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COMBINATORIAL INSCRIBABILITY OBSTRUCTIONS FOR HIGHER
DIMENSIONAL POLYTOPES

JOSEPH DOOLITTLE, JEAN-PHILIPPE LABBÉ, CARSTEN E. M. C. LANGE,
RAINER SINN, JONATHAN SPREER AND GÜNTER M. ZIEGLER

Abstract. For 3-dimensional convex polytopes, inscribability is a classical property that is relatively
well-understood due to its relation with Delaunay subdivisions of the plane and hyperbolic geometry.
In particular, inscribability can be tested in polynomial time, and for every f -vector of 3-polytopes,
there exists an inscribable polytope with that f -vector. For higher dimensional polytopes, much
less is known. Of course, for any inscribable polytope, all of its lower dimensional faces need to
be inscribable, but this condition does not appear to be very strong. We observe non-trivial new
obstructions to the inscribability of polytopes that arise when imposing that a certain inscribable face
be inscribed. Using this obstruction, we show that the duals of the 4-dimensional cyclic polytopes with
at least eight vertices — all of whose faces are inscribable — are not inscribable. This result is optimal
in the following sense: We prove that the duals of the cyclic 4-polytopes with up to seven vertices are,
in fact, inscribable. Moreover, we interpret this obstruction combinatorially as a forbidden subposet
of the face lattice of a polytope, show that d-dimensional cyclic polytopes with at least d + 4 vertices
are not circumscribable, and that no dual of a neighborly 4-polytope with eight vertices, that is, no
polytope with f -vector (20,40,28,8), is inscribable.

§1. Introduction and background. The convex hull of a finite number of points on a sphere
is an inscribed polytope. Choosing the points randomly on the sphere almost surely gives a
simplicial polytope. However, choosing these points carefully, one may obtain other types
of polytopes. In 1832, Steiner asked whether it is possible to obtain every 3-dimensional
polytope this way [25, Question 77, p. 316]. A polytope is inscribable if it is combinatorially
equivalent to an inscribed polytope, that is, if it has a realization that is inscribed. Around
100 years later, Steinitz provided the first examples of polytopes that are not inscribable [26].
Such polytopes without an inscribed realization include the simplicial polytope obtained
by stacking each triangle of the tetrahedron, see [15, Section 13.5; 26, p. 140]. In light
of this, one may ask to what extent a combinatorial property of a polytope (simplicity,
simpliciality, neighborliness, stackedness, etc.) can restrict its inscribability. Gonska and
Ziegler asked whether inscribable polytopes affect a coarser polytope invariant, the f -vector
[14, Introduction]. Indeed, experimental results seem to indicate that sufficient conditions for
inscribability may be obtained from the f -vector [21, Section 2]. For more detail on related
questions and their history, we refer to the recent articles [6, 14, 21] and references therein.

Due to its inherent relation with Delaunay tesselations [5] and planar 3-connected graphs [8,
16, 26], inscribability of 3-dimensional polytopes has garnered attention and consequently is
relatively well understood. Hodgson, Rivin and Smith following work by Rivin use hyperbolic
geometry to show that a 3-polytope is inscribable if and only if a certain system of linear
inequalities has a solution, [19, 24]. Similar to other problems in polytope theory (e.g.,
characterization of f -vectors or of vertex-edge graphs), the methods of Hodgson, Rivin and
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Smith do not extend to higher dimensions and relatively little is known for d-dimensional
polytopes (or d-polytopes). Numerous classes of polytopes have been determined to be
inscribable. Among them are the cyclic d-polytopes, see [14, Section 2.5.2] for three proofs.
Gonska and Ziegler provide a strikingly simple combinatorial characterization of inscribable
stacked polytopes: a stacked polytope is inscribable if and only if all nodes of its dual tree
have degree at most three, [14, Theorem 1]. Earlier, graph-theoretical necessary conditions
and sufficient conditions for a 3-polytope to be inscribable were provided by Steinitz [26] and
[15, Section 13.5] as well as Dillencourt and Smith [8]. Of course, every face of an inscribed
polytope must be inscribed, so the inscribability conditions of 3-polytopes impose natural
conditions on higher dimensional polytopes, see, for example, [21, Section 2; 24, Section 12].
In particular, the conditions can be used as a first check to determine the non-inscribability
of some polytopes in dimension 4. For simplicial 4-polytopes with at most ten vertices,
Firsching combined these results with non-linear optimization to determine inscribability
of all but 13 types [10, Theorem 25]. This shows that even small polytopes can satisfy the
necessary conditions but may fail to have an obvious inscribed realization. In which case, new
efficient methods have to be developed to determine the inscribability of combinatorial types
of polytopes in higher dimension [10, Question 3].

In this article, we study the inscribability of higher dimensional polytopes and describe
an obstruction to inscribability using face lattices of polytopes. We provide an approach to
studying inscribability that makes use of higher dimensional facial incidence information, in
contrast to using only the graph of the polytope. Namely, we present “Miquel’s polytopes”, a
class of 3-polytopes stemming from Miquel’s circle theorem used in the following lemma.

LEMMA (Obstruction Lemma). If a polytope P has a Miquel polytope M as a 3-face with a
prescribed incidence relation with another vertex of P, then P has no realization such that M
is inscribed.

As a direct consequence of this lemma, we answer several questions related to inscribability.
For instance, Miquel’s polytopes with this incidence relationship are found in dual to cyclic
polytopes.

THEOREM A (Theorem 3.11). Let k � 8. No realization of C4(k)∗ has an inscribed facet,
although all its facets are inscribable.

Chen and Padrol proved that Cd (k)∗ is not inscribable provided k is large enough [6,
Theorem 2]. They were able to provide a super-exponential bound in d for k that guarantees
non-inscribability. Extending the argumentation of Theorem A leads to an effective bound on
the non-inscribability of the duals of cyclic polytopes.

COROLLARY B (Corollary 3.12). The dual of the d-dimensional cyclic polytope on k
vertices Cd (k)∗ is inscribable if

d � 3 or d = 4 and k = 7 or k � d + 2.

If k � d + 4 � 8, then Cd (k)∗ is not inscribable.

Thus the only class of dual to cyclic polytopes whose inscribability is not determined is
Cd (d + 3)∗ for d � 5: Are they inscribable? This seems to be a challenging problem. For a
summary of the results on cyclic polytopes, see the discussion at the end of § 3 and Table 4.
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Further, we provide some evidence in support of [6, Conjecture 8.4] that neighborly polytopes
with sufficiently many vertices are not circumscribable.

THEOREM C (Theorem 5.1). If a polytope is dual to a neighborly 4-polytope on eight
vertices, then that polytope is not inscribed.

We denote the f -vector of a d-polytope P by fP = ( f0, f1, . . . , fd−1), where fi is the
number of i-dimensional faces of P. An f -vector is inscribable if at least one polytope with
that f -vector is inscribable. Gonska and Ziegler provide a combinatorial characterization of
inscribable stacked polytopes.

As all stacked d-polytopes with n vertices have the same f -vector, their results imply that
for d + 1 � n � d + 4 all stacked polytopes are inscribable, while for n � d + 5 � 8 there
exist inscribable as well as not inscribable stacked polytopes.

The influence of inscribability on f -vectors remained elusive.
As the f -vector is a coarse polytope invariant, there can be huge numbers of different

combinatorial types of polytopes for a given f -vector. Therefore, to determine whether a
specific given f -vector is inscribable, we use known classifications of combinatorial types
of polytopes. For example, there are three combinatorial types of 4-polytopes that share
the f -vector (20,40,28,8), which corresponds to the duals of the neighborly 4-polytopes
on eight vertices. The dual to the cyclic polytope on eight vertices, C4(8)∗, is the most
prominent example.

As a corollary of the above theorem, we exhibit the first f -vector that is not inscribable. This
result provides the first evidence toward an answer to the question How does the condition of
inscribability restrict the f-vectors of polytopes? raised in [14, Introduction].

COROLLARY D. The f -vector (20,40,28,8) is not inscribable.

Beyond the previous considerations, we emphasize three notable aspects of the Obstruction
Lemma. Starting in dimension 4, there are polytopes such that every facet is inscribable but
no realization of the polytope has any inscribed facet. Previous conditions on inscribability
of polytopes were derived from their graphs. This obstruction is different: it uses higher
dimensional facial incidences, and it may be used to obtain obstructions in arbitrary face-
figures. This makes it a flexible combinatorial tool to obstruct inscribability. Finally, the
obstruction comes from a rather unrestrictive forbidden subposet and appears naturally in
many common 4-polytopes. Out of the 1294 4-polytopes with eight facets, 169 of them have
a Miquel polytope as a facet. Of these 169 4-polytopes, twenty of them also have the required
incidence relations to guarantee non-inscribability.

Outline. In § 2, we study inscribability of f -vectors of polytopes with few vertices and
facets. In § 3, we examine the inscribability of duals of cyclic polytopes and prove that “most”
of these polytopes are not inscribable. In § 4, we present the combinatorial obstruction to
inscribability in terms of a forbidden subposet. In § 5, we extend the obstruction to neighborly
4-polytopes with eight vertices. In § 6, we present three questions that arose during our
investigation of inscribed polytopes.

§2. Inscribability and small f -vectors. In this section, we set the context surrounding the
inscribability of polytopes and f -vectors. For basic polytope nomenclature and constructions,
we refer the reader to [18, 27].



930 J. DOOLITTLE et al.

2.1. Inscribability and stereographic projections. Alternatively to putting vertices of a
polytope on a sphere, one may ask that all of its supporting hyperplanes be tangent to the
sphere, in which case we say that the polytope is circumscribed. Similarly to inscribability,
a polytope is circumscribable if it has a realization that is circumscribed. As Steinitz first
observed [26], inscribability and circumscribability are notions related by polytope duality: a
polytope is inscribable if and only if its dual is circumscribable. Hence, every statement about
inscribability has an equivalent formulation in terms of circumscribability and we implicitly
make use of this fact throughout the text. We collect classical results on inscribability and
circumscribability in the next two lemmas.

