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Abstract
This thesis makes a contribution to the field of Graph Drawing, with a focus on
the planarity drawing convention. The following three problems are considered.
Ordered Level Planarity. We introduce and study the problem Ordered Level
Planarity which asks for a planar drawing of a graph such that vertices are placed at
prescribed positions in the plane and such that every edge is realized as a y-monotone
curve. This can be interpreted as a variant of Level Planarity in which the vertices
on each level appear in a prescribed total order. We establish a complexity dichotomy
with respect to both the maximum degree and the level-width, that is, the maximum
number of vertices that share a level. Our study of Ordered Level Planarity is
motivated by connections to several other graph drawing problems. With reductions
from Ordered Level Planarity, we show NP-hardness of multiple problems
whose complexity was previously open, and strengthen several previous hardness
results. In particular, our reduction to Clustered Level Planarity generates
instances with only two nontrivial clusters. This answers a question posed by Angelini,
Da Lozzo, Di Battista, Frati, and Roselli [2015]. We settle the complexity of the
Bi-Monotonicity problem, which was proposed by Fulek, Pelsmajer, Schaefer,
and Štefankovič [2013]. We also present a reduction to Manhattan Geodesic
Planarity, showing that a previously [2009] claimed polynomial time algorithm is
incorrect unless P = NP.
Two-page book embeddings of triconnected planar graphs. We show that
every triconnected planar graph of maximum degree five is a subgraph of a Hamiltonian
planar graph or, equivalently, it admits a two-page book embedding. In fact, our
result is more general: we only require vertices of separating 3-cycles to have degree
at most five, all other vertices may have arbitrary degree. This degree bound is
tight: we describe a family of triconnected planar graphs that cannot be realized
on two pages and where every vertex of a separating 3-cycle has degree at most six.
Our results strengthen earlier work by Heath [1995] and by Bauernöppel [1987] and,
independently, Bekos, Gronemann, and Raftopoulou [2016], who showed that planar
graphs of maximum degree three and four, respectively, can always be realized on
two pages. The proof is constructive and yields a quadratic time algorithm to realize
the given graph on two pages.
Convexity-increasing morphs. We study the problem of convexifying drawings
of planar graphs. Given any planar straight-line drawing of an internally 3-connected
graph, we show how to morph the drawing to one with strictly convex faces while
maintaining planarity at all times. Our morph is convexity-increasing, meaning that
once an angle is convex, it remains convex. We give an efficient algorithm that
constructs such a morph as a composition of a linear number of steps where each
step either moves vertices along horizontal lines or moves vertices along vertical lines.
Moreover, we show that a linear number of steps is worst-case optimal.
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Chapter 1

Introduction

This thesis makes a contribution to Graph Drawing, a research area devoted to
algorithmic and combinatorial questions related to the visualization of graphs. The
exact origins of Graph Drawing do not appear to be well known. In 1994, Di
Battista, Eades, Tamassia, and Tollis [44] published an annotated bibliography that
already cited more than 300 publications related to Graph Drawing, most of them
from the 80s and early 90s. The same group of authors state in [45], that “Knuth’s
1963 paper [94] on drawing flowcharts was perhaps the first paper to present an
algorithm for drawing a graph for visualization purposes”. Graph Drawing has
grown to be an active research field with its own techniques and terminology. Its
community has brought forth multiple dedicated text books [45, 87, 102, 119] and an
annual international symposium [1].

Certainly the main motivation for finding graph drawings with specific properties
is automated visualization. According to Di Battista et al. [45], application areas
“include software engineering (data flow diagrams, subroutine-call graphs, program
nesting tress, object-oriented class hierarchies), databases (entity-relationship dia-
grams), information systems (organization charts), real-time systems (Petri nets,
state-transition diagrams), decision support systems (PERT networks, activity trees),
VLSI (circuit schematics), artificial intelligence (knowledge-representation diagrams),
and logic programming (SLD-trees)”. Graph Drawing also has applications in lay-
outing. Here, the goal is not necessarily to find a visually pleasing drawing—instead,
the drawing (layout) is supposed to satisfy certain constraints that make it actually
usable in practice. As an example, Nishizeki and Rahman [102] mention the design
of printed circuit boards and state that planarity is required for realizing a layout on
a single layer.

According to Di Battista et al. [45], a typical Graph Drawing problem can be
described by three types of parameters: conventions, constraints, and aesthetics.

Drawing conventions are described by Di Battista et al. [45] as basic rules that
describe how the vertices and edges are represented. In the following we list some
examples of drawing conventions.
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– Each edge is realized as a line segment / polygonal chain / curve composed of
vertical and horizontal line segments / y-monotone curve / Bézier spline.

– Vertices are placed on integer coordinates.

– Between each pair of vertices there exists a path that is monotone in some
direction [6].

– No pair of edges intersects except at a common endpoint (i.e., the drawing is
planar).

In case of visualization problems, these rules aim to make the drawing readable,
that is, the reader should be able to easily understand the relationship between the
represented objects and quickly perform simple tasks such as determining a path
between two given vertices. In layouting problems, conventions might also be required
due to technical limitations as in the above example about printed circuit boards.

Constraints, according to Di Battista et al. [45], refer to additional information
about the graph that is encoded as part of the input and supposed to be reflected by
the drawing. For instance, in a tool for generating metro maps, the user should be
able to specify the desired vertex positions (at least in a relative sense), e.g. the city
center should appear close to the center of the drawing. When visualizing hierarchies,
we may desire a drawing in which objects higher up in the hierarchy are placed at
larger y-coordinates in the drawing.

Finally, Di Battista et al. [45] describe aesthetics as drawing criteria that one
might want to optimize to improve the readability of the drawing. For instance, when
dealing with a non-planar graph, we might want to minimize the number of crossings,
and when using the convention that the vertices have to be placed on an integer grid,
it might be desirable to minimize the area of the grid.

1.1 Thesis outline

In this thesis, we focus on the fundamental drawing convention of planarity. Planar
drawings have empirically proven visual qualities [105, 106, 125]. We also saw above
that the desire for drawings without crossings may arise naturally in the context of
layouting. Each of the three main chapters of the thesis is devoted to a particular
Graph Drawing problem with the goal to generate drawings that are planar while
also satisfying additional constraints and conventions.

We proceed with a very brief overview of the three main chapters. A slightly more
detailed overview is given in the Sections 1.2–1.4. The chapters are partially based on
published results. The references to these publications can be found in Section 1.5.

In Chapter 3, we introduce and study a problem called Ordered Level Pla-
narity which asks for a planar drawing of a graph such that vertices are placed at
prescribed positions in the plane and such that every edge is realized as a y-monotone
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curve. This can be interpreted as a variant of Level Planarity in which the
the vertices of each level appear in a prescribed total order. Our main result is a
NP-hardness statement for a very constrained special case. We motivate this result
by establishing connections to several other graph drawing problems that have been
studied in the literature. For a slightly more detailed overview, see Section 1.2.

Chapter 4 is concerned with two-page book embeddings. In such a drawing, all
vertices are placed on a vertical line and each edge is realized either in the left or
the right half-plane. Improving a series of previous results, we give a new sufficient
condition for the two-page book embeddability of triconnected planar graphs. We
show that the condition is, in some sense, best possible. A slightly more detailed
overview is given in Section 1.3.

Finally, Chapter 5 is concerned with a morphing problem: we are given a straight-
line planar drawing and want to find a continuous deformation that preserves straight-
line planarity at all times and turns the initial drawing into another one in which each
face is a convex polygon. Motivated by visualization goals, we want to ensure that
an inner angle that is already convex at some time during the motion never becomes
nonconvex later. We give an efficient algorithm that finds such a deformation. The
algorithm is optimal in the worst-case with respect to the number of “piece-wise
linear” steps.

Despite being considered an independent research field, Graph Drawing is a
very multifaceted discipline that borrows techniques from many other areas such as
classical graph theory, algorithms and complexity, computational geometry, infor-
mation visualization, the theory of topological and geometric graphs, knot theory,
topology, order theory, physics, and algebra. While many of these connections might
seem very natural, some of them could also be considered surprising. In spite of the
unifying theme of planarity, each of the chapters in this thesis has a very distinct
flavor as it relies on techniques of a particular set of the above facets. In particular,
the chapter about book embeddings makes heavy use of many concepts of classic
graph theory: connectivity, separators, edge contractions, decomposition trees, graph
augmentation, Hamiltonian cycles, and more. In contrast, the instances generated
by our reduction to show that Ordered Level Planarity is NP-hard do not
exhibit any meaningful graph theoretic properties. Hence, we have to rely on direct
planarity arguments to prove the correctness of the reduction, which is reminiscent of
problems related to topological graphs. Finally, the objects of desire in the chapter
about morphing are straight-line drawings in which each face is described by a convex
polygon. Naturally, here we rely on techniques from computational geometry among
others. We discuss these aspects more in the final, concluding Chapter 6 of this
thesis, where we also summarize our main results and discuss the most intriguing
open problems.

Most definitions are given in the beginning of the chapter in which they are
needed. In Chapter 2, we define only the most basic concepts that are relevant for all
chapters.
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1.2 Ordered Level Planarity (Chapter 3)

The well known Upward Planarity problem asks for a planar drawing of a directed
graph with the drawing convention that each edge (u, v) is realized as a y-monotone
curve that goes upward from u to v [62]. Such upward planar drawings provide
a natural way of visualizing hierarchies, workflow diagrams, and partial orders on
sets of items (posets). As shown by Garg and Tamassia, Upward Planarity is
NP-hard [62]. However, when we add the constraint that the y-coordinate, called
level, of each vertex is prescribed as part of the input, the problem can be solved
efficiently. This variant of Upward Planarity is called Level Planarity, and
the study of its complexity has a long history [46, 59, 76, 82, 83]. Ultimately, a
linear-time algorithm was presented by Jünger, Leipert, and Mutzel [83].

a
b

c d
e

f g h

i j

ab

c de

f g h

ij

(a) (b)

Figure 1: In Level Planarity the order of the vertices of a common level is not
fixed. Finding a good ordering is an essential part of finding a solution. The ordering
suggested in (a) is not realizable since the edge (d, h) cannot be drawn without
crossing (c, g) or (e, g). (b) A valid realization of the instance in (a).

