equivalent, and especially the nature and meaning of a variogram
will be discussed in a preceding subsection. Also an assortment of kernels will be given.
Eventually, for the chosen Kriging method the estimation of kernel parameters θ will be
explained, which are prerequisite to computing the Kriging weights ω. The section will
be finalized by stating some convergence results.

3.3.1 Kriging: a summary

Background. Kriging interpolation – or short Kriging – is also known as Gaussian
process regression (GPR), see, e.g., [127, 176]. It is used to construct surrogate models for
interpolation as in its present application, but also for classification, supervised and active
learning. GPR constructs a statistical model of a partially observed process under the
assumption that the observations are a realization of a Gaussian process (GP) (cf. [1]). A
GP is uniquely described by its mean and covariance function which are generally unknown
and thus have to be estimated. The general advantages of Kriging are that the prediction
on the one hand interpolates the given function responses, and on the other hand the
prediction is probabilistic so that one can compute empirical confidence intervals. These
intervals can be used to decide if one should refit the prediction in some region of interest.

A possible disadvantage is that GPR is not sparse, i.e., it uses all input sample-response
pairs

(
li, z(li)

)
to perform the prediction, and it loses efficiency if the number of these pairs

becomes too big. This is mostly due to the need of matrix inversion as will be seen in
Eq. (3.18). Suitable approximation methods can be applied to counter this downside. But
the issue of the inverse as well as the increasing number of floating point operations will
eventually slow the method down when the number of inputs becomes high.

In the present setting this disadvantage does not take effect, since the solution of
the contact problem is much more expensive compared to the applied linear algebra.
Additionally, the number of sample-response pairs is to be kept as low as possible anyway,
as it is the proclaimed aim to minimize solves of the contact problem (2.18) to start with.
On the other hand the advantages of GPR are fit for exploitation in the given problem
setting.

31



Kriging in a nutshell. The basic idea of Kriging is a fairly simple one: Given NK ∈ N
samples li along with function responses z(li), so-called sample-response pairs

(
li, z(li)

)
,

find weights ωi such that the linear combination of weighted responses
∑NK

i=1 ωiz(li) best
approximates the function response for an unsampled input l0

z∗(l0) :=

NK∑
i=1

ωi(l0)z(li) (3.6)

with z∗ denoting the interpolation function to the sought after function z. Therefore, with
the following vector notation

zT :=
(
z(l1), . . . , z(lNK

)
)
, ωT := (ω1, . . . , ωNK

),

Eq. (3.6) can also be written as z∗(l0) = ω(l0)Tz.
When inventing this interpolation technique, the South African mining engineer and

statistician Danie Krige [95] assumed a local dependency, i.e., the spatial correlation of
the responses z(li) depends on the samples’ relative distance hij = |li− lj | to each other as
opposed to the samples’ absolute position. Simply put: sample locations that are close to
one another are more likely to have a similar function response than ones that are farther
away from each other irrespective of where in a region of interest the samples are placed.
In this setting, the unknown function z is interpreted as a random field or a stochastic
process.

One is now interested in finding the right representation of the spatial correlation and
with that estimate the Kriging weights ωi for a specific sample l0. In other words: assuming
the right correlation model is known, fit the model parameters θ to the sample-response
pairs

(
li, z(li)

)
. If the sample-response pairs stay unchanged, so do the model parameters

θ. With the fixed correlation model and parameters the Kriging weights ωi can now be
estimated for any l ∈ L.

For reasons, elaborated shortly, in some instances a correlation function does not exist.
For these cases a shift in point of view occurs and the model parameters θ are fitted for
a variogram function γ.

3.3.2 Correlation, covariance, and variogram

As it was mentioned at the end of Sec. 3.3.1, one is interested in finding the right rep-
resentation of the spatial correlation and fit model parameters θ to either the covariance
function cov (or C, as will shortly be introduced) or the variogram γ. In this section,
the relationship between correlation, covariance, and the variogram is established. Fur-
ther, the meaning of the variogram itself is explained. Additionally, the definitions of
second-order stationary and intrinsically stationary will be given, which are later needed
as assumptions for the different Kriging methods introduced in Sec. 3.3.3.

First note, that with a covariance cov the dimensionless correlation corr can also be
defined. The two measures are related by the equality

corr(X,Y ) = cov(X,Y )/(σXσY ),

where X and Y are random variables and σX , σY are their respective standard deviations.
In the following, only the covariance function will be used, knowing that the covariance
and correlation are equivalent.

When fitting a covariance function, in the Kriging context the assumption of second-
order stationarity has to hold.
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Definition 3.1. (Second-order stationarity) Given a spatial domain D ⊂ Rd, d ∈ N, a
random function z is called second-order stationary if its expectation and covariance are
translation invariant over the domain, i.e.,

E[z(x+ h)] = E[z(x)],

cov[z(x+ h), z(x)] =: C(h),

for all x, (x+ h) ∈ D. This implicates the mean value µ to be constant: E[z(x)] = µ ∈ R
for all x ∈ D.

Note that cov describes a general, possibly not translation invariant covariance function
that takes two arguments. Should the covariance indeed be translation invariant, it de-
pends only on one argument, namely the separating vector h between x and x+h, for which
the function notation C is defined. Under the assumption of second-order stationarity, the
covariance function is bounded: C(0) <∞ [108].

The translation invariance of the covariance means that it is the same between any
two points that are the same distance h (and direction, if anisotropy applies) apart no
matter where in the region those two points are, see, e.g., Wackernagel [157, Ch. 10]. Since
the assumption of second-order stationarity does not always hold, one then usually fits a
variogram function γ(h).

The variogram. In some instances the covariance cannot be defined [161, Ch. 4.5] and
the assumption of second-order stationarity does not hold. Matheron [107, 108] recognized
this problem and introduced a new point of view: Instead of looking at the mean, i.e., the
expectation, and the variance of the underlying function z, he changed the focus to the
expectation and variance of differences for small distance |h|

E[z(x)− z(x+ h)] =: µ(h), Var[z(x)− z(x+ h)] =: 2γ(h).

The first defines the mean of increments h, the second defines the variogram function γ(h).
For these two measures, one defines intrinsic stationarity :

Definition 3.2. (Intrinsic stationarity) Given a spatial domain D ⊂ Rd, d ∈ N, a random
function z is called intrinsic stationary of order two if the expectation of differences h is
zero, the variance of differences is finite and it only depends on the value h and not the
position in the domain, i.e.,

E[z(x+ h)− z(x)] = µ(h) = 0,

Var[z(x+ h), z(x)] = 2γ(h) <∞,

for all x, (x+ h) ∈ D. The variance of differences γ(h) is called variogram.

Note that if second-order stationarity holds, the variogram and the covariance function
are equivalent. Then limh→∞ γ(h) exists and the equivalence is given by

γ(h) = C(0)− C(h),

C(h) = γ(∞)− γ(h) with γ(∞) := lim
h→∞

γ(h) <∞, (3.7)

(cf. Wackernagel [157, Ch. 10] and Webster et al. [161, Ch. 4.5]).
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Table 2: Parametric variogram and corresponding covariance models (where applicable)
with parameters a > 0 (the range), b > 0 (the sill), ν (smoothness), and gamma function
Γ and modified Bessel function of second kind Kν ; h ≥ 0 for all models.

Bounded linear variogram Matérn variogram

γa,b(h) =

{
b
(
h
a

)
, if 0 ≤ h ≤ a,

b otherwise,
γa,b,ν(h) = b

(
1− 1

2ν−1Γ(v)

(
h
a

)ν
Kν

(
h
a

))
,

Ca,b(h) =

{
b
(

1− h
a

)
, if 0 ≤ h ≤ a,

0 otherwise,
Ca,b,ν(h) = b

(
1

2ν−1Γ(v)

(
h
a

)ν
Kν

(
h
a

))
,

Exponential variogram Gaussian variogram

γa,b(h) = b
(

1− exp
(
−h
a

))
, γa,b(h) = b

(
1− exp

(
−h2

a2

))
,

Ca,b(h) = b exp
(
−h
a

)
, Ca,b(h) = b exp

(
−h2

a2

)
,

Power variogram
γa,b(h) = bha

(no corresponding covariance available).

For the choice of variogram models given in Tab. 2¶, exempt from the power model, a
covariance function C can be named for which the equivalence (3.7) holds true. Hence, in
case of second-order stationarity the power model cannot be applied as a kernel function.
If only the weaker assumption of intrinsic stationarity holds, all listed variograms can
be used as a kernel. Only the correspondingly named translation invariant covariance
functions C do not represent the correct covariance of the function z.

Where it applies (i.e., not the power variogram), the sill value b describes the supremum
of the co-/variance value of differences h. The range parameter a describes in the instance
of the bounded linear variogram at what distance h the sill is reached. For the Matérn,
the exponential, and the Gaussian model, the sill value is only reached asymptotically for
h → ∞. The smoothness ν which only appears in the Matérn model, describes exactly
that: the smoothness of the co-/variogram function.

3.3.3 Kriging methods

When introducing the Kriging interpolation, it is necessary to differentiate between dif-
ferent Kriging interpolation techniques each with its own set of assumptions. Next to
Kriging the Mean and Simple Kriging, the most common Kriging models are Ordinary
Kriging (OK) and Universal Kriging (UK).

The first mentioned technique, Kriging the Mean, is not an interpolation per se, but
way to estimate the (constant) mean of the underlying distribution.

Simple Kriging then is an interpolation method that uses the information of a known,
constant mean in its setup.

¶Cf. [157, 161] for further models.
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Table 3: Overview of Kriging interpolation methods.

Kriging method Aim Assumptions

Kriging the Mean predict mean value µ ∈ R mean µ unknown and constant, func-
tion z is second-order stationary

Simple Kriging interpolate function z mean µ known and constant, function
z is second-order stationary

Ordinary Kriging interpolate function z mean µ unknown and constant, func-
tion z is intrinsically stationary

Universal Kriging interpolate function z mean µ unknown and not necessarily
constant, function z can be decom-
posed in deterministic drift µ(l) and
intrinsically stationary residual y(l)
that has itself zero mean

Ordinary Kriging on the other hand, sets up the interpolation model without prior
knowledge of the mean. Yet the assumption is still, that the mean value is constant. As
opposed to the first two methods, where second-order stationarity is assumed, here only
the weaker assumption of intrinsic stationarity has to hold.

Even though OK may be the most common Kriging method, its assumption of constant
mean needs not necessarily be true. This is why the method of Universal Kriging with
nonstationary trend µ(l) will be presented and deployed, of which OK is a special case,
since µ(l) ≡ β0 = µ is a possible submodel.

More on Kriging and its application can be found in [61, 88, 132, 133, 144] where
Sakata et al. [133], using Ordinary Kriging, show that analytical integration is in general
possible, making obsolete the need for a numerical integration method, e.g., in the present
case that of Monte Carlo integration. Unfortunately, this cannot be applied here due
to the local high nonlinearities that are introduced through the penalty function as was
already mentioned in Sec. 1.3 and again in the beginning of Sec. 3. Only the smooth
response surfaces

∫
x∈Ωbone(α)

1
2

∥∥Σ(l;α) − Σ̄(l)
∥∥2

F
dx and Σmax(l;α) (cf. Eq. (2.13)) are

interpolated and the interpolation result of the latter is then inserted into the penalty
function introducing the local distinct features which cannot be integrated.

3.3.4 Kernel parameter estimation for the UK method

In this section information on Universal Kriging from [44, 106, 121, 157, 161] was utilized.
Recall from beginning of Sec. 3.3 that there are two functions to be interpolated

z∆Σ(l;α) :=

∫
x∈Ωbone(α)

1

2

∥∥Σ(l;α)− Σ̄(l)
∥∥2

F
dx, zmax(l;α) := Σmax(l;α), (3.8)

for fixed angle α. For simplicity, all theory will be developed for a generic z(l). The
general scheme, when the kernel parameters θ are not given – θ representing the vector
of parameters, e.g., a, b, and ν of the kernel model of choice, see Tab. 2 –, is to determine
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those parameters from the sample-response pairs
(
li, z(li)

)
at hand. Only then one can

compute the Kriging weights ω necessary to receive an interpolation value z∗(l0).
Universal Kriging splits the response function z(l) into two parts: a deterministic

trend, also called drift function µ(l), and a residual random function y(l)

z(l) = µ(l) + y(l).

By definition, only the random function has an associated covariance or variogram. As
the samples z(li) contain both, the trend and the residual, one cannot directly infer the
kernel parameters from the sample-response pairs, but needs a way to purge the bias of
the drift from the pairs. A suitable projection matrix X will be derived below. This will
then allow to derive the parameters θ by solving a log-likelihood problem. But before
solving for θ, some assumptions and notation need to be introduced.

Assumptions and notation for UK. The random function y is assumed to be second-
order stationary with zero mean and variogram function γ, in the context of UK γ is the
residual variogram function, such that

E[z(l)] = µ(l), γ(h) =
1

2
E
[
(y(x)− y(x+ h))2

]
.

The drift µ is defined via the linear combination of L+ 1, L ∈ N0, deterministic functions
f0, f1, . . . , fL with fk : L → R, k = 0, . . . , L. One needs L+ 1 < NK for the problem to be
well-defined and which hence enables one to define a projection matrix X as will be seen
in the next paragraph. Conventionally, f0(l) = 1. Usually it suffices to model linear or
quadratic drift for which one chooses low order polynomial functions fk correspondingly.
For the combination of these functions define unknown coefficients βk ∈ R such that

µ(l) =

L∑
k=0

βkfk(l).

Note, that for the setting of Ordinary Kriging, L is set to zero, hence βk = 0 for k > 0,
and with that µ(l) ≡ β0 = µ. For abbreviated writing define vectors

β = (β0, . . . , βL)T , f(l) =
(
f0(l), . . . , fL(l)

)T
,

and similarly

z =
(
z(l1), . . . , z(lNK

)
)T
, y =

(
y(l1), . . . , y(lNK

)
)T
,

as well as the matrix

F =


1 f1(l1) · · · fL(l1)
1 f1(l2) · · · fL(l2)
...

...
...

1 f1(lNK
) · · · fL(lNK

)

 . (3.9)

With this, one can now rewrite Eq. (3.6) as

z∗(l0) = ωTz = ωT (Fβ + y). (3.10)
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Estimation of kernel parameters θ via (REML). As the response function z(l)
is assumed to be the sum of the deterministic drift µ(l) and the random residual y(l)
with only y having an associated covariance or variogram function, the kernel parameters
θ cannot be directly inferred from the measured data pairs

(
li, z(li)

)
. If one did so, the

parameters θ would be biased by the trend µ(l) which leads to wrong estimates [121]. Thus
one has to find a way to determine the best fit θ without the bias Fβ. This is realized by
multiplying z = Fβ + y with a matrix X that filters the trend out, i.e., XFβ = 0. This
idea will be further pursued below.

Then, following [44, 106, 121, 161], a maximum likelihood method is applied to predict
θ. Since the response z will be restricted by matrix X, this method of parameter esti-
mation is called restricted maximum likelihood (REML). As Pardo-Igúzquiza et al. [121]
explain, the assumption of second-order stationarity holds for y, since the drift function
accounts for long-range variation and the residual for short range variation, i.e., finite
correlation length for the covariance, hence the variogram has a sill value and is bounded.
This in turn means, that the equivalence (3.7) is true and the parameters θ can be esti-
mated utilizing the covariance, as it is done in the aforementioned studies that apply the
maximum likelihood method.

On returning to matrix X that renders Fβ zero, all references [44, 106, 121, 161] name
the projection matrix

P = I − F (F TF )−1F T

which indeed has the desired effect. As Pardo-Igúzquiza et al. state, the matrix P is indeed
idempotent and has rank NK − (L+ 1) which the next Lemma proves.

Lemma 3.1. Assume (L + 1) < NK, the samples l1, . . . , lNK
are pairwise unequal, and

the functions f0, . . . , fL are chosen in such a way, that the matrix F ∈ RNK×(L+1) defined
in Eq. (3.9) has full rank (L + 1). With INK

being the NK × NK identity matrix, define
the P := INK

− F (F TF )−1F T .
Then the matrix P is idempotent and has rank NK − (L+ 1).