LEMMA 2.1. Let P be a d-polytope with vertex v and P∗ be its dual.
(i) P is inscribable if and only if P∗ is circumscribable, see, for example, [15,

Theorem 13.5.1].
(ii) If P is circumscribable, then so is the vertex figure of v in P.

(iii) If P is inscribable, then so are its faces.

Let Sd−1 ⊂ Rd denote the (d − 1)-dimensional sphere of radius 1
2 centered at ed :=

(0, . . . , 0, 1
2 ). The points N := (0, . . . , 0, 1), S := (0, . . . , 0) ∈ Sd−1 are the North and South

Pole of Sd−1. Moreover, we denote the one point compactification of Rd−1 = Rd−1 × {0} ⊂
Rd by Rd−1 := Rd−1 ∪ {∞}. The stereographic projection

πN : Sd−1 → Rd−1

from the point N maps x ∈ Sd−1 \ {N} to the intersection of the line through x and N with
Rd−1, and N to ∞. Let P be a d-polytope with vertex v and H be a hyperplane that strictly
separates v from Vert(P) \ {v}. Then

πv : P \ {v} → H

denotes the stereographic projection of P from v defined analogously to the stereographic
projection πN . If P is inscribed on Sd−1 and v is rotated to N , then the two projections map
Sd−1 ∩ P \ {v} to projectively equivalent labeled sets.

LEMMA 2.2. Let P be a d-polytope, and v be a vertex of P contained in exactly d facets.
The stereographic projection πv yields the following structures.

(i) The images of facets of P that contain v bound a (d − 1)-dimensional simplex �.
(ii) The images of the vertices of P determine a point configuration such that the images of

the faces of P that do not contain v form a polytopal subdivision of �.
(iii) The images of facets of P that do not contain v are (d − 1)-dimensional polytopes.
(iv) If P is inscribed, then the images of facets of P that do not contain v are inscribed.

Proof.
(i) The projection of P from v yields the vertex figure P/v, see [27, Proposition 2.4].

(ii) The projection πv acts on faces of P that do not contain v as an affine map from Rd to
Rd−1. The polytopal complex of the faces of P that do not contain v is preserved by
this affine map. By part (i), the union of the images of these faces is �. This satisfies
the definition of a polyhedral subdivision, see [7, Definition 2.3.1 and Lemma 4.2.20].

(iii) The affine span of a facet of P that does not contain v does not intersect v. Consequently,
the projection of such a facet under the affine map πv preserves the facet’s dimension.
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Table 1: Complete enumeration of f -vectors of 4-polytopes with f3 = 7

f0 6 7 8 9 10 11 12 13 14

# of ( f0, ∗, ∗, 7) 1 2 2 2 2 2 2 1 1
# of combin. types 1 3 5 7 6 4 3 1 1

f2 : # combin. types 15:1
16 : 2
17 : 1

17 : 4
18 : 1

17 : 1
18 : 6

18 : 4
19 : 2

18 : 1
19 : 3

19 : 2
20 : 1 20:1 � 21 : 1 �

(iv) Suppose P is inscribed and F is a facet of P that does not contain v. Let S be the
intersection of aff(F ) with the sphere inscribing P. By (iii), the image of F is a polytope
whose vertices lie on the image of S. The image of S is a (d − 2)-dimensional sphere.
See the related discussion in [14, Section 2.4]. �

2.2. Inscribed realizations of small f -vectors. To study inscribability in dimension larger
than 3, we need small examples of not inscribable polytopes to contrast with the inscribable
ones. A natural place to look for small examples is among 4-polytopes with small f -vector.
Often, a d-polytope P (or its f -vector) is considered small if f0 (or dually, f3) is small. Another
natural measure for the size of a 4-polytope P or its f -vector is the sum f0 + f3. This number
counts the vertices of the vertex-facet adjacency graph that determines the combinatorial type
of P. One of our motivating questions is:

Is there an f -vector that is not inscribable?
If such an f -vector exists, the following question is natural:

What is the smallest f -vector that is not inscribable?
In §§ 3 and 5, we show that such an f -vector indeed exists and provide the first example
of an f -vector that is not inscribable. As many combinatorially distinct d-polytopes can
have the same f -vector, an f -vector is not inscribable if every polytope with this f -vector
is not inscribable. Firsching [11] extended previous classifications of 4-polytopes with few
vertices by Altshuler and Steinberg [2] and Brinkmann [4]. For a thorough historical account,
we refer to [11, Section 1.4] and the references therein. A complete enumeration of all 4-
polytopes with f0 � 9 or f3 � 9 exists and partial results are known for f0, f3 � 10 and
20 � f0 + f3 � 23. Tables 1– 3 list the total number of f -vectors and of combinatorial types
for all possible pairs ( f0, f3) with 7 � f3 � 9. The Euler–Poincaré formula determines f1

from f0, f2 and f3. For a given a value of f3 and f0, for each possible value of f2, we write the
pair f2 : N , where N is the number N of combinatorially distinct 4-polytopes with the specified
f0, f2, f3.

We discuss the inscribability of small f -vectors derived from the these enumeration results.
The only 4-polytope with five vertices or five facets is the simplex which is clearly inscribable.
If f0 = 6, then 6 � f3 � 9 and each of the four pairs of ( f0, f3) determine a unique 4-polytope.
If f0 = 7, then 6 � f3 � 14 and there are 15 distinct f -vectors and 31 combinatorially
distinct polytopes. All these 35 polytopes are inscribable and inscribing vertex-coordinates
are provided in Appendix A.

For f0 = 8, there are 40 distinct f -vectors and 1294 combinatorially distinct polytopes and
for f0 = 9 there are 88 distinct f -vectors and 274 148 distinct polytopes. Only eight out of
these 128 f -vectors with 8 � f0 � 9 determine a combinatorially unique polytope.

Since no efficient algorithm is known to decide inscribability for d-polytopes with d � 4,
a natural heuristic to find an f -vector that is not inscribable is to study inscribability for
small f -vectors associated to a combinatorially unique polytope. We briefly indicate results
obtained by this search.
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In each of Tables 1 and 2, an entry is surrounded by “�” symbols, since they are of particular
interest:
(14,28,21,7) The dual of the cyclic polytope C4(7) has this f -vector, we discuss two

strategies to find an inscribed realization in Sections 3.2 and 3.3. It is well-
known that the f -vector ofC4(7) and its dual determine combinatorially unique
polytopes [11, Table 6; 15, Chapter 6.3].

(20,40,28,8) Besides the cyclic polytope C4(8), there are precisely two other neighborly
4-polytopes on eight vertices [2]. Their associated dual polytopes are the only
polytopes that have this f -vector. We show in Section 3.4 that the dual of
C4(8) is not inscribable and that the other two duals are not inscribable in § 5.
In particular, the f -vector (20,40,28,8) is not inscribable.

Remark 2.3. We verified that the 20 combinatorially distinct 4-polytopes with f0 + f3 � 15
are all inscribable, so the associated 13 f -vectors are also inscribable. In combination with
Corollary D, the smallest f -vector (in terms of the sum f0 + f3) that is not inscribable, must
satisfy 16 � f0 + f3 � 28. According to the complete classifications given in [4, Table 2.3;
11, Tables 6 and 7], there are ten f -vectors that satisfy 16 � f0 + f3 � 19 and that determine
a combinatorially unique polytope. These f -vectors are:
� (9,26,26,9)

We provide an inscribed realization of this polytope below;
� (7,18,19,8), (7,17,19,9), (9,19,17,7) and (7,18,22,11)

Inscribing coordinates for these f -vectors are provided in Appendix A;
� (8, 19, 20, 9) and (9, 20, 19, 8)

If we label the vertices of the first polytope by 1, . . . , 8, then the facets are five tetrahedra,
1234, 2568, 2578, 2678 and 5678, and four 3-faces 12 356, 12 457, 134 567 and 23 467.
Labeling the vertices of the second polytope 1, . . . , 9, the facets are four tetrahedra, 1234,
1235, 1345 and 6789, and four 3-faces 1 245 689, 234 678, 235 679 and 345 789;

� (9, 20, 20, 9)

If we label the vertices by 1, . . . , 9, then the facets of this self-dual polytope are the five
tetrahedra, 1234, 5678, 5689, 5789, 6789, and four 3-faces 123 567, 124 579, 134 679 and
234 569;

� (11,22,18,7) and (12,25,20,7)
Inscribing these polytopes involves many degrees of freedom (lots of vertices) and many
constraints (many vertices per facet). The difficulty of this task is less than, but comparable
to, the quest of inscribing C4(7);

We invite the reader to find inscribed realizations for the polytopes with f -vector (8, 19, 20, 9),
(9, 20, 19, 8) and (9, 20, 20, 9) using a combination of the elementary polytope constructions
pyramid, bipyramid, truncation and their dual operations. There are more f -vectors that
determine a combinatorially unique polytope, but for these f0 + f3 � 20, putting them outside
the range of fully classified combinatorial types. The difficulty in finding inscribed realizations
varies significantly. The polytope with f -vector (13, 28, 22, 7) is very hard to inscribe, but
the f -vectors (10,25,28,13) and (13,28,25,10) are easy enough to inscribe, realizations are
provided below.

In the remainder of this section we present inscribed realizations of three 4-polytopes
that are uniquely determined by the f -vectors: T1, determined by (9,26,26,9), T2, determined
by (10,25,28,13) and its dual, T ∗

2 , determined by (13,28,25,10). This shows these f -vectors
are inscribable.
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Inscribed realization of T1 with fT1 = (9, 26, 26, 9). The f -vector fT1 has a unique
associated combinatorial type of 4-polytope, see [11, Table 7]. If we label the vertices
0, 1, . . . , 8, then the facets are two tetrahedra 0123 and 5678 and 3-faces

01 245, 01 346, 02 347, 123 567, 24 578, 14 568 and 34 678.

