
R A N D O M N E S S , C ATA LY S I S

A N D PA R T I A L K N O W L E D G E

I N Q UA N T U M T H E R M O D Y N A M I C S

im Fachbereich Physik der Freien Universität Berlin eingereichte Dissertation

zur Erlangung des Grades eines Doktors der Naturwissenschaften

PA U L B O Ë S

Berlin, 2020



empty

Erstgutachter: Prof. Dr. Jens Eisert

Zweitgutachter: Prof. Felix von Oppen, PhD.

Tag der Disputation: 15. Februar 2021

II



empty

Dedicated to

Gebhard (-2018) and Marleen (2019-)

III





C O N T E N T S

1 summary 1

2 list of publications 3

3 introduction 5

3.1 Quantum Thermodynamics 5

3.2 From the Schrödinger equation to the Second Law 7

3.3 Catalysis, Embezzlement, Coherences 13

4 catalytic qantum randomness 19

4.1 Random unitary channels and thermal operations 19

4.2 Majorization 21

4.3 Randomness as a resource 22

5 correlated catalysis 45

5.1 Motivation and characterization 45

5.1.1 Reusing catalysts on sequences of systems 45

5.1.2 Characterization via von Neumann entropy 46

5.2 Catalysis for �uctuation theorems 59

5.2.1 Fluctuation theorems 59

5.2.2 Bypassing �uctuation theorems with correlated catalysis 60

6 partial information and the canonical ensemble 77

6.1 Thermal operations under partial information 77

6.2 Roads to the canonical ensemble 77

6.3 Statistical ensembles without typicality 79

7 conclusions 105

7.1 Open questions 105

7.2 Acknowledgements 107

8 bibliography 109

9 back matter 119

9.1 Zusammenfassung 119

9.2 Anteile des Autors an zugrundeliegenden Arbeiten 120

9.3 Selbstständigkeitserklärung 121

V





1

S U M M A R Y

Quantum thermodynamics is a blossoming research program that uses tools and ideas from

quantum information theory to extend the laws of thermodynamics to the domain of sys-

tems to which the laws of quantum mechanics apply and the thermodynamic limit does not

necessarily apply. The contributions of this program are both foundational, in providing an

approach to constructively derive the laws of phenomenological thermodynamics from the

postulates of unitary quantum mechanics in a rigorous and bottom-up fashion, but also prac-

tical, in providing the theory for an increasing number of experiments that attempt to build

thermodynamic machines at scales that were previously inaccessible.

One key mathematical tool used in quantum thermodynamics is the framework of resource

theories, speci�cally the resource theory of thermal operations, in which the thermodynamic

interaction of a system with a heat bath and various additional components such as work

batteries, clocks or catalysts are modeled. In this cumulative thesis, various extensions and

modi�cations of this framework are studied in order to derive novel results and insights about

the possible thermodynamic evolution of quantum systems. In particular, following a system-

atic exposition of the resource theory of thermal operations from �rst principles, I develop

answers to the following questions: i) What is the smallest heat bath required to provide

the necessary randomness for a system to undergo a given stochastic or thermodynamical

evolution? ii) Does this size di�er depending on whether the interaction between bath and

system is quantum or classical? iii) How can quantum systems thermodynamically evolve

in the presence of catalytic bystander systems and how can this be put to use? iv) What are

the thermodynamic state transitions that an agent can operationally a�ect when she only has

access to partial information about the underlying states of system and bath? v) How can

we understand the emergence of the canonical ensemble in statistical thermodynamics from

quantum mechanics?

These questions cover a wide ground, but it will become clear that they can in fact all be

discussed using the same formal tools. As such, the answers to the above questions provided

in this thesis are both interesting in their own right — showing for example that there exists

a gap in how e�ciently randomness can be exploited quantumly as compared to classically

or that catalytic bystander systems can be used to extract �nite amounts of work per particle

from macroscopic systems with non-vanishing probability — as well as illustrate the power

of quantum thermodynamics as a set of tools to connect quantum mechanics and the theory

of thermodynamics more generally.
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I N T R O D U C T I O N

3.1 qantum thermodynamics

Phenomenological thermodynamics, that is, the theory of thermodynamics that was developed,

amongst other people, by Sadi Carnot, William Thomson (a.k.a. Lord Kelvin) and Rudolf

Clausius in the �rst half of the 19th century, is what Albert Einstein called a principal theory

[10]. Principal theories, which Einstein distinguished from constructive theories, are theor-

ies whose laws are empirically well-con�rmed statements — principles —, that constrain the

possible states and evolutions of systems that fall under the domain of applicability of the the-

ory. Phenomenological thermodynamics is a principal theory because its laws, in particular

the First, Second and Third Law, have been formulated in reaction to experiments that the

above researchers and others carried out and which the latter have found to hold in many

di�erent experimental settings, without being able to, and necessarily seeking to, produce a

transparent explanation forwhy these laws would hold. Such explanations, Einstein holds, are

not provided by principal theories but instead by constructive theories — such as Newtonian

mechanics — whose laws are derived, bottom-up, from a set of axioms. Despite their lack of

explanatory power, principal theories can be useful as guides in the development of scienti�c

theories, especially when no constructive theory to understand a given set of phenomena ex-

ists, or when reducing a phenomenon to the underlying workings of a constructive theory is

mathematically not tractable .

That the concepts of phenomenological thermodynamics have turned out to be useful guides

for the development of theories in physics is beyond doubt, with the notions of entropy, tem-

perature and the laws of phenomenological thermodynamics having played important roles

in the development of the theories of black holes [11, 12], biological physics [13], many-body

physics and statistical physics [14], information theory [15], computer science [16, 17, 18] and

other �elds. Nevertheless, it has from the start been a concern for researchers to provide con-

structive explanations for the laws of thermodynamics, by deriving them from a constructive

theory of the dynamics of the microscopic constituents of thermodynamic systems. Prominent

e�orts, culminating in the development of statistical thermodynamics, here include those of

James Maxwell, Ludwig Boltzmann and Josiah Gibbs (see [19] for an excellent historical review

of these e�orts). The intent of these reductional e�orts was both foundational — for example

to better understand how a time-asymmetric theory such as phenomenological thermodynam-

ics could result from the underlying workings of time-symmetric Newtonian mechanics — but

also to extend the laws of thermodynamics beyond their original domain of applicability.

Fast-forwarding 150 years, physics has moved a long way in better understanding the re-

lationship between thermodynamics and the microscopic dynamics of matter. Mile-stones

include �uctuation theorems [20, 21, 22, 23, 24], the development of the notion of typicality

and concentration inequalities (e.g.[25, 26]), an improved understanding of the processes of

equilibration and thermalization in physical systems [27] and their absence [28, 29]. Also, on

the experimental side (see [30, 31, 32, 33] for examples), there have been great advances in

the size of systems that can be controlled, with experimenters being able, for example, to de-

ploy heat engines that using “heat baths” composed of clouds of 105
atoms and and working

5
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materials composed of 104
atoms [30]. Still, there remain open questions in the reduction

of thermodynamics to quantum mechanics. Moreover, the improved experimental access re-

quires an extension of the laws of thermodynamics to scales at which quantum e�ects become

relevant.

Quantum thermodynamics, as I mean it here
1
, is a relatively young research program, in

which tools from quantum information theory are used to extend the laws of thermodynam-

ics, and their applications, to quantum systems outside of the thermodynamic limit. These

systems might be very small quantum systems, but they need not be. The laws of phenomen-

ological thermodynamics are derived as special cases from those of quantum thermodynamics,

but they also are valid in settings in which the latter are not well-de�ned, and hence expand

the domain of applicability of thermodynamics.

In this thesis, I use the tools of quantum thermodynamics to study and answer the following

questions:

1. What is the smallest size of a heat bath required to provide the necessary randomness

for a system to undergo a given stochastic or thermodynamical evolution?

2. Does this size di�er depending on whether the interaction between bath and system is

quantum or classical?

3. How can quantum systems thermodynamically evolve in the presence of catalytic bystander

systems?

4. What are the thermodynamic state transitions that an agent can operationally a�ect

when she only has access to partial information about the underlying states of system

and bath?

5. How can we understand the emergence of the canonical ensemble in statistical thermo-

dynamics from quantum mechanics?

I do so as follows: In the remainder of the introduction, I will introduce the resource theory

of (catalytic) thermal operations [38] as the formal starting point for the study of the above

questions, and also clarify the connection of the theory of thermal operations to a theory of

random processes. Chapter 4 addresses questions 1 and 2. In particular, I formalize how to

measure the amount of randomness that is provided by (part of) a heat bath required to imple-

ment a random process and show that there is a gap in the amount of randomness required

when the interaction with the bath that induces a random evolution of a system is quantum-

mechanical or classical. Chapter 5 addresses question 3 by introducing the notion of correlated

catalysis. Correlated catalysis provides a natural generalization of the more common notion of

uncorrelated catalysis, in which a catalytic ancilla has to be returned both locally unchanged

and uncorrelated from the system with which it interacted. In correlated catalysis this latter

constraint is dropped. This turns out to provide setups that are of signi�cant mathematical

and physical interest. In particular, mathematically, correlated catalysis is shown to opera-

tionally single out the von Neumann entropy as a single-shot quantity, which challenges the

folklore knowledge that the von Neumann entropy only is a special entropic quantity in the

i. i. d. limit (Sec. 5.1). Moreover, physically, correlated catalysis can, in principle, be used

1
Unsurprisingly, there are other research programs that also go by the name of quantum thermodynamics, but whose

methodology and basic vocabulary di�ers considerably from that of quantum thermodynamics as I present it in this

thesis (especially in the application of tools from quantum information theory). The works [34, 35, 36] provide a good

introduction to quantum thermodynamics as I use the term here. For an example of “quantum thermodynamics” that

di�ers from what I discuss in this thesis, see [37].
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to bypass the constraints imposed by �uctuation theorems to extract work from macroscopic

systems in thermal equilibrium with non-vanishing probability (Sec. 5.2). Finally, Chapter 6

addresses questions 4 and 5. In particular, tools are developed that provide a novel, operational

motivation for the use of the canonical ensemble as a representation of a system in thermo-

dynamic equilibrium. In particular, it is shown that the canonical ensemble is the only state

that captures the state transitions that an experimenter with only partial knowledge of and

partial control over their system can implement. As such, canonical ensembles are not only

special from a mathematical point of view (as shown for instance by typicality and passivity

approaches) but they also re�ect the practical aspects of dealing with thermodynamic systems

of which one holds only partial information.

3.2 from the schrödinger eqation to the second law

As mentioned before, quantum thermodynamics is concerned with how the laws of phenomen-

ological thermodynamics can be rigorously derived from the postulates of unitary quantum

mechanics by using concepts from quantum information theory. As such, the starting point

for the resource theory of catalytic thermal operations (CTO) are density operators on Hilbert

spaces as representations of mixed quantum states, the tensor product structure for Hilbert

spaces of joint systems and the Schrödinger equation. In this section, my aim is to introduce

the various elements of the full resource theory of CTOs step by step, to ensure that its assump-

tions are transparent. In particular, starting with the evolution of a single, isolated quantum

system, each of these steps will consist in allowing for a more general physical evolution by

adding the possibility of the system to interact with additional systems. At each step, I will

discuss the state transitions of the system that are possible at this step, and in this context

also introduce the notion of a monotone with respect the possible state transitions. This will

set the stage for the later chapters, in which the resource theory of CTOs and the monotones

will play a central role.

Consider, then, a �nite-dimensional system S with an initial Hamiltonian HS and an initial

state ρ ≡ ρ(0). According to the Schrödinger equation, the state ρ(t) of the system at a later

time t is

ρ(t) = U(t)ρ(0)U(t)†,

where U(t) := exp(−itHS) is the unitary operator that is generated by HS. In other words,

the set of possible evolutions of S in isolation and starting from ρ is simply the set of unitary

channels Ut that are generated by HS for all t ∈ R. By virtue of the postulates of unitary

quantum mechanics, if we wanted to be able to induce more general evolutions of S, then we

have to allow for S to interact with additional systems. For instance, one can show that it

is possible to realize any unitary that commutes with HS (not just the one generated by the

latter) by having S interact in an energy-preserving manner with an additional system. That

is, let T denote a second quantum system with local Hamiltonian HT . The joint Hamiltonian

of S and T is

HST = HS + HT + Hint,

where Hint is an interaction term that acts on ST and where here, and in the remainder of

this thesis, I write HA + HB as short for HS ⊗ 1B + 1S ⊗ HB, whenever it is clear from the

context that the involved Hamiltonians only have local support. We then have the following,

where TrX denotes the partial trace operation over a subsystem X (which is the canonical map

for subsystem states in quantum mechanics [39]):

Lemma 1 ([40]). The following are equivalent:
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1. There exists a unitary U such that [U, HS] = 0 and

ρ′ = UρU†,

2. There exist HT , Hint with [Hint, HS ⊗ 1T ] = 0, a t ∈ R and an initial state σ on T such

that

ρ′ = TrT

[
UST(t)(ρ⊗ σ)U†

ST(t)
]

,

where UTS(t) := exp(−itHST).

In other words, by considering the additional system T, we enlarged the set of evolutions

that we can induce on S from just those unitaries that are generated by HS to any unitary

that commutes with the latter. Note that, of course, we could also have generated energy-non-

preserving unitaries on S by engineering an interaction Hint that does not preserve the energy.

However, for the sake of conceptual clarity, we want to keep those ancillary systems that allow

for the realization of general energy-preserving unitaries on S separate from those ancillary

systems (i. e. batteries) that enable for energy to be pumped into and be extracted from S. As

such, the value of Lemma 1 is that the authors of [40] provide an explicit construction for the

HT , Hint and σ.

Thermal operations

Allowing for system T, we enlarged the set of possible evolutions on S, but di�erent energy

eigensubspaces of S cannot interact. In a next step, we allow for an additional system B, a

heat bath of some �xed temperature T , to also remedy this in a physically motivated fashion.

In particular, we allow for B to have any Hamiltonian HB, while constraining its initial state,

for a given choice of HB, to be the Gibbs state

ωβ(HB) :=
e−βHB

Z(β, HB)
,

where Z(β, H) := Tr(e−βH) is the partition function with respect to β and some Hamiltonian

H and β := 1/kBT is the inverse temperature, kB being the Boltzmann constant. We set

HSB = HS + HB as the initial joint Hamiltonian of system, that is, bath and system are

initially non-interacting. Now, we can apply Lemma 1 to apply any energy-preserving unitary

USB on SB (in which SB now plays the role of S in the statement of the Lemma). Of course,

USB will itself be generated according to the Schrödinger equation by a Hamiltonian HSB +

HT + Hint that can have S and B interact arbitrarily strongly, but USB itself will always

commute with HSB.

The most general set of quantum channels on S that we can realize at this point are of the

form

G(·) = TrB[U(· ⊗ωβ(HB))U†], (3.2.1)

where [U, HSB] = 0. The set of quantum channels G that can be written in the above form

are called thermal operations [41, 42, 43]. In the following, we write ρ →TO ρ′ if there exists

a thermal operation G such that ρ′ = G(ρ).

Resource theories and monotones

Thermal operations form an instance of a more general framework known as resource theories.

The idea behind resource theories is to study a physical phenomenon of interest formally by
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allowing systems to interact with ancillary systems in which the phenomenon of interest is ab-

sent and then study the resulting ordering over states that encodes which state transitions are

possible. In the particular case of thermal operations, the phenomenon of interest is thermal

non-equilibrium.
2

As such, we allow any system to interact with ancillary systems that are

already in thermal equilibrium — Gibbs states with respect to arbitrary Hamiltonians — and

to interact with them in such a way that the joint evolution itself cannot possibly increase the

degree of thermal non-equilibrium — here represented by unitaries that commute with the

total Hamiltonian of system and bath. In this way, the ordering →TO on states of S that is

induced by the set of thermal operations is meant to formally represent those evolutions of S
in the course of which the degree of thermal non-equilibrium can only decrease. In turn, only

real-valued functions f on states of S that are monotone with respect to this ordering, that is,

only functions for which

ρ→TO ρ′ ⇒ f (ρ) ≥ f (ρ′),

qualify, in principle, as a measure of thermal non-equilibrium (although there might be addi-

tional properties that one requires of useful measures such as continuity, additivity or faith-

fulness).

Resource theories have been studied abstractly [48, 49, 50, 51, 52] but there also exist ded-

icated resource theories for entanglement (better known as LOCC) [53, 54, 55], coherence

[56, 57] (to which the author also has contributed in [5]), asymmetry [58, 59], magic state dis-

tillation [60], and several other physical phenomena. See [61] for a recent review. Apart from

the variants of thermal operations that we will encounter in the following chapters, the use

of the framework of resource theories also has been extended within quantum thermodynam-

ics, where it has been generalized to thermodynamic potentials other than the Hamiltonian

[62, 63] and even to non-commuting quantities [64, 65].

Before introducing the monotones for thermal operations and further widening the set of

operations themselves, let me brie�y comment on the assumption that a) the state of the bath

is a Gibbs state, b) the initial state of system and bath is uncorrelated and c) that the Hamilto-

nian of the bath can be chosen freely. Concerning a), the motivation for this assumption is

that, as we have seen, thermal operations are meant to model the most general way of having

a system interact with a system in thermal equilibrium, and as such the choice of Gibbs states

is due to them being the canonical state assigned to systems in thermal equilibrium. Of course,

one may ask why this particular state is taken to represent systems in thermal equilibrium.

This question will be the central topic of Chapter 6 and as such I refer the interested reader to

this part of the thesis. Concerning b), from a pragmatic point of view, one can say that in the

kinds of experiments and processes that quantum thermodynamics is meant to describe, the

bath will generally still be much larger than the system S. As such, any correlations between

the system and the bath that may be present initially would quickly disperse over the whole

bath in such a way that any small subregion of the bath is essentially uncorrelated from the

system. It should be noted, however, that this assumption introduces an asymmetry into the

framework (product states evolving into correlated states) that makes thermal operations un-

suitable to explain time asymmetry in thermodynamics. This is similar to the criticism of

Boltzmann’s “Stoßzahlansatz” in the foundations of statistical mechanics. Finally, conerning

c), we emphasize that thermal operations are meant to provide fundamental bounds to the

kinds of thermodynamic evolutions that experimenters could engineer or observe in their

2
While the framework of resource as I present it here is quite young, the idea to study thermodynamics in the above

way goes back to the axiomatic thermodynamics of Lieb and Yngvason [44, 45] and even work of Carathéodory

from 1909 [46]. See [47] for an investigation of the precise relation between axiomatic thermodynamics and thermal

operations.
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laboratories. This would be undermined if we restricted the kinds of Hamiltonians that we

believe can be engineered in the lab a priori. A similar point can be made about the assump-

tion that the joint system can evolve under any energy-preserving unitary. This of course

assumes arbitrarily precise control over the interaction Hamiltonian Hint and is again mo-

tivated by not wanting to undermine the results of the framework by future developments.

Indeed, a moment’s thought reveals that the ability to �ne-tune the evolution of joint system

implies the ability to prepare any bath Hamiltonian. This is because, in a macroscopic heat

bath, the energy levels are extremely dense, so that any Hamiltonian HB can be “simulated”

by a su�ciently skilled experimenter by having the system only interact with a subset of en-

ergy levels of the macroscopic bath that has the same gap and degeneracy structure. This is

consistent with the framework of thermal operations because the thermal state of the macro-

scopic bath projected onto this truncated Hamiltonian HB is still a thermal state, i.e. for any

projector P onto a subset of energy levels of some Hamiltonian H, we have that [66]

ωβ(PHP) =
Pωβ(H)P

Tr(Pωβ(H)P)
. (3.2.2)

Now that we have extensively talked about the resource theory of thermal operations, let

us focus on understanding its monotones. For this, it will be useful to de�ne the notion of

d-majorization as a relation between vectors [67].

De�nition 2 (d-majorization). Let x, x′, y ∈ Rn
with y strictly positive. Then we say that x

d-majorizes x′ with respect to y, denoted as d(x‖y) � d(x′‖y), if for any convex continuous

function g

∑
i

yig
(

xi
yi

)
≥∑

i
yig
(

x′i
yi

)
.

Now, for a d-dimensional system with Hamiltonian HS = ∑d
i Ei |i 〉〈i | and in state ρ, de�ne

as PHS(ρ) the probability vector whose ith element is PHS(ρ)i = 〈i | ρ |i 〉, that is PHS(ρ) is

the diagonal of ρ in the energy eigenbasis. We then write

d(ρ‖ωβ(HS)) ≡ d(PHS(ρ)‖PHS(ωβ(HS))).

The following theorem relates the notion of d-majorization to thermal operations:
3

Theorem 3 ([41]). Let ρ, ρ′ be quantum states with [ρ′, ωβ(HS)] = 0. Then, the following are
equivalent:

1. There exists a thermal operation G such that ρ′ = G(ρ),

2.

d(ρ‖ωβ(HS)) � d(ρ′‖ωβ(HS)), (3.2.3)

3.

d(ωβ(HS)‖ρ) � d(ωβ(HS)‖ρ′). (3.2.4)

Theorem 3 is signi�cant at several levels: First of all we see that, by introducing baths, we

have again signi�cantly increased the set of state transitions that can be realized on S, in

particular allowing weight to be shifted between di�erent energy eigensubspaces. Secondly,

while checking d-majorization may seem to be a computationally demanding task, in that the

3
While [41] show Theorem 3 for the special case of thermal operations, it is in fact a simple corollary of more general

theorems proven much earlier, dating back at least to [67] and [68].
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de�nition involves an in�nite number of functions, [41] show that Eq. (3.2.3) and Eq. (3.2.4)

can in fact e�ciently be checked by means a criterion called thermo-majorization (see also

[67, 68, 69]). This means that the set of possible state transitions under thermal operations (at

least for pairs of states that satisfy the conditions of Theorem 3) can be e�ciently character-

ized. Thirdly, and most importantly in the current context, is that Theorem 3 establishes an

(in�nitely) large family of monotones under thermal operation, for the set of energy incoher-

ent states. To see this, �rst let

S = {ρ|[ρ, HS] = 0}
denote the set of energy-incoherent states on S. Further, it is easy to see that thermal opera-

tions by de�nition can never produce coherences in the energy eigenbasis, that is, if ρ ∈ S ,

then we also have G(ρ) ∈ S for any thermal operation G . The reason is that the unitary

U which generates G according to Eq. (3.2.1) commutes with HS + HB, so that for any state

ρ ∈ S ,

[ρ⊗ωβ(HB), HSB] = 0⇒ [Uρ⊗ωβ(HB)U†, HSB] = 0 (3.2.5)

⇒ [G(ρ), HS] = 0,

as claimed. Moreover, it is also straightforward to check that thermal operations have the

thermal state ωβ(HS) as a �xed point. This can be seen, for example, by realizing that thermal

states are, by de�nition, uniformly distributed over their energy subspaces (recall Eq. (3.2.2)).

Hence, any unitary that commutes with H will act trivially on each of these subspaces, and

hence on the whole state, so that

G(ωβ(HS)) = TrB(Uωβ(HS)⊗ωβ(HB)U†)

= TrB(Uωβ(HSB)U†)

= TrB(ωβ(HSB)) = ωβ(HS).

Combining the above two facts with Theorem 3 and the de�nition of d-majorization implies

that, for �xed system Hamiltonian HS and inverse temperature β, any continuous convex

function g gives rise to two monotones fg, hg : S → R, de�ned as

fg : ρ 7→∑
i

ωig
(

pi
ωi

)
,

hg : ρ 7→∑
i

pig
(

ωi
pi

)
,

where pi ≡ PHS(ρ)i and ωi ≡ PHS(ωβ(HS))i (note that for energy-incoherent states PHS(ρ) =

mspec(ρ)).4

Each of these monotones establishes a necessary condition on the existence of a state trans-

ition under thermal operations. In the following, I will present some of these constraints

and discuss in which sense one of them, the free energy di�erence (as de�ned for quantum

systems), becomes the only relevant constraint in the thermodynamic limit, hence allowing

us to derive the Second Law of phenomenological thermodynamics from thermal operations.

We begin by discussing the (non-equilibrium) free energy. This corresponds to the choice

g = − log, in which case we have that h− log equals the (quantum) relative entropy

S(ρ‖σ) := Tr (ρ(log ρ− log σ))

4
Similar reasoning lets us derive monotones for other resource theories as well. In particular, let σ be a �xed state of

a set of operations de�ned in a resource theory. Then we can de�ne monotones fg and hg for that resource theory

where the Gibbs state is replaced by σ.
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over S . Now, it is easy to see that the relative entropy actually encodes the free energy di�er-

ence of an incoherent non-equilibrium quantum state ρ ∈ S . To see this, de�ne

F(ρ) := 〈HS〉ρ − kBTS(ρ)

to be the non-equilibrium free energy of a state ρ, where

S(ρ) := −Tr(ρ log(ρ)) = −S(ρ‖1)

is the von Neumann entropy. Equipped with these new de�nitions, one �nds that, for any

ρ ∈ S ,

1
β

S(ρ‖ωβ(HS)) = −
1
β

S(ρ) + 〈H〉ρ +
1
β

log(Z)

= F(ρ)− F(ωβ(HS)),

as claimed. Theorem 3 then implies that the decrease of the non-equilibrium free energy

di�erence of a system in state ρ is a necessary consequence of any thermodynamic evolution

modeled by thermal operations, but not su�cient in the single-shot regime, in which one

only cares about the possible state-transitions that can be implemented for a single iteration

of the process (or in which one only has access to a single copy of S.) What about other

monotones? Returning to the choice of g = − log, fg de�nes a monotone that is called

the vacancy and that has recently been shown to be the dominant monotone not in the i.i.d.

limit but in a setting in which part of S is used as a resource to cool other parts of it [42, 70].

These results show that the vacancy is intimately related to the Third Law of thermodynamics,

exemplifying the scope of the framework of thermal operations and its ability to provide a

conceptually transparent approach to the derivation of thermodynamics from the postulates of

quantum mechanics. Many other choices of g correspond to monotones that are well-known

and studied in the information theory literature. For instance, the class of monotones fg for

continuous convex functions g with g(1) = 0 give rise to the so-called f -divergences, which

include, among others, the Hellinger distance, the χ2
-divergence, the variational divergence

[71]. Hence, Theorem 3 again establishes that in all of these distances, the distance between

any non-equilibrium state ρ and the thermal state ωβ(HS) can only decrease in the course of

evolutions modeled by thermal operations.

The macroscopic limit

We are now in a position to see how the Second Law of phenomenological thermodynamics

emerges as a special case from thermal operations.
5

Let us introduce an additional piece of

notation, writing ρ
ε→TO ρ′, if there exists a ρ′ε ∈ Bε(ρ′) such that and ρ →TO ρ′ε. Here,

Bε(ρ) denotes the ε-ball around ρ in trace distance, that is,

Bε(ρ) = {ρ′ |
1
2

∥∥ρ′ − ρ
∥∥

1 ≤ ε}.

Then, it follows from standard results in information theory about typical sequences that for

any pair ρ, ρ′ of states on S with ρ′ ∈ S and such that S(ρ‖ωβ(HS)) > S(ρ′‖ωβ(HS)) and

any ε > 0, there exists an nε ∈N such that, for all n ≥ nε, [38]

ρ⊗n ε→TO (ρ′)⊗n. (3.2.6)

5
For connections between thermal operations and the Third Law, see [42, 70, 72, 73]. For a resource theoretic approach

to the First Law, see [74]
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This shows that the free energy di�erence is the only relevant monotone for possible state

transitions in the thermodynamic limit. As the free energy quanti�es the work that can be

extracted from a state (both phenomenologically as well as in quantum thermodynamics [75,

76, 77]), this reproduces the constraints on state transitions and work extraction to the ones

that were known already to Helmholtz and his contemporaries.

At this point, we see how quantum thermodynamics is indebted, in its approach to the

laws of thermodynamics, to the methods of information theory: One begins with the study

of single-shot quantities, namely monotones that characterize the possible state transitions

with respect to a given model of physical processes, for a single instance of the process. The

thermodynamic limit then is simply given by the single-shot capacities in the special case that

input and output states are i.i.d. As such, the framework in fact makes no assumptions about

the underlying size of the systems, meaning that, in principle, the single quantum system may

already be macroscopic.

Before moving on to introduce another central concept of this thesis, catalysis, it should be

mentioned that one can use thermal operations to make much stronger statements about the

thermodynamic limit than Eq. (3.2.6). In particular, the latter follows only as a special case

of a more general result about interconversion rates under thermal operations. For two states

ρ, ρ′, let R ≡ R(ρ → ρ′) denote the largest number such that, for any ε > 0, there exists a

su�ciently large n so that

ρ⊗n ε→ (ρ′)⊗(Rn).

Then it was shown in [76] that

R =
S(ρ‖ωβ(HS))

S(ρ′‖ωβ(HS))
.

This provides a generalization of Carnot’s statement of the Second Law, according to which

the e�ciency of heat engines is fundamentally limited. See [78] for a full-blown resource

theory of asymptotic interconversion and [79] for �nite-size corrections to conversion rates.

It should also be mentioned that the i.i.d. limit is an idealization of the thermodynamic limit

that is chosen mostly for mathematical convenience and analytical tractability. Real macro-

scopic systems are never actually described by a perfect product state. In reaction to this

critical point, quantum thermodynamics has also made recent progress, with contributions

made also by the present author, in analysing the thermodynamic limit for larger and physic-

ally more realistic classes of states than only i.i.d. states. One relevant result in this direction

will be presented below, however, in order to be able to state it we �rst need to generalize the

framework of thermal operations further.

3.3 catalysis, embezzlement, coherences

(Uncorrelated) catalysis

We now consider, on top of the heat bath and the system T, the possibility of a catalyst. As the

name suggests, a catalyst is a system that may interact with S and B in the course of their joint

evolution, but whose �nal state, at the end of the evolution, will have to be exactly identical

to its initial state. An additional requirement is that, at the end of the interaction, the state of

the catalyst is uncorrelated with the system (but not necessarily the bath). Formally we say

that there exists a catalytic thermal operation (CTO) [38] that takes an initial state ρ to a �nal
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state ρ′ if, for any ε > 0, there exists a (�nite-dimensional) system C with Hamiltonian HC

and an initial state σ on C such that

ρ⊗ σ→TO ρ′ε ⊗ σ, (3.3.1)

where ρ′ε ∈ Bε(ρ′) and where the relevant Hamiltonian is

HSC = HS + HC.

In this case, we write ρ →CTO ρ′. Physically, the role of catalysts is well motivated. In

particular, a catalyst could be thought of as an engine or other devices that are employed to

facilitate a thermodynamic evolution, but whose potential to be re-used for the facilitation of

further state transitions on other systems remains uncompromised. Indeed, useful catalysts

will usually be far from-equilibrium states (In turn, it is quite clear that thermal catalysts do

not add any power over non-catalytic thermal operations).

Clearly, allowing for catalysts again greatly enlarges the set of possible state transitions that

can be realized on S. Indeed, one can neatly characterize the possible state transitions under

uncorrelated catalysis in terms of a one-parameter family of functions that form a strict subset

of the monotones for thermal operations. These are the Rényi divergences, which were �rst

introduced [80] (see [81] for various quantum generalizations). For general quantum states ρ

and σ, these are de�ned as

Rα(ρ‖σ) :=
1

α− 1
log(Tr(ρασ1−α))

for α ∈ (−∞, 1) ∪ (1, ∞) and as the corresponding continuous extension

Rα(ρ‖σ) := lim
γ→α

Rγ(ρ‖σ)

for α ∈ {−∞, 1, ∞}. The Rényi divergences arise as d-majorization monotones for thermal

operations as

Fα(ρ) := Rα(ρ‖ωβ(HS)) = g−1
α (hgα(ρ)),

where gα(x) = exp((1 − α)x) and ρ ∈ S [71]. Here, we de�ne Fα as generalized free

energy di�erences (dropping the implicit dependence on β). Since gα are strictly monotone,

it is clear that Fα inherit their monotonicity from that of hg. Just like the f -divergences, the

family of Rényi divergences is related to several well-studied quantities in information theory.

To begin with, it is easy to see using l’Hopital’s rule that R1(ρ‖σ) = S(ρ‖σ), that is, the

relative entropy is one of the Rényi divergences. Other notable cases include the hypothesis

testing relative entropy [82] for α = 0, the Bhattacharyya distance for α = 1/2 [83] and (the

logarithm of) the expected ratio 〈 PHS (ρ)

PHS (σ)
〉PHS (ρ)

for states ρ, σ ∈ S for α = 2. In [38], the

following was shown:

Theorem 4 (Second Laws). Let ρ, ρ′ ∈ S . Then the following are equivalent:

1. ρ→CTO ρ′

2. Fα(ρ) ≥ Fα(ρ′), α ∈ [−∞, ∞]

In other words, by allowing for a catalytic ancilla many of the monotones under thermal

operations stop being monotones, further enlarging the set of possible state transitions. In-

deed, one can further get rid of the constraints corresponding to negative α by allowing for a
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further ancilla C′, a single qubit initially in the state |0 〉〈0 | that has to be returned arbitrarily

closely to its initial state. That is, let us write ρ
ε→CTO′ ρ′ if

ρ⊗ |0 〉〈0 | ε→CTO ρ′ ⊗ |0 〉〈0 |

and write ρ →CTO′ ρ′ if ρ
ε→CTO ρ′ for any ε > 0. For this further weakening of thermal

operations, one can show a stronger version of Theorem 4 for pairs of states (ρ, ρ′) such that

[ρ, σ] = [ρ′, σ] = 0, ρ→CTO′ ρ′ if and only if, for all α ≥ 0,

Fα(ρ) ≥ Fα(ρ
′). (3.3.2)

The above characterization of thermal operations under catalysis also allows for elegant

statements that describe the approximation of the macroscopic Second Law not only in the

asymptotic limit, as around Eq. 3.2.6, but also for �nitely many copies of a state. To state one

particularly simple such bound, de�ne, for any state σ,

V(ρ‖σ) := Tr
[

ρ
(

log
( ρ

σ

)
− S(ρ‖σ)

)2
]

as the relative variance of information [84, 85, 86], where log
( ρ

σ

)
≡ log(ρ)− log(σ) denotes

the relative surprisal, and let Vβ(ρ) := V(β‖ωβ(HS)). Vβ describes, in a sense, the �uctu-

ations of ρ around the free energy di�erence. Recent and yet unpublished work co-authored

by the present author [8] then implies the following:

Theorem 5. For �xed, β, HS, let (ρ, ρ′) ∈ S2
be a pair of energy-incoherent states. Then, for

any k > 0, there exist ε1 ≥ 0 and ε2 ≥ 0 with ε1 + ε2 ≤ 1/k2
and states ρε ∈ Bε(ρ), ρ′ε ∈

Bε(ρ′) such that

ρε →CTO ρ and ρ′ →CTO ρ′ε

and

Fα(ρε) ≥ F1(ρ)− k
√

Vβ(ρ), α ∈ [0, 1]

F1(ρ
′) ≥ Fα(ρ

′
ε)− k

√
Vβ(ρ′), α ≥ 1.

This theorem connects the Rényi divergences for α ≥ 0 to the variance of surprisal of the

respective initial and �nal states. By combining this statement with Eq. (3.3.2), we can then

infer the following corollary to the above theorem:

Corollary 6 (Single-shot su�cient conditions for �C
σ,ε). For �xed β, HS, let (ρ, ρ′) ∈ S2

be

a pair of energy-incoherent states such that

F(ρ)− F(ρ′) =: δ > 0

For any n ∈N, we have

ρ⊗n ε→CTO′ (ρ
′)⊗n

with

ε ≤ 4(V(ρ‖σ) + V(ρ′‖σ))
nδ2 .

While this result clearly reproduces the macroscopic Second Law in the limit of n → ∞, it

also produces simple bounds for �nite n. Moreover, it implies that state transitions between

states whose variance V(ρ‖σ) is negligible already at the single-shot level are also essentially

governed by the free energy alone. One example of this are Gibbs states of an in�nite lat-

tice with local Hamiltonians and at su�ciently high temperature, and more generally ergodic
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states, i.e. translation-invariant lattice states that have vanishing �uctuations in the statistics

of any local observable that is averaged over some region of the lattice, in the limit of this re-

gion becoming in�nitely large [87, 88]. As such, this result shows that the resource theoretic

approach of quantum thermodynamics can also be useful for considering thermodynamic lim-

its that go beyond the simple i.i.d. limit described earlier. See [79, 89] for similar discussions.

Embezzlement and approximate catalysis

Before moving on, let me brie�y comment on the requirement to have the catalyst returned

exactly, instead of only approximately. That is, instead of de�ning CTOs via Eq. (3.3.1), it

might seem operationally more reasonable to require the weaker condition that

ρ⊗ σ
ε→TO ρ′ ⊗ σ. (3.3.3)

However, if no additional requirements on the scaling of the dimension of the catalyst are

made (such as in the case of CTO’s discussed in the previous section), then this alternative

de�nition of CTOs becomes trivial, in the sense that ρ →CTO ρ for any (ρ, ρ′) ∈ S2
. This

phenomenon is known as embezzling, named after a similar phenomenon in the resource

theory of entanglement [90]. The reason for the trivialization is essentially that, by making

the catalyst large enough, we can “hide” any di�erence between the initial and the �nal state

in the catalyst, making the trace distance as small as we like. Indeed, a simple way to construct

such an embezzling catalyst for a given transition ρ→ ρ′ is to choose σn = (ρ′)⊗n
for some

n ∈N. Then, we can use results from [91, 92] to show that

ρ⊗ σn →TO τ,

where ∥∥τ − ρ′ ⊗ σn
∥∥2

1 ≤
1
2

log(1 +
K
n
)

for some constant K that depends on ρ and ρ′ but not n. Clearly, this implies that any transition

would be possible using a catalyst under the modi�ed de�nition Eq. (3.3.3). Conversely, once

can show that when imposing restrictions on the size of the catalyst, then trivialization in the

above sense does not occur. Indeed, results in [38] imply that the dimension of the catalyst

bounds the extent to which the free energy can be reduced under “modi�ed” CTOs (in the

sense of Eq. (3.3.3)).

Thermal operations in the presence of coherences and GP-maps

Most of the above results only hold if the �nal state ρ′ of a state transitions has no coher-

ences in the energy eigenbasis. This is mostly because characterizing those state transitions

is signi�cantly simpler, allowing for the application of standard results from the theory of

d-majorization for vectors, as presented on the preceding pages. However, researchers have

also put signi�cant e�ort in studying the more complicated case in which energy coherences

are present in both initial and �nal states. While these results do not matter much for res-

ults presented in this thesis, let me here present a brief overview over the main �ndings: In

[38, 93], a number of necessary conditions for the existence of a CTO for a generic transition

ρ →CTO ρ′ was given in terms of Rényi divergences. In [94, 95], it was shown that energy

coherences can be understood as a resource independently of the “non-equilibriumness” cap-

tured by the d-majorization monotones presented above. Indeed, later it was shown that these
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coherences could be used to extract work [96, 97] (see also [98] for a review). Recently, [99]

�nally provided fully general necessary and su�cient conditions for state transitions under

thermal operations. They did so by using more general results based on a generalization

of d-majorization to quantum systems, which they call quantum majorization. The details of

quantum majorization, which is closely related to the theory of degradable channels [100, 101]

and quantum dichotomies [102], lie beyond the scope of this thesis.

Another interesting subject-matter related to coherence, which will not be discussed in

further detail in this thesis, is the relationship between thermal operations and the class of

channels G̃ whose de�ning property is that, for a system with �xed system Hamiltonian HS

and bath inverse temperature β, they preserve the Gibbs state,

G̃(ωβ(HS)) = ωβ(HS).

These channels are called Gibbs-preserving (GP-)maps and, as we have seen by the argument

above Eq. (3.2.5), thermal operations form a subset of GP-maps. Indeed, and importantly, they

only form a strict subset of GP-maps.
6

This separation leads to signi�cant di�erences in the

kinds of state transitions that can be realized by them. In particular, in [108], it was shown

that there exist GP-maps that map an initially incoherent state to a coherent state. While any

GP-map, by virtue of being a quantum channel, can be understood as the e�ective map that

results from the interaction with another system (via Stinespring’s dilation theorem [39]), the

preceding sections do not provide us with a detailed and systematic understanding of these

interactions (for GP-maps that are not thermal operations) and we will not consider them

further.

Further extensions of thermal operations

On the preceding pages, we have seen how the framework of resource theories provides us

with a conceptually transparent path from the postulates of quantum mechanics to a theory

of the thermodynamic evolution of quantum systems that both implies (some of) the laws of

phenomenological thermodynamics as special cases but also extends those laws from the ther-

modynamic limit into the realm of single-shot thermodynamics, which is governed by small

systems, �nite-size baths, �uctuations that are of the same order of magnitude as the size of the

system, and single or few copies of the initial state. Researchers have extensively and fruitfully

studied various further additions to the framework of CTOs, such as for example, di�erent

models of batteries to study work extraction and work �uctuations[75, 77, 109, 110, 111, 112],

sources of coherences [113], time-dependent Hamiltonians [76] and various generalizations

of catalysis [114, 115, 116]. Each of these extensions was operationally motivated to allow

for the study of one aspect of the thermodynamic evolution, in an attempt to keep the vari-

ous quantities and resources that a�ect quantum thermodynamical processes conceptually as

cleanly separated as possible. Many of the results presented in the following chapters will

also be based on particular modi�cations or extensions of CTOs.

6
In Chapter 4, we will see that thermal operations and GP-maps are generalizations of channels that, in the mathem-

atical physics literature, are called exactly factorizable maps and unital maps. Here, the fact that exactly factorizable

maps form a strict subset of unital channels is closely related to the fact the seminal Birckho�-von Neumann theorem

on the decomposition of doubly stochastic matrices into a convex sum of permutations does not exist for quantum

channels. See [103, 104, 105, 106, 107] for literature on the relation between unital and exactly factorizable maps.
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C ATA LY T I C Q UA N T U M R A N D O M N E S S

The work and results presented in this chapter deal primarily with the notion of randomness

as a resource. In particular, we de�ne models of random processes in which a system interacts

with a source of randomness in either a classical or a quantum way and prove that these models

di�er in strength, in the sense that one and the same random transition of a system can be

realized with a strictly smaller source of randomness if the process is quantum as compared

to classical. This is interesting in its own right but can also be used in various applications

ranging from decoherence[117] to private quantum channels [118] that are presented below.

That randomness and thermodynamics are intimately connected has been known at least

since the work of Maxwell and Boltzmann, who put random distributions over particle velo-

cities in a gas at the very beginning of their attempts to derive the laws of thermodynamics

[19]. However, the models of random processes that underlie this chapter can be related to

the theory of thermal operations as it was presented in chapter 3 in a very precise and formal

manner. The main purpose of this introduction is to clarify this formal connection and spell

it out.

4.1 random unitary channels and thermal operations

In quantum information theory, the most general description of a physical process is a quantum

channel, which is a completely positive trace-preserving (CPTP) map [39]. We say that a given

channel C describes a (non-trivial) random process if it can be decomposed into a (non-trivial)

convex combination of other CPTP channels, that is,

C =
k

∑
i

piCi, (4.1.1)

where pi > 0 and ∑k
i pi = 1. Random processes can be thought of as an agent sampling from

a classical random variable X with Prob(X = i) = pi and then implementing the channel

Ci depending on the occurrence of event i. Of course, such a decomposition is in general not

unique and some decompositions are more interesting than others. For instance, when one is

interested in “separating” the randomness in a process from other aspects of it, it makes sense

to ask for decompositions in which every channel Ci is itself no random process. Moreover,

when we are interested in connecting randomness with the notion of irreversibility, as we are

in thermodynamics, then it makes sense to further ask for every channel Ci to be reversible,

that is, there should exist channels Di such that, for every state ρ and i,

Di ◦ Ci(ρ) = ρ.

But the only reversible CPTP channels are unitary channels [119] and so random processes

that admit such a decomposition are known as random unitary channels (RUP) [120].
1

Random unitary channels can be linked to thermal operations in several di�erent ways.

To begin with, consider the frameworks of both thermal operations and catalytic thermal

1
More generally, one can also consider convex mixtures of isometries between di�erent spaces. The essentials of what

the presentation in this section carry over to this more general case, but since it won’t be required to understand the

results, I here focus on the simpler case of random unitary channels.

19
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operations but with all the Hamiltonians being fully degenerate (i.e. HS ∝ HB ∝ HC ∝ 1).

In this case, the commutation constraint on the unitary, [U, HS + HB + HC] = 0, in the

de�nition of CTOs trivializes regardless of the value of β, and the thermal states are maximally

mixed. In other words, in this setting, “thermal” operations then are the set of channels G that

can be written as

G(·) = TrB

[
U(· ⊗ 1m)U†

]
, (4.1.2)

where m ∈ N, 1m ≡ 1/m denotes the maximally mixed state on an m-dimensional Hilbert

spaceHB, and U is any unitary acting onHS ⊗HB. This set of channels are known as noisy

operations (NO) [121] and they bear the following simple relation to random unitary channels:

Given two states ρ, ρ′ on S, there exists a noisy operation G such that G(ρ) = ρ′ if and only

if there exists a random unitary channelR with (possibly irrational) weights {pi}k
i such that

R(ρ) = ∑i piUi(ρ) ∈ Bε(ρ′). For the case of rational weights {pi}, this is particularly

simple to see in one direction: Let {pi = ai/l,Ui}k
i with ai, l ∈ N be some decomposition

of a random unitary channel R into rational weights and unitary channels Ui(·) = Ui ·U†
i .

Then choose m = l and de�ne the unitary

U =
k

∑
i

ai

∑
j=1

Ui ⊗ |i, j 〉〈i, j | , (4.1.3)

where { |i, j 〉} is an orthonormal basis for HB. It is easy to check that the corresponding

noisy operation G = R, so that they coincide on all state transitions, establishing the claim.

In other words, when the unitary de�ned in Eq. (4.1.3) is applied to system and bath, Eq. (4.1.2),

the maximally mixed state on B serves as the randomness that an agent uses to decide which

unitary channel Ui to apply to S. Roughly speaking, then, this neat equivalence between

random unitary channels and noisy operations (at the level of possible state transitions, not

in general (of channels) shows that, in the special case in which all energetic considerations

(encoded in the Hamiltonians of bath and system) are absent, thermal operations reduce to a

model of random processes, in which the heat bath acts as the sole source of randomness. Of

course, all of these considerations apply just as well in the presence of catalysts, in which case

CTOs reduce to catalytic noisy operations (CNO) .

While the above correspondence will concern us in more detail below, let me emphasize that

random unitary channels are not only related to thermal operations in the case of degenerate

Hamiltonians. Instead, any transition ρ→TO ρ′ that is possible using thermal operations can

be realized in a two step-process: To do so, we split the bath B into two subregions, B̃ and an

m-dimensional “source of randomness” R, with joint Hamiltonian

HB = HB̃ ⊗ 1R.

Now, �rst we map ρ to the joint product state ρ 7→ ρ⊗ ωβ(HB̃). In a second step, we then

apply a series of random unitary channels on SB̃, where each of these random unitary chan-

nels has non-trivial support only within a single eigensubspace of the Hamiltonian HS + HB′ .

This two-step process can be realized as a thermal operation by means of the correspondence

between random unitary channels and noisy operations sketched above and the construc-

tion Eq. (4.1.3). While formally trivial, the above construction proves conceptually insightful,

because it shows that we can formally distinguish two contributions of the heat bath in a ther-

modynamic process described by thermal operations: The bath contributes both randomness

and acts as an energetic heat reservoir (whose contribution is represented by the non-trivial

Hamiltonian HB′ ). Again, an analogous statement holds for CNOs.
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4.2 majorization

The above connection between thermal operations and random processes also straightfor-

wardly translates to the level of monotones. In particular, setting HS ∝ HB ∝ 1, Theorem 3 im-

plies that a su�cient and necessary conditions for the existence of a noisy operations between

two states ρ = ∑i pi |i 〉〈i | and ρ′ = ∑j p′i |j 〉〈j | is that, for any continuous convex function

g,

∑
i

g(pi) ≤∑
j

g(p′j). (4.2.1)

This condition, which can be de�ned for any pair of real vectors is known as majorization [69]

and denoted as x � y for any pair of vectors x, y. We can easily extend it to a preorder
2

on

density matrices, where we write ρ � ρ′ to mean that spec(ρ) � spec(ρ′). Note that since for

trivial Hamiltonians there is no preferred energy basis anymore, for the majorization relation

the conditions Eq. (4.2.1) are already fully quantum and the complications surveyed in Sec. 3.3

do not arise.