Proof. To show the idempotence of P , calculate PP :

PP =
(
INK
− F (F TF )−1F T

)(
INK
− F (F TF )−1F T

)
= INK

− 2F (F TF )−1F T − F (F TF )−1F TF (F TF )−1F T

= INK
− F (F TF )−1F T = P.

For idempotent matrices it holds true, that the rank of matrix equals its trace [122,
Ch. 9.4]. This can be comprehended in two steps. The first is, that the trace of a matrix
equals the sum of its eigenvalues. The second step is to see that idempotent matrices only
have ones and zeros as eigenvalues. For this, assume λ is an eigenvalue of P with non-zero
eigenvector x. Hence Px = λx. Then the following is true

λx = Px = P 2x = P · Px = P · λx = λPx = λ2x.

From this follows, that λ = λ2 and therefore λ is either 0 or 1. Since the number of
eigenvalues with value 0 give the dimension of the kernel, the number of ones give the
idempotent matrix’s rang. Thus rank(P ) = tr(P ).

Now three characteristics of traces will be used, namely

1. tr(A+B) = tr(A) + tr(B), for all A,B ∈ Rn×n,
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2. tr(cA) = c tr(A), for all A ∈ Rn×n, c ∈ R,

3. tr(AB) = tr(BA), for all A ∈ Rm×n, B ∈ Rn×m.

Then one finds

rank(P ) = tr(P ) = tr
(
INK
− F (F TF )−1F T

)
= tr

(
INK

)
− tr

(
F (F TF )−1F T

)
= NK − tr

(
F TF (F TF )−1

)
= NK − tr

(
I(L+1)

)
= NK − (L+ 1).

Before proceeding, define the covariance matrix C(θ) of samples li given a covariance
model C (see Tab. 2) and the parameters θ

C(θ)i,j := Cθ
(
|li − lj |

)
.

Since one will be needing XC(θ)XT to be nonsingular for the log-likelihood estimation
it is necessary for X to have full rank. Hence L + 1 linearly dependent rows need to be
omitted from P . But while Webster et al. [161] state, that any L + 1 rows from P can
be deleted, or Pardo-Igúzquiza et al. [121] simply remove the last L+ 1 rows, Dietrich et
al. [44] correctly note that arbitrary row deletion need not necessarily remove only linearly
dependent rows. Hence, a different approach is required.

Following Dietrich et al. [44], XFβ = 0 needs to hold for all β. This means that the
range of F must be in the null space of X. An obvious choice for X is choosing a matrix
whose rows are a basis for the complementary of the rang of F . Dietrich et al. achieve
this through the enrichment of F by NK − (L + 1) zero columns on the right, yielding a
square matrix F̃ = (F,0). Of F̃ the singular value decomposition is computed

F̃ = WΛV T . (3.11)

From W the last NK − (L+ 1) columns are taken and defined as W2, which indeed gives
an orthonormal basis for the complementary of the range of F , cf. [63, Ch. 2.5.2]. With
this, X := W T

2 is defined and has the desired properties.
Given X, one can now turn to the definition of the log-likelihood function. The re-

sponses in the vector z are assumed to be normally distributed with mean Fβ and covari-
ance C(θ). Hence Dietrich et al. state that the maximum likelihood estimates for θ and
(still unrestricted) β are the minimizers of the negative log-likelihood function

L(β,θ) = ln
(
det(C(θ))

)
+ (z − Fβ)TC(θ)−1(z − Fβ).

In the restricted case, the transformed response vector Xz is then normally distributed
with mean zero and covariance XC(θ)XT . Therefore, the (REML) estimate for θ is the
solution of the minimization of

min
θ
rL(θ) := ln

(
det(XC(θ)XT )

)
+ zTXT

(
XC(θ)XT

)−1
Xz. (3.12)

Thus, defining C̃ := XC(θ)XT and C̃ ′ := XC ′(θ)XT , where C ′(θ) defines the derivative
of C(θ) with respect to one of the parameters, e.g., a, one needs to find a such that the
necessary condition

rL′(θ) = tr(C̃−1C̃ ′)− zTXT C̃−1C̃ ′C̃−1Xz = 0 (3.13)
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holds.
To see that rL′(θ) is indeed the derivative of rL from Eq. (3.13) with respect to one

arbitrary constant parameter, realize first, that for arbitrary, invertible A ∈ Rn×n with
derivative A′

0 = I ′n = (A−1A)′ = (A−1)′A+A−1A′ ⇒ (A−1)′ = −A−1A′A−1.

The relation ln
(
det(A)

)′
= tr(A−1A′) can be found in [122]. The function (3.13) has to be

assembled respectively for all parameters in θ yielding a system of equations to be solved.
Further, one sees easily, that the derivation rule tr(A)′ = tr(A′) holds. Now defining

C̃ ′′ := XC ′′(θ)XT analogously to C̃ ′, where C ′′(θ) is the second derivative of C(θ) with
respect to one of the parameters. With this one can compute rL′′(θ) which is used on the
one hand for testing the sufficient condition

rL′′(θ) = tr(C̃−1C̃ ′′)− tr
(
(C̃−1C̃ ′)2

)
+ 2zTXT (C̃−1C̃ ′)2C̃−1Xz − zTXT C̃−1C̃ ′′C̃−1Xz > 0. (3.14)

On the other hand, the first derivate (3.13) and Hessian (3.14) of rL(θ) are used in the
application of the Newton algorithm [116] to solve (3.12) with initial guess θ0.

3.3.5 Estimation of Kriging weights for the UK method

With a known covariance or variogram function the estimation of the Kriging weights
ωi can now be targeted. The weights can be inferred by a rather simple matrix-vector
product whose analytic derivation is the focus of this section. In order to do so, two more
assumptions for Kriging need to be introduced and implemented.

Kriging is known as a Best Linear Unbiased Prediction (BLUP) of a random field z
(cf. Wackernagel [157]). As Wackernagel explains the unbiasedness condition translates to

E
[
z∗(l0)− z(l0)

]
= 0

with z∗(l0) as in Eq. (3.10). If βl 6= 0 for all l = 0, . . . , L the condition is fulfilled if

ωTF = fT0 (3.15)

holds. Here, f0 := f(l0).
An unbiased linear predictor is called best, if it has minimal prediction variance among

all other unbiased linear predictors. With mse being the mean squared error this means

z∗(l0) = argminz̄∈ULP(z)mse
(
z̄(l0)

)
:= Var

(
z̄(l0)− z(l0)

)
= E

[(
z̄(l0)− z(l0)

)2]
(3.16)

with ULP(z) representing the space of unbiased linear predictors of z. Together with the
unbiasedness condition (3.15) this poses the following minimization problem

min
ω
ωT (2γ0 − Γ̃ω),

s.t. ωTF = fT0 .
(3.17)

Here, Γ̃ is the symmetric variogram matrix and γ0 being a variogram vector defined as

Γ̃ij = γ
(
|li − lj |

)
, γ0,i = γ

(
|li − l0|

)
.
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The minimization problem (3.17) is solved with the Lagrange approach with multipliers
λ ∈ RL+1. In minimizing the Lagrange function, the interpolation function can finally be
given as

z∗(l0) =
(
γ0 − F

(
F T Γ̃−1F

)−1(
F T Γ̃−1γ0 − f0

)︸ ︷︷ ︸
=λ

)T
Γ̃−1z = (γ0 − Fλ)T Γ̃−1︸ ︷︷ ︸

=ωT

z. (3.18)

Note that the inverse of the variogram matrix Γ̃−1 as well as
(
F T Γ̃−1F

)−1
only needs to

be computed once as long as the sample-response pairs
(
li, z(li)

)
stay unchanged. The

computation of the inverse is usually done using factorization techniques, see, e.g., [40,
109, 138].

Summing up, the following algorithm is applied:

Algorithm 1 Compute Kriging Interpolation

1: procedure KrigingInterpolation
(
l0,li,z(li)

)
2: Estimate variogram parameters θ

a: Solve SVD (3.11) of F̃
b: Solve REML (3.12)

3: Compute the interpolate value z∗(l0) by solving (3.18)

3.3.6 Convergence

Though Kriging interpolation may not be as common as, for example, spline interpolation
or radial basis functions are, results on convergence have been studied as early as 1985 by
Yakowitz et al. [175]. Here, for stochastic processes with misspecification in the underlying
variogram, pointwise mean square convergence is proven. This is done for scattered data
as opposed to a regular grid or even optimally chosen sample points.

Wu et al. [173] took a deterministic function as interpolation aim. Also assuming
scattered points, uniform convergence in the Euclidean norm was shown and a conver-
gence rate depending on the mesh width h and the smoothness of the used interpolation
functions. Using a Gaussian variogram model and interpolating functions f : Rn → R
having generalized Fourier transform f̂(t) satisfying

∫
Rn
∥∥f̂(t)

∥∥2

2
exp
(
‖t‖22

)
dt < ∞ they

find that the local interpolation error – local to the samples li – can be arbitrarily small
[173, Thm. 6.1]. The result even goes so far that the radius ρ around samples li where is
error result applies, is not further limited, i.e., the interpolation error can be arbitrarily
small in the whole domain. It is to mention here, that Wu et al. mainly focused on prov-
ing their results for radial basis functions as interpolation scheme, but utilized and proved
bounds for Kriging as well.

Wang et al. [158] present the most recent research result. Next to giving an overview
of past convergence results thus contextualizing their own work, they prove uniform con-
vergence in the Lp-norm for an underlying Gaussian process with misspecification and
scattered points. The rate of convergence in terms of the fill distance hL as defined in
Eq. (3.19) below when using the Matérn model, with ν being the smoothness factor of the

Matérn kernel, is given as hνL
(
log(1/hL)

)1/2
. This error bound is sharp.

Not wanting to state all the technical details, an outline of the needed assumptions
will be given for the rate of convergence to hold. For this, define the set of samples

L := {l1, . . . , lNK
},
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the fill distance
hL := sup

l∈L
min
lj∈L

, ‖l − lj‖2 (3.19)

and a power function

PC(l) :=
(
1− cT0C−1c0

)1/2
with the covariance vector c0 and the covariance matrix C

Cij = C
(
|li − lj |

)
, c0,i = C

(
|li − l0|

)
.

The supremum of the power function is defined as

PC := sup
l∈L

PC(l). (3.20)

Now Wang et al. [158] prove convergence of z∗ to z under the condition, that for true
covariance function C of z and imposed covariance C of z∗, C may be no smoother than C.
Further, a certain moment condition on the spectral density needs to be fulfilled, which –
as stated – holds for the Gaussian and Matérn kernels. Lastly, the set of samples L needs
to be dense enough for PC to exist and to be bounded. Then

E
[
|z(l)− z∗(l)|∞

]
= O

(
PC
[
(L+ 1)A+ log1/2(1/PC)

])
, (3.21)

holds, where A depends on the drift functions fj and the matrix F from Eq. (3.9). It
is furthermore noted, that in many situations (L + 1)A is bounded from above and thus
O
(
PC(L+ 1)A

)
= O(PC) holds.

In a last step, let the transfer from the upper bound PC to the fill distance hL be
recollected. For that, regularity assumptions on the domain need to hold. In the case of
the Gaussian kernel, the assumption is L = [0, 1]d. For the Matérn model, the conditions
are more general, namely L needs to be compact and convex with a positive Lebesgue
measure. Then in both instances, the existence of constants c, h0 depending on L and

model parameters a, b, and ν (for the Matérn model) can be proven, such that PC ≤ hc/hLL

(Gaussian model) or PC ≤ chνL (Matérn model) for hL ≤ h0 holds.
In combination with Eq. (3.21) this leads to results on the rate of convergence of

OP
(
h
c/hL−1/2
L log1/2(1/hL)

)
for the Gaussian model and OP

(
hνL log1/2(1/hL)

)
which con-

cludes this section.

3.4 Adaptivity

The general strategy of adaptivity described below follows the ideas outlined in [67, 94,
154, 180].

In the beginning of Sec. 3 and in Sec. 1.3 it was stated, that for the initial setup of
the solution algorithm starts with a coarse discretization and applies adaptive refinement
throughout. For the adaptivity the error entering the solution algorithm due to discretiza-
tion needs to be controlled. In the present case, the discretization errors that need to be
controlled come from the FE-mesh on Ω, the solution of the PDE, the interpolation, and
Monte Carlo integration. One can see in Fig. 7 how the different approximation errors se-
quentially enter the computation of the objective (2.17) and its derivative to be discussed
in Sec. 4.3. The errors previous to the discrete displacement uh and uh itself are assumed
to be accurate enough and will in the following be disregarded.
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FE-grid PDE 
discretization

Discrete displacement

Interpolation error

Integration error

Objective & derivative

Assumption:

Everything  below this line is accurate enough

Fig. 7: Chart of different errors in the computation of the objective (2.17) and its deriva-
tive; discrete displacement uh and all errors before are assumed to be accurate enough.
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As grid adaptivity is well understood (see, e.g., [10, 23, 27, 97, 137] to name a few)
this will not be included in the present work even though eventually this needs to be part
of the final optimization algorithm.

This leaves the solution accuracy of the PDE, the accuracy of Kriging, and the accuracy
of MC integration as quantities where the discretization error needs to be controlled.

Given a grid discretization Th of Ω with grid elements T ∈ Th, and the quantity h

h = max
T∈Th

diam(T ),

one obtains a grid discretization error τh that dictates the accuracy that can at most be
attained by the succeeding algorithms of PDE-solution, interpolation, and integration.
Equilibrating the errors of these three methods, a classical 3 · τh3 argument will be applied.
This means that each error estimator of the three, the PDE solution, Kriging, and Monte
Carlo integration needs to indicate a performance at least as accurate as τh

3 . Otherwise
more Newton steps in case of the PDE solution, more samples for Kriging, or more draws
in the case of Monte Carlo integration are added.

The error estimator EPDE for the PDE solution is the easily computable residual of the
discretized PDE (2.18) measured in the L2-norm.

Further, the PDE discretization error needs to be included as well. A priori estimates
of the full PDE error depending on the mesh discretization h and convergence results can
for example be found in [9, 34, 69, 89, 90, 91, 92, 147, 168, 169]. It is assumed here, that
the solution of the PDE is accurate enough and will not be further investigated.

For the Monte Carlo integration the (mean) squared error EMC will be introduced in
this section, that gives a much better idea of how far the Monte Carlo-estimated value
jNMC

is away from the real value j.
Similarly one can estimate the root mean squared error EK in Kriging which will be used

to decide whether further samples should be added to the model or whether the current
model is trustworthy enough. Generally, the Kriging model is suited to sequentially add
further samples which is a characteristic that fits very well to an adaptive scheme. When
adding new samples, we will employ a hybrid decision tool that balances between global
exploration and local exploitation. For the local exploitation we will utilize cross-validation
errors, while the Kriging-intrinsic variance will be taken advantage of in global exploration.

Principally, the discretization error constitutes a major influence on the overall error
and thus needs to be considered. Yet this influence is on the one hand well researched
and including in depth discussion of the discretization error here would on the other
hand go beyond scope of this work. Therefore the focus is – deliberately simplifying –
limited to the discrete FE-model which is for this thesis regarded as the model to optimize.
This is, however, not stringently true, since for bigger implant position adjustments the
discretization of the geometry changes and with it so does the finite dimensional model
(cf. Sec. 4.2 further below). Nevertheless the discretization error is – piecewise in the
space of the control variable – disregarded. Following this line of argument, when any of
the three aforementioned subalgorithm’s accuracy is adaptively refined, these refinements
will in subsequent calculations not be reverted. This holds until the algorithm initiates
a remeshing. Then the discretization Th changes to Th′ and with it the discretization
error shifts to τh′ . Consequently, the subsequent errors change, too, such that all adaptive
refinements are nullified.

For further research and inclusion of the aforementioned left out mesh adaptivity, the
research by Becker et al. [10], Lamecker [97], and Schiela et al. [137] is to be mentioned.