To realize this polytope (as a Schlegel projection into the facet 123 567), start with an
octahedron 123 567 (with diagonals 17, 26 and 35), and cone over vertex 4, placed in its center.
This decomposes the octahedron into eight tetrahedra. Now stellarly subdivide tetrahedron
1234 (respectively, 4567) into four tetrahedra by placing a vertex 0 (respectively, 8) in its
center. Now vertex 4 is contained in twelve tetrahedra, the remaining two tetrahedra, 0123
and 5678, are facets. Moving 0 and 8 sufficiently close to the centers of triangles 123 and 567
we can ensure that these twelve tetrahedra group together in pairs along triangles 124, 134,
234, 456, 457 and 467 to form six triangular bipyramids. This f -vector is inscribable as an
inscribed realization for T1 is given by the following coordinates:

0 1 2 3 4 5 6 7 8⎛
⎜⎜⎜⎝

− 1
2 −1 0 0 0 0 0 1 1

2

− 1
2 0 −1 0 0 0 1 0 1

2

− 1
2 0 0 −1 0 1 0 0 1

2

− 1
2 0 0 0 −1 0 0 0 − 1

2

⎞
⎟⎟⎟⎠.

Inscribed realization of T2 with fT2 = (10, 25, 28, 13). The f -vector fT2 has a unique
associated combinatorial type of 4-polytope T2, see [4, Table 2.3]. If we label the vertices
0, 1, . . . , 9, then the facets are nine tetrahedra

0123, 4568, 4579, 4589, 4679, 4689, 5678, 5789 and 6789

and 3-faces

012 456, 013 457, 023 467 and 123 567.

To realize this polytope, start with the boundary complex of the 4-dimensional prism over base
tetrahedra 0123 and 4567 (with facets 0123, 012 456, 013 457, 023 467, 123 567 and 4567).
Then subdivide tetrahedron 4567 by placing two vertices, 8 and 9, onto the line segment
connecting the two mid-points of 47 and 56, and cone to the other four edges to obtain
tetrahedra 4589, 4689, 5789, and 6789. Complete the subdivision of 4567 by adding tetrahedra
4568 and 5678, and 4579 and 4679. This f -vector is also inscribable as an inscribed realization
for T2 is given by

0 1 2 3 4 5 6 7 8 9⎛
⎜⎜⎜⎝

−1 −1 1 1 −1 −1 1 1 0 0

−1 1 −1 1 −1 1 −1 1 0 0

1 −1 −1 1 1 −1 −1 1 − 10
13

10
13

−1 −1 −1 −1 1 1 1 1 − 24
13 − 24

13

⎞
⎟⎟⎟⎠.

Inscribed realization of T ∗
2 with fT ∗

2
= (13, 28, 25, 10). We assume that the vertices of

T ∗
2 are labeled 0, 1, . . . , 8, 9, A,B,C. Then the facets for T ∗

2 are four tetrahedra 028C, 02AC,
08AC and 28AC and six 3-faces

01 234 589, 012 367AB, 014 689AB, 134 567, 235 789AB and 45 679B.
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An inscribed realization for T ∗
2 is given by the following coordinates:

0 1 2 3 4 5 6 7 8 9 A B C⎛
⎜⎜⎜⎝

−2 −2 −2 −2 0 0 0 0 2 2 2 2 6
37

−2 −2 2 2 −2 0 0 2 −2 −2 2 2 6
37

2 2 −2 −2 0 −2 2 0 −2 −2 2 2 6
37

−1 1 −1 1 3 3 3 3 −1 1 −1 1 − 133
37

⎞
⎟⎟⎟⎠.

Since T2 and T ∗
2 are dual to each other, this f -vector and its dual, (10,25,28,13), are thus

inscribable and circumscribable.

§3. Circumscribability of cyclic polytopes. In this section, we study circumscribability
of cyclic polytopes or, equivalently, inscribability of their duals. The d-dimensional cyclic
polytope on k vertices is denoted byCd (k). Its combinatorial type is realized by the convex hull
of k increasing distinct points on the moment curveνd : R → Rd sending t to (t, t2, . . . , t d ). Its
facets are described purely combinatorially using Gale’s evenness condition, see, for example,
[27, Chapter 0]. The dual of the cyclic polytope Cd (k) is denoted by Cd (k)∗.

We fix a labeling of the faces of Cd (k) and of its dual: We order the k vertices of Cd (k)

and identify them with the numbers {1, 2, . . . , k}. The facets of its dual Cd (k)∗ are identified
with an additional star i∗. Each face of Cd (k) is labeled by the set of vertex labels it contains.
To write a face label {i, j, k, l, . . . } of Cd (k), we abuse notation and write i jkl · · · . For the
corresponding dual face {i, j, k, l, . . . }∗ of Cd (k)∗, we write (i jkl · · · )∗. As a consequence,
by taking facet intersections in the dual, faces of Cd (k)∗ are labeled by the set of facets they
are contained in. In particular, the vertices of Cd (k)∗ are labeled by subsets of {1, 2, . . . , k}
corresponding to facets of Cd (k).

In dimension d = 4, facets of C4(k)∗ are combinatorially equivalent to C3(k − 1)∗, a wedge
over a (k − 2)-gon. Motivated by Lemma 2.1(i), we first look at the inscribed realization
space these wedges in Section 3.1. In Sections 3.2, 3.3, we present two proofs that the cyclic
polytope C4(7) is circumscribable. In Section 3.4, we show that the cyclic polytope C4(8) is
not circumscribable using a geometric obstruction. Finally, in Section 3.5 we use the argument
for C4(8) and Gale’s evenness condition to extend this obstruction to cyclic polytopes Cd (k),
where k � d + 4 � 8.

3.1. The inscribed realization space of wedges over polygons. In this section we describe the
space of inscribed realizations of the facets of C4(k)∗. They are combinatorially isomorphic
to a wedge over a (k − 2)-gon, denoted by Fk .

Inscribed realizations of 3-polytopes up to Möbius transformations (for a detailed introduc-
tion, see [3, Section 18.10; 12, Section 3.M]) correspond to feasible solutions of a set of linear
constraints imposed on the set of external dihedral angles at the edges of the polytope [24]. As
a corollary of Rivin’s work, the realization space of a 3-polytope up to Möbius transformations
is contractible. This does not extend to higher dimensions where universality holds [1].

The wedge Fk has f -vector (2k − 6, 3k − 9, k − 1). Its facets consist of two (k − 2)-gons,
two triangles and k − 5 quadrilaterals. Following [22], the dimension of the realization space
of a 3-polytope up to affine transformation is f1 − 6. Hence, the realization space of Fk has
dimension 3k − 15. The inscribed realization space of Fk up to Möbius transformations has
dimension k − 3. For reasonably small k this can be checked computationally using Rivin’s
linear program. It follows that the inscribed realization space of Fk up to Euclidean isometries
and homotheties is of dimension k.
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Figure 1 (colour online): Left: Inscribed realization space of Fk , k = 8, up to Möbius transforms. Right:
Inscribed realization of Fk , k = 7, up to Euclidean isometries and homotheties. Parameters as given in
Proposition 3.2 are indicated.

The construction of explicit coordinates for an inscribed realization of C4(7)∗ (see
Section 3.3) is based on the following parametrizations of the space of inscribed realizations
of Fk , up to Möbius transformations and up to Euclidean isometries and homotheties.

PROPOSITION 3.1. The inscribed realization space of the wedge over a (k − 2)-gon Fk

up to Möbius transformations is homeomorphic to

int(�k−5) × (0, π ) × I,

where int(�k−5) denotes the interior of a (k − 5)-dimensional simplex, (0, π ) determines the
angle between the two (k − 2)-gons of Fk, and I is an open interval only depending on the
position of the vertices of one of the (k − 2)-gon of Fk.

In particular, the realization space of Fk is homeomorphic to an open (k − 3)-ball.

Sketch of proof. We refer the reader to the picture on the left in Figure 1. Assume that
Fk is inscribed on S2. We use stereographic projection πN as described in Section 2.1. After
applying a suitable Möbius transformation we can assume that the two vertices of Fk contained
in the two (k − 2)-gons are mapped to north pole N and south pole S of S2 and that a third
point determining the circle c ⊂ S2 of the first (k − 2)-gon of Fk is mapped to (1,0). We are
now free to arbitrarily choose k − 5 points on c between points (1,0) and N . That is, we choose
k − 5 points on a line segment yielding the first (and largest) factor of the inscribed realization
space int(�k−5).

An inscribed realization of Fk is now determined by the position of one more vertex,
q0 ∈ S2 \ c (after Möbius transformations in the “front hemisphere” of S2): The triple
(q0, S, N ) determines a circle d ⊂ S containing all the vertices of the second (k − 2)-gon.
Moreover, the triple (q0, (1, 0), p1) determines a circle e ⊂ S containing all vertices of one
of the quadrilaterals of Fk . It now follows that the fourth point of this quadrilateral, q1, is
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determined as the intersection d ∩ e. By iteration, the coordinates of the remaining k − 5
vertices of Fk are determined and lead to at most one inscribed realization.

If q0 is chosen at the latitude of (1,0), this configuration leads, in fact, to an inscribed
realization for all longitudes strictly between 0 and π : symmetry around the SN-axis of S2

shows that all qi must then have the same latitude as all pi, 1 � i � k − 5. The same is true
for a starting latitude of q0 contained in a sufficiently small interval around the latitude of
(1,0). Denote such a latitude as valid. In general, for a given latitude to be valid, qi−1 must
be further “south” than qi, 1 � i � k − 5. It follows that the set of valid latitudes is an open
interval, as moving q0 “north” (respectively, “south”) eventually causes q1 to move past q0

(respectively, q2), and likewise for further qi.
Moreover, a valid latitude for q0 is not affected by varying the longitude of q0 (i.e., by

varying the opening angle of the wedge Fk): For instance, observe that the line segment q0q1

under rotation around the SN-axis must remain on both the planes defined by (q0, (1, 0), p1)

and (N, S, q0), and q1 must remain on S2 with fixed latitude. In particular, longitude and
latitude of q0 can be described by points in (0, π ) × I .