As is implied by the previous discussion, majorization characterizes state transitions that

can be realized by random unitary processes and noisy operations.
3

However, from Eq. (4.2.1),

it might not be apparent in what sense majorization orders vectors by how “random” they

are. Luckily, there exists an equivalent condition for majorization (for the case in which both

vectors have the same dimension) from which the connection between majorization and ran-

domness becomes more apparent. Namely, for two vectors x, y ∈ Rd
, let x↓, y↓ ∈ Rd

denote

the vectors obtained by reordering x and y respectively non-increasingly, so that x↓i ≥ x↓i+1
for all i ∈ {1, . . . , d− 1} and similarly for y↓. Then we have that x � y if and only if,

k

∑
i=1

x↓i ≥
k

∑
i=1

y↓i , k ∈ {1, . . . , d− 1}

d

∑
i=1

x↓i =
d

∑
i=1

y↓i .

This condition provides a better intuitive link between majorization and randomness than

Eq. (4.2.1), showing that majorization is essentially a measure of how evenly the weight in

a vector is distributed: Random processes described by noisy operations and random unitary

channels spread the weight of a probability vector across the whole state. Indeed, for quantum

states (for which the second condition holds true by de�nition), we readily see that pure states

are the maxima of the majorization ordering, while, for a �xed dimension d, the maximally

mixed state 1/d is the unique minimum.

Monotones under majorization are called Schur-convex functions. All of the monotones

under thermal operations yield Schur-convex functions if we set ωβ(HS) = 1/dS, where

dS is the dimension of the system. Moreover, everything carries over to the case of catalysis,

where we �nd that a transition ρ →CNO ρ′ is possible by means of an additional catalyst if

and only if, for all α ∈ (−∞, ∞),

Rα(ρ) := Rα(ρ‖1) ≤ Rα(ρ
′). (4.2.2)

The relation between states transferrable under CNOs is also known as trumping and the

conditions Eq. (4.2.2) were �rst shown in [125, 126]. The functions Rα are known as Rényi

2
A preorder is weaker than a partial order in that it is a binary relation that is transitive and re�exive but not necessarily

anti-symmetric.

3
Majorization has also been found to characterize the state transitions for pure bipartite states in the resource theory

of entanglement [122, 123] and to be related to the workings of several well-known quantum algorithms [124].
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entropies and just like in the case of the Rényi divergences, we �nd that R1 = S, that is, the

special case α = 1 corresponds to the von Neumann entropy.

4.3 randomness as a resource

With the relationship between randomness, as modeled by noisy operations and random unit-

ary channels, and thermal operations clari�ed, we now turn to the work presented in this

chapter. In introducing the resource theory of thermal operations, we have assumed full con-

trol on the side of an experimenter at both the level of the bath Hamiltonians that can be

prepared, as well as at the level of the unitaries that can be implemented and the catalyst

states that can be prepared. This let us derive fundamental bounds on possible state trans-

itions. However, from a practical point of view, it is just as interesting to study how the

set of realisable state transitions changes if the degree of control is limited. Several works

address this question, for example by focusing on �nite-size baths [7, 127, 128] or control re-

strictions [129, 130, 131]. In particular, one of the works co-authored by the present author,

[7], investigates bounds on the size of a heat bath required to thermalize systems that exhibit

a phenomenon known as many-body localization [28, 132]. Along similar lines, the central

idea in the following is to place limits on the amount of randomness that is available to an

agent, that is, to study randomness as a resource. We have seen how transitions under thermal

operations can be implemented as a sequence of random unitary channels on the energy eigen-

subspaces of a joint system SB̃ and that the randomness required to implement these random

unitary channels derives from a part R of the bath that acts as a source of randomness. But

what if this part R is small? Or what if the interaction between system S and bath B only

lasts a short time so that the e�ective size of the region R with which S can interact in this

time is small? In this case intuitively there is less randomness “available” to implement the

random unitary channels and so a natural question to ask is: If the size of R is constrained,

what are the state transitions under noisy operations and random unitary channels that can

be realized? This is the question that we answer in this chapter, showing that there exists

a separation between the transitions that can be realized with noisy operations and random

unitary channels respectively.

To ask for the state transitions that can be implemented with a �xed-size source of random-

ness is closely related to questions about the least number of unitaries such that randomly

sampling from them produces a desired e�ect. To see this, note that we could think of the

�xed-size source of randomness as a limited number n of coin �ips that I can make to decide

which unitary to implement on S. To ask whether I can realize a desired transition ρ � ρ′

using only those coin �ips then is equivalent to asking whether there exists a random unit-

ary channel C such that ρ′ = C(ρ) and for which there exists a decomposition of the form

in Eq. (4.1.1) into unitary channels with k ≤ 2n
.
4

This kind of question has been investig-

ated in several ways already. For example, in a seminal work [134], the authors were able to

operationally characterize the quantum mutual information of a bipartite quantum state as

the asymptotic number n of coin �ips required to implement a random unitary channel that

decouples the state, that is, destroys all the correlations between the margins. Similar ways

to study randomness as a resource can be found in [92, 135]. In a similar vein, researchers

have been interested in the number of unitaries that are required to approximate a dephas-

ing channel [136] or the e�ect of a Haar random unitary channel [137, 138]. All of these can

be interpreted as investigations about the most e�cient use of a limited amount of available

4
Moreover, results in [107, 133] imply that in considering this question, one can assume without loss of generality that

the distribution over unitaries is uniform, i.e. pi = 1/k for all i.
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randomness. In the following publication [1], we study this question in full generality and

also distinguish between the power of random unitary channels, in which R is implicit and

which provide a classical model of randomness, and noisy operations, in which R is explicit

and which therefore provides a quantum model of randomness. The separation results that we

prove add to previous research showing that using quantum systems to implement a random

process provides possibilities that are absent for classical systems [139] and provide a kind of

quantum advantage that is quite di�erent in nature to those studied in quantum computation.

As an additional result, we present an expander graph construction based on the results in

[138, 140, 141] that yields a dephasing map that dephases a system exponentially quickly, in 2-

norm, in the size of the the source of randomness
5
. This result complements the above results

in that it provides a study of the required randomness for stochastic processes in a di�erent

norm and for situations in which the source of randomness is much smaller than the system.

5
We note that there is a typo in the statement of the corresponding Theorem 3, which misstates the convergence as

being exponential in the dimension of the source of randomness. An erratum has been submitted to PRX.
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Randomness is a defining element of mixing processes in nature and an essential ingredient to many
protocols in quantum information. In this work, we investigate how much randomness is required to
transform a given quantum state into another one. Specifically, we ask whether there is a gap between the
power of a classical source of randomness compared to that of a quantum one. We provide a complete
answer to these questions, by identifying provably optimal protocols for both classical and quantum
sources of randomness, based on a dephasing construction. We find that in order to implement any noisy
transition on a d-dimensional quantum system it is necessary and sufficient to have a quantum source of

randomness of dimension
ffiffiffi
d

p
or a classical one of dimension d. Interestingly, coherences provided by

quantum states in a source of randomness offer a quadratic advantage. The process we construct has the
additional features to be robust and catalytic; i.e., the source of randomness can be reused. Building upon
this formal framework, we illustrate that this dephasing construction can serve as a useful primitive in both
equilibration and quantum information theory: We discuss applications describing the smallest measure-
ment device, capturing the smallest equilibrating environment allowed by quantum mechanics, or forming
the basis for a cryptographic private quantum channel. We complement the exact analysis with a discussion
of approximate protocols based on quantum expanders deriving from discrete Weyl systems. This gives rise
to equilibrating environments of remarkably small dimension. Our results highlight the curious feature of
randomness that residual correlations and dimension can be traded against each other.

DOI: 10.1103/PhysRevX.8.041016 Subject Areas: Quantum Information

I. INTRODUCTION

Randomness is a central concept and resource in various
fields of research in computer science, information theory,
and physics, in both the classical and the quantum realm. It
is an ingredient to (quantum) algorithm design, a core
element in coding and communication protocols, and plays
a central role in fundamental aspects of statistical mechan-
ics. In the quantum context, randomness is also increasingly
being seen as a valuable resource. A natural question that
arises in this context is then how much of it is required to
implement a given physical process on a quantum system.
Another important question is to what extent the required
amount of randomness differs depending on whether an
implicit or an explicit model of randomness is employed.
Here, an implicit model of randomness considers the source
of randomness (SOR) as a black box that provides coin
flips, while an explicit model takes into account the fact that,
fundamentally, all systems including the ones provided by

the SOR are quantum systems, and hence models the
randomness as a quantum state.
In this work, we give a complete answer to both of the

above questions. We provide, for both the implicit and
explicit model, optimal and tight bounds on the amount of
randomness required to implement physical processes on
quantum systems. Moreover, we show a strict separation
between the above models, in the sense that every physical
process can be implemented in the explicit model by using
only half the amount of randomness that is required in the
implicit model.
Specifically, we use a model of noisy processes—

processes that require randomness—known as noisy oper-
ations [1]. We study the minimal amount of noise required
to implement a large variety of noisy processes and
construct protocols that saturate the lower bounds imposed
by quantum mechanics. These processes include dephasing
and equilibration [2,3], decoherence [4,5], the implemen-
tation of measurements [5–7], any transition between two
quantum states that requires randomness [1], as well as the
novel construction of private quantum channels [8,9].
It is an important aspect of our work that, by virtue of an

explicitmodel, these saturated lower bounds also translate into
bounds on the physical size of a SOR. This insight allows us to
construct, for particular processes, the smallest decohering
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environment or measurement device compatible with quan-
tum mechanics [4]. In other words, it provides an under-
standing of the smallest equilibrating environment [2]
possible. The surprisingly small size that suffices for an
environment to be equilibrating challenges the commonly
held view that such decohering baths should necessarily
feature a large dimension.
A further notable feature of the protocols that we

construct is that they are catalytic: The same unit of
randomness can be reused for different processes [10]. It
is also robust, in the sense that we do not require perfect
control in either the states prepared by the SOR or the
timing of the process, and further recurrent, in the sense
that, for large system dimension d, continuous time
versions of our noisy processes maintain a state close to
the desired final state for times τ ∝

ffiffiffi
d

p
, at which point the

system recurs to the initial state.

II. CLASSICAL VERSUS QUANTUM NOISE

Let us begin with discussing in more detail the difference
between classical and quantumuses of randomness. Consider
initial and final (mixed) states ρ, ρ0 on a Hilbert spaceHS of
dimension dimðHSÞ ¼ d. We are concerned with the pos-
sibility of implementing a transition EðρÞ ¼ ρ0, where E
represents a noisy process. There exist different ways of
modeling the maps E, which we now explain in detail.
In a classical, implicit model of the SOR one assumes a

discrete random variable J that is uniformly distributed
over m possible values. Depending on the value of j, one
implements a given unitary transformation Uj, which gives
rise to the operations

Em
Cð·Þ ¼

1

m

Xm
i¼1

Ui ·U
†
i : ð1Þ

If there exist Em
C so that a transition is possible, we simply

denote it by ρ!m Cρ
0. In contrast, in an explicit quantum

model, the SOR is a quantum system R in the maximally
mixed state of dimension m, which we denote by
Im ≔ ð1=mÞ1, with 1 being the identity matrix. In this
model, noisy processes are any effect of a unitary joint
evolution of the compound,

Em
Qð·Þ ¼ trR½Uð· ⊗ ImÞU†�: ð2Þ

As in the classical case, we write ρ!m Qρ
0 whenever the

transition is possible.
The set of transitions that can be implemented with both

classical and quantum noise coincides if the amount
of noise—quantified by the dimension m—is unbounded.
In this case we have

ρ!∞ Cρ
0 ⇔ ρ!∞Qρ

0 ⇔ ρ ≻ ρ0; ð3Þ

where we use the symbol “≻” to indicate that ρmajorizes ρ0

[11]. The set of transitions ρ!∞Qρ
0 have been extensively

studied as noisy operations [1], where the noise is treated as
a free resource and the main concern is to study the possible
transitions with unbounded m. In contrast, here we are
concerned with treating noise as a valuable resource and
focus on the following question: What is the minimal
amount of noise—quantified by m—that serves to imple-
ment any possible transition between pairs of d-dimen-
sional quantum states fulfilling ρ ≻ ρ0? We denote these
minimal values of d for the classical and quantum case by
m�

CðdÞ and m�
QðdÞ, respectively.

At first glance, one might suspect that m�
CðdÞ ¼ m�

QðdÞ,
with quantum noise offering no advantage over its classical
counterpart. That intuition comes from the fact that, although
onewrites a full quantumdescription inEq. (2), the state ofR,
given by Im, is nevertheless a quasiclassical state. Hence, it
seems reasonable that it could be recast as a classical variable,
similarly as in Eq. (1). However, treating the noise as a
quantum state allows one to access its quantum degrees of
freedom, for example, to create entanglement between the
S and R. In other words, one could in principle use quantum
correlations to make a more efficient use of the noise
yielding m�

CðdÞ > m�
QðdÞ.

One of the main results of this work is to show that there
is indeed a gap between the classical and quantum case. We
find that m�

CðdÞ ¼ d > ⌈d1=2⌉ ¼ m�
QðdÞ, and more impor-

tantly, we construct protocols that saturate those bounds. In
this way, we provide protocols that use the noise optimally
for a large variety of tasks. These protocols also have a
number of useful properties, such as allowing one to reuse
the noise or being robust under different classes of
imperfections. In the subsequent section, we present the
key lemma to construct such optimal protocols and then
turn to discuss applications and properties in Sec. IV.

III. AN OPTIMAL DEPHASING MAP

For any state transition ρ → ρ0 that is possible under
either quantum or classical noisy processes, there exists a
corresponding map EðρÞ ¼ ρ0 such that

Eð·Þ ¼ U 0 ∘ πA ∘ Uð·Þ: ð4Þ

Here, U 0, U are unitary channels that depend on ρ and ρ0.
The map πA is the dephasing map in a fixed orthonormal
basis A ¼ fjiigdi¼1, defined as

hijπAðρÞjji ¼ hijρjjiδi;j; ð5Þ

with δi;j being the Kronecker delta. This follows from the
Schur-Horn theorem [12] together with Eq. (3) and was
used to bound the required randomness for noisy processes
already in Ref. [13]. Since the unitary channels U 0, U do not
require the use of any SOR by definition, we see from
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Eq. (4) that noise is required only for the implementation of
the dephasing map πA. In turn, Eq. (4) implies that whether
E represents a quantum noisy process or a classical one
depends only on the particular implementation of this
dephasing map: Any construction of πA in the form of
Eq. (2) with m-dimensional SOR implies also that E is a
map Em

Q, while any construction of it in the form of Eq. (1)
implies that E is of the form Em

C .
Understanding the amount of randomness required to

implement the dephasing map therefore is key to under-
standing the amount of randomness required to implement
any noisy process. The following lemma provides a
protocol implementing a dephasing map in any basis,
using an explicit model model of noise and requiring a
SOR of dimension m ¼ ⌈d1=2⌉.
Lemma 1 (Catalytic quantum dephasing).—For any

integer d and basis A there exists a unitary U, so that

trR½Uð· ⊗ I⌈d1=2⌉ÞU†� ¼ πAð·Þ; ð6Þ

trS½Uðρ ⊗ I⌈d1=2⌉ÞU†� ¼ I⌈d1=2⌉ ∀ ρ: ð7Þ

Proof.—Assume first that
ffiffiffi
d

p ¼ m ∈ N. Now, let fUig
be a unitary operator basis for BðHRÞ, that is, a collection of
m2 ¼ d unitary operators Ui ∈ BðHRÞ, such that

1

m
trðUiU

†
jÞ ¼ δi;j ð8Þ

for all i, j. Such a basis exists for every m [14,15]. We now
define the unitary,

U ¼
Xd
i¼1

jiihij ⊗ Ui; ð9Þ

where the fjiig are elements of the basis A in which we
intend to pinch. Then, for any density matrix ρ on HS,

trR½Uðρ ⊗ ImÞU†� ¼
X
i;j

jiihijρjjihjj 1
m
trðUiU

†
jÞ ð10Þ

¼
X
i;j

jiihijρjjihjjδi;j ¼ πAðρÞ: ð11Þ

Lastly, note that Eq. (7) follows simply by

trS½Uðρ ⊗ ImÞU†� ¼
X
i

hijρjiiUiImU
†
i ¼ Im: ð12Þ

In the case where
ffiffiffi
d

p
is not an integer, we can use the same

construction with a source of randomness of dimension
m ¼ ⌈d1=2⌉ by simply not exhausting all possible m2

possible unitaries Ui on R. ▪
The protocol of Lemma 1 is optimal, in the sense that

it is impossible to implement the dephasing map with

m < ⌈d1=2⌉. This can be seen by noting that for any basis A
one can always choose an initial pure state ρ so that
πAðρÞ ¼ Id. Using the preservation of the von Neumann
entropy under unitaries and the Lieb-Araki triangle inequal-
ity, one finds that m ≥

ffiffiffi
d

p
(see Appendix A). This

implementation of the dephasing map compares with the
best value known to date of m ¼ d, proven in Ref. [13],
whose implementation can in fact be shown to correspond
to a classical noisy operation of the form Eq. (1), as we
see later.

A. Catalyticity

Equation (7) states that the dephasing operation defined
in Lemma 1 leaves the state of R invariant, or in other
words, that the noise is catalytic [10,16–18]. This property
has numerous useful applications. For instance, an imme-
diate corollary of the lemma is that one can locally dephase
an arbitrarily large number of uncorrelated systems, each of
them of dimension at most d, by using a single noise system
R of dimension ⌈d1=2⌉. More formally, we have that for any
set of states fρigNi¼1 there exists a unitary U so that

FIG. 1. Two possible ways of dephasing and the resulting
correlation structure. Top: A sequence of systems in state ρ is
dephased using a single state of randomness, with correlations
being established between all systems involved. The local
marginals of the resulting global state Eq. (13) are the dephased
initial states. Bottom: In order to avoid correlations between the
systems, one can instead use additional and unused randomness.
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trR½UðρiS1 ⊗ � � � ⊗ ρiSN ⊗ I⌈d1=2⌉ÞU†� ¼ ρ0S1;…;SN
; ð13Þ

where ρ0Si ¼ πAi
ðρiSiÞ. This follows by simply iterating the

unitaries of Lemma 1 with all the subsystems and reusing
the noise, as illustrated in the top of Fig. 1. In contrast, if the
noise would not have the property of being catalytic, then it
would be necessary to employ a new mixed state for each of
the subsystems, in which case an amount of randomness
proportional to N would be required (bottom of Fig. 1). It is
important to note, however, that reusing the randomness
comes at the cost of correlating the subsystems amongst
each other. Hence, if a protocol requires for the individual
systems to remain uncorrelated, one still has to resort to a
scheme whose required randomness scales linearly with the
number of subsystems.
As sketched already, dephasing can be related to many

processes that require noise, both in engineered as well as
in equilibrating natural quantum processes. In the remain-
der of this work, we discuss and present applications of
Lemma 1 to these processes.

IV. APPLICATIONS

A. Minimal noise for state transitions

As a first application, we prove the tight bounds for noisy
operations presented in Sec. II. Formally, given a Hilbert
space HS with dimðHSÞ ¼ d, we define the minimal noise
for the classical and quantum case as

m�
CðdÞ≔ argmin

m
ρ!m Cρ

0 ∀ρ;ρ0 ∈ BðHSÞjρ≻ ρ0; ð14Þ

m�
QðdÞ≔ argmin

m
ρ!m Qρ

0 ∀ρ;ρ0 ∈ BðHSÞjρ≻ ρ0: ð15Þ

In the following lemma we find the values of the above
quantities, thus providing the smallest SOR that suffices to
perform any transition between two states ρ ≻ ρ0. Note,
however, that it is possible for particular transitions to
require even less randomness or none at all.
Lemma 2 (Optimal source of randomness for state

transitions).—Any state transition of a d-dimensional
system that is possible under noisy processes, in the sense
of Eqs. (14) and (15), can be implemented using an amount
of classical and quantum noise given by

m�
CðdÞ ¼ d; ð16Þ

m�
QðdÞ ¼ ⌈d1=2⌉: ð17Þ

Proof.—Here, we prove only that the above values are
sufficient. For the corresponding necessary conditions (and
ϵ-approximate versions of the above), see Appendix A.
Equation (17) follows from combining Eq. (4) with the
dephasing construction in Lemma 1. To see Eq. (16),
consider the unitary

V ¼
Xd
i¼1

jiihijS ⊗ Xi
R; ð18Þ

where X is the generalized Pauli matrix defined as

Xjii ¼ jðiþ 1Þ mod di: ð19Þ
As shown in Ref. [13], this unitary implements the
dephasing map,

trR½Vðρ ⊗ IdÞV†� ¼ 1

d

X
i;j

hijρjjijiihjjtrðXi−jÞ ¼ πAðρÞ:

ð20Þ
V is the local Fourier transform of a unitary leading to a
channel of the form Eq. (1): there exists a unitary F and a
basis fjj̃i ¼ F†jjig such that

Ṽ ≔ ð1 ⊗ FÞVð1 ⊗ F†Þ ¼
Xd
j¼1

Zj ⊗ jj̃ihj̃j: ð21Þ

Here,

Z ¼
X
j

ωj
djjihjj ð22Þ

is the generalized Pauli matrix conjugate to X and ωd the
dth root of unity. Since the maximally mixed state is
unitarily invariant, Ṽ implements the dephasing map, and
its action on the system S can be represented as

ρ ↦ trR½Ṽðρ ⊗ IdÞṼ†� ¼ 1

d

Xd
j¼1

ZjρZ−j: ð23Þ

Thus the dephasing map can be implemented with a
classical SOR of dimension d. ▪
This lemma proves a conjecture in Ref. [13], where the

possibility of strengthening their bound m�
QðdÞ ¼ d to the

present one was already raised.
In complete analogy to the discussion in Sec. III A and

Fig. 1, we can also use the catalytic properties of the source
of randomness to implement state transitions locally from
an initially uncorrelated state and using a fixed-size source
of randomness. More concretely, let fρigNi¼1 and fσigNi¼1 be
d-dimensional quantum states such that ρi ≻ σi for all
i ¼ 1;…; N. Then there exists a unitary U such that

trR½Uðρ1S1 ⊗ � � � ⊗ ρNSN ⊗ I⌈d1=2⌉ÞU†� ¼ ρ0S1;…;SN
; ð24Þ

with ρ0Si ¼ σi. To see this, we recall from the discussion in
Sec. III A that the transition ρi → σi can be implemented
composing unitary channels and dephasing maps. Hence,
Eðρ1S1 ⊗ � � � ⊗ ρ1S1Þ ¼ σ1S1 ⊗ � � � ⊗ σ1S1 , with
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E ¼ ⊗
N

i¼1
U 0

Si ∘ ⊗
N

i¼1
πA1

∘ ⊗
N

i¼1
US1 : ð25Þ

Now, using Eq. (13) we see that it is possible to dephase
locally—that is, perform locally the same transition as the
one implemented by the second map on the rhs of
Eq. (25)—using a single source of randomness of dimen-
sion ⌈d1=2⌉, at the cost of creating correlations between
the subsystems. Hence, composing the local unitaries with
the local dephasing of Eq. (13), we obtain a map that
locally implements the same transition as E, as captured
by Eq. (24).

B. Smallest possible decohering environment
and measurement device

A further application of our results is to the physical
mechanism of decoherence and implementing a measure-
ment in quantum mechanics, which can indeed be seen as a
special case of a noisy operation, since it requires random-
ness. Both applications follow from the fact that a quantum
source of randomness can be seen as half of a maximally
entangled system.
It is useful to first discuss decoherence. To do so, we

make use of the fact that the usual decoherence mechanism
is, in a sense, simply a purified version of the system-
environment interactions that are toy modeled by noisy
operations. Let jψi ∈ HS be an initial state vector of a
d-dimensional system and jϕi be the initial state vector of
the environment. According to the decoherence mecha-
nism, the unitary joint evolution of system and bath is
generated by a Hamiltonian whose interaction term picks
out, or einselects, a preferred basis in which it decoheres the
system [4]. We are now interested in the smallest possible
size of the environment that achieves this. Let us label the
system basis that is einselected by A ¼ fjiig and assume
that jϕi is a maximally entangled d-dimensional and
bipartite state vector over systems E1 and E2. We then
define the unitary

U ¼ USE1
⊗ 1E2

; ð26Þ

where USE1
is the unitary defined in Eq. (9) that acts on

systems S and E1. As is clear from the above, this unitary
will have the effect that

trE½Ujψihψ j ⊗ jϕihϕjU†� ¼ πAðjψihψ jÞ; ð27Þ

meaning that even in this purified picture only an envi-
ronment of the size of the system is required to produce
decoherence.
Let us now turn to the smallest possible measurement

device. For simplicity, we consider only projective meas-
urement schemes: Suppose we are given a system in some
initial state vector jψi and some set of projective meas-
urement operators fMi ¼ jiihijg; i ∈ f1;…; dg. Then a

measurement process consists of the following steps.
A bipartite measurement device, initially in state vector
jϕi, consisting of a d-dimensional pointer system P and a
remainder R, whose dimension we are interested in
bounding, and a unitary W with the effect that

TrR½Wjψihψ j ⊗ jϕihϕjW†� ¼
X
i

piji; Piihi; Pij; ð28Þ

where pi ¼ trðMijψihψ jÞ and fjPiig form an ortho-
normal basis for the pointer system. Using the above
results, we can easily construct a measurement process
as follows. Let the initial state vector of the measurement
device be jϕi ¼ j0iP ⊗ jϕþiR, where jϕþi is a bipartite,
d-dimensional, maximally entangled state vector. Further,
let fVig be unitaries defined by the action

Viji; 0i ¼ ji; Pii: ð29Þ

Finally, define the unitary

W ¼
X
i

jiihij ⊗ Vi ⊗ ðUiÞR1
⊗ 1R2

; ð30Þ

where the unitaries Ui form an operator basis as before.
Then, it is easy to verify that jϕi and W together satisfy
Eq. (28). This shows that in principle one requires a
measurement device (including the pointer variable) whose
size is only twice that of the system to be measured to
implement a projective measurement as a physical process.
Using entropic arguments one can again show that this is
also the smallest possible measurement device. Note that
the register R is exclusively used as a source of randomness
in this protocol. Thus, if we are willing to give up the
assumption that the initial state of the measurement device
is pure, then it suffices to keep only part R1 in a maximally
mixed state. Clearly, these results can also be read as
providing the minimal dimension of an environment that
equilibrates a quantum system of dimension d [2,3].

C. Universal dephasing machine

In Sec. III, we show that with the aid of a noise system R
in state I⌈d1=2⌉ it is possible to perform a protocol U which
has the effect of implementing the dephasing map πA on the
system S. We now investigate which map is induced on S if
the same unitary is applied with a system R in a state σ
different from I⌈d1=2⌉. We show that U brings the system
closer to πAðρÞ for any initial states ρ and σ. Also, we find
that iterating the same protocol U with a sufficiently large
sequence of imperfect noise states of R brings the system S
exponentially close (in the number of iterations) to its
dephased state. In this sense, U acts as a universal
dephasing machine (Figs. 2 and 3): an iterated use of
the same protocol U dephases the state of S for large
families of states on R acting as a SOR. Hence, one can
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implement this protocol universally as a “black box,”
without having to know the actual state of R.

1. Imperfect noise and convergence to the dephased state

Let Dσð·Þ denote the map

Dσð·Þ ≔ trR½Uð· ⊗ σÞU†�; ð31Þ

where U is the unitary of Lemma 1. In Appendix B, we
show that, for any ρ and σ,

Dσ(πðρÞ) ¼ πðDσ(ρÞ) ¼ πðρÞ; ð32Þ

kDσðρÞ − πðρÞk1 ≤ kσ − I⌈d1=2⌉k1; ð33Þ

where we have dropped the subscript A. These pro-
perties imply that, independently of the actual state σ,
the system S is brought closer to the dephased state πðρÞ
while keeping its diagonal invariant. This follows from the
data-processing inequality [7]

kDσðρÞ − πðρÞk1 ¼ kDσðρÞ −Dσ(πðρÞ)k1 ≤ kρ − πðρÞk1:

Using those properties, one can show that by repeating
the process sequentially (see Fig. 2, top) the system is
eventually dephased for large classes of states σ. In fact,
one can show that (see again Appendix B)

kDn
σðρÞ − πðρÞk1 ≤ kσ − I⌈d1=2⌉kn1; ð34Þ

where Dn
σðρÞ denotes the repeated application of Dσ. This

means that, given σ such that kσ − I⌈d1=2⌉k1 < 1, the
dephased state is approached exponentially fast. Note that
another corollary of the above properties is that the mapDσ

can only increase the von Neumann entropy of its input,
which is formally proven in Appendix B 1.

2. Reusing the randomness

In the case of R being in the state I⌈d1=2⌉, we show in
Sec. III A that it remains unchanged and, thus, the noise is
reusable. A natural question is then what happens to the
state of R when it is in an arbitrary state σ. Let D̃ρ denote
the map

FIG. 2. Single instance of “universal dephasing machine.” We
interpret the process ρ ⊗ σ → Uðρ ⊗ σÞU† as a dephasing
machine that takes the state σ as fuel and transfers the input
state ρ into the output state DσðρÞ and “waste” D̃ρðσÞ.

SOR

FIG. 3. Top: Repeated application on single input state approximates dephasing map. Bottom: Producing the dephased state when
there is no SOR. If kρ − Idk1 < 1, then the necessary amount of randomness for dephasing can be distilled by repeated application of the
universal dephasing machine.
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D̃ρð·Þ ≔ trR½Uðρ ⊗ ·ÞU†�: ð35Þ

It follows simply from Eq. (12) that D̃ρ is just a mixture of
unitaries, hence bringing R closer to the maximally mixed
state. Indeed, following arguments analogous to the ones of
Sec. IV C 1 (see Appendix B), one can show that there exist
choices for the unitary operator basis of Lemma 1 so that
the final state of R fulfills

kD̃ρðσÞ − I⌈d1=2⌉k1 ≤ kρ − Idk1; ð36Þ

and analogously it converges as

kD̃n
ρðσÞ − I⌈d1=2⌉k1 ≤ kρ − Idkn1: ð37Þ

Altogether we conclude not only that the noise can be
reused, but furthermore, that it improves its quality con-
verging exponentially fast to a state of perfect noise,
provided that the initial state ρ is mixed enough to start
with (as given by the condition kρ − Idk1 < 1). The fact
that the noise system is brought closer to the maximally
mixed state allows one to implement a distillation protocol
such as the one depicted in Fig. 3 (bottom). There, one has a
single source providing copies of a given initial state ρ. One
aims at dephasing each subsystem locally, similarly to what
is done with a perfect noise system in Eq. (13). Here, one
can take one copy ρ playing the role of R for some
iterations until it is brought close enough to the maximally
mixed state, which will happen exponentially quickly,
given Eq. (37). Then, using Eq. (34), one can ensure that
all the new copies of ρ can be locally dephased.

3. Time control for the dephasing
machine and recurrence

Thus far we have left unspecified how the dephasing
of the machine would physically be implemented. One
concern here may be that the dephasing properties heavily
rely on very precise time control of the evolution under
the associated Hamiltonian H ¼ i logðUÞ. However, the
numerical simulations depicted in Fig. 4 strongly indicate
that, as the system dimension becomes large, H produces
an evolution that is close toDσð·Þ for a time span that scales
exponentially with the size of S. Indeed, for prime power
dimensions and the case σ ¼ I⌈d1=2⌉, we find analytically
that integer iterations of the application of the dephasing
unitary always yield the exact dephasing map, up to a
recurrence point, at which the original state is returned. See
Appendix C for details. The numerical simulations above
complement this and suggest that this recurrence property
holds not only for integer iterations of the application of the
dephasing unitary, but also for intermediate times.
We hence expect that in the limit of very large dimen-

sions, this equilibrating behavior [2,3] becomes arbitrarily

good and the state ρðtÞ remains close to the equilibrium
state πðρÞ for a time exponential in the system size. This
means that the universal dephasing machine can be made
robust in time, in the sense that it does not require exact
control over the timing and the dephasing is maintained for
long timescales.

D. Entanglement-assisted private quantum channel

In this section, we apply our results to the construction of
a cryptographic protocol known as a private quantum
channel (PQC). In a PQC setting, two parties, Alice and
Bob, would like to communicate quantum data privately,
that is, without an eavesdropper being able to intercept and
retrieve the data. To achieve this they share a secret key. We
now first briefly explain PQCs using classical secret keys
and then provide a construction where the classical key k is
substituted for a “quantum key” in the form of a minimal
number of entangled bits. In the following, we denote by
SðHÞ the set of normalized quantum states on the Hilbert
spaceH. Formally, in the classical setting, a ðδ; ϵÞ PQC is a
set of pairs of encoding and decoding completely positive
trace-preserving (CPTP) maps Xk∶SðHAÞ → SðHA0 Þ and
Yk∶SðHA0 Þ → SðHAÞ that can be locally implemented by
the sending and receiving parties, respectively, where k
denotes the secret key that is shared by Alice and Bob. We
think of the key k as a random variable and assume that the
key k occurs with probability pðkÞ. These channels then
have to fulfill the following conditions [19]. Firstly, there
exists a fixed element τ ∈ SðH0

AÞ, such that

0.2 0.4 0.6 0.8 1.0
t/m

0.2

0.4

0.6

0.8

1.0

|| (t)- ( )||1

FIG. 4. Numerical simulations of the dephasing map that is
induced by the noisy operation Eq. (9) for continuous time and
system dimensions d ¼ m2 ¼ 9, 25, 49, 121 (red, green, yellow,
blue lines). Shown is the trace-norm distance between the time-
evolved state ρðtÞ and the pinched state πðρÞ as a function of
rescaled time t=m. The initial state is a maximally coherent state
ð1= ffiffiffi

d
p ÞPi jii. The graph shows that, while for integer times

(with respect to the bath dimension) the dephasing is always
exact, for noninteger times the deviation from exact dephasing
becomes small with increasing dimension. The numerically
obtained deviation at t=m ¼ 0.5 seems compatible with a scaling
as 1=m ¼ 1=

ffiffiffi
d

p
, but we leave open to derive the exact scaling

behavior.
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sup
ρA;B ∈ SðHA⊗HBÞ

����
�X

k
pkXk ⊗ id

�
ðρA;BÞ − τ ⊗ ρB

����
1

≤ ϵ;

ð38Þ

where ρA;B is any extension of the input state ρA to a larger
Hilbert space and ρB ¼ trAðρA;BÞ. And secondly,

sup
ρ ∈ SðHAÞ

����
X

k
pkYk ∘XkðρÞ − ρ

����
1

≤ δ: ð39Þ

Equation (38) warrants (approximate) security from eaves-
dropping, while Eq. (39) warrants the channel’s (approxi-
mate) reliability. The reason that the security is defined over
all possible extensions is that the eavesdropper may
initially be entangled with part of the unencrypted message.
Finally, a (0,0) PQC is called an ideal PQC.
PQCs have been well studied for the case in which Alice

and Bob share a classical key [8,9,19–22]. In this case, and
if Xk is unitary, the encoding corresponds to a classical
noisy process and a key of length at least ½2 −OðϵÞ�n is
necessary for the ϵ-secure transmission of n qubits
[8,9,19,23].
Here, in contrast, we consider a setting in which Alice

and Bob share a quantum key in the form of entangled
quantum states. We use our dephasing map to construct an
ideal private quantum channel that requires n shared ebits
of entanglement to transmit n qubits of quantum data. As
with the dephasing map, this value can again be shown to
be optimal, in the sense that no implementation of an ideal
PQC as a noisy operation can require fewer ebits (a result
that extends to approximately ideal PQCs). It improves on
the only other discussion of PQCs that uses entanglement
known to the authors, in Ref. [25]. There, an ideal PQC is
constructed that applies techniques from classical PQCs
and hence achieves only “classical” efficiency by requiring
2n ebits for n transmitted qubits.
The idea behind our construction is straightforward (see

Fig. 5). Given an n-qubit system S, let UI and UJ denote
the dephasing unitaries Eq. (9) whose projective part
corresponds to the two orthonormal bases I ¼ fjiigdi¼1

and J ¼ fjjigdj¼1 for HS. If Alice and Bob share n ebits,
and assuming for convenience that n is even, Alice can split
the ebits into two halves, which we call E1 and E2. She then
applies UI to S and her local share of E1, followed by
applying UJ to S and her half of E2. It is easy to check that
if I and J are mutually unbiased, that is, if

jhijjij2 ¼ 1

d
; ∀ i; j; ð40Þ

then this results in the completely depolarizing channel.
That is, the map

Xð·Þ ≔ trE½UJUIð· ⊗ jϕþihϕþjE1
⊗ jϕþihϕþjE2

ÞU†
IU

†
J�;
ð41Þ

where jϕþi represents an n=2-ebit state vector, has the
property that

XðρÞ ¼ Id; ∀ ρ ∈ DðHSÞ: ð42Þ

This ensures perfect secrecy, since the completely depola-
rizing channel necessarily also removes all correlations to
other systems [20]. Upon receipt of S, Bob can then apply
the complex conjugate of the encoding unitaries to his share
of the ebits to retrieve the original state. See Appendix D
for the formal proofs.
This construction has a number of interesting features,

some of which, however, are already present in the
construction of Ref. [25]. For instance, it is catalytic in
the sense that, at the end of the transmission process, in case
no eavesdropper has interacted with the sent data, all of the
entanglement is returned in its initial state and can be
reused for future rounds of transmission. Moreover, the
scheme allows for error correction, efficient authentication,
and recycling of some of the entanglement in case eaves-
dropping has occurred. We refer the reader to Appendix D
for a discussion of these properties.

V. DEPHASING WITH QUANTUM EXPANDERS

The protocol presented in Lemma 1 allows one to
dephase perfectly a d-dimensional system given a SOR
of dimension of m ¼ ⌈d1=2⌉. This very same protocol,
when applied to an imperfect SOR of dimension m but
not in the maximally mixed state, yields, as shown in
Sec. IV C 1, a convergence to the dephased state when the
protocol is iterated. In this section, we study a comple-
mentary protocol that provides astonishingly fast conver-
gence when we have states of the SOR that are maximally

FIG. 5. Illustration of our quantum PQC for the case n ¼ 2. To
encode a 2-qubit state ρ (blue), Alice applies the dephasing
unitaries UI and UJ to the system and one half of an ebit (red)
each,where I and J can be anymutually unbiased bases. Thismaps
ρ into the maximally mixed state exactly, so that an eavesdropper
cannot learn anything about ρ even if she was initially entangled
with part of it. Bob, in order to decode, applies the conjugate of the
two above unitaries and thereby retrieves the state exactly.
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mixed, but of dimension significantly smaller than m. We
find a protocol that yields an exponential convergence to the
dephased state with the dimension of the SOR, measured in
the 2-norm. This is remarkable, in that it shows that one can
obtain an equilibration in 2-norm exponentially quickly in
the ancillary dimension. This insight may be seen as being at
odds with the intuition that an equilibrating environment
should naturally have a large physical dimension. Our
approach is based on a machinery of quantum expanders
[26–28]. The key insight is that one can trade residual
correlations still present in the system with the dimension
required for the mixing environment. This feature demon-
strates an intriguing feature of randomness.
Theorem 3 (Dephasing with quantum expanders).—For

any d-dimensional state ρ, d ¼ e2 with d odd, and an
integer k, there exists an 8k-dimensional quantum system R
and a unitary U ∈ ð8dkÞ, such that

ktrR½Uðρ ⊗ I8kÞU†� − πðρÞk2 ≤
ffiffiffiffiffiffiffi
2d3

p �
5

ffiffiffi
2

p

8

�k

: ð43Þ

The restriction to the dimension is done for pure
conceptual simplicity. The argument for the proof, pre-
sented in Appendix E, follows from a construction of a
classical random walk that acts on the vertices of an
expander graph, a Margulis expander [29]. In the present
construction, the vertices of the Margulis expander are seen
as lines labeled by q ¼ 1;…; d in a (d × d)-dimensional
quantum phase space of the d-dimensional quantum
system. The central insight is that classical random walks
on such lattices are reflected by random walks on Wigner
functions defined on (d × d)-dimensional phase spaces,
which in turn give rise to random unitary channels on
quantum states in d dimensions. The construction laid out
in detail in the Appendix E builds upon and draws
inspiration from the scheme of Ref. [27], but is in several
important ways a new scheme, in particular, in that each
line in phase space is treated separately. In this way, the
strong mixing properties of the random walk of the
Margulis expander graph are not used to show rapid mixing
to a maximally mixed state, but in fact to a quantum state
with vanishing off-diagonal elements.

VI. SUMMARY AND CONCLUSIONS

We study the problem of implementing state transitions
under noisy processes, that is, processes that require
randomness. We solve this problem completely by provid-
ing optimal protocols for both the case of an implicit,
classical model of randomness as well as an explicit,
quantum model of randomness. The main building block
behind these protocols is the construction of a protocol that
performs a dephasing map on an arbitrary quantum state
using a SOR of the smallest possible dimension, for both
the quantum and classical case. We find that a quantum
SOR is quadratically more efficient than its classical

counterpart due to quantum correlations, and hence show
that an explicit model is strictly more powerful for any
dimension d > 2.
Once the optimal protocols for dephasing were estab-

lished, we studied applications such as state transitions in
noisy operations, decoherence, and quantum measure-
ments, providing optimal protocols for all of them. An
interesting feature of our protocol is that the SOR is not
altered during the protocol, meaning that it can be reused to
implement further iterations of the above tasks.
We also extend our discussion to the case of imperfect

noise and use our results to construct a universal dephasing
machine that exhibits robustness both with respect to the
noise that fuels it, as well as with respect to the control over
timing when running it. Moreover, we use our dephasing as
a primitive to construct a novel, ideal private quantum
channel. Finally, by putting it into the context of expander
graphs, we have seen how such an approximate dephasing
is possible with an economical use of noise: Converging in
2-norm to the dephased state with an exponential scaling on
the SOR’s dimension.
Besides the foundational interest of our construction,

which makes precise the way in which the relationship
between correlations and randomness in quantum mechan-
ics differs from that in classical mechanics, we expect our
dephasing protocol to improve bounds in noisy processes
that we have not discussed here, to the extent that introduce
a new primitive to constructions in quantum information.
Given the pivotal status of randomness in protocols of
quantum information processing and in notions of quantum
thermodynamics, these results promise a significant num-
ber of further practical applications.
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APPENDIX A: LOWER BOUNDS ON DIMENSION
OF SOURCE OF RANDOMNESS

In this appendix, we prove the lower bounds in
Lemma 2. In fact, we prove them in an approximate setting
to show that they are robust to small deviations from exact
dephasing. To do so, we call a map Em

X ϵ dephasing if, for all
operators ρ ∈ BðHSÞ and some fixed basis A,

kEm
X ðρÞ − πAðρÞk1 ≤ ϵ; ðA1Þ
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where X ∈ fC;Qg. Letm�
Xðd; ϵÞ be the smallest value ofm

such that an ϵ-dephasing map can be realized as a map of
the form Eq. (1) for X ¼ C and Eq. (2) for X ¼ Q,
respectively, dimðHSÞ ¼ d.
We begin with the classical bound. Consider the state

vector

jAi ≔ 1ffiffiffi
d

p
X
i

jii: ðA2Þ

If it is dephased in the basis A ¼ fjiig, it is mapped to the
maximally mixed state. We are concerned with deriving the
minimal value of m such that Em

CðjAihAjÞ ¼ Id. For this,
note that

Em
CðjAihAjÞ ¼

1

m

Xm
j¼1

UjjAihAjU†
j : ðA3Þ

Clearly, this state has at most rank m, since its support is
spanned by m vectors. Moreover, it is easy to see that for
any ϵ-dephasing classical map Em

C ,

rank Em
CðjAihAjÞ ≥ d

�
1 −

ϵ

2

�
; ðA4Þ

which implies

m�
Cðd; ϵÞ ≥ m ≥ max

�
2; d

�
1 −

ϵ

2

��
; ðA5Þ

where we also use that any nontrivial source of randomness
must be at least two dimensional.
To see Eq. (A4), consider any state ρ of rank k. Then,

kρ − Idk1 ≥ kIk;d − Idk1 ¼ 2

�
1 −

k
d

�
; ðA6Þ

where Ik;d is a d-dimensional state that is maximally mixed
on a subspace of dimension k (and hence has rank k). Using
Eq. (A1) and rearranging then gives bound Eq. (A4).
Let us now turn to the quantum case, where we find

m�
Qðd; ϵÞ ≥ max f2; dð1−ϵÞ=2ϵϵ=2g; ∀ ϵ ≤

1

6e
: ðA7Þ

First, note that for d ≤ 4, our optimal construction already
yields m ¼ 2 ¼ ⌈d1=2⌉ and that any nontrivial source of
randomness must have m ≥ 2. In the following, we hence
assume d ≥ 5. Now consider again the initial state jAihAj.
Then, for any ϵ-dephasing map Em

Q, applying Fannes’s
inequality yields

S½Em
QðjAihAjÞ� ≥ log dþ ϵ log

�
ϵ

d

�
: ðA8Þ

In the following, let ρ0R denote the state on the m-dimen-
sional source of randomness after the dephasing map has
been applied. From our construction of the exact dephasing
map, we know that m�ðd; ϵÞ ≤ ⌈d1=2⌉. Hence, in the
following we assume 2 ≤ m ≤ ⌈d1=2⌉. Since ϵ ≤ 1=6e and

logð⌈d1=2⌉Þ − logðd1=2Þ ≤ 1=2; ∀ d ≥ 5; ðA9Þ

it follows using Eq. (A8) that

S½Em
QðjAihAjÞ� > logð⌈d1=2⌉Þ ≥ Sðρ0RÞ: ðA10Þ

We finally use the Lieb-Araki triangle inequality, which
states that

SðρA;BÞ ≥ jSðρAÞ − SðρBÞj; ðA11Þ

for any bipartite state ρA;B. We can now use this to bound

logm¼ SðjAihAjÞþSðImÞ¼ SðUjAihAj⊗ ImU†Þ ðA12Þ

≥ jS½Em
QðjAihAjÞ� − Sðρ0RÞj ðA13Þ

¼ S½Em
QðjAihAjÞ� − Sðρ0RÞ ðA14Þ

≥ logðdÞ þ ϵ logðϵ=dÞ − logm: ðA15Þ

Hence, we obtain

m ≥ dð1−ϵÞ=2ϵϵ=2; ðA16Þ

which finishes the proof.

APPENDIX B: UNIVERSAL
DEPHASING MACHINE

In this appendix, we provide further details on the results
regarding the universal dephasing machine. For conven-
ience, we drop the subscripts for the dephasing maps and
the maximally mixed states.