43



Carstensen et al. [27] apply mesh refinement in a problem setting that includes an obstacle.
Another possibility presents itself through the application of sparse grids and adaptivity
in extending the sparse grid. As Bungartz et al. [23] state that this approach can lift the
curse of dimension to some extent.

For adaptivity in the solving process of the PDE, one could use multigrid methods
by Kornhuber et al. [90] – here in combination with contact and linear elasticity – or
collocation by Kouri et al. [93].

Should one want to apply a different surrogate model, Chkifa et al. [32] present adap-
tivity in polynomial solution interpolation, while Driscoll et al. [45] utilize radial basis
functions.

General goal-oriented error estimators and hence goal-oriented driven adaptivity is
investigated by Weiser [162], by Janon et al. [84], and by Becker and Rannacher [11].

Monte Carlo sampling. A benefit of the Monte Carlo method is, that one can use the
sample values to get a rough estimate σ2

MC of the variance σ2. The average squared error
in Monte Carlo sampling is σ2/n which also denotes the variance of jNMC

− j. Applying
the central limit theorem (see Sec. 3.2), we expect the mean value of this difference to
be 0. Hence the variance provides us with a confidence interval, i.e., how close jNMC

to j
actually is, and its square root gives us the order of error. One uses this approximation
of the standard deviation σ to balance with a given tolerance τh

3 with which we decide,
whether the estimate jNMC

is good enough or we need more sampling. This tolerance
derives as stated at the beginning of Sec. 3.4 from the grid discretization Th and the
subsequent discretization error τh.

Here, following [118, Ch. 2], the root mean squared total error for NMC sample points
is computed as (

E[(jNMC
− j)2]

) 1
2

=
σMC√
NMC

,

where σMC is the standard deviation of the random variable (cf. Eq. (3.5)). The Monte
Carlo error EMC will be measured with the relative root mean squared quantity defined as

EMC :=
σMC

jNMC

√
NMC

, (3.22)

To get a computable error estimate, σMC is approximated using the NMC sample points

[σMC]2 =
(
[h2]− [h]2

)
(3.23)

with

[h2] =
1

NMC

NMC∑
i=1

h2
i , [h] =

1

NMC

NMC∑
i=1

hi

and hi := h(li). Owen [118, Ch. 2.3] suggests a numerically stable way to compute an
approximation of σMC to avoid roundoff errors. For this one sets a quantity SNMC

to

SNMC
=
∑NMC

i=1 (hi − jNMC
)2. Starting with j1 = h1 and S1 = 0, the updates are

δi = hi − ji−1,

ji = ji−1 +
1

i
δi,

Si = Si−1 +
i− 1

i
δ2
i ,

(3.24)
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for i = 2, . . . , NMC and then set σ2
MC = SNMC

/ (NMC − 1). Therefore, one arrives at

EMC =
1

jNMC

√
SNMC

NMC (NMC − 1)
,

with jNMC
as in Eq. (3.5). In case of EMC ≥ τh

3 and with a defined initial sample size
NMC,0, one adds this initial samples size to the current sample size NMC = NMC +NMC,0

and reiterates Monte Carlo, drawing NMC,0 more samples.

Kriging. For the adaptive enrichment of sampling points in Kriging interpolation, the
exploitation of two strategies is implemented: global exploration and local exploitation,
and depending on the success of the lastly added sample favor the one, the other, or
balance the two. Therefore, the algorithm proposed by Liu et al. [100] is employed. To do
this a short motivation and description of the procedure will be given.

Generally one seeks to minimize the overall generalization error

GEK =

∫
L
E[PE(l)] dl

where PE(l) is the prediction error

PE(l) =
(
z(l)− z∗(l)

)2
. (3.25)

Following Liu et al. [100, Sec. 3], E
[
PE(l)

]
can be decomposed to (with the requirement

of z and z∗ being stochastically independent)

E
[
PE(l)

]
=
(
E
[
z(l)

]
−E

[
z∗(l)

])2
+E

[(
z∗(l)−E

[
z∗(l)

])2]
+E

[(
z(l)−E

[
z(l)

])2]
. (3.26)

As Liu et al. describe, the first term on the right-hand side is the bias representing the
average difference between the predicted response z∗(l) and the observed response z(l).
The second term is the model’s prediction variance which is known from Eq. (3.16). The
third term represents the intrinsic noise of the data, which is not of interest at this point.

The bias accounts for local exploitation guiding the sampling towards regions with large
prediction errors, while the variance ensures global exploration by avoiding the omission
of undetected interesting regions.

The performance of the adaptive scheme is as Liu et al. mention greatly influenced by
the trade-off between those two aspects and they propose a flexible rule which is put to
practice here, too. This rule adapts to whether the bias error was under- or overestimated.

The variance can easily be computed evaluating Eq. (3.17) after the weights are com-
puted. The bias, on the other hand, needs some elaboration.

From various options of bias computation, the cross-validation errors are evaluated
here. This works as follows: One iterates over all NK sampled pairs (li, zi) with zi := z(li).
In each iteration take one sample pair out and compute how well the other samples inter-
polate the missing one.

Denote by I := {1, . . . , NK} the index set of the Kriging nodes corresponding to the
samples, and by

Īj := {1, . . . , j − 1, j + 1, . . . , NK} = I \ {j} (3.27)
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the index set without index j. Then the cross-validation error at a sampled location lj
can be estimated as

εjK =

∣∣∣∣∣∑
i∈Īj

ω̄izi − zj

∣∣∣∣∣,
where ω̄i are the re-computed Kriging weights for Kriging interpolation on Īj . Compared
to the effort of computing the sample values zi from the PDE (2.16) the overhead for
re-computing the weights for error estimation is negligible.

While the model’s variance can be evaluated at any l ∈ L by computing

Var(l) = ω(l)T
(
2γ(l)− Γ̃ω(l)

) (UK)
= ω(l)Tγ(l) + λ(l)Tf(l), (3.28)

the cross-validation error can only be estimated for the sample locations li, i ∈ I. To
extend the error to the whole domain one takes the Voronoi partition of L according to
the Kriging samples li and has the cells Ci defined as

Ci := {l ∈ L : |l − li| ≤ |l − lj |∀j 6= i}, 1 ≤ i, j ≤ NK.

With this one has
εK(l) = εjK, l ∈ Cj . (3.29)

For the balancing of the two quantities, Liu et al. propose to introduce a parameter
β ∈ [0, 1) that adjusts in such a way that it accounts for the over- or underestimation of
the true error εtrue = |z∗(l)− z(l)| when the last node lNK+p−1, p = 2, 3, . . . was added

β =

0.5, p = 1,

0.99 ·min

{
0.5

ε2true(lNK+q−1)

ε2K(lNK+q−1)
, 1

}
, p > 1.

(3.30)

With this define the expected prediction error (EPE)

EPE(l) = β
(
εK(l)

)2
+ (1− β)Var(l)

and find lNK+p by solving
lNK+p = argmaxl∈LEPE(l). (3.31)

Thus for small β, the variance has a bigger impact and global exploration is favored. For
β values towards 1, the bias measured with the cross-validation error and hence local
exploitation are predominant in finding a new sample location.

Remark. Recall from Sec. 3.3, that in the present context there are two function inter-
polations z∗, namely z∗1 := z∗∆Σ and z∗2 := z∗max, see also Eq. (3.8). The prediction error
PE(l) (3.25) will be estimated for each function interpolation separately. Also the quan-
tities Var(l) (3.28), εK(l) (3.29), and εtrue will be computed separately and then added
together, such that, e.g., εK(l) := εK,1(l) + εK,2(l).

On the question of how to choose the “l ∈ L” in (3.31) from which the next added sample
lNK+p is estimated, there exist at least two practicable approaches. One is, to either have
a prepartitioning of L, say Lk ⊂ L, and evaluate the expected prediction error EPE(l) for
all l ∈ Lk.

The other is to sample L using randomly drawn samples, Latin hypercube sampling,
or orthogonal sampling. The method of choice is here importance sampling, i.e., sampling
l ∈ L using the probability density π(l). The amount of drawn samples to determine the
maximum expected prediction error from, will be NMC,0 in each step, the initial sample
size of Monte Carlo integration.
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Kriging error EK. In order to define the Kriging error EK, which measures the precision
of the interpolation, the prediction variance Var(l) minimized in Eq. (3.17) and again given
in Eq. (3.28) will be used. If the interpolation lacks precision, it will be adaptively refined.
The error will be measured relative to the objective function value jMC (3.5), so that both
the MC error EMC (3.22) and the Kriging error EK are relative errors.

Recall again from Eq. (3.8) that two response surfaces are interpolated. For the eval-
uation of the target function Eq. (2.17), the interpolation result for Σmax is then inserted
into the penalty function p from Eq. (2.14) of which the result thereof together with the
interpolated value of stress difference ∆Σ are needed. In order to be able to compare the
errors of Kriging and Monte Carlo, the relative Kriging error will be quantified in terms of
its impact on the objective. Therefore, the prediction variance Eq. (3.28) will be computed
and the standard deviation σK of the prediction be defined as

σK(l) := Var(l)1/2. (3.32)

For the two response surfaces, there will be two standard deviations of the prediction:
σK,1 for the response of the stress differences ∆Σ and σK,2 for the response of maximum
stresses Σmax. The quantity σK,2 will be measured in the linear approximation of the
penalty p, i.e., by p′(σK,2)σK,2 where

p′(σK,2) :=
d

dΣmax

(
l;α
)p(σK,2) = bc · exp

(
c
(
σK,2 − Σthres

))
. (3.33)

Inserted in the objective function, the relative Kriging error estimate is given as

EK :=
1

jMC ·NK,E

NK,E∑
i=1

π(li)
[
σK,1(li) + p′

(
σK,2(li)

)
σK,2(li)

]
,

for NK,E ∈ N. The error can either be estimated using cross-validation with the given
sample-response pairs

(
lj , z(lj)

)
, necessitating the setting up and evaluation of 2 · NK

Kriging interpolations, or one can utilize the probability π(l), Eq. (2.21), and the afore-
mentioned Monte Carlo sampling to compute

EK =
1

jMC ·NK,E

NK,E∑
i=1

σK,1

(
l(i)
)

+ p′
(
σK,2

(
l(i)
))

σK,2

(
l(i)
)
, l(i)

iid∼ π. (3.34)

The quantity of EK will be used to measure the interpolation precision of Kriging. If the
precision check fails, more samples will be added to the Kriging model to improve the
interpolation prediction.

Error equilibration. With a tolerance τh given by the domain discretization Th one
requires the error EPDE due to the PDE (2.18) as well as the errors of Monte Carlo
integration EMC (3.22) and Kriging EK (3.34) to each be lower than a third of the tolerance

EPDE <
τh
3
, EK <

τh
3
, EMC <

τh
3
. (3.35)

Adding these three errors up yields

EPDE + EK + EMC < τh.
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Generally one could choose to weigh the errors differently, i.e., not uniformly with a third
per contributing error. In the present context the equilibration of the errors is chosen as
a first approach.

Hence for the computation of the solution of the PDE (2.18), one would require the
performance of as many Newton steps as needed for the error EPDE to be below τh

3 . Here
it is assumed though, as mentioned in the beginning of Sec. 3.4, that the solution of the
PDE is accurate enough and it is not further examined.

In Kriging interpolation, the given initial sample size NK is increased one sample at a
time as described above until the accuracy criterion is met.

The enrichment of Monte Carlo samples with the initial sample size NMC,0 each time
EMC < τh

3 does not hold, was already explained at the end of the paragraph for Monte
Carlo in Sec. 3.4.

The final number of Kriging samples NK + p, p ∈ N0, and MC draws NMC,0 + oNMC,0,
o ∈ N0, will stay unchanged at the start of the next optimization iteration, but may again
be adaptively enriched. These quantities are reset when implant positioning requires a
remeshing, resulting in a different mesh discretization Th′ which in consequence changes
the (mesh-) discretization error to τh′ .

3.5 Objective computation

Summing up the chapter, this section will bring together the subroutines mentioned so far
and present them in a complete algorithm.

For the evaluation of the objective function one needs to fix initial values for NK sample
loads, the implant position α as well as the number of Monte Carlo samples NMC. Then
the procedure to compute target function value is given in Alg. 2.

Algorithm 2 Compute Objective Value j(α)

1: procedure ObjectiveFunctionValue(α,NK,NMC,τh)
2: Compute response values Σ(l;α) and Σmax(l;α) for NK loads
3: Apply Kriging (Alg. 1)

a: Adaptively increase samples according to Eq. (3.31) when performance check (3.35)
fails

4: Apply Monte Carlo integration using NMC samples
a: Adaptively increase samples when performance check (3.35) fails

48



4 Optimization

For the optimization of the implant position a quasi-Newton algorithm, namely the BFGS
algorithm, in combination with line search will be applied. The necessary concepts next
to the analytic derivation of the gradient of j(α) are explained in this chapter.

Let it be said that trust-region methods pose another possible approach and alternative
to line search. They can be used to handle inexactness in the objective evaluation and
the objective’s gradient. Both quantities are here given analytically, the latter in Sec. 4.3,
and their numeric inexactness is handled with adaptivity in Kriging and Monte Carlo
integration. The advantage of global convergence and the ability to minimize a non-
convex function under constraints are shared with both trust-region methods and the in
the following explained line search algorithm such that both concepts can be equally well
applied. More on trust-region methods can be found in [50, 71, 93].

The performance and runtime of the BFGS optimization could be enhanced by com-
bining the quasi-Newton algorithm with multilevel approaches. Multilevel, also known as
multigrid or multiscale methods, implement the idea of solving on a set of grids ranging
from a fine to a coarse discretization.

They were first formulated to solve PDEs as stated by Ho et al. [81], but have since
been applied to the solution of optimization problems, see, e.g., [99, 113, 114]. Typically
one starts with a fine grid, where the solution is expensive, and restricts the entities of
importance to increasingly coarse grids until the coarsest is reached, where one solve is
cheap. Then the solution is prolonged to ever finer grids until the finest level is reached
again. For both, the restriction and prolongation, it is possible and common practice to
perform a smoothing step. See [12, 22] and references within for the general setup.

Multilevel methods have been greatly researched for optimization, e.g., by Gratton et
al. [71] in combination with trust-region schemes, by Ho et al. [80, 81] with a Galerkin
model or with Newton-type optimization, or Gräser et al. [70] for a truncated nonsmooth
Newton multigrid algorithm which is then again applied to solve contact problems and
model, e.g., knee joint motion [135].

Weiser et al. [163] combined inexact Newton methods, that include Newton-like meth-
ods, a Newton-Truncated-CG methods and Newton-Lanczos type methods with adaptive
multilevel finite element implementation for the case of nonconvex minimization.

On the other hand multilevel methods have extensively been researched in their ap-
plication to (non-)linear contact- and obstacle problems [69, 90, 91, 92, 169]. Kornhuber
and Krause [90] investigate the incorporation of adaptivity in combination with contact
and linear elasticity.

That being said, it is left for future work to incorporate multilevel optimization in one
way or the other into the implant positioning optimization.

4.1 Quasi-Newton optimization

For the optimization the BFGS algorithm (named after its inventors Broyden, Fletcher,
Goldfarb, and Shanno) is used. This well-known quasi-Newton method is robust, guaran-
tees global convergence, i.e., independent of the initial guess, for smooth functions and a
superlinear convergence rate close to a (local) minimum, see, e.g., [2, 116, 166, 178] and
references within. If the function’s derivative is bounded in a convex domain around a
minimum, then the convergence of the program is already given, even without the need of
the function itself to be convex.
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As for any descent algorithm, the general update rule reads as

αk+1 = αk + skdk.

The stepsize of the current iteration is given with sk, while dk represents the descent
direction. The BFGS method states for dk

dk = −B−1
k j′(αk)

T , (4.1)

where Bk is an approximation of the second derivative of function j in its current iteration
αk which is the main idea of quasi-Newton: instead of computing the second derivative of
the function, the Hessian is approximated through a symmetric, positive definite matrix,
which is updated and adjusted when αk changes to αk+1.