Altogether, every point in int(�k−5) × (0, π ) × I corresponds to a unique inscribed
realization of Fk . Conversely, since N , S, (1,0) and the hemisphere of q0 are fixed, an
inscribed realization of Fk up to Möbius transformations corresponds to a unique point in
int(�k−5) × (0, π ) × I . �

The next result provides a parametrization of the inscribed realizations of Fk up to Euclidean
isometries and homotheties, which implies that it is contractible. We use this parametrization
in Section 3.3.

PROPOSITION 3.2. The inscribed realization space of the wedge over a (k − 2)-gon Fk

up to Euclidean isometries and homotheties is parametrized by

RFk := {(α, β, γ , δ) : α ∈ R2, β ∈ (R+)k−4, γ ∈ (0, π ), δ ∈ Iα,β,γ },
where Iα,β,γ is an open interval. In particular, RFk is contractible and has dimension k.

Sketch of proof. We use the same setup as in the previous statement. The main differences
are that we now have to account for three more degrees of freedom.

We denote the circle that contains the vertices of one (k − 2)-gon c and the other such circle
d . After applying a suitable transformation we can assume that one vertex of the wedge edge
is at N and πN (c) is a line parallel to the x-axis. We can further assume that the projection
of the other vertex of the wedge edge has the smallest x-value among the vertices on πN (c)

and the smallest y-value among the vertices on πN (d ). In the previous proof, we always had
α = (0, 0) but here it can be freely chosen, adding two of the extra three degrees of freedom.
The third extra degree of freedom arises from now placing the remaining (k − 4) vertices
(instead of (k − 5) vertices in the case of Möbius transformations) of the first (k − 2)-gon
onto πN (c) on the positive x side of α. This yields an open (k − 2)-ball (α, β).

The remaining two parameters relate to the second (k − 2)-gon. The first of these parameters
is the angle between the lines πN (c) and πN (d ), denoted by γ , which can take any value
between 0 and π . Finally, we let Iα,β,γ be the set of positions for the third vertex of the second
(k − 2)-gon that determine a valid inscribed realization.

It is apparent that this parameterization has dimension k. The statement now follows from
observing that for a fixed γ , Iα,β,γ is determined by strict linear inequalities in α and β, and
contains at least one element. In particular, it contains the point v = ((0, 0), βc, βc, γ ) for any
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fixed βc. Therefore Iα,β,γ is an open polyhedron for each choice of γ , and is contractable to
v. The set of v for all values of γ is an open segment, which is contractible, so the realization
space RFk is contractible. �

3.2. Circumscribing C4(7) using interpolation. One approach to test whether a given
polytope is circumscribable consists in writing facet normals in terms of the vertex coordinates
and checking if they lie on a sphere. This is the same as checking that the dual of a
circumscribed polytope is inscribed.

This approach works well for the cyclic polytope C4(7) because the facet normals (at least
generically) uniquely determine a quadratic hypersurface by interpolation. We consider real
quadratic forms in (n + 1) variables and the action of GLn+1(R) on the vector space of all
quadratic forms given by change of coordinates, that is, (M.q)(x) = q(Mx). If a quadratic
form q is represented by the symmetric matrix A, that is q(x) = xT Ax, then M ∈ GLn+1(R)

acts on A via M.A := MT AM.

PROPOSITION 3.3. Let q(x) = xT Ax be a quadratic form in (n + 1) variables
x0, x1, . . . , xn. The quadratic form q can be transformed into the quadratic form defined
by x2

0 − ∑n
i=1 x2

i over R if and only if the signature of A is (1, n), that is, A has 1 positive and
n negative eigenvalues.

Proof. This is Sylvester’s law of inertia, see [9, Section 20.3]. �

Let t1 < t2 < · · · < t7 be the values defining the vertices of C4(7) on the moment curve,
and recall that i denotes the vertex (ti, t2

i , t3
i , t4

i ), where 1 � i � 7. The 14 facets of C4(7) can
be obtained by Gale’s evenness condition:

1234, 1237, 1245, 1256, 1267, 1347, 1457, 1567, 2345, 2356, 2367, 3456, 3467, 4567.

The facet normal vectors of the facets i jkl can be computed by Cramer’s rule as the kernel
of the matrix

⎛
⎜⎜⎜⎝

1 ti t2
i t3

i t4
i

1 t j t2
j t3

j t4
j

1 tk t2
k t3

k t4
k

1 tl t2
l t3

l t4
l

⎞
⎟⎟⎟⎠ .

This gives 14 points, {ri}i=1,...,14, in RP4 that we want to place on a quadratic hypersurface.
Since the vector space of quadratic forms in five variables has dimension 15, 14 generic
points uniquely determine a quadratic form vanishing at these 14 points and we can compute
its equation using Lagrange interpolation. To set this up, let m be the row vector of the 15
monomials of degree 2 in five variables in a fixed order. Writing ri for the 14 points in RP4,
we create the 14 × 15 matrix (m(ri))i=1,...,14. The coefficient vectors of the quadratic forms
vanishing at these 14 points are exactly the elements of the kernel of this matrix.

PROPOSITION 3.4. Let t1 = 0, t2 = 1, t3 = 3, t4 = 7, t5 = 11, t6 = 13, t7 = 21. The
representing matrix of the (up to scaling unique) quadratic form vanishing on the 14 facet
normals of the cyclic polytope C4(7) defined by these seven values is
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M =

⎛
⎜⎜⎜⎜⎝

22 237 130 328 1 323 281 15 129 020 184 061 477
130 328 339 339 2 534 532 27 498 471 344 552 208

1 323 281 2 534 532 12 297 285 106 450 344 1 304 584 281
15 129 020 27 498 471 106 450 344 677 359 683 7 142 515 380
184 061 477 344 552 208 1 304 584 281 7 142 515 380 59 989 246 317

⎞
⎟⎟⎟⎟⎠

.

The quadratic form associated to this matrix has signature (1,4).

Proof. This result can be computed in the way described above. The fact that the quadratic
form vanishing at these 14 points is unique up to scaling is equivalent to the fact that the
matrix (m(ri))i∈{1,...,14} has rank 14. �

Since the cyclic polytope C4(7) is the only combinatorial type with f -vector (7,21,28,14)
(see, e.g., [11, Table 6; 15, Chapter 6.3]), the following result says that every polytope with
this f -vector is strongly circumscribable in the sense of Chen and Padrol [6, Section 2.1].

THEOREM 3.5. The 4-dimensional cyclic polytope with seven vertices is strongly circum-
scribable.

Proof. For the choice of parameters t1 = 0, t2 = 1, t3 = 3, t4 = 7, t5 = 11, t6 = 13, t7 = 21,
the corresponding cyclic polytope C4(7) = conv{ν4(ti) : i = 1, . . . , 7} has the property that
the outer facet normal vectors embedded into RP4 via x 	→ (1 : x) lie on a quadric defined
by the quadratic form represented by M of signature (1,4), by Proposition 3.4. This means
that the facets of this realization of C4(7) are tangent to the quadric hypersurface projectively
dual to the quadric defined by M, which is given by the inverse of M, see, for example, [13,
Chapter 1]. The signature of the inverse matrix is still (1,4), implying that the given realization
is circumscribed to a quadric with the signature of the quadratic form x2

0 − x2
1 − x2

2 − x2
3 − x2

4.
This quadric can therefore be transformed by a projective transformation into the unit sphere
in R4 embedded in RP4 via x 	→ (1 : x). This shows the weak circumscribability of C4(7).

We will show strong circumscribability by transforming M to its rational canonical form.
The following matrix

Q =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 − 130 328
22 237

10 792 760 433
858 136 931 − 5 642 531 895

81 241 733
505 870 365

2 359 789

0 1 − 10 554 561 644
858 136 931

6 857 048 059
81 241 733 − 1 313 262 412

2 359 789

0 0 1 − 1 509 354 537
81 241 733

506 139 238
2 359 789

0 0 0 1 − 62 410 180
2 359 789

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

makes Q
MQ diagonal, the rational canonical form of M. The quadratic form determined
by Q
MQ is non-degenerate, and therefore removing the origin from the quadric yields two
connected components. To prove strong circumscribability, we need to show that the vertices
of C4(7)∗ still lie on a common component after the transformation. Since the only positive
entry on the diagonal of Q
MQ is the first one, and the first entry of Q−1ri is negative for every
i ∈ {1, . . . , 14}, all the ri lie on the negative connected component of the quadric determined
by Q
MQ. �

3.3. Circumscribing C4(7) using stereographic projection. In this section, we present a
circumscribed realization of C4(7) with explicit coordinates for its stereographic projection
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Figure 2 (colour online): The three facets of C4(7)∗ that do not contain the vertex (1234)∗.

through a well-chosen vertex. To do this we rely on the realization space of the inscribed
wedge described in Section 3.1.

Consider the polytope C4(7)∗. Up to cyclic symmetry of [7], there are two combinatorial
types of vertices in C4(7)∗. The first type consists of the seven vertices in the orbit of (1234)∗,
and the second, of those in the orbit of (1245)∗. We stereographically project C4(7)∗ from
the vertex (1234)∗ onto a generic hyperplane. By Lemma 2.2, since C4(7)∗ is simple, the
image of the three facets labeled 5∗, 6∗, and 7∗ form a polytopal subdivision of a convex
tetrahedron. Further, if C4(7)∗ is inscribed, then the resulting subdivision is Delaunay [14,
Proposition 13]. The result of the projection is combinatorially equivalent to the subdivision
illustrated in Figure 2.