(b)(a)

Figure 2: (a) A realization of the Ordered Level Planarity instance in (b).

As part of the solution, each algorithm for Level Planarity needs to determine
an appropriate left-to-right order for the set of vertices of each level, see Figure 1.
Hence, it might seem that prescribing these orderings (which can be thought of as
prescribing both the x-coordinate and the y-coordinate of each vertex, see Figure 2)
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should make the problem easier. However, we show that this variant of Level
Planarity, which we call Ordered Level Planarity, is NP-hard, even in very
constrained special cases.

We motivate our result by establishing connections to several other Graph
Drawing problems. Ordered Level Planarity, especially if restricted to the
instances for which we show it to be NP-hard, is an elementary problem that readily
reduces to several variants of Level Planarity and other problems with constraints
that (partially) fix vertex coordinates in advance. With such reductions, we show
NP-hardness of multiple problems whose complexity was previously open. We
also strengthen several previous hardness results. Some of our results answer open
problems posed by members of the Graph Drawing community. In more detail, we
establish the following:

– The drawing convention in the problem Manhattan Geodesic Planarity
is that edges are realized as rectilinear paths, that is, curves composed of
vertical and horizontal segments, that are geodesics with respect to the L1-
norm. Additionally, as a constraint, each vertex has to be placed at a prescribed
position in the plane. Previously, it was claimed that Manhattan Geodesic
Planarity is polynomial-time solvable if the input graph is a matching [86].
We provide a reduction from Ordered Level Planarity to Manhattan
Geodesic Planarity that shows that this claim is incorrect unless P = NP .

– The problem Bi-Monotonicity is very similar to Manhattan Geodesic
Planarity. Its complexity status was posed as an open question by Fulek,
Pelsmajer, Schaefer, and Štefankovič [59], who introduced the problem. Our re-
duction to Manhattan Geodesic Planarity extends to Bi-Monotonicity
and answers the question by Fulek et al.

– We provide reductions to T-Level Planarity, Constrained Level Pla-
narity, and Clustered Level Planarity. The first two of these variants
of Level Planarity impose (partial) ordering constraints on the vertices
of each level, which immediately suggests a connection to Ordered Level
Planarity. On the other hand, Clustered Level Planarity, at first
glance, does not seem related to Ordered Level Planarity: it combines
Level Planarity with Clustered Planarity. The goal in the latter
problem is to find a planar drawing of a graph while simultaneously visualizing
a clustering hierarchy on its set of vertices. Notably, the clustering hierarchy is
not necessarily related to the hierarchy suggested by the directed edges.

Our reductions strengthen previous hardness results. In particular, the reduction
to Clustered Level Planarity produces instances with only two non-nested
clusters. This answers a question posed by Angelini, Da Lozzo, Di Battista,
and Roselli [9].
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Very recently, Da Lozzo, Di Battista, and Frati [39] studied another generalization
of Ordered Level Planarity and applied our result to show that their problem
is NP-hard. We expect, that the NP-hardness of Ordered Level Planarity
will serve as a useful tool for further reductions.

1.3 Two-page book embeddings of triconnected planar
graphs (Chapter 4)

Intuitively, a book embedding [22, 75, 131] is a drawing of a graph in a book. Formally,
the corresponding drawing convention requires that all vertices are embedded on a line
in R3 called spine, and every edge is embedded in a half-plane, called page, bounded
by the spine. No two edges (on the same page) are allowed to cross. If k pages are
used, then the corresponding embedding is a k-page book embedding. Applications
for book embeddings include VLSI design [35], bioinformatics [74], and other Graph
Drawing problems [11, 128].

Obviously, every graph has a book embedding: we can simply realize each edge
on a separate page. The book thickness of a graph is the smallest number of pages
that suffices to realize the graph in form of a book embedding. Yannakakis showed,
improving a series of earlier results, that the book thickness of planar graphs is
at most four [131]. A corresponding lower bound is still elusive, in spite of initial
claims [130].

(a) (b)

Figure 3: (a) A nonhamiltonian graph with a subhamiltonian cycle (a Hamiltonian
cycle in a plane augmentation) in orange, and (b) a corresponding two-page book
embedding. In particular, the order of the vertices along the cycle corresponds to the
ordering of the vertices along the spine. The interior of the cycle corresponds to the
right page and its exterior corresponds to the left page.

Each graph that admits a two-page book embedding is planar. Bernhart and
Kainen [22] characterized those graphs that can be embedded on two pages as the
subhamiltonian planar graphs. A graph G is subhamiltonian planar if it is a subgraph
of a Hamiltonian planar graph H on the same vertex set, see Figure 3. This turns
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the problem of embedding a graph on two pages into a graph augmentation problem.
A Hamiltonian cycle in an augmentation H is called a subhamiltonian cycle for G.
Observe that if G is maximal planar, then it is subhamiltonian planar if and only if
it is Hamiltonian. This implies that the recognition of graphs with book thickness at
most two is NP-hard [127].

In this thesis, we are interested in sufficient conditions for two-page book em-
beddability. Sufficient conditions for the existence of a (classic) Hamiltonian cycle
typically require fairly large vertex degrees. For instance, Dirac’s Theorem [49] states
that graphs with minimum degree ≥ n/2 are always Hamiltonian. Similarly, previ-
ously established sufficient conditions for being subhamiltonian planar also involve
assumptions about vertex degrees [20, 21, 75]. However, these assumptions involve
the maximum degree of the graph, rather than the minimum degree. Intuitively, the
reason is that when looking for a subhamiltonian cycle in a given planar graph G, we
may create any desired edges that are not part of G. In contrast, unwanted edges
that belong to G may act as obstructions.

Heath [75] showed that planar graphs of maximum degree three are always
subhamiltonian. Later, Bauernöppel [20] and, independently, Bekos, Gronemann, and
Raftopoulou [21] showed that maximum degree four is also a sufficient condition for
a planar graph to be subhamiltonian. The ultimate goal is to determine the largest k
such that every planar graph with maximum degree at most k is subhamiltonian.

We take a considerable step towards solving this goal by showing that all tri-
connected planar graphs of maximum degree five are subhamiltonian. In fact, we
prove a more general statement: we only require the vertices of separating 3-cycles
to have degree at most five, all other vertices may have arbitrary degrees. This
degree bound is tight: we describe a family of triconnected planar graphs that are not
subhamiltonian planar and where every vertex of a separating triangle has degree at
most six. Our result is constructive: we describe how to compute a subhamiltonian
cycle in the given degree bounded graph in quadratic time.

1.4 Convexity-increasing morphs (Chapter 5)

A morph is a continuous deformation of a graph drawing that preserves planarity
and straight-line edges at all times [3, 28, 57, 67, 120]. Graph morphing is motivated
by applications in animation and computer graphics [65]. Hence, previous literature
focuses on the problem of finding morphs between two given drawings of a common
plane graph. The existence of such morphs has been established long ago [28, 120].
More recent results aim to improve the visual quality [57, 67] and decrease the
complexity of the deformation [3].

Instead of morphing between two given drawings, we are interested in transforming
an initial drawing into one that satisfies the drawing convention that each face is
described by a strictly convex polygon. Such a drawing is called strictly convex. This
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task by itself is easy to achieve (given the previous literature), however, it has been
established by empirical investigations [107] that, for the purposes of visualization, it
is important to maintain the viewer’s “mental map”, which means changing as little
as possible while making observable progress towards a goal. Hence, we would like
our morphs to be convexity-increasing, meaning that once an angle has its desired
convexity status, this status is maintained. We illustrate such a morph in Figure 4.

(a) (b)

(c)(d)

Figure 4: A sequence of convexity-increasing morphs (horizontal, vertical, horizontal)
that morph a straight-line drawing of a graph G (a) into a strictly convex drawing of
G (d). The marked vertices have reflex angles that are eliminated in the next step.
All convex angles are preserved.

This idea falls in line with research done by Connelly, Demaine, and Rote [37]
and Streinu [117, 118], who studied expansive deformations that preserve the length
of each edge, and by Aichholzer et al. [2], who studied visibility-increasing morphs.
Both these types of morphs are also convexity-increasing. However, the algorithms in
all of the above references are restricted to the case that the graph is a cycle, i.e.,
the given drawing is a polygon. Hence, our goal is much more general, as we need to
maintain and increase the convexity of multiple interconnected polygons at the same
time.
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A necessary conditions for the existence of a convexity-increasing morph to some
strictly convex drawing is that the given graph actually admits a strictly convex
drawing. We show that this condition is also sufficient: we present an efficient
algorithm that finds a convexity-increasing morph to some strictly convex redrawing
of the initial drawing, whenever such a drawing exists. Morphs are usually discretized
into “piece-wise linear” steps. Our algorithm produces morphs composed of at most
a linear number of such steps, which we show to be worst-case optimal.

1.5 Publications

Chapter 3 is based on work done with Günter Rote. A full version appeared [93] in
ACM Transaction on Algorithms, which differs content-wise only slightly from the
material in Chapter 3. A preliminary version, which only sketches the main ideas,
appeared [92] in the proceedings of the symposium on Graph Drawing and Network
Visualization (GD) 2017. An extended abstract appeared [91] in the proceedings of
the European Workshop on Computational Geometry (EuroCG) 2017.

– [93] B. Klemz and G. Rote. Ordered level planarity and its relationship to
geodesic planarity, bi-monotonicity, and variations of level planarity. ACM
Trans. Algorithms, 15(4):53:1–53:25, 2019. doi:10.1145/3359587.