1. Robustness with respect to imperfect noise

Let us first show the following lemma.
Lemma 4 (General properties of Dσ).—The family of

channels Dσ has the following properties.
(1) Fixed points. All diagonal states are fixed points:

DσðπðρÞÞ ¼ πðρÞ; ∀ σ; ρ: ðB1Þ

(2) Invariant diagonal. The channels do not modify the
diagonal of any state in the given basis:

π(DσðρÞ) ¼ πðρÞ; ∀ σ; ρ: ðB2Þ
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(3) Continuity. The following continuity property holds:

kDσðρÞ − πðρÞk1 ≤ kσ − Ik1: ðB3Þ

Proof.—The first two properties follow from the defi-
nition of Dσ in Eq. (31), since

hkjtrB½Uðρ ⊗ σÞU†�jki ¼
X
i;j

hkjiihijρjjihjjkitrðUiσU
†
jÞ

ðB4Þ

¼ ρk;ktrðU†
kUkσÞ ¼ ρk;k: ðB5Þ

The continuity property can be seen as

kDσðρÞ− πðρÞk1 ¼ ktrB½Uðρ⊗ σÞU†�− trB½Uðρ⊗ IÞU†�k1
≤ kUðρ⊗ ðσ− IÞÞU†k1
¼ kρ⊗ ðσ− IÞk1
¼ kσ− Ik1; ðB6Þ

where we have used the data-processing inequality and the
unitary invariance of the norm. ▪
In particular, the fixed-point property has the following

corollaries.
Corollary 5 (Contraction to dephased state).—Let

fðρ; ρ0Þ be any measure of distance between quantum
states that fulfills the data-processing inequality, for exam-
ple, any Renyi divergence or the trace distance [7]. Then,

f(ρ; πðρÞ) ≥ f(DσðρÞ; πðρÞ); ∀ σ: ðB7Þ

Choosing fðρ; σÞ as the quantum relative entropy SðρkσÞ
and using that S(ρkπðρÞ) ¼ S(πðρÞ) − SðρÞ, we then
obtain the following corollary.
Corollary 6 (Increasing entropy).—The channelsDσ can

only increase the von Neumann entropy:

SðρÞ ≤ S(DσðρÞ); ∀ σ: ðB8Þ

So far we have considered only single applications of the
dephasing map. Let us now consider repeated applications.
We thus want to investigate what happens if we have a
stream of sources of randomness σi and sequentially use
them to dephase the system. To this end, we can prove the
following lemma.
Lemma 7 (Iterated dephasing).—Let fσigni¼1 be arbitrary

quantum states of dimension ⌈d1=2⌉. Then we have

kðDσn ∘ � � � ∘Dσ1ÞðρÞ − πðρÞk
1
≤ Πn

i¼1kσi − Ik1: ðB9Þ

Proof.—We prove the case n ¼ 2. The general result
follows by iteration. First we use πðρÞ ¼ π ∘DσðρÞ ¼
Dσ ∘ πðρÞ to write

kðDσ2 ∘ Dσ1ÞðρÞ − πðρÞk
1
¼ kðDσ2 − πÞ ∘ ðDσ1 − πÞðρÞk

1
:

We can then estimate this norm as

kðDσ2 ∘Dσ1ÞðρÞ − πðρÞk
1
≤ kDσ1 − πk

1→1
kDσ2 − πk

1→1
;

ðB10Þ

where k · k1→1 is the norm on superoperators induced by
the 1-norm. From Lemma 4, we can estimate it as

kDσ − πk1→1 ¼ max
ρ

kDσðρÞ − πðρÞk1 ≤ kσ − Ik1: ðB11Þ

This step completes the proof. ▪
We thus find that ρ converges exponentially quickly to

the dephased state upon iterated application ofDσ provided
that kσi − Ik1 ≤ k < 1 for some k and all σi.

2. Action on source of randomness

Let us now consider the action of the dephasing unitary
on the source of randomness. Given some ρ, we are thus
interested in the channel

D̃ρðσÞ ¼ trS½Uðρ ⊗ σÞU†�: ðB12Þ

This channel is always unital; i.e., it fulfills D̃ρðIÞ ¼ I for
any ρ. Thus,

kD̃ρðσÞ − Ik
1
≤ kσ − Ik1: ðB13Þ

Let us denote byR the channel that maps any state into the
maximally mixed state, RðσÞ ¼ I. Then we have
R ¼ D̃ρ ∘R ¼ R ∘ D̃ρ. By the same arguments as in the
previous section, we then obtain the following lemma.
Lemma 8 (Iterated mixing).—Let fρigni¼1 be arbitrary

quantum states of dimension d. Then we have

kðD̃ρn ∘ � � � ∘ D̃ρ1ÞðσÞ − Ik
1
≤ Πn

i¼1kρi − Ik1: ðB14Þ

APPENDIX C: RECURRENCE
AND ROBUSTNESS IN TIME

In this appendix, we show that one can choose the
operator basis fUig from Lemma 1 in such a way that the
dephasing map exhibits recurrence properties. By recur-
rence we here mean that applying the dephasing unitary a
certain number of times undoes the dephasing, while it
keeps it dephased for intermediate times.
To this end, note that one particular realization of this

operator basis is the following: Define the unitaries

Ur;s ≔ τrsXrZs; ðC1Þ
where X, Z are the generalized Pauli matrices defined in
Eq. (19) and (22), respectively, and τ ¼ −eπi=m ¼ −

ffiffiffiffi
ω

p
.
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In the following, expressions are to be taken modulo m,
unless specified otherwise. The conjugation relation XZ ¼
ω−1ZX then gives rise to the following properties in any
dimension [30]:

Ur;sUu;v ¼ ωus−vrUu;vUr;s ¼ τus−vrUrþu;sþv; ðC2Þ

Uk
r;s ¼ Ukr;ks; ðC3Þ

U†
r;s ¼ U−r;−s; ðC4Þ

trðUr;sÞ ¼ mδr;0δs;0: ðC5Þ

These imply, in particular, that fUr;sg;r;s∈ f0;…;m−1g
form a unitary operator basis of BðHÞ. Now, while it is
clear that Xm ¼ Zm ¼ I, we can ask for the smallest k such
that Uk

r;s ¼ I for all r, s. The above conjugation relations
imply that if m is odd, then this value is given by m, while
for even m, the answer is 2m. For instance, in the case of
m ¼ 2, we have X2 ¼ Z2 ¼ I, while ðXZÞ2 ¼ −I.
Moreover, we can ask for the dependence of the order
of the unitaries Ui, by which we here mean the smallest k
such that Uk

i ¼ I, i.e., the order of the corresponding
element in the Weyl-Heisenberg group, on m. Here, one
has that the order of all nontrivial Ui is d, if and only if d is
an odd prime. This special property for odd primes will be
of key importance to establish recurrence relations in the
following. Define the map

πkmð·Þ ¼
�
idð·Þ if k mod m ¼ 0

πAð·Þ otherwise;
ðC6Þ

where A denotes the orthonormal basis in which the
pinching acts, as in the main text. We then have the
following lemma.
Lemma 9 (Recurrence for odd prime dimension).—Let

dimHS ¼ m2, dimHR ¼ m, where m is an odd prime.
There exists a unitary V acting on HS ⊗ HR such that

trB½Vkðρ ⊗ ImÞðV†Þk� ¼ πkmðρÞ: ðC7Þ

Proof.—Let A ¼ fjr; sigmr;s¼1 be the orthonormal basis
of HS in which we want to pinch the state ρ. Define

V ¼
X
r;s

jr; sihr; sjS ⊗ ðUr;sÞR; ðC8Þ

where the basis with respect to which the operators
Eq. (C1) are defined can be chosen arbitrarily. Then, from
the properties of these operators, we have

trR½Vkðρ ⊗ I=dÞðV†Þk�

¼
X
r;s;u;v

jr; sihr; sjρju; vihu; vj 1
m
trðUkr;ksU−ku;−kvÞ

ðC9Þ

¼
X
r;s;u;v

jr; sihr; sjρju; vihu; vj 1
m
τk

2ðus−rvÞtrðUk
r−u;s−vÞ

ðC10Þ

¼
X
r;s;u;v

jr; sihr; sjρju; vihu; vjθmðk; r; u; s; vÞ ðC11Þ

¼ πkmðρÞ; ðC12Þ

where the last line follows because

θmðk;r;u;s;vÞ≔
1

m
τk

2ðus−rvÞtrðUk
r−u;s−vÞ

¼
�
1 if kmodm¼0 or both r¼u and s¼v

0 otherwise:

ðC13Þ

▪
The reason that this proof works only for odd prime

dimensions is that, ifm is not prime, then there will exist a k
and a, b, c, e such that the lhs of Eq. (C13) is 1 for
conditions other than those of Eq. (C13). Furthermore,
whenm ¼ 2, then there will be diagonal elements such that
Eq. (C13) is −1 for k ¼ 2, and only for k ¼ 4 do we get
actual recurrence (implying in turn that for m ¼ 2 the map
is neither the dephasing map nor the identity map).
However, in the following lemma, we show that for any

odd dimension we can construct a unitary operator basis
that does exhibit recurrence.
Lemma 10 (Recurrence for odd dimension).—Let

dimHS ¼ m2, dimHR ¼ m, where m is odd. There exists
a unitary V acting on HS ⊗ HR such that

trB½Vkðρ ⊗ ImÞðV†Þk� ¼ πkmðρÞ: ðC14Þ

Proof.—Consider the prime factor decomposition of
m ¼ p1…pl. We can split the Hilbert spaces as

HR ≃ ⊗
l

j¼1
Hj; ðC15Þ

where dimðHjÞ ¼ pj. Moreover, let A ¼ fjr; sig be an
orthonormal basis of HS, where r;s ∈ S≔×l

j¼1f1;…;pjg,
so that jSj ¼ m. Now, we define the unitary

V ¼
X
r;s ∈ S

jr; sihr; sjS ⊗ ð⊗
j
UðjÞ

rj;sjÞ
R
; ðC16Þ
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whereUðjÞ
r;s acts nontrivially only onHj and rj, sj denote the jth component of the respective strings. The result now follows in

just the same way as in the previous proof, as

trB½Vkðρ ⊗ I=mÞðV†Þk� ¼
X
r;s;u;v

jr; sihr; sjρju; vihu; vj
Yl
j

�
1

pj
trðUðjÞ

krj;ksj
UðjÞ

−kuj;−kvjÞ
�

ðC17Þ

¼
X
r;s;u;v

jr; sihr; sjρju; vihu; vj
Yl
j

θpj
ðk; rj; sj; uj; vjÞ ðC18Þ

¼ πkmðρÞ; ðC19Þ
since k ¼ m is by construction the smallest integer such that kmod pj ¼ 0 for all j. ▪

Also, it should be noted that the case of even dimension
can also be considered very close to a perfect dephasing
map: Within the cycle k ∈ f1;…; 2mg, the only two times
at which the above map does not dephase perfectly is at
k ¼ m and k ¼ 2m. At the latter, it yields the identity map,
while at the former, it yields the identity map up to sign
flips on a subset of its elements.

APPENDIX D: ENTANGLEMENT-ASSISTED
PRIVATE QUANTUM CHANNEL

Here, we present the proofs for the ideal PQC presented
in the main text and discuss its properties. As our
construction does not fit into the usual formal framework
of PQCs with classical keys, let us first specify in more
detail what we mean by a private quantum channel with a
quantum key. We assume that Alice and Bob hold a shared
quantum system K ¼ KAKB in a state vector jΨiK, which
we refer to as the key, and that Alice wants to encode a
quantum system S with Hilbert space HS. For notational
simplicity, we write HKA

¼ HA and HKB
¼ HB. Then an

ideal private quantum channel with key jΨiK is given by a
pair of quantum channels X∶SðHS ⊗HAÞ→SðH0

S⊗HAÞ
and Y∶SðH0

S ⊗ HBÞ → SðHS ⊗ HBÞ with the following
properties. First, there exists a fixed state τ, such that for
all auxiliary systems E and all states ρSE on S and E,
we have

trK ∘ ðX ⊗ idKBEÞðρSE ⊗ jΨihΨjKÞ ¼ τ ⊗ ρE: ðD1Þ

This implies that an eavesdropper cannot learn anything
from the encoded message, even when previously
entangled with S. Second, the transmission is reliable; that
is, for all states ρ on S, we have

trK ∘ ðY ⊗ idKA
Þ ∘ ðX ⊗ idKB

Þðρ ⊗ jΨihΨjKÞ ¼ ρ: ðD2Þ

In the following, we show that the construction sketched in
the main text fulfills this definition and explore some of its
additional properties. We begin with the following lemma.

Lemma 11 (Properties of a private quantum channel).—
Let ρ ∈ SðHSÞ with dimðHSÞ ¼ d and let jϕþi ∈ HK ¼
HA ⊗ HB be an e-dimensional, maximally entangled
bipartite state vector with e ¼ ð⌈d1=2⌉Þ2. Then there exist
unitaries U ∈ BðHS ⊗ HAÞ; V ∈ BðHS ⊗ HBÞ such that

trA;B½Uðρ ⊗ jϕþihϕþjÞU†� ¼ Id; ∀ ρ; ðD3Þ

and

VUðρ ⊗ jϕþihϕþjÞU†V† ¼ ρ ⊗ jϕþihϕþj; ∀ ρ: ðD4Þ

Proof.—Consider first the case that d is a square number,
in which case e ¼ d. We can assume without loss of
generality that

jϕþi ¼ jϕþ
1 i ⊗ jϕþ

2 i; ðD5Þ
where jϕþ

i i are both
ffiffiffi
e

p
-dimensional maximally entangled

state vectors acting onHAi
⊗ HBi

, respectively, of the form

jϕþ
i i ¼

1

e1=4
Xffiffi

e
p

j¼1

jj; jiAiBi
: ðD6Þ

We can do this because Alice and Bob can always rotate
between all maximally entangled states by applying local
unitaries and hence prepare the above state. We now define
the unitaries

UI ¼
Xd
i

jiihijS ⊗ ðUiÞA1
; ðD7Þ

UJ ¼
Xd
j

jjihjjS ⊗ ðUjÞA2
; ðD8Þ

U ¼ UJUI; ðD9Þ

where fUigdi¼1, fUjgdj¼1 are unitary operator bases forHA1

and HA2
, respectively, and I ¼ fjiigdi¼1 and J ¼ fjjigdj¼1
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are any two mutually unbiased bases (MUBs) for HS; that
is, they are both orthonormal and

jhijjij2 ¼ 1

d
; ∀ i; j: ðD10Þ

In prime power dimension, there are known to exist sets of
dþ 1 many of such MUBs, but there exist at least two in
any dimension [30].
By direct evaluation, we now have

trA;B½Uðρ ⊗ jϕþihϕþjÞU†� ðD11Þ

¼
X
i;i0;j;j0

jjihjjiihijρji0ihi0jj0ihj0jtrðUiUi0 ÞtrðUjUj0 Þ=d

ðD12Þ

¼
X
j

trðρÞ 1
d
jjihjj ¼ Id; ðD13Þ

where we use both the orthonormality of the operator bases
and the defining property of the MUBs.
We now turn to the unitary V. The construction is very

similar to that of U. In fact, we use the fact that, for any
unitary U,

ðU ⊗ ŪÞjϕþ
i i ¼ jϕþ

i i; ðD14Þ

where the bar denotes complex conjugation. We therefore
define

VI ¼
Xd
i

jiihijS ⊗ ðŪiÞB1
; ðD15Þ

VJ ¼
Xd
j

jjihjjS ⊗ ðŪjÞB2
; ðD16Þ

V ¼ VIVJ; ðD17Þ

so that the unitaries now act on Bob’s half of the
entanglement. Equation (D4) then follows again by
straightforward evaluation.
Finally, consider the case that d is not a square number. e

is by construction always the smallest square number larger
than, or equal to, d, so that we can always perform the
splitting in Eq. (D5) in such a way that the resulting
entangled states provide sufficient local randomness to
perform the two dephasing operations. ▪
The above can now be used to construct an ideal PQC, as

shown in the following.
Lemma 12 (Ideal private quantum channels).—With the

notation from the previous lemma, the maps

Xð·Þ ≔ Uð·ÞU†; ðD18Þ

Yð·Þ ≔ Vð·ÞV† ðD19Þ

form an ideal private quantum channel with key
jΨiK ¼ jϕþi.
Proof.—The ideal reliability of the above construction

follows immediately from Eq. (D4). The ideal security
follows from the fact that every map R with the property
that it completely randomizes a given system,

RðρÞ ¼ Id; ∀ ρ ∈ SðHSÞ; ðD20Þ

completely destroys all correlations that this system may
have had with other systems [20], in the sense that, for any
extension ρSE of some ρ,

kðR ⊗ idÞρSE − Id ⊗ ρEk1 ¼ 0: ðD21Þ

But since trK ∘X has this property, by Eq. (D3), Eq. (D21)
implies ideal security in the sense of Eq. (D1). ▪
We now turn to a discussion of the properties of the

above PQC. To begin with, note that it is catalytic in the
sense that, in the absence of eavesdropping, the entangle-
ment is, at the end, returned back in its original state. This
follows from Eq. (D4). Especially since entanglement is
commonly considered an expensive resource, this is a very
appealing feature, even though it is not very robust, as we
discuss in the next section.
Secondly, our PQC construction is optimal when con-

sidered as a noisy process, in the sense that it is impossible
to construct an ideal PQC with less entanglement than we
do, provided the global evolution is unitary. As in the case
of the lower bounds for the dephasing map, discussed in
Appendix A, we prove this optimality with respect to
approximate PQCs, in order to show that our results are
robust against slight deviations from an ideal PQC. To do
so, we call, in analogy to the classical PQC, Eq. (38), a
private quantum channel with key jΨiK ϵ reliable, if,
instead of Eq. (D1), it satisfies

sup
ρS;E ∈ SðHS⊗HEÞ

ktrK ∘ ðX⊗ idKBEÞðρSE⊗ jΨihΨjKÞ−τ⊗ρEk1

≤ϵ: ðD22Þ

Lemma 13.—Let ðX ;YÞ be an ϵ-reliable private quantum
channel with key jΨiK for a quantum system of dimension
d. If X is a unitary channel, then there exists an ϵcr such
that, for all ϵ < ϵcr,

dimðHAÞ ≥ maxf4; d1−ϵϵϵ=2g: ðD23Þ

Proof.—The proof is fully analogous to the discussion of
the quantum case in Appendix A. We therefore give only a
sketch. We have that trKB

ðjΨiKÞ ¼ IdA . Hence, ϵ reliability
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together with the fact that X ¼ U ·U† for some unitary
operator U implies that the encoding channel on S is a
quantum noisy operation EdA

Q as defined in Eq. (2). This
further implies that τ ¼ Id, since the von Neumann entropy
is nondecreasing under noisy operations and the channel
has to work for the input state Id. We now bound dA by
considering a specific transition. Let jΨiSE be the max-
imally entangled state over SE, where we choose the
extension HE to be a copy of HS. For this particular
transition, ϵ reliability of the channel implies that

kEdA
Q ⊗ idEðjΨihΨjSEÞ − Id ⊗ Idk1 ≤ ϵ: ðD24Þ

By Fannes’s inequality, this implies

S½EdA
Q ⊗ idEðjΨihΨjSEÞ� ≥ log d2 þ ϵ logðϵ=d2Þ: ðD25Þ

We now consider the bipartition of the system SEA into SE
and A. Using the Lieb-Araki inequality and following, from
here on, exactly the same reasoning as that of Appendix A
below Eq. (A8), yields the desired bound. ▪

1. Error correction, authentication, key recycling

As noted above, a particularly convenient feature of our
PQC construction is that it is catalytic. This property
implies that, in the absence of eavesdropping, the quantum
key can be fully recycled. However, it is of course the basic
premise of cryptography that one is not guaranteed the
absence of eavesdropping. It is therefore natural to ask how
robust our PQC implementation is to eavesdropping, by
asking the following questions. Can Alice and Bob correct
errors inflicted by an eavesdropper? How well can Alice
and Bob check whether eavesdropping has occurred? How
much of the key can Alice and Bob reuse in case they detect
eavesdropping?
In this section, we show that Alice and Bob can use

additional ebits to error correct, authenticate efficiently, and
recycle part of the key even when eavesdropping occurs.
The results of this section are mostly a translation of the
arguments and techniques of Ref. [25] applied to our
protocol.

a. Error correction

We first turn to the question of error correction.
Consider, for simplicity, the case that Alice and Bob want
to transmit a pure 2-qubit state vector jϕi along our PQC
construction (i.e., the setting depicted in Fig. 5). Following
the results in the previous section, jϕi can be sent using two
ebits in the Bell state vector,

jΦþi ¼ 1ffiffiffi
2

p ðj0; 0i þ j1; 1iÞ; ðD26Þ

as a key. We consider the effect of any Pauli error Pi ∈
f1; X; Y; Zg⊗2 that may have occurred during transmission

of the data. The reason for this is that the most general
effect of eavesdropping on the encoded state Id ¼
trK ∘XðjϕihϕjÞ that is sent between Alice and Bob can
be described by a quantum channel E with decomposition

Eðρ0Þ ¼
X15
i;j¼0

ei;jPiρ
0P†

j : ðD27Þ

Hence, if there exists a measurement using local operations
with classical communication (LOCC) that lets Alice and
Bob perfectly distinguish between any two Pauli errors
without destroying the state, then they can decorrelate the
message from an eavesdropper and also error correct the
message [25].
We now turn to show that there exist choices for the

unitary operator basis and MUBs in the PQC of Lemma 12
such that Alice and Bob can discriminate any two Pauli
error without destroying the transmitted state. This pos-
sibility arises because Alice and Bob can choose the
encoding in such a way that there exists a one-to-one
correspondence between Pauli errors and the final state of
the entanglement they used for transmission. For this
correspondence to arise it suffices to (a) use the unitary
operator basis defined in Eq. (C1) as bases fUig and fUjg
in the construction of the unitaries U and V and (b) choose
I ¼ fj0i; j1ig and J ¼ fjþi ¼ Hj0i; j−i ¼ Hj1ig, where
H is the Hadamard gate. For these choices, the total
transmission process is given by Fig. 6, as a circuit
diagram. Here, possible errors are given by the dashed
box, with Alice’s encoding to the left and Bob’s decoding
to the right of the dashed box and where we ignore global
phases (for example, identifying Y ≡ XZ) since they do not
alter the outcome.
Using the relations

and

FIG. 6. The full entanglement-assisted PQC for a 2-qubit state
with Pauli matrices chosen as unitary operator basis and dephas-
ing in the computational and Pauli X eigenbases.
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together with the properties of entangled states, we find
that a Pauli error Pða; b; c; dÞ described by the tuple
ða; b; c; dÞ ∈ f0; 1g×4 yields the final state vector,

ðXcZaÞA1
⊗ ðXaþdZbÞA2

jΦþiA1B1
jΦþiA2B2

Pða; b; c; dÞjψi;
ðD28Þ

ignoring global phases and omitting identity operators.
This implies that we can identify the tuple ða; b; c; dÞ
exactly just by distinguishing the Bell states, since no two
different Pauli errors produce the same pair of Bell states,
establishing the required correspondence. The same holds
true also for mixed state messages, by linearity of quantum
mechanics, and it also straightforwardly generalizes to the
case of larger messages, since we can think of such
messages as being sent in chunks of size 2 using the
above procedure.
Going back to the case n ¼ 2, the above establishes a

one-to-one correspondence between the 16 possible Pauli
errors on the ciphertext and the 16 possible combinations of
Bell state vectors:

jΦ�i ¼ 1ffiffiffi
2

p ðj0; 0i � j1; 1iÞ; ðD29Þ

jΨ�i ¼ 1ffiffiffi
2

p ðj0; 1i � j1; 0iÞ: ðD30Þ

If Alice and Bob could discriminate between these 16
combinations using LOCC measurements, then by the
above this would mean that they can both decorrelate
the decoded state from an eavesdropper as well as perform
error correction. However, this is not possible without the
help of additional entanglement, since it is already impos-
sible to discriminate between the four Bell states of a single
ebit using LOCC measurements without further resources
[31]. However, the situation is different if Alice and Bob
have access to additional ebits. In particular, let jχi ∈
fjΦ�i; jΨ�ig be an unknown Bell state vector. Then, if
Alice and Bob share an auxiliary ebit prepared in the state
vector jΦþi, they can each apply a CNOT gate, controlling
on the auxiliary sytem A and targeting S, which has the
effect

jΦþiAjΦþiS → jΦþiAjΦþiS;
jΦþiAjΦ−iS → jΦ−iAjΦ−iS;
jΦþiAjΨþiS → jΦþiAjΨþiS;
jΦþiAjΨ−iS → jΦ−iAjΨ−iS: ðD31Þ

If Alice and Bob now each measure their share of A in the
Pauli X basis and their share of S in the Pauli Z basis and
broadcast their measurement results, they can perfectly
identify jχi. Using this procedure for both ebits, they can
extract full information about the error on the system and
correct accordingly.
In summary, we have shown that Alice and Bob can

perfectly discriminate between any two Pauli errors
inflicted on the ciphertext during transmission, with the
help of additional n ebits. In this way, however, our PQC
construction loses the advantage in resources over that of
Ref. [25], where error correction is also possible using 2n
ebits in total.

b. Authentication and key recycling

The above error-correcting procedure has two disadvan-
tages: Firstly, it requires a doubling of the total entangle-
ment and, secondly, all the entanglement gets destroyed in
the process. A more resource-effective strategy of Alice and
Bob is to attempt to check for the occurrence of eaves-
dropping, destroying as little entanglement as possible, and
consequently repeat the sending of the message while
reusing as much of the entanglement as possible. We
now discuss such a strategy in the asymptotic case, that
is, when Alice and Bob send an n-qubit quantum message
ρS using n ebits, in the limit n → ∞.
Let v be a 2n-bit string encoding the final state of the n

ebits, with

jΦþi→ 00; jΨþi→ 01; jΦ−i→ 10; jΨ−i→ 11;

and the first two bits corresponding to the first ebit, etc. In
order to check for the occurrence of eavesdropping, Alice
and Bob can employ a LOCC protocol constructed in
Ref. [32] that yields the parity of any substring in v, by
destroying only a single ebit. Applying this protocol to r
random substrings of v, one has

Probðv ≠ 00…00jeven parity in all r roundsÞ ¼ 1

2−r
:

Since v ¼ 00…00 corresponds to the case in which no
Pauli error occurred, this implies that in case Alice and Bob
measure no odd parity, they know that the message has
been successfully transferred and that they can reuse their
ebits for future communication, with exponentially small
probability of mistake and at the cost of vanishingly few
ebits. Now, in case they detect odd parity for any of their r
rounds, Alice and Bob consider the transfer unsuccessful
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and attempt to recycle as many of their ebits as possible.
This amounts to estimating v while destroying as few ebits
as possible in the course of doing so. We can directly apply
a key recycling procedure presented in Ref. [25] to our
construction to achieve an asymptotic key recycling rate of
½1 −HðδÞ�, where H is the binary Shannon entropy and
δ > 0 is a security parameter. We refer the reader to
Ref. [25] for details.
These results should be compared with key recycling

rates for the case of classical keys. There, the achievable
recycling rates depend strongly on whether the message to
be sent is classical (see, e.g., Refs. [33–35]) or quantum
(see, e.g., Refs. [21,22,36]), and also on the possible attack
scenarios that are being considered (see Refs. [21,22] for a
discussion). Overall, however, the recycling rates can be
considerably higher than those obtained here, albeit with
significantly more complicated authentication schemes.
Improving the recycling rates in the case of quantum keys
thus remains an interesting open problem.

APPENDIX E: QUANTUM EXPANDERS

In this appendix, we discuss efficient approximate
pinching to the main diagonal of an d-dimensional quan-
tum system, of suitable dimension d, and provide the proof
of Theorem 3. The proof of this statement is rooted in
insights into random walks on expander graphs, is con-
nected to properties of Wigner functions of discrete Weyl
systems, and makes use of basic properties of quantum
channels. It start from and builds upon the construction
presented in Ref. [27], which in turn derives from the
classical description in Ref. [29]. The latter work discusses
a random walk on an expander graph featuring the vertex
set Z2

e, so an e × e integer lattice. Reference [29] continu-
ous to show that the random walk it constructs converges
exponentially quickly to the uniform distribution 1Z2

e
on

this vertex set. Specifically, it is shown that there exists a
doubly stochastic matrix such that for any probability
distribution P on Z2

e, one has

kSkðPÞ − 1Z2
e
k2 ≤

5
ffiffiffi
2

p

8
kSk−1ðPÞ − 1Z2

e
k2; ðE1Þ

for k ≥ 1 being an integer. Here, the action of the doubly
stochastic map acting upon a distribution on Z2

e is written
as SðPÞ. On v ¼ ðvp; vqÞT ∈ Z2

e, this doubly stochastic
matrix originates from random affine transformations,
drawn uniformly from the following eight transformations,

v↦T1v; v↦T2v; v↦T1vþe1; v↦T2vþe2;

ðE2Þ

and the four inverse transformations, with

T1 ≔
�
1 2

0 1

�
; T2 ≔

�
1 0

2 1

�
; ðE3Þ

and

e1 ¼
�
1

0

�
; e2 ¼

�
0

1

�
: ðE4Þ

The graph underlying this construction, with the e × e
lattice as vertex set, is an expander graph. Such an expander
graph is usually referred to as an ðe2; 8; λÞ expander graph
with λ ≤ 5

ffiffiffi
2

p
=8, in that it has e2 vertices, each of which

having 8 neighbors in the graph. The matrix S is sparse in
that each row has 8 entries only. Clearly, the above implies
that

kSkðPÞ − 1Z2
e
k2 ≤

ffiffiffi
2

p �
5

ffiffiffi
2

p

8

�k

: ðE5Þ

The prefactor of
ffiffiffi
2

p
originates from the fact that for any

probability distribution P on Z2
e, one has

kP − 1Z2
d
k2 ≤ ½ð1 − 1=e2Þ − ðe2 − 1Þ=e2�1=2

¼
ffiffiffi
2

p
ðe2 − 1Þ=e2

≤
ffiffiffi
2

p
: ðE6Þ

We relate this dimension e, which is left open at this point,
to the physical dimension d of the quantum system
subsequently.
The construction in a significantly altered setting will

require some preparation. For this, we turn to discussing the
phase space d × d for the d-dimensional quantum system
with odd d. In the convention of Refs. [27,37], for phase
space coordinates ðp; qÞ ∈ Z2

d, the discrete Wigner func-
tion WM of an operator M acting in Hilbert space can be
written as

WMðp; qÞ ¼
1

d
tr½wðp; qÞΠwðp; qÞ†M�; ðE7Þ

where ðp; qÞ ↦ wðp; qÞ is the family of Weyl operators
and Π is the parity operator. The Weyl operators are
composed of shift and clock operators, so the X and Z
generalized Pauli matrices defined in Eqs. (19) and (22),
respectively. Any affine transformation A, the linear part of
which having a unit determinant on phase space coordi-
nates a ∈ Z2

d, is unitarily reflected in Hilbert space as

WUAρU
†
A
ðaÞ ¼ Wρ(A−1ðaÞ): ðE8Þ

Wigner functions are normalized as

CATALYTIC QUANTUM RANDOMNESS PHYS. REV. X 8, 041016 (2018)

041016-17

41



X
ðp;qÞ∈Z2

d

Wρðp; qÞ ¼ 1 ðE9Þ

for quantum states ρ. We treat Wigner functions for an
operator M as matrices WM ∈ Cd×d, with real-valued
matrices for Hermitian M. A first well-known insight is
stated here as a separate lemma for completeness.
Lemma 14 (Quantum states and Wigner functions).—For

two quantum states ρ and σ on a Hilbert space HS of
dimension d associated with Wigner functions Wρ,
Wσ∶Z2

d → R, one has

kρ−σk22¼kWρ−Wσk22¼
X

ðp;qÞ∈Z2
d

½Wρðp;qÞ−Wσðp;qÞ�2:

ðE10Þ
Proof.—This statement follows directly from the prop-

erty that the Hilbert-Schmidt scalar product is inherited as

trðρσÞ ¼
X

ðp;qÞ∈Z2
d

Wρðp; qÞWσðp; qÞ; ðE11Þ

as follows from the analogous property of the characteristic
function, and the definition of the 2-norm. ▪
The main insight of Ref. [27] is to acknowledge that

random walks on integer lattices that are expander graphs
can be connected to random unitary channels acting in
Hilbert space that inherit the mixing properties from the
classical random walk, by resorting to a phase space
picture. The construction of Ref. [27] builds upon the
random walk on the Margulis expander graph [29], the
vertex set of which is Z2

e for some e (here taken to be
different from d, as it will take a different role sub-
sequently). This random walk can be unitarily realized
in quantum systems: In fact, the random walk follows
directly from a convergence of a Wigner function, a
function that shares all properties of a probability distri-
bution, except being positive. Following the construction of
the random walk on the expander graph, the quantum
Margulis expander can be seen as a random unitary map,

ρ ↦ DðρÞ ¼ 1

8

X8
j¼1

UjρU
†
j ; ðE12Þ

of Kraus rank 8 with suitable unitary fUig with the
property that

kDðρÞ − Iek2 ≤
5

ffiffiffi
2

p

8
kρ − Iek2: ðE13Þ

A second insight on discrete Wigner functions that we will
make use of is the following.
Lemma 15 (Wigner functions of pinched quantum

states).—For any quantum state ρ on HS of dimension
d, the Wigner function of πðρÞ satisfies

WπðρÞðp; qÞ ¼ WπðρÞðp0; qÞ; ðE14Þ

for all q; p; p0 ¼ 1;…; d.
Proof.—This statement follows directly from the defi-

nition of Wigner functions. ▪
This means that Wigner functions of pinched states are

constant along the first coordinate. Prepared in this fashion,
we can finally turn to the new construction. This con-
struction of a random unitary channel will deviate from this
construction in a significant way: We identify for each q ∈
Zd for d ¼ e2 the entire line fðp; qÞ ∈ Z2

dg of the (d × d)-
dimensional phase space as a vectorized e × e lattice, on
which the above affine maps act. The property of the unit
determinant of the linear part in the affine mapping is
preserved. In fact, it will act in precisely the same way on
each line simultaneously, by applying one of the 8 affine
transformations defined in Eqs. (E2)–(E4). This gives rise
to 8 affine maps on Z2

d. Acting on Wigner functions, this
process can again be realized as a random unitary channel,

ρ ↦ T ðρÞ ¼ 1

8

X8
j¼1

VjρV
†
j ; ðE15Þ

with unitaries fVig. Clearly, the entire Wigner functionWρ

of a state is normalized according to Eq. (E9). We refer to

xq ≔
X
p ∈ Zd

Wρðp; qÞ ðE16Þ

as the weight of each column. We now discuss the
convergence properties of the above random unitary chan-
nel. For an integer k ≥ 1, we have

kT kðρÞ − πðρÞk22 ¼ kWT kðρÞ −WπðρÞk22

¼
X
q ∈ Zd

x2q
X
p ∈ Zd

�
WT kðρÞðp; qÞ

xq
−
1

d

�
2

;

ðE17Þ

treating each columns separately. Using xq ≤ d for all q and
using a worst-case bound for all q gives

kT kðρÞ − πðρÞk22 ≤ d3
X
p∈Zd

�
WT kðρÞðp; qÞ

xq
−
1

d

�
2

; ðE18Þ

and following Eq. (E5), one obtains

kT kðρÞ − πðρÞk22 ≤ 2d3
�
5

ffiffiffi
2

p

8

�2k

: ðE19Þ

In this way, we arrive at the anticipated result, by embed-
ding the random unitary system into an explicit quantum
model, in the nomenclature of the main text.
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5

C O R R E L AT E D C ATA LY S I S

5.1 motivation and characterization

5.1.1 Reusing catalysts on sequences of systems

In the previous chapter, one particularly interesting property of the dephasing construction

that we introduced was the fact that it leaves the reduced state of the source of randomness

unchanged. That is, for any pair of states ρ, ρ′ that act on a d-dimensional Hilbert space and

that satisfy ρ � ρ′, we constructed a unitary U such that

TrR

[
U(ρ⊗ 1d

√
de)U

†
]
= ρ′

while

TrS

[
U(ρ⊗ 1d

√
de)U

†
]
= 1d

√
de.

Operationally, this property has the interesting implication that one can re-use the system

R to act as a source of randomness for third systems. That is, let (Si)i be a sequence of d-

dimensional systems, and let (ρi)i, (ρ′i)i be sequences of their states on Si such that ρi � ρ′i for

every i. Then, by the above property of the construction of U, we can use a single maximally

mixed state of dimension d
√

de to act as the source of randomness that realizes all transitions

ρi → ρ′i . More precisely, the above guarantees that there exists a sequence of unitary channels

(Ui)i where each unitary channel has support only on Si and R, such that the state

ρ′ = · · · ◦ U2 ◦ U1(1d
√

de ⊗ (
⊗

i
ρi))

satis�es

TrSc
i
[ρ′] = ρ′i, TrRc [1d

√
de] = TrRc [1d

√
de].

Note that the above reasoning is independent of the length of the sequence. Now, in principle

it is a non-trivial constraint on a noisy operation to require that the reduced state of the

source of randomness remains unchanged by the joint unitary acting on S and R, because

the de�nition of a noisy operation makes no requirement on the �nal state of R. So it is

interesting to observe that adding this constraint to a noisy operation — that the operation

should leave the state of R locally unchanged — does not in fact put any further constraint

on the possible transitions: Majorization, which characterizes possible state transitions under

noisy operations, also characterizes the state transitions that are possible under the restricted

subset of noisy operations that have to satisfy this additional constraint.

The key idea leading to the topic of this chapter is that the operational advantage of having

a joint unitary that leaves the marginal state of the ancilla R unchanged, namely to reuse the

ancilla with additional system, does not hinge on the fact that the initial state of this ancilla

is maximally mixed. That is, if one could realise interesting state transitions on S by means

of a unitary and an initial state σ on R such that the �nal state on R would again be σ, then

one could reuse a single copy of R to realise those interesting state transitions on an arbitrary

number of systems in just the same way as described above. The study of state transitions
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46 correlated catalysis

that can be realized in this way is the study of the power of correlated catalysis. Recall from

Sec. 3.3 the notion of uncorrelated catalysis. There, one requires not only that the state σ

of an ancilla is returned locally unchanged, but that it moreover be uncorrelated from the

system S at the end of the transition. Here, in contrast, we only require local invariance of

the ancilla but not that the systems be uncorrelated at the end. This is because the ability

of the catalyst to locally enable transitions on some system Si is independent of the question

whether the catalyst is correlated with some other system Sj. Of course, globally, whether

correlations between systems and the catalyst are established will a�ect the correlations that

are established between systems in the course of interacting with the catalyst C. That is, if

(Ui)i and (ρi)i denote sequences of unitary channels and states respectively such that Ui acts

on Si and a catalyst C that is initially in state σ and left invariant under Ui, then if

Ui(ρi ⊗ σ) = ρ′i ⊗ σ, ∀i,

this implies that

TrC [· · · ◦ U2 ◦ U1(σ⊗ (⊗iρi))] =
⊗

i
ρ′i,

i.e. the marginal state on the systems (Si)i is also uncorrelated. This is in contrast with

correlated catalysis, where I can only infer that the transitions has occurred at each Si locally

(as in Eq. 5.1.1), but not that the �nal states on two di�erence systems are uncorrelated. But in

settings in which such correlations are not problematic, the usual requirement of uncorrelated

catalysis seems operationally unnecessarily strong.
1

This could be the case, for example, if

the systems Si are guaranteed never to interact with another. Indeed, as we will see below,

there might even be situations in which these correlations are advantageous for a task.

5.1.2 Characterization via von Neumann entropy

What are the state transitions that are possible under correlated catalysis? This is the main

question of this section. The main result of the following publication [2] is that, under a

minor modi�cation of the above setting, in which the catalyst only has to be returned up

to coherences in some �xed basis, the possible state transitions are characterized by the von

Neumann entropy, in the sense that, roughly speaking, a transition ρ → ρ′ between two

full-rank states in this slightly modi�ed setting is possible if and only S(ρ′) > S(ρ). This is

remarkable in that it provides an operational single-shot interpretation of the von Neumann

entropy. This is in contrast to folklore knowledge which says that the von Neumann entropy

is singled out as a special monotone only in the thermodynamic limit (as in Sec. 3.2). The

chapter also presents a conjecture which essentially states that the von Neumann entropy

also characterizes possible state transitions in the unmodi�ed setting of correlated catalysis.

This conjecture is, to the author’s knowledge, still unproven and increasingly appreciated

as an important open problem in quantum information theory [102, 143], with some progress

reported in [144, 145]. For instance, it by now known that for some transitions that are possible

under catalytic catalysis, the dimension of the catalyst needs to become very large [3, 8].

1
Indeed, from a strictly operational point, one could de�ne an even weaker notion of catalysis, in which the catalyst

can change its local state, as long as its ability to assist in a given state transition is not compromised. While tricky

to de�ne in full generality, for sequences of �xed transitions ρ→ ρ′ this can be done and, interestingly be shown to

coincide in power to the notion of correlated catalysis considered here [142].
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The von Neumann entropy is a key quantity in quantum information theory and, roughly speaking,
quantifies the amount of quantum information contained in a state when many identical and independent
(i.i.d.) copies of the state are available, in a regime that is often referred to as being asymptotic. In this
Letter, we provide a new operational characterization of the von Neumann entropy which neither requires
an i.i.d. limit nor any explicit randomness. We do so by showing that the von Neumann entropy fully
characterizes single-shot state transitions in unitary quantum mechanics, as long as one has access to a
catalyst—an ancillary system that can be reused after the transition—and an environment which has the
effect of dephasing in a preferred basis. Building upon these insights, we formulate and provide evidence
for the catalytic entropy conjecture, which states that the above result holds true even in the absence of
decoherence. If true, this would prove an intimate connection between single-shot state transitions in
unitary quantum mechanics and the von Neumann entropy. Our results add significant support to recent
insights that, contrary to common wisdom, the standard von Neumann entropy also characterizes single-
shot situations and opens up the possibility for operational single-shot interpretations of other standard
entropic quantities. We discuss implications of these insights to readings of the third law of quantum
thermodynamics and hint at potentially profound implications to holography.