Citing Xie et al. [174], the key in the convergence analysis of quasi-Newton methods
is to show that the search direction is not orthogonal to the gradient. This so-called
angle-condition translates to

cos(φk) =
−dTk j′(αk)T

‖dk‖2‖j′(αk)‖2
6= 0. (4.2)

The gradient is computed as described in Sec. 4.3. For an initial guess B0, one can
take the identity B0 = I or the identity multiplied with a multiple of the objective, e.g.,
B0 = |j(α0)|I. As Nocedal and Wright state [116, Ch. 6], an often effective heuristic is
to scale the starting matrix after the first stepsize is accepted yet before the first BFGS
update is performed. The first matrix iterate B0 is set to

B0 :=
yT y

yT t
I

with
t := αk+1 −αk = skdk, yT := j′(αk+1)− j′(αk),

Here, sk is the stepsize in iteration k. Before stating the update rule for B, first recall the
Armijo-Wolfe conditions for finding a stepsize. Let τ1 ∈ (0, 1) and τ2 ∈ (τ1, 1), then find
a stepsize sk that fulfills

j(αk+1) ≤ j(αk) + τ1skj
′(αk)dk (Armijo condition), (4.3a)

j′(αk+1)dk ≥ τ2j
′(αk)dk (Wolfe condition) (4.3b)

for αk+1 = αk + skdk. The first inequality is known as Armijo rule and ensures sufficient
descent of the step. The second inequality is a slope condition, guaranteeing sufficient
reduction of the slope. Convergence results for BFGS can already be proved for only the
Armijo rule. But with the Wolfe stepsize – at least theoretically [166] – the updates of
Bk are ensured to be positive definite. With the descent direction dk from (4.1) and a
stepsize sk fulfilling (4.3) the matrix update is

Bk+1 = Bk −
(Bkt)(Bkt)

T

tTBkt
+
yyT

yT t
. (4.4)

In practice different approaches to B offer themselves up, since inverting B may be im-
practical. One different take is to work with the approximate H = B−1 and have an
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update rule for Hk+1. While Werner mentions it in his book [166, p. 201] that one loses
control of whether the update matrix Bk+1 is still “sufficiently positive definite”, both he
and Nocedal and Wright [116, p. 141] show, that if Hk is positive definite, then Hk+1 is
positive definite, too.

A different idea that is also memory efficient, computes, stores, and updates the
Cholesky decomposition of B, namely the triangular matrix L.

The BFGS method will here be applied problem setting of implant position optimiza-
tion. With the constraint of retaining the range of motion the spatial position of the head
of the femur’s implant is all but fixed, leaving three design variables α = (αx, αy, αz) as
was already argued in Sec. 2.1. This leads to a relatively small Hessian to be stored and
inverted.

It is to mention, that the convergence of BFGS algorithm is largely proved for exact
values of the objective function j and its derivative j′. As the computed values here come
from discretized quantities, they are inherently inexact. For this setting there are yet few
results available. Götschel [64, Ch. 5.3] proves that dk is indeed a descent direction that
fulfills the angle condition (4.2) in case of inexact derivative j̃′k, if the symmetric positive
definite matrix Bk has bounded condition number κ(Bk) and the error in the derivative
ek
j̃′

is small enough

‖ek
j̃′
‖2 ≤

ε

κ(Bk)1/2
‖j̃′k‖2

with ε < 1/2. Götschel is even able to show that the BFGS update (4.4) still preserves
symmetry and positive definiteness of Bk, even if quantities t and y are inexact. The
subsequent convergence results are then given for convex problems.

Recent research by Xie, Byrd, and Nocedal [174] shows that with a slight modification
of the BFGS algorithm, i.e., with a lengthening of the search direction if no stepsize sk is
found fulfilling the Armijo-Wolfe conditions (4.3), the optimization method still converges
to a neighborhood of the solution at an R-linear rate. For the proofs the assumptions
are required, that the function j is bounded from below with an M -Lipschitz continuous
(M > 0) derivative, i.e.,∥∥j′(α1)− j′(α2)

∥∥
2
≤M‖α1 −α2‖2, for all α1,α2 ∈ A.

Furthermore, the errors in function and gradient values need to be uniformly bounded,
and lastly the function j needs to be m-strongly convex, with 0 < m ≤M .

Though both summands in the target function Eq. (2.17) are strictly or m-strongly
convex in l, the same needs not necessarily be true for α.

Thus it needs to be numerically evaluated whether the BFGS algorithm still converges
for the setting of optimal positioning of the hip joint implant. Otherwise BFGS could
be replaced with a simpler gradient descent algorithm. However, praxis has shown that
BFGS is functional here.

Remark. When discretizing a continuous problem (2.17) and (2.18), discretization errors
are inevitable. When the discretization is changed – be it of the FE-grid Th, the sample-
response pairs in Kriging introduced in Sec. 3.3, the drawn Monte Carlo samples introduced
in Sec. 3.2 – the discretization error changes and with it the problem definition. These
are so called “differential crimes” in the optimization, possibly leading to discontinuities
in the evaluation of the (discrete) target function, thus prohibiting the monotone decrease
of the objective function value.
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Fig. 8: Discontinuous objective function due to topology changes.

The “differential crimes” in Kriging and Monte Carlo can relatively easy be accounted
for; the former just needs to reuse the previous samples. For the Monte Carlo integration,
the loads li are only drawn randomly the first time MC is used and saved to be reused in
every consecutive application of Monte Carlo as long as the discretization of the geometry
Ωh stays unaltered. Otherwise the Monte Carlo-samples will be reset.

Only a remeshing of the geometry will be inevitable when the position of the femur
implant changes too much. The prevention of a differential crime is especially necessary
for the step size estimation when evaluating the Armijo-Wolfe conditions (4.3). This will
be accounted for by a special line search proposed in the next section.

4.2 Line search under grid topology changes

Position changes of the implant grid within the bone will, if the change is big enough,
lead to a different meshing of bone and implant which ultimately leads to discontinuities
in the objective function. See, e.g., Fig. 8 for a symbolic portrayal of such discontinuities.
The alternatives are those of a strangely deformed grid or a grid with bad mesh properties
which are both undesirable. A remeshing leads to a change in the discretization error and
ultimately to a faulty optimization algorithm, if this is not accounted for. In order to
prevent the commission of a differential crime, a fixed body transformation is computed
and applied to the bone nodes. Also, a threshold value ∆αmax is defined. Given a
remeshing of the geometry took place at α∗, only ∆α ∈ B∆αmax(α∗) with B∆αmax(α∗)
defined as B∆αmax(α∗) := {∆α ∈ A : |∆α − α∗| < ∆αmax} is feasible for an implant
positioning without changing the mesh discretization. The set A represents all feasible
angles.

Should the positioning of the implant deviate more than ∆αmax from an initial position
α∗, a remeshing is triggered by the algorithm thus controlling anticipated discontinuities
in the objective. The Wolfe conditions Eq. (4.3), namely the first part – the Armijo
condition – can only be tested in this small neighborhood B∆αmax(α∗). That limits the
stepsize to the boundary of the ball B∆αmax . Once a new iterate αk+1 reaches the limit,
a remeshing is initiated.

Another possibility is to test whether the descent direction is unchanged across the
threshold, i.e., test if 〈j′(αk+1)T , dk〉2 < 0 (cf. angle-condition (4.2)) holds true and sus-
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pend the sufficient descent check for this duration which is the modus operandi here.
More on line search and Wolfe condition can be found in Yousefpour [178].

4.3 Derivative evaluation

In order to determine an optimized implant position, the target function (2.17) is mini-
mized utilizing its derivative and employing it for the descent direction dk as described
in Eq. (4.1). For the evaluation of the objective function’s derivative j′(α) start with the
function itself

j(α) =

∫
l∈L

π(l)

∫
x∈Ωbone(α)

1

2

∥∥Σ(l;α)− Σ̄(l)
∥∥2

F
dx+ p

(
Σmax(l;α)

)
dl.

The control variable α ∈ A is from a set of admissible angles A. The main difficulty
lies with the control α influencing the PDE domain Ωbone(α) and thus the Cauchy stress
tensor Σ(α) that derives from the partial differential equation (2.18). This necessitates
the use of the transformation rule as well as the implicit function theorem. Since this is
the case, the function j will initially be stripped of the integral over the load domain L
and of the penalty function p (2.14) whose derivative is straight forward.

Remark. The easily computable derivative of the penalty p is indeed true for all appearing
terms in Eq. (2.14) but for the maximum norm. As mention in Sec. 2.1.5, the maximum
norm could be approximiated by the Lp-norm with sufficiently big exponent p. Of this
norm, one can again compute a derivative with ease and use this as an approximation in
the computation of ∂

∂αp.

Also an abbreviation Ω(α) for Ωbone(α) will be used. The (reduced) target function now
reads as

j̃(α) =

∫
Ω(α)

1

2

∥∥Σ
(
u(α)

)
− Σ̄

∥∥2

F
dx. (4.5)

For the correct application of the transformation rule, the findings from Brandenburg
et al. [19] are implemented. The domain transformation Ω(α) or more precisely the
positioning of the implant in the bone is realized through a transformation function

τ(α) := τ(x;α) = x+αū(x) = x+ ūα(x) (4.6)

which is defined as the deformation of an elastic body given the boundary displacements
ū.

With α = 0, the reference configuration is given as Ω(0) =: Ω and one computes
Σ := Σ(u(0)). When α 6= 0 applies, the definition is adjusted to Ω(α) =: Ωα, τ(α) =: τ ,
and Σ(u(α)) =: Σ(α). For better readability and for better differentiation between the
reference domain Ω and the deformed domain Ωα introduce τ(x) =: ξ for x ∈ Ω and
ξ ∈ Ωα.

As stated before, cf. Eq. (2.10), the function Σ is defined via u, i.e., with the Green-
Lagrange stress tensor (2.9) E(u), E : Ω→ Sd (S being the space of symmetric tensors of
second order in Rd) and the isotropic St. Venant-Kirchhoff tensor C

Σ(u) = C : E(u).

Though the convention for stating the Green-Lagrange stress tensor is as in (2.9), for the
computation of the derivative j̃′(α) of the function in Eq. (4.5) the mathematically correct
notation E(u) = 1

2(ux + uTx + uTxux) is needed and used.
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Assumption 4.1. Let the functions u and ū fulfill the condition u ∈
(
H1(Ωα)

)d
and

ū ∈
(
C1(Ω)

)d
. Furthermore let τ ∈

(
C1(Ω×A)

)d
hold.

Remark. Usually one can only assume a lower regularity ū ∈
(
H1(Ω)

)d
. The higher

regularity assumption fails especially if one has a corner singularity. This case needs to
be dealt with different means and requires theory found for example in Grisvard [74]. The
geometry in the present studies does not contain a corner singularity and therefore needs
not be considered here, such that a thorough in depth analysis would exceed the scope of
this thesis.

Higher regularity for τ needs to hold such that Schwarz’s theorem can be applied.

Now the target function can be defined on the reference domain Ω as well as on the
deformed domain Ωα

j̃(0) =

∫
Ω

1

2

∥∥Σ− Σ̄
∥∥2

F
dx, j̃

(
α
)

=

∫
Ωα

1

2

∥∥Σ(α)− Σ̄
∥∥2

F
dξ. (4.7)

For the optimization one is interested in the gradient of (4.5) with respect to the control
value α. The computed functions are defined on a transformed domain Ωα. So first one
needs to transform back to the reference domain Ω applying the transformation rule. The
result is stated in Lem. 4.1

Lemma 4.1. Let Ass. 4.1 hold. Applying the transformation rule to j̃(α), the integral
over Ωα can be converted into an integral over Ω. With Σ(α) as given in Eq. (2.10) and
u = u(α) the transformation result is∫

Ωα

1

2

∥∥Σ(α)− Σ̄
∥∥2

F
dξ =

∫
Ω

1

2

∥∥∥∥1

2
C : (uxτ

−1
x + τ−Tx uTx + τ−Tx uTxuxτ

−1
x )︸ ︷︷ ︸

=:Σ(τ,α)

−Σ̄

∥∥∥∥2

F

det τx dx,

(4.8)
with uξ(τ(x)) = ux(x)τx(x)−1.

Proof. The proof will be given by equation transformation where in the last step the
transformation rule for integrals is applied. Also the above stated identity τ(x) = ξ for
x ∈ Ω and ξ ∈ Ωα is used.∫

Ωα

1

2

∥∥Σ(α)− Σ̄
∥∥2

F
dξ =∫

Ωα

1

2

∥∥∥∥1

2
C :
(
uξ(ξ) + uξ(ξ)

T + uξ(ξ)
Tuξ(ξ)

)
− Σ̄

∥∥∥∥2

F

dξ

=

∫
Ωα

1

2

∥∥∥∥1

2
C :
(
uξ
(
τ(x)

)
+ uξ

(
τ(x)

)T
+ uξ

(
τ(x)

)T
uξ
(
τ(x)

))
− Σ̄

∥∥∥∥2

F

dξ

=

∫
Ω

1

2

∥∥∥∥1

2
C :
(
ux(x)τx(x)−1 + τx(x)−TuTx (x)

+ τx(x)−TuTx (x)
(
ux(x)τx(x)−1

))
− Σ̄

∥∥∥∥2

F

det τx(x) dx.
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With this, one can now approach the derivative j̃′(α). Eventually one is interested in j̃′(α)
with α → 0. For the reason why j̃′(0) as opposed to j̃′(α) is of interest, it needs to be
clarified, that the transformation τ(α) from Eq. (4.6) is directly applied to the grid. While
α is the design variable in Eq. (2.17), here in the computation of the derivative j̃′ the angle
is fixed, say α0, and one is interested in the function’s derivative for the current implant
position. In order to derive and use the correct quantities, an arbitrary α is assumed to
accurately apply the transformation rule changing from Ωα → Ω, but then the transition
α → 0 has to be performed to compute the derivative of j̃ in the current position α0.
Hence, j̃(0) here refers to the objective value on the current grid configuration.

The derivation of the derivative will be given in two steps. For j̃′(0) one needs uα(0).
The computation of which will be derived the first step. In the second step the derivative
of j̃ with respect to α is computed.

Its computation of uα(0) will be stated in the following Lemma:

Lemma 4.2. Let Ass. 4.1 hold. Define the functional

W (v,α) :=

∫
Ω
w
(
vx(x)τ−1

x (x), x
)

det
(
τx(x)

)
dx.

Then uα(0) solves the linear system of equations

Wv,v

(
u(0), 0

)
uα(0) +Wv,α

(
u(0), 0

)
= 0. (4.9)

Proof. Starting in the transformed domain Ωα, the displacement ũ due to boundary forces
is computed solving a variational problem. Specifically, ũ solves

ũ = argminṽ∈H1(Ωα)

∫
Ωα

w
(
ṽξ(ξ), τ

−1(ξ)
)
dξ =: W̃ (ṽ).

Transferring this to Ω using Lem. 4.1 yields

u(α) = argminv∈H1(Ω)W (v,α),

W (v,α) =

∫
Ω
w
(
vx(x)τ−1

x (x), x
)

det
(
τx(x)

)
dx,

with W (v,α) as defined in the Lemma. This means, that u(α) solves Wv

(
u(α),α

)
= 0.

From this one can infer that uα(α) solves

∂

∂α
Wv

(
u(α),α

)
= Wv,v

(
u(α),α

)
uα(α) +Wv,α

(
u(α),α

)
= 0.

For the second derivative of W with respect to v one derives

Wv,v

(
u(α),α

)
[φ, ψ] =

∫
Ω
wvx,vx

(
ux(α)τ−1

x , ·)
[
φxτ

−1
x , ψxτ

−1
x

]
det τxdx,

while the derivative Wv,α computes to

Wv,α

(
u(α),α

)
φ =

∫
Ω

(
wvx,vx

(
ux(α)τ−1

x , ·)
[
φxτ

−1
x , ux(α) ∂

∂α(τ−1
x )
]

+ wvx
(
ux(α)τ−1

x , ·)
[
φx

∂
∂α(τ−1

x )
])

det τx + wvx
(
ux(α)τ−1

x , ·
)[
φxτ

−1
x

]
tr
(
τ−1
x ūx

)
det τx dx.
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The equality ∂
∂ατ

−1
x = −τxūxτ−1

x holds. Using the assumptions for τ , the order of differ-
entiation (τα)x = (τx)α is exchangeable using Schwarz’s theorem.

