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Abstract. In Ersoy et al. [J. Algebra 481 (2017), 1–11], we have proved that if G is a
locally finite group with an elementary abelian p-subgroup A of order strictly greater than
p2 such that CG(A) is Chernikov and for every non-identity α ∈ A the centralizer CG(α)

does not involve an infinite simple group, then G is almost locally soluble. This result is a
consequence of another result proved in Ersoy et al. [J. Algebra 481 (2017), 1–11], namely:
if G is a simple locally finite group with an elementary abelian group A of automorphisms
acting on it such that the order of A is greater than p2, the centralizer CG(A) is Chernikov
and for every non-identity α ∈ A, the set of fixed points CG(α) does not involve an infinite
simple groups then G is finite. In this paper, we improve this result about simple locally
finite groups: Indeed, suppose that G is a simple locally finite group, consider a finite non-
abelian subgroup P of automorphisms of exponent p such that the centralizer CG(P) is
Chernikov and for every non-identity α ∈ P the set of fixed points CG(α) does not involve
an infinite simple group. We prove that if Aut(G) has such a subgroup, then G ∼= PSLp(k)

where char k �= p and P has a subgroup Q of order p2 such that CG(P) = Q.
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1. Introduction. In [2], we have proved the following result:

THEOREM 1.1. [2, Theorem 1.1]. Let p be a prime and G a locally finite group contain-
ing an elementary abelian p-subgroup A of rank at least 3 such that CG(A) is Chernikov and
CG(a) involves no infinite simple groups for any a ∈ A#. Then G is almost locally soluble.

To prove Theorem 1.1, we gave the following characterization of PSLp(k) where
chark �= p.

THEOREM 1.2. [2, Theorem 1.2]. An infinite simple locally finite group G admits an
elementary abelian p-group of automorphisms A such that CG(A) is Chernikov and CG(a)

involves no infinite simple groups for any a ∈ A# if and only if G is isomorphic to PSLp(k)

for some locally finite field k of characteristic different from p and A has order p2.

In this paper, we will improve Theorem 1.2. Indeed, we will prove a similar result
without assuming A is an elementary abelian, but instead, we prove for any subgroup of
exponent p.

THEOREM 1.3. Let G be an infinite simple locally finite group, P a subgroup of
automorphisms of exponent p such that

(1) CG(P) is Chernikov,
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(2) For every α ∈ P\{1}, the set of fixed points CG(α) does not involve an infinite
simple group.

Then G ∼= PSLp(k) where k is an infinite locally finite field of characteristic p and P has a
subgroup Q of order p2 such that CG(P) = CG(Q) = Q.

2. Preliminaries. Let us recall some definitions of the concepts mentioned in the
theorems. First, consider Cpn = {x ∈ C : xpn = 1}. Here, (Cpn , .) defines a group isomorphic
to a cyclic group of order pn. Observe that if m|n then Cpm ≤ Cpn , and with the inclusion
maps, these sets form a direct system, where the direct limit

lim
n∈N

Cpn

is denoted by Cp∞ , which consists of all complex pn-th roots of unity, and forms a group
under complex multiplication. This group is called the quasi-cylic p-group.

DEFINITION 2.1. A group is called a Chernikov group if it is a finite extension of a
direct product of finitely many copies of some quasi-cyclic pi-groups, for possibly distinct
primes pi.

DEFINITION 2.2. Let χ be a group-theoretical property. If a group G has a normal
subgroup of finite index satisfying χ , then G is called almost χ .

DEFINITION 2.3. Let G and H be two groups. If G has a normal subgroup K such that
G/K has a subgroup isomorphic to H, then G is said to involve a subgroup isomorphic
to H .

DEFINITION 2.4. A group satisfies the minimal condition, namely min, if any
non-empty set of subgroups has a minimal subgroup. A group satisfies min-p if any
non-empty set of p-subgroups has a minimal subgroup.

Kegel–Wehrfritz and Sunkov proved independently that a locally finite group satisfy-
ing minimal condition is a Chernikov group (see [5, 9]). For detailed discussion of groups
satisfying min and min-p, see [6].

3. Main results. First, we need the following proposition:

PROPOSITION 3.1. Let G be a simple linear algebraic group of adjoint type over the
algebraic closure of Fq, let g ∈ G be an element of prime order p �= q such that CG(g) is a
non-abelian group which does not involve any infinite simple groups. Then

(i) The identity component CG(g)0 of the centralizer of g in G is a maximal torus of G,
(ii) G ∼= PGLp(Fq).

Proof. Since G is a simple linear algebraic group of adjoint type over the algebraic
closure of Fq and g ∈ G a semisimple element, g is contained in a maximal torus T of G.
By [7, Propositions 14.1 and 14.2], CG(g)0 is connected reductive, containing a maximal
torus T , and involving no infinite simple groups. Hence, CG(g)0 = T . By [7, Proposition
14.20], the exponent of CG(g)/CG(g)0 divides p, hence either CG(g) is connected, and
hence a torus, or CG(g)/CG(g)0 is a finite group of exponent p.

