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Machine learning can help us in solving problems in the context of big-data analysis and classification,
as well as in playing complex games such as Go. But can it also be used to find novel protocols and algo-
rithms for applications such as large-scale quantum communication? Here we show that machine learning
can be used to identify central quantum protocols, including teleportation, entanglement purification, and
the quantum repeater. These schemes are of importance in long-distance quantum communication, and
their discovery has shaped the field of quantum information processing. However, the usefulness of learn-
ing agents goes beyond the mere reproduction of known protocols; the same approach allows one to find
improved solutions to long-distance communication problems, in particular when dealing with asymmet-
ric situations where the channel noise and segment distance are nonuniform. Our findings are based on
the use of projective simulation, a model of a learning agent that combines reinforcement learning and
decision making in a physically motivated framework. The learning agent is provided with a universal
gate set, and the desired task is specified via a reward scheme. From a technical perspective, the learning
agent has to deal with stochastic environments and reactions. We utilize an idea reminiscent of hierarchical
skill acquisition, where solutions to subproblems are learned and reused in the overall scheme. This is of
particular importance in the development of long-distance communication schemes, and opens the way to
using machine learning in the design and implementation of quantum networks.
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I. INTRODUCTION

Humans have invented technologies with transforming
impacts on society. One such example is the internet,
which significantly influences our everyday life. The quan-
tum internet [1,2] could become the next generation of
such a world-spanning network, and promises applications
that go beyond its classical counterpart. These include,
e.g., distributed quantum computation, secure communi-
cation, and distributed quantum sensing. Quantum tech-
nologies are now on the brink of being commercially used,
and the quantum internet is conceived as one of the key
applications in this context. Such quantum technologies
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are based on the invention of a number of central protocols
and schemes, for instance quantum cryptography [3–7] and
teleportation [8]. Additional schemes that solve fundamen-
tal problems such as the accumulation of channel noise and
decoherence have been discovered and have also shaped
future research. These include, e.g., entanglement purifi-
cation [9–11] and the quantum repeater [12], which allow
the possibility of scalable long-distance quantum commu-
nication. These schemes are considered key results whose
discoveries represent breakthroughs in the field of quan-
tum information processing. But to what extent are human
minds required to find such schemes?

Here we show that many of these central quantum pro-
tocols can in fact be found using machine learning by
phrasing the problem in the framework of reinforcement
learning (RL) [13–15], the framework at the forefront of
modern artificial intelligence [16–18]. By using projective
simulation (PS) [19], a physically motivated framework
for RL, we show that teleportation, entanglement swap-
ping, and entanglement purification can be found by a
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PS agent. We equip the agent with a universal gate set,
and specify the desired task via a reward scheme. With
certain specifications of the structure of the action and
percept spaces, RL then leads to the rediscovery of the
desired protocols. Based on these elementary schemes,
we then show that such an artificial agent can also learn
more complex tasks and discover long-distance commu-
nication protocols, the so-called quantum repeaters [12].
The usage of elementary protocols learned previously is of
central importance in this case. We also equip the agent
with the possibility to call subagents, thereby allowing the
design of a hierarchical scheme [20,21] that offers flexi-
bility to deal with various environmental situations. The
proper combination of optimized block actions discovered
by the subagents is the central element in this learning
stage, which allows the agent to find a scalable, efficient
scheme for long-distance communication. We are aware
that we make use of existing knowledge in the specific
design of the challenges. Rediscovering existing proto-
cols under such guidance is naturally very different from
the original achievement (by humans) of conceiving of
and proposing them in the first place, an essential part
of which includes the identification of relevant concepts
and resources. However, the agent not only rediscovers
known protocols and schemes, but also can go beyond
known solutions. In particular, we find that in asymmet-
ric situations, where the channel noise and decoherence
are nonuniform, the schemes found by the agent outper-
form human-designed schemes that are based on known
solutions for symmetric cases.

From a technical perspective, the agent is situated in a
stochastic environment [13,14,22], as measurements with
random outcomes are central elements of some of the
schemes considered. This requires the agent to learn proper
reactions to all measurement outcomes, e.g., the required
correction operations in a teleportation protocol depend-
ing on the outcomes of (Bell) measurements. Additional
elements include abort operations, as not all measurement
outcomes lead to a situation where the resulting state can
be used further. This happens, for instance, in entangle-
ment purification, where the process needs to be restarted
in some cases as the resulting state is no longer entan-
gled. The overall scheme is thus probabilistic. These are
challenges that have not been treated in projective sim-
ulation before, but the PS agent can in fact deal with
such challenges. Another interesting element is the usage
of block actions that have been learned previously. This
is a mechanism similar to hierarchical skill learning in
robotics [20,21] and to clip composition in PS [19,23,24],
where previously learned tasks are used to solve more
complex challenges and problems. Here we use this con-
cept for long-distance communication schemes. The initial
situation is a quantum channel that is subdivided by mul-
tiple repeater stations that share entangled pairs with their
neighboring stations. Previously learned protocols, namely

entanglement swapping and entanglement purification, are
used as new primitives. In addition, the agent is allowed
to employ subagents that operate in the same way but deal
with a problem on a smaller scale, i.e., they find optimized
block actions for shorter distances that the main agent can
employ on a larger scale. This allows the agent to deal
with large systems and rediscover the quantum repeater,
with its favorable scaling. The ability to delegate is of spe-
cial importance in asymmetric situations, as such block
actions need to be learned separately for different initial
states of the environment—in our case, the fidelity of the
elementary pairs might vary drastically either because they
correspond to segments with different channel noise or
because they are of different length. In this case, the agent
outperforms human-designed protocols that are tailored to
symmetric situations.

The paper is organized as follows. In Sec. II, we pro-
vide background information on reinforcement learning
and projective simulation, and discuss our approach to
applying these techniques to problems in quantum com-
munication. In Sec. III, we show that the PS agent can find
solutions to elementary quantum protocols, thereby redis-
covering teleportation, entanglement swapping, entangle-
ment purification, and the elementary repeater cycle. In
Sec. IV, we present results for a scaling repeater in a
symmetric and an asymmetric setting, and summarize and
conclude the paper in Sec. V.

II. PROJECTIVE SIMULATION FOR QUANTUM
COMMUNICATION TASKS

In this paper, the process of designing quantum com-
munication protocols is viewed as a RL problem. RL,
and more generally machine learning (ML), is becoming
increasingly more useful in the automation of problem-
solving in quantum information science [25–27]. First, ML
has been shown to be capable of designing new quan-
tum experiments [24,28–30] and new quantum algorithms
[31,32]. Next, by building a bridge between knowledge
about quantum algorithms and actual near-term experi-
mental capabilities, ML can be used to identify prob-
lems in which a quantum advantage over a classical
approach can be obtained [33–35]. Then, ML can be
used to realize such algorithms and protocols in quan-
tum devices, by autonomously learning how to control
[36–38], error-correct [39–42], and measure [43] quantum
devices. Finally, given experimental data, ML can recon-
struct quantum states of physical systems [44–46], learn
a compact representation of these states, and characterize
them [47–49].

Here we propose learning quantum communication pro-
tocols by a trial-and-error process. This process is visual-
ized in Fig. 1 as an interaction between a RL agent and
its environment: by trial and error, the agent manipulates
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quantum states and hence constructs communication pro-
tocols. In each interaction step, the RL agent perceives the
current state of the protocol (the environment) and chooses
one of the available operations (actions). This action modi-
fies the previous version of the protocol, and the interaction
step ends. In addition to the state of the protocol, the agent
gets feedback in each interaction step. This feedback is
specified by a reward function, which depends on the spe-
cific quantum communication task (a)–(d) in Fig. 1. A
reward is interpreted by the RL agent, and its memory is
updated.

The RL approach described here is used for two rea-
sons. First, there is a similarity between a target quantum
communication protocol and a typical RL target. A target
quantum communication protocol is a sequence of elemen-
tary operations leading to a desired quantum state, whereas
a target of a RL agent is a sequence of actions that maxi-
mizes the achievable reward. In both cases the solution is
therefore a sequence, which makes it natural to assign each
elementary quantum operation a corresponding action, and
to assign each desired state a reward. Second, the way
the targets described are achieved is similar in RL and
quantum communication protocols. In both cases, an ini-
tial search (exploration) over a large number of operation
(or action) sequences is needed. This search space can
be viewed as a network, where the states of a quantum
communication environment are vertices and the basic
quantum operations are edges. The structure of a complex
network formed in this way is similar to that observed
in quantum experiments [24], which makes the search
problem equivalent to navigation in mazes—a reference
problem in RL [14,50–52].