Now one derives uα(0) from the above equations by setting α = 0 and τ = id. This
yields

Wv,v

(
u(0), 0

)
uα(0) +Wv,α

(
u(0), 0

)
= 0

with

Wv,v

(
u(0), 0

)
[φ, ψ] =

∫
Ω
wvx,vx

(
ux(0), ·)

[
φx, ψx

]
dx,

and

Wv,α

(
u(0), 0

)
φ =

∫
Ω
−
(
wvx,vx

(
ux(0), ·

)[
φx, ux(0)ūx

]
+ wvx

(
ux(0), ·

)[
φxūx

])
+ wvx

(
ux(0), ·

)
[φx]div(ū) dx.

This completes the proof.

Lemma and proof have left out the contribution of the boundary parts. Its derivation
works in similar and easier way. The resulting addition is the following:

To Wv,v

(
u(0)), 0

)
one has to add

Wv,v

(
u(0), 0

)
Γ
[φ, ψ] =

∫
ΓD

γ[φ, ψ] ds,

where γ ∈ R is the penalty parameter with which the Dirichlet boundary is enforced. To
Wv,α

(
u(0), 0

)
one needs to add

Wv,α

(
u(0), 0

)
Γ
φ =

∫
ΓD

γu(0)φ
(
tT ūxt

)
ds−

∫
ΓN

gNφ
(
tT ūxt

)
ds,

with t being the tangent to the boundary. The missing contact boundary contribution on
the other hand is more intricate and will be included using finite differences as opposed
to the inclusion by analytical means. Its inclusion into the derivative j̃′ will be explained
in the Sec. 5.

With this at hand, one can now turn to the actual derivative j̃′(0).

Lemma 4.3. Let Ass. 4.1 hold and let uα as in Lem. 4.2 be given. Then the gradient
j̃′(0) of the target function (4.5) is given by

j̃′(0) =
d

dα

1

2

∫
Ωα

∥∥Σ− Σ̄
∥∥2

F
dξ =

∫
Ω

1

2

∥∥Σ− Σ̄
∥∥2

F
div(ū) +

〈
Σ− Σ̄,Σα(id, 0)

〉
F

dx, (4.10)

with

Σα(id, 0) =
1

2
C :
[
ux,α − uxūx +

(
ux,α − uxūx

)T
+ uTx,αux − ūTxuTxux +

(
uTx,αux − ūTxuTxux

)T ]
.

(4.11)
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Proof. In computing the derivative of j̃ one uses ∂
∂ατ = ū with τ as given in Eq. (4.6). Note

as before, that the order of differentiation (τα)x = (τx)α is exchangeable using Schwarz’s
theorem. This gives

j̃′(α) =
d

dα

1

2

∫
Ω

∥∥Σ(τ,α)− Σ̄
∥∥2

F
det τx dx

=

∫
Ω

1

2

∥∥Σ(τ,α)− Σ̄
∥∥2

F
tr
(
τ−1
x ūx

)
det τx +

〈
Σ(τ,α)− Σ̄,Σα(τ,α)

〉
F

det τx dx.

(4.12)

The term Σα(τ,α) equals to

Σα(τ,α) =
1

2
C :
(

(ux)ατ
−1
x − uxτxūxτ−1

x +
(
(ux)ατ

−1
x − uxτxūxτ−1

x

)T
+ τ−Tx (uTx )αuxτ

−1
x − τ−Tx ūTx τ

T
x u

T
xuxτ

−1
x

+
(
τ−Tx (uTx )αuxτ

−1
x

)T − τ−Tx ūTx τ
T
x u

T
xuxτ

−1
x

)
.

(4.13)

The equality ∂
∂ατ

−1
x = −τxūxτ−1

x holds.
When computing the derivative j̃′ for α = 0, the transformation τ yields the identity.

This simplifies the equations (4.12) and (4.13) admitting j̃′(0) and Σα(id, 0) as stated in
the Lemma.

Now returning to the full target function (2.17) including the integral over the load domain
L and the penalty function p, one gets for j′

j′(0) =

∫
l∈L

π(l)

∫
Ωbone(α)

1

2

∥∥Σ−Σ̄
∥∥2

F
div(ū)+

〈
Σ−Σ̄,Σα(id, 0)

〉
F

dx+
∂

∂α
p
(
Σmax(l; 0)

)
dl.

(4.14)
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4.4 Optimization algorithm

Bringing all of the above together, the optimization algorithm is given as a whole. The
algorithm needs stopping criteria. With εj > 0 and εderiv > 0 one controls, if objective
value or the value of the derivative is sufficiently small. With ε∆j > 0 and ε∆α > 0 one
examines, whether the change of the objective value or the change in the control variable
is small enough. Define δ ∈ (0, 1) for stepsize reduction. For a given initial implant
position α0, initial symmetric, positive definite matrix B0, τ1 ∈ (0, 1), and τ2 ∈ (τ1, 1) the
optimization is as in Alg. 3.

Algorithm 3 Optimize Implant Position

1: procedure OptimizePosition(α0,B0,εderiv,εj, ε∆j, ε∆α, δ, τ1, τ2)
2: Set k := 0, l := 0
3: Compute j(αk)
4: if j(αk) < εj then return αk

5: Compute j′(αk)
6: if ‖j′(αk)‖2 < εderiv then return αk

7: dk = −B−1
k j′(αk)

T

8: sk = δl

9: αk+1 = αk + skdk
10: Compute j(αk+1) and j′(αk+1)
11: if j(αk) < εj or ‖j′(αk)‖2 < εderiv then return αk+1

12: Test j′(αk+1)dk ≥ τ2j
′(αk)dk and

13: j(αk+1) ≤ j(αk) + τ1skj
′(αk)dk

14: if grid connectivity has changed (due to remeshing) then
15: replace Armijo rule by: 〈−j′(αk), j′(αk+1)〉2 < 0

16: if test results all true then
17: if ‖j(αk+1)− j(αk)‖2 < ε∆j then return αk+1

18: if ‖αk+1 −αk‖2 < ε∆α then return αk+1

19: Set t := αk+1 −αk and yT := j′(αk+1)− j′(αk)
20: Update Bk+1 := Bk − (Bkt)(Bkt)

T

tTBkt
+ yyT

yT t
21: k = k + 1, l = 0, goto 3
22: else
23: l = l + 1, goto 8
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5 Numerical Evaluation

Before the numerical performance of the interplay of algorithms 1, 2, and 3 is presented,
first some more information to the setup will be given. After that the relative computing
times of solving the PDE (2.18) for the initial Kriging samples in Tab. 4, setting up
Kriging interpolation, and Monte Carlo integration will be compared in Sec. 5.2. Finally,
in Sections 5.3–5.5 the Kriging method, Monte Carlo method and the optimization are
evaluated.

5.1 The setup

The start of the numerical section is marked by clarifying the origin of some data and
algorithms in the background.

The anonymized bone geometry data, the femur and pelvis grid, were provided by the
work group “Computational Diagnosis and Therapy Planning” from Zachow at the Zuse
Institute Berlin. More of their work on computational geometry and virtual anatomy can
be found in Zachow et al. [179].

The testing of algorithms started for computing time reasons with a 2D setup of a
hip joint with and without an implant. See Fig. 9 and Fig. 10 for the respective (coarse)
FE-grids. The (re-)meshing of the grids is performed by Triangle� from Shewchuk [142].
With the help of this software, a conforming Delaunay mesh generation with no angles
smaller than 20 degrees is realized.

In the 2D setup the number of control variables α is reduced from three entries to a
scalar α. For this design variable the admissible space of positions A is defined as follows:
From a centered setup of the femur implant inside the bone an angle interval was estimated
in such a way, that the implant stem is allowed to touch the cortical bone and must not
go further. The resulting interval is A := [−3.5◦, 1.5◦], cf. Fig. 11.

The defined boundaries for the bone and the implant geometry are illustrated in Fig. 12.
The contact boundary is depicted in red and the Neumann boundary in green. All non-
colored parts belong to the Dirichlet boundary. While on the pelvis the Dirichlet boundary
is strongly enforced, thus rendering the pelvis a fixed obstacle, it is only weakly enforced
on the femur.

The setup and implementation of a roughly realistic bone-implant environment, ma-
terial parameters for (healthy) bone, a common implant alloy in Tab. 1 in Sec. 18, and
yield stress as given below have been compiled from [18, 76, 112, 120, 124]. More on hip
joint implants, different fixation methods, long, middle, and short stem implants, a vari-
ety of alloys, their mechanical properties, and different casting techniques can be found in
[18, 47, 117].

Getting an average estimate of the frequency of daily motions w(m) as introduced in
Eq. (2.21), the report [110] was utilized. See Fig. 13 for a visualization of the complete
load probability map π(l) on the discretized load domain Fx × Fz (the discretization will
be specified in the next paragraph). For an improved visualization, the logarithm of the
load probability log

(
π(l)

)
is depicted, where values of π(l) = 0 were changed to 10−18

before applying the logarithm. In the bottom image the red crosses mark the initial load
samples from Tab. 4.

The solution of the PDE (2.18) was implemented in Kaskade7 ** applying a SQP

�https://www.cs.cmu.edu/~quake/triangle.html
**https://www.zib.de/projects/kaskade7-finite-element-toolbox
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Fig. 9: Bone grid (left, 20,040 DOF) without implant for the computation of the stress
distribution Σ̄ (right).
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Fig. 10: Bone-implant grid (left, 2197 DOF) for the computation of the stress distribution
Σ (right).
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Fig. 11: The 2D hip joint with a centered femur implant position α = 0◦ and the possible
changes within [−3.5◦, 1.5◦].

Fig. 12: The defined boundaries are the contact boundary (red), the Neumann boundary
(green at the bottom), and everything else is the Dirichlet boundary.
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Fig. 13: The logarithm of the load probability map log (π(l)) computed on L50 using
information from report [110] for an estimate on w(m) with marked initial load samples
(red crosses) as in Tab. 4; if π(l) = 0 then this value was changed to 10−18 before applying
the logarithm.
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method as explained in Sec. 3.1. Kaskade7 is a finite element toolbox for the solution of
stationary or transient systems of partial differential equations [66, 68] that also allows for
the inclusion of contact constraints.

Stress responses on the load domain L. As stated in Sec. 1, the load domain L is set
up using information from the database OrthoLoad by Bergmann and Duda, cf. [13, 14, 39].
The standard loads on the hip joint are mostly taken from daily activities, e.g., walking,
sitting down, or going up the stairs, and measurements of up to ten different people
per activity were recorded. The activities were provided for both, the average load case
(standardized to a 75 kg person) and the high load case (standardized to a 100 kg person).
This defines a domain of daily loads (recall Eq. (1.1))

L = Fx × Fy × Fz ×Mx ×My ×Mz

= [−4000, 0]× [−200, 3000]× [0, 10,000]× [−4, 5]× [−2, 3]× [−2, 2]

(in N for forces and Nm for moments) with the coordinate system as given in Fig. 3. In
2D the load domain reduces to

L2D := Fx × Fz ×My = [−4000, 0]× [0, 10,000]× [−2, 3]

which will in the following be referred to as L.
The load domain L was discretized with a mesh width of 50 resulting in 81× 201 grid

nodes (and one fixed moment my ∈My), on which the stress difference, maximum stresses,
penalty function values, and the load probability will be evaluated. Computations on this
grid will be indicated as computations on L50. The implant will be fixed in position 0◦.

In Fig. 14, one can see the result of the integrated stresses for the remaining bone, with
Ωbone(0

◦) as defined in Eq. (2.1), in the bone-implant setup computed on L50 while Fig. 15
depicts the integrated stress of the healthy bone setup but only incorporating those bone
parts that remain after implantation. In Fig. 16 on the other hand, one sees the result
of the integrated stress differences

∫
Ωbone(0◦)

1
2‖Σ − Σ̄‖2F dx again on L50. The result of

maximum stresses Σmax on the discretized grid L50 can be found in Fig. 17.
Unfortunately, one sees highly noisy data in Fig. 16 which prohibits the use of Kriging

interpolation as argued in Sec. 3.3. The noisy data seems to originate from subtle bugs in
the implementations that could not be fixed in due time. Recall from Sec. 3.3.4 the two
functions z∆Σ(l;α) and zmax(l;α) to be interpolated. In light of the noisy data, they will
be substituted from Sec. 5.3 on. In the succeeding Sec. 5.2, where the computing times of
the subalgorithms will be evaluated, we will solve the PDE (2.18) and will set up Kriging
functions using arbitrary kernel and drift models which will thereafter be implemented in
the Monte Carlo integration. Only afterwards, starting from Sec. 5.3, one is interested in
the correct interpolation, interpolation error, and decrease thereof when adaptively adding
samples, as opposed to abstract computing times. The target functions z∆Σ and zmax will
then be substituted by

z̃∆Σ(l;α) := (−fx + fz)
(
sin(−fx) + sin(fz) + 2

)[
(α+ 2)(α− 1) + 2.25

]
,

z̃max(l;α) := 350fz
[
(α+ 1.5)(α+ 1.2) + 0.152

]
.

(5.1)
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Fig. 14: The integrated stress response
∫

Ωbone(0◦)
Σ(l) dx in the remaining bone of the

bone-implant setup computed on L50.
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Fig. 15: The integrated stress response
∫

Ωbone(0◦)
Σ̄(l) dx in the healthy bone in what is

to be the remaining bone of the bone-implant setup computed on L50.
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Fig. 16: The integrated stress difference
∫

Ωbone(0◦)
1
2‖Σ(l) − Σ̄(l)‖2F dx in the remaining

bone of the bone-implant setup computed on L50.
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Fig. 17: The maximum stress values Σmax in the remaining bone of the bone-implant
setup computed on L50.
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Fixing the parameters of the penalty function. The yield stress for cortical bone
is approximately 140 MPa in uniaxial, i.e., in Fz direction and 55 MPa in transverse to
uniaxial direction (on compression) [18, 56, 120, 131, 155, 170] which roughly equates to
total loads of fz = 280 kN and fx = 110 kN, respectively, above which the stability of
bone can not be guaranteed any more.

In a realistic model, one might set Σthres from Sec. 2.1.5 to accommodate these yield
stress values. Combining the surgeon’s experience with an analysis of the bone structure,
which may be weakened due to osteoporosis, the yield stress may even be lower than the
average value in a healthy bone. Here, the set up model is a demonstrative one, to prove
the function of the proposed optimization with its subalgorithms. For this purpose, the
quantity Σthres will be set to a value relevant for the present evaluation and the parameters
in the penalty function will be adjusted accordingly. This will be done utilizing the peak
load during stumbling – a bad case scenario included in the OrthoLoad database – and
an average high load sample. Also, the interest lies in the highest stress in the remaining
bone Ωbone(α) as opposed to the overall highest occurring stress. After the surgery, the
highest appearing stress would be in the implant, since the implant parts are in contact
with each other and in the area of contact, the stress value is maximized (cf. Fig. 20). But
as the implant is much stiffer than the (possibly diseased) bone, penalizing high stresses
in the remaining bone is of greater interest.

Defining the peak load from the recorded stumbling

lpeak := (fx, fz) = (2462.7,−10,608.5) (5.2)

(no moments were recorded) and an average high load l̃ := (1010,−3451), the computed
maximum stress in the remaining bone Ωbone(α) of the bone-implant setup for the peak
load (5.2) resulted in 3.9 MPa and 1.3 MPa for an average high load case l̃.

Thus, the parameter Σthres is set to 2.9 MPa with a bias towards the non-harmful loads
and a sharp increase of the penalty function thereafter. With this value, the algorithm
penalizes loads resulting in high stress responses in the bone well before the malign case of
peak stumbling stress is reached. Setting the parameters b = 10−15 and c = 10−4 finalizes
the penalty function (2.14).