Since CG(g) is not abelian, one has CG(g) a finite extension of an abelian group T , so
it has finite rank. Recall that an infinite group G is said to have finite rank r if every finitely
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generated subgroup is r-generated. In [1, Theorem 1.8], we have shown that when a simple
linear algebraic group G over the algebraic closure of Fq has an element g of order p with
CG(z) has finite rank, then one of the following cases occur:

(1) G is of type Al and p > l,
(2) G is of type Bl, Cl, and p > 2l − 1,

(3) G has type Dl and p > 2l − 3,

(4) G is isomorphic to one of E6, E7, E8, F4, or G2 and p > 11, 17, 29, 17, or 5,

respectively.

On the other hand, since CG(g)/CG(g)0 has exponent p, by [10, Corollary 4.4] and [7,
Proposition 14.20], we get p is a torsion prime. The list of torsion primes of linear algebraic
groups is defined as follows: for type Al, these are the primes that divide l + 1. For types
Bl, Cl, Dl, G2, the prime is 2. For types E6, E7, F4, the primes are 2 and 3, and for type E8,

the primes are 2, 3, 5 (see [8]).
Hence, one deduce that the only possible case that may occur is G has type Ap−1,

indeed G ∼= PGLp(Fq).

THEOREM 3.2. Let G be an infinite simple locally finite group with a finite non-abelian
p-group of automorphisms P such that

(1) CG(P) is Chernikov,
(2) For every α ∈ P\{1}, the set of fixed points CG(α) does not involve an infinite

simple group

Then, G is isomorphic to PSLp(k) where k is a locally finite field of characteristic q �= p
and P is metabelian.

Proof. Since P is a finite p-group and CG(P) satisfies min-p, by [2, Lemma 2.1], G
satisfies min-p. Then, by [4, Theorem B], G is a simple group of Lie type over a locally
finite field k of characteristic q. Now assume that q = p. Clearly G contains a root subgroup,
which is an infinite elementary abelian p-subgroup. Hence, G can not satisfy min-p. Hence,
q �= p, that is, G is isomorphic to a simple group of Lie type over an infinite locally finite
field of characteristic q �= p.

Now, by [3, Lemma 4.3], there exists a simple linear algebraic group G of adjoint type,
a Frobenius map σ on G and a sequence of natural numbers ni|ni+1 such that

G =
⋃

i∈N

Op′
(Gσ ni ).

By assumption, the centralizer of any non-identity element does not involve an infinite
simple group, so [2, Lemma 2.3] implies that P consists of inner-diagonal automorphisms
of G. Hence, P ≤ ⋃

i∈N Gσ ni . Therefore, P ≤ Gσ
nj for some j ∈ N.

Choose 1 �= z ∈ Z(P). Clearly, P ≤ CG(z). Now, CG(z) = ⋃
i∈N Op′

(CG(z)σ ni ).
By assumption, CG(z) does not involve an infinite simple group. Now, suppose that

CG(z) involves a simple linear algebraic group H . Consider the union of fixed points of
σ ni on H , denoted by Hi = Hσ ni . Clearly, Hi ≤ Hi+1 and infinitely many of H involves finite
simple groups such that their union form an infinite locally finite simple group. Hence, we
get a contradiction and we deduce CG(z) does not involve a simple linear algebraic group.
By [2, Lemma 2.4], CG(z) is metabelian. Hence, P is metabelian. On the other hand, since
P is not abelian, CG(z) is not abelian.

By Proposition 3.1, G is isomorphic to PGLp(Fq). Hence, G is isomorphic to either
PSLp(k) or PSUp(k). Following the argument in the proof of Theorem 1.2 in [2], since

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S001708951900003X
Downloaded from https://www.cambridge.org/core. Charité Universitätsmedizin Berlin, on 17 May 2021 at 11:47:30, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S001708951900003X
https://www.cambridge.org/core


186 KIVANÇ ERSOY

the Weyl group of PSUp(k) has no elements of order p, and PT/T embeds in the Weyl
group, PSUp(k) has no such non-abelian subgroup P. Therefore, G ∼= PSLp(k) where k is
an infinite locally finite field of characteristic q �= p.

Then, we prove the main result of the paper:

Proof of Theorem 1.3. Assume first that P is abelian. Then by Theorem 1.2, the result
follows with |P| = p2.

Now, assume P is non-abelian. By Theorem 3.2, G ∼= PSLp(k) where k is a locally
finite field of characteristic q �= p. Let 1 �= z ∈ Z(P), observe that P ≤ CG(z) ≤ CG(z) where
G is the corresponding simple linear algebraic group and σ is the Frobenius map such
that G = ⋃

i∈N Op′
(Gσ ni ), which exist by [3, Lemma 4.3]. Denote the maximal torus of G

containing z by T . By Proposition 3.1(i), CG(z)0 = T . Indeed, by [10, Corollary 1.7], T is
the unique maximal torus containing z. Since P is not abelian, CG(z)/CG(z)0 can not be 1,
hence by [7, Proposition 14.20], it has exponent p. Let y be any element of CG(z)\CG(z)0.
Then, Q = 〈 y, z〉 has order p2. Indeed, CG(z)0 = T , and y ∈ NG(T). Hence, y induces an
element w of order p in the Weyl group. Now, z ∈ CT (w). The computation in the proof of
Theorem 1.2 in [2] shows that indeed CT (w) has order p, hence CG(Q) = Q. This Q is the
required subgroup.
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