It should also be said that the role of the RL agent
goes beyond mere parameter estimation for the follow-
ing reasons. First, using simple search methods (e.g., a
brute-force or guided search) would fail for the problem
sizes considered: e.g., in the teleportation task discussed

in Sec. III A, the number of possible states of the com-
munication environment is at least 714 > 0.6 × 1012 [53].
Second, the RL agent learns in the space of its memory
parameters, but this is not the case with optimization tech-
niques (e.g., genetic algorithms, simulated annealing, or
gradient descent algorithms) that would search directly in
the parameter space of communication protocols. Opti-
mizing directly in the space of protocols, which consist
of both actions and stochastic responses of the environ-
ment, can be efficient only if the space is sufficiently small
[14]. Additional complication is introduced by the fact that
reward signals are often sparse in quantum communication
tasks, and hence the reward gradient is almost always zero,
giving optimization algorithms no direction for parameter
change. Third, using an optimization technique for con-
structing an optimal action sequence, ignoring stochastic
environment responses, is usually not possible in quan-
tum communication tasks. Because different responses are
needed depending on measurement outcomes, there is no
single action sequence that achieves an optimal protocol,
i.e., there is no single optimal point in the parameter space
for such an optimization technique. Nevertheless, there is
at least one point in the RL agent’s memory-parameter
space that achieves an optimal protocol, as the RL agent
can choose an action depending on the current state of the
environment rather than choosing a whole action sequence.

As the learning agent that operates within the RL frame-
work shown in Fig. 1, we use a PS agent [19,54]. PS is
a physically motivated approach to learning and decision
making, which is based on deliberation in an episodic and
compositional memory (ECM). The ECM is organized as
an adjustable network of memory units, which provides
flexibility in constructing different concepts for learning,
e.g., meta-learning [55] and generalization [56,57]. The
deliberation in the ECM is based on a random-walk pro-
cess that is not computationally demanding, and which
in addition can be sped up via a quantum walk process

FIG. 1. Illustration of a reinforcement-learning agent interacting with the environment. The agent performs actions that change
the state of the environment, while the environment communicates information about its state to the agent. The reward function
is customized for each environment. ECM, episodic and compositional memory. The initial states for the different environments
that we consider here are illustrated: (a) teleportation of an unknown state, (b) entanglement purification applied recurrently, (c)
quantum repeater with entanglement purification and entanglement swapping, (d) scaling of quantum-repeater concepts to distribute
long-distance entanglement.
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[58,59], leading to a quadratic speedup in deliberation time
[60,61], which makes the PS model conceptually attrac-
tive. Physical implementations of the basic PS agent and
the quantum-enhanced PS agent have been proposed using
photonic platforms [62], trapped ions [63], and supercon-
ducting circuits [64]. Quantum-enhanced deliberation was
recently implemented, as a proof of principle, in a small-
scale quantum information processor based on trapped ions
[65].

The use of PS in the design of quantum communi-
cation protocols has further advantages compared with
other approaches, such as standard tabular RL models or
deep RL networks. First, the PS agent has been shown
to perform well on problems that, from a RL perspective,
are conceptually similar to designing communication net-
works. In problems that can be mapped to a navigation
problem [66], such as the design of quantum experiments
[24] and the optimization of quantum error-correction
codes [40], PS outperformed methods that were used prac-
tically for those problems (and were not based on machine
learning). In standard navigation problems, such as the
grid-world and mountain-car problems, the basic PS agent
shows performance qualitatively and quantitatively sim-
ilar to the standard tabular RL models of SARSA and
Q-learning [66]. Second, as was shown in Ref. [66], the
computational effort is 1–2 orders of magnitude lower
compared with tabular approaches. The reason for this is
low model complexity: in static task environments, the
basic PS agent has only one relevant model parameter.
This makes it easy to set up the agent for a new complex
environment, such as a quantum communication network,
where model-parameter optimization is costly because of
the run time of the simulations. Third, it has been shown
that a variant of the PS agent converges to optimal behav-
ior in a large class of Markov decision processes [67].
Fourth, by construction, the decision making of the PS
agent can be explained by analyzing the graph properties
of its ECM. Because of this intrinsic interpretability of the
PS model, we are able to properly analyze the outcomes of
the learning process [24].

Next, we show how the PS agent learns quantum com-
munication protocols. The code of the PS agent used in this
context is a derivative of a publicly available Python code
[68].

III. LEARNING ELEMENTARY PROTOCOLS

We let the agent interact with various environments
where the initial states and goals correspond to well-known
quantum information protocols. For each of the protocols,
we first explain our formulation of the environment and
the techniques that we use. Then we discuss the solutions
that the agent finds, before finally comparing them with the

established protocols. A detailed description of the envi-
ronments together with additional results can be found in
the Appendices.

The learning process follows a similar structure for
all of the environments as the agent interacts with the
environment over multiple trials. One trial consists of mul-
tiple interactions between the agent and the environment.
At the beginning of each trial, the environment is initial-
ized in the initial setup, and so each individual trial starts
again from a blank slate. The agent selects one of the avail-
able actions (which are specific to the environment), and
then the environment provides information to the agent
about whether the goal has been reached (with a reward
R > 0) or not (R = 0), together with the current percept.
The agent then gets to choose the next action, and this
repeats until the trial ends either successfully, if the goal is
reached, or unsuccessfully, e.g., if a maximum number of
actions is exceeded or if there are no more actions left. We
call a sequence of actions that the agent used successfully
in one trial a protocol.

A. Quantum teleportation

The quantum teleportation protocol [8] is one of the
central protocols of quantum information. In the standard
version, a maximally entangled state shared between two
parties, A and B, is used as a resource and serves to teleport
the unknown quantum state of a third qubit, which is also
held by party A, from A to B. To achieve this, A performs a
Bell measurement and communicates the outcome to B via
classical communication, and then B performs a correction
operation (a Pauli operation) depending on the measure-
ment outcome. Notice that the same scheme can serve for
entanglement swapping when the qubit to be teleported is
itself entangled with a fourth qubit held by another party.

1. Basic protocol

The agent is tasked to find a way to transmit quantum
information without directly sending the quantum system
to the recipient. As an additional resource, a maximally
entangled state shared between the sender and the recip-
ient is available. The agent can apply operations from a
(universal) gate set locally. This task challenges the agent
to find, without any prior knowledge, the best (shortest)
sequence of operations out of a large number of possi-
ble action sequences, which grows exponentially with the
sequence length.

We describe the learning task as follows: There are two
qubits A and A′ at the sender’s station and one qubit B at
the recipient’s station. Initially, the qubits A and B are in
a maximally entangled state

∣∣�+〉 = (1/
√

2) (|00〉 + |11〉),
and A′ is in an arbitrary input state |�〉. The setup is
depicted in Fig. 2(a). For this setup, we consider two differ-
ent sets of actions: The first is a Clifford gate set consisting
of the Hadamard gate H and the P-gate P = diag(1, i), as
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(a) (d)

(b) (c) (e)

FIG. 2. Reinforcement learning of a teleportation protocol. (a) Initial setup: the agent is tasked to teleport the state of qubit A′ to B
using a Bell pair shared between A and B. (b) Learning curves of an ensemble of PS agents: average number of actions performed in
order to teleport an unknown quantum state when Clifford gates (magenta) and universal gates (blue) are the sets of available actions.
(c) Two learning curves (magenta and blue) of two individual PS agents. Four solutions of different length are found by the agents. (d)
Initial setup without predistributed entanglement. (e) Learning curve in the learning setting (d): average number of actions performed
in order to teleport an unknown quantum state. In (b),(e), the curves represent an average over 500 agents. The shaded areas show the
mean squared deviation ±σ/3. This deviation appears not only because of different individual histories of the agents, but also because
of the difference in the individual solution lengths shown in (c).

well as the controlled-NOT (CNOT) gate (which, as a multi-
qubit operation, can be applied only to qubits at the same
station, i.e., in this case only to A and A′). Furthermore,
single-qubit measurements in the Z-basis are allowed, with
the agent obtaining a measurement outcome. The second
set of actions replaces P with T = diag(1, eiπ/4), which
results in a universal set of quantum gates. A detailed
description of the actions and percepts can be found in
Appendix B.