The logarithm of penalty function values, i.e., log
(
p
(
Σmax(l; 0◦)

))
, over L with femur

implant in position α = 0◦ are depicted in Fig. 18. Values of 0 were changed to 1 before
applying the logarithm.

Now keeping a fixed load l0 := (−200, 9000), the logarithm of the penalty function
for different implant positions α is shown in Fig. 19, again setting 0 values to 1 before
applying the logarithm. For this, the interval of admissible implant position angles A was
discretized by ∆α = (10−4)◦. When the change in position of the implant adds up 0.1◦ the
bone-implant mesh was reset, leading to a different FE-discretization and subsequently to a
discontinuity in the objective. Below the value 0.1◦, fixed body transformation was applied.
Thus, discontinuities are expected to occur every 0.1◦. The depicted discontinuities within
the 0.1◦ intervals may originate from a coarse FE-grid and a fluctuation between elements
in which the maximum stress Σmax is attained.

The Figures 18 and 19 depict the logarithm of the penalty function because otherwise
the figures would only show the single highest peak of the graph or surface, respectively.
With the approach chosen here, one achieves a better understanding of the penalty func-
tion.
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Fig. 18: Graph of the logarithm of the penalty function (2.14) log
(
p
(
Σmax(l; 0◦)

))
com-

puted on L50.

Fig. 19: Graph of the logarithm of the penalty function (2.14) log
(
p
(
Σmax(l0;α)

))
with

fixed load l0 = (−200, 9000) for different implant positions with a discretization of ∆α =(
10−4

)◦
of the admissible angle interval A; the apparent discontinuities are elaborated in

the text.
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Visualization of stress shielding . The result of the stress distribution in the healthy
bone for the case of lpeak from Eq. (5.2) can be seen in Fig. 20 on the left. The same
load applied to the bone-implant geometry with the femur implant in position α = 0◦

computes to the result in Fig. 20. In Fig. 21, the difference in stress distribution with
respect to the remaining bone after hip joint replacement is depicted. The minimization
of this stress difference, i.e., the mean across all loads l ∈ L, with the added value of the
penalty function (2.14) is the aim of optimization.

Objective function. Without optimization, the interval of admissible implant position
angles A was discretized by ∆α =

(
10−4

)◦
. When the change in position of the implant

adds up to 0.1◦ the bone-implant mesh was reset, leading to a different mesh discretization
and subsequently to a discontinuity in the objective. Below the value 0.1◦, rigid body
transformation was applied. In these sections, the objective function is continuous and
allows for optimization. Using the exemplary load l = (−200, 250) the resulting graph
of the stress difference integral

∫
Ωbone(α)

1
2‖Σ(l) − Σ̄(l)‖2F dx can be seen in Fig. 22, the

resulting penalty function values in Fig. 19.

The logarithm log
(∫

x∈Ωbone(0◦)
1
2

∥∥Σ(l; 0◦) − Σ̄(l)
∥∥2

F
dx + p

(
Σmax(l; 0◦)

))
of both the

stress differences depicted in Fig. 16 and the penalty function shown in Fig. 18 computed
on L50 is given in Fig. 23. The inclusion of the penalty function necessitates taking the
logarithm of the sum of stress difference integral and the penalty function. Note that this
figure still leaves out the probability function π(l). Finally, Fig. 24 shows the response
surface of the logarithm of the target function at α = 0◦

log
(
π(l)

[∫
x∈Ωbone(0◦)

1

2

∥∥Σ(l; 0◦)− Σ̄(l)
∥∥2

F
dx+ p

(
Σmax(l; 0◦)

)])
,

computed on L50. If π(l)
[∫
x∈Ωbone(0◦)

1
2

∥∥Σ(l; 0◦)− Σ̄(l)
∥∥2

F
dx+ p

(
Σmax(l; 0◦)

)]
= 0 for one

of the depicted l ∈ L50 then this value was changed to 10−18 before applying the logarithm.
Leaving out the logarithm that was taken here for demonstrative purpose, and integrating
over the load domain L gave the objective function value j(0◦), Eq. (2.17).
The shown surfaces in Fig. 16 and Fig. 18 are the response surfaces to be interpolated
with Kriging.

Set up Kriging and Monte Carlo. The initial sample loads for Kriging were chosen
considering the load probability map π(l), cf. Fig. 13. The initial samples li are found in
Tab. 4. For the moment space My a fixed moment m was chosen. For the Monte Carlo
integration NMC was set to 5000.

5.2 Computing times of the separate subalgorithms

Two FE-grids of the bone (Fig. 9) and the bone-implant setup (Fig. 10) with different
discretizations will be used to show the impact on computation time of the separate
subalgorithms. The first is the non-refined, coarse grid (N = 0), the second is the fine
grid (N = 1) which is once uniformly refined.

As mentioned at the end of Sec. 1.3, the FE-grid of the pure bone geometry is finer
discretized than the bone-implant geometry because the PDE needs to only be solved
once per applied load for this geometry. On the other hand, the contact boundary of
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Fig. 20: Resulting stress distribution in the bone (left) and the bone-implant geometry
(right) with the femur implant in position α = 0◦ when the measured peak load lpeak
(cf. Eq. (5.2)) from stumbling is applied.
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Fig. 21: Resulting difference in stress distribution 1
2

∥∥Σ(lpeak) − Σ̄(lpeak)
∥∥2

F
in both the

pelvis and the femur geometry when the measured peak load lpeak (Eq. (5.2)) from stum-
bling is applied.
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Fig. 22: Graph of the stress difference integral
∫

Ωbone(α)
1
2‖Σ(l)− Σ̄(l)‖2F dx exemplary for

load l = (−200, 250) for different implant positions with a discretization of ∆α =
(
10−4

)◦
of the admissible angle interval A.

Fig. 23: The surface of log
(∫

x∈Ωbone(0◦)
1
2

∥∥Σ(l;α)− Σ̄(l)
∥∥2

F
dx+ p

(
Σmax(l; 0◦)

))
(without

probabilities π(l)) computed on L50.
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Fig. 24: The surface of log
(
π(l)

[∫
x∈Ωbone(0◦)

1
2

∥∥Σ(l; 0◦) − Σ̄(l)
∥∥2

F
dx + p

(
Σmax(l; 0◦)

)])
(with probabilities π(l)) computed on L50 with marked initial samples load samples (red

crosses) as in Tab. 4; if π(l)
[∫
x∈Ωbone(0◦)

1
2

∥∥Σ(l; 0◦)− Σ̄(l)
∥∥2

F
dx+ p

(
Σmax(l; 0◦)

)]
= 0 then

this value was changed to 10−18 before applying the logarithm.

Table 4: Initial Kriging samples chosen in regions where the load probability π(l) is
maximized and two in the subdomain of L where the penalty function becomes relevant
(cf. Fig. 13 and 24)

li = (fx, fz)i = (−100, 250), (−650, 2450),
(−200, 150), (−900, 2050),
(−250, 100), (−900, 3550),
(−250, 700), (−1100, 4450),
(−450, 1350), (−1150, 2750),
(−450, 1700), (−1600, 7350),
(−600, 1400), (−1850, 4400),
(−1450, 8950), (−2500, 9300).
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the bone-implant setup is finer discretized than the interior of the domain and the non-
contact boundary. Hence, in a coarsely discretized setup excluding the implant with
11,832 DOF in the pelvis and 8208 DOF in the femur, see Fig. 9, the PDE solves take
up 28% of the overall computation time. In the coarse discretization of the geometry
that includes the implants (Fig. 10), the pelvis accounts for 915 DOF and the femur for
1282 DOF. In this setup, the PDE solves take up 11% of the overall computation time.
Together they account for 39% of total computation time, while the estimation of Kriging
parameters and necessary matrices, that can be precomputed, takes up 8 · 10−5%, and
Monte Carlo integration accounts for 61% of the almost 12 minutes total computing time.
The relatively high share of Monte Carlo in the total computation time is mostly due to
the coarse discretization of the FE-grid Th, which makes one PDE solve in this test setup
much cheaper than in a realistic 3D and quantitatively reliable discretization. Also, the
PDE is only solved for a low number of 16 initial loads and adaptivity is at this point not
yet included.

With a once uniformly refined FE-grid (32,832 DOF in the pelvis, 47,328 DOF in the
femur, 3123 DOF and 4680 DOF including the implant, resp.) one gets 48.5% for the
response computation in the pure bone and 24.7% for the response in the bone-implant
setup. Together they make up 73.3%, as against 6 · 10−4% for Kriging, and 26.8% for
Monte Carlo (a little over 26 minutes computing time).

With unchanged algorithms for the setup of Kriging and Monte Carlo integration,
there is little variation in the computing times between the aforementioned two cases.
They are not dependent on the number of degrees of freedom, as opposed the solution of
the PDE. This is why with increasing precision of the PDE solution, one solve becomes
quickly very expensive in contrast to the setup of the Kriging interpolation scheme and
the Monte Carlo integration.

This proves the concept of wanting to reduce the PDE solves and rely on interpolation
and comparatively quick integration schemes – here Kriging and Monte Carlo – to compute
the integral value of the target function (2.17).

5.3 Evaluation of Kriging

As stated before, Kriging will be applied to the substitute functions

z̃∆Σ(l;α) := (−fx + fz)
(
sin(−fx) + sin(fz) + 2

)[
(α+ 2)(α− 1) + 2.25

]
,

z̃max(l;α) := 350fz
[
(α+ 1.5)(α+ 1.2) + 0.152

]
,

previously given in Eq. (5.1) for function values corresponding with the initial samples li
from Tab. 4. A depiction of the substitute response surfaces computed on L50 can be seen
in Fig. 25. The resulting logarithm of the target response surface with α = 0◦

log
(
π(l)

[
z̃∆Σ(l; 0◦) + p

(
z̃max(l; 0◦)

)])
,

is shown in Fig. 26, where for loads l ∈ L50 with

π(l)
[
z̃∆Σ(l; 0◦) + p

(
z̃max(l; 0◦)

)]
= 0,

the value 0 was exchanged with 10−18 before applying the logarithm. As it is yet unclear,
which kernel model in combination with which drift model best reproduces either of the
two response surfaces of the stress differences z̃∆Σ and of the maximum stresses z̃max

different measures are presented and partially evaluated to identify the best fitting model
combination.
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Remark. The performance of the Matérn kernel (cf. Tab. 2) will not be investigated. This
is due to the complexity of the analytical treatment of the function and its derivatives as
well as the fact, that this model does not behave quantitatively different than the other
kernels.

A priori variogram model estimation. Two model-fit measures will be presented
here, that one may use to determine, which variogram-drift model combination best re-
produce the sought after response surface.

Since the model parameters of the variogram are computed by solving a restricted
maximum likelihood (REML) problem, cf. Eq. (3.13), the first way of measuring the
model performance is to evaluate the final value of the (REML)-function.

A second way of estimating the model fit is to compute the sum of distances between
the responses z(li) from the sample-response pairs

(
li, z(li)

)
and the function values of the

interpolation function z∗(li) in the Euclidean norm

EI :=

(∑
i

(
z(li)− z∗(li)

)2)1/2

. (5.3)

This measure will be called interpolation error EI. Since Kriging is an exact interpolator,
one must not insert li into EI, when the Kriging model z∗ is also trained with

(
li, z(li)

)
.

Usually, the quantity EI is evaluated utilizing cross-validation, as previously mentioned
in Sec. 3.4 as a possibility to compute EK. In the present case with surrogate response
functions z̃∆Σ and z̃max, the evaluation of z(li) is cheap. Therefore, here, too, one can
employ Monte Carlo sampling to draw NK,E ∈ N samples using the probability density
π(l) from Eq. (2.21) as one does for the computation of EK.

Further investigated ideas to estimate the performance of the separate Kriging models
were to compute the L2-norm of the misfit between precomputed values of z on L50 and
interpolated values from z∗. This idea suffered from two drawbacks: on the one hand, in
a realistic scenario, the computed values of z may not exist, may not be computable at all
or be too expensive to compute. On the other hand, with only few initial samples li (16
here) the training data for interpolation is scarce, making the error big and almost equal
for all model combinations thus rendering this error measure futile.

Another idea was to compute the sum of model variance values from Eq. (3.28) for
each sample li which the model is trained with using cross-validation, or for each of the
sampled li using importance sampling. This is similar to the first step in computing the
Kriging error estimate EK in Eq. (3.34) used in the adaptive Kriging scheme. Here, the
information gain compared to the interpolation error EI was negligible and thus discarded.

Bounds on kernel parameters θ. The kernel parameters a and b are determined by
computing the minimum of rL(θ), Eq. (3.12). When evaluating rL the samples are always
the same li as in Tab. 4. For the responses one needs to differentiate between z̃∆Σ and
z̃Σmax . Also, one needs to consider the different variogram kernels (bounded linear, expo-
nential, Gauss – see Tab. 2) and drift models (constant, linear, and quadratic). Further, the
parameters have a physical meaning that necessitate an imposition of parameter bounds.

For the sill parameter b one anticipates values that are of similar magnitude as the
average value of absolute sample responses. This makes for a good starting value of the
sill b. By definition, b needs to be greater than 0. When b comes close to 0, the Γ̃ matrix
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Fig. 25: Substitute response surfaces of z̃∆Σ (top) and z̃max (bottom) as given in Eq. (5.1)
computed on L50.
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Fig. 26: The logarithm of the target function j(0◦) (Eq. (2.15)) log
(
π(l)

[
z̃∆Σ(l; 0◦) +

p
(
z̃max(l; 0◦)

)])
computed on L50 with surrogate functions z̃∆Σ and z̃max; the red crosses

indicate the initial load sample positions li as in Tab. 4; if π(l)
[
z̃∆Σ(l; 0◦)+p

(
z̃max(l; 0◦)

)]
=

0 then this value was changed to 10−18 before applying the logarithm.

becomes singular and the interpolation model breaks down. Therefore, the sill value b
will be bounded from below by 10 to make the optimization problem well-posed for all
instances. This corresponds with the behavior of rL for b→ 0 where |rL| → ∞, cf. Fig. 27
and Fig. 28. For the chosen model combinations below, this safety measure was not used
by the algorithm when determining parameter b.

Shifting the focus to the range parameter a, recall that the range a determines up
to what distance between samples there exists a (meaningful) co-/variance (cf. end of
Sec. 3.3.2). If this parameter got too low, each sample-response pair became isolated
meaning there is no correlation at all between neighboring samples. Numerics showed,
that the bound of a > 0 suffices.

Similarly, with a domain as large as L, it is implausible for samples across the domain
to have a co-/variance. Thus the parameter a is bounded from above to half the diameter
of the domain L, as is suggested in Wackernagel [157, Ch. 4]. With the present definition
of L, this gives an upper bound of 5500 on the range parameter a. Note, that only
for the bounded linear variogram the range parameter translates directly to the effective
range. The effective range [161, Ch. 5.2] or practical range [157, Ch. 6] describes the
distance h at which the chosen variogram model reaches 95% of the sill value b – or
similarly the covariance has decreased by 95% from the sill value b. For the exponential
variogram the effective range is h = 3a, for the Gaussian model, it is h =

√
3a. This

affects the upper bound on a to be approximately 1850 for the exponential variogram and
approximately 3200 for the Gaussian variogram. These comments on a also correspond
with the examination of rL for z̃Σmax with the Gauss kernel and the linear or quadratic
drift models. The value of rL falls below 0 for values of a above the effective range, see
bottom of Fig. 28.
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Fig. 27: Logarithm of restricted maximum likelihood functions log
(
rL(θ)

)
, Eq. (3.12),

for samples li from Tab. 4, with responses from z̃∆Σ (top) using an exponential kernel and
a quadratic drift, and with responses from z̃Σmax (bottom) using an exponential kernel
and a linear drift.
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Fig. 28: Restricted maximum likelihood functions rL(θ), Eq. (3.12), for samples li from
Tab. 4, with responses from z̃Σmax using a bounded linear kernel and a linear drift (top),
and using a Gaussian kernel and a quadratic drift (bottom).
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Table 5: Restricted maximum likelihood (REML) values of Eq. (3.12) after the parame-
ters a and b are evaluated for the different drift (constant, linear, quadratic) and variogram
models (bounded linear, exponential, Gauss – see Tab. 2) for 16 stress difference response

values
∫
x∈Ωbone(0◦)

1
2

∥∥Σ(li; 0◦)− Σ̄(li)
∥∥2

F
dx (cf. Eq. (3.8)) belonging to the initial load sam-

ples given in Tab. 4; the bold entry marks the one with the lowest value.