We focus on facet 6∗, emphasized in the middle of Figure 2. We assume C4(7)∗ to be
inscribed, and use the parametrization of Section 3.1 to realize facet 6∗ in R3 using seven
variables. Observe that the location of the four vertices of the tetrahedron are determined
by facet equations of the realization of facet 6∗. This way, twelve of the thirteen vertices
contained in the tetrahedron are determined. The remaining vertex (1457)∗, located on
the top edge of the tetrahedron, still has one degree of freedom. Lemma 2.1(iii) together
with Lemma 2.2(iv) imply that every pentagonal face is inscribed. The vertex (2345)∗

and the pentagon (56)∗ determine a unique 2-sphere containing those six points. Vertices
(1245)∗ and (1457)∗ must be on this 2-sphere giving two equations of degree (2,2,2,2,1,2,2)
and (2,2,3,2,1,0,0). Similarly, the vertex (1237)∗ and the pentagon (67)∗ determine a
unique 2-sphere containing vertices (1457)∗ and (1347)∗ leading to equations of degree
(13,13,26,8,4,20,20) and (6,6,11,3,2,10,10). This leads to an underdetermined system of four
equations in seven variables.

To reduce the complexity, we impose symmetry, resulting in a system with fewer variables.
Indeed, this reduces the parameter space to just four variables: α and the first two lengths
β1, β2. To eliminate the angle γ , we require that the projection of the great circle passing
through (0,0) and α be the angle bisector of the two rays (see Figure 1 on the right for an
illustration of the parameter space (α, β, γ ) – for a different choice of γ ). Since one of the
rays is horizontal, knowledge of α prescribes the angle γ . A further constraint comes from the
fact that facets 5∗ and 7∗ must be isometric and hence vertex (1457)∗ must be in the middle
of the edge π(1234)∗ ((14)∗).

Taking the educated guess α = (−3/2, −1/2), we compute the intersection of the two
constraints, to obtain two algebraic curves on the plane with degrees (5,3) and (9,7). Newton’s
method and subsequent verification then results in exact coordinates for the stereographic
projection of an inscribed embedding of C4(7)∗ from vertex (1234)∗. The coordinates are
given in Appendix B. The realization has coordinates in Q[a], where a is the solution to a
degree 10 polynomial. Therefore, the corresponding inscribed realization of C4(7)∗ in R4

must have degree at least 20.
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Figure 3 (colour online): The dashed circle is the sixth circle passing through four points.

QUESTION 3.6. Is there a rational inscribed realization of C4(7)∗? If not, what is the
smallest possible degree of the coordinates as algebraic numbers over Q?

In particular, a degree 2 realization is of exceptional interest.

3.4. Non-circumscribability of C4(8). We start by giving a classical result related to
inscribability. It is due to Jakob Steiner, originally proved by Auguste Miquel, see Figure 3
for an illustration.

LEMMA 3.7 (Miquel’s theorem [23, Theorems 1.6 and 18.5]). Let pi, 1 � i � 8, be eight
distinct points in R2 such that the following quadruples are cocircular: (p1, p2, p3, p4),
(p1, p2, p5, p6), (p2, p3, p6, p7), (p3, p4, p7, p8), (p1, p4, p5, p8). Then (p5, p6, p7, p8)

is cocircular.

Miquel’s theorem lifts to a statement about planarity of points on a 2-sphere.

LEMMA 3.8 (Miquel’s theorem, spherical version). Let pi, 1 � i � 8, be eight distinct
points on S2 such that the following quadruples of vertices are coplanar: (p1, p2, p3, p4),
(p1, p2, p5, p6), (p2, p3, p6, p7), (p3, p4, p7, p8), (p1, p4, p5, p8). Then the quadruple
(p5, p6, p7, p8) is coplanar and thus the lines spanned by (p5, p6) and (p7, p8) are coplanar.

Miquel’s theorem describes the underlying reason for the fact that one cannot force a facet
of C4(8)∗ to be inscribed.

THEOREM 3.9. No realization of C4(8)∗ has an inscribed facet, although all its facets
are inscribable.

Proof. The facets ofC4(8)∗ are all combinatorially equivalent to F8, a wedge over a hexagon.
By Proposition 3.2, they are inscribable. By Gale’s evenness condition, the facets of C4(8)

are given by

1234, 1238, 1245, 1256, 1267, 1278, 1348, 1458, 1568, 1678,

2345, 2356, 2367, 2378, 3456, 3467, 3478, 4567, 4578, 5678.
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Figure 4 (colour online): The image of the stereographic projection of C4(8)∗ from vertex (3467)∗.
Facets 1∗, 2∗, 5∗ and 8∗ are drawn in white (center), orange (top left), blue (bottom), and green (top right),
respectively.

By duality, these correspond to the vertices of C4(8)∗, and we write (i jkl )∗ for the
vertex of C4(8)∗ corresponding to facet i jkl of C4(8). By Lemma 2.2, projecting C4(8)∗

stereographically from vertex (3467)∗ yields a polytopal subdivision of a tetrahedron � into
four copies of F8, see Figure 4.

By definition, edge (134)∗ belongs to wedges 1∗, 3∗ and 4∗, while edge (167)∗ belongs to
wedges 1∗, 6∗ and 7∗. Since � is convex, these two edges (134)∗ and (167)∗ must be skew,
as can be seen in the stereographic projection, see Figure 4. If the wedge 1∗ is inscribed,
the squares (12)∗, (14)∗, (15)∗, (16)∗, and (18)∗ are inscribed on a common 2-sphere. By
Lemma 3.8, the four vertices (1234)∗, (1267)∗, (1348)∗ and (1678)∗ are then coplanar, forcing
(134)∗ and (167)∗ to be both coplanar and skew which is impossible.

Since the dimension is even, facets of C4(8)∗ are related through combinatorial automor-
phisms of the cyclic polytope. Hence, for each facet there is an appropriate choice of vertex
that provides the required configuration in the stereographical projection. �

COROLLARY 3.10. The cyclic polytope C4(8) is not circumscribable.

Proof. Since C4(8)∗ has no realization with an inscribed facet, C4(8)∗ is not inscribable
and C4(8) is not circumscribable by Lemma 2.1. �

3.5. Larger cyclic polytopes Cd (k). The obstruction in the case of C4(8) appears as a
subcomplex in a large class of cyclic polytopes. On the one hand, by taking specific successive
stereographic projections until the resulting object is a tetrahedron, the lines spanned by
opposite edges of the tetrahedron are skew. On the other hand, the tetrahedron contains
a projected face whose inscription forces these skew lines to be coplanar, leading to a
contradiction.

THEOREM 3.11. Let k � 8. No realization of C4(k)∗ has an inscribed facet, although all
its facets are inscribable.

Proof. The proof follows the proof of Theorem 3.9. Set P = C4(k)∗ and denote by s the
vertex (3467)∗ of P. Using Lemma 2.2, πs(P) defines a subdivision of a tetrahedron with
triangles πs(3∗), πs(4∗), πs(6∗), πs(7∗). Notice that

the image πs((34)∗) and the image πs((67)∗) are skew. (�)
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Figure 5 (colour online): A wedge and a subcomplex formed by eight vertices.

Consider the polytope πs(1∗). Since facet 1∗ does not contain vertex s, by Lemma 2.2 the
polytope 1∗ and πs(1∗) are combinatorially isomorphic. The facets of 1∗ are ridges of P and
are labeled as (1i)∗ for some 1 � i � k. Among the facets of πs(1∗) are πs((14)∗), πs((16)∗),
πs((15)∗), πs((12)∗) and πs((1k)∗). See Figure 5 for an illustration.

Assume, for the sake of contradiction, that the facet 1∗ is inscribed. By Lemma 2.2,
its projection πs(1∗) is also inscribed. By Lemma 2.1(iii), the five polygons πs((14)∗),
πs((16)∗), πs((15)∗), πs((12)∗) and πs((1k)∗) are inscribed and by Lemma 3.8, the four
points πs((1234)∗), πs((134k)∗), πs((1267)∗}), πs((167k)∗) lie on a common plane. This
contradicts our previous observation (�) and thus 1∗ cannot be inscribed. �

COROLLARY 3.12. Let d � 4 and k � d + 4. The cyclic polytope Cd (k) is not circum-
scribable.

Proof. The case d = 4 is Theorem 3.11. Hence, assume d = 4 + j with j � 1 and consider
Cd (k) with k � d + 4. The vertex figure of vertex k in Cd (k) is combinatorially isomorphic to
Cd−1(k − 1). We iteratively take vertex figures of the largest labeled vertex j times until we
have C4(k − j). By Theorem 3.11, C4(k − j) is not circumscribable and, by Lemma 2.1(ii),
we conclude that Cd (k) is not circumscribable. �

Table 4: Circumscribability of cyclic polytopes Cd (k)

k
Cd(k) 3 4 5 6 7 8 9

2

3

d 4

5

6

Altogether, we have the following brief summary regarding the circumscribability of cyclic
polytopes, see also Table 4:
� Since polygons are circumscribable, C2(k) is trivially circumscribable.
� The cyclic polytope Cd (d + 1) is combinatorially isomorphic to the d-simplex and hence

circumscribable.
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� Similarly, Cd (d + 2) is a direct sum of simplices and its dual is the product of simplices
which is inscribable. Therefore Cd (d + 2) is circumscribable.

� The cyclic polytope C3(k) = F ∗
k is circumscribable, see Section 3.1.

The only class of cyclic polytopes whose circumscribability is not determined is Cd (d + 3).

QUESTION 3.13. Is Cd (d + 3) circumscribable for all d � 5?

In theory, this question can be addressed by the methods described in Sections 3.2 and 3.3.
Interpolation behaves interestingly: for d = 5, we have 20 facets and the space of quadrics
in P5 has dimension 21. Hence, we expect a unique quadric containing all facet normals
of a realization of C5(8). Computations suggest that the space of quadrics through these
20 points is 3-dimensional generically. Searching for a quadric with the right signature in
this space is challenging. For larger d , the number of facets of Cd (d + 3) is bigger than the
dimension of the space of quadrics. However, for d = 6, the facet normals generically lie on
a unique quadric. We did not manage to find one with the right signature. The computational
approach via stereographic projection is already challenging for C4(7). For higher values
of d , we are looking for Delaunay subdivisions of a (d − 1)-dimensional simplex, another
computational challenge.