The task is considered to be successfully solved if the
qubit at B is in state |�〉. In order to ensure that this works
for all possible input states, instead of using random input
states, we make use of the Jamiołkowski fidelity [69,70]
to evaluate whether or not the protocol proposed by the
agent is successful. This means that we require that the
overlap of the Choi-Jamiołkowski state [69]

∣∣�+〉
Ã′A′ cor-

responding to the effective map generated by the suggested
protocol with the Choi-Jamiołkowski state corresponding
to the optimal protocol is equal to 1.

The learning curves, i.e., the number of operations that
the agent applies to reach a solution in each trial, are shown
as an average over 500 agents in Fig. 2(b). Unsuccessful
trials are recorded as 50 operations, as that is the maxi-
mum number of operations per trial to which the PS agent
is limited. Observing the number of operations decrease
below 50 means that the PS agent finds a solution. The
decline over time in the averaged learning curve stems
not only from an increasing number of agents finding a
solution but also from individual agents improving their
solutions based on their experience. We observe that the

learning curve converges to some average number of oper-
ations in both cases, i.e., using a Clifford (magenta) and
a universal (blue) gate set. However, the mean squared
deviation does not go to zero. This can be explained by
looking at the individual learning curves of two example
agents in Fig. 2(c): the agent does not arrive at a single
solution for this problem setup, but rather four different
solutions. These solutions can be summarized as follows
(up to different orders of commuting operations):

(a) Apply HA′ CNOTA′→A, where H is the Hadamard
gate and CNOT is the controlled-NOT operation.

(b) Measure qubits A and A′ in the computational basis.
(c) Depending on the measurement outcomes, apply

either �, X , Y, or Z (decomposed into the elementary gates
of the gate set used) to qubit B.

We see the four different solutions in Fig. 2(c) as four
horizontal lines, which appear because of the probabilis-
tic nature of the quantum communication environment.
The agent learns different sequences of gates because dif-
ferent operations are needed, depending on measurement
outcomes that the agent has no control over. Four appro-
priate correction operations of different length [as seen
in Fig. 2(c)], which are needed in order for the agent to
successfully transmit quantum information in each trial,
complete the protocol. This protocol found by the agent is
identical to the well-known quantum teleportation protocol
[8].
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Note that because we use the Jamiołkowski fidelity to
verify that the protocol implements the teleportation chan-
nel for all possible input states, it follows that the same
protocol can be used for entanglement swapping if the
input qubit at A′ is part of an entangled state.

2. Variants without predistributed entanglement

The entangled state shared between two distant parties is
the key resource that makes the quantum teleportation pro-
tocol possible. Naturally, one could ask whether the agent
is still able to find a protocol if not provided with the initial
entangled state. To this end, we let the agent solve two vari-
ants of this task, with the goal of transferring an input state
|�〉 to the receiving station B without sending it directly.

Variant 1.— Initially, there are two qubits |0〉A1
|0〉A2

and
the input qubit in state |�〉, all at the sender’s station A.
Note that in this variant there is no qubit at station B ini-
tially. In addition to a universal gate set (multiqubit oper-
ations can be applied only to qubits at the same station),
the agent now has the additional capability to send a qubit
to the recipient’s station, with the important restriction that
the input qubit may not be sent.

In this case the agent quickly finds a solution, which is,
however, different from the standard teleportation proto-
col and uses only one of the qubits A1, A2 provided. The
protocol is (up to order of commuting operators and per-
mutations of qubits A1 and A2) given by the following:
Apply HA′CNOTA′→A1 , and then send qubit A1 to the receiv-
ing station. Now measure qubit A′ in the computational
basis. If the outcome is −1, apply the Pauli-Z operator to
qubit A1. This protocol was called one-bit teleportation in
Ref. [71] and is even simpler, conceptually and in terms of
resources, than the standard teleportation.

Variant 2.—Now let us consider the same environment
as in Variant 1 but with the additional restriction that no
gates or measurements can be applied to the input qubit
A′ until one of the two other qubits has been sent to the
recipient’s station. In this case the agent indeed finds the
standard quantum teleportation protocol, by first creating
a Bell pair via CNOTA1→A2HA1 and sending A2 to the sec-
ond station—the rest is identical to the base case discussed
before. In Fig. 2(e), the learning curve averaged over 500
agents is shown. Obviously, it takes significantly more tri-
als for the agent to find solutions, as the action sequence
is longer. Nonetheless, this shows that the agent can find
the quantum teleportation protocol without being given an
entangled state as an initial resource.

B. Entanglement purification

Noise and imperfections are a fundamental obstacle
to distributing entanglement over long distances, and so
a strategy to deal with these is needed. Entanglement
purification is one approach that is integral to enabling
long-distance quantum communication. It is a probabilistic

protocol that generates out of two noisy copies of a (non-
maximally) entangled state a single copy with increased
fidelity. Iterative application of this scheme yields pairs
with higher and higher fidelity, and eventually maximally
entangled pairs are generated.

In particular, here we investigate a situation that uses
a larger amount of entanglement in the form of multiple
noisy Bell pairs, each of which may have been affected by
noise during the initial distribution, and try to obtain fewer
less noisy pairs from them. Again, the agent has to rely on
using only local operations at the two different stations that
are connected by the Bell pairs.

Specifically, we provide the agent with two noisy
Bell pairs ρA1B1 ⊗ ρA2B2 as input, where ρ is of the form
ρ = F

∣∣�+〉〈
�+∣∣ + [(1 − F)/3]

(∣∣�+〉〈
�+∣∣ + ∣∣�−〉〈

�−∣∣ +∣∣�−〉〈
�−∣∣). Here, |�±〉 and |�±〉 denote the standard Bell

basis, and F is the fidelity with respect to |�+〉. This start-
ing situation is depicted in Fig. 3(a). The agent is tasked
with finding a protocol that probabilistically outputs one
copy with increased fidelity. However, it is desirable to
obtain a protocol that not only results in an increased
fidelity when applied once, but also consistently increases
the fidelity when applied recurrently, i.e., on two pairs that
have been obtained from the previous round of the proto-
col. In order to make such a recurrent application possible
when dealing with probabilistic measurements, identifying
the branches that should be reused is an integral part.

To this end, a different technique than before is
employed. Rather than simply obtaining a random mea-
surement outcome every time the agent picks a measure-
ment action, instead the agent needs to provide potentially
different actions for all possible outcomes. The actions
taken on all the different branches of the protocol are then
evaluated as a whole. This makes it possible to calculate
the result of the recurrent application of that protocol sep-
arately for each trial. The agent is rewarded according to
both the overall success probability of the protocol and the
increase in fidelity obtained.

The agent is provided with a Clifford gate set and single-
qubit measurements. Qubits labeled Ai are held by one
party, and qubits labeled Bi are held by another party. Mul-
tiqubit operations can be applied only to qubits at the same
station. The output of each of the branches is forced to be a
state with one qubit on side A and one on side B, along with
a decision by the agent whether to consider that branch a
success or a failure for the purpose of iterating the protocol.
Since this naturally needs two single-qubit measurements,
with two possible outcomes each, there are four branches
that need to be considered.