(REML) Constant Linear Quadratic
Bounded linear model 230.8 193.6 1.697 · 104

Exponential model 232.7 199.2 151.3
Gauss model 4.669 · 104 4.569 · 104 3.604 · 104

Table 6: Restricted maximum likelihood (REML) values of Eq. (3.12) after the parame-
ters a and b are evaluated for the different drift (constant, linear, quadratic) and variogram
models (bounded linear, exponential, Gauss – see Tab. 2) for 16 stress difference response
values Σmax(li; 0◦) (cf. Eq. (3.8)) belonging to the initial load samples given in Tab. 4; the
bold entry is the one with the lowest value.

(REML) Constant Linear Quadratic
Bounded linear model 4.901 · 109 183.6 90.64
Exponential model 2.776 · 109 194.0 147.2
Gauss model 1489 126.4 86.82

Evaluation of the kernel-drift model performance. The starting parameters were
θ0 =

(
500, 107

)
for z∗∆Σ and θ0 =

(
200, 107

)
for z∗Σmax

. For some model combinations the
initial parameters needed to be altered, as otherwise the appearing matrix inversions could
not be performed due to matrices being singular – already indicating that these models are
not well fit for the interpolation at hand. With the responses from z∗∆Σ using the bounded
linear model and quadratic drift, b0 was set to 104. The same model combination applied
to the responses from z∗Σmax

started with b0 = 105. When interpolating z∗Σmax
(li, 0

◦) with
a constant drift model, θ0 was set to

(
500, 104

)
. For the number of samples NK,E included

in the importance sampling used to evaluate EI, set NK,E = 1000.
For the case of stress differences ∆Σ, the values for (REML) are found in Tab. 5. These

values indicate, that a quadratic drift is best suited – except for the bounded linear kernel
joined with quadratic drift –, the constant mean constitutes the worst fit, and the Gauss
model is an unsuitable kernel for the given interpolation problem.

For the case of maximum stresses Σmax, the (REML) estimates are in Tab. 6. The
values for the constant mean approach indicate, that this drift model is utterly wrong.
This makes sense, looking at the bottom of Fig. 25 where one would assume a linear
drift. But again the (REML) values for the quadratic drift model are for all kernels better
than in the case of linear drift. This does not seem conclusive and the focus turns to the
interpolation error EI.

The results of EI for ∆Σ are found in Tab. 7. The exponential kernel shows the lowest
error for all drift models. As for this kernel the lowest error value lies in the combination
with the constant mean, this conjunction will be chosen. The resulting parameters for
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Table 7: Interpolation error EI for the responses of the stress difference values∫
x∈Ωbone(0◦)

1
2

∥∥Σ(l; 0◦) − Σ̄(l)
∥∥2

F
dx and the interpolation values at the same sample loca-

tions computed for the different drift (constant, linear, quadratic) and variogram models
(bounded linear, exponential, Gauss – see Tab. 2); the bold entry is the one with the
lowest value.

EI Constant Linear Quadratic
Bounded linear model 1.70 · 104 1.79 · 104 1.77 · 104

Exponential model 1.69 · 104 1.75 · 104 1.71 · 104

Gauss model 2.06 · 104 2.03 · 104 2.03 · 104

Fig. 29: Interpolation result z∗∆Σ of substitute response surfaces of z̃∆Σ as given in
Eq. (5.1) computed on L50; the markers show the initial sample locations li as in Tab. 4
with their respective responses z̃∆Σ(li).

this choice of model are (a, b) =
(
1803, 107

)
. The function z∗∆Σ(l) with l ∈ L50 is shown

in Fig. 29 with the depicted red crosses being the initial sample-response pairs.
Evaluating EI between the responses z̃max(li) and interpolation z∗max(lj), the results are

found in Tab. 8. The error values for the constant drift model show, that a constant mean
ansatz is unsuitable. Thus, the constant drift is discarded here. Again, the exponential
kernel shows the best performance among all three kernel models. The lowest error is
attained when combining the exponential kernel with linear drift. The resulting parameters
for this conjoined model are (a, b) =

(
1798, 9.9996 · 106

)
. The function z∗max(l) with l ∈ L50

is shown in Fig. 30 with the depicted red crosses being the initial sample-response pairs.
Closing, one is to conclude that the examination of the (REML) values for kernel-drift

estimation is inconclusive. The interpolation error EI on the other hand is a constructive
measure. With the model combinations chosen one can now turn to the evaluation of
adaptive Kriging.
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Table 8: Interpolation error EI for the responses the maximum stress values Σmax(l; 0◦)
and the interpolation values at the same sample locations computed for the different drift
(constant, linear, quadratic) and variogram models (bounded linear, exponential, Gauss –
see Tab. 2); the bold entry is the one with the lowest value.

EI Constant Linear Quadratic
Bounded linear model 3.51 · 107 5.54 · 10−8 1.13 · 10−7

Exponential model 1.68 · 107 3.19 · 10−8 4.98 · 10−8

Gauss model 2.30 · 107 1.46 · 10−3 1.17 · 10−3

Fig. 30: Interpolation result z∗max of substitute response surfaces of z̃max as given in
Eq. (5.1) computed on L50; the markers show the initial sample locations li as in Tab. 4
with their respective responses z̃max(li).
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Fig. 31: Ten adaptively added samples shown on the surface of log
(
π(l)

)
computed on

L50 with the initial samples from Tab. 4 (red markers); the yellow markers indicate those
added samples when local exploitation was favored, the green markers where added with
global exploration being predominant; if π(l) = 0 then this value was changed to 10−18

before applying the logarithm.

5.3.1 Adaptivity in Kriging

Now, the performance of adaptivity in Kriging as described in Sec. 3.4 will be evaluated.
In the optimization, the adaptive scheme will be triggered, when the Kriging error EK

(3.34) is above the minimum required precision τh/3, see Eq. (3.35). When that is the
case, Eq. (3.31) will be evaluated to find the next added load. Since in this section for the
precision criterion (3.35) there is no τh given, the number of adaptively added samples will
here be set to ten samples without a precision check. The ten samples are consecutively
added and afterwards it will be scrutinized whether global exploration or local exploitation
is favored and how the respective interpolation errors EI and the Kriging error EK change.
The number NK,E was set to 1000 in the previous section.

The progression of the β value (cf. Eq. (3.30)) is for two of the ten added samples greater
than or equal to 0.5 (yellow markers in Fig. 31), favoring local exploitation, and for the
other samples β < 0.5 (green markers in Fig. 31), thus granting global exploration the
bigger influence. Therefore, global exploration and local exploitation are both impacting
the determination of new samples with a bias towards global exploration.

For the ten added samples, depicted in Fig. 31 by the yellow and green markers, one
finds that the interpolation error EI actually increases for both function interpolations z∗∆Σ

and z∗max. When interpolating ∆Σ, the error increases from 1.691 · 104 to 1.693 · 104, and
for Σmax the error goes up from 3.189 · 10−8 to 1.760 · 10−7. While this is not necessarily
wanted, it is not harmful either, since the interpolation error is only evaluated and needed
in the determination of suitable kernel and drift models.

The initially measured Kriging error EK of 1.824 decreased to 1.767 after ten added
samples. This is the important measure that needs to decrease and indeed it does.
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Fig. 32: The surface of log
(
π(l)

[
z∗∆Σ(l; 0◦) + p

(
z∗max(l; 0◦)

)])
computed on L50 using

Kriging interpolation for ∆Σ and Σmax set up with initial and adaptively added samples;
the yellow markers indicate those added samples when local exploitation was favored, the
green markers were added with global exploration being predominant; if π(l)

[
z∗∆Σ(l; 0◦) +

p
(
z∗max(l; 0◦)

)]
= 0 then this value was changed to 10−18 before applying the logarithm.

In Fig. 32 one also sees the surface of log
(
π(l)

[
z∗∆Σ(l; 0◦) +p

(
z∗max(l; 0◦)

)])
with inter-

polating functions z∗∆Σ and z∗max now trained with 26 sample-response pairs. Again, when
π(l)

[
z∗∆Σ(l; 0◦) + p

(
z∗max(l; 0◦)

)]
= 0, this value was changed to 10−18 before applying the

logarithm.

5.4 Evaluation of Monte Carlo integration

The setting of Monte Carlo integration – the randomized drawing of loads – is prone
to committing a differential crime. How to compare two consecutive estimated objective
values, when the MC samples are different? For the presently examined algorithm, one can
set a seed for the random generator. All drawn loads are pseudo-random, i.e., given a seed
all loads follow a deterministic sequence as is the case for all programmed random number
generators. This deficiency of a “random” number generator will be taken advantage
of here, allowing the prevention of the inherent differential crime in the Monte Carlo
integration.

For the evaluation of Monte Carlo integration, z∗∆Σ and z∗max where set up with re-
sponses from the surrogate functions z̃∆Σ and z̃max from Eq. (5.1) with α = 0◦. In the
analysis, the progression of the objective value jNMC

and of the Monte Carlo error EMC are
scrutinized for both the simple interpolation model set up with 16 data points for training
and the adaptively enriched model with 26 load samples.

When using the Kriging model that is trained with 16 initial samples after 5000 MC
draws the computed objective value is jNMC

= 547.2 after 5000 draws and jNMC
= 545.7

after 10,000 MC draws. The Monte Carlo error EMC is 1.39% when using 5000 draws.
When doubling the MC draws, the error decreases to 0.989% by a factor of almost

√
2.
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With an enriched the Kriging model, again starting with 5000 draws for Monte Carlo,
the initial relative root mean squared error is 1.32% of the objective value jNMC

= 509.6.
As previously with 10,000 draws, the resulting values are EMC = 0.937% and jNMC

= 509.1.
Therefore, the MC error decreases with a factor of approximately

√
2 and the asymptotic

convergence is attained.
This analysis shows, that the factor of error reduction attains the asymptotic rate of

convergence for NMC = 5000. In this case, with a given target accuracy of τh
3 and a

computed Monte Carlo error of EMC that is above this target accuracy, one can compute
the ratio between current and target error EMC/(τh/3). By setting the total MC draws to
the square of this ratio times the initial MC draws

N total
MC :=

(
9E2

MC/τ
2
h

)
·NMC,

one achieves the wanted integration accuracy.
Should the number of total MC draws be too big, e.g., above one million draws, it is

advisable to mistrust the long-time prognosis. In doing so, the progression of the error
reduction is to be monitored and the error will be computed after a predefined multiple
of draws, e.g., after every time 106 MC draws are added to the MC estimate. Should
the error progression deviate from the anticipated path, the number N total

MC is adjusted
accordingly.

5.5 Evaluation of the optimization

For the evaluation of the optimization, the initial implant position was first set to an angle
of α0 = 0◦, then α0 = −1.5◦ and α0 = 1◦ were analyzed as starting positions.

In 2D the control variable α is a scalar, therefore the storage and inversion of Bk,
cf. Eq. (4.1), poses no problem. The constants τ1 and τ2 are set to τ1 = 10−4 and τ2 = 0.9,
see, e.g., [116].

For the different stopping criteria, set εj = 10−3 for the objective value, εderiv = 10−3

for the derivative, ε∆j = 10−3 for the change in the objective function, and ε∆α = 10−4 if
the change in angle α and thus its precision becomes small enough.

Since the response functions z∆Σ and zΣmax computed from the PDE (2.18) proved
faulty, they were exchanged with z̃∆Σ and z̃Σmax , see Eq. (5.1), of which the derivatives
with respect to α as well as δ

δαj are easily computed:

δ

δα
j(l;α) = (−fx + fz)

(
sin(−fx) + sin(fz) + 2

)
(2α+ 1)

+ bc · exp
(
c
(
z̃max(l;α)− Σthres

))
· 350fz(2α+ 2.7).

(5.4)

As there is at this point no means implemented to determine the influence of the grid
discretization on the accuracy of the PDE solution, the Kriging interpolation, and the
Monte Carlo integration, a tolerance of τh

3
:= 8 is defined. With this tolerance the Monte

Carlo error always proved good enough and the adaptive Kriging scheme is triggered in
all three investigated initial implant scenarios. For reasons elaborated at the end of this
section, if EK > 20, the adaptively added samples were capped at ten. When EK ≤ 20, the
maximum of added Kriging samples was capped at 300. For demonstration purposes on
the development of the Kriging error EK (3.34) this will suffice.
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Initial position α0 = 0◦. With α0 = 0◦ as the starting position, the Alg. 3 converged
in three iterations to α = −0.5000◦. The objective value j (2.17) approximated with jMC

(3.5) decreased from 547 to 1.96 · 10−6 and the derivative (5.4), also computed with MC,
decreased from 5.48 · 103 to 0.146. As the objective value was smaller than εj = 10−3, the
optimization was terminated.

In the first iteration, the initial Kriging error EK (3.34) is 1.82. Therefore, no adaptivity
was needed. In the second iteration, the Kriging error started with a value of 15.4. After
300 samples were added, this error decreased to 10.7. Here, 168 samples were added with
β > 0.5, i.e., with the local exploitation strategy being predominant. In the third and
last iteration, the Kriging error was 21.92 in the beginning and reduced to 21.90 after ten
samples were added. Of those samples, seven were added with β > 0.5. As the angle
difference between α2 and α1 was below 0.1◦, the 500 added samples from the second
iteration were kept and the total Kriging samples was 526 after adaptive refinement in the
third iteration.

The Monte Carlo error EMC (3.22) was 1.39% in the first iteration, therefore no adap-
tive increase of the drawn Monte Carlo samples was needed. With a descent direction
of −10.06◦ and because −10.06◦ is outside the admissible angle range, the step length
computation advanced directly to −2.502◦. Afterwards the angles −1.251◦ and −0.6254◦

ensued to which the final angle of this iteration, α1 = −0.3127◦, was computed. For this
angle, the Armijo-Wolfe conditions (4.3) were fulfilled.

In the second and third iteration, the MC error was 1.09%, respectively. Therefore, the
adaptive increase of the drawn Monte Carlo samples was unnecessary again. The descent
direction in the second iteration of optimization was −6.813◦ · 10−2. Here, the unit step
length sufficed, α2 was set to −0.3808◦, and the optimization went to the next loop.

The descent direction in the third iteration of optimization was −0.1191◦. With this,
again the unit step length was sufficient and the final angle α3 = −0.5000◦ was estimated.

Initial position α0 = −1.5◦. With an initial angle of α0 = −1.5◦, the algorithm con-
verged the control variable α in three iterations to −0.5000◦. The objective value decreased
from 5.48 · 103 to 3.82 · 10−6 and the derivative from −5.43 · 103 to −0.176. The algorithm
stopped, since the objective value was below the tolerance εj = 10−3.

The Kriging error EK was 0.519 in the first iteration. Therefore, no samples were
added to the Kriging model. In the second iteration, the initial Kriging error was 6398
and reduced to 5495 after ten added samples. Of those ten samples, eight were added with
β > 0.5. For the third iteration, the error of Kriging interpolation started at 1.01 ·105 and
reduced to 9.28 · 104 with ten samples added, of which eight samples were chosen with the
local exploitation strategy.

In the first iteration of the optimization, the descent direction was 0.9908◦, such that
the unit step length sufficed to reach the next iterated angle of α1 = −0.5092◦. The Monte
Carlo error EMC was 0.53% at α0 = −1.5◦.