§4. Forbidden subposet. We present a combinatorial abstraction of the geometric obstruc-
tion presented in Section 3.4 using a poset.

Definition 4.1 (ObstructionX ). Let P be a d-polytope. We identity a hypothetical subposetX
of the face lattice of P that creates an obstruction to inscribability. This subposet consists of
nine vertices {0, 1, . . . , 8}, two edges {12, 34}, seven 2-faces {A, B,C, D, E , X,Y }, and one
3-face 
 that satisfy the following geometric properties in P.

(i) The vertex 0 has exactly d neighboring vertices in P.
(ii) The intersection of faces X and Y is the vertex 0, which is not a vertex of 
.

(iii) X contains the edge 12.
(iv) Y contains the edge 34.
(v) The 2-faces A, B, . . . , E are faces of 
.

(vi) The 2-faces A, B, . . . , E contain the following vertices:

{1, 2, 5, 6} ⊆ A, {1, 3, 5, 7} ⊆ B, {5, 6, 7, 8} ⊆ C, {2, 4, 6, 8} ⊆ D, {3, 4, 7, 8} ⊆ E .

Remark 4.2.
(a) Since the 2-faces A and B contain the vertices 1 and 5, 15 must be an edge of P. Similarly,

26, 37, 48, 56, 57, 68, 78 are edges of P. It follows that C is a square and since 12 and
34 are edges of P it follows that A, and E are square faces too.

(b) Furthermore, by property (ii), the face 
 does not contain X nor Y .

See Figure 6 for a scheme representing the five 2-faces A, . . . , E and Figure 7 for an
illustration of the Hasse diagram of X .

Assuming that 
 is inscribed, Miquel’s theorem implies that the edges 12 and 34 are
coplanar. Since X and Y are two 2-faces intersecting in exactly one vertex 0 with exactly d
neighbors, the edges 12 contained in X and the edge 34 contained in Y must be skew. Since
the edges 12 and 34 cannot be simultaneously coplanar and skew, we obtain the following
obstruction lemma.
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Figure 6 (colour online): A schematization of the adjacencies between the 2-faces A, . . . , E . The dashed
circle is the circle obtained from Miquel’s theorem.

Figure 7 (colour online): An inscribability obstruction poset X . The zig-zag edge represents a required
non-relation.

LEMMA 4.3 (Obstruction Lemma). Let P be a d-polytope. If the face lattice of P admits
X as a subposet with the properties.
(T) The meet X ∧ Y in the face lattice of P is 0 (Touching);
(S) 0 has exactly d covers in the face lattice of P (Simple);
then P has no realization where the face 
 is inscribed.

Algorithm 1 uses Obstruction X to detect non-inscribability. It works in any dimension
d � 4 and only requires the 3-skeleton of the polytope. On the one hand, the algorithm can
be generalized to obstructions obtained from other planar “Delaunay” circle theorems and to
larger face figures. On the other hand, it only provides a necessary condition for a combinatorial
type of polytope to be inscribable. A naive implementation of Algorithm 1 leads to a running
time of O(k9), where k is the number of vertices of the polytope.

Running this algorithm on the 8-facet polytopes results in a combinatorial type with f -
vector (14, 31, 25, 8) which is not inscribable because it contains X and has the Simple and
Touching properties. The facets of this combinatorial type are

0126ABC, 0159BCD, 02 367ACD, 04 589ABD,

123 456 789, 12 345AB, 16 789CD, 3478AD.

The illustration of the stereographic projection from vertex 0 of this polytope in Figure 8
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Algorithm 1 Checking for obstruction X in the face lattice �P of a d-polytope P

Input: A combinatorial type of polytope P
Output: Either finds a Miquel’s polytope 
 and two 2-faces X,Y or shows that it satisfies the
necessary condition.

1: procedure FINDOBSTRUCTION(P) � Tests the presence of X in �P

2: P3 := { f ∈ �P : dim f = 3}
3: Q ← 3-skeleton of P � Makes incidence verification linear
4: Found ← False
5: while ¬ Found and |P3| > 0 do � O(k4)
6: 
 ← an element of P3

7: P3 ← P3 \ {
}
8: for each square configuration A,C, E in 
 do � O(k3)
9: if 
 contains faces B and D then

10: for X cover of 12, and Y cover of 34 do � O(k2)
11: if 0 := X ∧ Y is a simple vertex and 0 �∈ 
 then
12: Found ← True
13: end if
14: end for
15: end if
16: end for
17: end while
18: if Found thenreturn (Found, 
, X,Y ) � The obstruction was found.
19: else return None � The necessary condition is fulfilled.
20: end if
21: end procedure

Figure 8 (colour online): The smallest polytope with eight facets that contains the obstruction X with the
Simple and Touching properties from Lemma 4.3.
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Figure 9 (colour online): The image of the stereographic projection of N2
4 (8) from vertex J . The two bold

edges 4A and 5C in the wedge v2 must be coplanar by Miquel’s theorem.

shows that this is the smallest with eight facets; contracting any face destroys some critical
component of the obstruction.

§5. The neighborly 4-polytopes with eight verticesN4(8). In the previous sections, we iden-
tified a combinatorial barrier to inscribability. We use this barrier, and a slight generalization
of it to prove the following theorem.

THEOREM 5.1. No polytope with f -vector (8,28,40,20) is circumscribable. Dually, no
polytope with f -vector (20,40,28,8) is inscribable.

Proof. There are three combinatorial types of polytope with the given f -vector [17].
Case 1. The first type is the cyclic polytope C4(8), see Corollary 3.10.
Case 2. Consider the combinatorial type N2

4 (8) given by the facet-vertex incidences
below. We denote the vertices from v1 to v8. The numbers 0-9 and letters A to J denote
facets.

v1 : {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} (blue, bottom) v5 : {1, 4, 6, 8, 9, A, B, F, I, J} (triangle “18I”)
v2 : {2, 3, 4, 5, 6, 7, A, B,C, D} (white, center) v6 : {0, 1, 2, 4, A, E , F, H, I, J} (triangle “1HI”)
v3 : {0, 2, 3, A, B,C, D, E , F, G} (orange, left) v7 : {0, 1, 3, 5, 8,C, E , G, H, J} (triangle “18H”)
v4 : {6, 7, 9, B, D, E , F, G, H, I} (green, top) v8 : {5, 7, 8, 9,C, D, G, H, I, J} (triangle “8HI”)

Projecting N2
4 (8)∗ stereographically from vertex J , we obtain a subdivision of a tetrahedron

as illustrated in Figure 9. Assuming that the wedge v2 is inscribed, this implies that quadruples
(A, B,C, D), (4,5,6,7), (4, 6, A, B), (6, 7, B, D), and (5, 7,C, D) are all coplanar and lie on a
sphere. By Lemma 3.8, this implies that quadruple (4, 5, A,C) is coplanar, and thus 4A and
5C are coplanar as well. Edge 4A belongs to wedges v2, v5 and v6, while edge 5C belongs
to wedges v2, v7 and v8. Since N2

4 (8)∗ is convex, edges 4A and 5C must be skew, since they
belong to two 2-faces intersecting in J , see Figure 9. Therefore, if N2

4 (8) is convex, facet v2

cannot be inscribed and N2
4 (8)∗ is not inscribable. Hence, N2

4 (8) cannot be circumscribable
by Lemma 2.1. Facets v2 and v8 are combinatorially equivalent in N2

4 (8)∗ and hence both
cannot be inscribed; the problematic pair of edges in v8 is CD/IJ .
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Figure 10 (colour online): The image of the stereographic projection of N3
4 (8) from vertex J .

Case 3. The final combinatorial type N3
4 (8) is determined by the following facet-vertex

incidences:

v1 : {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} (orange, back left) v5 : {0, 1, 3, 4, 7, 8, A, E , G, J} (triangle “3AE”)

v2 : {1, 2, 5, 6, 8, 9, A, B,C, D} (green, back right) v6 : {3, 5, 8, A, B,C, D, H, I, J} (triangle “3AI”)

v3 : {0, 2, 7, 9, B,C, E , F, G, H} (blue, front bottom) v7 : {0, 1, 2, A, B, E , F, H, I, J} (triangle “AEI”)

v4 : {4, 6, 7, 9,C, D, F, G, H, I} (white, front top) v8 : {3, 4, 5, 6, D, E , F, G, I, J} (triangle “3EI”)

Projecting N3
4 (8)∗ stereographically from vertex J , we obtain a subdivision of a tetrahedron

as illustrated in Figure 10. Assuming that wedge v1 is inscribed, it follows that the quadruples
(0,2,7,9), (4,6,7,9), (3,4,5,6), (2,5,6,9) and (0,3,4,7) are coplanar and the eight points lie on a
sphere. By Lemma 3.8, the quadruple (0,2,3,5) must be coplanar, and thus 02 and 35 are also
coplanar. Now, consider the hexagon 02BEFH of wedge v3. Because the hexagon is convex,
the line spanned by edge 02 intersects edge AI strictly between the point A and B. But 02
and 35 are coplanar, and since the line spanned by 02 meets both the lines spanned by AI
and 35, they must meet in I . This forces the points B, H and I to collapse, a contradiction.
Hence N3

4 (8) is not circumscribable by Lemmas 2.1 and 2.2. The facets v1, v2, v3, and v4 are
combinatorially equivalent in N3

4 (8)∗. Hence, none of them can be inscribed. �

§6. Open questions. The previous sections provide some concrete support for [6, Conjec-
ture 8.4], that all large neighborly polytopes are not circumscribable. The following approach
may yield a rich infinite class of not circumscribable neighborly polytopes.