DOI: 10.1103/PhysRevLett.122.210402

In quantum information theory, it is common to distin-
guish tasks as falling in one of two regimes: Either (i) one
deals with situations in which many identically and
independently distributed (i.i.d.) quantum systems appear.
This regime is usually referred to as the asymptotic regime.
Such tasks include, for example, Schumacher compression
[1], entanglement distillation [2], and quantum hypothesis
testing [3,4]. Or, in sharp contrast, (ii) one deals with
situations that involve only a single quantum system, the
so-called single-shot regime. Examples of protocols that
have been analyzed in the single-shot setting include the
decoupling of quantum systems [5], hypothesis testing [6],
and state transitions in quantum thermodynamics [7].
Common wisdom has it that different quantities char-

acterize these two regimes. In the first regime, the von
Neumann entropy (VNE) or quantities directly related to it
prevail, such as the standard quantum relative entropy or
mutual information, while in the second regime quantities
such as quantum Rényi divergences [8–11] and smoothed
versions of the above [12,13] become important. This
common wisdom is, however, recently being challenged
[14–19], as it has been shown that the VNE determines
possible single-shot state transitions in quantum
mechanics—under unitary evolutions—provided that three
assumptions hold [18]: (i) One can prepare a suitable
auxiliary system that does not change its state during the

process but might become correlated with the system on
which the transition is performed; (ii) one has access to an
environment, or source of randomness, that is modeled as a
large system in the maximally mixed state; and (iii) one has
full control over the system, auxiliary system, and envi-
ronment, in the sense that one can implement any unitary
on the joint system. Assumption (ii) assigns an undesirably
special role to maximally mixed systems, while assumption
(iii) is in conflict with the common experience that
environments cannot practically be accessed with a full
degree of control.
In this work, we provide an operational characterization

of the von Neumann entropy in terms of single-shot state
transitions that, remarkably, does without assumptions (ii)
and (iii). Instead, our characterization builds upon two
natural classes of dynamics in quantum mechanics: con-
trolled unitary evolution and uncontrolled decoherence to
some given preferred basis. We also apply this characteri-
zation to a notion of cooling that is usually considered in
the context of quantum readings of the third law of
thermodynamics and discuss possible implications of our
results for recent work on the decoupling of systems and
the AdS/CFT correspondence in the context of holography.
Finally, we formulate, and provide evidence for, a con-
jecture, which states that not even decoherence is necessary
to single out VNE and, if true, would show that the von
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Neumann entropy can be derived directly from unitary
quantum mechanics alone.
Main result.—We will now present our main result

and then discuss its implications. To state the result, let
DJ be the quantum channel that decoheres a system in a
given orthonormal basis J ≔ fjjig of its Hilbert space,
according to

DJ½σ� ¼
X

j

hjjσjjijjihjj:

Density matrices diagonal in fjjig will be called quasi-
classical. Our main result can be stated as follows.
Theorem 1: Single-shot characterization of the von

Neumann entropy.—Let ρ and ρ0 be two density matrices
of the same finite dimension and with different spectra.
Then the following two statements are equivalent:
(i) Sðρ0Þ > SðρÞ and rankðρ0Þ ≥ rankðρÞ. (ii) There exists
a finite-dimensional Hilbert space, for any basis J of which
there exists a quasiclassical density matrix σ and a unitary
U such that

Tr2½Uðρ ⊗ σÞU†� ¼ ρ0; ð1Þ

DJ½Tr1½Uðρ ⊗ σÞU†�� ¼ σ: ð2Þ

The proof is presented in Sec. I in Supplemental Material
[20]. Note first that if one has Sðρ0Þ > SðρÞ but
rankðρ0Þ < rankðρÞ, then by Theorem 1 the transition is
not possible exactly. However, it can be done to an arbitrary
precision, since any state can be arbitrarily well approxi-
mated by a state with full rank. From a physical point of
view, the condition on the rank is therefore not important.
To interpret this result, one can imagine a situation in

which only a small region of space, say, the laboratory, can
be controlled unitarily with a high degree of precision while
any system outside this region is decohered very quickly in
some given basis. This is a common situation in current
experimental devices. Given these constraints, the goal is to
transform a quantum system from ρ to ρ0 by acting unitarily
on this system together with an ancillary system in a
quasiclassical state that one can “borrow” from the envi-
ronment so long as, upon being returned to the environ-
ment, it decoheres back to its initial state and can hence be
used to aid further transitions. Then, Theorem 1 says that
the VNE fully characterizes possible transitions in this
natural setup.
In general, the auxiliary system is clearly necessary to

implement the transition ρ → ρ0, since, otherwise, we
would act unitarily on ρ and, therefore, could not change
its spectrum. The same restriction would arise if we
demanded that the auxiliary system is returned uncorre-
lated from the system. Finally, it can be reused to enable
further transitions ρ → ρ0 on independent copies of ρ. This
is true even if correlations are established between the

auxiliary system and the system of interest in each
transition (see Fig. 1).
Thus, the auxiliary system acts like a catalyst, in the

sense that it enables transitions that would otherwise be
impossible without being degraded itself. The notion of
catalysis we employ here, however, is different from the
one commonly used in resource theories, where the catalyst
is usually required to be returned uncorrelated to the system
of interest (but may become correlated to other systems,
e.g., heat baths in quantum thermodynamics). Finally, we
emphasize that, as is usual for catalysts, the auxiliary
system and its state σ depend on the transition ρ → ρ0 and
on the dephasing basis, which we think of as being
determined by the environment (and, hence, can be
expected to coincide with the energy eigenbasis).
Applications to notions of cooling and the third law.—

We now discuss an application of Theorem 1 to one of the
key problems in quantum thermodynamics. Namely, we
analyze how it can be used as a protocol for cooling to very
low temperatures beyond the i.i.d. setting. This is a
situation usually captured in readings of the third law of
thermodynamics or Nernst’s unattainability principle (UP),
bounding achievable rates to cooling. Specifically, in this
context, we consider the reading of the problem of
preparing systems in a state which is arbitrarily close to
being pure. Let us for simplicity take as an initial system
two uncorrelated qubits ρ ¼ ϱ ⊗ ϱ with SðϱÞ < 1=2 (even
the generalization to other systems is obvious). Theorem 1
then implies that it is possible to implement a transition

FIG. 1. Reusability of the auxiliary system for further tran-
sitions. Consider N subsystems in an uncorrelated state
ρA1;…;AN

¼ ρ⊗N . Because of Theorem 1, for any transition ρA1
→

ρ0A1
respecting the entropy and rank condition, it is possible to

find an auxiliary system in state σ that enables this transition.
When brought back in contact with the environment, it dephases
and returns to its initial state while establishing correlations with
A1. In spite of these correlations, it is reusable to implement the
same transition on A2. This is true, since in the second step one
applies a local operation on A2 and the auxiliary system, whose
outcome is independent of the correlations with A1. Repeating
this process on the N subsystems results in having performed
locally transitions fρAi

→ ρ0Ai
gi¼1;…;N while using a single

auxiliary system. At the end of the process, all the subsystems
are possibly correlated. However, these correlations do not play
any role if one intends to use each subsystem Ai independently
for further thermodynamic or information protocols, as is gen-
erally the case in a single-shot setting.
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satisfying (1) and (2) so that the final state is ρ0 ¼ ϱ0 ⊗ 12,
where 1k represents a maximally mixed state of dimension
k and ϱ is any full-rank state with Sðϱ0Þ ¼ ϵ for arbitrarily
small ϵ > 0, i.e., arbitrarily close, in trace distance, to a
pure state. This is reminiscent of protocols of algorithmic
cooling [24–27] which take a large number n of “warm”
qubits ϱ and distill from them nc ¼ n½1 − SðϱÞ� “cold”
qubits having each a smallest eigenvalue λmin ¼
O( expð−nÞ) (see, in particular, Ref. [24]). The advantage
of our protocol is that we can obtain arbitrarily cold
systems using a small number of copies, n ¼ 2 in this case,
in contrast to the asymptotic i.i.d. setting considered in
algorithmic cooling. Furthermore, the fact that the auxiliary
systems remain invariant allows one to repeat the protocol
for n=2 copies of ρ using a single auxiliary system. Taking
SðϱÞ ≈ 1=2, we obtain nc ≈ n=2 qubits which are arbitrarily
close to a pure state. This coincides with the bound given
by algorithmic cooling, which in this case is nc ¼ n½1 −
SðϱÞ� ≈ n=2 and that is the ultimate bound for any entropy
nondecreasing protocol. Hence, our protocol not only
distills arbitrarily cold qubits with few copies, but also
has an optimal efficiency—in terms of the rate of almost
pure qubits—when applied sequentially in the asymptotic
limit. At the same time, however, our protocol establishes
correlations among the cold qubits produced. Hence,
although they can be used individually for further appli-
cations, it would be wrong to conclude that using our
results one can prepare an arbitrary number ðϱ0Þ⊗n of
uncorrelated quasipure states using the same auxiliary
system over and over (see Supplemental Material,
Sec. III [20]). This again stresses the importance of
correlations in the scheme.
The fact that one can produce systems in a state ϱ0 which

is arbitrarily close to a pure state might, moreover, at first
glance seem to be in contradiction with the third law of
thermodynamics as formulated in the UP. The UP states
that an infinite time is required to cool down a system to its
ground state (see, e.g., Refs. [28–31] for recent approaches
to quantum readings of the UP and their relation with pure
state preparation). However, we note that preparing an
arbitrarily pure ϱ0 also requires an arbitrarily large auxiliary
system and might require a very large environment to
implement the dephasing map D, which, in turn, ensures
that it cannot be prepared in a finite time.
Relation to previous work.—Let us now briefly discuss

the relation of our results to previous work (see Fig. 2 for an
overview). To begin with, we note that one can use previous
results to fully characterize the possible state transitions
ρ → ρ0 for the special case in which the auxiliary system is
constrained to be a maximally mixed state. Specifically,
one can recast recent results [32,33] as the statement that
there exists a d-dimensional Hilbert space such that for any
basis J of it there exists a unitary U such that

Tr2½Uðρ ⊗ 1dÞU†� ¼ ρ0; ð3Þ

DJ½Tr1½Uðρ ⊗ 1dÞU†�� ¼ 1d; ð4Þ

if and only if ρ majorizes ρ0, denoted by ρ ≽ ρ0 [32].
Clearly, the above is a special case of Eqs. (1) and (2).
Majorization captures the state transitions that are possible
under random unitary evolution, and, hence, the above
establishes the intuitive result that every random unitary
evolution can be implemented with a sufficiently large
source of randomness without affecting the latter’s state. To
compare this result with Theorem 1, it should be noted that
ρ ≽ ρ0 is, as a constraint, much stronger than Sðρ0Þ > SðρÞ.
Indeed, one can see that Rényi entropies Sα, defined as

SαðρÞ ¼
1

1 − α
log TrðραÞ; ðα ∈ Rnf1gÞ; ð5Þ

cannot decrease for transitions ρ → ρ0 with ρ ≽ ρ0,
where the VNE is given by the particular case of
S≡ S1 ≔ limα→1Sα. The infinite set of conditions given
by the Rényi entropies

Sαðρ0Þ ≥ SαðρÞ ∀ α ∈ R ð6Þ

become both necessary and sufficient for the existence of a
further auxiliary system σ such that ρ ⊗ σ ≽ ρ0 ⊗ σ—an
important relation known as trumping [34,35] in quantum

FIG. 2. Comparison of various settings and results. Top: State
transitions implementable using a source of randomness and an
uncorrelated catalyst σ are characterized by the trumping rela-
tions. Middle top: State transitions allowing for a source of
randomness and a correlated catalyst, an auxiliary system that
locally remains unchanged, are characterized by entropy and rank
[18]. Middle bottom: By Theorem 1, state transitions using a
correlated catalyst and a dephasing environment that acts on the
catalyst (dashed boundary) are also characterized by entropy and
rank. Bottom: State transitions using a correlated catalyst alone
are characterized by entropy and rank. This is the content of
Conjecture 1.
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information theory. The trumping constraints lie, in
strength, strictly between those imposed by majorization
and the VNE alone. Lastly, in Ref. [18], it is shown that by
allowing for correlations between both systems it is
possible to collapse the infinite set of conditions for the
trumping conditions to essentially the VNE. In particular, it
is shown that condition (i) in Theorem 1 is equivalent to the
existence of σ and U so that ρ ⊗ σ ≽ ρ0σ, where ρ0σ
denotes a density matrix such that Tr2ðρ0σÞ ¼ ρ0 and
Tr1ðρ0σÞ ¼ σ. This statement differs from Theorem 1 in
that one needs to make use of a maximally mixed system
over which one has full unitary control, while Theorem 1
includes external randomness only in the form of an
uncontrolled dephasing map (see Fig. 2 for a comparison).
Catalytic entropy conjecture.—The discussion above

raises the natural question whether an external environ-
ment, being modeled as a maximally mixed state or a
dephasing map as above, is at all necessary to implement all
transitions which do not decrease the VNE. This is what we
capture in the following conjecture.
Conjecture 1: Catalytic entropy conjecture.—Let ρ and

ρ0 be two density matrices of the same finite dimension and
with different spectra. Then the following two statements
are equivalent: (a) Sðρ0Þ > SðρÞ and rankðρ0Þ ≥ rankðρÞ.
(b) There exists a density matrix σ and a unitaryU such that

Tr2½Uðρ ⊗ σÞU†� ¼ ρ0 and Tr1½Uðρ ⊗ σÞU†� ¼ σ:

ð7Þ
The implication ðbÞ ⇒ ðaÞ follows directly from the

subadditivity of the VNE and S0; hence, the real content of
the conjecture is that (a) are the only constraints on
transitions of the form (b). If true, this conjecture implies
that the von Neumann entropy characterizes correlated
catalytic state transitions in unitary quantum mechanics in
full generality, without the need to introduce noise or i.i.d.
limits (see Fig. 2).
Let us now discuss why we believe this conjecture to be

true. To begin with, it is easy to generate counterexamples
that rule out the possibility that transitions of the form (b)
are constrained by the aforementioned trumping relations.
In Supplemental Material [20], we provide such a counter-
example together with a method to construct further
examples. But, in fact, we can rule out more general
constraints than (6) with the help of the following lemma.
Lemma 2: Weak solution to catalytic entropy conjec-

ture.—Let ρ and ρ0 be two density matrices of the same,
finite dimension and with different spectra. Then the
following two statements are equivalent: (I) Sðρ0Þ > SðρÞ
and rankðρ0Þ ≥ rankðρÞ. (II) There exists a density matrix σ,
a unitary U, and some finite dimension d such that

Tr2½Uðρ ⊗ 1d ⊗ σÞU†� ¼ ρ0 ⊗ 1d; ð8Þ

Tr1½Uðρ ⊗ 1d ⊗ σÞU†� ¼ σ: ð9Þ

This result, which is proven in Supplemental Material
[20], supports the conjecture in two ways: First, it shows
that the catalytic entropy conjecture is true up to an
additional maximally mixed system that remains uncorre-
lated to the system of interest but not to the auxiliary
system. It can also be seen as an instance of the full
catalytic entropy conjecture for the specific states ρ ⊗ 1d
and ρ0 ⊗ 1d. Second, and more importantly, it allows us to
prove the following corollary.
Corollary 3: Characterization of entropy functions.—

Let f be a function from the set of density matrices to the
real numbers such that, for every transition of the form (b)
between full-rank density matrices, fðρ0Þ > fðρÞ. Then
exactly one of the following two statements is true:
(1) Sðρ0Þ > SðρÞ ⇔ fðρ0Þ > fðρÞ, (2) f is nonadditive or
discontinuous.
Corollary 3 follows from Lemma 2 by showing that any

such function f has to be a linear function of the VNE (see
Supplemental Material, Sec. V [20]). Thus, for full-rank
density matrices, if Conjecture 1 was false, any additional
constraint on transitions of the form (b) would have to be
given by exotic entropic functions that are not additive or
are discontinuous. For instance, this corollary immediately
implies that none of the functions Sα, α ≠ 0, 1, can be a
monotone for transitions of the form (b), since they all
satisfy none of the two conditions in the corollary.
Discussion and open questions.—In this Letter, we

have provided a new operational characterization of von
Neumann entropy which adds significant support to recent
proposals that, contrary to common wisdom, the standard
von Neumann entropy characterizes not only the i.i.d.
limit but also single-shot protocols in quantum information
theory. We have done so by showing that the von Neumann
entropy fully determines the possibility of single-shot state
transitions in unitary quantum mechanics, as long as one
has access to a catalyst, which may build up correlations,
and environmental dephasing in a preferred basis.
Furthermore, we have formulated the catalytic entropy
conjecture which essentially states that the above result
holds true even in the absence of decoherence. We have
also presented evidence for the truth of this conjecture by
ruling out alternatives.
Our work suggests that there might be a novel, hitherto

unexplored sector of quantum information theory in which
operations on single copies of a quantum state are char-
acterized directly in terms of standard entropic quantities
like VNE. For example, one may ask what happens in
Theorem 1 or Conjecture 1 if we introduce another
reference system R that is initially correlated or entangled
with the system 1 (let us denote system 1 by A for now, and
let C be the catalytic auxiliary system 2). Applying a
unitary UA;C on A and C, denoting the new states of the
systems by R0, A0, and C0, we obtain R0 ¼ R, by con-
struction C0 ¼ C, and SðA0Þ ≥ SðAÞ, since A becomes
correlated with C. Furthermore, the mutual information
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IðR∶AÞ¼SðRÞþSðAÞ−SðR;AÞ satisfies IðR0∶A0Þ≤IðR∶AÞ.
Are these necessary conditions also sufficient for the
existence of a transformation of that form—in particular,
can A retain almost all of its correlations with R under
correlating-catalytic transformations? A positive answer to
this or other similar questions would yield a new single-
shot interpretation of the standard mutual information
which could potentially be useful in the context of
decoupling [5,36–38] or merging of quantum states.
The results also hint at the insight that entanglement in

single many-body systems can well be captured in terms of
the von Neumann entropy. Ideas on single-copy entangle-
ment have been considered in situations where each
specimen consists of a many-body system, already natu-
rally featuring asymptotically many constituents [39]. Then
it can be unreasonable to capture entanglement of sub-
systems in yet another asymptotic limit of many copies of
identical quantum many-body systems. The results laid out
here give substance to the intuition that, even in single
specimens of quantum many-body systems, entanglement
can in this context be quantified in terms of the familiar von
Neumann entanglement entropy.
Results of this kind would also have implications

in the context of holographic approaches to quantum
gravity, as in the AdS/CFT correspondence (see, for
example, Refs. [40–47]). In these approaches, standard
von Neumann (entanglement) entropies of boundary
regions turn out to correspond to geometric quantities of
a dual gravity theory in the bulk. In fact, it is exactly the
mutual information that we have just discussed which is
believed to be directly related to geometric quantities like
area also in other (non-AdS/CFT) approaches to emergent
spacetime [48–50]. To shed some light on this correspon-
dence, it is therefore natural to consider operational
interpretations of entropy in the boundary theory and to
“dualize” them to obtain corresponding interpretations of
geometric quantities in the bulk. A difficulty in doing so,
however, is that the protocols on the boundary theory either
involve many copies of the state (which seems unphysical
given that there is a unique spacetime) or lead to
quantification in terms of single-shot entropies (see, e.g.,
Ref. [44]) which do not always have a direct dual
interpretation. The proven and conjectured results of this
letter could therefore resolve this difficulty, by supplying a
direct single-shot interpretation of standard entropic quan-
tities which might ultimately shed some light on the
operational basis of geometric quantities.

We acknowledge funding from Deutsche
Forschungsgemeinschaft (GA 2184/2-1, CRC 183, EI
519/14-1, EI 519/9-1, FOR 2724), the European
Research Council (TAQ), and the Studienstiftung des
deutschen Volkes. H.W. further acknowledges contribu-
tions from the Swiss National Science Foundation via the
NCCR QSIT as well as Project No. 200020_165843. This
research was supported in part by Perimeter Institute for

Theoretical Physics. Research at Perimeter Institute is
supported by the Government of Canada through the
Department of Innovation, Science and Economic
Development Canada and by the Province of Ontario
through the Ministry of Research, Innovation and Science.

[1] B. Schumacher, Phys. Rev. A 51, 2738 (1995).
[2] C. H. Bennett, H. J. Bernstein, S. Popescu, and B.

Schumacher, Phys. Rev. A 53, 2046 (1996).
[3] F. Hiai and D. Petz, Commun. Math. Phys. 143, 99 (1991).
[4] T. Ogawa and H. Nagaoka, in Asymptotic Theory of

Quantum Statistical Inference (World Scientific, Singapore,
2005), pp. 28–42.

[5] C. Majenz, M. Berta, F. Dupuis, R. Renner, and M.
Christandl, Phys. Rev. Lett. 118, 080503 (2017).

[6] M. Mosonyi and T. Ogawa, Commun. Math. Phys. 334,
1617 (2015).

[7] F. G. S. L. Brandão, M. Horodecki, J. Oppenheim, J. M.
Renes, and R.W. Spekkens, Phys. Rev. Lett. 111, 250404
(2013).

[8] N. Datta, IEEE Trans. Inf. Theory 55, 2816 (2009).
[9] M. Berta, K. P. Seshadreesan, and M.M. Wilde, J. Math.

Phys. (N.Y.) 56, 022205 (2015).
[10] M. Müller-Lennert, F. Dupuis, O. Szehr, S. Fehr, and M.

Tomamichel, J. Math. Phys. (N.Y.) 54, 122203 (2013).
[11] M.M. Wilde, A. Winter, and D. Yang, Commun. Math.

Phys. 331, 593 (2014).
[12] R. Renner, Ph.D. thesis, ETH Zurich, 2005.
[13] N. D. R. Renner, IEEE Trans. Inf. Theory 55, 2807 (2009).
[14] M. P. Müller and M. Pastena, IEEE Trans. Inf. Theory 62,

1711 (2016).
[15] M. Lostaglio, M. P. Müller, and M. Pastena, Phys. Rev. Lett.

115, 150402 (2015).
[16] R. Gallego, J. Eisert, and H. Wilming, New J. Phys. 18,

103017 (2016).
[17] H. Wilming, R. Gallego, and J. Eisert, Entropy 19, 241

(2017).
[18] M. P. Müller, Phys. Rev. X 8, 041051 (2018).
[19] A. M. Alhambra, L. Masanes, J. Oppenheim, and C. Perry,

arXiv:1709.06139.
[20] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.122.210402 for the
proof, which includes Refs. [21–23], in Sec. I, a discussion
on the protocol applied sequentially and the correlations that
it establishes between subsystems in Sec. III, and, in
particular, a proof of Corollary 3 in Sec. V.

[21] A. Horn, Am. J. Math. 76, 620 (1954).
[22] J. Schwinger, Proc. Natl. Acad. Sci. U.S.A. 46, 570 (1960).
[23] R. F. Werner, J. Phys. A 34, 7081 (2001).
[24] L. J. Schulman and U. V. Vazirani, in Proceedings of the

Thirty-First Annual ACM Symposium on Theory of
Computing—STOC ’99 (ACM, New York, 1999), p. 322.

[25] L. J. Schulman, T. Mor, and Y. Weinstein, Phys. Rev. Lett.
94, 120501 (2005).

[26] P. O. Boykin, T. Mor, V. Roychowdhury, F. Vatan, and R.
Vrijen, Proc. Natl. Acad. Sci. U.S.A. 99, 3388 (2002).

[27] S. Raeisi and M. Mosca, Phys. Rev. Lett. 114, 100404
(2015).

PHYSICAL REVIEW LETTERS 122, 210402 (2019)

210402-5

51



[28] A. Levy, R. Alicki, and R. Kosloff, Phys. Rev. E 85, 061126
(2012).

[29] J. Scharlau and M. P. Müller, Quantum 2, 54 (2018).
[30] L. Masanes and J. Oppenheim, Nat. Commun. 8, 14538

(2017).
[31] H. Wilming and R. Gallego, Phys. Rev. X 7, 041033 (2017).
[32] G. Gour, M. P. Müller, V. Narasimhachar, R. W. Spekkens,

and N. Yunger Halpern, Phys. Rep. 583, 1 (2015).
[33] P. Boes, H. Wilming, R. Gallego, and J. Eisert, Phys. Rev. X

8, 041016 (2018).
[34] M. Klimesh, arXiv:0709.3680v1.
[35] S. Turgut, J. Phys. A 40, 12185 (2007).
[36] M. Horodecki, J. Oppenheim, and A. Winter, Nature

(London) 436, 673 (2005).
[37] P. Hayden, Tutorial QIP 2011, Singapore, 2011 (unpub-

lished), https://qip2011.quantumlah.org/tutorialprogramme/.
[38] F. Dupuis, M. Berta, J. Wullschleger, and R. Renner,

Commun. Math. Phys. 328, 251 (2014).
[39] J. Eisert and M. Cramer, Phys. Rev. A 72, 042112 (2005).

[40] L. Susskind, J. Math. Phys. (N.Y.) 36, 6377 (1995).
[41] J. M. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999).
[42] S. Ryu and T. Takayanagi, Phys. Rev. Lett. 96, 181602

(2006).
[43] P. Hayden, M. Headrick, and A. Maloney, Phys. Rev. D 87,

046003 (2013).
[44] B. Czech, P. Hayden, N. Lashkari, and B. Swingle, J. High

Energy Phys. 06 (2015) 157.
[45] N. Lashkari and M. Van Raamsdonk, J. High Energy Phys.

04 (2016) 153.
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I. PROOF OF THEOREM 1 AND LEMMA 2

In this section we prove Theorem 1 and Lemma 2 in the
main text. The proofs of both results rely on the following
recent result from Ref. [1].

Theorem 6 (Correlating-catalytic majorization [1]). Let ρ, ρ′

be two density matrices on the same, finite-dimensional
Hilbert space HA such that S(ρ) < S(ρ′) and rank(ρ) ≤
rank(ρ′). Then there exists a density matrix τ on a finite-
dimensional Hilbert space HB and a bipartite density matrix
ρ′τ onHA ⊗HB such that

ρ⊗ τ � ρ′τ, TrB [ρ′τ ] = ρ′, TrA[ρ′τ ] = τ.

Another result that will be used frequently is the Schur-
Horn-Theorem.

Theorem 7 (Schur-Horn [2]). For a matrix H , let λ(H) be
the vector of its eigenvalues and diag(H) the vector of its
diagonal entries. If H is Hermitian, then the following are
equivalent:

• λ(H) � diag(H),

• there exists a unitary matrix U such that

Uλ̂(H)U† = H,

where λ̂(H) is the diagonal matrix with diagonal λ(H).

In particular, the Schur-Horn theorem implies that, if ρ �
ρ′, then there exist unitaries U, V such that

ρ′ = V
(
DJ [UρU†]

)
V †. (1)

Here and in the following, in contrast to the main text, we
explicitly denote the choice of basis J = {|j〉} in the notation
for the decoherence map, D = DJ . If we choose J as the
eigenbasis of ρ′ then V is the identity map. We are now in
position to prove Theorem 1 in the main text.

Proof of Theorem 1. The proof of Theorem 1 proceeds in sev-
eral steps. To aid understanding, Fig. 1 provides an overview
over the various steps.

We begin with proving that i) implies ii). Thus, assume that
S(ρ) < S(ρ′) and rank(ρ) ≤ rank(ρ′). Then Theorem 6
together with (1) implies that there exists a dB-dimensional
Hilbert space, a state τ on this space, a unitary WA,B and two
bases JA and JB such that

(DJA ⊗DJB )
[
WA,B(ρ⊗ τ)W †

A,B

]
= ρ′τ.

⇢
A

R

B

⌧

1d

VA,R

WA,B

B

A

R

1d

⌧̃

⇢0

FIG. 1. Proof Sketch for Theorem 1. We consider three systems
A,B,R. A corresponds to system 1 in the main text, while systems
B and R jointly correspond to system 2 in the main text. We then
initiate this tripartite system in the state ρA⊗τB⊗(1d)R, where τ is
a state that depends on both the initial and final states onA and where
1d is the maximally mixed state with d being the dimension ofA. To
this tripartite state we apply two unitaries WA,B , VA,R (represented
by dashed ellipses), one with support only on A,B, the other with
support onlyA,R. These two unitaries have the effect of producing a
global state with reduced density matrices ρ′A, τ̃B , and (1d)R and in
which, importantly, the reduced state onB andR is product. Here, τ̃
is a state with the property that DJ(τ̃) = τ . Hence, after dephasing
system BR (and hence B), BR is returned back to its initial state.
The existence of τ,WA,B , VA,R for any pair of states ρ, ρ′ to which
the Theorem applies then establishes the claim.

Here, JB is the eigenbasis of τ and hence can be chosen at will
by adjusting the unitary WA,B and the state τ . From locality
of quantum mechanics and the Schur-Horn theorem we thus
find that

ρ′τ̃ := (DJA ⊗ I)
[
WA,B(ρ⊗ τ)W †

A,B

]

is a quantum state with the properties TrB [ρ′τ̃ ] = ρ′ and τ̃ =
TrA[ρ′τ̃ ] � τ . Here, I denotes the identity super-operator.

As a second step, we show that we can realize any dephas-
ing map on a system A using an ancillary system in a maxi-
mally mixed state. To see this, let R be a system of the same
dimension d as A and let {Uk}dk=1 be a unitary operator basis
on A, meaning a collection of d unitaries Uk such that

Tr
[
UjU

†
k

]
= dδj,k. (2)
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Such a set of operators exists on every finite-dimensional
Hilbert space [3, 4]. Then, define the unitary

VA,R =
d∑

j=1

|j 〉〈j |A ⊗ (Uj)R,

where we recall that J = { |j 〉}. Now, it is easy to check that
for any ρ = ρA,

TrR

[
VA,R(ρ⊗ 1d)V

†
A,R

]
= DJ [ρ].

In a third step, we now show that we can use this dilation of the
dephasing map to construct an auxiliary system for Theorem
1 in the main text. To do so, let

σ := τ ⊗ 1d

and define the unitary

UA,B,R = (VA,R ⊗ 1B)(WA,B ⊗ 1R).

We emphasize at this point that the auxiliary system has di-
mension dBd and for any choice of basis on the Hilbert space
of the latter we can find a tensor factorization as above and
a corresponding quasi-classical state τ (the maximally mixed
state is of course quasi-classical in any basis) and correspond-
ing unitaries WA,B and VA,B . From the previous discussion
and the construction of the dephasing unitary VA,R, we know
that

TrR

[
UA,B,R(ρ⊗ σ)U†

A,B,R

]
= ρ′τ̃ .

Thus, what is left to be proven is that σ is valid, i.e., does not
change in the course of the process except from building up
coherences. We will show that it undergoes the transition

σ = τ ⊗ 1d → τ̃ ⊗ 1d.

To show this, first note that the dephasing dilation imple-
mented by VA,R leaves the state 1d of R locally unchanged.
But this means that we only have to show that R does not be-
come correlated with B in the dephasing step, since it follows
from locality that the marginal on R remains unchanged and
the marginal on B evolves from τ to τ̃ . To see that B and
R remain uncorrelated, we simply compute the action of the
dephasing unitary VA,R on B,R, to get

TrA

[
UA,B,R(ρ⊗ σ)U†

A,B,R

]

=
∑

j,k

TrA

[
|j 〉〈j |AWA,B(ρ⊗ τ)W †

A,B |k 〉〈k |A
]
⊗ UjU

†
k

dR

=
∑

j

〈j |AWA,B(ρ⊗ τ)W †
A,B |j 〉A ⊗ 1d

= τ̃ ⊗ 1d,

where we have dropped identities for notational convenience.
This proves that i) implies ii).

[γA,B ]0,0 [γA,B ]0,1 [γA]0
[γA,B ]1,0 [γA,B ]1,1 [γA]1
[γA,B ]2,0 [γA,B ]2,1 [γA]2

[γB ]0 [γB ]1

;
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FIG. 2. Counterexample to show that trumping relations cannot char-
acterize transitions of the form (b) of Conjecture 1 in the main text
(for notation see Appendix II below)

Let us now prove that ii) implies i). In the following let α ∈
{0, 1}. Since S0(ρ) = log(rank(ρ)), both S0 and S1 = S are
subadditive and additive. Since the final state on the auxiliary
system, which we now call σ′, satisfiesDJ [σ′] = σ, it follows
that σ′ � σ and thus Sα(σ′) ≤ Sα(σ). Furthermore, from
additivity and subadditivity we get

Sα(ρ) + Sα(σ) = Sα(ρ⊗ σ) = Sα(ρ′σ′)

≤ Sα(ρ′) + Sα(σ′) ≤ Sα(ρ′) + Sα(σ).

For α = 0, this proves rank(ρ) ≤ rank(ρ′). For α = 1,
equality, i.e. S(ρ) = S(ρ′), is only possible if S(ρ′σ′) =
S(ρ′) + S(σ′), and it is well-known that this implies ρ′σ′ =
ρ′ ⊗ σ′. Thus ρ ⊗ σ � ρ′ ⊗ σ′ � ρ′ ⊗ σ, and so ρ �T ρ′

for the trumping relation, which together with S(ρ) = S(ρ′)
implies that ρ and ρ′ have the same spectrum, i.e. are unitarily
equivalent [5, 6]. This contradicts the assumptions of the the-
orem. We must thus have S(ρ) < S(ρ′), which completes the
proof.

Let us now turn to the proof of Lemma 2 in the main text,
which builds on the proof of Theorem 1.

Proof of Lemma 2 in the main text. For this proof we re-use
all the notation from the proof of the implication i)⇒ii) in
the proof given above. In particular note that the final state τ̃
on the B-subsystem of the auxiliary system only needs to be
dephased in a basis JB to be returned exactly, since, by con-
struction, diag(τ̃) = λ(τ). Using the dephasing construction
already used in the proof of Theorem 1 we can include a fur-
ther system R2 in the maximally mixed state into the system
and use the dephasing unitary VR2B at the end of the process
to dephase system B. The only property that we still need
to prove is that this does not introduce correlations between
A and R2. However, this is exactly the same calculation that
shows that there are no correlations between B and R at the
end in the proof of Theorem 1. We only have to exchange R
for R2 and B for A. This finishes the proof.

II. TRUMPING RELATIONS CANNOT CHARACTERIZE
CATALYTIC TRANSITIONS

Here, we show that the trumping relations, Eq. (6) in the
main text, cannot characterize transitions of the form (b) in
the main text, by means of a counterexample. In order to
understand this construction, it is helpful to consider the ta-
ble in Fig. 2: Given an arbitrary bipartite state on A,B de-
noted γA,B , the table at the left-hand side indicates the mean-
ing of each entry, where [γA,B ]i,j := 〈i, j | γA,B |i, j 〉 on
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a given computational basis of AB. The two tables at the
right hand side indicate a particular transition of the form
ρ ⊗ σ → U(ρ ⊗ σ)U := ρ′σ. In this case we take ρ and
σ to be of dimension 3 and 2 respectively, and both diagonal
in the computational basis. The unitary U is simply a classical
permutation which swaps the red entries with the blue entries.
Note that the final state satisfies Tr2(ρ′σ) = σ since the bot-
tom row remains unchanged, as demanded by condition (b).
The row sums on the right-hand side of each table represent
ρ = diag(0, 1/2, 1/2) and ρ′ = diag(1/6, 1/6, 2/3). Since
S∞(ρ) is determined by the largest eigenvalue of ρ, this ex-
ample realizes a catalytic transition ρ → ρ′ with S∞(ρ) >
S∞(ρ′) and hence excludes the possibility that catalytic state
transitions are constrained by the trumping relations.

III. CATALYTIC COOLING

Let us first present in detail how to prepare almost pure
states with a protocol that uses Theorem 1. Using this the-
orem, we have that, given system Q1 in state ρQ1

= % ⊗ %
with 2S(%) < 1, one can find U and an auxiliary system C in
state σ so that

γQ1C = (DJ ◦ U1)[ρQ1 ⊗ σC ] (3)

whereDJ is the map locally dephasing the systemC and leav-
ing Q1 untouched (formally IQ1

⊗DJ ), and U1[•] = U • U†.
Also, we denote by γQ1C a bipartite state on Q1C which,
according to Theorem 1, fulfills TrQ1

(γQ1C) = σC and
TrC(γQ1C) = ρ′Q1

= %′ ⊗ 12, where %′ can be any full-rank
state, but in the following we are interested in the case where
ρ′ is arbitrarily close to a pure state.

This protocol can be iterated on an arbitrary number n of
subsystems Q1, . . . , Qn, taking initially ρQ1,...,QN

= ρQ1 ⊗
· · · ⊗ ρQn as input, where ρQi = % ⊗ % for all i. We define
the unitary channels Ui which apply the unitary U to systems
QiC and act trivially in the rest of the subsystems, that is,

Ui[•] = UQiC ⊗ I|QiC • U†
QiC
⊗ I|QiC . (4)

Then, applying these unitary channels, each followed by a de-
phasing map on C, one obtains

γQ1,...,QnC = DJ ◦ Un ◦ · · · ◦ DJ ◦ U1[ρQ1,...,Qn ⊗ σ] (5)

where, due to Theorem 1, we have

Tr|Qi
(γQ1,...,QnC) = %′ ⊗ 12 ∀ i,

Tr|C(γQ1,...,QnC) = σ.

Hence, with this protocol we have prepared n/2 subsystems
whose marginal %′ is arbitrarily close to a pure state. Note,
however, that the resulting state of the compound γQ1,...,Qn

displays correlations between its parts, hence, although each
subsystem in state %′ can be individually used —for instance
as a pure state input of a quantum computation— the whole
compound γQ1,...,Qn deviates from the state

γ̃Q1,...,Qn
:= ρ′Q1

⊗ · · · ⊗ ρ′Qn
.

This can be seen for instance by comparing the minimum
eigenvalue λmin of both states in the limit of large n, which
gives

lim
n→∞

λmin(γ̃Q1,...,Qn
)

λmin(γQ1,...,Qn)
≤ lim
n→∞

λmin(γ̃Q1,...,Qn
)

λmin(γQ1,...,QnC)
(6)

≤ lim
n→∞

λmin(γ̃Q1,...,Qn
)

λmin(ρQ1,...,Qn ⊗ σ)
(7)

= lim
n→∞

( 1
2λmin(%′))n

λmin(%)2nλmin(σ)
(8)

= 0 (9)

where (6) follows simply because tracing out one subsystem
can only increase the minimum eigenvalue; (7) follows due
to (5). To see this note that map DJ ◦ Un ◦ · · · ◦ DJ can
be implemented as a global unitary on Q1, . . . , Qn together
with a source of randomness of sufficiently large dimension d
which is responsible of the dephasing. That is, there exists V
so that

Tr(V ρQ1,...,Qn ⊗ σ ⊗ 1dV
†) = γQ1,...QnC .

This implies in turn that ρQ1,...,Qn
⊗ σ � γQ1,...QnC (see for

instance Ref. [7]) and that

λmin(ρQ1,...,Qn
⊗ σ) ≤ λmin(γQ1,...QnC).

Eq. (8) follows from simple algebra. Lastly, (9) follows from
the fact that λmin(%′) is arbitrarily small while λmin(σ) > 0.
To see the latter we recall the result of Appendix F.1 from Ref.
[8], which shows that any transition of the form (5) employing
an auxiliary system σ without full rank with spectrum {σi},
can be also be implemented with a full-rank state σ̃ with spec-
trum {σi|σi > 0}. In other words, we can assume without
loss of generality that σ is full rank.

IV. THE CLASSICAL CASE

In the following, we denote the marginals of a probability
distribution r on X × Y by rX resp. rY , such that rX(x) =∑
y∈Y r(x, y) and rY (y) =

∑
x∈X r(x, y). This is the clas-

sical analogue of the partial trace.

Conjecture 1 (Classical catalytic entropy conjecture). Let p
and p′ be two different probability distributions on a finite
space of events X . Then the following two statements are
equivalent:

i) S(p) ≤ S(p′), where S is the Shannon entropy.

ii) For every ε > 0, there exists a probability distribution q
on a finite space Y and a permutation P on X × Y such
that

[P (p⊗ q)]Y = q, ‖[P (p⊗ q)]X − p′‖1 ≤ ε. (10)

There are two reasons for which we only conjecture approx-
imability of p′ to arbitrary accuracy instead of perfect achiev-
ability. Firstly, in order to drop the rank condition from con-
dition i); secondly, to account for the case in which p and p′
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differ by irrational amounts. In this case, permutations only
realize the transition p→ p′ approximately.

Note that, since the statement of the catalytic entropy con-
jecture is unitarily invariant on the input states, and permu-
tations are special cases of unitary operations, a proof of the
classical catalytic entropy conjecture would essentially also
prove the quantum version. The converse, however, is not
necessarily true: it is apriori possible that only the quantum
formulation holds. Nevertheless, as in the quantum case, one
can show that the Shannon entropy is essentially the unique
additive monotone. This follows from the following classi-
cal version of Lemma 2 in the main text. It uses the notation
rank(p) to denote the number of non-zero entries of a discrete
probability distribution p.

Lemma 8 (Weak solution to catalytic entropy conjecture
(classical)). Let p and p′ be two different probability distribu-
tions of the same, finite dimension and with rational entries.
Then the following two statements are equivalent:

(I) S(p′) > S(p) and rank(p′) ≥ rank(p).

(II) There exists a probability distribution q on a finite sam-
ple space Z, a d-dimensional sample space Y , and a
permutation P on X × Y × Z such that

[P (p⊗ 1d ⊗ q)]Z = q, [P (p⊗ 1d ⊗ q)]X,Y = p′ ⊗ 1d.

Here, 1>
d = (1/d, . . . , 1/d) denotes the uniform distribu-

tion on Y .

Proof. We only consider the non-obvious direction, i.e. we
show that (I)⇒(II). According to Ref. [1], if condition (I) is
satisfied, then there exists a probability distribution q̃ on some
sample space Z̃ such that p ⊗ q̃ � p′q̃, where p′q̃ denotes a
probability distribution on X × Y such that [p′q̃]Z = q̃ and
[p′q̃]X = p′. Since p, p′ are rational, and so are q̃ and p′q̃,
the majorization relation implies that this transition can be re-
alized exactly with a random permutation. In other words,
there exists a d̃-dimensional ancilla A in the state 1d̃ and the

global permutation P =
∑d̃
i=1 Πi⊗Pi, where Πi denotes the

rank-one projector onto the standard basis {ei} of A, that is,
Πi(q) = qiei, such that

1

d̃

d̃∑

i=1

Pi(p⊗ q̃) = p′q̃. (11)

Next, choose d = d̃ as the dimension of Y and consider the
permutation

P ′ =
d∑

i=1

(Πi)Y ⊗ (πi)A, (12)

where π is a permutation defined by πej = ej+1mod d. Ap-

plying both of these permutations to the total system yields

P ′P
[
(1d̃)Y ⊗ (1d̃)A ⊗ p⊗ q̃

]

=P ′
[

(1d̃)Y ⊗
(

d∑

i

(ei)A/d⊗ Pi(p⊗ q̃)
)]

=
d∑

i,j=1

(ej)Y /d⊗ (ei+jmod d)A/d⊗ Pi(p⊗ q̃).

From the last expression, we see that summing over Y leaves
A uncorrelated from both X and Z̃, since

∑
j Πi+j/d

2 = 1d,
and summing overA leaves Y andX uncorrelated. Hence, by
identifying Z = A × Z̃ and q = (1d)A ⊗ q̃, the statement of
the lemma follows.

V. S IS THE ONLY CONTINUOUS ADDITIVE
MONOTONE

Here we give a proof of Corollary 3 in the main text. This
corollary follows immediately from the following lemma,
which itself has Lemma 2 as its key ingredient.

Lemma 9 (Properties of real and additive functions). Let f be
a real function on the set of all finite-dimensional density ma-
trices which is continuous (on all subsets of density matrices
of fixed dimension) and additive, i.e. f(ρ⊗σ) = f(ρ)+f(σ).
Furthermore, suppose that f is a monotone with respect to
transitions of the form (b) of Conjecture 1 in the main text,
i.e. satisfaction of condition (b) implies that f(ρ) ≤ f(ρ′).
Then there exist a constant a ≥ 0 and dimension-dependent
constants bn ∈ R, such that

f(ρ) = a · S(ρ) + bn,

with n the Hilbert space dimension of ρ, and bm,n = bm+ bn.

Proof. For any density matrix ρ of dimension n, define the
negentropy I(ρ) := log n − S(ρ). Let ρ, ρ′ be full-rank den-
sity matrices of possibly different dimensions n, n′ such that
I(ρ) = I(ρ′), then

S(ρ⊗ 1n′) = log n− I(ρ) + log n′ = S(ρ′ ⊗ 1n).

Let ε > 0, and let σε be any full-rank state of size nn′ such
that ‖σε − ρ ⊗ 1n′‖ < ε and S(σε) < S(ρ ⊗ 1n′), then
S(σε) < S(ρ′ ⊗ 1n), hence Lemma 2 implies that there is
some d ∈ N such that σε ⊗ 1d → ρ′ ⊗ 1n ⊗ 1d, where “→”
denotes that a transition of the form (b) is possible. Thus

f(σε ⊗ 1d) ≤ f(ρ′ ⊗ 1n ⊗ 1d),

and additivity of f yields f(σε) ≤ f(ρ′ ⊗ 1n). Since
limε→0 σε = ρ ⊗ 1n′ , and since f is continuous, this implies
that f(ρ⊗1n′) ≤ f(ρ′⊗1n). Reversing the roles of ρ and ρ′

in the above argumentation gives the converse inequality, and
hence f(ρ ⊗ 1n′) = f(ρ′ ⊗ 1n). Define the new real func-
tion j(τ) := f(1n) − f(τ), where n is the dimension of the
density matrix τ , then j is also additive, and it vanishes on the
maximally mixed states. Thus j(ρ) = j(ρ′).

56



5

In summary, we have shown that j is constant on the level
sets of I . Thus, there is a real function g : [0,∞) → R such
that j(ρ) = g(I(ρ)) for all ρ. Let x, y ∈ [0,∞) with x < y,
and let ρx, ρy be finite-dimensional full-rank density matrices
of dimensions nx, ny with I(ρx) = x and I(ρy) = y. Then

g(x+ y) = g(I(ρx) + I(ρy)) = g(I(ρx ⊗ ρy))

= j(ρx ⊗ ρy) = j(ρx) + j(ρy)

= g(I(ρx)) + g(I(ρy)) = g(x) + g(y).

Furthermore, S(ρy⊗1nx
) < S(ρx⊗1ny

), hence there is some
d ∈ N such that ρy ⊗ 1nx

⊗ 1d → ρx ⊗ 1ny
⊗ 1d, therefore

j(ρy ⊗1nx
⊗1d) ≥ j(ρx⊗1ny

⊗1d), and additivity implies
j(ρy) ≥ j(ρx). It follows that g(y) ≥ g(x).

We thus see that g is both additive and non-decreasing, and

it is well-known (and easy to verify) that this implies that
g(x) = ax for some a ≥ 0, i.e. j(ρ) = aI(ρ). Going back to
the definition of f , this gives us

f(ρ) = aS(ρ) + bn,

with n the dimension of ρ and bn := f(1n)−a log n. Finally,
additivity of f and 1m,n = 1m ⊗ 1n imply bm,n = bm +
bn.

Note that bm,n = bm+bn does not automatically entail that
bm is proportional to logm (and thus to S0): there are other
well-known examples of functions on the integers which are
additive in this sense.
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5.2 catalysis for fluctuation theorems 59

5.2 catalysis for fluctuation theorems

In the last chapter, we have studied the question which state transitions are possible in the

setting of correlated catalysis and we have seen that this setting is extremely powerful, with

possible transitions essentially being constrained only by an increase of the von Neumann

entropy (although we could prove this only up to the presence of a decohering environment).

From a practical point of view, this is interesting primarily because states with similar entropy

might have wildly di�erent spectra, especially if the dimension of the system in question

is large. For this reason, correlated catalysis allows one to modify the spectrum of a state

signi�cantly. It is natural, then, to look for tasks in which this ability can be put to use.

In this chapter we provide an very interesting example of the usefulness and counterintu-

itive power of correlated catalysis, by showing that the latter can be used to extract �nite

amounts of work per particle from a macroscopic system in thermodynamic equilibrium with

a probability that is independent of the system size. This stands in stark contrast to thermo-

dynamic intuition and bounds on work extraction that are implied by �uctuation theorems,

in particular the Jarzynski equality.

5.2.1 Fluctuation theorems

The development of �uctuation theorems is relatively recent in the history of statistical mech-

anics [20, 21]. In their standard formulation, these theorems are concerned with establishing

constraints on the possible �uctuations of thermodynamic quantities such as entropy produc-

tion or work cost for systems that are driven out of equilibrium. In particular, in the setting

of the seminal Crooks �uctuation theorem [146], one considers the probability of expending

some amount of work in changing the Hamiltonian of a system over time, where this sys-

tem is in contact with a heat bath and a) hence initially described by a thermal state and b)

the trajectory of this system through its phase space — induced by an external driving that

changes the Hamiltonian of the system from Hi
S initially to H f

S at the end — is stochastic due

to the system’s interaction with the bath. Now, if we denote by P+(w) the total probability

of having implemented a trajectory with associated work gain w for a given external driving,

and we denote by P−(−w) the probability of having implemented a trajectory with associ-

ated work cost w, if we had started with the initial system Hamiltonian H f
S and with the driving

being reversed, then under very general conditions on the form of driving, Crook’s �uctuation

theorem states that

Z(β, Hi
S)P+(w) = Z(β, H f

S)e
−βwP−(−w). (5.2.1)

For example, if the driving was such that Hi
S = H f

S (so that the process is cyclic), this would

have meant that it is exponentially more likely to implement the process in that direction that

incurs a work cost. One important implication of Crook’s theorem is the so-called Jarzynski

equality, which can be stated as [23]

〈eβW〉 = eβ∆F
(5.2.2)

with W being the random variable that is the work extraction of the above process and ∆F =

F(ωβ(H f
S))− F(ωβ(Hi

S)). The Jarzysnki equality is particularly noteworthy because in it,

the expected work cost of a system that can drive a system arbitrarily far from equilibrium

is constrained by the equilibrium properties of thermal states. As such, �uctuation theorems

have much improved on researchers’ access to the analytical study of far-from equilibrium

processes.
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5.2.2 Bypassing �uctuation theorems with correlated catalysis

In the publication presented below [3], we introduce correlated catalysis into the study of

�uctuation theorems. Several works have generalized �uctuation theorems to quantum phys-

ics (see [24, 147, 148, 149, 150] and references therein). Here, the essentials of the process

remain unchanged, with the di�erence that one commonly considers energy measurements

at the beginning and end of an evolution, while the evolution itself is described as a unitary

process that results from the change of the system (or system-bath) Hamiltonian due to ex-

ternal driving. We generalize this setting by allowing for the unitary channel between the

two measurements to be replaced by a more general unitary that acts on both the system and

an additional catalyst, under the usual requirement that the unitary leaves the average state

of the catalyst unchanged.

Allowing for such catalytic evolutions clearly increases the possible trajectories on the sys-

tem. The central result of the publication is to show that that not only does a Jarzynski

equality-type constraint not hold anymore in this generalized setting, one can even bypass

the constraints on the work distribution exhibited in Eq.(5.2.1)! Speci�cally, Eq. (5.2.2) implies

that for macroscopic systems, the probability of extracting any �nite amount of work per

particle becomes exponentially small with the size of the system. In contrast, we provide an

explicit construction for a process that uses correlated catalysis to achieve the extraction of a

�nite work per particle with a probability that can be brought, for any system size, arbitrar-

ily close to 0.5, that is, to exponentially outperform the usual bound imposed by �uctuation

theorems that do not admit catalysts. A good understanding of processes that achieve this

work extraction could be of great operational use and also provide hints to the mechanisms

underlying some classes of negentropic processes in nature.

The counterintuitive power of correlated catalysis resides both in the fact that the catalyst

is itself a system that is far from equilibrium (one can show that catalysts in equilibrium could

not be used to bypass Eq. (5.2.1)) and that the system is allowed to establish correlations with

the catalyst. To better understand the sense in which establishing correlations provides a kind

of resource, we also study scenarios in which a correlated catalyst is used to “engineer” global

work distributions between many parties that locally only interact with the catalyst and �nd

that strong correlations can be established, leading to interesting work distribution patterns

in a many-player scenario. This concern with the power of correlations in the context of

�uctuation theorems also re�ects a growing theme in the quantum thermodynamics literature

in which the role of correlations as a resource is examined theoretically [151, 152, 153, 154,

155, 156, 157] but also in experiments [31].
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Fluctuation theorems impose constraints on
possible work extraction probabilities in ther-
modynamical processes. These constraints are
stronger than the usual second law, which is
concerned only with average values. Here,
we show that such constraints, expressed in
the form of the Jarzysnki equality, can be by-
passed if one allows for the use of catalysts—
additional degrees of freedom that may be-
come correlated with the system from which
work is extracted, but whose reduced state re-
mains unchanged so that they can be re-used.
This violation can be achieved both for small
systems but also for macroscopic many-body
systems, and leads to positive work extrac-
tion per particle with finite probability from
macroscopic states in equilibrium. In addition
to studying such violations for a single system,
we also discuss the scenario in which many par-
ties use the same catalyst to induce local tran-
sitions. We show that there exist catalytic pro-
cesses that lead to highly correlated work dis-
tributions, expected to have implications for
stochastic and quantum thermodynamics.

1 Introduction
Consider a physical system in thermal equilibrium with
its environment. The second law of thermodynamics dic-
tates that it is impossible to extract positive average work
from this system using reversible processes that are cyclic
in the Hamiltonian. More precisely, if the system’s ini-
tial state is represented by a canonical ensemble and we
consider many iterations of a probabilistic process during
which the Hamiltonian of the system is varied but returned
to the initial Hamiltonian at the end, then it holds that

〈W 〉 ≤ 0, (1)

where 〈W 〉 is the average work extracted during the pro-
cess. We will refer to (1) as the Average Second Law (Av-
SL),

However, there exist significantly stronger constraints
on the possible extracted work in the above type of pro-
cesses, namely those imposed by fluctuation theorems
[1, 2, 3]. Indeed, using such theorems, one can show
that the probability of extracting a finite amount of pos-
itive work per particle is exponentially suppressed with

the number of particles in a system [1]. Once these dif-
ferent types of constraints are recognized, an interesting
questions arises: What are physically meaningful settings
in which the probabilistic constraints imposed by fluctua-
tion theorems can be circumvented, while still respecting
the Av-SL? In particular, do fluctuation theorems also hold
when an additional, cyclically evolving auxiliary system is
allowed for?