In the second iteration, the descent direction computed to 6.950◦ · 10−3. Here, as well
as in the third iteration with descent direction 2.201◦ · 10−3, the unit step length was
sufficient, estimating α2 = −0.5022◦ and α3 = −0.5000◦. The Monte Carlo error EMC was
1.31% in the second iteration and 1.32% in the third iteration. The optimization finished,
since the objective value became small enough.
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Initial position α0 = 1◦. With an initial angle of α0 = 1◦ the algorithm converged to
α = −0.4999◦ in four iterations with a small change to the algorithm elaborated below.
The initial objective value of 4.78 · 10189 was reduced to 3.29 · 10−5 and the derivative
decreased from 3.13 · 10192 to 0.515. Eventually, the optimization stopped due to the
objective value being below the target precision εj = 10−3.

Here, with the choice of the penalty function (2.14), its parameters b = 10−15, c = 10−4,
and Σthres = 2.9 ·106 and the surrogate function z̃max in Eq. (5.1), the starting value of the
objective is in O

(
10189

)
and the derivative value in O

(
10192

)
which are both extremely

high. The reason behind magnitude of these values as well as the incomputability of the
MC error will be discussed at the end of this section.

Since through the updated approximate Hessian matrix Bk+1, see Eq. (4.4), the last
derivative value j′(αk) influences the new direction dk+1. Without any changes to the
algorithm, the descent direction dk+1 in the second iteration had a magnitude ofO

(
10−190

)
which is far below the tolerance of ε∆α = 10−4. Therefore, the algorithm would stop in a
suboptimal implant position. To prevent this situation, another check was added before
line 20 of Alg. 3. If j′(αk) > 1010 then Bk+1 = |j(αk+1)|I, similar to the definition of
B0. With this adaptation to the algorithm, the optimization was able to perform three
iterations rather than only one.

In the first iteration from α0 to α1, the Kriging error was 3.81 · 10−187. In the second
iteration, the initial Kriging error of 11.17 decreased to 7.867 after adding 47 samples. Of
those 47 samples, 29 were added with the global exploration strategy being predominant.
In the third iteration that determined α3, the initial Kriging error was 88.62 which was
reduced to 76.11 after ten adaptively added samples. Of those, eight had a value β > 0.5.
In the final iteration α4 was determined and the Kriging error was 2962 in the beginning.
As |α4−α3| < 0.1◦ held, in a real case scenario the implant would be replaced in the bone
using rigid body transformation and the model refinements from the previous iteration
are kept. Thus, this iteration started with 26 Kriging samples and ten more were added.
The final Kriging error was EK = 2726 with 36 training data. Again, eight were added
with β > 0.5.

For the initial implant position of α0 = 1◦, the MC error was incomputable due
to infinitely high penalty values. With a descent direction of −655.2◦, the step length
was estimated in two iterations. The determined angles were α = −1.559◦ and then
α1 = −0.2796◦. The determination of the step length ended here and the optimization
went into the second loop. In the second iteration of the optimization, where the MC error
was 1.12%, the computed descent direction was −9.106◦. The step length was determined
after five iterations and the final angle in this iteration is α2 = −0.4219◦. It is to note, that
objective value for the first admissible angle −2.556◦ in the step length estimation was
in O(104), which indicates a steep rise of the penalty function taking effect here. In the
third iteration of the optimization, the descent direction was −6.503◦ · 10−2. Thus, with
a step length of 1 the second to last angle of α3 = −0.4869◦ was reached. The MC error
accounted for 1.31%. In the final iteration, the descent direction was −1.297◦ · 10−2 and
the MC error was 1.32%. Again, the unit step length was accepted. Since the objective
value was below the tolerance of 10−3, the optimization stopped here.
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Conclusion of the optimization. It is apparent, that the implant is for α ≥ 0.5◦, but
also for α < −3◦, in an inadmissible position concerning the maximum stresses, which is
therefore punished by the penalty function p, Eq. (2.14). With objective and derivative
values as high as O

(
1086

)
or higher for α > 0.5◦, one realizes, that the penalization of high

local stresses in these cases needs to be enforced with an inequality constraint rather than
the penalty function. The use of a hybrid from of the penalty function and an inequality
constraint should be considered as well. That is, use the penalty function for p′(α) < 1010

and switch to using an inequality constraint otherwise.
For the given surrogate functions z̃∆Σ and z̃max and the prescribed interpolation and

integration algorithms used in Alg. 3, the optimization algorithm proved to converge to the
minimum of j(α) within a few steps. With the penalty function p and surrogate function
z̃max as defined, issues in computing MC error and concerning termination of the optimiza-
tion in suboptimal implant positions were encountered. This could be circumvented here
with a slight adjustment of the algorithm, as described in the previous paragraph. This
allowed the algorithm to deal with the very high values produced by the penalty function
for unfavorable implant positions α. However, this would not work, if the objective and
derivative values were altogether incomputable.

As was seen in the second iteration of optimization for α0 = 1◦, the number of adap-
tively added samples to the Kriging model was moderate, while in the second iteration of
optimization for α0 = 0◦, the number of needed samples became high. For Kriging errors
above 20, the necessary samples to achieve a target precision below 8 would have been
extremely high. For this reason the number of added samples was capped at ten in these
instances. On the other hand, the numerical analysis showed that the optimization was
not inhibited due to this limit. Therefore one can conclude, also considering the fact that
the Monte Carlo error was in O

(
10−2

)
or of even lower order, that the error equilibration

introduced at the end of Sec. 3.4 needs refinement.
Since the precision of Monte Carlo integration is more cheaply improved than that of

the Kriging interpolation, and with the MC error being low to start with, the tolerance
applied here can be reduced. Contrary, what with the optimization converging even if the
Kriging interpolation has not reached the target accuracy, one can handle the tolerance
here more freely. The biggest improvement of the Kriging error was investigated for the
first 10-40 adaptively added samples. The gain in precision can theoretically be quantized
with a gain-effort model which then allows an estimation of optimal distribution of the
tolerance τh to the three processes of PDE-solution with EPDE, the Kriging interpolation
with EK, and the Monte Carlo integration with EMC. Approaches to such models are
covered in Deuflhard and Weiser [42].

Incidentally, if one set τh
3 = 1.73 for α0 = 0◦, 25 Kriging samples are added in the

first iteration. With this, the descent direction computes to −4◦ and with three step
length adjustments the final angle of −0.4998◦ is reached in one optimization step. This
underlines the importance of an adequate tolerance estimation. A higher precision in the
early stages may save considerable computation time.

The successful operation of both, the computed derivative in Eq. (4.14) and the special
line search devised in Sec. 4.2, could not yet be analyzed, due to the technical difficulties
explained in this section. Besides that, the above numerical experiments showed the
successful operation of Alg. 3 and the algorithms used within.
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6 Summary

In this thesis, adaptive algorithms in optimization under PDE constraints have been inves-
tigated. In its application, the aim of optimization is to increase the longevity of implants,
namely the hip joint implant, and in doing so to minimize stress shielding and simulta-
neously minimize the influence of locally high stresses, that, above a threshold value, are
malign to the bone structure. Under the constraint of the equilibrium of forces, describing
an elastodynamic setup, coupled with a contact inequality condition, a computationally
expensive problem formulation is given.

The first step to make the solution of the given problem possible and efficient was
to change over to the spatial equilibrium equation, thus rendering an elastostatic setup.
Subsequently the intrinsically dynamic motions – trajectories in the load domain – were
converted to the static setup. Thus, the trajectories are marginalized to the load do-
main and characterized with probability distributions. Therefore the solving of the PDE
constraint, the contact problem, is simplified.

Yet in the whole optimization process, the solving of the PDE, the spatial equilib-
rium equation (2.18a)–(2.18c) together with the contact condition (2.18d) has the most
expensive contribution still and hence needed further reduction. This was achieved by
application of Kriging interpolation to the load responses of the integrated distribution
of stress difference and the maximum stresses. The interpolation of the two response
surfaces only needs comparatively few PDE solves to set up the models. Moreover, the
Kriging models can be adaptively extended by sequentially adding sample-response pairs.
For this the Kriging inherent variance is used to estimate ideal new sample locations with
maximum variance values. In doing so, the overall interpolation variance and therefore
the interpolation error is reduced.

For the integration of the integrated stress differences and penalty values on the relative
high dimensional load domain Monte Carlo integration was implemented, averting the
curse of dimension. Here, the motion’s probability distribution combined with patient
specific data of motion frequencies is taken advantage of, making obsolete the use of the
otherwise necessary importance sampling.

Throughout the optimization, the FE-discretization error and the subsequently at-
tached errors entering the solution process via PDE discretization and approximative
solving of the PDE, Kriging interpolation and Monte Carlo integration need to decrease.
While the FE-discretization error and the solution of the elastostatic contact problem were
assumed precise enough, numerics showed, that the interpolation and integration errors
can be controlled by adaptive refinement of the respective methods. For this purpose
comparable error quantities for the particular algorithms were introduced and effectively
put to use.

For the implant position’s optimization, the derivative of the objective function was
derived using the implicit function theorem. As the FE-discretization changes with implant
position modifications big enough, a special line search had to be used to deal with the
discontinuities in the objective function.

The interplay and performance of the subalgorithms was demonstrated numerically on
a reduced 2D setup of a hip joint with and without the implant. Consequently the load
domain and the control variable were also limited to the 2D case.
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Outlook. The closure of the thesis is dedicated to the exploration of model refinements
and extensions.

First of all, the subtle bugs in the implementation mentioned in Sec. 5.1 need to
be eliminated, such that the optimization with its subalgorithms, but also the analytic
derivative of the objective function with respect to the control variable α, Eq. (4.14), and
the special line search introduced in Sec. 4.2 can be tested.

Then, the truncated errors of FE-discretization and the PDE solution need to be
included and their influence on the subsequent errors investigated properly.

Further, the optimization needs to be extended to a 3D setting. Here, the memory
demand and computation effort increase. This demand can be countered by a reduced
model approach, for example, by either employing a reduced model for 3D deformable
objects obeying the St. Venant-Kirchhoff material law as investigated in [8], or by using a
POD model reduction ansatz as, e.g., researched by Janon et al. [84]. They present a POD
approach for a Monte Carlo estimator, applying a reduced-basis method and deriving a
goal-oriented error estimator which could also be applied in adaptivity. On the other hand,
the application of sparse grids combined with Monte Carlo as in Bungartz et al. [24] can
be further investigated. Sparse grids also offer for adaptivity.

The remeshing on hip implant repositioning may be refined using results from Zilske
et al. [181].

The line search approach in optimization could be exchanged for trust-region to see if
there are better runtime- and convergence results.

Moreover, multilevel optimization could be added in either the solution of the PDE
or the optimization itself. This can be in the form of either a preconditioner, which is
favorable in both contexts to either quicker estimate a solution to the contact problem or
to find a good starting position of the implant, thus having superlinear convergence of the
BFGS algorithm once it is applied; or multilevel optimization could replace the semismooth
Newton method in the solving of the contact problem, see, e.g., [69, 91, 92, 169], or it could
replace the BFGS algorithm for optimization itself.

Once turning to real-life application of the presented optimization, the modeling of
the involved joints and implants needs to become more realistic. Modeling the bone and
implant material in more detail, i.e., incorporating anisotropies as compact and cancellous
bone, one may incorporate multi-material mesh generation as it was investigated in [86].

The inclusion of patient specific bone girds through statistical shape meshes [97, 139]
should also be considered, thus setting up a wholly pipeline for use in orthopedic surgery.
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Birkhäuser Verlag Basel, 2009.
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[41] P. Deuflhard, R. Krause, and S. Ertel. A contact-stabilized Newmark method for
dynamical contact problems. International Journal for Numerical Methods in Engi-
neering, 73:1274–1290, 2008.

[42] P. Deuflhard and M. Weiser. Adaptive Numerical Solution of PDEs. De Gruyter,
2011. German title: Numerische Mathematik 3: Adaptive Lösung partieller Differ-
entialgleichungen.

[43] C. Dick. Computational Steering for Implant Planning in Orthopedics. PhD thesis,
Technische Universität München, 2012.

[44] C. R. Dietrich and M. R. Osborne. Estimation of covariance parameters in kriging
via restricted maximum likelihood. Mathematical Geology, 23:119–135, 1991.

[45] T. Driscoll and A. Heryudono. Adaptive residual subsampling methods for radial
basis function interpolation and collocation problems. Computers & Mathematics
with Applications, 53:927–939, 2007.

[46] C. Eck. Existenz und Regularität der Lösungen für Kontaktprobleme mit Reibung.
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Zusammenfassung

Durch steigendes Durchschnittsalter einer Bevölkerung werden Prothesen z.B. in der Hüfte
oder am Knie immer notwendiger; und durch Abnutzungen, welche schmerzhaften Abrieb
und dadurch Entzündungen, aber auch Lockerung verursachen, werden Revisionsopera-
tionen immer häufiger. Da sich Implantate aber auch lockern, weil sich der umgebende
Knochen durch die geänderte Druckverteilung deformiert, müssen Implantate so eingepasst
werden, dass sie in einer optimalen Position die Druckänderung, das sogenannte stress
shielding, minimieren. Gleichzeitig sollen aber auch lokal hohe Maximaldrücke vermieden
werden, da sie durch das Übersteigen eines schadhaften Schwellwerts dazu führen können,
dass der gegebenenfalls poröse Knochen bricht.

Hierzu wird ein elastomechanisches Kontaktproblem unter Berücksichtigung der täg-
lichen bzw. aller möglichen Bewegungen, welche Trajektorien in einem relativ hochdimen-
sionalen Lastraum darstellen, gelöst. Der Green-St. Venant Verzerrungstensor muss zwin-
gend inklusive der geometrischen Nichtlinearität modelliert werden, da die beteiligten
Körper in den Gelenken rotieren können. Um die zu erwartenden hohen Rechenan-
forderungen zu reduzieren und das Lösen des Optimalsteuerungsproblems überhaupt mög-
lich zu machen, werden effiziente Methoden für Unterprobleme untersucht und angewandt.

Dafür soll zunächst die Anzahl der Lösungen der partiellen Differentialgleichung (PDG)
verringert werden, da bei fein diskretisiertem Finite Elemente-Gitter die Lösung der PDG
den teuersten Anteil ausmacht. Hierfür wird Kriging als Interpolationsmethode vorgestellt
und implementiert. Kriging erlaubt das sequentielle Einfügen von Testlasten und den da-
raus resultierenden Drucklast-Antworten. Außerdem kann die modell-inhärente Varianz
ausgenutzt werden, um zum einen die Interpolationsgenauigkeit zu prüfen und zum an-
deren an Stellen, wo das Interpolationsmodell die größte Varianz aufweist, dem Modell
adaptiv hinzuzufügende Lasten zu bestimmen.

Weiterhin wird genutzt, dass die Bewegungen auf den Lastraum marginalisiert und
durch eine Wahrscheinlichkeitsverteilung charakterisiert werden können. Dazu werden
gemessene Lastdaten der öffentlich zugänglichen Datenbank OrthoLoad mit einer patien-
tenspezifischen Gewichtung der Bewegungen kombiniert, sodass einerseits die PDG quasi-
statisch gerechnet werden kann und andererseits die Wahrscheinlichkeit in der Berechnung
des Integrals über den Lastraum mittels Monte Carlo Integration zur Anwendung kommt.

Abhängig von der FE-Diskretisierung ergibt sich eine Fehlerordnung, anhand derer die
Genauigkeit der PDG-Lösung, der Kriging Interpolation und der Monte Carlo Integration
justiert und bei mangelhafter Genauigkeit adaptiv verfeinert werden können.

Zuletzt wird für das Optimierungsverfahren die nötige Ableitung des Zielfunktionals
mithilfe des impliziten Funktionentheorems hergeleitet. Außerdem muss für die Schritt-
weitensteuerung eine spezielle Liniensuche eingeführt werden, sodass bei sich änderndem
FE-Diskretisierungsfehler durch Verschiebung der Implantatsposition, die auftretenden
Unstetigkeiten im Zielfunktionswert die Optimierung nicht zwecklos machen.

Das funktionierende Zusammenwirken der Algorithmen wird numerisch ausgewertet
und nachgewiesen.
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