Starting from the basepoint of Cd (k), with k > d + 4 and d > 4, we have one neighborly
polytope for each pair (k, d ) that is not cicrcumscribable. From some neighborly polytopes,
adding a single vertex yields another neighborly polytope. Iterating this process can give rise
to many neighborly polytopes. This is described in detail in [20]. Dually, we may generate dual
to neighborly polytopes by introducing a single new facet. For an example of this operation,
compare Figures 2 and 9: The facet 6∗ is split into two facets, the facet containing edge E0 on
the left, and the facet outlined in black. Once this operation is done, most of the squares are
split into further squares. Having many squares in a common facet can lead to an obstruction
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to inscribability. In particular, this sequence of three squares in a row described in Section 4 is
disadvantageous to inscribing a polytope. There are neighborly 4-polytopes with nine vertices
that do not have Miquel’s structure as in the statement of Lemma 3.8 as a facet. We ask a
more specific version of [6, Conjecture 8.4]:

QUESTION 6.1. Are neighborly polytopes avoiding Miquel’s arrangement in vertex
figures circumscribable?

We restate the open questions brought up throughout the text.

QUESTION 6.2. For which d is the polytope Cd (d + 3) circumscribable?

This question has an obvious line of attack: Gale duality. Depending on the particular choice
of reductions in the duality, understanding an alternating sequence of black and white dots
on a line explains the general case. If Cd (d + 3) is not circumscribable for some d � 5, it
would constitute a counterexample to a conjecture raised by Grünbaum [15, Last sentence of
Section 3.15].

Our final question has to do with inscribed realizations of C4(7)∗. We gave two ways to see
that it is inscribable, the second of which gives explicit coordinates. However, the coordinates
are in a degree twenty extension of Q. We wonder what is the smallest degree extension
needed to inscribe C4(7)∗. In particular,

QUESTION 6.3. Is C4(7)∗ inscribable with rational coordinates?
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Appendix A. Inscribed realization of small f -vectors. The following coordinates give
rational inscribed realizations for polytopes with f0 ∈ {6, 7}, with f0 = 8 and f3 = 7, and
for two types with f0 = 9 and f3 = 7.

f -vector Coordinates

(6, 13, 13, 6) ((0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0), (1, 0, 1, 0))

(6, 14, 15, 7) ((0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0), (1, 1, 1, 0))

(6, 14, 16, 8) ((−1, 0, 0, 0), (0, − 1
3 , − 2

3 , − 2
3 ), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0))

(6, 15, 18, 9) ((− 3
5 , − 4

5 , 0, 0), (0, 0, − 3
5 , − 4

5 ), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0))

(7, 15, 14, 6) ((0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0), (1, 0, 1, 0), (1, 1, 0, 0))

(7, 16, 16, 7) ((0, 0, −1, 0), (0, 0, 0, −1), (0, 0, 0, 1), (0, 0, 3
5 , 4

5 ), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0))

(7, 16, 16, 7) ((0, − 4
5 , − 3

5 , 0), (0, 0, −1, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), ( 6
7 , 3

7 , 2
7 , 0), (1, 0, 0, 0))

(7, 17, 17, 7) ((0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0), (1, 1, 0, 1), (1, 1, 1, 0))

(7, 17, 18, 8) ((0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (0, 1, 0, 1), (1, 0, 0, 0), (1, 0, 1, 0))

(7, 17, 18, 8) ((− 3
5 , 0, 0, 4

5 ), (0, 0, −1, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), ( 6
7 , 3

7 , 2
7 , 0), (1, 0, 0, 0))

(7, 17, 18, 8) ((0, 0, −1, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), ( 3
13 , 12

13 , 4
13 , 0), ( 4

5 , 0, − 3
5 , 0), (1, 0, 0, 0))

(7, 17, 18, 8) ((− 12
13 , − 5

13 , 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), ( 4
9 , 7

9 , 4
9 , 0), ( 20

29 , − 21
29 , 0, 0), (1, 0, 0, 0))

(7, 18, 19, 8) ((0, − 2
7 , − 6

7 , 3
7 ), (0, 0, 0, 1), (0, 0, 1, 0), (0, 2

7 , 6
7 , 3

7 ), (0, 1, 0, 0), ( 1
2 , 1

2 , 1
2 , 1

2 ), (1, 0, 0, 0))

(7, 17, 19, 9) ((− 4
5 , 0, − 3

5 , 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), ( 3
5 , 0, 4

5 , 0), ( 14
15 , 4

15 , 1
5 , 2

15 ), (1, 0, 0, 0))

(7, 18, 20, 9) ((− 4
5 , − 3

5 , 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), ( 6
11 , 6

11 , 7
11 , 0), ( 7

9 , − 4
9 , − 4

9 , 0), (1, 0, 0, 0))

(7, 18, 20, 9) ((− 6
7 , 2

7 , 3
7 , 0), (0, − 3

5 , − 4
5 , 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), ( 2

7 , 3
7 , 6

7 , 0), (1, 0, 0, 0))

(7, 18, 20, 9) ((0, − 7
25 , − 24

25 , 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), ( 5
9 , 2

3 , 4
9 , 2

9 ), ( 12
13 , 4

13 , 3
13 , 0), (1, 0, 0, 0))
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f -vector Coordinates

(7, 18, 20, 9) ((− 4
5 , 0, − 3

5 , 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), ( 7
9 , 0, 4

9 , 4
9 ), ( 6

7 , 2
7 , 3

7 , 0), (1, 0, 0, 0))

(7, 18, 20, 9) ((− 4
5 , 0, − 3

5 , 0), (− 2
7 , 0, 3

7 , 6
7 ), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), ( 4

13 , 3
13 , 12

13 , 0), (1, 0, 0, 0))

(7, 18, 20, 9) ((0, 0, −1, 0), (0, 0, − 3
5 , 4

5 ), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), ( 4
9 , 7

9 , 4
9 , 0), (1, 0, 0, 0))

(7, 18, 21, 10) ((0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0), (1, 1, 1, 0), (1, 1, 1, 1))

(7, 18, 21, 10) ((− 10
11 , − 2

11 , 4
11 , − 1

11 ), (− 3
5 , 0, − 4

5 , 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), ( 2
7 , 3

7 , 6
7 , 0), (1, 0, 0, 0))

(7, 18, 21, 10) ((0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0), (1, 0, 1, 0), (1, 1, 1, 1))

(7, 18, 21, 10) ((− 4
5 , − 3

5 , 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), ( 3
13 , 12

13 , 4
13 , 0), ( 6

7 , 3
7 , 0, − 2

7 ), (1, 0, 0, 0))

(7, 19, 22, 10) ((− 12
13 , 0, − 5

13 , 0), (− 6
11 , 0, − 2

11 , 9
11 ), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), ( 1

3 , 2
3 , 2

3 , 0), (1, 0, 0, 0))

(7, 19, 22, 10) ((− 4
5 , − 3

5 , 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), ( 6
11 , − 6

11 , 0, 7
11 ), ( 6

7 , 3
7 , 2

7 , 0), (1, 0, 0, 0))

(7, 18, 22, 11) ((− 4
5 , 0, − 3

5 , 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), ( 2
3 , 2

3 , 1
3 , 0), ( 12

17 , 0, − 12
17 , − 1

17 ), ( 112
113 , 15

113 , 0, 0))

(7, 19, 23, 11) ((− 4
5 , − 3

5 , 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), ( 6
11 , 6

11 , 7
11 , 0), ( 4

7 , − 2
7 , − 2

7 , 5
7 ), (1, 0, 0, 0))

(7, 19, 23, 11) ((0, − 2
7 , 6

7 , 3
7 ), (0, 0, −1, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), ( 1

6 , 5
6 , − 1

6 , 1
2 ), (1, 0, 0, 0))

(7, 19, 23, 11) ((− 2
3 , 0, 1

3 , − 2
3 ), (− 3

5 , 0, − 4
5 , 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), ( 6

11 , 6
11 , 7

11 , 0), (1, 0, 0, 0))

(7, 19, 24, 12) ((− 2
5 , 4

5 , − 2
5 , − 1

5 ), (0, − 4
5 , − 3

5 , 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), ( 6
11 , 6

11 , 7
11 , 0), (1, 0, 0, 0))

(7, 20, 25, 12) ((− 3
5 , − 4

5 , 0, 0), (− 2
13 , 10

13 , 4
13 , 7

13 ), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), ( 6
11 , 6

11 , 7
11 , 0), (1, 0, 0, 0))

(7, 20, 26, 13) ((− 1
6 , − 1

6 , 5
6 , 1

2 ), (0, 0, 0, −1), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), ( 2
3 , 5

9 , − 2
9 , 4

9 ), (1, 0, 0, 0))

(7, 20, 26, 13) ((− 1
2 , 1

2 , 1
2 , − 1

2 ), (0, − 4
5 , − 3

5 , 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), ( 6
11 , 6

11 , 7
11 , 0), (1, 0, 0, 0))

(7, 21, 28, 14) ((− 2
13 , 7

13 , 4
13 , 10

13 ), (0, 0, 0, −1), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), ( 5
7 , 4

7 , − 2
7 , 2

7 ), (1, 0, 0, 0))

(8, 18, 17, 7) ((− 4
5 , − 3

5 , 0, 0), (− 4
5 , 3

5 , 0, 0), (0, − 3
5 , 4

5 , 0), (0, 0, 0, 1), (0, 3
5 , 4

5 , 0), (0, 1, 0, 0), ( 4
5 , − 3

5 , 0, 0), ( 4
5 , 3

5 , 0, 0))

(8, 18, 17, 7) ((− 4
5 , 0, − 3

5 , 0), (− 3
5 , 0, 0, 4

5 ), (− 3
5 , 0, 4

5 , 0), (− 3
5 , 4

5 , 0, 0), ( 3
5 , 0, − 4

5 , 0), ( 3
5 , 0, 0, 4

5 ), ( 3
5 , 0, 4

5 , 0), ( 3
5 , 4

5 , 0, 0))