– [92] B. Klemz and G. Rote. Ordered level planarity, geodesic planarity and
bi-monotonicity. In F. Frati and K. Ma, editors, Graph Drawing and Network
Visualization - 25th International Symposium, GD 2017, Boston, MA, USA,
September 25–27, 2017, Revised Selected Papers, volume 10692 of Lecture Notes
in Computer Science, pages 440–453. Springer, 2017. doi:10.1007/978-3-319-
73915-1_34.

– [91] B. Klemz and G. Rote. Ordered level planarity and geodesic planarity.
In Proceedings of the 33rd European Workshop on Computational Geometry
(EuroCG 2017), pages 269–272, Apr. 2017.

Chapter 4 is based on work done with Michael Hoffmann. A full version has not
been published yet. A preliminary version, which only sketches the main ideas,
appeared [77] in the proceedings of the European Symposium on Algorithms (ESA)
2019.

– [77] M. Hoffmann and B. Klemz. Triconnected planar graphs of maximum
degree five are subhamiltonian. In M. A. Bender, O. Svensson, and G. Her-
man, editors, 27th Annual European Symposium on Algorithms, ESA 2019,
September 9–11, 2019, Munich/Garching, Germany, volume 144 of LIPIcs,
pages 58:1–58:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.
doi:10.4230/LIPIcs.ESA.2019.58.
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Chapter 5 is based on work done with Linda Kleist, Anna Lubiw, Lena Schlipf, Frank
Staals, and Darren Strash. A journal version has been published [90] in Computational
Geometry - Theory and Applications (CGTA). Chapter 5 contains several minor
corrections compared to the version in [90]. The main algorithm was also extended to
be convexity-increasing, rather than just weakly convexity-increasing. This extension
is described in Section 5.5. A preliminary version of [90], which only sketches the
main ideas, appeared [88] in the proceedings of the Workshop on Graph-Theoretic
Concepts in Computer Science (WG) 2018. An extended abstract appeared [89] in
the proceedings of the European Workshop on Computational Geometry (EuroCG)
2018.

– [90] L. Kleist, B. Klemz, A. Lubiw, L. Schlipf, F. Staals, and D. Strash.
Convexity-increasing morphs of planar graphs. Comput. Geom., 84:69–88, 2019.
doi:10.1016/j.comgeo.2019.07.007.

– [88] L. Kleist, B. Klemz, A. Lubiw, L. Schlipf, F. Staals, and D. Strash.
Convexity-increasing morphs of planar graphs. In A. Brandstädt, E. Köhler,
and K. Meer, editors, Graph-Theoretic Concepts in Computer Science - 44th
International Workshop, WG 2018, Cottbus, Germany, June 27–29, 2018,
Proceedings, volume 11159 of Lecture Notes in Computer Science, pages 318–
330. Springer, 2018. doi:10.1007/978-3-030-00256-5_26.

– [89] L. Kleist, B. Klemz, A. Lubiw, L. Schlipf, F. Staals, and D. Strash.
Convexity-increasing morphs of planar graphs. In Proceedings of the 34th
European Workshop on Computational Geometry (EuroCG 2018), pages 65:1–
65:6, Apr. 2018.



Chapter 2

Terminology and notation

We assume familiarity with basic concepts of mathematics and computer science
such as algorithms and complexity, naive set theory, geometry, and basic graph
theory. For a comprehensive introduction to these topics, we refer to dedicated text
books: Cormen, Leiserson, Rivest, and Stein [38] provide an extensive introduction
to algorithms and their analysis. A comprehensive guide to the theory of NP-
completeness is given by Garey and Johnson [60]. For an introduction to discrete
mathematics, we refer to the book by Rosen [113]. One of the standard textbooks on
graph theory was written by Diestel [48]. Finally, an overview of many important
data structures and algorithms related to computational geometry can be found in
the book by de Berg, Cheong, van Kreveld, and Overmars [42].

Most definitions are introduced in the beginning of the chapters in which they
are needed. In this section, we introduce some notation and recall basic terminology
that is used throughout the entire thesis.

Graphs. We denote by V(G) the vertex set and by E(G) the edge set of a graph G.
For a set of edges E ⊆ E(G) we use V(E) to denote the set of vertices that are
incident to at least one edge in E. For a vertex v of G let NG(v) ⊂ V(G) denote the
set of neighbors of v in G, and similarly the neighborhood of a vertex set U ⊆ V(G)
by NG(U) =

⋃
u∈U NG(u).

Let G = (V,E), and V ′ ⊆ V and E′ ⊆ E. Moreover, let G′ and G′′ be subgraphs
of G. We use G \ V ′ to denote the subgraph of G that is induced by V \ V ′. We
use G \ E′ to denote the graph (V,E \ E′). Finally, we use G \ G′ to denote the
subgraph of G that is induced by V \V(G′). Moreover, we use G′ ∪G′′ to denote the
subgraph (V(G′) ∪V(G′′),E(G′) ∪ E(G′′)) of G. We also use G′ ∪ V ′ to denote the
subgraph (V(G′) ∪ V ′,E(G′)) of G. Finally, we use G′ ∪ E′ to denote the subgraph
(V(G′) ∪V(E′),E(G′) ∪ E′) of G.

In Chapters 3 and 5 we use the usual notations {u, v} and (s, t) to denote
undirected and directed edges, respectively. We deviate from this convention in
Chapter 4, where we use the shorthand uv to denote an undirected edge between u
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and v. We also use shorthands such as stuvw to denote a path (or cycle) (s, t, u, v, w)
(it will be clear from the context whether a path or cycle is meant). The reason for
this inconsistency in notation is that in Chapter 4, we often have to argue about
small constant sized configurations, where the shorthands help to remove clutter
from the notation. In contrast, in Chapters 3 and 5, we encounter large graphs with
heavily indexed labeling, where the classic notation improves readability.

Drawings and embeddings. In this paragraph, we recall basic terminology from
the field of Graph Drawing. More information can be found in the textbooks [45,
87, 102, 119].

A drawing Γ of a graph G maps the vertices V(G) to pairwise distinct points in
the plane and each edge {u, v} to a simple curve joining the points representing u
and v. In a straight-line drawing, these curves are line segments. We identify vertices
and edges with their geometric representations. A drawing is planar if no pair of
edges intersects, except at a common endpoint (which is necessary if the edges are
incident to a common vertex). A graph that admits a planar drawing is called planar.

A planar drawing partitions the plane into regions, which are called faces. We
also identify faces with their geometric representations. In each planar drawing there
is exactly one unbounded face, called the outer face. The remaining faces are called
internal or inner faces. The boundary of each face f can be uniquely described by a
counterclockwise sequence of edges, or by multiple such sequences of edges in case
the graph is not connected. In the connected case, we use ∂f to denote the boundary
of f . If the graph is 2-connected, then ∂f is a simple cycle. Otherwise, edges may be
visited twice when traversing the boundary of a face.

A planar drawing Γ determines a circular ordering of the neighbors of each vertex.
The set of these orderings together with the set of face boundaries is called the
combinatorial embedding of Γ. A 3-connected planar graph has exactly two distinct
combinatorial embeddings, which are mirror images of each other [54, 126]. Two
drawings may have the same combinatorial embedding, but different outer faces.
A plane graph is a planar graph equipped with a combinatorial embedding and a
distinguished outer face.

The DCEL. A combinatorial embedding may be efficiently stored and traversed by
means of a doubly connected edge list (DCEL) [42]. We describe this data structure for
connected graphs, which is sufficient in the context of this thesis. The full description,
which also handles the disconnected case, is given in [42]. Every edge {u, v} is stored
as two directed half-edges (u, v) and (v, u). There is also a record for every vertex
and face. Each half-edge (u, v) is associated with the face to its left. Each vertex
has a pointer to one of its outgoing half-edges. Each face f has a pointer to one of
the half-edges that are associated with f . Each half-edge (u, v) has a pointer to its
twin (v, u), to its associated face f , to its origin u, and to its successor (v, w) and
predecessor (t, u) along ∂f .
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The DCEL allows for efficient traversal of the stored embedding. For instance, a
face boundary ∂f may be traversed in O(|∂f |) time by starting with its associated
half-edge (u, v) and then following successor pointers until encountering (u, v) again,
and one may iterate over all neighbors of u in O(|NG(u)|) time by starting with its
associated half-edge (u, v) and then repeatedly accessing the predecessor’s twin.

Throughout the thesis, whenever an algorithm is given a plane graph as part of
the input, we assume it to be encoded by means of a DCEL.





Chapter 3

Ordered Level Planarity

3.1 Introduction

In this chapter, we introduce the problem Ordered Level Planarity and study
its complexity. The problem can be interpreted as a variant of Level Planarity.
We establish connections to several other graph drawing problems (for an overview,
see Figure 5), which we survey in the following Sections 3.1.1–3.1.4. We proceed from
general problems to more and more constrained ones. In Section 3.1.1, we recall the
definition of the original Level Planarity problem. Section 3.1.2 discusses several
constrained variations of Level Planarity. Ordered Level Planarity is defined
in Section 3.1.3. The problems Geodesic Planarity and Bi-Monotonicity,
which are closely related to one another, are discussed in Section 3.1.4. Section 3.1.5
summarizes the main results of this chapter and gives an overview of its remaining
sections.

3.1.1 Upward Planarity and Level Planarity

Upward Planarity. A planar drawing of a directed graph (all graphs in this
chapter are simple) is called upward if each edge e = (u, v) is realized as a y-monotone
curve that goes upward from u to v [62]. Such a drawing provides a natural way of
visualizing a partial order on a set of items. The problem Upward Planarity of
testing whether a directed graph has an upward planar drawing is NP-complete [62].
However, if the y-coordinate of each vertex is prescribed, the problem can be solved
in polynomial time [83]. This is captured by the notion of level graphs, which are
discussed in the next paragraph.