In Fig. 3(b), we see reward values that 100 agents
obtain for the protocols applied to initial states with fideli-
ties of F = 0.73. The reward is normalized such that the
entanglement-purification protocol presented in Ref. [10]
would obtain a reward of 1.0. All the successful pro-
tocols found start in the same way (up to permutations
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(b)(a)

(c)

FIG. 3. Reinforcement learning of an entanglement-purification protocol. (a) Initial setup of the quantum communication environ-
ment: two entangled noisy pairs shared between two stations A and B. (b) Cumulative reward obtained by 100 agents for the protocols
found after 5 × 105 trials. (c) Illustration of the best protocol found by an agent: Apply bilateral CNOT operations and measure one of
the pairs. If the measurement outcomes coincide, the protocol is considered successful, and

√−iX is applied to both remaining qubits
before the next entanglement-purification step.

of commuting operations): they apply CNOTA1→A2 ⊗
CNOTB1→B2 followed by measuring qubits A2 and B2 in the
computational basis. In some of the protocols, two of the
four branches previously discussed are marked as success-
ful, while others mark only one particular combination of
measurement outcomes. The latter therefore have a smaller
probability of success, which is reflected in the reward.
However, looking closely at the distribution in Fig. 3(b),
we can see that these cases correspond to two variants
with slightly different rewards. These variants differ in
the operations that are applied to the output copies before
the next purification step. The variant with slightly lower
reward applies the Hadamard gate to both qubits: H ⊗ H .
The protocol that obtains the full reward of 1.0 applies√−iX ⊗ √−iX and is depicted in Fig. 3(c). This protocol
is equivalent to the well-known DEJMPS protocol [10] for
an even number of recurrence steps, but requires a shorter
action sequence for the gate set provided to the agent. We
discuss this solution in more detail, as well as an additional
variant of the environment with automatic depolarization
after each recurrence step, in Appendix C.

C. Quantum repeater

Entanglement purification alone certainly increases the
distance over which one can distribute an entangled state of
sufficiently high fidelity. However, the reachable distance
is limited because at some point too much noise will accu-
mulate, such that the initial states will no longer have the
minimal fidelity required for the entanglement-purification
protocol. The insight at the heart of the quantum-repeater
protocol [12] is that one can split up the channels into
smaller segments and use entanglement purification on

short-distance pairs before performing entanglement swap-
ping to create a long-distance pair. In the most extreme
case, with very noisy (but still purifiable) short-distance
pairs, the requirement of prior purification can easily be
understood, since entanglement swapping alone would
produce a state that can no longer be purified, but this
approach can also be beneficial when considering resource
requirements for less extreme noise levels.

While the value of the repeater protocol lies in its scaling
behavior, which becomes manifest as the number of links
grows, for now the agent has to deal with only two channel
segments that distribute noisy Bell pairs with a common
station in the middle, as depicted in Fig. 4(a). In this sce-
nario, the challenge for the agent is to use the protocols
of the previous sections in order to distribute an entangled
state over the whole distance. To this end, the agent may
use the previously discovered protocols for teleportation,
entanglement swapping, and entanglement purification as
elementary actions, rather than individual gates.

The task is to find a protocol for distributing an entan-
gled state between the two outer stations with a threshold
fidelity of at least 0.9, all the while using as few initial
states as possible. The initial Bell pairs are considered to
have initial fidelities of F = 0.75. Furthermore, the CNOT
gates used for entanglement purification are considered to
be imperfect; we model this imperfection as local depolar-
izing noise, with reliability parameter p , acting on the two
qubits involved followed by a perfect CNOT operation [11].
The effective map Ma→b

CNOT is given by

Ma→b
CNOT(p)ρ = CNOTab

[Da(p)Db(p)ρ
]

CNOT
†
ab, (1)
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(a)

(b)

FIG. 4. Reinforcement learning of a quantum-repeater proto-
col. (a) Initial setup for a length-2 quantum-repeater environ-
ment. The agent is provided with many copies of noisy Bell states
with initial fidelities F = 0.75, which can be purified on each link
separately or connected via entanglement swapping at the middle
station. (b) Learning curve in terms of resources (initial Bell pairs
used) for the best of 128 agents with gate reliability parameter
p = 0.99. The known repeater solution (red line) is reached.

where Di(p) denotes the local depolarizing noise channel
with reliability parameter p acting on the ith qubit:

Di(p)ρ = pρ + 1 − p
4

(
ρ + X iρX i + YiρYi + ZiρZi) ,

(2)

with X i, Yi, Zi denoting the Pauli matrices acting on the ith
qubit.

While the point of such an approach begins to show only
for much longer distances, which we take a look at in Sec.
IV, some key concepts can already be observed on small
scales.

The agent naturally tends to find solutions that use a
small number of actions in an environment that is similar
to a navigation problem. However, this is not necessarily
desirable here, because the amount of resources, i.e., the
number of initial Bell pairs, is the figure of merit in this
scenario rather than the number of actions. Therefore an
appropriate reward function for this environment takes the
resources used into account.

In Fig. 4(b), the learning curve of the best of 128 agents
in terms of resources used is depicted. Looking at the best
solutions, the key insight is that it is beneficial to purify the
short-distance pairs a few times before connecting them
via entanglement swapping, even though this way more
actions need to be performed by the agent. This solution
is in line with the idea of the established quantum-repeater
protocol [12].

IV. SCALING QUANTUM REPEATER

The point of the quantum repeater lies in its scaling
behavior, which starts to show only when one consid-
ers distances longer than just two links. This means that
we have to consider starting situations of variable length,
as depicted in Fig. 1(d), using the same error model as
described in Sec. III C. In order to distribute entanglement
over varying distances, the agent needs to come up with
a scalable scheme. However, both the action space and
the length of the action sequences required to find a solu-
tion would quickly become unmanageable with increasing
distance. Furthermore, a RL agent learns a solution for a
particular situation and problem size rather than finding a
universal concept that can be transferred to similar starting
situations and larger scales.

To overcome these restrictions, we provide the agent
with the ability to effectively outsource finding solutions
for distributing an entangled pair over a short distance
and reuse them as elementary actions for a larger set-
ting. This means that, as a single action, the agent can
instruct multiple subagents to come up with a solution for
a small distance and then pick the best action sequence
from among those solutions. This process is illustrated in
Fig. 5(a).

Again, the aim is to come up with a protocol that
distributes an entangled pair over a long distance with
sufficiently high fidelity, while using as few resources as
possible.

A. Symmetric protocols

First, we take a look at a symmetric variant of this setup:
The initial situation is symmetric, and the agent is allowed
to do actions in a symmetric way only. If it applies one
step of an entanglement-purification protocol to one of
the initial pairs, all the other pairs need to be treated in
the same way. Similarly, entanglement swapping is always
performed at every second station that is still connected
to other stations. In Figs. 5(b) and Fig. 5(c), the results
for various lengths of Bell pairs with an initial fidelity of
F = 0.75 are shown. We compare the solutions that the
agent finds with a strategy that repeatedly purifies all pairs
up to a chosen working fidelity, followed by entanglement
swapping (see Sec. E 4). For lengths greater than eight
repeater links, the agent still finds a solution with desirable
scaling behavior, while using only slightly more resources.
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(a)

(b)

(c)

(d)

(e)

FIG. 5. Reinforcement learning of a scalable quantum-repeater protocol. (a) Illustration of delegation of a block action. The main
agent that is tasked with finding a solution to the large-scale problem (repeater length 4 in this example) delegates the solution of a
subsystem of length 2 to another agent. That agent comes up with a solution to the smaller-scale problem, and that action sequence is
then applied to the larger problem. This counts as one single action for the main agent. For settings even larger then this, the subagent
itself can again delegate the solution of a subsubsystem to yet another agent. (b),(c) Scaling repeater with forced symmetric protocols
with initial fidelities F = 0.75. Gate reliability parameter p = 0.99. The threshold fidelity for a successful solution is 0.9. The red line
corresponds to a solution with approximately 0.518 × 108 resources used. (b) Best solution found by an agent for repeater length 8.
(c) Relative resources used by the agent’s solution compared with a symmetric strategy for different repeater lengths. (d),(e) Scaling
repeater with asymmetric initial fidelities (0.8, 0.6, 0.8, 0.8, 0.7, 0.8, 0.8, 0.6). The threshold fidelity for a successful solution is 0.9. (d)
The best solution found by an agent with gate reliability p = 0.99 outperforms a strategy that does not take the asymmetric nature
of the initial state into account (red line). (e) Relative resources used by the agent’s solution compared with a symmetric strategy for
different reliability parameters. (The jumps in the relative resources used are likely due to threshold effects or to agents converging to
a very short sequence of block actions that is not optimal.)

B. Asymmetric setup

The more interesting scenario is when the initial Bell
pairs are subjected to different levels of noise, e.g., when
the physical channels between stations are of different
length or quality. In this scenario, symmetric protocols are
not optimal.