In this work, we present an answer to this question, by
introducing a class of processes that generalize the above
reversible processes, are physically well motivated, com-
patible with (1), and yet allow for the extraction of positive
work per particle with a probability that is independent of
system size. We do so via the notion of a catalytic process,
in which we allow for the reversible process to not only act
on the system as such, but additionally on an auxiliary sys-
tem that can be initially prepared in an arbitrary state, but
whose marginal state has to be left invariant by the process.
Such catalysts are well-motivated – they allow a general
description of thermodynamic processes in which the sys-
tem may be interacting with some experimental apparatus
(such as a quantum clock [4, 5]), however not extracting
energetic/information resources from such an ancilla. In
terms of our discussion of the Av-SL above, catalysts cor-
respond to the cyclically evolving auxiliary system. De-
spite being studied frequently in resource-theoretic formu-
lations of thermodynamics [6, 7, 8, 9], catalytic processes
have never been studied in the context of fluctuation theo-
rems until now. Furthermore, even in previous works of
catalysis, the exact form of the catalyst is highly state-
dependent and therefore rarely studied explicitly [6, 8].
In this work, we make progress in the significant gaps in
the knowledge of catalysis, by presenting and discussing
constructive examples of such catalytic processes in the
framework where fluctuation theorems are commonly de-
rived. We show that, by sharing the same catalyst, a group
of agents can follow collective strategies to achieve highly
correlated work-distributions. This makes these processes
interesting for the field of quantum and stochastic ther-
modynamics and potentially also for certain negentropic
processes in biology. On the overall, our work provides a
rigorous footing for the further study of thermodynamical
processes that systematically exploit the notion of cataly-
sis in order to achieve certain patterns of work fluctuations
in an environment that is governed by the Av-SL. Given
the broad applicability of our results, we believe that the
study of such processes will produce many further inter-
esting results of both foundational and practical interest.
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2 Setup
2.1 Formulation of the physical situation
We formulate our arguments and results in the language of
quantum mechanics, but all of our results similarly apply
to classical, stochastic systems. We consider the setting
depicted in Fig. 1: A d-dimensional system S with Hamil-
tonian H =

∑d
i=1Ei |Ei 〉〈Ei | is initalized in the Gibbs

state

ωβ(H) := e−βH
Z(β,H) ,

where Z(β,H) := Tr(e−βH). This state describes a sys-
tem initially in thermal equilibrium with its environment
at inverse temperature β := 1/(kBT ). An agent (some
experimenter) first performs an energy measurement on
this system which produces a measurement outcome Ei.
According to quantum mechanics, the post-measurement
state is described by the density matrix |Ei 〉〈Ei |. The
agent then performs a physical operation on the system
which does not depend on the outcome of the measure-
ment. Such an operation can always be represented by a
general quantum channel C (i.e., a trace-preserving, com-
pletely positive map that takes density matrices to den-
sity matrices) applied to the post-measurement state. This
operation is then followed by a second energy measure-
ment with respect to the same Hamiltonian with outcome
Ef

1. This procedure results in a channel-dependent joint
distribution P (Ef , Ei) = P (Ef |Ei)P (Ei). In general, a
given quantum channel may be realized in different ways.
Whether the change of energy Ef −Ei can be interpreted
as work from a thermodynamic point of view will depend
on how exactly the quantum channel C was physically re-
alized. We will assume that this is the case in the follow-
ing, but will comment on this assumption again later on.
In particular, we can then define the work distribution P
for the above process as

P (W ) :=
∑

i,f

P (Ef , Ei)δ(W − (Ei − Ej)),

where δ is the Dirac delta distribution. We are interested in
investigating possible distributions P (W ) that arise from
different channels C. To do so, it is useful to note the rela-
tion

〈eβW 〉 =
∑

j

e−βEj

ZH
〈Ej | C[I] |Ej 〉 , (2)

which is straightforwardly derived using the above defini-
tions, where I denotes the identity matrix.

In the standard setting of Tasaki-type fluctuation the-
orems, C is considered to be a unitary channel C[·] =
U(·)U†, since these are generated by changing the Hamil-
tonian over time [3]. For such channels, (2) becomes

〈eβW 〉 = 1, (3)
1It is possible to extend the setup and our further results

to the more general case of different Hamiltonians for the ini-
tial and final measurement. We present our results within this
restricted settings for conceptual and notational simplicity.

!�(H)

P (Ei)

|EiihEi| C(|EiihEi|)
P (Ef |Ei)C

<latexit sha1_base64="VClE/+jMejTXnbnkLSNNAFdPOWU=">AAACOnicdVDLSsNAFJ3UV62vVjeCm2AR6qYkKuiyWAouK9gHtCVMppN26EwSZm6EEuvXuNUv8EfcuhO3foCTNgub4oGBwzn3MuceN+RMgWV9GLm19Y3Nrfx2YWd3b/+gWDpsqyCShLZIwAPZdbGinPm0BQw47YaSYuFy2nEn9cTvPFKpWOA/wDSkA4FHPvMYwaAlp3jcrDQc76nhsHMn7gsMY4J5XJ/NnGLZqlpzmKvETkkZpWg6JaPQHwYkEtQHwrFSPdsKYRBjCYxwOiv0I0VDTCZ4RHua+lhQNYjnJ8zMM60MTS+Q+vlgztW/GzEWSk2FqyeTkCrrJeJ/HozF0u+xK/GEQkZzRSYieDeDmPlhBNQni4RexE0IzKRIc8gkJcCnmmAimT7SJGMsMQFdt27Pzna1StoXVfuyat9flWu3aY95dIJOUQXZ6BrV0B1qohYi6Bm9oFf0Zrwbn8aX8b0YzRnpzhFagvHzC/8KrYA=</latexit>

|Ef ihEf |
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Figure 1: The basic setup for all processes in this work: An
agent with access to a system S equipped with Hamiltonian
H that is assumed to be initially in thermal equilibrium with a
heat bath at inverse temperature β samples from S (by mea-
suring in the energy basis), then implements a process that
maps the post-measurement state |Ei 〉〈Ei | to C( |Ei 〉〈Ei |),
where C is a quantum channel. Finally, the agent repeats the
energy measurement on S with respect to the same Hamil-
tonian H.

which is the well-known Jarzynski equality (JE) for cyclic,
reversible processes [1]. Eq. (3) is strictly stronger than
(1), the latter being implied by (3) via Jensen’s inequality.

2.2 No macroscopic work
One of the reasons for the importance of the JE derives
from the fact that it gives strong bounds on the possibil-
ity of extracting work from a large system in a thermal
state [10, 11, 12]. To see this, let S be an N -particle sys-
tem and define the probability of extracting work w per
particle as

p(w) := P (wN).

Plugging this into (3) yields that for any ε > 0,

1 = 〈eβW 〉 =
∑

w

eβwN P (wN) ≥ eβεN
∑

w≥ε
p(w),

which implies that events which extract significant posi-
tive work per particle from a macroscopic system at equi-
librium are exponentially unlikely in N . For later use, we
formalize this property.

Definition 1 (No macroscopic work). Given a se-
quence of N -particle systems initially at thermal equi-
librium with inverse temperature β and channels C
(implicitly depending on N), we say that the pro-
cesses represented by C fulfill the no macroscopic work
(NMW) condition if the probability of an event ex-
tracting work per particle larger or equal than ε is ar-
bitrarily small as N →∞,

lim
N→∞

p(w ≥ ε) := lim
N→∞

∑

w>ε

p(w) = 0.

As is clear from the above, channels that satisfy the JE,
such as unitary channels, also satisfy NMW and Av-SL.
We now turn to investigate violations of JE and NMW for
non-unitary channels.

3 Violations of NMW and JE
The first main result of this work is to introduce a phys-
ically motivated family of channels C that violates both
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NMW and JE, but respects the Av-SL. To aid comparison,
we first briefly discuss other generalizations of the stan-
dard setting to non-unitary channels (see also Refs. [13,
14]).

3.1 Violating JE with non-unitary channels
It is easy to see from (2) that a more general class of chan-
nels that satisfy the JE are unital channels, that is, channels
that satisfy C[I] = I. Consequently, neither JE, nor in turn
NMW or Av-SL can be violated in settings which give rise
to a unital channel. However, once this condition on uni-
tality is relaxed, it becomes easy to violate JE on a formal
level. For example, consider the fully-thermalizing chan-
nel that maps every input state to the thermal state ωβ(H),
in other words C(·) = ωβ(H). This channel always vi-
olates the JE whenever ωβ(H) 6= I/d. It is, however,
not clear how the energy-fluctuations can be interpreted
as work in this example, since thermalizing processes usu-
ally occur due to contact with a heat bath, in which case
one would naturally interpret the changes of energy on the
system being due to heat. Thus, while it is trivial to for-
mally violate JE, it is not obvious whether it is possible
to do so in a physically meaningful and operationally use-
ful manner. Nevertheless, in Appendix A, we show that
the fully-thermalizing channel, in fact any channel with
the thermal state as a fixed point, cannot violate the NMW
condition for typical many-body systems, even if they may
violate (3). This means that, even if one interprets energy
fluctuations as work, one still could not use the thermaliz-
ing channel to extract macroscopic amounts of work from
a many-body system.

3.2 Violations of NMW and JE via β-catalytic
channels
The above findings raise the important question whether
there exist channels for which the above procedure leads
to a violation of NMW (and hence JE), while still respect-
ing the Av-SL and allowing for the interpretation of the
random variable W as work extracted from S. Such chan-
nels, if they exist, promise to be of great interest because
they could allow for a systematic exploitation of relatively
likely events extracting work from heat baths. The first re-
sult of this work is to answer this question affirmatively.
To this end, we define the notion of a β-catalytic channel.

Definition 2 (β-catalytic channel). A completely
positive, trace-preserving map C is a β-catalytic chan-
nel on S, if there exists a quantum state σC on a sys-
tem C with Hamiltonian HC , together with a unitary
U such that [σC , HC ] = 0 and

C(·) = TrC(U( · ⊗ σC)U†),
s.t. TrS(U(ωβ(H)⊗ σC)U†) = σC . (4)

Before stating our first main result, let us make some
comments about this definition. First of all, we already
assumed that the initial and final Hamiltonian coincides.

This means that while during the process, C may couple
system and catalyst for example by introducing interac-
tion terms HSC , nevertheless at the end of the process, the
channel must also turn off such interaction terms. Sec-
ondly, note that β-catalytic channels describe reversible
processes, in the sense that they do not change the entropy
of the joint-system SC and can be undone by acting on
this joint-system by a unitary process. We refer to the sys-
tem C as being the “catalyst”, understanding that it may
be some by-stander system involving additional degrees
of freedom. This terminology is motivated by the fact that,
on average, i.e., if we do not condition on the outcomes of
the energy measurements, then C is returned, at the end of
the procedure, to its original state. It can therefore be re-
used for further rounds of the protocol with new copies of
S. Note, however, that the invariance of the reduced state
on C under the channel is required not for all initial states
of S, but only for ωβ(H). As such, β-catalytic channels
depend on β and H through the second condition.

While Definition 2 does not require the catalyst to be
uncorrelated with S at the end of the protocol, and in
this sense goes beyond the conventional notion of catal-
ysis discussed in the resource-theoretic literature on quan-
tum thermodynamics [6, 7], the more general notion of
catalysis that we employ here is receiving increasing in-
terest in quantum thermodynamics, where it was shown to
single out the quantum relative entropy, free energy and
von Neumann entropy [15, 8, 16], to be useful in the con-
text of algorithmic cooling [16, 17] and to show the en-
ergetic instability of passive states [18]. Finally, let us
briefly comment on the interpretation of the random vari-
able W as work in the setting of β-catalytic channels and
the role of the Hamiltonian of the catalyst. Since the pro-
cess on C and S is unitary, it is meaningful to denote the
total changes of energies of the two systems as work mea-
sured by a two-point measurement scheme on each sys-
tem. This gives rise to a joint-distribution of work on the
two systems P (W (S),W (C)). The probability distribution
of work P (W ) discussed above then simply corresponds
to the marginal distribution P (W (S)) on S. Importantly,
this distribution is independent of the Hamiltonian on C
(see Sec. G in the Appendix). In particular, we can as-
sume that the catalyst has trivial Hamiltonian HC = 0,
which in turn implies [σC , HC ] = 0 for any σC . It is then
clear that no energy flows from the catalyst to the system,
not even probabilistically. For the rest of the article, we
hence assume that HC = 0.

Given these constraints, it may, at first glance, be un-
clear how such a catalyst would offer any advantage to
violating JE. For instance, one apparent way to make use
of the catalyst is to perform a controlled unitary on S, con-
ditioned on C: For some σC =

∑
i pi |i 〉〈i |, one uses a

unitary in Eq. (4) of the form

USC :=
∑

i

Ui ⊗ |i 〉〈i |C .

This special case of β-catalytic channels by construction
produces random unitary channels [19, 16] on S, which
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have the form CRU(·) =
∑
i piUi(·)U

†
i . But random uni-

tary channels are always unital, and therefore automati-
cally satisfy JE.

In the following, we show that there exist non-unital β-
catalytic channels that allow for a meaningful violation of
both NMW and JE, while at the same time they always
respect the Av-SL. To see the latter, we note that these
channels necessarily increase the von Neumann entropy of
the input Gibbs state. This follows from the sub-additivity
of entropy and the fact that C remains locally unchanged.
Now, since ωβ(H) is the state with the least energy given
a fixed entropy [20, 21], then we also have that

Tr(HC(ωβ(H)) ≥ Tr(Hωβ(H))

which is just the Av-SL, concomitant with the findings of
Ref. [9]. We stress that despite this property, β-catalytic
channels are in general not unital. It remains to be shown
that β-catalytic channels that violate JE and NMW do
exist. We first show that JE can be violated already with
small quantum systems, and then turn to the violation
of NMW for macroscopic many-body systems with
physically realistic Hamiltonians.

Microscopic violation of JE. As a toy-like example of
violating the JE with β-catalytic channels, we consider a
system with three states – two degenerate (but distinguish-
able) ground states and an excited state with energy E. As
catalyst, we consider a system with two states and the uni-
tary is a simple permutation between two pairs of energy
eigenvalues of the joint system (for details, see App. B). It
is straightforward to compute the probability distribution
of work for such small systems, which in this case leads to

〈eβW 〉 = Z + 5 + 2(Z − 2)(Z − 1)
Z(Z + 1) ≥ 1,

where Z = 2 + e−βE is the partition function of the sys-
tem and we used 2 ≤ Z ≤ 3. We hence find 〈eβW 〉 > 1
whenever E > 0 (since then Z < 3) and we obtain a
moderate maximum violation in the limit E → ∞ given
by 〈eβW 〉 = 7/6.

Macroscopic violation of NMW condition. We now
show that one can violate the NMW principle using cat-
alysts.

Proposition 1 (Violation of no macroscopic work
with catalysts). Let (S(N))N be a sequence of N -
particle locally interacting lattice systems with Hamil-
tonian H(N) that satisfy mild assumptions. Then, for
sufficiently large N , there exist values of ε > 0, such
that

p(w ≥ ε) (5)

can be brought arbitrarily close to 1
2 with β-catalytic

channels.

We provide a proof and full statement of the assump-
tions in Appendix D. Our assumptions are satisfied by

typical many-body Hamiltonians with energy windows in
which the density of states grows exponentially [22].

While the formal proof of Proposition 1 is given in the
Appendix, the idea behind it is simple and we sketch it
here on a higher level. For a given N , let e(N) denote
the mean energy per particle of an N -particle system that
satisfies our assumptions. In the proof, we show that for
systems that satisfy the above assumptions and any δ > 0,
there exists an N and a β-catalytic channel C such that

C(ωβ) ≈δ
1
2 |E− 〉〈E− |+

1
2τ, (6)

where ≈δ denotes equality of the states on LHS and RHS
up to δ in trace distance, |E− 〉 is some eigenvector of H
with E− < e(N)N and τ is some other “fail”-state the
details of which are irrelevant. We can interpret Eq. (6)
as describing the approximation of a work extraction pro-
tocol that results in the state |E− 〉 with probability 1/2.
Now, as the result of standard concentration bounds, for
large N the mass of the thermal state ωβ will be highly
concentrated around energy e(N)N . This implies that ev-
ery time the above work extraction protocol succeeds to
prepare the ground state, for sufficiently high values of
N the extracted work per particle is arbitrarily close to
ε ≡ e(N) − E−/N , leading to the statement of Prop. 1.

We note that it is remarkable that catalytic channels,
which are guaranteed to satisfy the Av-2nd law, allow for
the preparation of states like the one described in Eq. (6),
in which a pure low-energy state carries much of the
weight, from a thermal state. Indeed, it has recently been
conjectured that with the help of catalysts any state tran-
sition between full-rank states that increases the entropy
is possible [9], a statement known as the catalytic entropy
conjecture. Prop. 1, and in particular the ability to prepare
the state in Eq. (6), further supports this conjecture, which
has not been proven so far (even though strong evidence
has been established).

Similar results as above also apply to the case in which
the initial state of the system is described by a micro-
canonical ensemble rather than the Gibbs state, highlight-
ing a similar contrast to fluctuation theorem results in the
micro-canonical regime [23]. For detailed discussions and
proves of corresponding statements in this regime, see Ap-
pendix C.

One may wonder whether the creation of correlations
between system and catalyst is in fact necessary to violate
the NMW principle. This is indeed true, when one simply
forces the catalyst to remain uncorrelated in the definition
of β-catalytic channels. A proof of this statement along
with further discussion on this problem can be found in
Appendix I. Interestingly, such processes at the same time
allow for a violation of the Jarzynski equality. A particular
example is given by the fully thermalizing channel, which
can be realized using a catalyst that is simply a copy of the
Gibbs state of the system and the unitary simply swapping
the system and catalyst.

Required size of the catalyst. Proposition 1 not only
shows that there exist catalytic procedures that allow an
agent to bypass the work extraction bounds imposed by the
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JE – the violation of JE is in fact exponential in the system
size. In particular, (5) implies that there exist values ε > 0,
such that

〈eβW 〉 ≥ 1
2eβNε � 1

in the limit of large N . It is natural to wonder how far the
JE can be violated and how big the catalyst has to be to re-
alize a certain violation. This is clarified by the following
result.

Proposition 2 (Bound on violation of JE). Let C be
any β-catalytic channel with dC = dim(HC). Then,

〈eβW 〉 ≤ min{dC ‖σ‖∞ , d ‖ωβ(H)‖∞}
≤ min{dC , d},

where ‖ · ‖∞ denotes the ∞-norm, which, for density
matrices, equals the largest absolute value of the in-
put’s eigenvalues.

This proposition, the simple proof of which is given
in Appendix F, shows that in order to extract a growing
amount of work from a single run of a process, an external
agent will have to be able to prepare a state σ on a growing
auxiliary system and, more importantly, also have control
over the increasingly large joint system. Hence, in prac-
tice, the ability to violate JE will still be constrained by
operational limitations. To illustrate the implications of
Prop. 2, let us show how it immediately implies a bound
on P (W ). As noticed when deriving the NMW principle,
for any ε ≥ 0 we have

〈eβW 〉 ≥ P (W ≥ ε)eβε.

Hence, Prop. 2 implies

P (W ≥ ε) ≤ dC ‖σ‖∞ e−βε.

In particular this means that to extract a macroscopic
amount of work, W ≥ wN , with finite probability, dC
has to grow exponentially with N (note that ‖σ‖∞ ≤ 1).

4 Multi-partite work extraction
As emphasized before, even though the state of the cata-
lyst remains unchanged in a catalytic process, in general
it builds up correlations with the system. We now show
that the correlations established between catalyst and sys-
tem allow for processes in which many agents re-use the
same catalyst to obtain highly inter-correlated work distri-
butions.

Consider n agents, each with identical systems Si, i ∈
{1, . . . , n} that are initialized in the Gibbs state ω(β,H).
For a given β-catalytic channel C with state σ on the cat-
alyst, consider the following protocol: Agent 1 runs the
standard process from Fig. 1 using the catalyst and hence
implementing C between the two measurements. After the
procedure, she then passes C on to agent 2 who repeats

this process, and so on, until the last agent has received C
and performed the process. From the catalytic nature of C,
is is clear that, for each agent, the same marginal distribu-
tion of work is obtained. However, the joint work distribu-
tion for all agents will be correlated, due to individual cor-
relations between each Si with C. We now show that the
agents can use these correlations to systematically achieve
certain global work distributions. Using the same notation
as before, let p(w1, . . . , wn) denote the global distribution
over the extracted work per particle, assuming that all Si
are copies of the same N -particle system. We have the
following, proven in Appendix E.

Proposition 3 (Multiple agents). Let each {Si}ni=1
be a sequence of N-particle systems that satisfy the
conditions of Proposition 1. Then, for sufficiently
large N , there exists an ε > 0, such that

p(ε,−ε, ε,−ε, . . . ) = λ,

p(−ε, ε,−ε, ε, . . . ) = 1− λ, (7)

where λ can be brought arbitrarily close to 1/2 using
a sequence of β-catalytic channels on Si and C.

While (7) is clearly consistent with (1), this proposi-
tion shows that the agents can achieve joint work distri-
butions that are strongly correlated and in which subsets
of agents, in the above proposition one half of them, can
violate JE arbitrarily, at the cost of the other half. Such
distributions of work could, for example, be of interest in
situations where the target is to maximize the probability
that a subset of players extracts a positive amount work, at
the ready cost of the others, for instance in order to surpass
an activation energy. Importantly, the size of the catalyst
needed to realize the distribution (7) is fixed, i.e., it does
not scale with the number of agents n.

Proposition 3 shows the existence of catalytic processes
that produce very interesting global work distributions.
This naturally raises the question what other global dis-
tributions can be obtained in a setting without making the
size of the catalyst depend on the number of rounds. Our
results, however, already imply that not every distribution
compatible with the Second Law can be obtained in such
a way. For instance, Proposition 2 implies that the distri-
bution

p(ε, ε, ε, ε, . . . ) = p(−ε,−ε,−ε,−ε, . . . ) ≈ 1/2

cannot be obtained via β-catalytic channels, since other-
wise there would exist a catalyst of fixed size that would
allow, for any n, the total work W = nε to be extracted
with probability approximately 1/2, in violation of Propo-
sition 2.

5 Summary and future work.
In this work we have studied work extraction protocols
from states at thermal equilibrium. We significantly ex-
pand the common setting of fluctuation theorems under
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cyclic, reversible processes by introducing a catalyst—an
additional system which, on average, remains unchanged
after the protocol and can thus be re-used. This extension
enables for distributions of work extraction that are not
attainable without a catalyst. More precisely, one can by-
pass the stringent conditions imposed by the JE, achieving
positive work per particle with high probability, even for
macroscopic systems. Furthermore, it allows for interest-
ing, correlated work distributions when many agents use
the same catalyst.

Our constructions illustrate in a striking way that the ab-
sence of correlations, sometimes referred to as ‘stochastic
independence’, can also be a powerful thermodynamic re-
source [24]. This complements findings where the initial
presence of correlations between a system and an ancilla
are used to bypass the standard constraints imposed by
fluctuation theorems [25, 26]. We discuss the connection
of our work to these findings in more detail in Appendix
H. We believe that the further study of work distributions
that can be obtained by collaborating agents by means of
β-catalytic channels will yield both foundational and prac-
tical insights.

We further believe that it is an interesting open prob-
lem to study how the size of the catalyst has to scale if
one wishes to maximize the probability to extract a certain
amount of work. For example, in the context of a many-
body system one might be content with extracting only an
amount of work of the order of

√
N if in exchange for

that one can either increase the probability for it to happen
significantly or can reduce the size of the catalyst consid-
erably (and hence the complexity of the unitary required
to be implemented).

It would be interesting to understand the relation be-
tween our results and a more generalized type of JE in
the presence of information exchange [27], for example
in a Maxwell demon scenario. In particular, in Ref. [28]
it was also demonstrated that by using feedback control,
one may also violate JE while respecting the Av-SL. More
generally, our results also raise the question whether other
phenomena –usually described as forbidden by the second
law, or as occurring with vanishing probability– can be
made to occur with high probability using catalysts. For
example, is it possible to reverse the mixing process of
two gases or induce heat flow from a cold to a hot system
with finite probability in macroscopic systems? The tech-
niques developed in this work provide a promising ansatz
for the study of this and similar questions.
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A NMW for Gibbs preserving maps
Thermalizing quantum maps, in particular those studied
in the resource theoretic framework, are maps that model
the evolution of a non-equilibrium quantum state as it ex-
changes heat with its surrounding thermal bath. Several
variants of these maps exist [29, 6, 7, 30, 31], but a com-
mon feature is that they are Gibbs preserving (GP), namely
that the Gibbs canonical state is a fixed point of such maps.
Thermalizing maps are often viewed as “free operations”
in a resource theoretic context, since they allow only for
heat (instead of work) exchange with an environment in
thermal equilibrium. In this section, we demonstrate two
things: First, that even such thermodynamically “cheap”
channels may violate the JE very strongly, due to non-
unitality. Secondly, that they cannot be used to violate the
NMW condition. A diagrammatic overview over the vari-
ous properties of channels with respect to JE and NMW is
given in Fig. 2.

We now turn to the first point. Given a d-dimensional
system S with Hamiltonian H , the violation of JE can be
calculated for the thermalizing channel as

〈e−βW 〉 = d
∑

j

e−βEj

ZH
〈Ej | C [I/d] |Ej 〉 ,

= d
∑

j

e−βEj

ZH
〈Ej |ωβ(H) |Ej 〉 = d

deff
,

where deff := 1/Tr(ωβ(H)2) is known as the effective di-
mension [32] of the thermal state. One sees from the above
that JE is always violated for β > 0, since deff ≤ d, with
equality only when ωβ(H) = I/d is maximally mixed.
For N non-interacting i.i.d. systems, both d and Tr(ρ2)
scale exponentially with N , leading to an exponential vio-
lation in N for JE.

Turning to the second point, one may wonder how this
notion of thermodynamically free channels can be recon-
ciled with the fact that JE is violated. However, note that
in the standard JE setting, the work variable is traditionally
defined in terms of a fluctuating (measured) energy dif-
ference in the system, and does not inherently distinguish
between work and heat contributions – unlike resource-
theoretic settings where heat flow is allowed for free, but
measurements incur a thermodynamic cost. Here, we con-
sider an operationally more meaningful characterization
(NMW as defined in Def. 1 of the main text), and show
that NMW cannot be violated using channels that preserve
the Gibbs state in generic many-body systems. The only
assumptions that we make are that i) the system has uni-
formly bounded, local interactions on a D-dimensional
regular lattice and ii) a finite correlation length, i.e., the
temperature is non-critical.

Lemma 3 (Non-violation of NMW for Gibbs-pre-
serving maps). No channel E that preserves the Gibbs
state can violate NMW for locally interacting many-
body systems at a non-critical temperature.
Proof. We aim at showing that for any a > 0,
p(w ≥ a) = p(W ≥ aN) → 0 as N → ∞. The

Accepted in Quantum 2020-02-06, click title to verify. Published under CC-BY 4.0. 7

67



basic idea behind our proof is to make use of typ-
icality. Let e(N) denote the energy density of the
N -particle system and denote by Π(N)

δ the projector
onto energy eigenstates with energies in the interval
TN,δ := [(e(N) − δ)N, (e(N) + δ)N ]. Finally, denote
by p(·) the initial probability distribution of energy of
the thermal state τ (N)

S , e.g., the probability that the
initial energy measurement yields Ei ∈ TN,δ is given
by

p(TN,δ) := Tr
(
τ

(N)
S Π(N)

δ

)
.

A theorem by Anshu [33] shows that under the
given conditions most weight of the thermal state τ (N)

S

of the N -particle system is contained in a typical sub-
space. More precisely, for a many-body system de-
scribed by a D-dimensional lattice, there exist con-
stants C,K > 0 such that for any δ > 0 we have

p(TN,δ) ≥ 1− Ce−
(δ2N)

1
1+D

K . (8)

This is equivalent to saying that

p(T cN,δ) ≤ Ce−
(δ2N)

1
1+D

K ,

where T cN,δ = R \ TN,δ. In particular, in the case of
D = 0, i.e., N non-interacting systems, we find the
usual scaling obtained from Hoeffding’s inequality. In
the following, for simplicity of notation, we write σ1 =
τ

(N)
S and consider the normalized state σ2 obtained by

restricting τ (N)
S to the subspace Π(N)

δ as

σ2 := Π(N)
δ τ

(N)
S

p(TN,δ)
.

Let us further write E(σ1(2)) = σ′1(2), where σ′1 = σ1
by assumption. Since the trace distance d(ρ1, ρ2) :=
1
2Tr(|ρ1 − ρ2|) fulfills the data processing inequality,

d(σ1, σ
′
2) = d(σ′1, σ′2) ≤ d(σ1, σ2) = p(T cN,δ).

Using the operational meaning of trace distance
d(ρ1, ρ2) = max

0≤M≤I
|Tr(M(ρ1 − ρ2))| [34], this means

that

|Tr(Π(N)
δ σ1)− Tr(Π(N)

δ σ′2)| ≤ p(T cN,δ) (9)

and, in turn,

Tr(Π(N)
δ σ′2) ≥ p(TN,δ)− p(T cN,δ) = 1− 2p(T cN,δ).(10)

To see this, note that (10) follows from (9) directly if
Tr(Π(N)

δ σ′2) ≤ Tr(Π(N)
δ σ1), and as

Tr(Π(N)
δ σ′2) > Tr(Π(N)

δ σ1) ≥ Tr(Π(N)
δ σ1)− p(T cN,δ)

otherwise. This means that, conditioned on the fact
that the initial state was within the typical energy

Jarzynski 

Unital channels

Average Second Law

- catalytic channels

No Macroscopic

- Gibbs preserving
maps

Equality

Work

Figure 2: A summary of different criteria (Av-SL, NMW and
JE) mentioned in the main text, with examples of maps ac-
cording to this characterization.

window (Ei ∈ TN,δ), the final energy Ef is also within
this energy window except with probability 2p(T cN,δ),
which is (sub-)exponentially small in N . We will use
this later.

We are now ready to evaluate the probability of
obtaining macroscopic work.

p(w ≥ a) = p(TN,δ) · p(w ≥ a|Ei ∈ TN,δ)
+ p(T cN,δ) · p(w ≥ a|Ei ∈ T cN,δ)

≤ p(w ≥ a|Ei ∈ TN,δ) + p(T cN,δ).

We can estimate the first term as

p(w ≥ a|Ei ∈ TN,δ) ≤ p(Ef ≤ (e(N) + δ − a)N |Ei ∈ TN,δ).

We now choose δ = a/2 and get

p(w ≥ a|Ei ∈ TN,δ) ≤ p(Ef ≤ (e(N) − a/2)N |Ei ∈ TN,δ)
≤ Tr

[
σ′2
(
I−Π(N)

a/2

)]

≤ 2p(T cN,a/2),

where we have used (10) in the last step. Altogether,
we thus find

p(w ≥ a) ≤ 3p(T cN,a/2),

which decays to zero (sub-)exponentially by (8). This
concludes the proof.

As a side-remark, we note that if the Gibbs-preserving
channels that appear here are interpreted as modelling the
interaction with a heat bath, then the above result can be
interpreted as a ”no macroscopic heat” statement: If a
macroscopic system is brought in thermal contact with a
heat bath at the same temperature, then the probability of
an exchange of a macroscopic amount of heat is arbitrarily
small in the system size.
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B Microscopic toy example
In this section, we show that already for small systems and
using catalysts, the JE can be violated. We do so by con-
structing non-unital catalytic channels. Indeed, such maps
can be realized “quasi-classically”, in the sense that in the
construction it is sufficient to consider the energy spectra
of the involved states and that all unitaries are simple per-
mutations of those values. We consider a 3-level system
with energy levels E1 = 0, E2 = 0, E3 = ∆ in the ther-
mal state

w =
(

1
Z
,

1
Z
,
Z − 2
Z

)
,

where Z = 2 + exp(−β∆) is the partition function and
we express the state as a probability vector, such that wi
denotes the ith eigenvalue of the thermal state. For later,
we observe that 2 ≤ Z ≤ 3.

We are going to construct a simple non-unital catalytic
channel that involves a 2-dimensional catalyst. Let ei and
fj denote the basis states for the vector spaces VS and VC
describing the system and catalyst respectively. We define
the permutation π acting on the joint vector space VS⊗VC
as that permutation which exchanges the respective levels
e1 ⊗ f1 ⇔ e2 ⊗ f2 and e2 ⊗ f1 ⇔ e3 ⊗ f2 and leaves
all other entries unchanged (see Fig. 3). For the catalyst to
remain unchanged for this permutation and initial system
state, it is easy to check that the catalyst has to be given by
the vector

q =
(
Z − 1
Z + 1 ,

2
Z + 1

)
.

Now, the catalytic channel C induced by this catalyst and
permutation on the system has the general effect

C(p1, p2, p3) = (q1p2 + q1p3, q1p1 + q2p3, q2p1 + q2p2),

so that, in particular, the maximally mixed input state is
mapped to

C(I/3) = 2
3

(
Z − 1
Z + 1 ,

1
2 ,

2
Z + 1

)
,

which is different from the maximally mixed vector for
any ∆ > 0.

What is more, we can also directly calculate the work-
distribution p(w), yielding

p(0) = 1
Z(Z + 1) [Z + 3 + 2(Z − 2)(Z − 1)] ,

p(∆) = 2(Z − 2)
Z(Z + 1) ,

p(−∆) = Z − 1
Z(Z + 1) .

We now want to compute 〈eβW 〉. To do so, it is useful to
note that e−β∆ = Z − 2 and hence eβ∆ = 1/(Z − 2). We
find

〈eβW 〉 = Z + 5 + 2(Z − 2)(Z − 1)
Z(Z + 1) ≥ 1.

q2p3 q1p3 p3
q2p2 q1p2 p2
q2p1 q1p1 p1

q2 q1

→

q1p2 q1p3 q1p2 + q1p3
q1p1 q2p3 q1p1 + q2p3
q2p1 q2p2 q2p1 + q2p2

q2 q1

Figure 3: We represent the joint state of system and catalyst
by means of a table. Left: At the beginning the joint system
starts out in a product state, so that the entry (i, j) is given
by the product of the ith eigenvalue of the system and jth
eigenvalue of the catalyst. Right: After applying the permu-
tation highlighted in red, the marginal state of the system,
given by the rows sums, has changed, while the marginal
state of the catalyst (given by the column sums), has to re-
main invariant. For a two-dimensional catalyst, specifying
the permutation and initial system state fixes the catalyst
state.

In fact, this quantity is larger than 1 whenever Z < 3, cor-
responding to ∆ > 0. Its maximum is given as 7/6 for
Z = 3, which corresponds to ∆ → ∞. Thus, the Jarzyn-
ski inequality is violated. At the same time the second law
is fulfilled as expected, since p(−∆) ≥ p(∆).

C Work extraction for initial micro-
canonical ensembles
In this appendix, we show that a statement similar to
Proposition 1 of the main text holds in the slightly different
setting of a micro-canonical initial state. This serves two
purposes: i) in statistical mechanics, one often assumes
that closed, macroscopic systems are described by micro-
canonical ensembles due to the postulate of equal a priori
probabilities of microstates corresponding to a macrostate.
ii) The proof for the microcanonical initial state is con-
ceptually simpler, but also provides the blueprint for the
slightly more involved proof in the case of a canonical
state, which is provided in Sec. D.

In the following, we denote by I ⊂ R an energy win-
dow, by g(I) the number of energy eigenstates in this win-
dow,

g(I) =
∑

Ei∈I
1,

and the corresponding micro-canonical state by

ΩS(I) = 1
g(I)

∑

Ei∈I
|Ei 〉〈Ei | .

A micro-canonical energy window around energy density
e is any energy window I(e) of the form [e−O(

√
N), e],

where N is the number of particles.
The only difference to the standard setting described in

the main text (as depicted in Fig. 1) is that the initial state
differs from the thermal state ωβ(H). Instead, it is given
by the micro-canonical ensemble. In other words, given a
micro-canonical energy window I , we consider channels
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C of the form

C(·) = TrC(U(· ⊗ σC)U†)
s.t. TrS(U(ΩS(I)⊗ σC)U†) = σC.

We carry over notation from the main text, so that p(w ≥
ε) denotes the probability of measuring the system’s en-
ergy per particle decrease by at least an amount ε, and so
on. Furthermore, we take the catalyst Hamiltonian in our
construction to be HC = I.

We will now first show that the NMW principle also
holds for micro-canonical states of generic many-body
systems. After that we will show that it can be circum-
vented using catalysts. To show the validity of the NMW
principle we will use the same reasoning as presented in
Ref. [35], where the NMW principle has been studied be-
fore. Thus, the following proof is essentially a reproduc-
tion for the convenience of the reader. We consider a se-
quence of many-body Hamiltonians H(N)

S on N particles
with the generic property of having an exponential density
of states:

g((−∞, E]) :=
∑

Ei≤E
1 = eNµ(E/N)−o(N), (11)

where µ is a strictly monotonic and differentiable function
independent ofN and o(N) denotes terms small compared
to N , limN→∞ o(N)/N = 0.

Proposition 4 (NMW for micro-canonical states).
Consider a sequence of N -particle Hamiltonians ful-
filling (11) and a sequence of micro-canonical energy-
windows I(N) = [eN, eN + δ

√
N ] around energy den-

sity e (with δ > 0 fixed). Then for any unital channel
acting on the N -particle system, the probability of ex-
tracting work w per particle is bounded as

p(w > ε) ≤ Ce−µ
′(e)εN+o(N),

where C > 0 is a constant and µ′ denotes the deriva-
tive of µ.

Proof. Let I≤ := (−∞, (e − ε)N + δ
√
N ], denote by

PS(I≤) the projector onto energy-eigenstates with en-
ergies below (e−ε)N+δ

√
N and let U denote a unital

channel. In the following, we write I instead of I(N)

to simplify notation. Then

p(w > ε) ≤ Tr (PS(I≤)U [ΩS(I)])

=
∑

Ei∈I

1
g(I)Tr (PS(I≤)U [ |Ei 〉〈Ei |])

≤ 1
g(I)Tr (PS(I≤)U [I]) = g(I≤)

g(I) .

Writing ẽ := e+ δN−1/2, we have

g(I) = eNµ(ẽ)−o(N) − eNµ(e)−o(N)

= eNµ(ẽ)−o(N)
(

1− e−N(µ(ẽ)−µ(e))+o(N)
)

≈ eNµ(ẽ)−o(N),

where in the last estimation we use that µ is strictly
monotonic. In particular, we can estimate the expo-
nential in the parenthesis as

e−N(µ(ẽ)−µ(e))−o(N) = O
(

e−δµ
′(e)N1/2

)
,

where µ′ denotes the derivative of µ. Using g(I≤) =
eN(µ(ẽ−ε)−o(N) we then find

p(w > ε) ≤ e−N(µ(ẽ)−µ(ẽ−ε))+o(N)

1−O(e−δµ′(e)
√
N )

≤ Ce−µ
′(e)εN .

We have here used that µ is differentiable to prove this
result. Similar results would follow for weaker notions
of regularity of µ, such as Lipschitz-continuity. Having
proven the NMW principle for generic many-body sys-
tems, let us now show how to circumvent it using catalysts.

Proposition 5 (Overcoming NMW using catalysts).
Consider a Hamiltonian HS and a microcanonical
state ΩS(I), with I a micro-canonical energy window
around energy density e. Suppose there exists an en-
ergy window I+ with g(I+) = g(I)2. Then, for any
0 ≤ e− < e, there exists a catalytic channel such that

p(w ≥ e− e−) = 1
2 .

Before giving the proof of the proposition, let us em-
phasize again that the required conditions on the Hamilto-
nian are very weak. In particular, the conditions are (ap-
proximately) fulfilled if the density of states is well ap-
proximated by an exponential in the range of energies that
we are working in, a condition that is typically fulfilled in
many-body systems and, as we have seen above, leads to
an NMW principle if we do not allow for catalysts.

Proof. A sketch of the proof is given in Fig. 4. The
proof is constructive in the sense that we provide an
explicit catalyst and unitary. We first introduce some
useful notation. Define g := g(I), g+ := g(I+) = g2

and let PS(I) and PS(I+) be the projectors onto the
corresponding energy subspaces. Let |E− 〉 be any
eigenstate of the Hamiltonian such that 0 ≤ E−/N =
e− ≤ e. Following this notation, the initial state of
the system is

ΩS(I) = 1
g
PS(I).

The aim is to bring the system to a state that
is an equal mixture of |E− 〉〈E− | and Ω(I+). To
do this, we employ a catalyst of dimension dC =
g + 1. Let { |i 〉C}dC

i=1 be an arbitrary orthonormal
basis on the Hilbert-space of the catalyst and let
PC =

∑g
i=1 |i 〉〈i |. The initial state on the catalyst

is given by

σ = 1
2gPC + 1

2 |dC 〉〈dC |C .
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1<latexit sha1_base64="fDTm8r8LnEYT6kEHOGU7amWFnSA=">AAACIXicdVDLSsNAFJ3UV62vVpdugkVwVZIq6LLoxmUL9gFtKJPpTTt0JgkzN0IJ/QK3+gV+jTtxJ/6M0zYLm+KBgcM593LPHD8WXKPjfFuFre2d3b3ifung8Oj4pFw57egoUQzaLBKR6vlUg+AhtJGjgF6sgEpfQNefPiz87jMozaPwCWcxeJKOQx5wRtFILXdYrjo1Zwl7k7gZqZIMzWHFKg1GEUskhMgE1brvOjF6KVXImYB5aZBoiCmb0jH0DQ2pBO2ly6Rz+9IoIzuIlHkh2kv170ZKpdYz6ZtJSXGi895C/M/DiVy7nvqKTgFzmi9zETG481IexglCyFYJg0TYGNmLvuwRV8BQzAyhTHHzSZtNqKIMTaumPTff1Sbp1Gvuda3euqk27rMei+ScXJAr4pJb0iCPpEnahBEgL+SVvFnv1of1aX2tRgtWtnNG1mD9/AJ+JqOf</latexit> 2<latexit sha1_base64="fjB1D3QYOcTuBeqBTvs0hzep8J0=">AAACIXicdVDLSsNAFJ3UV62vVpdugkVwVZIq6LLoxmUL9gFtKJPpTTt0JgkzN0IJ/QK3+gV+jTtxJ/6M0zYLm+KBgcM593LPHD8WXKPjfFuFre2d3b3ifung8Oj4pFw57egoUQzaLBKR6vlUg+AhtJGjgF6sgEpfQNefPiz87jMozaPwCWcxeJKOQx5wRtFIrfqwXHVqzhL2JnEzUiUZmsOKVRqMIpZICJEJqnXfdWL0UqqQMwHz0iDREFM2pWPoGxpSCdpLl0nn9qVRRnYQKfNCtJfq342USq1n0jeTkuJE572F+J+HE7l2PfUVnQLmNF/mImJw56U8jBOEkK0SBomwMbIXfdkjroChmBlCmeLmkzabUEUZmlZNe26+q03Sqdfc61q9dVNt3Gc9Fsk5uSBXxCW3pEEeSZO0CSNAXsgrebPerQ/r0/pajRasbOeMrMH6+QV/46Og</latexit>

dC
<latexit sha1_base64="+32QD3lz97zfCzqRq36OnCdsyNQ=">AAACKXicdVDLSgMxFE181vpqdekmWARXZaYKuix247KCfUg7lEwmbUOTmSG5I5ShX+FWv8Cvcadu/RHTdhZ2igcCh3Pu5Z4cP5bCgON84Y3Nre2d3cJecf/g8Oi4VD5pmyjRjLdYJCPd9anhUoS8BQIk78aaU+VL3vEnjbnfeebaiCh8hGnMPUVHoRgKRsFKT8Eg7WtFGrNBqeJUnQXIOnEzUkEZmoMyLvaDiCWKh8AkNabnOjF4KdUgmOSzYj8xPKZsQke8Z2lIFTdeukg8IxdWCcgw0vaFQBbq342UKmOmyreTisLY5L25+J8HY7VyPfU1nXDIab7KRYThrZeKME6Ah2yZcJhIAhGZ90YCoTkDObWEMi3sJwkbU00Z2HZte26+q3XSrlXdq2rt4bpSv8t6LKAzdI4ukYtuUB3doyZqIYYUekGv6A2/4w/8ib+Xoxs42zlFK8A/vzIwpxc=</latexit>

. . .
<latexit sha1_base64="srWvdR9XSJ2aVkYFw3yklnMSvMI=">AAACJnicdVDLSsNAFJ3UV62vVpdugkVwVZIq6LLoxmUF+4A2lMlk0oydyYSZG6GE/oNb/QK/xp2IOz/FaZuFTfHAwOGce7lnjp9wpsFxvq3SxubW9k55t7K3f3B4VK0dd7VMFaEdIrlUfR9ryllMO8CA036iKBY+pz1/cjf3e89UaSbjR5gm1BN4HLOQEQxG6g6jQIIeVetOw1nAXiduTuooR3tUsyrDQJJU0BgIx1oPXCcBL8MKGOF0VhmmmiaYTPCYDgyNsaDayxZxZ/a5UQI7lMq8GOyF+ncjw0LrqfDNpMAQ6aI3F//zIBIr1zNf4QmFguaLQkQIb7yMxUkKNCbLhGHKbZD2vDQ7YIoS4FNDMFHMfNImEVaYgKnWtOcWu1on3WbDvWw0H67qrdu8xzI6RWfoArnoGrXQPWqjDiLoCb2gV/RmvVsf1qf1tRwtWfnOCVqB9fMLPdmmHg==</latexit> g

<latexit sha1_base64="Lynjp4Dl2Ct8hZLyxaGVWranLPA=">AAACIXicdVDLSsNAFJ3UV62vVpdugkVwVZIq6LLoxmUL9gFtKJPpTTt0JgkzN0IJ/QK3+gV+jTtxJ/6M0zYLm+KBgcM593LPHD8WXKPjfFuFre2d3b3ifung8Oj4pFw57egoUQzaLBKR6vlUg+AhtJGjgF6sgEpfQNefPiz87jMozaPwCWcxeJKOQx5wRtFIrfGwXHVqzhL2JnEzUiUZmsOKVRqMIpZICJEJqnXfdWL0UqqQMwHz0iDREFM2pWPoGxpSCdpLl0nn9qVRRnYQKfNCtJfq342USq1n0jeTkuJE572F+J+HE7l2PfUVnQLmNF/mImJw56U8jBOEkK0SBomwMbIXfdkjroChmBlCmeLmkzabUEUZmlZNe26+q03Sqdfc61q9dVNt3Gc9Fsk5uSBXxCW3pEEeSZO0CSNAXsgrebPerQ/r0/pajRasbOeMrMH6+QXcBKPV</latexit>

{
<latexit sha1_base64="ST4JQ9L2NIrlBVPFxw+3sARFZxM=">AAACInicdVDLSgMxFE3qq9ZXq0s3wSK4KjMq6LLoxmUV+4B2KJk004YmmSG5I5Shf+BWv8CvcSeuBD/GtJ2FrXggcDjnXu7JCRMpLHjeFy6srW9sbhW3Szu7e/sH5cphy8apYbzJYhmbTkgtl0LzJgiQvJMYTlUoeTsc38789hM3VsT6ESYJDxQdahEJRsFJD72sX656NW8O8pf4OamiHI1+BZd6g5ilimtgklrb9b0EgowaEEzyaamXWp5QNqZD3nVUU8VtkM2jTsmpUwYkio17Gshc/b2RUWXtRIVuUlEY2VVvJv7nwUgtXc9CQ8ccVrRQrUSE6DrIhE5S4JotEkapJBCTWWFkIAxnICeOUGaE+yRhI2ooA1era89f7eovaZ3X/Iuaf39Zrd/kPRbRMTpBZ8hHV6iO7lADNRFDEXpGL+gVv+F3/IE/F6MFnO8coSXg7x/D6qRO</latexit>