Level Planarity. A level graph G = (G, γ) is a directed graph G = (V,E) together
with a level assignment, i.e. a surjective map γ : V → {0, . . . , h} with γ(u) < γ(v) for
every edge (u, v) ∈ E. The value h is the height of G. The vertex set Vi = {v | γ(v) =
i} is called the i-th level of G and λi = |Vi| is its width. The level-width λ of G is the
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Figure 5: Ordered Level Planarity is a special case of several other graph
drawing problems.

maximum width among all levels of G. We say that G is acyclic if the underlying
undirected graph of G is acyclic. A level planar drawing of G is an upward planar
drawing of G where the y-coordinate of each vertex v is γ(v), for an illustration
see Figure 6(b). The horizontal line with y-coordinate i is denoted by Li. The
problem Level Planarity asks whether a given level graph has a level planar
drawing [46, 59, 76, 82, 83], cf. Figures 6(a) and 6(b).

The study of the complexity of Level Planarity has a long history [46, 59, 76,
82, 83], culminating in a linear-time algorithm by Jünger, Leipert, and Mutzel [83].
Their algorithm is based on work for the special case of single-source level graphs
by Di Battista and Nardelli [46]. There was an earlier attempt by Heath and
Pemmaraju [76] to extend the work by Di Battista and Nardelli [46] to general level
graphs. However, Jünger et al. [82] pointed out gaps in this construction. All these
approaches utilize PQ-trees. Various simpler but asymptotically slower approaches
to solve Level Planarity have been considered, see the work of Fulek, Pelsmajer,
Schaefer, and Štefankovič [59] for one of these approaches (cf. Section 3.1.4) and a
more comprehensive summary. Level Planarity has been extended to drawings of
level graphs on surfaces different from the plane [8, 16, 17]. In particular, Radial
Level Planarity [16], Cyclic Level Planarity [8, 17], and Torus Level
Planarity [8] arrange levels on a standing cylinder, a rolling cylinder, and a torus,
respectively.
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Proper instances. An important special case are proper level graphs, that is, level
graphs in which γ(v) = γ(u) + 1 for every edge (u, v) ∈ E. Instances of Level
Planarity can be assumed to be proper without loss of generality by subdividing
long edges [83]. However, in variations of Level Planarity where we impose
additional constraints, the assumption that instances are proper can have a strong
impact on the complexity of the respective problems [9]. The definition of proper
instances naturally extends to the following variations of level graphs.

a
b

c d
e

f g h

i j

ab

c de

f g h

ij

(a) (b) (c)

Figure 6: In Level Planarity the order of the vertices of a common level Vi is
not fixed. Finding a good ordering is an essential part of finding a solution. The
ordering suggested in (a) is not realizable since the edge (d, h) cannot be drawn
without crossing (c, g) or (e, g). (b) A level planar drawing of (a). (c) A clustered
level drawing.

3.1.2 Level Planarity with various constraints

Clustered Level Planarity. Forster and Bachmaier [58] introduced a version of
Level Planarity that allows the visualization of vertex clusterings. A clustered
level graph G is a triple (G = (V,E), γ, T ) where (G, γ) is a level graph and T is a
cluster hierarchy, i.e. a rooted tree whose leaves are the vertices in V . Each internal
node of T is called a cluster. We call the cluster of the root trivial as it contains
all vertices. All other clusters are called non-trivial. The vertices of a cluster c are
the leaves of the subtree of T rooted at c. A cluster hierarchy is flat if all leaves
have distance at most two from the root, i.e. if non-trivial clusters are not nested. A
clustered level planar drawing of a clustered level graph G is a level planar drawing
of (G, γ) together with a closed simple curve for each cluster that encloses precisely
the vertices of the cluster such that the following three conditions hold: (i) no two
cluster boundaries intersect, (ii) every edge crosses each cluster boundary at most
once, and (iii) the intersection of any cluster with the horizontal line Li through
level Vi is either a line segment or empty for any level Vi, see Figure 6(c).

The problem Clustered Level Planarity asks whether a given clustered level
graph has a clustered level planar drawing. Forster and Bachmaier [58] presented an
O(h|V |)-time algorithm for a special case of proper clustered level graphs, where h is
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the height of G. Angelini, Da Lozzo, Di Battista, Frati, and Roselli [9] provided a
quartic-time algorithm for all proper instances. The general version of Clustered
Level Planarity is NP-complete even for clustered level graphs with maximum
degree ∆ = 2 and level-width λ = 3, and for 2-connected series-parallel clustered level
graphs [9]. In this thesis, we further strengthen these previous results (Theorem 7).

T-Level Planarity. This variation of Level Planarity considers consecutivity
constraints for the vertices on each level. A T-level graph G is a triple (G =
(V,E), γ, T ) where (G, γ) is a level graph and T = (T0, . . . , Th) is a set of trees where
the leaves of Ti are Vi. A T-level planar drawing of a T-level graph G is a level planar
drawing of (G, γ) such that, for every level Vi and for each node u of Ti, the leaves of
the subtree of Ti rooted at u appear consecutively along Li.

The problem T-Level Planarity asks whether a given T-level graph has a
T-level planar drawing. Wotzlaw, Speckenmeyer, and Porschen [129] introduced the
problem and provided a quadratic-time algorithm for proper instances with constant
level-width. Angelini et al. [9] give a quartic-time algorithm for proper instances with
unbounded level-width. For general T-level graphs the problem is NP-complete [9]
even for T-level graphs with maximum degree ∆ = 2 and level-width λ = 3, and for
2-connected series-parallel T-level graphs.

Constrained Level Planarity. Recently, Brückner and Rutter [27] explored a
variant of Level Planarity in which the left-to-right order of the vertices on each
level has to be a linear extension of a given partial order. They refer to this problem
as Constrained Level Planarity and they provide an efficient algorithm for
single-source level graphs and show NP-completeness for connected proper level
graphs.

3.1.3 A common special case: Ordered Level Planarity

We introduce a natural variant of Level Planarity that specifies a total order
for the vertices on each level. An ordered level graph G is a triple (G = (V,E), γ, χ)
where (G, γ) is a level graph and χ : V → {0, . . . , λ − 1} is a level ordering for G.
We require that χ maps each level Vi (= γ−1(i)) bijectively to {0, . . . , λi − 1}. An
ordered level planar drawing of an ordered level graph G is a level planar drawing
of (G, γ) where for every v ∈ V the x-coordinate of v is χ(v). Thus, the position of
every vertex is fixed.

The problem Ordered Level Planarity asks whether a given ordered level
graph has an ordered level planar drawing, see Figures 7(a–b). In this thesis, we
show that Ordered Level Planarity is a common special case of all the Level
Planarity variants defined in Section 3.1.2 (Theorem 5); and we provide a complexity
dichotomy with respect to both the level-width and the maximum degree (Theorem 1).
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(b)(a) (c)

Figure 7: (a) An ordered level drawing of the instance given in (b). (c) An equivalent
drawing for the relaxed version of the problem.

Order and realizability. In the above definition, the x-coordinates assigned via χ
merely act as a convenient way to encode a total order for the vertices of each
level Vi. Similarly, the y-coordinates assigned via γ encode a total preorder (i.e. a
total ordering that allows ties) for the set of all vertices. In terms of realizability, the
problem is equivalent to a generalized version where χ and γ range over arbitrary real
numbers. In other words, the fixed vertex positions can be any points in the plane.
All reductions and algorithms in this chapter carry over to these generalized versions,
if we pay the cost for presorting the vertices according to their coordinates. There is
another equivalent version that is even more relaxed: we only require that the vertices
appear according to the prescribed orderings without insisting on specific coordinates,
see Figures 7(a–c). For the sake of visual clarity, many of the figures in this chapter
make use of this last equivalence, i.e. the vertices are arranged according to the
orderings, but do not necessarily appear at the corresponding exact coordinates.

3.1.4 Geodesic Planarity and Bi-Monotonicity

In this section, we discuss the problems Geodesic Planarity and Bi-Monotonicity.
These problems are closely related, as explained at the end of the section.

Geodesic Planarity. Let S ⊂ Q2 be a finite set of directions that is symmetric
with respect to the origin, i.e. for each direction s ∈ S, the reverse direction (−s) is
also contained in S. A planar drawing of a graph is geodesic with respect to S if every
edge is realized as a polygonal path p composed of line segments with two adjacent
directions from S. Two directions of S are adjacent if they appear consecutively in
the projection of S to the unit circle. The name geodesic comes from the fact that
such a path p is a shortest path with respect to some polygonal norm (a norm whose
unit ball is a centrally symmetric polygon), which depends on S.

An instance of the decision problem Geodesic Planarity is a 4-tuple G =
(G = (V,E), x, y, S) where G is a graph, x and y map from V to the reals, and S is a set
of directions as stated above. The task is to decide whether G has a geodesic drawing,
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(a) (b)

Figure 8: (a) A manhattan geodesic drawing, and (b) a bi-monotone drawing.

that is, G has a geodesic drawing with respect to S in which every vertex v ∈ V is
placed at (x(v), y(v)).

Katz, Krug, Rutter, and Wolff [86] study Manhattan Geodesic Planarity,
which is the special case of Geodesic Planarity where the set S consists of the two
horizontal and the two vertical directions, see Figure 8(a). Geodesic drawings with
respect to this set of directions are also referred to as orthogeodesic drawings [63, 64].
Katz et al. [86] show that a variant of Manhattan Geodesic Planarity in which
the drawings are restricted to the integer grid is NP-hard even if G is a perfect
matching. The proof is by reduction from 3-Partition and makes use of the fact
that the number of edges that can pass between two vertices on a grid line is bounded.
In contrast, it is claimed in [86] that the standard version of Manhattan Geodesic
Planarity is polynomial-time solvable for perfect matchings [86, Theorem 5]. To
this end, the authors sketch a plane sweep algorithm that maintains a linear order
among the edges that cross the sweep line. When a new edge is encountered it is
inserted as low as possible subject to the constraints implied by the prescribed vertex
positions. When we asked the authors for more details, they informed us that they
are no longer convinced of the correctness of their approach. Theorem 2 of this thesis
implies that the approach is indeed incorrect unless P = NP.