We consider the following scenario: nine repeater sta-
tions connected via links that can distribute Bell pairs
of different initial fidelities (0.8, 0.6, 0.8, 0.8, 0.7, 0.8, 0.8,
0.6). In Fig. 5(d), the learning curve in terms of resources
for an agent that can delegate work to subagents is
shown. The gate reliability of the CNOT gates used in the
entanglement-purification protocol is p = 0.99. The solu-
tion obtained is compared with the resources needed for a
protocol that does not take the asymmetric nature of this
situation into account and that is also used as an initial
guess for the reward function (see Sec. E 4 for additional
details of that approach). Clearly, the solution found by the
RL agent is preferable to the protocol tailored to symmetric

situations. Figure 5(e) shows how that advantage scales for
different gate reliability parameters p .

C. Imperfect memories

One central parameter that influences the performance
of a quantum repeater is the quality of the quantum
memories available at the repeater stations. It is neces-
sary to store the qubits while the various measurement
outcomes of the entanglement swapping and, especially,
the entanglement-purification protocols are communicated
between the relevant stations.

To this end, we revisit the previous asymmetric setup
and assume that the initial fidelities now arise from dif-
ferent channel lengths between the repeater stations. We
model the noisy channels as local depolarizing noise [see
Eq. (2)] with a length-dependent error parameter e−L/Latt ,
with Latt = 22 km [72]. Similarly, we model imperfect
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(a) (b)

FIG. 6. Reinforcement learning of quantum-repeater protocols with imperfect memories. We consider an asymmetric setup with
repeater length 8 and initial fidelities (0.8, 0.6, 0.8, 0.8, 0.7, 0.8, 0.8, 0.6) arising from different distances between the repeater stations.
Gate reliability parameter p = 0.99. The threshold fidelity for a successful solution is 0.9. (a) Learning curves (relative to the protocol
designed for symmetric approaches with perfect memories) for different decoherence times τ of the quantum memories at the repeater
stations. The dashed lines show the resources used by symmetric strategies that do not account for the asymmetric situation. (b)
Resources (number of initial pairs) required by the protocols found by the agent for different memory times τ (relative to resources
required for τ = ∞).

memories by local depolarizing noise with an error param-
eter e−t/τ , where t is the time for which a qubit is stored
and τ is the decoherence time of the quantum memory.

The measurement outcomes of the entanglement-
purification protocol need to be communicated between
the two stations performing the protocol. This information
tells the stations whether or not the purification step is suc-
cessful, and is needed before the output pair can be used
in any further operations. Therefore both qubits of the pair
need to be stored for a time tepp = l/c, where the distance
between repeater stations is l and the speed of light in glass
fiber is c = 2 × 108 m/s. The measurement outcomes of
the entanglement swapping also need to be communicated
from the middle station performing the Bell measurement
to the outer repeater stations, so that the correct by-product
operator is known. In this case, however, it is not neces-
sary to wait for this information to arrive before proceeding
with the next operation. This is the case because all opera-
tions used in the protocols are Clifford operations, and thus
any Pauli by-product operators can be taken into account
retroactively. In our particular case, the information from
entanglement swapping may change only the interpretation
of the measurement outcomes obtained in the subsequent
entanglement-purification protocol, and needs to be avail-
able at that time. However, since the information exchange
for the entanglement-purification protocol always happens
over a longer distance than the associated entanglement
swapping, this information will always be available when
needed, and so there is no need to account for additional
time in memory for this.

Using the same approach as above, we let the agent learn
protocols for different values of τ and compare them with
the symmetric protocols. We use a gate reliability parame-
ter p = 0.99, and the task is considered complete if a pair

with a fidelity F > 0.9 has been distributed. The learn-
ing curves and the advantage over the protocols optimized
for symmetric approaches shown in Fig. 6(a) look qualita-
tively very similar to the result for perfect memories (i.e.,
τ = ∞). In Fig. 6(b), the numbers of initial pairs required
by the protocols found by the agent are shown for different
memory times. The required resources increase sharply at
a decoherence time of τ = 1/30 s, and the agent is unable
to find a protocol for τ = 1/31 s (which could mean either
that the threshold has been reached or that the number of
actions required for a successful protocol has grown so
large that the agent could not find such a protocol in a few
thousand trials). It should be noted that this rather demand-
ing memory requirement for this particular setup certainly
arises from our very challenging starting situation (e.g.,
some very low starting fidelities of 0.6).

D. Choosing the location of repeater stations

As an alternative use case, the protocols found by the
agent allow us to compare different setups. Let us con-
sider the following situation: We want two distant par-
ties to share entanglement via a quantum repeater using
only a small number of intermediate repeater stations. On
the path between the terminal stations, there are multiple
possible locations where repeater stations could be built.
Which combination of locations should be chosen? Fur-
thermore, let us assume that the possible locations are
unevenly spaced, so that simply picking a symmetric setup
is impossible.

We demonstrate this concept with the following exam-
ple setup using the same error model as in Sec. IV C for
both length-dependent channel noise and imperfect memo-
ries (τ = 0.1 s). We consider possible locations (numbered
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TABLE I. Resource requirements for various choices for constructing repeater stations in order to connect two distant parties 20 km
apart. There are seven possible locations at which one can place asymmetrically spaced repeater stations (see Sec. E 3). Gate reliability
parameter p = 0.99, decoherence time for quantum memories τ = 0.1 s, attenuation length Latt = 22 km.

Station at Resources Stations at Resources Stations at Resources

4 9.60 × 104 3, 6 1.06 × 105 2, 4, 7 9.95 × 104

5 1.60 × 105 3, 5 1.39 × 105 3, 5, 7 1.07 × 105

3 1.60 × 105 2, 5 1.59 × 105 2, 4, 6 1.08 × 105

6 4.97 × 105 3, 7 1.64 × 105 1, 3, 6 1.10 × 105

2 5.02 × 105 2, 6 1.64 × 105 1, 3, 5 1.11 × 105

7 4.31 × 106 4, 7 1.80 × 105 2, 3, 5 1.11 × 105

1 5.90 × 108 3, 4 1.90 × 105 3, 4, 6 1.12 × 105

1 to 7) for stations between the two end points that are
located at positions that correspond to the asymmetric
setup in the previous subsection but are scaled down to
a total distance of Ltot = 20 km. The positions of all loca-
tions are listed in Appendix E. In Table I, we show the
best combinations of locations for placing either one, two,
or three repeater stations and the amount of resources the
agent’s protocol takes for these choices.

Naturally, this analysis could be repeated for different
initial setups and error models of interest. This particu-
lar example can be understood as a proof of principle that
using the agent in this way can be useful as well.

V. SUMMARY AND OUTLOOK

We have demonstrated that reinforcement learning can
serve as a highly versatile and useful tool in the con-
text of quantum communication. When provided with
a sufficiently structured task environment, including an
appropriately chosen reward function, the learning agent
can retrieve (effectively rediscover) basic quantum com-
munication protocols such as teleportation, entanglement
purification, and the quantum repeater. We have developed
methods to state challenges that occur in quantum commu-
nication as RL problems in a way that offers very general
tools to the agent while ensuring that relevant figures of
merit are optimized.

We have shown that stating the challenges considered
above as a RL problem is beneficial and offers advantages
over using optimization techniques, as discussed in Sec. II.

Regarding the question of the extent to which pro-
grams can help us in finding genuinely new schemes for
quantum communication, it has to be emphasized that a
significant part of the work consists in asking the right
questions and identifying the relevant resources, and both
of these elements are central to the formulation of the task
environment and are provided by researchers. However,
it should also be noted that not every aspect of design-
ing the environment is necessarily a crucial addition, and
many details of the implementation are simply an acknowl-
edgment of practical limitations such as computational run
times. When provided with a properly formulated task, a

learning agent can play a helpful assisting role in exploring
the possibilities.

In fact, we use the PS agent in this way to demon-
strate that the application of machine learning techniques
to quantum communication is not limited to rediscover-
ing existing protocols. The PS agent finds adapted and
optimized solutions in situations that lack certain symme-
tries assumed by the basic protocols, such as the qualities
of the physical channels connecting different stations. We
extend the PS model to include the concept of delegat-
ing parts of the solution to other agents, which allows
the agent to deal effectively with problems of larger
size. Using this new capability for long-distance quantum
repeaters with asymmetrically distributed channel noise,
the agent comes up with novel and practically relevant
solutions.