{
<latexit sha1_base64="ST4JQ9L2NIrlBVPFxw+3sARFZxM=">AAACInicdVDLSgMxFE3qq9ZXq0s3wSK4KjMq6LLoxmUV+4B2KJk004YmmSG5I5Shf+BWv8CvcSeuBD/GtJ2FrXggcDjnXu7JCRMpLHjeFy6srW9sbhW3Szu7e/sH5cphy8apYbzJYhmbTkgtl0LzJgiQvJMYTlUoeTsc38789hM3VsT6ESYJDxQdahEJRsFJD72sX656NW8O8pf4OamiHI1+BZd6g5ilimtgklrb9b0EgowaEEzyaamXWp5QNqZD3nVUU8VtkM2jTsmpUwYkio17Gshc/b2RUWXtRIVuUlEY2VVvJv7nwUgtXc9CQ8ccVrRQrUSE6DrIhE5S4JotEkapJBCTWWFkIAxnICeOUGaE+yRhI2ooA1era89f7eovaZ3X/Iuaf39Zrd/kPRbRMTpBZ8hHV6iO7lADNRFDEXpGL+gVv+F3/IE/F6MFnO8coSXg7x/D6qRO</latexit>

g2
<latexit sha1_base64="/6zS9Du6qkET+SS1B9I01fbxamU=">AAACI3icdVDLTgIxFG3xhfgCXbqZSExckRk00SXRjUuMgiQwkk7pQEPbmbR3TMiET3CrX+DXuDNuXPgvFpiFDPEkTU7OuTf39ASx4AZc9xsX1tY3NreK26Wd3b39g3LlsG2iRFPWopGIdCcghgmuWAs4CNaJNSMyEOwxGN/M/Mdnpg2P1ANMYuZLMlQ85JSAle6HT/V+uerW3DmcVeJlpIoyNPsVXOoNIppIpoAKYkzXc2PwU6KBU8GmpV5iWEzomAxZ11JFJDN+Os86dU6tMnDCSNunwJmrfzdSIo2ZyMBOSgIjk/dm4n8ejOTS9TTQZMwgpwUyFxHCKz/lKk6AKbpIGCbCgciZNeYMuGYUxMQSQjW3n3ToiGhCwfZq2/PyXa2Sdr3mndfqdxfVxnXWYxEdoxN0hjx0iRroFjVRC1E0RC/oFb3hd/yBP/HXYrSAs50jtAT88wsh2qR5</latexit>

g
<latexit sha1_base64="Lynjp4Dl2Ct8hZLyxaGVWranLPA=">AAACIXicdVDLSsNAFJ3UV62vVpdugkVwVZIq6LLoxmUL9gFtKJPpTTt0JgkzN0IJ/QK3+gV+jTtxJ/6M0zYLm+KBgcM593LPHD8WXKPjfFuFre2d3b3ifung8Oj4pFw57egoUQzaLBKR6vlUg+AhtJGjgF6sgEpfQNefPiz87jMozaPwCWcxeJKOQx5wRtFIrfGwXHVqzhL2JnEzUiUZmsOKVRqMIpZICJEJqnXfdWL0UqqQMwHz0iDREFM2pWPoGxpSCdpLl0nn9qVRRnYQKfNCtJfq342USq1n0jeTkuJE572F+J+HE7l2PfUVnQLmNF/mImJw56U8jBOEkK0SBomwMbIXfdkjroChmBlCmeLmkzabUEUZmlZNe26+q03Sqdfc61q9dVNt3Gc9Fsk5uSBXxCW3pEEeSZO0CSNAXsgrebPerQ/r0/pajRasbOeMrMH6+QXcBKPV</latexit>I

<latexit sha1_base64="MVQPNuWCMz7MP3w9myIXiXZDhfo=">AAACIXicdVDLSsNAFJ3UV62vVpdugkVwVRIVdFl0o7sW7APaUCbTm3boTBJmboQS+gVu9Qv8GnfiTvwZp20WNsUDA4dz7uWeOX4suEbH+bYKG5tb2zvF3dLe/sHhUbly3NZRohi0WCQi1fWpBsFDaCFHAd1YAZW+gI4/uZ/7nWdQmkfhE05j8CQdhTzgjKKRmo+DctWpOQvY68TNSJVkaAwqVqk/jFgiIUQmqNY914nRS6lCzgTMSv1EQ0zZhI6gZ2hIJWgvXSSd2edGGdpBpMwL0V6ofzdSKrWeSt9MSopjnffm4n8ejuXK9dRXdAKY03yZi4jBrZfyME4QQrZMGCTCxsie92UPuQKGYmoIZYqbT9psTBVlaFo17bn5rtZJ+7LmXtXc5nW1fpf1WCSn5IxcEJfckDp5IA3SIowAeSGv5M16tz6sT+trOVqwsp0TsgLr5xenjKO2</latexit>

I+
<latexit sha1_base64="uyFWW+EXuk515i3oE+kHt8GUC6s=">AAACI3icdVDLSgMxFE181vpqdelmsAiCUGZU0GXRje4q2ge0Q8mkmTY0yQzJHaEM/QS3+gV+jTtx48J/MW1nYad4IHA4517uyQliwQ247jdeWV1b39gsbBW3d3b39kvlg6aJEk1Zg0Yi0u2AGCa4Yg3gIFg71ozIQLBWMLqd+q1npg2P1BOMY+ZLMlA85JSAlR7ve2e9UsWtujM4y8TLSAVlqPfKuNjtRzSRTAEVxJiO58bgp0QDp4JNit3EsJjQERmwjqWKSGb8dJZ14pxYpe+EkbZPgTNT/26kRBozloGdlASGJu9Nxf88GMqF62mgyYhBTgtkLiKE137KVZwAU3SeMEyEA5Ezbczpc80oiLElhGpuP+nQIdGEgu3Vtuflu1omzfOqd1H1Hi4rtZusxwI6QsfoFHnoCtXQHaqjBqJogF7QK3rD7/gDf+Kv+egKznYO0QLwzy/iqqRU</latexit>

|E�i
<latexit sha1_base64="wpTh4Cmk1bu9AVajfNOar7bvrtM=">AAACLHicdVDLSgMxFM3Ud321unQTLIIby0wVdFkUwaWCfUBbSia9bUOTzJDcEcrob7jVL/Br3Ii49TtM6yxsiwcCh3Pu5Z6cMJbCou9/eLml5ZXVtfWN/ObW9s5uobhXt1FiONR4JCPTDJkFKTTUUKCEZmyAqVBCIxxdTfzGAxgrIn2P4xg6ig206AvO0Entx+vuSdswPZBAu4WSX/anoIskyEiJZLjtFr18uxfxRIFGLpm1rcCPsZMyg4JLeMq3Ewsx4yM2gJajmimwnXQa+okeOaVH+5FxTyOdqn83UqasHavQTSqGQzvvTcT/PByqmetpaNgIcE4L1VxE7F90UqHjBEHz34T9RFKM6KQ62hMGOMqxI4wb4T5J+ZAZxtEV7NoL5rtaJPVKOTgtV+7OStXLrMd1ckAOyTEJyDmpkhtyS2qEk5g8kxfy6r15796n9/U7mvOynX0yA+/7B0DrqB4=</latexit>

Final
<latexit sha1_base64="8v5aZ5CVJRrQBkcZnwKdqSuEItM=">AAACLHicdVDLSgMxFM3UV62vVpduBovgqsyooMuiIC4r2Ad0Ssmkt21okhmSO2IZ+htu9Qv8Gjcibv0O03YWtsUDgcM593JPThgLbtDzPp3c2vrG5lZ+u7Czu7d/UCwdNkyUaAZ1FolIt0JqQHAFdeQooBVroDIU0AxHt1O/+QTa8Eg94jiGjqQDxfucUbRSECA8Y3rHFRWTbrHsVbwZ3FXiZ6RMMtS6JacQ9CKWSFDIBDWm7XsxdlKqkTMBk0KQGIgpG9EBtC1VVILppLPQE/fUKj23H2n7FLoz9e9GSqUxYxnaSUlxaJa9qfifh0O5cD0NNR0BLmmhXIqI/etOylWcICg2T9hPhIuRO63O7XENDMXYEso0t5902ZBqytAWbNvzl7taJY3zin9R8R8uy9WbrMc8OSYn5Iz45IpUyT2pkTphJCYv5JW8Oe/Oh/PlfM9Hc062c0QW4Pz8ApNyqN4=</latexit>

...
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

...
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

E<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

...
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

...
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

...
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

...
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

...
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

...
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

. . .<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>TL
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> TR

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

ML
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

MR
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

. . .
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

. . .
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>BL

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

BR
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Initial
<latexit sha1_base64="HisWNNkmNfgOzc5cWmiqpjUX+UI=">AAACLnicdZDLSgMxFIYzXmu9tbp0M1gEV2VGBV0W3eiugr1AW0smPdOGJpkhOSOWoe/hVp/ApxFciFsfw/SysFP8IfDz/+eQwxfEghv0vE9nZXVtfWMzt5Xf3tnd2y8UD+omSjSDGotEpJsBNSC4ghpyFNCMNVAZCGgEw5tJ33gCbXikHnAUQ0fSvuIhZxRt9NhGeMb0TnHkVIy7hZJX9qZyl40/NyUyV7VbdPLtXsQSCQqZoMa0fC/GTko1ciZgnG8nBmLKhrQPLWsVlWA66fTssXtik54bRto+he40/buRUmnMSAZ2UlIcmGw3Cf/rcCAXfk8DTYeAmSyQmRMxvOqkXMUJgmKzC8NEuBi5E3huj2tgKEbWUKYtNOayAdWUoUVs6flZVsumflb2z8v+/UWpcj3nmCNH5JicEp9ckgq5JVVSI4xo8kJeyZvz7nw4X873bHTFme8ckgU5P79t76nS</latexit>

1<latexit sha1_base64="fDTm8r8LnEYT6kEHOGU7amWFnSA=">AAACIXicdVDLSsNAFJ3UV62vVpdugkVwVZIq6LLoxmUL9gFtKJPpTTt0JgkzN0IJ/QK3+gV+jTtxJ/6M0zYLm+KBgcM593LPHD8WXKPjfFuFre2d3b3ifung8Oj4pFw57egoUQzaLBKR6vlUg+AhtJGjgF6sgEpfQNefPiz87jMozaPwCWcxeJKOQx5wRtFILXdYrjo1Zwl7k7gZqZIMzWHFKg1GEUskhMgE1brvOjF6KVXImYB5aZBoiCmb0jH0DQ2pBO2ly6Rz+9IoIzuIlHkh2kv170ZKpdYz6ZtJSXGi895C/M/DiVy7nvqKTgFzmi9zETG481IexglCyFYJg0TYGNmLvuwRV8BQzAyhTHHzSZtNqKIMTaumPTff1Sbp1Gvuda3euqk27rMei+ScXJAr4pJb0iCPpEnahBEgL+SVvFnv1of1aX2tRgtWtnNG1mD9/AJ+JqOf</latexit> 2<latexit sha1_base64="fjB1D3QYOcTuBeqBTvs0hzep8J0=">AAACIXicdVDLSsNAFJ3UV62vVpdugkVwVZIq6LLoxmUL9gFtKJPpTTt0JgkzN0IJ/QK3+gV+jTtxJ/6M0zYLm+KBgcM593LPHD8WXKPjfFuFre2d3b3ifung8Oj4pFw57egoUQzaLBKR6vlUg+AhtJGjgF6sgEpfQNefPiz87jMozaPwCWcxeJKOQx5wRtFIrfqwXHVqzhL2JnEzUiUZmsOKVRqMIpZICJEJqnXfdWL0UqqQMwHz0iDREFM2pWPoGxpSCdpLl0nn9qVRRnYQKfNCtJfq342USq1n0jeTkuJE572F+J+HE7l2PfUVnQLmNF/mImJw56U8jBOEkK0SBomwMbIXfdkjroChmBlCmeLmkzabUEUZmlZNe26+q03Sqdfc61q9dVNt3Gc9Fsk5uSBXxCW3pEEeSZO0CSNAXsgrebPerQ/r0/pajRasbOeMrMH6+QV/46Og</latexit>

dC
<latexit sha1_base64="+32QD3lz97zfCzqRq36OnCdsyNQ=">AAACKXicdVDLSgMxFE181vpqdekmWARXZaYKuix247KCfUg7lEwmbUOTmSG5I5ShX+FWv8Cvcadu/RHTdhZ2igcCh3Pu5Z4cP5bCgON84Y3Nre2d3cJecf/g8Oi4VD5pmyjRjLdYJCPd9anhUoS8BQIk78aaU+VL3vEnjbnfeebaiCh8hGnMPUVHoRgKRsFKT8Eg7WtFGrNBqeJUnQXIOnEzUkEZmoMyLvaDiCWKh8AkNabnOjF4KdUgmOSzYj8xPKZsQke8Z2lIFTdeukg8IxdWCcgw0vaFQBbq342UKmOmyreTisLY5L25+J8HY7VyPfU1nXDIab7KRYThrZeKME6Ah2yZcJhIAhGZ90YCoTkDObWEMi3sJwkbU00Z2HZte26+q3XSrlXdq2rt4bpSv8t6LKAzdI4ukYtuUB3doyZqIYYUekGv6A2/4w/8ib+Xoxs42zlFK8A/vzIwpxc=</latexit>

. . .
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Figure 4: Proof sketch for Proposition 5: Top: We represent the initial product state of system and catalyst by means of
a table, using the fact that both are initially diagonal in the energy eigenbasis: Ordering the spectra of both states non-
increasingly, the entry (i, j) of the table corresponds to the product of the i-th eigenvalue of the system (corresponding to the
a particular energy eigenstate) and the j-th energy eigenvalue of the catalyst. We focus on three regions in the table—denoted
top (T), middle (M), bottom (B)—corresponding to two degeneracy bands I and I+ and (the projector onto) a single energy
eigenvector |E− 〉: Since the system is initially in the micro-canonical ensemble with energy window I, the support of the
joint state is initially contained in the coloured middle band. The catalyst is constructed as carrying half of its mass uniformly
distributed over dC − 1 of its entries and the other half in a single entry. This means that the middle band is divided into two
subregions, middle left (ML) and middle right (MR), where the total probability mass coloured in blue equals the mass coloured
in red. Furthermore, each of these subregions has its mass uniformly distributed over its entries. Bottom: By construction,
both the subregions BL and MR as well as ML and TR have the same number of entries. Hence, we can swap BL and MR by
means of a permutation, and similarly for ML and TR. This permutation results in a reduced state on S of the form Eq. (13)
and hence produces the claimed work extraction probability. Moreover, it leaves the marginal state of the catalyst unchanged,
so that the permutation induces a valid catalytic channel.
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We define the unitary U by the conditions

U [PS(I)⊗ |dC 〉〈dC |C]U† = |E− 〉〈E− | ⊗ PC

U [PS(I)⊗ PC]U† = PS(I+)⊗ |dC 〉〈dC |C .

This is possible since i) the corresponding subspaces
have the same dimension, ii) the subspaces in the

two equations are orthogonal and iii) subspaces of the
same dimension can always be mapped into each other
by a unitary. In fact there will be many different uni-
taries achieving this, and any of them is fine for our
purposes.

Applying U to the state ΩS(I)⊗ σC one obtains

U (ΩS(I)⊗ σC)U† = 1
2g2U (PS(I)⊗ PC)U† + 1

2gU
(
PS(I)⊗ 1

2 |dC 〉〈dC |C
)
U†

= 1
2ΩS(I+)⊗ |dC 〉〈dC |C + 1

2g |E− 〉〈E− | ⊗ PC. (12)

It is clear from (12) that

TrS(U(ΩS(I)⊗ σC)U†) = σC,

as required for a catalytic channel. Moreover, the
quantity of interest P (w ≥ e−e−) given by this chan-
nel C (defined by U and σC) can be derived by noting
that

C(ΩS(I)) = 1
2Ω(I+) + 1

2 |E− 〉〈E− | , (13)

so that p(W ≥ e− E′/n) = 1
2 .

D Proof of Proposition 1 in the main
text
In this section, we provide the proof and full statement of
Proposition 1 in the main text. This proof is very similar
to that of the micro-canonical case presented in the previ-
ous section, we will hence only describe the adjustments
that have to be made. Also, unlike in Appendix C, we now
again consider the standard setting and definition of cat-
alytic channels as introduced in the main text. In the fol-
lowing, we denote by PS(I) the projector onto a specific
energy-window I . Then g(I) is equal to the rank of PS(I).
We consider Hamiltonians H(N)

S on a regular lattice Λ(N)

of N sites and assume that the H(N)
S (for different values

of N ) constitute a sequence of local, uniformly bounded
Hamiltonians:

H
(N)
S =

∑

x∈Λ(N)

hx,

where each term hx acts on sites at most a distance l away
from x and the norm of each term is bounded as ‖hx‖ ≤ h
independent of the system size for some constant h.

Proposition 6 (Lower bound to the probability of
work extraction). Fix an inverse temperature β > 0
and consider a sequence of local, uniformly bounded
N -particle Hamiltonians H

(N)
S on a regular, D-

dimensional lattice. Assume that the states ωβ(H(N)
S )

have a finite correlation length bounded by a con-
stant and denote by e(N) the energy density corre-
sponding to β. Let δ > 0 be fixed and consider
I(N) := [e(N)N − δ

√
N, e(N)N ]. Further assume that

there exist micro-canonical energy windows I(N)
+ with

g(I(N)
+ ) = g(I(N))2. Then, for sufficiently large N ,

there exists, for any 0 < e− < e(N), a corresponding
sequence of catalytic channels such that

p(w ≥ e(N) − e−) ≥ 1/2− Ce−
(δ2N)

1
1+D

K ,

where C,K > 0 are constants.

Before giving the proof, we again emphasize the weak-
ness of the assumptions in the statement, which, in the
limit of large N , can be satisfied to arbitrary precision if
the density of states grows exponentially within I(N), as is
typically the case. Furthermore, let us emphasize that the
energy densities e(N) fluctuate arbitrarily little (for suffi-
ciently large N ) from a constant e due to the locality of
temperature [36].

Proof. The proof follows the proof for the micro-
canonical case in Appendix C. In particular, the uni-
tary that we use is exactly the same as that con-
structed in the proof for the micro-canonical case.
However, here we do not construct the state of the
catalyst explicitly, but allude to Lemma 4, which en-
sures there is always some catalyst given the unitary
that we consider. What remains to be done is to show
that for every such catalyst the probability distribu-
tion of work is as claimed. To do this, we denote by
r the initial probability of an energy-window I in the
initial thermal state given by

r(I) = Tr(PS(I)ωβ(HS))

and by r− = 〈E− |ωβ(HS) |E− 〉 the initial weight
on the low-energy eigenstate |E− 〉. Here and in the
following, we drop the explicit dependence on the
system-size for simplicity of notation. The following
arguments work as long as N is large enough such that
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the energy-windows I and I+are disjoint. Denote by
{qi}dCi=1 the spectrum of the catalyst. By considering
the action of the used unitary, it is easy to see that a
necessary condition for the transition being catalytic
under the given unitary is that

qdC (r(I) + r(I+)) = (1− qdC )(r(I) + r−). (14)

This can be seen, for example, from Fig. 4, where the
above represents the condition of catalyticity for the
right-most column. Solving in (14) for qdC , we find
that

qdC = r(I) + r−
2r(I) + r− + r(I+) .

We now invoke the result from Ref. [33] (as previously
in the proof of Lemma 3) which implies that

r(I) ≥ 1− εN ,

where there exist constants C,K such that

εN ≤ Ce−
(
δ2N

) 1
1+D

K
.

For large enough N , the energy windows I and I+
are disjoint. Hence 0 ≤ r− + r(I+) ≤ 1− r(I) and we
find

qdC ≥
r(I)

2r(I) + 1− r(I) = r(I)
1 + r(I)

≥ r(I)
2 ≥ 1

2 (1− εN ) .

Finally, we find

p(w ≥ e− e−) ≥ P (Ef = E−|Ei ∈ I)w(I) = qdc · r(I)

≥ 1
2(1− εN )2 ≥ 1

2 − εN .

Lemma 4 (Existence of catalysts). Let ρS be a quan-
tum state on a finite-dimensional Hilbert-space HS
and U be a unitary on the Hilbert-space HS ⊗ HC,
where HC is an arbitrary finite-dimensional Hilbert-
space. Then there exists a density matrix σC such
that

TrS
(
U(ρS ⊗ σC)U†

)
= σC.

Proof. The map σC 7→ TrS
(
U(ρS ⊗ σC)U†

)
specifies

a quantum-channel. Since every quantum channel is
a continuous map on the compact and convex set of
states, it has a fixed point by Brouwer’s fixed point
theorem ([37], Section 4.2.2).

E Proof of Proposition 3 in the main
text
Proposition 3 in the main text follows straightforwardly
once we realize that we can tune the process used in the

(a)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

(b)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

(c)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

�+
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

��<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

✏
<latexit sha1_base64="3tIWicOAG8CLOkw9LQq+reh/l5o=">AAACKHicdVDLSgMxFM3UV62vVpduBovgqsyooMuiG5cV7APaoWTS2zY0yQzJHaEM/Qm3+gV+jTvp1i8xbWdhp3ggcDjnXu7JCWPBDXre3Clsbe/s7hX3SweHR8cn5cppy0SJZtBkkYh0J6QGBFfQRI4COrEGKkMB7XDyuPDbr6ANj9QLTmMIJB0pPuSMopU6PYgNF5Hql6tezVvC3SR+RqokQ6NfcUq9QcQSCQqZoMZ0fS/GIKUaORMwK/USAzFlEzqCrqWKSjBBugw8cy+tMnCHkbZPobtU/26kVBozlaGdlBTHJu8txP88HMu162mo6QQwp4UyFxGH90HKVZwgKLZKOEyEi5G7qM0dcA0MxdQSyjS3n3TZmGrK0JZr2/PzXW2S1nXNv6n5z7fV+kPWY5GckwtyRXxyR+rkiTRIkzAiyBt5Jx/Op/PlfDvz1WjByXbOyBqcn18E46cJ</latexit>

C̃
<latexit sha1_base64="RuloG4Kwj8v9jGtCTKVhoWDbQ8E=">AAACNXicdVDLSsNAFJ3UV62v1i7dBIvgqiQq6LLYjcsK9gFtKZPpTTt0JgkzN0II/Ra3+gV+iwt34tZfcNJ2YVM8MHA4517umeNFgmt0nA+rsLW9s7tX3C8dHB4dn5Qrpx0dxopBm4UiVD2PahA8gDZyFNCLFFDpCeh6s2bmd59BaR4GT5hEMJR0EnCfM4pGGpWrA+RiDOlAUpwyKtLmfD4q15y6s4C9SdwVqZEVWqOKVRqMQxZLCJAJqnXfdSIcplQhZwLmpUGsIaJsRifQNzSgEvQwXaSf2xdGGdt+qMwL0F6ofzdSKrVOpGcms5A672Xifx5O5dr11FN0BpjTPJmLiP7dMOVBFCMEbJnQj4WNoZ11aI+5AoYiMYQyxc0nbTalijI0TZv23HxXm6RzVXev6+7jTa1xv+qxSM7IObkkLrklDfJAWqRNGEnIC3klb9a79Wl9Wd/L0YK12qmSNVg/vyyUrCk=</latexit>

�+
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

��<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> C̃
<latexit sha1_base64="RuloG4Kwj8v9jGtCTKVhoWDbQ8E=">AAACNXicdVDLSsNAFJ3UV62v1i7dBIvgqiQq6LLYjcsK9gFtKZPpTTt0JgkzN0II/Ra3+gV+iwt34tZfcNJ2YVM8MHA4517umeNFgmt0nA+rsLW9s7tX3C8dHB4dn5Qrpx0dxopBm4UiVD2PahA8gDZyFNCLFFDpCeh6s2bmd59BaR4GT5hEMJR0EnCfM4pGGpWrA+RiDOlAUpwyKtLmfD4q15y6s4C9SdwVqZEVWqOKVRqMQxZLCJAJqnXfdSIcplQhZwLmpUGsIaJsRifQNzSgEvQwXaSf2xdGGdt+qMwL0F6ofzdSKrVOpGcms5A672Xifx5O5dr11FN0BpjTPJmLiP7dMOVBFCMEbJnQj4WNoZ11aI+5AoYiMYQyxc0nbTalijI0TZv23HxXm6RzVXev6+7jTa1xv+qxSM7IObkkLrklDfJAWqRNGEnIC3klb9a79Wl9Wd/L0YK12qmSNVg/vyyUrCk=</latexit>

�✏
<latexit sha1_base64="Suy1Wbf4CMdg3ozahM0cE9fr3BE=">AAACKnicdVDLSgMxFM3UV62vVpdugkVwY5lRQZdFNy4r2Ae2pWTS2zY0yQzJHaEM/Qu3+gV+jbvi1g8xfSxsiwcCh3Pu5Z6cMJbCou9PvMzG5tb2TnY3t7d/cHiULxzXbJQYDlUeycg0QmZBCg1VFCihERtgKpRQD4cPU7/+CsaKSD/jKIa2Yn0teoIzdNLLJW1BbIWMdCdf9Ev+DHSdBAtSJAtUOgUv1+pGPFGgkUtmbTPwY2ynzKDgEsa5VmIhZnzI+tB0VDMFtp3OIo/puVO6tBcZ9zTSmfp3I2XK2pEK3aRiOLCr3lT8z8OBWrqehoYNAVe0UK1ExN5dOxU6ThA0nyfsJZJiRKfF0a4wwFGOHGHcCPdJygfMMI6uXtdesNrVOqldlYLrUvB0UyzfL3rMklNyRi5IQG5JmTySCqkSTjR5I+/kw/v0vryJ9z0fzXiLnROyBO/nF9epp2o=</latexit>

. . .
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>��<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> C̃

<latexit sha1_base64="RuloG4Kwj8v9jGtCTKVhoWDbQ8E=">AAACNXicdVDLSsNAFJ3UV62v1i7dBIvgqiQq6LLYjcsK9gFtKZPpTTt0JgkzN0II/Ra3+gV+iwt34tZfcNJ2YVM8MHA4517umeNFgmt0nA+rsLW9s7tX3C8dHB4dn5Qrpx0dxopBm4UiVD2PahA8gDZyFNCLFFDpCeh6s2bmd59BaR4GT5hEMJR0EnCfM4pGGpWrA+RiDOlAUpwyKtLmfD4q15y6s4C9SdwVqZEVWqOKVRqMQxZLCJAJqnXfdSIcplQhZwLmpUGsIaJsRifQNzSgEvQwXaSf2xdGGdt+qMwL0F6ofzdSKrVOpGcms5A672Xifx5O5dr11FN0BpjTPJmLiP7dMOVBFCMEbJnQj4WNoZ11aI+5AoYiMYQyxc0nbTalijI0TZv23HxXm6RzVXev6+7jTa1xv+qxSM7IObkkLrklDfJAWqRNGEnIC3klb9a79Wl9Wd/L0YK12qmSNVg/vyyUrCk=</latexit>

�✏
<latexit sha1_base64="Suy1Wbf4CMdg3ozahM0cE9fr3BE=">AAACKnicdVDLSgMxFM3UV62vVpdugkVwY5lRQZdFNy4r2Ae2pWTS2zY0yQzJHaEM/Qu3+gV+jbvi1g8xfSxsiwcCh3Pu5Z6cMJbCou9PvMzG5tb2TnY3t7d/cHiULxzXbJQYDlUeycg0QmZBCg1VFCihERtgKpRQD4cPU7/+CsaKSD/jKIa2Yn0teoIzdNLLJW1BbIWMdCdf9Ev+DHSdBAtSJAtUOgUv1+pGPFGgkUtmbTPwY2ynzKDgEsa5VmIhZnzI+tB0VDMFtp3OIo/puVO6tBcZ9zTSmfp3I2XK2pEK3aRiOLCr3lT8z8OBWrqehoYNAVe0UK1ExN5dOxU6ThA0nyfsJZJiRKfF0a4wwFGOHGHcCPdJygfMMI6uXtdesNrVOqldlYLrUvB0UyzfL3rMklNyRi5IQG5JmTySCqkSTjR5I+/kw/v0vryJ9z0fzXiLnROyBO/nF9epp2o=</latexit>

�+
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

✏
<latexit sha1_base64="3tIWicOAG8CLOkw9LQq+reh/l5o=">AAACKHicdVDLSgMxFM3UV62vVpduBovgqsyooMuiG5cV7APaoWTS2zY0yQzJHaEM/Qm3+gV+jTvp1i8xbWdhp3ggcDjnXu7JCWPBDXre3Clsbe/s7hX3SweHR8cn5cppy0SJZtBkkYh0J6QGBFfQRI4COrEGKkMB7XDyuPDbr6ANj9QLTmMIJB0pPuSMopU6PYgNF5Hql6tezVvC3SR+RqokQ6NfcUq9QcQSCQqZoMZ0fS/GIKUaORMwK/USAzFlEzqCrqWKSjBBugw8cy+tMnCHkbZPobtU/26kVBozlaGdlBTHJu8txP88HMu162mo6QQwp4UyFxGH90HKVZwgKLZKOEyEi5G7qM0dcA0MxdQSyjS3n3TZmGrK0JZr2/PzXW2S1nXNv6n5z7fV+kPWY5GckwtyRXxyR+rkiTRIkzAiyBt5Jx/Op/PlfDvz1WjByXbOyBqcn18E46cJ</latexit>

C̃
<latexit sha1_base64="RuloG4Kwj8v9jGtCTKVhoWDbQ8E=">AAACNXicdVDLSsNAFJ3UV62v1i7dBIvgqiQq6LLYjcsK9gFtKZPpTTt0JgkzN0II/Ra3+gV+iwt34tZfcNJ2YVM8MHA4517umeNFgmt0nA+rsLW9s7tX3C8dHB4dn5Qrpx0dxopBm4UiVD2PahA8gDZyFNCLFFDpCeh6s2bmd59BaR4GT5hEMJR0EnCfM4pGGpWrA+RiDOlAUpwyKtLmfD4q15y6s4C9SdwVqZEVWqOKVRqMQxZLCJAJqnXfdSIcplQhZwLmpUGsIaJsRifQNzSgEvQwXaSf2xdGGdt+qMwL0F6ofzdSKrVOpGcms5A672Xifx5O5dr11FN0BpjTPJmLiP7dMOVBFCMEbJnQj4WNoZ11aI+5AoYiMYQyxc0nbTalijI0TZv23HxXm6RzVXev6+7jTa1xv+qxSM7IObkkLrklDfJAWqRNGEnIC3klb9a79Wl9Wd/L0YK12qmSNVg/vyyUrCk=</latexit>

�+
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

��<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> C̃
<latexit sha1_base64="RuloG4Kwj8v9jGtCTKVhoWDbQ8E=">AAACNXicdVDLSsNAFJ3UV62v1i7dBIvgqiQq6LLYjcsK9gFtKZPpTTt0JgkzN0II/Ra3+gV+iwt34tZfcNJ2YVM8MHA4517umeNFgmt0nA+rsLW9s7tX3C8dHB4dn5Qrpx0dxopBm4UiVD2PahA8gDZyFNCLFFDpCeh6s2bmd59BaR4GT5hEMJR0EnCfM4pGGpWrA+RiDOlAUpwyKtLmfD4q15y6s4C9SdwVqZEVWqOKVRqMQxZLCJAJqnXfdSIcplQhZwLmpUGsIaJsRifQNzSgEvQwXaSf2xdGGdt+qMwL0F6ofzdSKrVOpGcms5A672Xifx5O5dr11FN0BpjTPJmLiP7dMOVBFCMEbJnQj4WNoZ11aI+5AoYiMYQyxc0nbTalijI0TZv23HxXm6RzVXev6+7jTa1xv+qxSM7IObkkLrklDfJAWqRNGEnIC3klb9a79Wl9Wd/L0YK12qmSNVg/vyyUrCk=</latexit>

�✏
<latexit sha1_base64="Suy1Wbf4CMdg3ozahM0cE9fr3BE=">AAACKnicdVDLSgMxFM3UV62vVpdugkVwY5lRQZdFNy4r2Ae2pWTS2zY0yQzJHaEM/Qu3+gV+jbvi1g8xfSxsiwcCh3Pu5Z6cMJbCou9PvMzG5tb2TnY3t7d/cHiULxzXbJQYDlUeycg0QmZBCg1VFCihERtgKpRQD4cPU7/+CsaKSD/jKIa2Yn0teoIzdNLLJW1BbIWMdCdf9Ev+DHSdBAtSJAtUOgUv1+pGPFGgkUtmbTPwY2ynzKDgEsa5VmIhZnzI+tB0VDMFtp3OIo/puVO6tBcZ9zTSmfp3I2XK2pEK3aRiOLCr3lT8z8OBWrqehoYNAVe0UK1ExN5dOxU6ThA0nyfsJZJiRKfF0a4wwFGOHGHcCPdJygfMMI6uXtdesNrVOqldlYLrUvB0UyzfL3rMklNyRi5IQG5JmTySCqkSTjR5I+/kw/v0vryJ9z0fzXiLnROyBO/nF9epp2o=</latexit>

. . .<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>�+
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

��<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

✏
<latexit sha1_base64="3tIWicOAG8CLOkw9LQq+reh/l5o=">AAACKHicdVDLSgMxFM3UV62vVpduBovgqsyooMuiG5cV7APaoWTS2zY0yQzJHaEM/Qm3+gV+jTvp1i8xbWdhp3ggcDjnXu7JCWPBDXre3Clsbe/s7hX3SweHR8cn5cppy0SJZtBkkYh0J6QGBFfQRI4COrEGKkMB7XDyuPDbr6ANj9QLTmMIJB0pPuSMopU6PYgNF5Hql6tezVvC3SR+RqokQ6NfcUq9QcQSCQqZoMZ0fS/GIKUaORMwK/USAzFlEzqCrqWKSjBBugw8cy+tMnCHkbZPobtU/26kVBozlaGdlBTHJu8txP88HMu162mo6QQwp4UyFxGH90HKVZwgKLZKOEyEi5G7qM0dcA0MxdQSyjS3n3TZmGrK0JZr2/PzXW2S1nXNv6n5z7fV+kPWY5GckwtyRXxyR+rkiTRIkzAiyBt5Jx/Op/PlfDvz1WjByXbOyBqcn18E46cJ</latexit>

C̃
<latexit sha1_base64="RuloG4Kwj8v9jGtCTKVhoWDbQ8E=">AAACNXicdVDLSsNAFJ3UV62v1i7dBIvgqiQq6LLYjcsK9gFtKZPpTTt0JgkzN0II/Ra3+gV+iwt34tZfcNJ2YVM8MHA4517umeNFgmt0nA+rsLW9s7tX3C8dHB4dn5Qrpx0dxopBm4UiVD2PahA8gDZyFNCLFFDpCeh6s2bmd59BaR4GT5hEMJR0EnCfM4pGGpWrA+RiDOlAUpwyKtLmfD4q15y6s4C9SdwVqZEVWqOKVRqMQxZLCJAJqnXfdSIcplQhZwLmpUGsIaJsRifQNzSgEvQwXaSf2xdGGdt+qMwL0F6ofzdSKrVOpGcms5A672Xifx5O5dr11FN0BpjTPJmLiP7dMOVBFCMEbJnQj4WNoZ11aI+5AoYiMYQyxc0nbTalijI0TZv23HxXm6RzVXev6+7jTa1xv+qxSM7IObkkLrklDfJAWqRNGEnIC3klb9a79Wl9Wd/L0YK12qmSNVg/vyyUrCk=</latexit>

�+
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

C̃
<latexit sha1_base64="RuloG4Kwj8v9jGtCTKVhoWDbQ8E=">AAACNXicdVDLSsNAFJ3UV62v1i7dBIvgqiQq6LLYjcsK9gFtKZPpTTt0JgkzN0II/Ra3+gV+iwt34tZfcNJ2YVM8MHA4517umeNFgmt0nA+rsLW9s7tX3C8dHB4dn5Qrpx0dxopBm4UiVD2PahA8gDZyFNCLFFDpCeh6s2bmd59BaR4GT5hEMJR0EnCfM4pGGpWrA+RiDOlAUpwyKtLmfD4q15y6s4C9SdwVqZEVWqOKVRqMQxZLCJAJqnXfdSIcplQhZwLmpUGsIaJsRifQNzSgEvQwXaSf2xdGGdt+qMwL0F6ofzdSKrVOpGcms5A672Xifx5O5dr11FN0BpjTPJmLiP7dMOVBFCMEbJnQj4WNoZ11aI+5AoYiMYQyxc0nbTalijI0TZv23HxXm6RzVXev6+7jTa1xv+qxSM7IObkkLrklDfJAWqRNGEnIC3klb9a79Wl9Wd/L0YK12qmSNVg/vyyUrCk=</latexit>

�✏
<latexit sha1_base64="Suy1Wbf4CMdg3ozahM0cE9fr3BE=">AAACKnicdVDLSgMxFM3UV62vVpdugkVwY5lRQZdFNy4r2Ae2pWTS2zY0yQzJHaEM/Qu3+gV+jbvi1g8xfSxsiwcCh3Pu5Z6cMJbCou9PvMzG5tb2TnY3t7d/cHiULxzXbJQYDlUeycg0QmZBCg1VFCihERtgKpRQD4cPU7/+CsaKSD/jKIa2Yn0teoIzdNLLJW1BbIWMdCdf9Ev+DHSdBAtSJAtUOgUv1+pGPFGgkUtmbTPwY2ynzKDgEsa5VmIhZnzI+tB0VDMFtp3OIo/puVO6tBcZ9zTSmfp3I2XK2pEK3aRiOLCr3lT8z8OBWrqehoYNAVe0UK1ExN5dOxU6ThA0nyfsJZJiRKfF0a4wwFGOHGHcCPdJygfMMI6uXtdesNrVOqldlYLrUvB0UyzfL3rMklNyRi5IQG5JmTySCqkSTjR5I+/kw/v0vryJ9z0fzXiLnROyBO/nF9epp2o=</latexit>

��<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

✏
<latexit sha1_base64="3tIWicOAG8CLOkw9LQq+reh/l5o=">AAACKHicdVDLSgMxFM3UV62vVpduBovgqsyooMuiG5cV7APaoWTS2zY0yQzJHaEM/Qm3+gV+jTvp1i8xbWdhp3ggcDjnXu7JCWPBDXre3Clsbe/s7hX3SweHR8cn5cppy0SJZtBkkYh0J6QGBFfQRI4COrEGKkMB7XDyuPDbr6ANj9QLTmMIJB0pPuSMopU6PYgNF5Hql6tezVvC3SR+RqokQ6NfcUq9QcQSCQqZoMZ0fS/GIKUaORMwK/USAzFlEzqCrqWKSjBBugw8cy+tMnCHkbZPobtU/26kVBozlaGdlBTHJu8txP88HMu162mo6QQwp4UyFxGH90HKVZwgKLZKOEyEi5G7qM0dcA0MxdQSyjS3n3TZmGrK0JZr2/PzXW2S1nXNv6n5z7fV+kPWY5GckwtyRXxyR+rkiTRIkzAiyBt5Jx/Op/PlfDvz1WjByXbOyBqcn18E46cJ</latexit>

C̃
<latexit sha1_base64="RuloG4Kwj8v9jGtCTKVhoWDbQ8E=">AAACNXicdVDLSsNAFJ3UV62v1i7dBIvgqiQq6LLYjcsK9gFtKZPpTTt0JgkzN0II/Ra3+gV+iwt34tZfcNJ2YVM8MHA4517umeNFgmt0nA+rsLW9s7tX3C8dHB4dn5Qrpx0dxopBm4UiVD2PahA8gDZyFNCLFFDpCeh6s2bmd59BaR4GT5hEMJR0EnCfM4pGGpWrA+RiDOlAUpwyKtLmfD4q15y6s4C9SdwVqZEVWqOKVRqMQxZLCJAJqnXfdSIcplQhZwLmpUGsIaJsRifQNzSgEvQwXaSf2xdGGdt+qMwL0F6ofzdSKrVOpGcms5A672Xifx5O5dr11FN0BpjTPJmLiP7dMOVBFCMEbJnQj4WNoZ11aI+5AoYiMYQyxc0nbTalijI0TZv23HxXm6RzVXev6+7jTa1xv+qxSM7IObkkLrklDfJAWqRNGEnIC3klb9a79Wl9Wd/L0YK12qmSNVg/vyyUrCk=</latexit>

1<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> 2<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> 3
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Figure 5: The idea behind the proof of Proposition 3 in the
main text: For any choice of unitary, we can understand
the second condition in the Def. 2 of the main text as the
definition of a quantum channel C̃ acting on C. We find
a C̃ and two states σ−, σ+ with the following properties:
(a) If the initial state of the catalyst is σ+, the result of
running the standard protocol is to extract positive work ε
from the system, while the state of the catalyst is changed to
C̃(σ+) = σ−. (b) The same unitary, however, for initial state
σ−, extracts negative work −ε and changes the catalyst state
to C̃(σ−) = σ+. (c) Hence, if we initialize the catalyst in the
state σ = 1

2 (σ++σ−), then there are two “branches” of work
extraction distributions, each occurring with probability 1/2,
while the resulting channel on Si is catalytic for every i. Note
that, if the agent knew whether her input state was σ+ or σ−,
then she could condition her unitary U on this knowledge and
achieve the claimed work distribution easily. Hence, the key
achievement of the proof is to show that agents can achieve
correlated work distributions without knowing the initial state
of the catalyst.

construction of the proof for Proposition 1 in the main
text in such a way that its repeated application implies
the claimed work distribution. This follows because we
have great freedom in choosing the state E−. In par-
ticular, in terms of notation of the previous section, let
e

(N)
+ denote the energy density around which the window
I

(N)
+ is centered. Then we choose E− in such a way that
e − E−/N = e+ − e to ensure that the extracted and in-
vested amount of work in every iteration are exactly the
same. The above choice of E− is always possible for the
Hamiltonians with exponentially growing density of states
that we consider (for which e+ will not be much greater
than e.)

Fig. 5 provides a sketch of the proof. For the many-
player process described in the main text, let

p(w2, w3, w4, . . . |w1)

denote the work probability distribution for agents 2 to n
conditional on the player 1 extracting work w1. The key
recognition then is that, for any n, by construction of the
catalytic channel,

p(w2, w3, . . . |w1) = 1 (15)

whenever wi = −wi−1 for all i ∈ {2, . . . , n}, while

p(w2, w3, . . . |w1) = 0
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in all other cases. This is because, if the extracted work in
the first round was negative, corresponding to an increase
in the system’s energy, then by construction of the unitary,
the final state of the catalyst is σ′ = |d 〉〈d | with proba-
bility one, since all transitions that lead to an increase in
energy on the system result in this final state. This, in turn,
is sufficient to determine that, for the second player, the
application of the unitary to this catalyst state σ′ and her
copy of ωβ(H) will result in a decrease of the system’s en-
ergy (and hence positive work extraction) and a final cata-
lyst state σ′′ with support on the subspace

∑g
i |i 〉〈i |, etc.

This reasoning can be applied to an arbitrary number of
agents and also to the case in which the extracted work in
the first round was positive, and hence implies (15). The
claimed work distributions then follow from

p(w1, w2, . . . , wn) = p(w2, w3, w4, . . . |w1)p(w1),

together with Proposition 1 in the main text. We also note
that a similar conclusion holds in the case of the micro-
scopic toy-example presented in Section B, where this be-
haviour can be checked easily by explicit calculation.

F Proof of Proposition 2 in the main
text
Given a catalytic channel C, let U denote the unitary chan-
nel applied to the joint system SC when dilating the chan-
nel. The key observation is that, if U is unitary, then U∗ is
trace-preserving and hence maps quantum states to quan-
tum states (in fact, this property holds for all unital chan-
nels). Here, ∗ denotes the Hilbert-Schmidt adjoint. We
then write

〈eβW 〉 = Tr (ωC(1))
= Tr (ω ⊗ IU(1⊗ σ))

= dCTr
(
U∗
(
ω ⊗ I

dC

)
1⊗ σ

)

≤ dC ‖1⊗ σ‖∞
∥∥∥∥

1
dC
⊗ σ

∥∥∥∥
1

= dC ‖σ‖∞ .

Here, the first equality is simply Eqn. 2 in the main text
and we write ω instead of ωβ(H). Similarly, we get

〈eβW 〉 = dTr
(

(ω ⊗ I)U
(

1
d
⊗ σ

))

≤ d ‖ω ⊗ I‖∞ = d ‖ω‖∞ .

G Non-trivial Hamiltonian on the cat-
alyst

In this section we show that the probability distribution of
work done on the system is independent of the Hamilto-
nian on the catalyst. To do this, let us first assume we
had a catalytic process that uses a catalyst with a non-
trivial HamiltonianHC and a quasi-classical state σC , i.e.,
[HC , σC ] = 0. We assume that σC is quasi-classical, since
it is well known that it is impossible to associate a mean-
ingful random variable of work in the case coherent initial
states [38]. Using the two-time measurement process on
the system and catalyst together, we can then associate a
bi-partite work-distribution P (W (S),W (C)), where

W (S) = E
(S)
f − E(S)

i

denotes the work done on the system and

W (C) = E
(C)
f − E(C)

i

the work done on the catalyst. The work distribution on
the system is simply given by the marginal

P
(
W (S)

)
=
∫
P
(
W (S),W (C)

)
dW (C).

Let us write σC =
∑
j σj |E

(C)
j 〉〈E

(C)
j | and ωβ(H) =

∑
k wk|E

(S)
k 〉〈E

(S)
k |. We then get

P
(
W (S)

)
=

∑

E
(S)
f
−E(S)

i
=W (S)

∑

E
(C)
f′

∑

E
(C)
i′

P
(
E

(S)
f , E

(C)
f ′ |E(S)

i , E
(C)
i′

)
P (E(S)

i )P (E(C)
i′ )

=
∑

E
(S)
f
−E(S)

i
=W (S)

∑

E
(C)
f′

∑

E
(C)
i′

〈E(S)
f | ⊗ 〈E

(C)
f ′ |

(
U
(
wiσi′ |E(S)

i 〉〈E
(S)
i | ⊗ |E

(C)
i′ 〉〈E

(C)
i′ |

)
U†
)
|E(S)
f 〉 ⊗ |E

(C)
f ′ 〉

=
∑

E
(S)
f
−E(S)

i
=W (S)

〈E(S)
f |TrC

(
U
(
wi|E(S)

i 〉〈E
(S)
i | ⊗ σ

)
U†
)
|E(S)
f 〉

=
∑

E
(S)
f
−E(S)

i
=W (S)

〈E(S)
f |C

(
wi|E(S)

i 〉〈E
(S)
i |
)
|E(S)
f 〉.
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It is hence identical with the one obtained on the system
alone when we think of the catalyst as a system with a
trivial Hamiltonian, that is, with the distribution as defined
above Eqn. 2 in the main text. This shows that we can al-
ways assume that the catalyst has a trivial Hamiltonian, in
which case it is clear that no energy flows from the catalyst
to the system, even probabilistically. Therefore, such an
energy flow is not necessary to implement catalytic transi-
tions.

H Comparison with literature on gen-
eralized Jarzynski equalities in the pres-
ence of correlations
In recent years, the role of correlations, specifically quan-
tified by the mutual information, has been well studied,
in particular with respect to its influence on the Jarzynski
equality [25, 26], even leading up to experimental demon-
strations to test these theoretical results [28, 39]. One
may ask, how the results of this manuscript fit in the con-
text of that line of research. This section provides a brief
overview of the main differences.

In Ref. [25] the core observation is that the presence
of initial correlations between a system S and an ancillary
(catalyst) C can be used to create a thermodynamic advan-
tage, in the sense that such processes obey a generalized
JE and Second law and hence can be used to by-pass the
constraints imposed by the original JE and Second law.
Specifically, [25] derives (according to their generalized
version of Jarzynski equality) a bound on the work per-
formed on the system that is given by

〈W 〉 ≥ 〈∆F 〉+ 〈∆Eint〉+ β−1〈∆I〉,

where 〈∆F 〉 is the difference between final and initial
equilibrium free energy on the system, 〈∆Eint〉 for the
energy difference coming from the interaction Hamilto-
nian between system and catalyst, and finally 〈∆I〉 is the
change in mutual information between system and cata-
lyst. For our setup, both 〈∆F 〉 and 〈∆Eint〉 are zero.
Given that the extracted work Wext = −W , the above
bound reduces to

〈Wext〉 ≤ −β−1〈∆I〉,

which says that if one allows the consumption of mutual
information (leading to ∆I < 0), then it is possible to
violate the average second law, namely extract some pos-
itive amount of Wext from a Gibbs state, for instance by
reducing the entropy of the system in the process. This
particular viewpoint of correlations (information) being a
thermodynamic resource is a mature and well-studied one.