Bi-Monotonicity. Fulek, Pelsmajer, Schaefer, and Štefankovič [59] study so-called
y-monotone drawings, that is, upward drawings in which all vertices have distinct
y-coordinates. They present a Hanani-Tutte theorem for these types of drawings and
accompany their result with a simple and efficient algorithm for Y-Monotonicity,
which can be defined as (Ordered) Level Planarity restricted to instances with
level-width λ = 1. Moreover, they show that, even without the restriction on λ,
Level Planarity is equivalent to Y-Monotonicity by providing an efficient
reduction from Level Planarity. Altogether, this results in a simple quadratic
time algorithm for Level Planarity.

Fulek et al. [59] propose the problem Bi-Monotonicity and leave its com-
plexity as an open problem. Bi-Monotonicity combines Y-Monotonicity and
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X-Monotonicity, which is defined analogously to Y-Monotonicity. More pre-
cisely, the input of Bi-Monotonicity is a triple G = (G = (V,E), x, y) where G is
a graph, and x and y are injective maps from V to the reals. The task is to decide
whether G has a planar bi-monotone drawing, that is, a planar drawing in which
edges are realized as curves that are both x-monotone and y-monotone, and in which
every vertex v ∈ V is placed at (x(v), y(v)), see Figure 8(b).

Comparison. Bi-Monotonicity is very similar to Manhattan Geodesic Pla-
narity. One difference is that Manhattan Geodesic Planarity imposes an
implicit bound on the number of adjacent edges leading in similar directions, i.e. a
vertex can have at most two neighbors in a single quadrant. The overall degree of each
vertex is at most four. Another difference is that Bi-Monotonicity requires the
coordinate mappings x and y to be injective. When both these additional constraints
are satisfied, the problems are equivalent. In this thesis, we exploit this relationship
between the two problems to settle the question by Fulek et al. [59] regarding the
complexity of Bi-Monotonicity (Theorem 3).

3.1.5 Main results

In Section 3.4 we study the complexity of Ordered Level Planarity. While
Upward Planarity is NP-complete [62] in general but becomes polynomial-time
solvable [83] for prescribed y-coordinates, we show that prescribing both x-coordinates
and y-coordinates renders the problem NP-complete. We complement our result
with efficient approaches for some special cases of ordered level graphs and, thereby,
establish a complexity dichotomy with respect to the level-width and the maximum
degree.

Theorem 1. Ordered Level Planarity is NP-complete, even for acyclic ordered
level graphs with maximum degree ∆ = 2 and level-width λ = 2. The problem can be
solved in linear time if the given level graph is proper, or if the level-width is λ = 1,
or if ∆+ = ∆− = 1, where ∆+ and ∆− are the maximum in-degree and out-degree
respectively.

Ordered Level Planarity, especially if restricted to instances with λ = 2
and ∆ = 2, is an elementary problem that readily reduces to several other graph
drawing problems. The remainder of this chapter is dedicated to demonstrating
the centrality of Ordered Level Planarity by providing reductions to all the
problems listed in Sections 3.1.2 and 3.1.4. All these reductions heavily rely on either
a small value of ∆ or λ and they produce very constrained instances of the targeted
problems. Thereby, we are able to solve multiple open questions that were posed by
the graph drawing community. We expect that Theorem 1 may serve as a suitable
basis for more reductions in the future.

In Section 3.2 we study Geodesic Planarity and obtain:
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Theorem 2. Geodesic Planarity is NP-hard for any set of directions S with
|S| ≥ 4, even for perfect matchings in general position.

Observe the aforementioned discrepancy between Theorem 2 and the claim in [86]
that Manhattan Geodesic Planarity for perfect matchings is in P.

Bi-Monotonicity is closely related to a special case of Manhattan Geodesic
Planarity. With a simple corollary we settle the complexity of Bi-Monotonicity
and, thus, answer the open question by Fulek et al. [59].

Theorem 3. Bi-Monotonicity is NP-hard, even for perfect matchings.

Theorem 4. Ordered Level Planarity reduces to Bi-Monotonicity in linear
time. The reduction can be carried out such that the input graph is identical to the
output graph, that is, only the coordinates are modified.

In Section 3.3 we establish Ordered Level Planarity as a special case of all
the variations of Level Planarity described in Section 3.1.2.

Theorem 5. Ordered Level Planarity reduces in linear time to Constrained
Level Planarity and T-Level Planarity, and in quadratic time to Clustered
Level Planarity.

The reduction to Constrained Level Planarity is immediate, which also
yields:

Theorem 6. Constrained Level Planarity is NP-hard even for acyclic level
graphs with maximum degree ∆ = 2 and level-width λ = 2 and prescribed total
orderings.

Angelini, Da Lozzo, Di Battista, Frati, and Roselli [9] propose the complexity of
Clustered Level Planarity for clustered level graphs with a flat cluster hierarchy
as an open question. Our reduction to Clustered Level Planarity provides the
following answer.

Theorem 7. Clustered Level Planarity is NP-hard even for acyclic clustered
level graphs with maximum degree ∆ = 2, level-width λ = 2 and a flat cluster hierarchy
that partitions the vertices into two non-trivial clusters.

In general, we can consider two different versions of all of the above problems:
we may prescribe a combinatorial embedding or allow an arbitrary embedding. Our
results apply to both of these versions, as in most cases the instances are just disjoint
unions of paths and, thus, the embedding is unique. The only exception is the linear
time algorithm for proper instances of Ordered Level Planarity. However, in
this case, yes-instances have a (combinatorially) unique drawing and we only need to
check if it respects the given embedding.
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To reduce from Ordered Level Planarity to Geodesic Planarity, our
main reduction (to Ordered Level Planarity) is tailored to achieve a small
maximum degree of ∆ = 2. As a consequence, the resulting graphs are not connected.
At the cost of an increased maximum degree, it is possible to make our instances
connected by inserting additional edges. We discuss these adaptations in Section 3.5.

Theorem 8. The following problems are NP-hard even for connected instances with
maximum degree ∆ = 4:

– Ordered Level Planarity, even for level-width λ = 2;

– Constrained Level Planarity, even for level-width λ = 2 and prescribed
total orderings;

– Clustered Level Planarity, even for level-width λ = 2 and flat cluster
hierarchies that partition the vertices into two non-trivial clusters; and

– Bi-Monotonicity.

3.2 Reducing to Geodesic Planarity & Bi-Monotonicity

In this section, we establish that deciding whether an instance G = (G, x, y, S) of
Geodesic Planarity has a geodesic drawing is NP-hard, even if G is a perfect
matching and the coordinates assigned via x and y are in general position, that is,
no two vertices lie on a common line with a direction from S. The NP-hardness of
Bi-Monotonicity for perfect matchings follows as a simple corollary. Our results
are obtained via a reduction from Ordered Level Planarity.

3.2.1 Reducing to Geodesic Planarity

We start with our reduction to Geodesic Planarity.

Lemma 9. Let S ⊂ Q2 with |S| ≥ 4 be a finite set of directions which is symmetric
with respect to the origin. Ordered Level Planarity with maximum degree ∆ = 2
and level-width λ = 2 reduces to Geodesic Planarity such that the resulting
instances are in general position and consist of a perfect matching and direction set
S. The reduction can be carried out using a linear number of arithmetic operations.

Proof. We first prove our claim for the classical case that S contains exactly the four
horizontal and vertical directions. Afterwards, we discuss the necessary adaptations
for the general case.

Our reduction is carried out in two steps. Let Go = (Go = (V,E), γ, χ) be an
Ordered Level Planarity instance with maximum degree ∆ = 2 and level-
width λ = 2. In Step (i) we turn Go into an equivalent Geodesic Planarity
instance G′g = (Go, x′, γ, S). In Step (ii) we transform G′g into an equivalent Geodesic
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Planarity instance Gg = (Gg, x, y, S) where Gg is a perfect matching and the vertex
positions assigned via x and y are in general position.

Step (i): To transform Go into G′g, we apply a horizontal shearing transformation
to the vertex positions specified by χ and γ. More precisely, for every v ∈ V we
define x′(v) = χ(v) + 2γ(v), see Figures 9(a) and 9(b).

Clearly, every geodesic drawing of G′g can be turned into an ordered level planar
drawing of Go. For the other direction, consider an ordered level planar drawing Γo
of Go. Without loss of generality, we can assume that in Γo all edges are realized as
polygonal paths in which bend points occur only on the horizontal lines Li through the
levels Vi where 0 ≤ i ≤ h. Further, since χ(V ) ⊆ {0, 1} we may assume that all bend
points have x-coordinates in the open interval (−1

2 ,
3
2). We shear Γo by translating

the bend points and vertices of level Vi by 2i units to the right for 0 ≤ i ≤ h, see
Figure 9(b). In the resulting drawing Γ′o, the vertex positions match those of G′g.
Furthermore, all edge-segments have a positive slope. Thus, since the maximum
degree is ∆ = 2, we can replace all edge-segments with L1-geodesic rectilinear paths
that closely trace the segments and we obtain a geodesic drawing Γ′g of G′g, see
Figure 9(c).

(a) (b) (c)

(d)

Figure 9: The reduction from Ordered Level Planarity to Manhattan
Geodesic Planarity in Lemma 9 is carried out in two steps. Step (i) is illus-
trated in (a)–(c), and Step (ii) is illustrated in (d).
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Figure 10: (a) The two gadget squares of each level. Grid cells have size 1
48 ×

1
48 . (b)

Turning a drawing of Gg into a drawing of G′g and (c) vice versa.