We are confident that the approach presented here
can be extended to more complex scenarios. We believe
that reinforcement learning can become a practical tool
to be applied to quantum communication problems,
such as designing quantum networks, that do not have
a rich spectrum of existing protocols, especially if
the underlying network structure is irregular. Alterna-
tively, machine learning could be used to investigate
other architectures for quantum communication, such
as constructing cluster states for all-photonic quantum
repeaters [73].
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FIG. 7. The PS network in its basic form, which corresponds
to a weighed directed bipartite graph. Clips corresponding to
eight states of the environment and seven possible actions are
shown. They are connected by directed edges. The thick edges
correspond to high probabilities of choosing action ak in the state
sm.

APPENDIX A: INTRODUCTION TO PROJECTIVE
SIMULATION

This work is based on using RL for quantum commu-
nication. As a RL model, we use the model of PS, which
was first introduced in Ref. [19]. In the main text, we pro-
vide background information on RL and PS, and explain
our motivation for using PS. In this section, we give an
introduction to the working principles of the PS agent. The
decision making of the PS agent is realized in its episodic
and compositional memory, which is a network of memory
units, or clips. Each clip encodes a percept, an action, or a
sequence thereof. There are several different mechanisms
for connecting clips in the PS network, details of which
can be found, e.g., in Refs. [56,66]. In this paper, we use a
two-layered PS network construction, similar to one used
for designing quantum experiments [24]. The two-layered
network is schematically shown in Fig. 7.

The first layer of clips corresponds to percepts s, which
are states of the (quantum communication) environment.
The layer of percepts is connected to the layer of actions
a by edges with weights h(s, a). These weights determine
the probabilities of choosing the corresponding action: the
agent perceives a state sm and performs action ak with
probability

pmk = ehmk
∑

l ehml
. (A1)

The decision-making process within the PS model, using
the two-layered network, is hence a one-step random-walk
process. One trial, consisting of n agent-environment inter-
action steps, is an n-step random-walk process defined by
the weight matrix hmk. The weights of the network are
updated at the end of each agent-environment interaction
step i according to the learning rule

h(i+1)

mk = h(i)
mk − γ

(
h(i)

mk − 1
)

+ g(i+1)

mk r(i), (A2)

for all m and k; r(i) is the reward, and g(i+1) is a coefficient
that distributes this reward in proportion to how much a

given edge (m, k) contributes to the sequence of actions
rewarded. To be more specific, g(i+1) is set to 1 once the
edge has been used in a random-walk process, and goes
back to its initial value of 0 with a rate η afterwards:

g(i+1)

mk =
{

1, if (m, k) was traversed,
(1 − η) g(i)

mk, otherwise.
(A3)

The time-independent parameter η is set to a value in the
interval [0, 1]. The second metaparameter, 0 ≤ γ ≤ 1, of
the PS agent is a damping parameter that helps the agent to
forget, which is beneficial in cases where the environment
changes.

APPENDIX B: QUANTUM TELEPORTATION

1. Description of environment

Figure 2(a) depicts the setup. Qubit A′ is initialized as
part of an entangled state |�+〉Ã′A′ in order to facilitate
measuring the Jamiołkowski fidelity later on. Qubits A and
B are in a state |�+〉AB.

Goal: The state of A′ should be teleported to B. We
measure this by calculating the Jamiołkowski fidelity of
the effective channel applied by the action sequences. This
means that we calculate the overlap of

∣∣�+〉
Ã′B with the

reduced state ρÃ′B to determine whether the goal has been
reached.

Actions: The following actions are allowed:

(a) Depending on the specification of the task, either
P = (

1 0
0 i

)
for a Clifford gate set or T = ( 1 0

0 eiπ/4

)
for a

universal gate set, on each qubit (3 actions).
(b) The Hadamard gate H = (1/

√
2)

(
1 1
1 −1

)
on each

qubit (3 actions)
(c) The CNOT gate CNOTA′→A on the two qubits at

location A (1 action).
(d) Z-measurement on each qubit (3 actions).

In total, there are 10 actions. Note that the Clifford group
is generated by P, H , and CNOT [74], and replacing P with
T makes it a universal gate set [75]. The measurements are
modeled as destructive measurements, which means that
operations acting on a particular qubit are no longer avail-
able after a measurement has been performed on that qubit,
thereby reducing the number of actions that the agent can
choose.

Percepts: The agent uses only the previous actions
of the current trial as a percept. Z-measurements with
different outcomes produce different percepts.

Reward: If the goal is reached, R = 1 and the trial
ends. Otherwise, R = 0.

2. Discussion

One central complication in this scenario is that the
entanglement is a limited resource. If the entanglement
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is destroyed without anything being accomplished (e.g.,
qubit A is measured as the first action), then the goal can
no longer be reached no matter what the agent tries after-
wards. This is a feature that distinguishes this setup and
other quantum environments with irreversible operations
from a simple problem of navigation in a maze. Instead,
this is more akin to a navigational problem where there are
numerous cliffs that the agent can fall over and can never
get back up again, which means that the agent could be
permanently separated from the goal.

An alternative formulation that would make the goal
reachable in each trial even if a wrong irreversible action
was taken would be to provide the agent with a reset action
that resets the environment to the initial state. A different
class of percepts would need to be used in this case.

With prior knowledge of the quantum teleportation pro-
tocol, it is easy to understand why this problem structure
favors a RL approach. The shortest solution for one par-
ticular combination of measurement outcomes takes only
four actions, and these actions are to be performed regard-
less of which correction operation needs to be applied. This
means that once this simple solution has been found, it
significantly reduces the complexity of finding the other
solutions, as now only the correction operations need to be
found.

Compare this with searching for this solution by brute-
forcing action sequences. For the universal gate set, we
know that the most complicated of the four solutions takes
at least 14 actions. Ignoring the measurement actions for
now, as they reduce the number of available actions any-
way, there are 714 possible action sequences. So, we would
have to try at least 714 > 6.7 × 1011 sequences, which is
vastly more than the few hundred thousand trials needed
by the agent.

3. Environment variants without predistributed
entanglement

Variant 1.—Figure 2(d) shows the initial setup. The
qubits A1 and A2 are both initialized in the state |0〉.
As before, the input qubit A′ is initialized as part of
an entangled state |�+〉Ã′A′ in order to later obtain the
Jamiołkowski fidelity.

Goal: A qubit at location B is in the initial state of
qubit A′. As before, the Jamiołkowski fidelity is used to
determine whether this goal has been reached.

Actions: The following actions are available:

(a) The T-gate T = ( 1 0
0 eiπ/4

)
on every qubit (3 actions).

(b) The Hadamard gate H = (1/
√

2)
(

1 1
1 −1

)
on each

qubit (3 actions).
(c) A NOT gate on each pair of qubits as long as they are

at the same location (initially CNOTA′→A1 , CNOTA′→A2 , and
CNOTA1→A2).

(d) A Z-measurement on each qubit (3 actions).

(e) Send a qubit A1 or A2 to location B (2 actions).

There are 14 actions initially available. Measuring a qubit
removes all actions that involve that qubit from the pool
of available actions. Sending a qubit to location B removes
the action used itself (as that qubit is now at location B)
and also triggers a check of which CNOT actions are now
possible.

Percepts: The agent uses as a percept only the infor-
mation about which of the previous actions of the current
trial were taken. Z-measurements with different outcomes
produce different percepts.

Reward: If the goal is reached, R = 1 and the trial
ends. Otherwise, R = 0.

Variant 2.—As above, but initially no action involving
the input qubit A′ is available, i.e., there are no single-qubit
gates, no measurement, nor a CNOT gate. After one of the
sending actions is used, these actions on qubit A′ become
available. Furthermore, only one qubit may be sent in total,
i.e., after a qubit is sent, neither of the two sending actions
may be chosen.