In our setting, however, the initial state of system and
catalyst are always uncorrelated, which means that we al-
ways have 〈∆I〉 ≥ 0. Hence it is clear that the type of
catalytic operation studied in Ref. [25] cannot correspond
to our setting, since the generalized JE and Second law al-
low for violations of the original JE and Second law only if

〈∆I〉 < 0. The difference to our setting, however, is easily
understood. It lies in the fact that here we allow for more
general joint evolutions of the system and the catalyst. In-
deed, it is easy to see that under the requirement that the
initial state between catalyst and system be uncorrelated,
the channels that can be implemented on the system via
the operations allowed in Ref. [25] are unital channels, for
which we show above that they cannot be used to by-pass
the JE (see Fig. 2). This is because in the above works, the
catalyst is required to not evolve over time. In contrast,
the notion of a β-catalytic channel allows for the evolu-
tion of the catalyst to be non-trivial, as long as the final
density matrix describing the catalyst is unchanged. Since
this constraint only requires the statistical invariance of
the catalyst, this allows for a much broader class of evo-
lutions to be implemented on the system and hence ex-
plains how we can by-pass the JE and NMW in a setting
where the marginal entropy of the system has to increase.
In summary, the key differences to the line of work rooted
in Refs. [25, 26] are that we study processes that by-pass
the JE by means of the creation of correlations paired with
catalysts that evolve non-trivially over time, while in the
above work processes are studied that by-pass the JE by
means of the absorption of initial correlations paired with
catalysts that do not evolve over time.

I Is it necessary to establish correla-
tions with the catalyst?
In our definition of β-catalytic channels, we allow the cat-
alyst to become correlated with the system. These cor-
relations are certainly necessary for the correlated multi-
player strategies discussed in the main text, but one might
wonder whether they are also necessary to violate NMW
on a single system. To make this question concrete, con-
sider the set of β-trumping channels, where a quantum
channel T is in this set iff it has the form

T (ρ) = Tr2(N (ρ⊗ σ)),

where N (I) = I is unital and N (ωβ(H) ⊗ σ) = ρ′ ⊗ σ.
Note that in the case of β-catalytic channels, we restricted
the corresponding channel N to be unitary. Here, we al-
low instead for the more general class of unital channels.
We will prove that in the unitary case, NMW cannot be
violated by β-trumping channels even though Jarzynski’s
equality may be violated. We will also present arguments
that suggest that the same is true in the unital case.

It is worth noting, for starters, that the fully thermaliz-
ing channel is exactly a β-trumping channel where σ =
ωβ(H), and N is a unitary swap between the system and
catalyst. Thus, even in the case of a unitary channel N ,
such β-trumping channels can violate Jarzynski’s equality.
On the other hand, in the main text we have demonstrated
that the thermalizing channel cannot violate NMW since
it is Gibbs preserving. Hence, the above leaves open the
question whether the NMW condition can be violated by
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means of β-trumping channels. However, we do not be-
lieve that this is the case, for the following reasons:

i) Our constructions of violating NMW can not work in
the trumping case. This is because in the trumping setting
the so-called min-entropy S∞ (minus log of the largest
eigenvalue) of the final state has to be at least as large as
that of the initial state (see for example Ref. [6]). How-
ever, in our constructions, the final min-entropy is essen-
tially given by − log(p(w ≥ ε) ≈ log(2), whereas the
initial min-entropy is extensive in N . It thus decreases by
a macroscopic amount.

ii) The previous point also suggests a route for arguing
that β-trumping channels cannot be used to violate NMW
in general: We now present an argument that rules out vi-
olations of NMW in the case of a microcanonical initial
state Ω with energy density e, but we expect that similar
statements hold true for the canonical case due to equiv-
alence of ensembles-type of arguments. Because of the
highly peaked probability distribution of the energy den-
sity for a macroscopic, non-critical many-body system, it
is easy to see that the probability p(w ≥ ε) to extract work
per particle at least ε is (up to arbitrarily small corrections
for large N ) given by the total probability of measuring
an energy below (e − ε)N in the final state T (Ω). Let us
denote the projector onto these energies by P . We then
have

p(w ≥ ε) ≈ Tr[PT (Ω)],

where the approximation is arbitrarily good as N → ∞.
This insight also was an essential ingredient to the proof
that Gibbs-preserving maps cannot violate NMW. Now, to
leading order, the total number of states with energy below
(e − ε)N is given by exp(s(e − ε)N), where s(e − ε) is
the microcanonical entropy density at energy density e−ε.
Since the total weight in this subspace is p(w ≥ ε), the
final min-entropy is upper bounded by

S
(final)
min ≤ − log(p(w ≥ ε)) + s(e− ε)N.

However, since trumping requires S(final)
min ≥ S

(initial)
min =

s(e)N , we then find

p(w ≥ ε) ≤ exp(−(s(e)− s(e− ε))N)→ 0,

as N → ∞ for any ε > 0. This shows that NMW holds
for β-trumping channels in the micro-canonical case. Note
that when we allow the catalyst to become correlated,
NMW can be violated for microcanonical initial states, as
shown above. This already makes clear that correlated cat-
alysts provide a strict advantage in this set-up.

iii) Finally, let us also show that if we assume that N
is unitary, as we do in the case of β-catalytic channels,
then NMW cannot be violated if the catalyst remains un-
correlated. The reason is the following: Since the global
transformation on system and catalyst is unitary, it leaves
the spectrum invariant. Since the catalyst remains invari-
ant and uncorrelated, this implies that already the spectrum
of the initial density matrix on the system has to remain
invariant. Therefore there exists a unitary V , such that

T [ωβ(H)] = V ωβ(H)V †. As argued in case ii), we then
have

p(w ≥ ε) ≈ Tr[PT [ωβ(H)]] = Tr[PV ωβ(H)V †]
≤ Tr[Pωβ(H)],

where the last inequality follows because Gibbs states are
passive states and the first approximation holds to arbitrary
accuracy asN →∞. However, by the same concentration
inequalities we used to prove of our main results, we have

Tr[Pωβ(H)] ≤ K exp(−k(ε2N)1/(1+D)),

for a non-critical many-body system in D spatial dimen-
sions (with constants k,K > 0). Thus, NMW holds true
in this case as well.
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6

PA R T I A L I N F O R M AT I O N A N D T H E C A N O N I C A L E N S E M B L E

6.1 thermal operations under partial information

In this last chapter, we return to the theory of thermal operations. There are two seemingly

independent questions that might be asked about this framework, each interesting in its own

right: 1. Why do we assume that the initial state of the heat bath is described by a Gibbs state?

2. What are the state transitions that one can realise with thermal operations if one only has

partial knowledge about the actual state of both the system and the heat bath? To motivate

the �rst question is simple: A framework is only as useful as its constituting assumptions

are sound. Hence, if thermal operations are to provide an adequate theoretical model of the

thermodynamic evolution of a system, then the Gibbs state better be an adequate state rep-

resentation of a system in thermal equilibrium. Now, empirically, this assumption has been

greatly successful, but it would be great to be able to provide a constructive explanation of this

success, rather than only having the empirical success justify the assumption ex post.

The second question, in turn, can easily be motivated as re�ecting a much more realistic and

common empirical scenario in thermodynamics than the original framework of thermal oper-

ations: Knowing the full “microstate” ρ of a system is often practically impossible or at least

prohibitively expensive. Moreover, thermal operations, in allowing for any energy-preserving

unitary on system and environment, assume an unrealistically high degree of control over the

system and its environment. More often one may know only know the average energy of a

state — based for example on prior energy measurements — and no further details about the

underlying microstate. In such situations, thermal operations are not useful. The latter have

been devised to derive fundamental bounds on the possible thermodynamical evolution of

systems under the assumption that full control and knowledge is had about system and bath.

In contrast, in the above situation, a much more helpful framework would be ones in which

the achievable state transitions re�ect the partial information about the system that one has

and also the limited control that were originally responsible for only having partial informa-

tion about the system. This is exactly the framework that we develop in the publication that

forms the bulk of this chapter [4]. As such, the work presented here naturally �ts into a line

of research that attempts to bring the framework of thermal operations closer to the realities

of experiment [129, 130, 131].

6.2 roads to the canonical ensemble

Now, as it turns out, the answer to the second question also provides an interesting answer

to the �rst question! Indeed, it provides a natural answer to a much more general question,

namely why representing systems in statistical thermodynamics as canonical ensembles when

their microstate is unknown is empirically as successful as it is. As such, the framework we

develop here lets us contribute to an old question in the foundations of statistical thermody-

namics. To better understand this contribution, it makes sense to brie�y present some existing

approaches to this question.
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78 partial information and the canonical ensemble

One common way to motivate the use of the canonical ensemble as the initial state of the

heat bath in thermal operations is on the basis of passivity. An energy-incoherent state ρ is

called passive with respect to some Hamiltonian H if higher-energy eigenstates carry less

weight, that is, if the spectrum of ρ is ordered non-increasingly along higher energy. The

thermal states can be singled out as the only family of states, whose members are completely

passive, meaning that if ρ is passive with respect to H, then ρ⊗n
is passive with respect to

the Hamiltonian ∑n
i Hi for all n ∈ N, where Hi denotes the Hamiltonian that acts as H

on the ith subsystem and trivially on all others. Operationally, passive states are interesting

because no work can be extracted from them via a unitary process. The above implies that, if

one used any other family of states to represent the initial state of the heat bath in thermal

operations, then this would trivialize the state transitions �TO, because the “bath” could be

used to extract work, in violation of the Second Law, and hence to prepare any �nal state

[76]. While simple, the above argument is not very strong regarding the question of interest

here, which is why the assignment of the canonical ensemble to thermodynamic systems is

empirically successful. To begin with, it does nothing to motivate a physical mechanism for

why the canonical ensemble is the proper state of the bath and why we don’t, empirically,

�nd that we can in fact extract work from heat baths. It also does nothing to motivate why

one should use any density operator to represent the initial state of the heat bath in the �rst

place. Finally, it only applies to the question what the initial state of the heat bath should

be, not how to represent the initial state of a system such as a working medium, that itself

might not be in thermal equilibrium with the heat bath. This is because the argument relies

on the assumption that one can extract work from a large number n of copies of the state ρ.

But this is not the case, in general, where only one copy of ρ is had. Since we are concerned

with answering the question not just for heat baths but also for other systems, the passivity

argument does not make a strong case.

Another, more powerful approach to the question uses the notion of typicality. For instance,

in canonical typicality [25, 26], the use of the canonical ensemble is essentially motivated by

showing that, roughly speaking, if one was to sample uniformly from pure states in a mi-

crocanonical energy window of a large system whose spectrum is su�ciently widely “spread”

over its subspaces, then the probability that one would sample a pure state that can locally

be distinguished from a canonical ensemble is negligible. Hence, the argument goes, if one is

uncertain about the underlying microstate of a system, then if one believes that the system

dynamics are well described by a uniform measure over the pure state in the energy window,

representing the state of the system as a Gibbs state is going to yield a good description with

probability close to unity. This is a strong argument and it does not su�er from most of the

problems from which the passivity argument su�ers. However, the main drawback with it

(and typicality arguments more generally) is that it is unclear just when the system dynam-

ics are such that they are well described by a uniform measure over the pure states. Hence,

in this argument the question is simply procrastinated to another level, namely the question

why one state should be chosen over another is replaced by the question why one measure

should be chosen over another when sampling from the microcanonical window (one way

to argue for the uniform Haar measure over pure states is via the fundamental postulate of

statistical mechanics, but this begs the question, since this postulate itself is something that

is to be explained).

A third approach has �rst been articulated by Jaynes [158, 159] and goes by the name Max-

imum entropy principle. This principle states that, if one has only partial information about

the state of a system, one should represent the system to be in that state with the largest

Shannon (or, quantumly, von Neumann) entropy from the equivalence class of states whose
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properties are compatible with the partial information. Jaynes argument for this principle is

essentially methodological, rather than based on some physical mechanism. He argues that

Shannon’s axiomatic characterization of the Shannon entropy establishes this quantity as the

unique, adequate measure of uncertainty, or partial knowledge. As such, the argument contin-

ues, the maximum entropy principle is the only rule to choose a state in light of uncertainty

that is unbiased, the weakest commitment to a state in light of the available information. As

such, the maximum entropy principle does not provide any physical explanation for why the

rule should work out empirically in practice. Rather, Jaynes explains, whenever the empir-

ical predictions based on the maximum entropy principle are empirically con�rmed, then this

shows that the partial information that was being held at the beginning completely captures

the relevant dynamics at the level of empirical access. And this latter fact is related to the

actual physical dynamics of the system of interest. As such, Jaynes’ principle is a prescription

that scientists should always follow, adapting the partial information that they use to decide

a state representative until the predictions of the principle coincide with experimental obser-

vation. Jaynes’ principle is often viewed critically as “subjectivist” and as relying too much

on information-theoretic considerations and too little on the dynamics of physical systems.

While some of these criticisms could be replied to along the lines of the argument above, it is

certainly true that Jaynes’ argument relies on the entropy as a special measure of uncertainty

just like the typicality arguments rely on a particular choice of measure.

6.3 statistical ensembles without typicality

In the following, we are going to present a framework in which we study the possible state

transformations for a version of thermal operations in which agents only have partial informa-

tion about the system and bath states. Our results provide a novel approach to the justi�cation

of the use of the canonical ensemble in statistical thermodynamics that arguably does without

most of the drawbacks above. In particular, it does not rely on any special choice of measure

or quantity. Instead, the result is operational, characterizing the canonical ensemble as that

family of states that encodes the possible state transitions in thermal operations, if knowledge

of all initial states is limited to their average energy.
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Maximum-entropy ensembles, such as the micro-
canonical or the canonical ensemble, are the pillars on
which statistical mechanics rests. Given some partial

information about a system, a vast set of predictions about its
behaviour can be derived by assigning to the system that statis-
tical ensemble which maximises the entropy compatible with the
partial information. Yet, in some ways this assignment may be
seen as being peculiar in that there exist many other possible
physical states that are compatible with this information. The
assignment of maximum-entropy ensembles is primarily justified
by its undoubtable empirical success when it comes to an
agreement with experiment and observation. Thus, unsurpris-
ingly, there has been much work aiming at providing theoretical
grounds which explain its empirical success, going back to
seminal work by Gibbs1. The most successful general arguments
justifying the use of ensembles—both for classical and quantum
systems—are either based on specific assumptions of the micro-
scopic interactions from which ergodicity can be derived (see
refs. 2,3 for a review on this approach and its conceptual pro-
blems), or based on the notion of typicality. The latter is the
observation that the volume of pure quantum states (compatible
with the information) that behave like a maximum-entropy
ensemble is close to unity, with respect to a relevant measure on
state space4–6. In these approaches, partially motivated by efforts
in quantum thermodynamics7,8, the aim is to show that the
system at hand behaves like the ensemble in the precise sense that
it will output the same measurement statistics for a restricted, but
most realistic and relevant, set of observables. In this way, the
agreement between experiments and the assignment of ensembles
is justified, with the only notorious problem that the measure that
produces the typicality is difficult to justify dynamically. There
have been attempts to derive precisely the emergence of canonical
ensembles for most times from microscopic dynamical laws for
common locally interacting quantum systems (for reviews, see
refs. 9–11). However, it seems fair to say that it is still not fully
clear yet why the probability of a system being, at any (or most)
times, in a state should be described by this measure—a state of
affairs particularly significant in light of the importance of this
ensemble.

In this work, we provide a very different justification for the use
of such ensembles. In contrast to the approaches mentioned
before, our aim is not to derive that system’s measurement sta-
tistics mimic those of the ensemble. Instead, we look at the
possible state transitions that can be induced on a system from
which one has only partial information (see also ref. 12). More
precisely, we consider an initial system described only by partial
information in the form of the expectation value of a set of
observables. We pose the problem of finding the set of transitions
that this initial system can undergo by evolving jointly with an
environment when the state of this environment is itself known
only partially, that is, up to expectation values with respect to a
set of observables that correspond to those of the system. The
environment plays the role of a usual heat bath and the set of
transitions encode any possible task: extracting work, reaching a
colder/warmer state, performing a computation or any other. Our
main result is that, for any initial state, the possible state transi-
tions on such a system under partial information coincide exactly
with those possible if the system and the environment were
initially in the maximum-entropy ensemble state compatible with
the partial information. This then not only justifies the use of the
canonical ensemble to represent a system under partial infor-
mation, it also allows one to derive the building blocks of phe-
nomenological thermodynamics without assuming systems to be
represented by this ensemble. In fact our results can be seen as a
derivation of the Gibbs entropy and the Clausius inequality
without a priori assigning equilibrium states to the systems

involved. Finally, since our results hold for any initial state, they
do not suffer from the problem of typicality approaches men-
tioned above and allow us to avoid assumptions about the sys-
tem’s Hilbert-space dimension (apart from being finite). In
particular, our results also hold for small, individual quantum
systems.

Results
Motivating example. We begin the presentation of our setting
with a motivating example. Consider a small quantum system S
with Hamiltonian H within an environment E at temperature T
and with Hamiltonian HE, that is, an environment in the cano-
nical ensemble at that temperature and Hamilonian.

Given an initial quantum state ρ of the system, we can ask
which final states of the system can be reached by coupling the
system to the environment and evolving the joint system SE in
such a way that the global entropy and energy remain unchanged,
if one assumes perfect control over both the environment
Hamiltonian HE and the coupling, but for a fixed
temperature T. Naturally, the answer to this question will
strongly depend on the particular initial quantum state of S.
For instance, the maximally mixed state ρ ¼ IS and an energy
eigenstate ρ′ ¼ Eij i Eih j will generally allow for very different state
transitions. That is, there will exist some final state ρf that can be
reached by some entropy and energy preserving procedure O
from ρ′, while no such procedure exists for ρ. Call this scenario
the microstate scenario, because here one has full information
about the actual 'microstates'—i.e. quantum states—of the system
and the environment.

Suppose now that, instead of knowing the exact state of the
system, one initially only knows its mean energy to be e with
respect to H. We capture this partial information in what we call a
macrostate of the form (e, H). In this case, one can again ask
which are the reachable states given that partial information.
However, in this case the difficulty is that, in general, there will be
many microstates compatible with this information. For instance,
suppose that (e, H) is compatible with both ρ and ρ′. In this case
ρf cannot be reached anymore because there is at least one state—
ρ in the previous example—compatible with the initial informa-
tion for which ρf is unattainable. That said, one concludes that in
order to reach some final state ρf, if only partial information
about the initial state of S is had, one requires a single operational
procedure O that takes any state compatible with the initial
information to ρf. Note that this scenario is undesirably
asymmetric in that the system’s state is represented by a
macrostate (e, H) (capturing our partial knowledge), while the
environment microstate is fully known to be in the canonical
ensemble at temperature T. Hence, one can go one step further
and consider a situation in which not only does one only know
the system’s initial mean energy, but also the environment is
described by a macrostate (eE, HE). In this case, it becomes even
more difficult to reach a given final microstate ρf, since now there
has to exist a single procedure O that prepares ρf from any
microstate of S compatible with e and any environment
microstate compatible with eE. Indeed, it may seem that in
general no transition is possible under these circumstances. At the
same time, this scenario most accurately describes the situation
that one in fact faces in phenomenological thermodynamics,
where only coarse-grained information is had about both system
and environment. Call this last scenario then the macrostate
scenario, because here both system and environment are
described by macrostates (e, H) and (eE, HE), respectively.

The main result of this work is to show that, not only do there
exist possible transitions in the macrostate scenario, moreover
these transitions are fully characterised by assigning maximum-
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entropy ensembles to the macrostates involved: Under a natural
model of operational procedures modelling thermodynamic
transitions that we introduce below, given some value e, a final
microstate ρf can be reached in the macrostate scenario if and
only if it can be reached in the microstate scenario from the
canonical ensemble state of energy e. Since the canonical
ensemble is moreover the only state for which this equivalence
holds, this result provides an explanation for the important role
that the canonical ensemble plays in statistical mechanics, a
theory formulated in the microstate scenario, to describe
phenomenological thermodynamics, a theory formulated in the
macrostate scenario.

Formal setting. We now proceed to make the notion of the
microstate- and macrostate scenario rigorous and introduce our
model of thermodynamic transitions, i.e. the transitions that a
system S can undergo together with an arbitrary environment at
fixed temperature.

Consider a d-dimensional quantum system S whose mean
energy with respect to the Hamiltonian H is known to be e. We
refer to the pair (e, H) as the 'macrostate' of the system, as it
corresponds to a state of coarse-grained information about the
system. Note, however, that we do not assume that the system is
macroscopic, i.e. that d � 1. Every macrostate of the system
corresponds to an equivalence class [e]H of 'microstates' ρ 2
DðHÞ of the system, namely all those density matrices whose
mean energy with respect to H is e, with EðρÞ :¼ trðρHÞ ¼ e. The
canonical ensemble corresponding to a macrostate (e, H) is then

γeðHÞ :¼ e�βSðeÞH

tr e�βSðeÞH
� � ; ð1Þ

where βS(e) is chosen such that tr(γe(H)H)= e. Note that, by
construction, γe is the maximum-entropy element in [e]H and
exists for every macrostate. As is clear from the example, in the
following, we will often be concerned with making comparative
statements about the microstate- and the macrostate scenarios.
To simplify the presentation and highlight similarities between
these scenarios, we now introduce the following convention: Let
M be any map acting on microstates. Then M((e, H)) :=M([e]H)
is the corresponding macrostate-level map. This notation will
prove convenient in several ways. For instance, the requirement
that an operation O maps all the states ρ compatible with (e, H)
into the state ρf is simply expressed by

Oððe;HÞÞ ¼ ρf : ð2Þ

Similarly, this notation can be also used to express operations on
tensor products of macrostates. For instance, the expression

O ðe;HÞ � eE;HEð Þð Þ ¼ ρf ð3Þ

implies that O(ρ⊗ ρE)= ρf for all ρ and ρE compatible with (e, H)
and (eE, HE) respectively.

Thermodynamic operations on macrostates. Let us now
describe and justify more precisely the form of a general mac-
rostate operation as informally described above. With these
operations we aim at capturing in full generality any possible
transition that a system can undergo together with a heat bath.
Hence, in order to describe an arbitrary macrostate operation,
one is perfectly free to choose as an environment any system of
arbitrary Hilbert-space dimension and with an arbitrary Hamil-
tonian HE. As mentioned before, we do not assume that E is in a
canonical ensemble—which would be fully determined by the
inverse temperature β := (kBT)−1, dimension, and Hamiltonian—
but to have a partial description in terms of its average energy,

thus assigning to it a macrostate (eE, HE). We assume, as it is
standard when considering thermodynamic operations13–15, that
the system and the environment are initially uncorrelated, hence
one initially possesses the macrostate compound (e, H) ⊗ (eE,
HE). Naturally, the attachment of an uncorrelated environment
can be iterated an arbitrary number of times, say N, bringing each
time a new environment with an arbitrary dimension and
Hamiltonian.

Moreover, since the macrostates provided by the environment
model a bath, it is natural to assume that there exists a functional
relationship between the environment Hamiltonian and the
energy. In particular, we will assume this relationship to be that
eE= eβ(HE), where

eβ HEð Þ :¼ tr
e�βHE

tr e�βHEð ÞHE

� �
ð4Þ

is the thermal energy of a bath at inverse temperature β and with
Hamiltonian HE. This assumption will be further discussed below.
Dropping further the dependence on the Hamiltonian in (4)
when it is clear from the context, the most general form of an
initial macrostate then is of the form

ðe;HÞ �N
i¼1

eβ;HEi
� �

: ð5Þ

Given this model of the environment, we now turn to the
describing the model of the joint evolution. Here, we aim at
modelling the isolated evolution of SE, in the sense that it
preserves the energy and entropy of the compound. Regarding the
energy, one has to take into account that only mean values of the
energy are accessible, hence it is most reasonable to impose only
that the mean energy is preserved16–18, while noting that the
mean energy must be preserved for all the initial microstates
compatible with our initial macrostate (5). Regarding entropy
conservation, we enforce it by imposing a unitary evolution of the
compound. We note, however, that our results also hold for larger
set of operations such as probabilistic mixtures of unitaries or
entropy non-decreasing operations, or even more generally, any
set of operations that contains unitary evolutions as a particular
case.

Let us now, for sake of clarity, enumerate the assumptions that
come into play when describing macrostate operations:

Assumption 1: (Thermal energy environments) Given an
environment with Hamiltonian HE, then the associated macro-
state is given by (eβ(HE), HE), where eβ(HE) is the thermal energy
at reference temperature T.

Assumption 2: (Uncorrelated subsystems) One can incorporate
environmental systems that are initially uncorrelated with the
initial system.

Assumption 3: (Unitary evolution) The compound SE under-
goes a unitary evolution.

Assumption 4: (Global mean energy conservation) The unitary
evolution of SE is such its mean energy is preserved for all the
states (both of S and E) compatible with our partial information.

Before turning to the formal definition of macrostate
operations on the basis of these assumption, let us briefly
comment on the assumption that environment macrostates have
thermal energy (4). Clearly, this amounts to assume that
environment macrostates have the same mean energy as the
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canonical ensemble at inverse temperature β > 0,

γβ HEð Þ :¼ e�βHE

tr e�βHEð Þ ; ð6Þ

where we make the convenient abuse of notation of writing β
directly as the subindex, unlike (1) where the mean energy was
used instead. This is indeed unproblematic since e and β are in
one to one correspondence, hence we will use β or e
indistinctively when it is clear from the context.

We emphasise that (4) does not amount to assuming that the
environment is in the canonical ensemble—which would beg the
question by giving a prominent role to the canonical ensemble—
since many states other than the canonical ensemble fulfilling (4)
exist. Nevertheless, Assumption 1 could raise the criticism that
our further results—the justification of ensembles—rely on a
seemingly arbitrary energy assignment for the macrostate of E, as
given by (4). However, we show in the Supplementary Methods 1
that (4) is the only possible assignment so that macrostate
operations reflect indispensable features of thermodynamical
operations. More precisely, we prove that (4) is the only energy
function that does not allow one to extract an arbitrary amount of
work from E alone—even if only partial information is given.
Even more dramatically, it is the only energy function that does
not trivialise macrostate operations, in the sense that any possible
transition would be possible. Hence, (4) can be regarded as a
necessary feature of an environment so that thermodynamic
operations are sensibly accounted for in the formalism.

Finally, combining the notational convention for operations on
macrostates, Assumptions 1–4, and denoting the global mean
energy as E ρSE

� �
:¼ tr ρSEHSE

� �
, we define formally the set of

macrostate operations with an environment at inverse tempera-
ture β:

Definition 1: (Macrostate operations) We say that ρf can be
reached by macrostate operations from (e, H), which we denote
by

ðe;HÞ �!β-mac
ρf ; ð7Þ

if for any ϵ > 0 and ϵ′ > 0 there exists an environment—that is, a
set of N systems with respective Hamiltonians HEi—and a unitary

U on SE, so that

ρf �ϵ trE Uðe;HÞ �N
i¼1

eβ;HEi
� �

Uy
� �

ð8Þ

while preserving the overall mean energy

E Uðe;HÞ �N
i¼1

eβ;HEi
� �

Uy
� �

�ϵ′ E ðe;HÞ �N
i¼1

eβ;HEi
� �� �

: ð9Þ

Here, we use ≈ϵ to say that two quantities differ by at most ϵ in
trace-norm, or in absolute value for expectation values. Note that
although we allow for errors ϵ, ϵ′ in the transition and in the
mean energy conservation, those errors can be made arbitrarily
small, hence it is for all practical purposes indistinguishable from
an exact transition with exact mean energy conservation. It is also
important to stress again that, in the previous definition and
following the notation introduced with Eq. (3), both (8) and (9)
have to be fulfilled for all the microstates compatible with the
macrostates appearing in those equations. See Fig. 1a for a
schematic description of macrostate operations as presented in
Definition 1.

Thermodynamic operations on microstates and main result. As
stated before, our main result consists in showing that not only is
the set of reachable microstates under macrostate operations in
general non-empty, it can also be characterised exactly by the
corresponding canonical ensembles. In order to be able to state
this correspondence between macrostates and their canonical
ensembles formally, we will now introduce microstate operations
as the corresponding model of thermodynamic transitions in the
microstate scenario. These differ from macrostate operations only
in that we assign a particular microstate to S and E. In other
words, microstate operations are the complete analogue of the
operations in Definition 1, but with full information about the
actual quantum states involved. Hence, conditions (8) and (9) are
modified, for microstate operations, in that they have to be ful-
filled for a single state and not for a set of states compatible with
our knowledge.

Definition 2: (Microstate operations) We say that ρf can be
reached by microstate operations from ρ, which we denote by

ρ �!β-mic
ρf ; ð10Þ

Ue Umic
H

e� HE

e�

e�

e�

�f

HE

HE

H

e�

��

��

��

HE

H�fH�

a b
HE

HE

HE

HE

Fig. 1 Pictorical representation of the equivalence between macrostate operations and microstate operations. Panel a shows macrostate operations and b
microstate operation. Closed boxes represent systems from which we only know some partial information, in this case the mean energy. Inside the box
there is the actual microstate unknown to us if the box is closed. Scenario a shows the situation where one has an initial system of which only the mean
energy e is known and one can use any environment, being again limited to knowledge of its initial average energy eβ. The question is whether we can find a
unitary U that takes the two systems, regardless of what is actually inside of them, to one box for which we are certain that we will find inside the
microstate ρf. The answer to this question is provided by scenario b, where the initial boxes of system and environment are both open (implying that we
know what is the microstate) and populated with the maximum-entropy ensemble. U exists if and only if there exists a unitary Umic that implements the
transition in b when taking ρ= γe(H). This shows that a thermodynamic transition is possible if and only if it is also possible under the assignment of
ensembles to systems
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if for any ϵ > 0 and ϵ′ > 0 there exists an environment—that is, a
set of N systems with Hamiltonians HEi—and a unitary U on SE,
so that

ρf �ϵ trE Uρ �N
i¼1

γβ HEið ÞUy
� �

ð11Þ

while preserving the overall mean energy

E Uρ �N
i¼1

γβ HEið ÞUy
� �

�ϵ′ E ρ �N
i¼1

γβ HEið Þ
� �

: ð12Þ

An operationally inspired illustration of the two types of
operations as well as of our result is provided in Fig. 1.

In this setup, we call a macrostate (e, H) and a microstate ρ
operationally equivalent, denoted as (e, H) ~β ρ, if

ðe;HÞ �!β-mac
ρf , ρ �!β-mic

ρf : ð13Þ

Whenever a macrostate and a microstate are related by the
equivalence ~β, then, concerning the possible thermodynamic
transitions, they are equivalent descriptions of the system. We are
now in a position to state our main result.

Theorem 3: (Equivalence with the canonical ensemble) For any
β ≠ 0, the macrostate (e, H) is operationally equivalent to the
corresponding canonical ensemble compatible with the partial
information e. That is,

ðe;HÞ �β γeðHÞ: ð14Þ

This theorem shows that, whenever the behaviour of a system
under partial information concerns the possible thermodynamic
transitions, a macrostate can be treated as if it was in its
corresponding canonical ensemble, in the sense that they their
behaviours coincide exactly. A sketch of the proof, for illustration
of the idea, is given in Fig. 2. The full proof appears in the
Supplementary Methods 1.

Lastly, let us note that all of the above, including the operations
and the notion of operational equivalence, can straightforwardly
be generalised to the more general case of a set Q ¼ Qjf g of n
commuting observables replacing H, a vector v of expectation
values for each observable replacing e and by now parametrising
the environment by a vector of inverse 'temperatures' β= (β1, …,
βn) encoding other intensive quantities. In this case, we obtain an
operational equivalence between the macrostate ðv;QÞ and the
corresponding maximum-entropy ensemble compatible with the
partial information. More precisely, we obtain that, as long as
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e�

e�

e�

e�
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e� e�

e�

e�
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Fig. 2 Sketch of proof of the main result. We show how an operation of the form of Fig. 1b can be used to build an operation of the form Fig. 1a. This gives
the direction ⇐ in (13) for the equivalence of Theorem 3 (the other direction is trivial, see Supplementary Methods 1). The construction has three sub-
blocks: Box U1 represents the fact that one can obtain the microstate γβ(HE) to arbitrary precision from many copies of the macrostate (eβ(HE), HE) using a
macrostate operation (interestingly, this can be done with exact energy conservation). This result relies on a central limit theorem and typicality results for
individual energy eigenspaces of many non-interacting systems. Box U2 operates by choosing as HE as a rescaled version of H and showing that one can
then obtain the microstate γe(H) using a macrostate operation. Box Umic exists by assumption: it uses the microstate operation to obtain ρf from γe(H) (it is
the one represented in Fig. 1b))
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βj ≠ 0 for all j,

ðv;QÞ �β γvðQÞ; ð15Þ

where, in exact analogy to (1), γvðQÞ is the so-called generalised
Gibbs ensemble (GGE)11,19–23

γvðQÞ :¼ e
�
P
j

βjSðvÞQj

tr e
�
P
j

βjSðvÞQj
 ! ; ð16Þ

with βjSðvÞ being functions such that tr QjγvðQÞ� � ¼ vj. The
scenario and derivation is completely analogous to that yielding
Theorem 3 and it is presented in the Supplementary Methods 1.

Rederiving bounds on work extraction. At a conceptual level, we
regard as our main contribution the theoretical justification, from
an operational perspective, for the common and empirically
extraordinarily well-supported use of the canonical ensembles in
thermodynamics to describe systems in settings of partial infor-
mation. The key step in this justification has been to prove a
coincidence in behaviour with respect to thermodynamic transi-
tions. The relevance of this coincidence is that many thermo-
dynamic tasks and the laws of thermodynamics can ultimately be
formulated as reflecting state transitions.

We illustrate this first using the task of work extraction and
then derive the second law of thermodynamics in the form of the
Clausius inequality.

Let us consider the following task: One is given a system S from
which only the Hamiltonian and its mean energy e are given. For
instance, S might be a burning fuel which one wants to use in a
heat engine to perform work together with an environment. This
common scenario is tackled in phenomenological thermody-
namics by assigning to the system a temperature TS and to the
environment a temperature T. The optimal amount of work that
can be performed is simply given by the difference of free energies
of S during the process. Note that phenomenological thermo-
dynamics operates at a level where only partial information—the
thermodynamic variables—are given about both the system and
the environment. Furthermore, the operation of such a heat
engine is effectively independent of the precise microstate
that describes S and E, exactly in the same spirit as that of
Definition 1.

From the perspective of statistical mechanics, the assignment of
a temperature TS and T is understood as the assumption that both
systems are in a canonical ensemble. Indeed, if we assume the
system and the environment are initially in the state

γe � γβ :¼ γeðHÞ � γβ HEð Þ ð17Þ

one can formally derive limitations on the work ΔW. The
problem amounts to finding how much one can reduce the
energy of the whole compound by any unitary operation that
does not conserve the energy and assuming that all of the
remaining energy can be extracted as work. One then obtains that
this value is determined by the free energy as (see, e.g., ref. 16)

ΔWopt :¼ max
U ;HE

E γe � γβ

� �
� E Uγe � γβU

y
� �h i

¼ ΔES � TΔSS :¼ ΔF S;
ð18Þ

where we denote the energy by E ρSE
� � ¼ tr ρSE HS þHEð Þ� �

, ΔES
is the energy difference on S and ΔSS is the difference of the von
Neumann entropy on S. This yields the bound in terms of the free
energy F S ¼ ES � β�1SS of the system and it relies only on the

first law of thermodynamics ΔESE ¼ �ΔW and the prescription
of canonical ensembles to the system and environment.

We will now show that one can use Theorem 3 to derive the
bound (18) without relying on the assumption (17) which assigns
maximum-entropy ensembles to the systems at hand. The system
S, given the partial information, is described by the macrostate (e,
H). We also have at our disposal an environment in any
macrostate of the form � eβ HEið Þ;HEi

� �
. The goal is to perform

work with a protocol in such a way that it achieves this work
extraction for all possible microstates in the respective equiva-
lence classes, [e]H and eβ HEið Þ� 	

HEi
for all i, in a similar way to the

way the laws of phenomenological thermodynamics allow one to
extract work regardless of the actual microstates of the systems
involved. It is clear that

γeðHÞ �!β-mic
γeðHÞ8e;H: ð19Þ

Hence, by invoking Theorem 3 one has also that

ðe;HÞ �!β-mac
γeðHÞ;

eβ HEð Þ;HE
� � �!β-mac

γβðHÞ:
ð20Þ

Once we have the system S and the environment E in the states of
at the r.h.s. of (20), we simply apply the unitary achieving the
maximum in Eq. (18). In this way an amount of work given by
ΔF S is extracted. The fact that this is the optimal possible value
that works for all microstates in [e]H is trivial, since the work
extraction has to be successfully implemented if the system is
given is in the state γe(H)∈ [e]H, for which the optimal value is
ΔF S as given by Eq. (18).

We conclude then that the optimal work that can be extracted
from a system and an environment, from which we only know
their mean energy coincides precisely with the optimal work
when system and environment are described by their correspond-
ing canonical ensemble. A completely analogous argument
applies to any other conceivable task that can be formulated as
concerning state transitions between microstates, both thermo-
dynamically but also, and more generally, tasks with other
conserved quantities.

Second law and Clausius inequality. Now we show that the
second law of thermodynamics can be recovered by using The-
orem 3. More particularly, we show that the set of achievable
states ρf that can be reached by a transition of the form

ðe;HÞ �!β-mac
ρf ð21Þ

can be determined only by merely taking into account the free
energy F . First note that by Theorem 3 the set of achievable ρf
coincides with those that can be achieved by microstate opera-
tions of the form

γeðHÞ �!β-mic
ρf : ð22Þ

The set of achievable states by microstate operations has been
investigated in ref. 16, where it is shown that the transition is
possible if and only if the free energy decreases. Hence, we arrive
at the second law of the form

ðe;HÞ �!β-mac
ρf , F γeðHÞ� � � F ρf

� �
: ð23Þ
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Importantly, this result can also be seen as a derivation of the free
energy as a state function F(e, H) on macrostates, by setting
Fðe;HÞ ¼ F γeðHÞ� �

. Since the energy is already naturally
defined for macrostates we then also obtain the derived Gibbs
entropy

Sðe;HÞ :¼ 1
T
ðe� Fðe;HÞÞ: ð24Þ

Interpreting the change of energy on the system as heat ΔQ :=

e′− e, we see that a transition ðe;HÞ �!β-macðe′;HÞ between
macrostates using macrostate operations is possible if and only if

ΔQ � TΔS; ð25Þ

with ΔS := S(e′, H)− S(e, H). We thus find that a state transition
between macrostates is possible if and only if the Clausius
inequality is fulfilled.

Lastly, we highlight that a generalisation of the same results for
the case of multiple commuting observables is possible combining
in a similar fashion Theorem 3 from the Supplementary
Methods 1 with the results of ref. 17 to arrive at a formulation
of the second law of the form

ðv;QÞ �!β�mac
ρf , GðγvðQÞÞ � Gðρf Þ; ð26Þ

where G is the so-called free entropy defined as

GðρÞ ¼
X
j

βj tr ρQj
� �� SðρÞ: ð27Þ

Operational equivalence breaks for exact energy conservation.
Theorem 3 establishes the operational equivalence between
macrostates and their corresponding maximum-entropy ensem-
bles based, among others, on Assuption 4, where it is assumed
that the mean value of the energy is preserved. In this section, we
consider a strengthening of macrostate and microstate operations
in which Assumption 4 is replaced by the following:

Assumption 5: (Exact energy conservation) The unitary
evolution U commutes with the total Hamiltonian,

U ;HS þ HE½ 	 ¼ 0: ð28Þ

We define, in full equivalence to the previous discussion,
macrostate and microstate operations, but with exact preservation
of the energy. We say that ρf can be reached by commuting
macrostate operations from the macrostate (e, H), similarly to
Definition 1, but imposing, instead of mean energy conservation
as in Eq. (9), the condition (28). One can define, analogously,
commuting microstate operations by imposing similarly Eq. (28)
and a notion of operational equivalence �c

β
analogous to (13).

In the Supplementary Methods 2, we show that for every β and
non-trivial H, there exists at least one initial value e, such that

ðe;HÞ≁c
β
γeðHÞ: ð29Þ

We believe the proof of this result to be interesting in its own
right, because in it we show that the maps produced by
commuting macrostate operations admit a simple linear char-
acterisation, the details of which are discussed in the Supple-
mentary Methods 2. We leave as a relevant open question to
investigate particular cases where equivalence with the
maximum-entropy ensemble is recovered for exact energy
conservation. In the Supplementary Methods 3, we present one

setting in which the operational equivalence for the commuting
case is recovered locally for large non-interacting systems.
Another possibly fruitful direction is to impose extra restrictions
on the set of possible states within an equivalence class and show
equivalence only for this restricted class. Some partial results on
this question are discussed in the Methods section. Also, note that
(29) holds even if one replaces Assumption 1 for the assumption
that the bath is already in a canonical ensemble. This follows
since a bath fulfilling Assumption 1 can be transformed into a
canonical state by unitaries that respect (28) (see Supplementary
Methods 1). Again, an analogous breakdown of the equivalence as
given by (29) exists for several commuting observables.

With respect to the justification of the use of maximum-
entropy ensembles, this result implies that one cannot justify, in
general, assigning a maximum-entropy state to a system under
partial information by means of considering the possible
thermodynamic transitions in a setting of exact energy conserva-
tion. This, we submit, again confirms current practice, because
canonical ensembles are rarely used in situations where full
control is had over the microdynamics of a system. From an
operational point of view, note that Eq. (28) can be interpreted as
system and bath being isolated from any other external system
during the transition. However, in a situation where the only
information available about the external system is also its mean
energy, it seems challenging to certify that indeed system and
bath evolved truly isolated. In this case, one can only be certain
that the external system did not change its mean energy, which
gives rise to the weaker condition of Assumption 4. Nonetheless,
we regard both mean energy or exact energy conservation as
reasonable assumptions whose adequacy will depend on the
particular description of the situation at hand.

The macroscopic limit. In the light of the inequivalence of
macrostates and their respective ensembles for the case of exact
commutation, it is interesting to quantify by how much one has
to violate (28) in order to recover equivalence. For this, let us
introduce the random variable X which quantifies the energy
change of SE during a macrostate operation. This energy change
is captured by a probability distribution P. Theorem 3 implies the
equivalence between the macrostate (e, H) and its corresponding
ensemble with macrostate operations. These preserve the mean
energy of the compound, hence with vanishing value of the first
moment of P, although higher moments could well be different
from zero. On the other hand, in the case of commuting mac-
rostate operations, all the higher moments of P would indeed
vanish due to condition (28). Hence, the deviation from zero of
the higher moments of P seems a sensible quantifier of the vio-
lation of (28).

We will now discuss the behaviour of these higher moments for
large, non-interacting and independent systems, capturing the
classical limit of macroscopic systems. To do so, consider a
system S described by N non-interacting subsystems. We will
consider macrostate operations between a macrostate (e, H) and a
final state ρf and impose that the final and initial states are large
and uncorrelated. That is, instead of being any microstate in [e]H,
the initial microstate takes the form σ ¼ �N

i¼1σ
i. We also assume

that the final state takes a similar form ρf ¼ �N
i ρ

i
f . Using

standard arguments of central limit theorems one can show that,
in the limit of large N and for bounded Hamiltonians, P(X) for
the transition ðe;HÞ�!mac

ρf converges in distribution to a normal
distribution with variance scaling as

ffiffiffiffi
N

p
. Hence, the higher

moments of P(X) per particle vanish (see Supplementary
Methods 3). This is an argument in favour of the assignment of
the ensemble to macrostates, for large weakly correlated systems,
as long as one tolerates violations of (28)—as measured by the
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higher moments—that are negligible in comparison with the
typical energy scales involved in the thermodynamic operation.

Comparison with existing work. There exist several com-
plementary approaches to justify the use of or single out
maximum-entropy states in thermodynamics. As stated already
in the introduction, the novelty of our approach lies in specifically
assigning ensembles based on the set of possible thermodynamic
transitions. This is in contrast with previous approaches, where
canonical ensembles are justified based on measurement statistics
of relevant observables. Both perspectives—the one presented
here and previous approaches—can be fairly incorporated in a
more general formulation about what is meant by a justification
of the use of ensembles: the representation of a system’s state by a
statistical ensemble is justified with respect to some property if
one can, on reasonable grounds, derive that the ensemble and the
state behave exactly the same with respect to this property.
Approaches based on notions of typicality usually consider as
system states pure quantum states and the measurement statistics
of some restricted set of observables—often local observables—as
the property to be reproduced by the ensembles4,6. In contrast, in
the present work, the system states are macrostates of partial
information and the property is with respect to achievable state
transitions under thermodynamic evolution. Theorem 3 justifies
the assignment of maximum-entropy ensembles to macrostates
with respect to such transitions. Macrostates are arguably the
most common state assignment in thermodynamics, being at the
root of discusssions of the link of statistical mechanics and
phenomenological thermodynamics, in that one often has
knowledge of a system’s state only up to its expectation values.
Hence, this result provides a very broad operational justification
of the use of maximum-entropy ensembles for a plethora of
thermodynamical processes.

Another aspect that distinguishes our approach from other
notions based on typicality is that we do not need to introduce a
measure on quantum states or make any particular assumption
on the dynamics. More precisely, known approaches based on
typicality consider a given subset of quantum states and show
that measurement statistics coincide with those of the ensemble
for most of the quantum states within the subset. However,
there is no general argument to advocate that one will find in
nature precisely those states for which the statistics resemble
those of the ensemble, even though these states comprise the
vast majority according to reasonable measures. In contrast,
one of the main features of our results is that it works for all
and not for most of the quantum states that are compatible with
the partial information. First, we demand that the transitions
from macrostates, as given abstractly by (3), reach ρf for all the
states compatible with the partial information. It would be
analogous to the notion of typicality if we would instead
demand that ρf is reached only from most of the microstates
according to some state measure, but this is actually not
required to derive our main results. Secondly, the equivalence
between the macrostate and the corresponding ensemble holds
for all possible macrostates, instead of just for a vast majority of
the macrostate according to some measure on the possible
values of the partial information. Most importantly, we stress
that the equivalence between the macrostate and the ensemble
holds irrespectively of the system’s dimension. To put it in
more practical terms, our results imply that a system, even if
made of a few qubits, behaves as if it was in its maximum-
entropy ensemble when it comes to state transitions under joint
evolution with a possibly large bath. This is true in a single-shot
regime—considering transitions on a single copy of the system
at hand—without having to rely on taking the thermodynamic

limit where transitions of large number of copies are considered
instead24,25.

Lastly, it may seem that our approach is closely related to that
of the famous Jaynes’ principle according to which a system
should always be assigned the maximum-entropy state consistent
with what one knows about it19,26. What both approaches have in
common is that they consider the question of assigning
microstates to macrostates. However, apart from this they differ
considerably: Jaynes motivates his principle on the basis of
Shannon’s findings about the uniqueness of the Shannon entropy
as an asymptotic measure of information. In contrast, our
approach does not require us to assume any privileged measure of
information, or even rely on any consideration about information
measures at all. Moreover, as noted in the preceding paragraph,
our approach also makes no reference to an asymptotic setting.
Instead, in our work, we define a task on an individual system and
investigate how an experimenter’s partial knowledge about the
system impacts her ability to execute this task. The canonical
ensemble then naturally emerges as an effective representation of
the experimenter’s operational abilities in this setting. Again, no
recourse to a measure of information, average performance, or
even a subjectivist account of probabilities is required in our
setting.

Discussion
In this work, we have introduced a fresh way of justifying the very
common use of maximum-entropy ensembles as a representation
of the state of systems. We take a strictly operational stance to the
subject, in which an experimenter has only partial information
about the microstate of the system and all operations have to be
compatible with such partial information. The vantage point for
our argument concerns the possible thermodynamic transitions
that systems can possibly undergo. This approach has the key
advantages that it (a) naturally fits with many operational tasks in
thermodynamics and its laws and (b) does not require underlying
typicality arguments, and hence avoids some of their conceptual
issues. We have also shown how our results can be used to derive
features of phenomenological thermodynamics, such as the Gibbs
entropy, free energy as state functions and the Clausius
inequality, which determines whether a state transition on mac-
rostates is possible without investing non-equilibrium resources.
We are thus able to derive fundamental thermodynamic results
without any assumption about typicality or information mea-
sures. Finally, our results generalise to the setting of several
commuting observables. As such, the results here are likely to be
of interest for thermodynamics in generalised settings or even
outside the context of thermodynamics.