Step (ii): To turn G′g = (Go = (V,E), x′, γ, S) into the equivalent instance Gg =
(Gg, x, y, S), we transform Go into a perfect matching. To this end, we split each
vertex v ∈ V by replacing it with a small gadget that fits inside a square rv centered
on the position pv = (x′(v), γ(v)) of v, see Figure 9(d). We call rv the square of v
and use ptr

v , ptl
v , pbr

v , and pbl
v to denote the top-right, top-left, bottom-right, and

bottom-left corner of rv, respectively. We use two different sizes to ensure general
position. The size of the gadget square is 1

4 ×
1
4 if χ(v) = 0, and it is 1

8 ×
1
8 if χ(v) = 1.

The gadget contains a degree-1 vertex for every edge incident to v.
In the following we explain the gadget construction in detail, for an illustration see

Figure 10(a). Let {v, u} be an edge incident to v. We create an edge {v1, u} where v1
is a new vertex that is placed at (ptr

v − ( 1
48 ,

1
48)) if u is located to the top-right of v

and it is placed at (pbl
v + ( 1

48 ,
1
48)) if u is located to the bottom-left of v. Similarly,

if v is incident to a second edge {v, u′}, we create an edge {v2, u
′} where v2 is placed

at (ptr
v − ( 1

24 ,
1
24)) or (pbl

v + ( 1
24 ,

1
24)) depending on the position of u′. We refer to v1

and v2 as the gadget vertices of v and its square rv. Finally, we create two new
vertices vtl and vbr and a blocking edge {vtl, vbr} where vtl is placed at ptl

v and vbr
is placed at pbr

v . All the assigned coordinates are distinct in both components, and
hence the points are in general position. The construction can be carried out in linear
time.

Assume that Gg has a geodesic drawing Γg. By construction, for each blocking
edge, one of its vertices is located to the top-left of the other. In contrast, for each
non-blocking edge, one of its vertices is located to the top-right of the other. As a
result, a non-blocking edge e = {v, u} cannot pass through any gadget square rw
where w /∈ {v, u}, since otherwise e would have to cross the blocking edge of rw.
Accordingly, it is straightforward to obtain a geodesic drawing of Γ′g: we remove the
blocking edges, reinsert the vertices of V according to the mappings x′ and γ and
connect them to the gadget vertices of their respective squares in a geodesic fashion.
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This can always be done without crossings. Figure 10(b) shows one possibility. If
the edge from v2 passes to the left of v1, we may have to choose a reflected version.
Finally, we remove the vertices v1 and v2, which now act as subdivision vertices.

For the other direction, let Γ′g be a geodesic planar drawing of G′g. Without loss
of generality, we can assume that each edge {u, v} intersects only the squares of u
and v. Furthermore, for each v ∈ V we can assume that its incident edges intersect
the boundary of rv only to the top-right of (ptr

v − ( 1
48 ,

1
48)) or to the bottom-left of

(pbl
v + ( 1

48 ,
1
48)), see Figure 10(c). Thus, we can simply replace the parts of the edges

inside the gadget squares by connections to the gadget vertices v1 and v2 in a geodesic
fashion, see Figure 10(c).

This concludes the proof for the case that S contains exactly the four horizontal
and vertical directions.

The general case. It remains to discuss the adaptations for the case that S is an
arbitrary set of directions that is symmetric with respect to the origin. By applying
a linear transformation we can assume without loss of generality that (1, 0) and (0, 1)
are adjacent directions in S. Accordingly, all the remaining directions point into the
top-left or the bottom-right quadrant. Further, by vertical scaling we can assume that
no direction is parallel to (1,−1). Observe that if we do not insist on a coordinate
assignment in general position, the reduction for the restricted case discussed above
is already sufficient.

To guarantee general position, we have to avoid conflicting vertices, i.e. distinct
vertices whose positions lie on a common line with a direction from S. This requires
some simple but somewhat technical modifications of our construction.

Let s1 be the flattest slope of any direction in S \{(1, 0), (0, 1)}, i.e. the slope with
the smallest absolute value (note that all the slopes are negative). Further, let s2 be
the steepest slope of any direction in S \ {(1, 0), (0, 1)}, i.e. the slope with the largest
absolute value.

Assume that c′, d′ are conflicting vertices such that c′ belongs to the gadget
square rc of c ∈ V , and d′ belongs to the gadget square rd of d ∈ V . Consider
Figure 11(a). Since no direction of S points to the top-right or bottom-left quad-
rant, γ(c) = γ(d). It is possible that c = d.

To guarantee general position, we apply the following two modifications.

Modification (a): We first cover the case c 6= d, that is, we show how to avoid
conflicts between two vertices c′, d′ that belong to distinct squares of the same level.
To this end, we simply scale the positions of the gadget squares in the x-direction.
More precisely, instead of using the coordinates (2i, i) and (2i+ 1, i) for the centers
of the two squares rv and ru of level i, we use the positions (2ki, i) and (2ki+ k, i)
where k ≥ 1 is chosen large enough that pbl

u is above the line ` with slope s1 through ptr
v ,

see Figure 11(a).
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(a) (b)

ptlv

pbrv

vrv
ru

ptrv

pblu

`

`1

`2

`′1
`′2

Figure 11: Modifications (a) and (b) for the general case. The shaded regions indicate
the union of all lines with directions from S that pass through (a) the top-right or
bottom-left corner or (b) the top-left or bottom-right corner of a gadget square.

Modification (b): It remains to cover the case c = d, i.e. to avoid conflicts between
vertices c′, d′ that belong to the same gadget square rv. To this end, we modify the
placement of the gadget vertices inside the gadget squares as follows. We change the
offset to the gadget square corners from ±( 1

48) and ±( 1
24) to ±( z48) and ±( z24) where

0 < z < 1 is chosen small enough such that each gadget vertex is placed either

– above the line `1 with slope s1 through ptl
v and above the line `2 with slope s2

through pbr
v ; or

– below the line `′1 with slope s1 through pbr
v and below the line `′2 with slope s2

through ptl
v ;

see the white regions in Figure 11(b).

The bit size of the numbers involved in the calculations of our reduction is linearly
bounded in the bit size of the directions of S. Together with Theorem 1 we obtain
the proof of Theorem 2.

Theorem 2. Geodesic Planarity is NP-hard for any set of directions S with
|S| ≥ 4, even for perfect matchings in general position.

3.2.2 Reducing to Bi-Monotonicity

The instances generated by Lemma 9 are in general position. In particular, this
means that the mappings x and y are injective. We obtain an immediate reduction
to Bi-Monotonicity. The correctness follows from the fact that every L1-geodesic
rectilinear path can be transformed into a bi-monotone curve and vice versa. Thus,
we obtain Theorem 3.
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Theorem 3. Bi-Monotonicity is NP-hard, even for perfect matchings.

By combining Lemma 9 and the remarks in the previous paragraph, we obtain a
reduction from Ordered Level Planarity to Bi-Monotonicity. However, the
intermediate reduction via Manhattan Geodesic Planarity requires the original
Ordered Level Planarity instance to have a maximum out-degree of ∆+ ≤ 2
and a maximum in-degree of ∆− ≤ 2 (otherwise, our reduction would produce
Manhattan Geodesic Planarity instances with vertices that have more than
two neighbors in the same quadrant and such instances are never realizable, see
Section 3.1.4).

In Section 3.5, we require a reduction that accepts more general instances of Or-
dered Level Planarity. For this reason, we state the following direct (and, in fact,
much simpler) reduction from Ordered Level Planarity to Bi-Monotonicity.

Theorem 4. Ordered Level Planarity reduces to Bi-Monotonicity in linear
time. The reduction can be carried out such that the input graph is identical to the
output graph, that is, only the coordinates are modified.

Proof. Let G = (G = (V,E), γ, χ) be an ordered level graph with level-width λ and
height h. We create an instance of Bi-Monotonicty as follows.

The graph G remains unchanged. The new vertex-coordinates are obtained by
applying the following linear function f to the assignment given by χ and γ. The
function f is a linear deformation of the plane that scales the original coordinates
and rotates them by 45◦, see Figure 12.

f(x, y) := (f1(x, y), f2(x, y)) :=
(
(λ+ 1)y + x, (λ+ 1)y − x

)
We define a coordinate assignment (x′, y′) with (x′(v), y′(v)) := f(χ(v), γ(v)) for each
vertex v ∈ V . The resulting Bi-Monotonicity instance is G′ = (G, x′, y′) with
x′(v) = (λ+ 1)γ(v) + χ(v) and y′(v) = (λ+ 1)γ(v)− χ(v).

Recall that Li denotes the horizontal line with y-coordinate i, which passes
through all the vertices of level Vi. We use Si ⊂ Li to denote the open line segment
between the points (−1, i) and (λ, i). The correctness of our reduction relies on the
following property:

Observation 10. Let pi ∈ f(Si) and pi+1 ∈ f(Si+1) for some 0 ≤ i < λ. Then
pi < pi+1, componentwise.

The correctness of Observation 10 follows from the fact that for (j, i) = f−1(pi)
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Figure 12: (a) An ordered level planar drawing of G, and (b) the corresponding
bi-monotone drawing of G′.

and (j′, i+ 1) = f−1(pi+1) we have:

pi = f(j, i)

<
(
(λ+ 1)i+ λ, (λ+ 1)i+ 1

)
=
(
(λ+ 1)(i+ 1)− 1, (λ+ 1)(i+ 1)− λ

)
< f(j′, i+ 1)
= pi+1

Let Γ be an ordered level planar drawing of G. Without loss of generality, we can
assume that in Γ all edges are realized as polygonal paths in which bend-points
occur only on the horizontal segments Si, see Figure 12(a). Applying f to all the
bend-points yields a drawing f(Γ) of G′, see Figure 12(b). Since f is linear, f(Γ) is
planar. By Observation 10, every edge in f(Γ) is realized as a polygonal path whose
segments have positive slopes. Therefore f(Γ) is bi-monotone.