Comment on the variant environments.—Variant 1
serves as a good example of why specifying the task
correctly is such an important part of RL problems. As
discussed in the main text, the agent immediately spots
the loophole and finds a protocol that uses fewer actions
than the standard teleportation protocol. Another success-
ful way to circumvent the restriction of not sending A′
directly is to construct a SWAP operation from the gate set.
It is then possible to simply swap the input state with the
state of one of the qubits that can be sent. However, in the
given action set, this solution consists of a longer sequence
of actions and is therefore deemed more expensive than the
one that the agent finds.

APPENDIX C: ENTANGLEMENT PURIFICATION

1. Description of environment

Figure 3(a) shows the initial setup, with A and B sharing
two Bell pairs with initial fidelity F = 0.73.

Goal: Find an action sequence that results in a pro-
tocol that improves the fidelity of the Bell pair when
applied recurrently. This means that two copies of the
resulting two-qubit state after one successful application
of the protocol are taken, and the protocol uses them as
input states.

Actions: The following actions are available:

(a) Px = HPH on each qubit (4 actions).
(b) H , the Hadamard gate, on each qubit (4 actions),
(c) The CNOT gates CNOTA1→A2 and CNOTB1→B2 on

qubits at the same location (2 actions).
(d) Z-measurements on each qubit (4 actions).
(e) Accept/reject (2 actions).
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In total, there are 16 actions. Note that these gates gener-
ate the Clifford group. (We tried different variants of the
method of generating the gate set, as the choice of basis is
not fundamental; the one with Px gave the best results.)
The measurements are modeled as destructive measure-
ments, which means that operations acting on a particular
qubit are no longer available after a measurement has been
performed on that qubit, thereby reducing the number of
actions that the agent can choose. In order to reduce the
huge action space further, the requirement that the final
state of one sequence of gates needs to be a two-qubit state
shared between A and B is enforced by removing actions
that would destructively measure all qubits on one side.
The accept and reject actions are essential because they
allow identification of successful branches.

Percepts: The agent uses only the previous actions
of the current trial as a percept. Z-measurements with
different outcomes produce different percepts.

Reward: The protocol suggested by the agent is per-
formed recurrently ten times. This is done to ensure that
the solution found is a viable protocol for recurrent appli-
cation, because it is possible that a single step of the
protocol might increase the fidelity but further applications
of the protocol could undo that improvement. The reward

function is given by R = max
(

0, const × 10
√∏10

i=1 pi
F
)

,

where pi is the success probability (i.e., the combined prob-
ability of the accepted branches) of the ith step, 
F is
the increase in fidelity after ten steps, and the constant is
chosen such that the known protocols [[9] or [10] ] would
receive a reward of 1.

Problem-specific techniques: To evaluate the perfor-
mance of an entanglement-purification protocol that is
applied in a recurrent fashion, it is necessary to know
which actions are performed and, especially, whether the
protocol should be considered successful for all possible
measurement outcomes. Therefore, it is not sufficient to
use the same approach as for the teleportation challenge
and simply consider one particular measurement outcome
for each trial. Instead, the agent is required to choose
actions for all possible measurement outcomes every time
it chooses a measurement action. This means that we
keep track of multiple separate branches (and the associ-
ated probabilities) with different states of the environment.
The average density matrix of the branches that the agent
decides to keep is the state that is used for the next purifi-
cation step. We choose to do things this way because it
allows us to obtain a complete protocol that can be eval-
uated in each trial, and the agent is rewarded according to
the performance of the whole protocol.

2. Discussion

As discussed in the main text, the agent finds an
entanglement-purification protocol that is equivalent to the

DEJMPS protocol [10] for an even number of purification
steps.

Let us briefly recap how the DEJMPS protocol works:
Initially, we have two copies of a state ρ that is diagonal in
the Bell basis and can be written with coefficients λij :

ρ = λ00
∣∣�+〉〈

�+∣∣ + λ10
∣∣�−〉〈

�−∣∣

+ λ01
∣∣�+〉〈

�+∣∣ + λ11
∣∣�−〉〈

�−∣∣ . (C1)

The effect of the multilateral CNOT operation CNOTA1→A2 ⊗
CNOTB1→B2 , followed by measurements in the computa-
tional basis on A2 and B2 and postselected for coinciding
measurement results, is

λ̃00 = λ2
00 + λ2

10

N
, λ̃10 = 2λ00λ10

N
,

λ̃01 = λ2
01 + λ2

11

N
, λ̃11 = 2λ01λ11

N
,

(C2)

where λ̃ij denotes the new coefficient after the proce-
dure, and N = (λ00 + λ10)

2 + (λ01 + λ11)
2 is a normaliza-

tion constant and also the probability of success. Without
any additional intervention, if this map is applied recur-
rently, not only is the desired coefficient λ00 (the fidelity)
amplified, but also both λ00 and λ10.

To avoid this and amplify only the fidelity with respect
to |�+〉, the DEJMPS protocol calls for the application
of

√−iX ⊗ √
iX to both copies of ρ before applying the

multilateral CNOTs and performing the measurements. The
effect of this operation is to exchange the two coefficients
λ10 and λ11, thus preventing the unwanted amplifica-
tion of λ10. So, the effective map in each entanglement-
purification step is the following:

λ̃00 = λ2
00 + λ2

11

N
, λ̃10 = 2λ00λ11

N
,

λ̃01 = λ2
01 + λ2

10

N
, λ̃11 = 2λ01λ10

N
,

(C3)

with N = (λ00 + λ11)
2 + (λ01 + λ10)

2.
In contrast, the solution found by the agent calls for√−iX ⊗ √−iX to be applied, which exchanges two dif-

ferent coefficients λ00 and λ01 instead, for an effective
map

λ̃00 = λ2
01 + λ2

10

N
, λ̃10 = 2λ01λ10

N
,

λ̃01 = λ2
00 + λ2

11

N
, λ̃11 = 2λ00λ11

N
,

(C4)

and N = (λ01 + λ10)
2 + (λ00 + λ11)

2. Note that the maps
given by Eqs. (C3) and (C4) are identical except that the
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roles of λ̃k0 and λ̃k1 are exchanged. It is clear that apply-
ing the agent’s map twice has the same effect as applying
the DEJMPS protocol twice, which means that they are
equivalent for an even number of recurrence steps.

As a side note, the other protocol found by the agent as
described in the main text applies such an additional oper-
ation before each entanglement-purification step as well:
applying H ⊗ H to ρ exchanges λ10 and λ01. This also
yields a successful entanglement-purification protocol, but
with slightly worse performance.

3. Automatic-depolarization variant

We also investigate a variant where, after each
purification step, the state is automatically depolar-
ized before the protocol is applied again. This means
that if the first step brings the state up to the new
fidelity F ′, it is then brought to the form F ′ ∣∣�+〉〈

�+∣∣ +
[(1 − F ′)/3]

(∣∣�+〉〈
�+∣∣ + ∣∣�−〉〈

�−∣∣ + ∣∣�−〉〈
�−∣∣). This

can always be achieved without changing the fidelity [9].
In Fig. 8, the reward obtained by 100 agents in this

alternative scenario is shown. The successful protocols
consist of applying CNOTA1→A2 ⊗ CNOTB1→B2 followed by
measuring qubits A2 and B2 in the computational basis.
Optionally, some additional local operations that do not
change the fidelity itself can be added, as the effect of
those is undone by the automatic depolarization. Simi-
larly to the scenario described in the main text, there are
some solutions that accept only one branch as successful,
which means that they get only half the reward, as the
success probability in each step is halved (center peak in
Fig. 8). The protocols for which two relevant branches are
accepted are equivalent to the entanglement-purification
protocol presented in Ref. [9].

APPENDIX D: QUANTUM REPEATER

1. Description of environment

The setup is depicted in Fig. 4(a). The repeater sta-
tions share entangled states with their neighbors via noisy
channels, which results in pairs with an initial fidelity
F = 0.75. The previous two protocols are now available
as the elementary actions in this more complex scenario.

Goal: Entangled pair between the leftmost and the
rightmost station with fidelity above threshold fidelity
Fth = 0.9.

Actions:

(a) Purify a pair with one entanglement-purification
step. (Left pair, right pair, the long-distance pair that arises
from entanglement swapping.)

(b) Entanglement swapping at the middle station.