(8, 18, 17, 7) ((0, −1, 1, 0), (0, 0, 1, −1), (0, 0, 1, 1), (0, 1, −1, 0), (0, 1, 0, −1), (0, 1, 0, 1), (0, 1, 1, 0), (1, 1, 0, 0))

(8, 18, 17, 7) ((− 1
2 , − 1

2 , 0, 0), (− 1
2 , 0, 0, − 1

2 ), (0, − 1
2 , − 1

2 , 0), (0, 0, − 1
2 , − 1

2 ), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0))

(8, 19, 18, 7) ((− 1
2 , − 1

2 , − 1
2 , − 1

2 ), (− 1
2 , − 1

2 , − 1
2 , 1

2 ), (− 1
2 , − 1

2 , 1
2 , − 1

2 ), (− 1
2 , − 1

2 , 7
10 , − 1

10 ), (− 1
2 , 1

2 , − 1
2 , − 1

2 ), (− 1
2 , 1

2 , 1
2 , − 1

2 ),

(− 1
10 , 7

10 , − 1
2 , − 1

2 ), ( 1
2 , − 1

2 , − 1
2 , − 1

2 ))

(9, 19, 17, 7) ((− 3
5 , − 4

5 , 0, 0), (− 3
5 , 0, 0, 4

5 ), (− 3
5 , 0, 4

5 , 0), (− 3
5 , 4

5 , 0, 0), ( 3
5 , − 4

5 , 0, 0), ( 3
5 , 0, 0, 4

5 ), ( 3
5 , 0, 4

5 , 0), ( 3
5 , 4

5 , 0, 0), (1, 0, 0, 0))

(9, 20, 18, 7) ((0, − 2
3 , − 2

3 , − 1
3 ), (0, − 2

3 , − 2
3 , 1

3 ), (0, − 2
3 , 2

3 , − 1
3 ), (0, − 2

3 , 2
3 , 1

3 ), (0, 2
3 , − 2

3 , − 1
3 ), (0, 2

3 , − 2
3 , 1

3 ), (0, 2
3 , 2

3 , − 1
3 ),

(0, 2
3 , 2

3 , 1
3 ), (1, 0, 0, 0))

Appendix B. Realization of C4(7)∗. Let a denote the root of the irreducible polynomial

2000 x10 − 61 600 x8 + 84 000 x7 + 550 760 x6 − 1 234 800 x5 − 2 287 712 x4

+ 11 660 040 x3 − 17 853 395 x2 + 12 862 500 x − 3 721 550 ∈ Q[x],

which is approximately equal to 0.998 949 5 . . . . The point p(i jkl )∗ is represented by a matrix
where the i jth entry represents the coefficient of a j−1 in the ith coordinate of p(i jkl )∗ , with the
common denominator on the left-hand side.
20 070 439 200 · p(1237)∗

=
⎛
⎝

−71 971 814 950 214 819 961 160 −239 913 086 315 103 001 684 898 11 944 786 350 −19 361 648 040 204 242 500 1 993 811 400 −101 845 000 −68 508 000
102 148 616 850 −287 478 698 780 314 362 827 345 −135 231 668 824 −12 541 988 550 25 218 409 020 −960 907 500 −2 679 443 200 185 385 000 98 254 000
−58 751 181 300 169 926 267 000 −177 108 168 090 67 631 242 560 12 031 670 700 −12 956 743 800 −363 237 000 1 315 608 000 −44 610 000 −43 260 000

⎞
⎠

566 773 200 · p(1245)∗

=
⎛
⎝

19 328 773 730 −51 170 823 480 50 521 437 505 −17 774 272 446 −3 945 546 150 3 488 404 080 193 196 500 −351 787 800 6 545 000 11 016 000
−39 521 739 390 109 005 389 220 −116 217 783 255 47 552 262 072 5 924 107 350 −8 971 113 060 122 104 500 939 069 600 −53 025 000 −33 162 000

13 632 192 000 −29 671 387 480 23 564 352 840 −3 847 036 844 −3 941 687 400 996 066 120 467 796 000 −77 529 200 −22 260 000 −76 000

⎞
⎠

56 010 528 · p(1256)∗

=
⎛
⎝

−121 296 462 291 892 412 −332 564 127 145 513 732 23 348 010 −27 045 060 −989 100 2 623 600 −63 000 −82 000
−10 659 754 −12 709 032 23 499 763 −29 109 234 6 678 210 5 315 520 −1 192 100 −592 200 77 000 24 000

34 691 020 −25 418 064 46 999 526 −58 218 468 13 356 420 10 631 040 −2 384 200 −1 184 400 154 000 48 000

⎞
⎠

2 867 205 600 · p(1267)∗

=
⎛
⎝

−19 300 421 350 46 282 126 310 −43 936 222 155 15 479 075 353 2 847 331 200 −3 041 102 190 −50 487 500 322 102 900 −13 440 000 −10 963 000
−12 982 515 700 35 506 910 670 −36 764 273 210 14 405 597 171 2 320 167 150 −2 785 633 830 −57 575 000 284 430 300 −9 205 000 −9 191 000

478 725 100 −1 272 505 500 6 099 370 550 −4 474 065 050 −295 470 000 807 691 500 31 535 000 −68 565 000 −1 400 000 1 550 000

⎞
⎠

793 482 480 · p(1347)∗
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=
⎛
⎝

−19 648 634 950 49 266 897 120 −46 185 749 435 14 344 638 966 4 507 541 850 −2 918 602 680 −338 481 500 284 503 800 4 865 000 −7 836 000
26 282 357 850 −73 622 222 660 79 646 366 205 −33 416 324 788 −3 668 407 050 6 265 642 740 −154 045 500 −659 688 400 41 055 000 23 698 000

566 773 200 0 0 0 0 0 0 0 0 0

⎞
⎠

1 983 706 200 · p(1457)∗

=
⎛
⎝

−10 224 144 000 22 253 540 610 −17 673 264 630 2 885 277 633 2 956 265 550 −747 049 590 −350 847 000 58 146 900 16 695 000 57 000
−3 408 048 000 7 417 846 870 −5 891 088 210 961 759 211 985 421 850 −249 016 530 −116 949 000 19 382 300 5 565 000 19 000
18 032 093 100 −37 089 234 350 29 455 441 050 −4 808 796 055 −4 927 109 250 1 245 082 650 584 745 000 −96 911 500 −27 825 000 −95 000

⎞
⎠

7 · p(1567)∗

=
⎛
⎝

−3 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0

⎞
⎠

2 867 205 600 · p(2345)∗

=
⎛
⎝

728 391 215 650 −2 094 919 908 480 2 255 588 894 825 −918 271 186 602 −127 852 684 050 173 832 156 960 331 908 500 −17 887 938 600 836 395 000 610 392 000
−640 177 480 950 1 815 290 831 340 −2 008 474 027 875 880 868 550 996 73 047 526 650 −163 761 989 580 7 313 554 500 17 445 682 800 −1 256 535 000 −644 166 000

57 014 523 300 −204 183 568 400 279 428 358 930 −144 653 044 060 −10 489 728 900 26 862 838 800 −393 351 000 −2 657 158 000 106 470 000 84 760 000

⎞
⎠

1 720 323 360 · p(2356)∗

=
⎛
⎝

11 378 013 150 −33 812 265 760 37 688 384 055 −15 738 414 566 −1 992 004 350 2 921 101 680 −30 964 500 −302 283 800 17 325 000 10 736 000
−9 162 336 050 21 572 588 100 −19 448 165 905 5 712 716 940 1 793 730 750 −1 154 111 700 −108 188 500 117 642 000 −1 085 000 −3 690 000

−16 604 348 740 43 145 176 200 −38 896 331 810 11 425 433 880 3 587 461 500 −2 308 223 400 −216 377 000 235 284 000 −2 170 000 −7 380 000

⎞
⎠

60 211 317 600 · p(2367)∗

=
⎛
⎝

275 535 072 750 −590 111 239 480 409 498 429 935 −40 933 667 138 −62 997 386 550 12 663 303 240 6 368 575 500 −1 213 843 400 −235 935 000 16 748 000
545 270 272 750 −1 346 220 763 860 1 256 883 097 295 −397 204 485 216 −107 019 755 850 78 694 530 180 5 548 203 500 −8 048 728 800 161 455 000 259 986 000

−481 579 031 500 1 445 819 734 800 −1 519 614 839 750 586 406 775 780 95 634 745 500 −110 715 284 400 −1 234 835 000 11 421 354 000 −541 450 000 −395 880 000

⎞
⎠

4 014 087 840 · p(3456)∗

=
⎛
⎝

11 154 335 990 −21 423 180 730 13 733 960 835 −1 699 549 859 −1 024 781 100 430 167 570 −17 328 500 −68 488 700 8 610 000 3 389 000
12 886 770 680 −35 252 409 570 35 544 399 100 −13 510 784 161 −2 261 073 150 2 624 095 530 51 268 000 −270 717 300 9 485 000 8 881 000
29 787 629 200 −70 504 819 140 71 088 798 200 −27 021 568 322 −4 522 146 300 5 248 191 060 102 536 000 −541 434 600 18 970 000 17 762 000

⎞
⎠

40 007 520 · p(3467)∗

=
⎛
⎝

36 683 850 −87 262 924 89 481 693 −18 404 792 −15 459 990 3 525 060 1 656 900 −257 600 −63 000 2000
−9 038 050 49 488 432 −66 140 249 49 303 506 −4 364 430 −9 061 080 1 168 300 961 800 −91 000 −36 000
98 489 020 −183 897 000 213 202 430 −100 971 360 −11 568 900 18 727 800 119 000 −1 848 000 70 000 60 000

⎞
⎠

p(4567)∗

=
⎛
⎝

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0

⎞
⎠
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