For the other direction, let Γ′ be a planar bi-monotone drawing of G′. The lines
f(Li) ⊃ f(Si) have a negative slope (of −1) and, by Observation 10, every edge
is realized as a curve that is simultaneously increasing in the x- and y-directions.
Therefore, every edge may intersect each line f(Li) at most once. More precisely,
an edge (vj , vk) with vj ∈ Vj , vk ∈ Vk and j < k crosses each of the consecutive
lines f(Lj+1), ..., f(Lk−1) exactly once. Further, all vertices of level Vi have been
mapped to f(Si) ⊂ f(Li). Thus, we can leave the intersection of each edge with each
line f(Li) fixed and replace the intermediate pieces by line-segments. This does not
introduce any crossings and turns all edges into x- and y-monotone polygonal paths
in which bend-points occur only on the lines f(Li), see Figure 12(b). Applying f−1

yields an ordered level planar drawing f−1(Γ′) of G, see Figure 12(a).
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3.3 Reductions to variations of Level Planarity

In this section we explore the connection between Ordered Level Planarity and
other variants of Level Planarity. We prove the following theorem.

Theorem 5. Ordered Level Planarity reduces in linear time to Constrained
Level Planarity and T-Level Planarity, and in quadratic time to Clustered
Level Planarity.

3.3.1 Reducing to Constrained Level Planarity

The reduction to Constrained Level Planarity is immediate, which together
with Theorem 1 also yields:

Theorem 6. Constrained Level Planarity is NP-hard even for acyclic level
graphs with maximum degree ∆ = 2 and level-width λ = 2 and prescribed total
orderings.

3.3.2 Reducing to T-Level Planarity

In this section, we reduce from Ordered Level Planarity to T-Level Pla-
narity. We restrict our attention to ordered level graphs with level-width λ = 2.
As we will see in Section 3.4, this restriction is no loss of generality (Lemma 14).

Lemma 11. Ordered Level Planarity with maximum degree ∆ and level-
width λ = 2 reduces in linear time to T-Level Planarity with maximum degree
∆′ = max(∆, 2) and level-width λ′ = 4.

Proof. Let G = (G = (V,E), γ, χ) be an ordered level graph with maximum degree ∆
and level-width λ = 2. We augment each level Vi with |Vi| = 1 by adding an isolated
dummy vertex v with γ(v) = i and χ(v) = 1 to avoid having to treat special cases.
Thus, each level Vi has a vertex v0

i with χ(v0
i ) = 0 and a vertex v1

i with χ(v1
i ) = 1.

The following steps are illustrated in Figure 13. For each level Vi we create two new
vertices vli and vri . We add edges (vli, vli+1) and (vri , vri+1) for i = 0, . . . , h− 1, where h
is the height of G. Hence, we obtain a path pl from vl0 to vlh and a path pr from vr0 to
vrh. The root ri of each tree Ti has two children uli and uri . The two children of uli
are vli and v0

i . The two children of uri are vri and v1
i . Let G′ denote the resulting

T-level graph. The construction of G′ can be carried out in linear time.
Clearly, an ordered level planar drawing Γ of G can be augmented to a T-level

planar drawing of G′ by drawing pl to the left of Γ and by drawing pr to the right
of Γ. For the other direction, let Γ′ be a T-level-planar drawing of G′. We can
assume without loss of generality that all vertices are placed on vertical lines with
x-coordinates −1, 0, 1 or 2. The paths pl and pr are vertex-disjoint and drawn
without crossing. Thus, pl is drawn either to the left or to the right of pr. By
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Figure 13: Reduction from Ordered Level Planarity to T-level Planarity.
The square vertices illustrate each level’s tree.

reflecting horizontally at the line x = 1/2 we can assume without loss of generality
that pl is drawn to the left of pr. Consequently, for each level Vi the vertex v0

i has to
be drawn to the left of the vertex v1

i since vli and v0
i are the children of uli and since

vri and v1
i are the children of uri . Therefore, the subdrawing of G or its mirror image

is an ordered level planar drawing of G.

Together with Theorem 1 this shows the NP-hardness of T-Level Planarity
for instances with maximum degree ∆ = 2 and level-width λ = 4. However, a
stronger statement was already given by Angelini et al. [9], who show NP-hardness
for instances with ∆ = 2 and λ = 3.

3.3.3 Reducing to Clustered Level Planarity

We proceed with a reduction to Clustered Level Planarity. Like in the previous
section, we restrict our attention to ordered level graphs with level-width λ = 2,
which is no loss of generality due to Lemma 14.

Lemma 12. Ordered Level Planarity with maximum degree ∆ and level-width
λ = 2 reduces in quadratic time to Clustered Level Planarity with maximum
degree ∆′ = max(∆, 2), level-width λ′ = 2, and a clustering hierarchy that partitions
the vertices into only two non-trivial clusters.

Proof. Let G = (G = (V,E), γ, χ) be an ordered level graph with maximum degree ∆
and level-width λ = 2. As in the proof of the previous Lemma 11, we augment each
level Vi with |Vi| = 1 by adding an isolated dummy vertex v with γ(v) = i and
χ(v) = 1. Thus, each level Vi has a vertex v0

i with χ(v0
i ) = 0 and a vertex v1

i

with χ(v1
i ) = 1. In addition to the trivial cluster that contains all vertices, we create

two clusters c0 = {v0
0, . . . , v

0
h} and c1 = {v1

0, . . . , v
1
h}, where h is the height of G. Now

we see the close correspondence between clustered level planar drawings and ordered
level planar drawings: the two clusters pass through every level, their boundaries are
not allowed to intersect, and they cannot be nested. Thus, by reflecting horizontally if
necessary, we can assume without loss of generality that c0 intersects each level to the
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Figure 14: (a) In an ordered level planar drawing, the edge e = (u, v) has to pass the
level of b to the right of b: due to the edge (v, g), the edge (a, f) passes to the left
of v. As a consequence, e cannot pass the level of b to the left of a. Further, due to
(a, c) and (b, c), it can also not pass between a and b. The reduction from Ordered
Level Planarity to Clustered Level Planarity is shown in (b) and (c). Big
black vertices are the vertices of the Ordered Level Planarity instance. The
small vertices are subdivision vertices. (b) Schematic view of the entire clustered
level graph. (c) The clustering boundaries can be drawn such that they cross each
subdivision edge at most once.

left of c1 as depicted in Figure 14b. Consequently, on each level Vi the vertex v0
i ∈ c0

is placed to the left of v1
i ∈ c1, just as in an ordered level planar drawing.

To make the reduction work, we have to subdivide each edge several times.
Otherwise, an edge might be forced to cross a cluster boundary more than once:
consider an edge e = (u, v) with u, v ∈ c0 that has to pass the level of some
vertex b ∈ c1 with γ(u) < γ(b) < γ(v) to the right of b, see Figure 14a. In this
situation, e must cross the right boundary r0 of c0 at least twice, as r0 has to be
drawn to the right of u, v ∈ c0, and to the left of b ∈ c1. This example can be blown
up to enforce arbitrarily many crossings between e and r0.

To avoid this situation, we subdivide the edges of G as follows. Each edge from
some level i to some level j > i is transformed into a path of 2(j − i) + 1 edges
whose inner vertices alternate between the clusters c1 and c0. More precisely, for each
pair of consecutive levels Vi and Vi+1 we add two new subdivision vertices on each
edge e = (u, v) ∈ E with γ(u) ≤ i and γ(v) ≥ i+ 1. The lower one of the resulting
subdivision vertices for e is added to c1, the upper one is added to c0. We place each
subdivision vertex that was added to c1 on a new separate level between the levels Vi
and Vi+1. The relative order of these new levels is arbitrary. Above these new levels
but below Vi+1 we place all the subdivision vertices added to c0, again each on a new
separate level, see Figures 14b–14c.

Let Gs = (Gs, γs, χs) denote the ordered level graph resulting from applying
the subdivision to G. The output of our reduction is the clustered level graph
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Gcl = (Gs, γs, T ) where T is the described hierarchy, with the clusters c0 and c1.
Since edges may stretch over a linear number of levels, the size of Gs can be quadratic
in the size of G and, therefore, the construction of Gcl might require quadratic time.

Correctness. The subdivision does not affect the realizability of G as an ordered
level planar drawing, since every subdivision vertex in Gs is the singleton vertex
of some new level. Therefore, to prove correctness, it suffices to argue that Gcl is
realizable as a clustered level planar drawing if and only if Gs is realizable as an
ordered level planar drawing.

For the easy direction, let Γcl be a clustered level planar drawing of Gcl. As
discussed above, we may assume that c0 is drawn to the left of c1. Further, we may
assume without loss of generality that all vertices are placed on vertical lines with
x-coordinates 0 and 1, and moreover, all subdivision vertices, being singleton vertices
of their levels, are placed on x = 0. Recall that each vertex v of the original graph
is contained in c0 if χ(v) = 0; and it is contained in c1 if χ(v) = 1. Thus, by the
above assumptions, v ∈ V is placed on x = 0 if χ(v) = 0; and it is placed on x = 1
if χ(v) = 1. Therefore, the drawing Γcl (without the cluster boundaries) is an ordered
level planar drawing of Gs.

For the other direction, let Γ be an ordered level planar drawing of the ordered
level graph Gs. We create a clustered level planar drawing of Gcl by adding the cluster
boundaries of c0 and c1 to Γ. The left boundary `0 of c0 is drawn as a vertical line
segment to the left of Γ. Analogously, the right boundary r1 of c1 is drawn as a
vertical line segment to the right of Γ.