We point out as interesting further direction of research to
incorporate probabilistic transitions to our formalism. We
assume in our formalism that macroscopic operations transform
any state of the equivalence class into a desired final state. It is an
interesting endeavour to consider possible relaxations of this
requirement by allowing some error probability on the transition.
We leave it as an open question to investigate sets of reachable
states under such relaxations. Lastly, the findings that operational
equivalence breaks down for exact commutation suggest that
further investigation is needed. In particular, it is natural to ask if
one can impose additional constraints or assumptions to recover
equivalence under exact energy conservation.

Data availability. Data sharing not applicable to this article as no
data sets were generated or analysed during the current study.
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SUPPLEMENTARY METHODS 1
PROOF OF OF MAIN RESULT

General maximum entropy ensembles

In this section we generalize the formalism laid out in the results section of the main text to the case of many conserved
quantities. That is, the macrostate and microstate operations and the notion of operational equivalence are generalised to the
more general case of a set {Qj} of n commuting observables replacing H , and a set {vj} of expectation values for each
observable replacing e. We introduce the following notation to arrange these sets into vectors

Q = (Q1, . . . , Qn), (1)
v = (v1, . . . , vn), (2)

so the macrostate of the system is given by (v,Q). The equivalence class of quantum states compatible with the macrostate is
denoted by [v]Q.

We model the environment with an analogous assumption as i) in the main text, but for the case of more conserved quantities.
We assume that one can have access to N uncorrelated subsystems described each by a macrostate. The mean value of the
conserved quantities is determined by the value of a vector of inverse “temperatures” β = (β1, . . . , βn) for each conserved
quantity. We denote, say for subsystem El, the conserved quantities and mean values as

QEl = (Q1
El , . . . , Q

j
El

), (3)

vβ(QEl) =
(
vβ(Q1

El), . . . , vβ(Qj
El

)
)
, (4)

where we are making the slight abuse of notation to identify

Q1
El := I1 ⊗ · · · ⊗Q1

El ⊗ · · · ⊗ IN . (5)

In this way, we will denote the j-th conserved quantity on the whole environment as QjE =
∑N
l=1Q

j
El

. Note that QjE plays
a similar role as the Hamiltonian of the environment HE in the main text, but in this case for a different conserved quantity.
Accordingly we also can arrange the conserved quantities of the environment, and the compound SE in a vector as

QE = (Q1
E, . . . , Q

n
E), (6)

QSE = (Q1 +Q1
E, . . . , Q

n +QnE). (7)

The environment is modeled by any macrostate of the form
⊗N

l=1(vβ(QEl),QEl) where, in analogy to equation (4) of the
main text, we assign a mean value of the conserved quantities equal to the “thermal” value, which in this case corresponds to the
value that a maximum-entropy ensemble takes. That is,

vβ(Qj
El

) = tr
(
γβ(QEl)Q

j
El

)
, (8)

where γβ is the so-called generalised Gibbs ensemble (GGE) defined as

γβ(QEl) :=
e−

∑
j βjQ

j

El

tr
(
e−

∑
j βjQ

j

El

) . (9)

We are now in a position to introduce macrostate operations.
Definition 1 (Macrostate operations with many charges) We say that ρf can be reached by macrostate operations from (v,Q),
which we denote by

(v,Q)
β-mac→ ρf , (10)

if for any ε > 0 and ε′ > 0 there exist an environment with observables QE, and a unitary on SE such that
∥∥trE(U(ρi ⊗ ρE1 ⊗ · · · ⊗ ρEm)U†)− ρf

∥∥
1
≤ ε, (11)

while preserving the global value of all the charges
∣∣∣∣∣tr
(
U(ρi

N⊗

l=1

ρEl)U
† QjSE

)
− tr

(
ρi

N⊗

l=1

ρEl Q
j
SE

)∣∣∣∣∣ ≤ ε
′, (12)
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3

for all j = 1, . . . , n. Importantly, both Supplementary Equations (11) and (12) have to be fulfilled for all the states of S and E
compatible with our partial information, that is,

∀ρi ∈ [v]Q, ρEl ∈ [vβ(QEl)]QEl
for l ∈ [1, . . . , N ]. (13)

At this point, it is worth briefly discussing the physical significance of Q and QE. Our framework and in particular our main
result – i.e. the equivalence with the maximum entropy ensemble presented in Theorem 3 of the main text – apply for any choice
of charges for S and the environment E, given by Q and QE respectively, as long as the total mean value of the compound is
preserved. In this sense our results leave open and completely general the choice of conserved quantities. However, one must
be cautious by noting that imposing a conservation law of the mean value of Q+QE is not always well-justified. For instance,
when Q are the Hamiltonian, angular momentum and number of particles, it makes sense to allow for environments where QEl

are the Hamiltonian, angular momentum and number of particles of El respectively. In this scenario, imposing Supplementary
Equation (12) is meaningful. On the contrary if we take Q to be the angular momentum and QE to be, say, the magnetisation,
we find that it might be in general unjustified to impose a conservation of Q + QE, since those two quantities are, a priori,
unrelated. In summary, our framework takes as a starting point that a conservation law is imposed and builds upon this law.
The prior arguments that justify imposing such a conservation law are outside the scope of this paper and must be considered
independently.

The definition of ρ
β-mic→ ρf is completely analogous to the case of the previous section, with the GGE ensemble playing the

role of the canonical ensemble.
Definition 2 (Microstate operations with many charges) We say that ρf can be reached from ρi by microstate operations, which
we denote by

ρi
β-mic→ ρf , (14)

if for any ε > 0 and ε′ > 0 there exist an environment with observables QE and a unitary on SE such that
∥∥(U(ρi ⊗ γβ(QE))U†

)
− ρf

∥∥
1
≤ ε, (15)

while preserving the overall value of the charges
∣∣∣tr
(
U(ρi ⊗ γβ(QE))U†QjSE

)
− tr

(
ρi ⊗ γβ(QE)QjSE

)∣∣∣ ≤ ε′, (16)

for all j = 1, . . . , n.
We can now formulate the main result for the case of multiple observables:

Theorem 3 (Equivalence with the GGE) Let Q be any set of commuting observables and the environment be such that βj 6= 0
for all j. The macrostate (v,Q) is operationally equivalent to the corresponding GGE ensemble compatible with the partial
information v. That is,

(v,Q) ∼β γv(Q), (17)

where v are the inverse Lagrange multipliers that one assigns to S so that tr(Qjγv(Q)) = vj for all j.

Proof of Theorem 3

In this section, we will prove Theorem 3 above, which implies Theorem 3 in the main text as a special case. The equivalence
relation in Supplementary Eq. (17) requires showing that

(v,Q)
β-mac→ ρf ⇔ γv(Q)

β-mic→ ρf . (18)

The direction “⇒” is trivial. Note that the l.h.s. implies that the transition is possible for all initial states compatible with (v,Q).
In particular, γv(Q) is one of these states compatible with (v,Q) and hence the r.h.s. condition follows.

Before embarking on the proof of the direction “⇐”, we will provide an overview of the different steps involved: 1. We
show that macrostate operations allow us to consider without loss of generality probabilistic mixtures of unitary operations as
well. 2. We show that using probabilistic mixtures of unitaries, we can reduce the problem to only considering microstates
which are diagonal in the basis of the conserved quantities. 3. Using the previous results we show that we can ”distill”, from
the environment described by partial information, systems for which we are certain that they are in the microstates given by
the GGE to arbitrary accuracy and with arbitrarily little change of the charges. This shows that we can effectively describe the
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environment by GGE microstates directly. 4. We show that once we have an environment directly described by GGE microstates,
we can always bring the system to the GGE microstate corresponding to its macrostate. That is, we show that it is possible to
implement the transition

(v,Q)
β-mac→ γv(Q). (19)

Finally, after we have replaced the state on the system with the GGE by a macrostate operation, we can apply the microstate
operation that maps the GGE to the desired final state (r.h.s. of Supplementary Eq. (18) which is the premise of the proof). That
is, we compose macrostate operations and microstate operations in the following way:

(v,Q)
β-mac→ ρ ∧ ρ

β-mic→ σ ⇒ (v,Q)
β-mac→ σ. (20)

By taking ρ = γv(Q) and σ = ρf and using Supplementary Eq. (19) we obtain the “⇐”-direction, which concludes the proof.
We will now give detailed derivations of steps 1.-4. separately.

Reducing the problem to diagonal microstates

We now show that by being able to implement mixtures of energy-preserving unitaries, we can reduce the problem to one in
which all microstates are diagonal in the eigenbasis of all the conserved quantities. To do that, define for every operator Qj the
mixture of unitaries

ρ 7→ DQj (ρ) := lim
T→∞

1

T

∫ T

0

eiQjtρe−iQjt dt. (21)

This mixture of unitaries dephases every state in the eigenbasis ofQj . Since all theQj commute, we can sequentially apply these
maps to map any state ρ ∈ [v]Q to a state that commutes with all Qj . In the following, we will denote this set of microstates that
are diagonal in the eigenbasis of all the Qj and correspond to the macrostate (v,Q) by [v]diag

Q . The fact that we can dephase
all states without changing the mean values vj implies that condition Supplementary Eq. (13) of Definition 1 can be relaxed to
diagonal states, i.e.,

∀ρi ∈ [v]diag
Q , ρEl ∈ [vβ(QEl)]

diag
Q

El
for l ∈ [1, . . . , N ]. (22)

This allows us to restrict to diagonal states in the last two steps (3. and 4.).

Mixtures of unitaries

We will now show that instead of considering unitary operations for macrostate operations, for finite temperature environ-
ments, we can also use probabilistic mixtures of unitaries. The basic idea is to use systems from the environment, described by
the macrostate

⊗N
l=1(vβ(QEl),QEl), as a source of randomness.

Suppose we want to act with a mixture of unitaries on a system S at hand (which might include other systems from the
environment). To do that, we first take two additional systems out of the environment. We choose these subsystems to be
qubits labeled by E1 and E2 with QEl = (H, I, . . . , I). That is, we only consider the energy as a conserved quantity. Let us
re-scale their Hamiltonian so that we can write it as H = 0|0〉〈0| + ∆|1〉〈1|. As the macrostates have energy eβ(H) and they
are uncorrelated this determines completely the diagonal of the microstates. One finds that if ρE1 ⊗ ρE1 ∈ (eβ(H), H)⊗2 then
tr(ρE1 ⊗ ρE1 |i, j〉〈i, j|) := pi,j = pipj , with p1 = 1− p0 = eβ(H)/∆. Let us choose ∆ so that p0 = 1/

√
2.

We now apply to the compound SE1E2 the unitary

U = |0, 0〉〈0, 0|E1E2 ⊗ US + (|0, 1〉〈0, 1|+ |1, 0〉〈1, 0|+ |1, 0〉〈1, 0|)E1E2 ⊗ U ′S . (23)

One obtains that the effective map on the S is

ρ 7→ M(ρ) = trE1E2(UρU†) (24)

= p0,0UrestρU
†
rest + (p0,1 + p1,0 + p1,1)U ′restρU

′†
rest

= (p0)2UrestρU
†
rest + (1− (p0)2)U ′restρU

′†
rest

=
1

2
UrestρU

†
rest +

1

2
U ′restρU

′†
rest.
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Repeating this process with as many pairs of qubits as required, we can apply apply any mixture of unitaries that we need.
Hence, we can assume without loss of generality that in order to perform a macrostate operation as given by Definition 1, it
suffices to find, instead of a single unitary U on the SE compound, a mixture of unitaries that performs the desired transition,
which we denote as

ρ 7→ U(ρ) =
∑

λ

pλUλρU
†
λ, (25)

with each of Uλ preserving the mean value of the conserved quantities.

From the macrostate environment to the maximum entropy environment

The macrostate operations and the microstate operations employ different models of the environment. As discussed in the
main text, the environment for macrostate operations is given by macrostates of the form

N⊗

l=1

(vβ(QEl),QEl). (26)

On the other hand, for microstate operations one assumes that the environment is given by maximum entropy ensembles of the
form

N ′⊗

l=1

γβ(QEl). (27)

We will now show that any environment of the form in Supplementary Eq. (27) can always be “distilled” from an environment
of the form in Supplementary Eq. (26). That is, for any N ′ one can always find a sufficiently large N so that a system of the
form in Supplementary Eq. (27) is obtained.

Due to the fact that we can implement mixtures of unitaries and dephase in the energy-eigenbasis we can, without loss of
generality, model the macrostate operations that achieve this distillation by mixtures of unitaries that act on diagonal states of the
bath, requiring only that they preserve the total expectation values of all the observables. For simplicity, we will take N ′ = 1,
since an extension to larger values of N ′ can be done by simply repeating the process over N ′ copies of bath macrostates of the
form in Supplementary Eq. (26).

For purely technical reasons, we will for now consider the special case where the eigenvalues of all the conserved quantities
Qj

El
have rational eigenvalues. Since any operator can be approximated to arbitrary accuracy by one with rational eigenvalues,

this is not a severe restriction.
Consider a larger number N of identical environment systems in the same macrostate (vβ(QEl),QlE), where QEl = QEl′

for all l, l′ = 1, . . . , N . We will apply a unitary map U of the form in Supplementary Eq. (25) and find that the reduced state on
every subsystem is given by γβ(Q

El
) to arbitrary accuracy as N →∞.

We first have to set up some notation. A basis-state on one of the subsystems can be labelled by the eigenvalues qjα of the
n conserved quantities Qj

El
, where α = 1, . . . , dEl(j) and j = 1, . . . , n. Here, dEl(j) is the number of distinct eigenvalues of

Qj
El

. Simplifying the notation, the basis states on system El can thus be labeled by d vectors αx = (αx1 , . . . , α
x
n) corresponding

to the choice of eigenvalues qjαxj . A basis-state for the N systems is then given by choosing one vector αx for each subsystem

and is denoted by αx = (αx1 , . . . ,αxN ). We will label the joint-eigenspaces of the QjE on the N systems by Πξ and identify
also Πξ with the projector onto that eigenspace. Given an eigenspace Πξ, we finally denote the corresponding eigenvalue of the
total charge QjE as qjE,ξ.

After setting up the notation, we will now start with the actual proof. The operation that we consider is very simple: We
simply apply a completely random unitary in each of the subspaces Πξ. This operation clearly commutes with the total charges,
hence it also preserves its average value. If we denote the total probability of subspace Πξ by pξ, it leaves the whole distribution
pξ invariant, while leaving each of the subspaces in the maximally mixed state Ωξ. Since each of the subspaces is permutation
invariant, we find that the state of every system is finally described by the same density matrix

ρ′El =
∑

ξ

pξ trl(Ωξ). (28)

Since the initial state ⊗lρEl is uncorrelated, the total weight of joint eigenspaces Πξ for which any of the eigenvalues qjE,ξ
deviates by more than O(

√
N) from Nvjβ is exponentially small (by Hoeffding’s inequality). We will collect the remaining
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subspaces in a setM. We thus have

ρ′El =
∑

ξ∈M
pξ trl(Ωξ) + εNσ, (29)

where σ is some density-matrix and εN goes to zero exponentially withN . Note that for all ξ ∈M the corresponding eigenvalues
fulfill

|qjE,ξ/N − vjβ| ≤ δ
j
N , δjN

N→∞−→ 0. (30)

We will now show that, asN →∞, the reduced state on any single subsystem of each of the maximally mixed states Ωξ, with
ξ ∈ M, approaches the GGE. To see this pick any such subspace Πξ. The fact that the eigenvalues qjα are all rational, together
with the fact that ξ ∈M implies that the dimension of any such subspace becomes arbitrarily large with increasing N .

Now consider the basis vectors αx = (αx1 , . . . ,αxN ) in Πξ. We will associate to each such basis vector a type

T (αx) =

(
k1

N
, . . . ,

kd
N

)
, (31)

where kx is the number of subsystems in state αx. In other words, they fulfill
∑
x kx = N and

d
El

(j)∑

x=1

kxq
j
αxj

= qjE,ξ. (32)

The number of basis vectors corresponding to the same type T is given by

#T =
N !

∏d
x=1 kd

. (33)

It can be bounded using Stirling’s approximation as
√

2πpoly (N) eNS(T ) ≤ #T ≤ e poly (N) eNS(T ),

where S(T ) = S(k1/N, . . . , kd/N) is the Shannon-entropy of a type. Note that the total dimension of one eigenspace Πξ is
simply given by

d(Πξ) =
∑

T∈Πξ

#T. (34)

A type has the property that Tx = kx/N ≥ 0 and
∑d
x=1 kx/N = 1. It can hence be interpreted as a probability distribution. If

the total system is in the state Ωξ, we obtain from permutation invariance that the probability to find the l-th subsystem in state
αx is given by

pξ
El

(αx) =

∑
T∈Πξ

Tx#T
∑
T∈Πξ

#T
. (35)

We will now show that all types that differ from the GGE-distribution by more than δ (in some norm on Rd−(n+1)) have a
relative weight that vanishes as N → ∞. In other words, as we increase the system size, the probability distribution pξ

El
(αx)

converges to that of a GGE with vj = qjE,ξ/N . Let us denote the probability distribution corresponding to the GGE in subspace
ξ by γξ. Since the Shannon entropy is concave and has a unique maximum among all probability distributions compatible with
the expectation values of the conserved quantities Qj

El
corresponding to the subspace ξ, we can bound the entropy of any type

that differs by more than δ from γξ as

S(γξ)−K ′δ2 ≤ S(T ) ≤ S(γξ)−Kδ2, (36)

where the constants K and K ′ do not depend on N .
We thus see that the weight of the type is

√
2πpoly (N) eNS(γξ)−NK′δ2 ≤ #T

≤ e poly (N) eNS(γξ)−NKδ2 .
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Hence, the weight of the types is distributed according to a Gaussian-distribution on a subset of Rd−(n+1) with variance σ2 of
order 1/N . For large N , it is thus very sharply peaked around the Gibbs-distribution and we can choose δ to go to 0 as N →∞
while at the same time most of the weight of the distribution is carried by distribution within δ away from the GGE distribution.
Choose, for example, δ = N1/4σ, so that

lim
N→∞

N1/4σ = lim
N→∞

N1/4−1/2 = lim
n→∞

N−1/4 = 0. (37)

More formally, we can upper bound the total weight of types more than δ away from the GGE distribution by
∑

T∈Πξ,
‖T−γξ‖1≥δ

#T ≤ Tξ epoly (N) eNS(γξ)−NKδ2 , (38)

where Tξ is the total number of different types appearing in subspace Πξ. Similarly, for any q < 1 we can lower bound the total
weight of types closer than qδ to the GGE distribution by

∑

T∈Πξ,
‖T−γξ‖1≤qδ

#T ≥ poly (qδ) Tξ
√

2π poly (n) eNS(γξ)−NK′q2δ2 .

The relative volume of the two is then given by (using δ = N−1/4)

e poly (N) eNS(γξ)−NKδ2
√

2πpoly (qδ) poly (N) eNS(γξ)−NK′δ2q2
=

e poly (N) eNS(γξ)−
√
NK

√
2πpoly

(
qN−1/4

)
poly (N) eNS(γξ)−

√
NK′q2

(39)

≤ K ′′poly (N) e−
√
N(K−K′q2) → 0,

for q <
√
K/K ′. As N →∞, we therefore find that

lim
N→∞

trl (Ωξ) = lim
n→∞

∑

x

pξ
El

(αx)|αx〉〈αx|

= lim
N→∞

γβξ(QEl)

= γβ(QEl), (40)

where βξ is the vector of ”inverse temperatures” corresponding to the subspace Πξ and in the last line we have used that
limN q

j
E,ξ/N = vjβ for all ξ ∈M. Since this holds for all subspaces inM, we finally obtain the desired result that

ρ′El =
∑

ξ∈M
pξ trl(Ωξ) + εNσ

N→∞−→ γβ(QEl). (41)

Concluding, we have shown that by taking many copies of the macrostate (vβ,Q) and applying an exactly energy-conserving
operation, we can prepare the microstate γβ(Q). Repeating this process many times, we can then also prepare any environment
of the form

⊗

l

γβ(QEl). (42)

Bringing the system to the maximum entropy state using the maximum entropy environment

In the last section we have proven that, from the model of the environment given by the form in Supplementary Eq. (26) for the
definition of macrostate operations, one can distill a microstate environment of the form in Supplementary Eq. (27). We will now
use such an environment to bring the system to the maximum entropy state. That is, to perform the transition in Supplementary
Eq. (19). The idea to do that is very simple: We choose the right conserved quantities QE on the environment and then simply
swap the system state with the environment.

Suppose that the system is in macrostate (v,Q) with conserved quantities Qj and let the corresponding inverse temperatures
given by γv(Q) be given by βj(v). Now choose the following conserved quantities on the environment,

QjE =
βj(v)

βj
Qj . (43)
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Of course, this is possible only if βj 6= 0 for all j. Then the two density matrices of the GGEs coincide, γβ(QE) = γβ(v)(Q),
and hence the total charge is conserved on average as the two states are swapped (it is not conserved exactly, since the microstate
on the system can be any microstate in [v]Q). As mentioned in the previous section, the above reasoning strictly speaking only
applies if the eigenvalues of QjE are rational. However, we can always approximate QjE by an operator with rational eigenvalues
to arbitrary precision. In this case, the average charge conservation is fulfilled with arbitrary precision as well.

Non-Gibbsian average energies trivialize thermodynamics

In this section, we will show that the assignment of macrostates to the environment as in Eq. (4) of the main text is the only
one that does not lead to i) arbitrary work extraction from the environment and ii) trivial macrostate operations, in the sense
that any transition is possible. For this, we will analyse the consequences of having an assignment of energies given by f(H)
different from the one we assume for eβ(H). For simplicity we will discuss it for the case of the energy as a single conserved
quantity, since the argument is fully analogous for the case of other conserved quantities.

Let us first show i). The function f can, without loss of generality, be always expressed as f(H) = eβ(H)(H), where
now β(H) is not a fixed value but a function of the Hamiltonian. For the situation to not be equivalent to some fixed inverse
temperature, at least two Hamiltonians must have different temperatures, i.e., there exist Hamiltonians H1 6= H2 such that
β(H1) 6= β(H2). For simplicity let us write βj = β(Hj) in the following. Given any value of βj we can distill, from a large
number of macrostates of the environment, one canonical ensemble at temperature βj . That is, from an environment of the form

N1⊗

j=1

(eβ1
(H1), H1)

N2⊗

j=1

(eβ2
(H2), H2) (44)

one can obtain systems in the microstate

γβ1(H1)⊗N
′
1 ⊗ γβ2(H2)⊗N

′
2 (45)

with N ′1 and N ′2 arbitrarily large for sufficiently large N1 and N2. Once we possess two systems in the canonical ensemble at
different inverse temperatures β1 and β2, one can trivially extract work. That is, one could reduce the mean energy of Supple-
mentary Eq. (45) and accumulate it in a work storage device. This is true since for some value for N ′1 and N ′2, Supplementary
Eq. (45) will cease to be a passive state [1].

The previous considerations imply trivially ii). Once we have established that the environment could be used to extract an
arbitrary amount of work –mean energy–, one can invest this energy in creating an arbitrary state [2]. Hence one finds that if
f(H) is not the thermal energy, then

(e,H)
β-mac→ ρ. (46)

is possible for any ρ.
Altogether, we conclude that imposing that i) or ii) are impossible implies that f(H) = eβ(H) for a fixed β. In other words,

there only exist specific families of functions, one for each value of β, that do not lead to trivial macrostate operations or work
extraction from the environment. In this way the assignment of a parameter β to the environment follows from those basic
principles. Importantly, note that the parameter β is in principle not related to any prior assignment of a temperature to the
environment. For the sake of simplicity, we refer to β as the inverse temperature, but the interpretation of β as related to a
prior value of T as β = (kBT )−1 is not necessary to derive Theorem 3 of the Supplementary Material or any of the results in
this work. In summary, we conclude that the only thermodynamically consistent way to assign average energies to environment
systems is by assigning the energies corresponding to a thermal Gibbs state for some parameter β playing the role of an inverse
temperature.

SUPPLEMENTARY METHODS 2
BREAKDOWN OF EQUIVALENCE UNDER EXACT ENERGY CONSERVATION

In this section, we will prove the inequivalence between macrostates and their corresponding maximum-entropy ensemble
when exact energy conservation, (28) in the main text, is imposed. In particular, we show that for every β and non-trivial H ,
there exists at least one initial value e, such that

(e,H)
c�β γe(H). (47)
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e

e'

Figure 1: Set of reachable final energies e′, given some Hamiltonian H and initial energy e. The reachable final energies under
commuting macrostate operations are upper bounded by two lines (blue region) that themselves lower bound the set of
reachable energies under microstate commuting operations (red region). The results of Ref. [4] imply that, for any non-trivial
H and β, the red region has a non-linear boundary, which further implies that the blue region is strictly smaller than the red
region. This, in turn, immediately gives Supplementary Eq. (52) and, hence, yields the breakdown of operational equivalence.
In this figure, the intersection point marks the thermal energy eβ(H), that is a fixed point of all operations by definition. Note
further that the two sets are bounded, in one direction, by the identity. This follows from free energy considerations.

Let us first introduce some notation. We define commuting macrostate operations, denoted by

(e,H)
β-c-mac→ ρf , (48)

similarly to Definition 1 of the main text but replacing condition (9) in the main text by [U,HSE] = 0. In a similar fashion, we
define commuting microstate operations, denoted by

ρ
β-c-mic→ ρf , (49)

similarly to Definition 2 in the main text but replacing condition (12) in the main text by [U,HSE] = 0. Commuting microstate
operations are in the literature discussed as “thermal operations” [3, 4]. Proving the inequivalence in Supplementary Eq. (47)
amounts to finding one microstate σ so that

(e,H)
β-c-mac
6→ σ, (50)

γe(H)
β-c-mic→ σ. (51)

The existence of such a state σ is implied by the fact that, for any non-trivial H 6= 0 and any β, there exists at least one initial
energy e such that

max
(e,H)

β-c-mac→ ρf

E(ρf) < max
γe(H)

β-c-mac→ ρf

E(ρf). (52)

This equation implies the existence of σ because, if σ did not exist, then the reachable energies under the two types of operations
would coincide. The equation itself follows from a result that we present in the next section and in which the reachable energies
under macrostate commuting operations are linearly upper bounded, as illustrated in Fig. 1. We believe that this bound may be
of independent interest.

Partial characterisation of commuting macrostate transitions

In this section we will provide a method to analyse the allowed transitions under commuting macrostate operations. We cannot

in general provide a full answer to which transitions (e,H)
β-c-mac→ ρf are possible. However, we will provide a method to bound

the maximum and minimum energies of the states ρf achievable from a given macrostate (e,H).
First, we need to consider a set of transitions between macrostates that are closely related to those produced by commuting

macrostate operations:
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Definition 4 (Macrostate GP-maps) We say that (e′, H) can be reached from (e,H) by macrostate GP-maps, which we denote

by (e,H)
β-mGP→ (e′, H), if for any ε > 0 there exists a completely positive, trace preserving (CPTP)-map G such that

1. G(γβ(H)) = γβ(H),

2. G(ρ) ∈ [e′]εH , ∀ρ ∈ [e]H .

Here, [e′]εH denotes the union of the equivalence classes that differ from e′ by at most ε. By definition of the operations, and
from results in Ref. [5], the following chain of implications holds: For any ρ ∈ [e′]H ,

(e,H)
β-c-mac→ ρ ⇒ (e,H)

β-mGP→ (e′, H), (53)

⇒ γe(H)
β-c-mic→ γe′(H). (54)

This in turn implies that for all (e,H),

max
(e,H)

β-c-mac→ ρf

E(ρf) ≤ max
(e,H)

β-mGP→ (e′,H)

e′ ≤ max
γe(H)

β-c-mic→ ρf

E(ρf). (55)

From the results of Ref. [4] it follows that the rightmost term in the last equation is a non-linear function of e. In contrast, for
the middle term, we find the following lemma.
Lemma 5 (Reachable energies under macrostate GP-maps) For any non-trivial H and β, if e ∈]emin, emax[,

max
(e,H)

β-mGP→ (e′,H)

e′ =

{
e if e ≥ eβ(H),

eβ(H) + α(e)Kβ,H if e < eβ(H),
(56)

where e 7→ α(e) is a function linear in e and Kβ,H is a constant independent of e. Similarly,

min
(e,H)

β-mGP→ (e′,H)

e′ =

{
eβ(H) + α(e)Kβ,H if e ≥ eβ(H),

e if e < eβ(H).
(57)

This lemma characterizes the set of reachable energies under macrostate GP-maps, and hence upper and lower bounds the
possible state transitions under commuting macrostate and microstate operations respectively. As discussed below, the constant
Kβ,H can easily be evaluated as a linear program. With respect to Supplementary Eq. (55), Lemma 5 and the results from Ref.
[4] together imply that the second inequality in the equation has to be strict for at least one initial energy e ∈]emin, emax[ and
hence that Supplementary Eq. (52) holds.

Proof of Lemma 5

Denote the set of macrostate GP-maps for a given initial energy e as Ge. First, note that just like in the previous proofs, we
need to consider only microstates ρ ∈ [e]diag

H that are diagonal in the eigenbasis ofH , because the decoherence map Udec. defined
in Supplementary Eq. (21) is clearly a macrostate GP-map (mapping a macrostate to itself). Next, let

N = {A|diag(A) = A ∧ tr(H†A) = 0 ∧ tr(A) = 0} (58)

be the space of traceless, diagonal matrices that are orthogonal to H , for which dim(N ) = d − 2. Further, let T be the matrix
that is orthogonal to both H and N and for which tr(H) = tr(T ). This matrix always exists. Clearly, if {Ni}d−2

i=1 is some
orthogonal basis ofN , then {H,T,N1, . . . , Nd−2} form a complete basis of the diagonal sector. For this reason, we can expand
any diagonal state ρ as

ρ = γe(H) + α(e)(H − T ) +N(ρ), (59)

where

α(e) =
e− eβ(H)

tr(H2)
, (60)

N(ρ) ∈ N . Furthermore, by construction, in this expansion, any two states from the same equivalence class differ only by an
element in N . This expansion is useful because it allows us to show the following lemma.
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Lemma 6 (Characterising initial states in macrostate GP-maps) For non-trivial H and for any e ∈]emin, emax[, a CPTP-map
satisfies condition 2 from Definition 4 iff G(N ) ⊆ N .

Proof. ⇐: Suppose there exists a map G and some state ρ ∈ [e]diag
H such that

G(ρ) ∈ [e′]H . (61)

If G[N ] ⊆ N , then for any other state ρ′ ∈ [e]diag
H ,

E(G(ρ′)) = E(G(ρ)) + E(G(N))

= e′ + E(N)

= e′,

(62)

and hence G satisfies condition 2.

⇒: Suppose that G ∈ Ge. Then, for any ρ, ρ′ ∈ [e]diag
H , by Supplementary Eq. (59)

ρ− ρ′ = N, (63)
G(ρ)−G(ρ′) = N ′, (64)

and hence, by the linearity of CPTP-maps

G(N) = G(ρ− ρ′) (65)
= G(ρ)−G(ρ′)

= N ′.

This implies that G[Ne] ⊆ N , where

Ne = {N ∈ N|∃ρ, ρ′ ∈ [e]diag
H : ρ+N = ρ′}. (66)

Ne is the subspace of elements in N that connect elements from [e]diag
H with another. Now, for any e ∈]emin, emax[, that

is, any non-extremal initial energy, it follows from the simplex geometry of the space of diagonal states that dim(Ne) =

dim([e]diag
H ) = dim(N ). But this implies that there exists a complete ((d − 2)-dimensional basis) {Ni} of Ne that also

constitutes a basis for N . Hence, G[Ne] ⊆ N implies G[N ] ⊆ N .

Note that for e ∈ {emin, emax}, depending on the degeneracy of the Hamiltonian H , it may be the case that dim(Ne) =

dim([e]diag
H ) = 0 6= dim(N ), so that the above lemma is not guaranteed to hold for extremal energies. Lastly, note that by the

same reasoning, the proof holds also if we consider restricted sets of states strictly contained in [e]diag
H , as long as the restricted set

spans a vector space of the same dimensionality as the one spanned by [e]diag
H . This has as a consequence that the breakdown of

equivalence as phrased in the previous section as well as the results in this section hold if one further restricts the set of possible
states in the equivalence class to an ε-ball around a given state, which also spans a vector space of the right dimensionality.

To proceed, a corollary of Lemma 6 is that the set of macrostate GP-maps is the same, regardless of the initial energy, i.e.
Ge = Ge′ , for any e, e′]emin, emax[. This allows us to drop the index in the following. Then, by Supplementary Eq. (59) we have

max
(e,H)

β-mGP→ (e′,H)

e′ = max
G∈G
E(G(ρ)), ρ ∈ [e]diag

H (67)

= max
G∈G
E(γe(H) + α(e)G(H − T ) +G(N(ρ)))

= eβ(H) + max
G∈G

α(e)E(G(H − T )).

Finally, note that

max
G∈G

α(e)E(G(H − T )) =

{
α(e) maxg∈G E(G(H − T )), if e ≥ eβ(H),

α(e) ming∈G E(G(H − T )), if e < eβ(H),
(68)
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because α(e) flips sign around eβ(H). Defining the constants

Fβ,H = max
g∈G
E(G(H − T )), (69)

Kβ,H = min
g∈G
E(G(H − T )), (70)

we then have

max
(e,H)

β-mGP→ (e′,H)

e′ =

{
eβ(H) + α(e)Fβ,H , if e ≥ eβ(H),

eβ(H) + α(e)Kβ,H , if e < eβ(H).
(71)

Similarly,

min
(e,H)

β-mGP→ (e′,H)

e′ =

{
eβ(H) + α(e)Kβ,H , if e ≥ eβ(H),

eβ(H) + α(e)Fβ,H , if e < eβ(H).
(72)

In the final step, we will now discuss the values of Fβ,H and Kβ,H . The former can be found analytically to be such that

eβ(H) + α(e)Fβ,H = e. (73)

To see this, note that the upper term in Supplementary Eq. (71) denotes the maximum reachable energy if the initial energy lies
above the thermal energy (see Fig. 1). This is trivially is at least e (because the identity is always a macrostate GP-map). Now,
if it was the case that

eβ(H) + α(e)Fβ,H > e, (74)

then this would imply that there exists a GP-map G such that

E(G(γe(H))) > e. (75)

In this case, G would have certainly increased the free energy ∆F (ρ) := S(ρ||γβ(H)) of the system, by monotonicity of the
free energy of thermal states in e: For any e′ > e, ρ ∈ [e′]H ,

∆F (γe(H)) < ∆F (γβS(e′)(H)) ≤ ∆F (ρ). (76)

Results from Ref. [5] imply that no GP-map can increase the free energy of the system, so that Supplementary Eq. (74) cannot
be true, and hence Fβ,H is determined by Supplementary Eq. (73).

RegardingKβ,H , it cannot in general be fixed analytically and depends onH and β. However, it can readily be computed with
a linear program. This is because for any initial energy e, the optimization problems stated in Supplementary Equations (71) and
(72) can be cast as linear programs. This is true since achievable state transitions under general GP-maps can be formulated as an
LP [5, 6], and Lemma 6 shows that the only further constraint on macrostate GP-maps is itself linear, namely that G(N ) ⊆ N .
Finally, note also that a similar Lemma to Lemma 6 can be shown to hold true for several commuting observables Q. There,
each of the observables Qj is bounded linearly, so that, in total, the reachable states will be characterized by piece-wise linear
bounds, instead of a single linear bound. Since this lemma is a straightforward generalization of Lemma 5, we omit its proof
here.

Local asymptotic equivalence in the commuting case

In this section we show that, locally and asymptotically, one can recover operational equivalence for the scenario in which
both macrostate and microstate operations are commuting. Consider anN -partite, non-interacting system with initial macrostate⊗N

l=1(e,H), that is, all parts share the same local Hamiltonian and initial energy. We will now use the results of the Supple-
mentary Methods 1. There, it is shown that by means of commuting macrostate operation, one can bring a bath given by the
macrostate of Supplementary Eq. (26) with N →∞ to a final state ρf such that all its reduced states are arbitrarily close in trace
norm to the maximum-entropy ensemble compatible with the partial information (see Supplementary Eq. (41)). We can now
apply the same operation to the system in macrostate

⊗N
l=1(e,H). Formally,

N⊗

l=1

(e,H)
β-c-mac→ ρf , (77)
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such that

trl(ρf)
N→∞−→ γe(H). (78)

Note that the state ρf will be very different from the global canonical ensemble state
⊗

l γe(H) (that is reachable from the
usual macrostate operations but not with commuting macrostate operations), since the different sites will in general be highly
correlated.

Nevertheless, in direct analogy to the reasoning in the case of average-energy preserving operations, we can now apply any set
of commuting microstate operations that act on the individual sites l, to prepare, locally, any state that could have been reached
if instead one had started with the canonical ensemble states γe(H) on l. In this sense, local operational equivalence for the
commuting case is recovered for i.i.d. and non-interacting systems in the thermodynamic limit. Note also that these results do
not change if we additionally allowed access to Gibbs states on the bath, instead of macrostates, since we can again use the
distillation procedure that we used before to arbitrarily well prepare Gibbs states γ using commuting operations. Also, as with
the other results, this argument extends to the case of several commuting observables.

SUPPLEMENTARY METHODS 3
MACROSTATE OPERATIONS IN THE MACROSCOPIC LIMIT

In this section we discuss the value of the higher moments of the energy difference X when performing a macrostate oper-
ation. As stated in the main text, we assume that H =

∑
iH

i. We first consider the case of a system whose subsystems are
uncorrelated. That is, we assume the initial system macrostate to be of the form (e,H) = ⊗Ni=1(ei, H

i). The canonical ensemble
state for (e,H) is

γe(H) =

N⊗

i=1

γ e
N

(Hi). (79)

Finally, we consider a macrostate transition (e,H)
β−mac→ ρf , where we also assume that

ρf =
N⊗

i=1

ρif . (80)

We are interested in the distribution P (X), where X is the change in energy under this macrostate transition.
To see that P will be normally distributed, we implement the above transition by acting on each of the subsystems inde-

pendently. By Theorem 3 of the main text, we know that this is possible. In particular, by the procedure presented in the
Supplementary Methods 1, we can implement the transition

(ei, H
i)
β−mac→ γe(H

i) (81)

as a macrostate transition, for any subsystem i. This produces a change in energy Xi with mean µi and variance σ2
i , which is

finite for bounded Hi. Let s2
N =

∑N
i σ

2
i . Then, by the Lyapunov Central Limit Theorem, we have that the total change in

energy, X =
∑
iXi, converges in distribution to a normal distribution,

lim
N→∞

X
d→ N (

∑

i

µi = e′ − e, s2
N ), (82)

with e′ being the final energy of the system, if the following condition is satisfied: There exists a δ > 0 such that

lim
N→∞

1

s2+δ
N

N∑

i

E[|Xi − µi|2+δ] = 0. (83)

Choosing δ = 1 and since s2
N = O(N), this is satisfied if

∑N
i E[|Xi − µi|2+δ] = O(N). This is a physically reasonable

assumption to make. Now, from Supplementary Eq. (82) it follows that the energy change per subsystem is normally distributed
as

lim
N→∞

X

N

d→ N (e′ − e, s
2
N

N
). (84)
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In terms of the higher moments this means the following. Let

µn(X) := E[(X − µ)n], n ∈ 1, 2, . . . (85)

be the moments of a random variable X . If this X is normally distributed with variance σ2, then independent of its mean the
following is true and can be verified by evaluation.

µ2n(X) = σ2n(2n− 1)!!, µ2n+1(Y ) = 0. (86)

Combining this with Supplementary Eq. (84) we find that the higher moments per subsystem vanish in the macroscopic limit:

lim
N→∞

µ2n(X/N) = lim
N→∞

(
sN√
N

)2n

(2n− 1)!! = 0. (87)

As stated in the main text, this can be seen as an argument in favour of the assignment of the ensemble to macrostates, for large
weakly-correlated systems, as long as one tolerates violations of (28) in the main text – as measured by the higher moments –
that are negligible in comparison with the typical energy scales involved in the thermodynamic operation. Of course, a similar
argument can be made for the case of weakly correlated systems. However, for conceptual clarity we here restricted to the
independent case.
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C O N C L U S I O N S

In this thesis, we have presented a systematic exposition of the resource theory of thermal

operations that provides a formal framework to connect the postulates of quantum mechan-

ics with the thermodynamics of both individual quantum systems, systems in the thermody-

namic limit and at scales intermediate between these two extremes. We have then studied

various modi�cations and generalizations of this framework to address a number of di�erent

questions of interest to the development of a theory of thermodynamics for small quantum

systems. In particular, we have studied the extent to which access to randomness can be con-

sidered a resource for stochastic processes, establishing a strict separation between classical

and quantum processes in terms of the required amount of randomness to realize a particular

transition. We have also presented and studied in some depth the notion of correlated cata-

lysis as a generalization of the more common notion of uncorrelated catalysis. This has been

shown to be of considerable mathematical interest but also to allow for very interesting op-

erational advantages in the context of work extraction and �uctuation theorems. Finally, we

have used a model of thermal operations under partial information to single out the canonical

ensemble as the unique microstate that encapsulates the possible state transitions that can be

realized on systems and baths of which only their average energy is known (a statement that

generalizes to other observables and ensembles).

These various �ndings all help develop the �eld of quantum thermodynamics, improve our

understanding of the thermodynamics of small systems and help bring it from the days of its

�rst conceptual breakthroughs to a mature theory that is not only of foundational interest but

also ideally will lead, one day, to new quantum technologies. The works also open up sev-

eral connections, albeit often not with the level of detail that the author would have wished,

between quantum thermodynamics and related �elds such as the theory of quantum compu-

tation, the classical theory of sampling complexity or to the statistical thermodynamics of

out-of-equilibrium systems. It is our hope that the results presented here help others to make

these connections clearer and to improve our understanding of the workings of the smallest

machines that we can conceive.

7.1 open qestions

Catalytic quantum randomness

The results presented in Chapter 4 derive tight bounds for the size of a source of randomness

required to realize any transitions under majorization for a given system dimension. However,

one can still ask for the required randomness of a particular transition ρ →NO ρ′. Prelimin-

ary investigations of this question suggest that this question is NP-hard, in the sense that

the decision problem that takes an input (ρ, ρ′, m) and decides whether there exists a noisy

operation with a source of randomness of dimension m that realizes the above transition is

NP-hard. This is indicated by the fact that the classical version of this problem can be reduced

to the subset sum problem, which is NP-hard. However, it remains open to present a proper

proof of this di�culty and to investigate the robustness of this hardness result.
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A very di�erent open question is to study whether one can use the key construction of

the dephasing map presented in Chapter 4 to build interesting tensor networks, in partic-

ular a class of tensor networks known as multi-scale entanglement renormalization ansatz

(MERA) [160, 161]. This class of tensor networks exhibits a characteristic causal structure in

which isometries are used repeatedly to produce a particular entanglement structure across

di�erent subregions of a many-body system. Preliminary results suggest that using the unit-

ary that implements the key construction in the above chapter as an isometry in a MERA

network produces a very strong entanglement structure and could be used to de�ne an analyt-

ically tractable network that saturates known bounds on the entanglement entropy of MERA

networks. This remains to be investigated in more detail.

Correlated Catalysis

Here, there is one obvious open question, namely to decide the catalytic entropy conjecture

that is presented in the corresponding chapter. To the best of the author’s knowledge, the

conjecture is open but interest is spreading through the community. A �rst step here would

be to show that the set of states that are possible under trumping forms a subset of the set of

states that are possible with a correlated catalyst. While this is almost certainly true, no proof

of this statement is known to the author.

Fluctuation theorems

In the last part of Chapter 5.2, it was shown that correlated catalysts can be used in many-

player strategies to engineer strongly correlated global work-distributions by having each of

the players locally interact with the catalyst before passing it on. This is an intriguing feature

of correlated catalysis that might potentially be of signi�cant operational interest. However, a

characterization of the kinds of distributions that can be engineered in this way is outstanding

and seems to the author a promising research question.

Canonical ensembles without typicality

The �ndings of Chapter 6 might seem self-contained to the extent that no obvious follow-up

questions to the project exist. However, to the author it seems that a key innovation of the

paper is the notion of operational equivalence, in which two di�erent resource theories are

connected and compared by asking to what extent their elements operationally coincide. As

such, it would be interesting to ask whether the notion of operational equivalence can be used

in the context of other pairs of theories to make interesting connections, or possibly used to

make statements at a more general level. For instance, one might try to provide an operational

“derivation” of Janyes’ principle by asking: What are necessary and su�cient conditions on

the properties of two resource theories such that (a) a unique family of states is picked out

via operational equivalence for one of the theories and (b) that family is exactly the one that

would be picked out by applying Jaynes’ principle? In this context, it would be interesting

to further investigate connection to a line of research in [51, 52], in which a “resource theory

of knowledge” is developed and in which embeddings between resource theories at di�erent

levels of coarse-grainedness are studied.
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9.1 zusammenfassung

Quantenthermodynamik ist ein relativ junges und wachsendes Forchungsfeld, in dem Me-

thoden und Konzepte aus der Quanteninformationstheorie verwendet werden um die Gesetz-

mäßigkeiten der Thermodynamik für kleine Quanten-Systeme zu studieren, auf die der ther-

modynamische Grenzfall nicht notwendigerweise Anwendung �ndet. Sie trägt hiermit bei

sowohl zu den Grundlagen der Thermodynamik, indem sie die Gesetze der phenomenologi-

schen Thermodynamik konstruktiv und “bottom-up” auf der Basis der Postulate der Quan-

tenmechanik herleitet, als auch zur Praxis, indem sie die theoretischen Grundlagen für eine

immer größere Menge an Experimenten liefert, in denen thermodynamische Maschinen ge-

baut werden, für deren adequate Beschreibung Quantenmechanik vonnöten ist.

Ein zentrales mathematisches Werkzeug der Quantenthermodynamik sind sogenannte Res-

sourcentheorien, insbesondere die Ressourcentheorie der thermal operations, in welcher die

thermodynamische Wechselwirking eines Systems mit einem Wärmebad und weiteren Sys-

temen wie Batterien, Uhren und Katalysatoren modelliert wird. In dieser kumulativen Dis-

sertation werden verschiedene Erweiterungen und Modi�kationen dieses Modells eingeführt,

auf deren Basis neue Ergebnisse bezüglich der möglichen thermodynamischen Evolution von

Quanten-systemen hergeleitet werden. Konkret werden, nach einer systematischen Einfüh-

rung in die Ressourcentheorie der thermal operations, Antworten auf die folgenden Fragen ent-

wickelt: i) Wie groß muss ein Wärmebad mindestens sein, damit ein System einen gegebenen

stochastischen oder thermodynamischen Prozess durchalufen kann? ii) Hängt die Antwort

auf Frage i) davon ab, ob die Interaktion zwischen Bad und System quantisch oder klassisch

ist? iii) Welche thermodynamischen Zustandsänderungen eines System sind möglich in der

Wechselwirkung mit katalytischen Hilfs-Systemen? iv) Welche Zustandsübergänge können

operational erwirkt werden, wenn die zugrundeliegenden Mikrozustände von Bad und Sys-

tem nur teilweise bekannt sind? v) Wie können wir den empirischen Erfolg des kanonischen

Ensembles als Beschreibung von Systemen im thermodynamischen Gleichgewicht verstehen?

Diese Fragen mögen sehr unterschiedlich erscheinen, aber es wird klar werden, dass sie alle

mithilfe der gleichen mathematischen Werkzeuge behandelt werden können. Somit sind die

Ergebnisse, die hier präsentiert werden, nicht nur interessant für sich genommen — es wird et-

wa gezeigt, dass quantische Zufallsprozesse strikt mächtiger sein können als ihre klassichen

Gegenstücke existieren, oder dass mithilfe von Katalysatoren extensive Mengen an Arbeit

von makroskopischen Systemen im thermischen Gleichgewicht mit nicht-verschwindender

Wahrscheinlichkeit extrahiert werden können —, sondern sie illustrieren auch die Breite der

Anwendbarkeit der Methoden der Quantenthermodynamik als Bindeglied zwischen Quanten-

mechanik und Thermodynamik.
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