FIG. 8. Entanglement-purification environment with auto-
matic depolarization after each purification step. The figure
shows the rewards obtained by 100 agents for the protocols found
after 5 × 105 trials.

We use the protocol given in Ref. [9] for this, as it
is computationally easier to handle. For practical appli-
cations, it would be advisable to use a more efficient
entanglement-purification protocol.

Percepts: Current position of the pairs and fidelity of
each pair.

Reward function: R = (const/resources)2. The whole
path is rewarded in full. The reward constant is obtained
from an initial guess using the working-fidelity strategy
described in Sec. E 4.

APPENDIX E: SCALING REPEATER

1. Description of environment

In addition to the elementary actions from the distance-
2 quantum repeater discussed above, we provide the agent
with the ability to delegate solving smaller-scale problems
of the same type to other agents, therefore splitting the
problem into smaller parts. Then, the sequence of actions
found is applied as one block action, as illustrated in
Fig. 5(a).

Goal: Entangled pair between the leftmost and the
rightmost station with fidelity above the threshold fidelity
Fth = 0.9.

Actions:

(a) Purify a pair with one entanglement-purification
step.

(b) Entanglement swapping at a station.
(c) Block actions of shorter lengths.
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So, for a setup with L repeater links, initially there are
L purification actions and L − 1 entanglement-swapping
actions. Of course, the purification actions have to be
adjusted every time an entanglement swapping is per-
formed to include the new, longer-distance pair. The block
actions can be applied at different locations; for exam-
ple, a length-2 block action can initially be applied at
L − 1 different positions (which also have to be adjusted
to include longer-distance pairs as entanglement-swapping
actions are chosen). So, it is easy to see how the action
space quickly becomes much larger as L increases.

Percepts: Current position of the pairs and fidelity of
each pair.

Reward: Again we use the resource-based reward
function R = (const/resources)2, as this is the metric that
we would like to optimize. The whole path is rewarded in
full. The reward constant is obtained from an initial guess
(see Sec. E 4) and adjusted downward once a better solu-
tion is found such that the maximum possible reward from
one trial is 1.

Comment on block actions: The main agent can use
block actions for a wide variety of situations at different
stages of the protocol. This means that the subagents are
tasked with finding block actions for a wide variety of ini-
tial fidelities, and so a new problem needs to be solved for
each new situation. In order to speed up the trials, we save
situations that have already been solved by subagents in a
large table, and reuse the action sequence found if a similar
situation arises.

Symmetric variant.—We force a symmetric protocol by
modifying the actions as follows:

Actions:

(a) Purify all pairs with one entanglement-purification
step.

(b) Entanglement swapping at every second active sta-
tion.

(c) Block actions of shorter length that have been
obtained in the same symmetrized manner.

2. Additional results and discussion

We also investigate different starting situations for this
setup. Here we discuss two of them:

First, we also apply an agent that is not restricted to
symmetric protocols to a symmetric starting situation.
The results for initial fidelities F = 0.7 can be found in
Figs. 9(a) and 9(b). In general, the agent finds solutions
that are very close but not equal to those obtained with the
working-fidelity strategy described in Sec. E 4. Remark-
ably, for some reliability parameters p the agent even
finds a solution that is slightly better, by switching the
order of operations around a little, or a threshold effect,
where a solution that omits an entanglement-purification
step on one of the pairs is still enough to reach the desired
threshold fidelity.

Finally, we also look at a situation that is highly asym-
metric, with starting fidelities (0.95, 0.9, 0.6, 0.9, 0.95,
0.95, 0.9, 0.6). Thus there are high-quality links on most
connections, but two links suffer from very high levels of
noise. The results depicted in Figs. 9(c) and 9(d) show that
the advantage over a working-fidelity strategy is even more
pronounced.

3. Repeater stations for setups with memory errors

As mentioned in the main text, in order to properly
account for imperfections in the quantum memories, we
need to know the distance between repeater stations.

In Sec. IV C, we look at a total distance of just below
78.9 km with seven intermediate repeater stations located
at the positions shown in Table II. Together with the
distance-dependent error model introduced in that section,
these give rise to the asymmetric initial fidelities (0.8, 0.6,
0.8, 0.8, 0.7, 0.8, 0.8, 0.6), which we also use for a setup
with perfect memories.

In Sec. IV D, we consider a list of seven possible loca-
tions to position repeater stations at, which we obtain by
scaling down the previous scenario to a total distance of
20 km. We choose such a comparatively short distance in

FIG. 9. (a),(b) Scaling repeater with eight repeater links with symmetric initial fidelities of 0.7. (a) Best solution found by an agent
for gate reliability p = 0.99. (b) Relative resources used by the agent’s solution compared with the working-fidelity strategy for
different gate reliability parameters. (c),(d) Scaling repeater with eight repeater links with very asymmetric initial fidelities (0.95, 0.9,
0.6, 0.9, 0.95, 0.95, 0.9, 0.6). (c) Best solution found by an agent for gate reliability p = 0.99. (d) Relative resources used by the
agent’s solution compared with the working-fidelity strategy for different gate reliability parameters.
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TABLE II. Positions of the repeater stations in
Sec. IV C. The terminal stations between which
shared entanglement is to be established are located
at positions 0 and 78.9 km.

Repeater-station index Position

1 6.8 km
2 23.6 km
3 30.4 km
4 37.2 km
5 48.5 km
6 55.3 km
7 62.1 km

order to make protocols with only one added repeater sta-
tion a viable solution. The positions of the seven possible
locations are listed in Table III.

4. Working-fidelity strategy

This is the strategy that we use to determine the reward
constants for the quantum-repeater environments, and was
presented in Ref. [12]. This strategy leads to a resource
requirement per repeater station that grows logarithmically
with the distance.

For repeater lengths with 2k links, the working-fidelity
strategy is a fully nested scheme and can therefore be stated
easily:

(1) Pick a working fidelity Fw.
(2) Purify all pairs until their fidelity is F ≥ Fw.
(3) Perform entanglement swapping at every second

active station such that there are half as many repeater links
left.

(4) Repeat from step 2 until only one pair remains (and
therefore the outermost stations are connected).

We then optimize the choice of Fw such that the resources
are minimized for the given scenario.

As we have to deal with repeater lengths that are not a
power of 2 as part of the delegated subsystems discussed

TABLE III. Possible locations at which repeater
stations can be positioned in Sec. IV D. The termi-
nal stations between which shared entanglement is to
be established are located at positions 0 and 20 km.

Possible location index Position

1 1.73 km
2 5.98 km
3 7.71 km
4 9.44 km
5 12.29 km
6 14.02 km
7 15.75 km

TABLE IV. Run times for our scenarios on a machine
with four Sixteen-Core AMD Opteron 6274 CPUs.

Scenario Run time

Teleportation [Fig. 2(b) or Clifford, ∼ 5 h;
2(c)] universal, ∼ 3 d

Teleportation variant 1 < 1 h
Teleportation variant 2

[Fig. 2(e)]
∼ 93 h

Entanglement purification
(Fig. 3)

∼ 7 h

Quantum repeater (Fig. 4) < 1 h
Scaling symmetric case

[Figs. 5(b) and 5(c)]
∼ 3 h

Scaling asymmetric case
[Figs. 5(d) and 5(e)]

∼ 24 h per data point

Scaling with memory errors
(Fig. 6)

∼ 25 h per data point

Repeater-station positions
(Table I)

∼ 4.5 h

in the main text, the strategy is adjusted as follows for such
cases:

(1) Pick a working fidelity Fw.
(2) Purify all pairs until their fidelity is F ≥ Fw.
(3) Perform entanglement swapping at the station with

the smallest combined distance of their left and right pairs
(e.g., 2 links + 3 links). If multiple stations are equal in
this regard, pick the leftmost station.

(4) Repeat from step 2 until only one pair remains (and
therefore the outermost stations are connected).

Then, we again optimize the choice of Fw such that the
resources are minimized for the given scenario.

APPENDIX F: COMPUTATIONAL RESOURCES

All numerical calculations are performed on a machine
with four Sixteen-Core AMD Opteron 6274 CPUs. In
Table IV, we provide the run times of the calculations
presented in this paper. Memory requirements are insignif-
icant for all of our scenarios.
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