It remains to draw the right boundary r0 of c0 and the left boundary `1 of c1. We
draw them from bottom to top. We keep them close together, and they will always
cross the same edge in direct succession, see Figure 14c. Assume inductively that r0
and `1 have already been drawn in the closed half-plane Hi below the line Li through
the vertices Vi of G, and this subdrawing violates none of the conditions from the
definition of a clustered level planar drawing. In particular, r0 and `1 are realized as
non-crossing y-monotone curves with all vertices of c0 to the left of r0, and with all
vertices of c1 to the right of `1. Moreover, no edge is intersected more than once by
any of r0 or `1. Further, let Ei be the set of edges of Gs that are intersected by Li
including the edges having their lower endpoint on Li, but without the edges having
their upper endpoint on Li. We maintain the following two additional inductive
assumptions: (a) Li intersects the edges in Ei and the boundaries r0 and `1 in the
following left-to-right order (see Figure 14c): (1) all edges E` ⊆ Ei that intersect Li
to the left of v1

i , (2) the boundary r0, (3) the boundary `1, and (4) the remaining
edges Er = Ei \ E`, i.e. the edges incident to v1

i , or passing v1
i to its right. (b) No

edge of E` has already been crossed by r0 or `1 below Li. Note that these conditions
are easily met for i = 0.

We describe how the partial drawings of r0 and `1 are extended upwards from Li.
For an illustration, see Figure 14c. Each edge in Ei is part of a path that has two
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subdivision vertices between Li and Li+1. The lower of these vertices belongs to c1,
and the upper one belongs to c0. We draw r0 and `1 in a very schematic and simple
way. First we cross all edges in E` from right to left. By assumption (b), this is
permitted. We then pass to the left of all the lower subdivision vertices, ensuring that
they lie within the cluster boundaries of c1. We then cross all edges between their
two subdivision vertices from left to right, and pass to the right of all the subdivision
vertices in c0. Finally, we cross from right to left all edges which pass Li+1 to the
right of v1

i+1, and those whose upper endpoint is v1
i+1. It is easy to check that the

inductive assumptions hold again for Li+1. Thus, we may iterate this procedure to
obtain a clustered level planar drawing of Gcl.

Together with Theorem 1 we obtain the following.

Theorem 7. Clustered Level Planarity is NP-hard even for acyclic clustered
level graphs with maximum degree ∆ = 2, level-width λ = 2 and a flat cluster hierarchy
that partitions the vertices into two non-trivial clusters.

The previous NP-hardness result by Angelini et al. [9] holds for instances with
∆ = 2 and λ = 3. Their cluster hierarchies have linear depths. The authors pose
the complexity of Clustered Level Planarity for instances with flat cluster
hierarchies as an open problem. Theorem 7 gives an answer to this question and
improves the previous result by Angelini et al.

3.4 Results for Ordered Level Planarity

In this section we study Ordered Level Planarity. We begin with the NP-
hardness proof, which is by reduction from a variant of 3-Satisfiability described
in the following.

Planar Monotone 3-Satisfiability. A monotone 3-Satisfiability formula is a
Boolean 3-Satisfiability formula in which each clause is either positive or negative,
that is, each clause contains either exclusively positive or exclusively negative literals,
respectively (we remark that, in the literature, there exist other meanings of monotone
in the context of Boolean formulas). A planar 3-Satisfiability formula ϕ = (U , C)
is a Boolean 3-Satisfiability formula with a set U of variables and a set C of clauses
such that its variable–clause graph Gϕ = (U ] C, E) is planar. The graph Gϕ is
bipartite, i.e. every edge in E is incident to a clause vertex from C and a variable
vertex from U . Furthermore, we have that {c, u} ∈ E if and only if a literal of variable
u ∈ U occurs in c ∈ C. Planar Monotone 3-Satisfiability is a special case
of 3-Satisfiability where we are given a planar and monotone 3-Satisfiability
formula ϕ and a monotone rectilinear representation R of the variable-clause graph
of ϕ. The representation R is a contact representation on an integer grid in which
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Figure 15: (a) Representation R of ϕ with negative clauses (u1∨u4∨u5), (u1∨u3∨u4),
and (u1 ∨ u2 ∨ u3) and positive clauses (u1 ∨ u4 ∨ u5) and (u1 ∨ u2 ∨ u3) and (b) its
modified version R′ in Lemma 13. (c) Tier T0.

the variables are represented by horizontal line segments arranged on a common
horizontal line `. The clauses are represented by E-shapes turned by 90◦ such that
all positive clauses are placed above ` and all negative clauses are placed below `, see
Figure 15a. Planar Monotone 3-Satisfiability is NP-complete [41].

We are now equipped to prove the core lemma of this section.

Lemma 13. Planar Monotone 3-Satisfiability reduces in polynomial time to
Ordered Level Planarity. The resulting instances have maximum degree ∆ = 2
and contain no source or sink with degree ∆ on a level Vi with width λi > 2.

Proof. Let ϕ = (U , C) be a planar and monotone 3-Satisfiability formula with
clause set C = {c1, . . . , c|C|}. Let Gϕ be the variable-clause graph of ϕ. Let R be
a monotone rectilinear representation of Gϕ. We construct an ordered level graph
G = (G, γ, χ) such that G has an ordered level planar drawing if and only if ϕ is
satisfiable.

Overview. The ordered level graph G has l3 + 1 levels that are partitioned into
four tiers T0 = {0, . . . , l0}, T1 = {l0 + 1, . . . , l1}, T2 = {l1 + 1, . . . , l2}, and T3 =
{l2 + 1, . . . , l3}. Each clause ci ∈ C is associated with a clause edge ei = (csi , cti)
starting with csi in tier T0 and ending with cti in tier T2. The clause edges have to be
drawn in a system of tunnels that encodes the 3-Satisfiability formula ϕ. In T0
the layout of the tunnels corresponds directly to the rectilinear representation R,
see Figure 15c. For each E-shape there are three tunnels corresponding to the three
literals of the associated clause. The bottom vertex csi of each clause edge ei is
placed such that ei has to be drawn inside one of the three tunnels of the E-shape
corresponding to ci. This corresponds to the fact that in a satisfying truth assignment
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every clause has at least one satisfied literal. In tier T1 we merge all the tunnels
corresponding to the same literal. We create variable gadgets that ensure that for each
variable u, the edges of clauses containing u can be drawn in the tunnel associated
with either the negative or the positive literal of u but not in both. This corresponds
to the fact that every variable is set to either true or false. Tiers T2 and T3 have a
technical purpose.

We proceed by describing the different tiers in detail. Recall that in terms of
realizability, Ordered Level Planarity is equivalent to the generalized version
where γ and χ map to the reals, cf. Section 3.1.3. For the sake of convenience we
will begin by designing G in this generalized setting. It is easy to transform G such
that it satisfies the standard definition in a polynomial-time post processing step.

Tier 0, tier 2, and clause gadgets. Each clause edge ei = (csi , cti) ends in tier T2,
which is composed of l2 − l1 = |C| levels each of which contains precisely one vertex.
We assign γ(cti) = l1 +i. Recall that for levels with width 1, the assigned x-coordinates
are irrelevant. Hence, we set χ(cti) = 0. Observe that the positions of the vertices cti
impose no constraints on the order in which the incident edges enter T2.

Tier T0 consists of a system of tunnels that resembles the monotone rectilinear
representation R of Gϕ = (U ] C, E), see Figure 15c. Intuitively it is constructed as
follows: We take the top part of R, rotate it by 180◦ and place it to the left of the
bottom part such that the variables’ line segments align, see Figure 15b. We call the
resulting representation R′. For each E-shape in R′ we create a clause gadget, which
is a subgraph composed of 11 vertices that are placed on a grid close to the E-shape,
see Figure 16. The enlarged vertex at the bottom is the lower vertex csi of the clause
edge ei of the clause ci corresponding to the E-shape. Without loss of generality we
assume the grid to be fine enough such that the resulting ordered level graph can be
drawn as in Figure 15c without crossings. Further, we assume that the y-coordinates
of every pair of horizontal segments belonging to distinct E-shapes differ by at least 3.
This ensures that there are no sources or sinks with degree ∆ on levels with width
larger than 2.

Construction details. In the following two paragraphs, we describe the construc-
tion of the clause gadgets in detail.

For every i = 1, . . . , |C| where ci is negative, we create its 11-vertex clause gadget
as follows, see Figure 16. Let s1, s2, s3 be the three vertical line segments of the
E-shape representing ci in R′ where s1 is left-most and s3 right-most. Let v1, v2, v3
be the lower endpoints and v′1, v′2, v′3 be the upper endpoints of s1, s2, s3, respectively.
We place the tail csi of the clause edge ei of ci at v2. We create new vertices at v1,
v3, v′1, v′2, v′3, v4 = v1 + (1, 1), v5 = v2 + (1, 2), and at v6, v7, v8 which are the lattice
points one unit to the right of v′1, v′2, v′3, respectively. To simplify notation, we identify
these new vertices with their locations on the grid. We add edges (v1, v

′
1), (v3, v8),

(v4, v6), (v4, v
′
2), (v5, v7) and (v5, v

′
3) to G.



3.4. Results for Ordered Level Planarity 37

βh(ci)v1

v2

v3

v′1 v′2 v′3

s1 s2 s3

(a)

v1

csi
v3

v4 v5

v′1 v′2 v′3v6 v7 v8

gates

(b)

Figure 16: (a) The E-shape and (b) the clause gadget of clause ci.

As stated above, we can assume without loss of generality that the grid is fine
enough such that the resulting ordered level graph can be drawn as in Figure 15c
without crossings. It suffices to assume that the horizontal and vertical distance
between any two segment endpoints of R′ is at least 3 (unless the endpoints lie on a
common horizontal or vertical line).

Gates and tunnels. The clause gadget (without the clause edge) has a unique
ordered level planar drawing in the sense that for every level Vi the left-to-right
sequence of vertices and edges intersected by the horizontal line Li through Vi is
identical in every ordered level planar drawing. This is due to the fact that the order
of the top-most vertices v′1, v6, v′2, v7, v′3 and v8 is fixed and every edge of the gadget
is incident to precisely one of these vertices. With the same reasoning, it follows that
the subgraph G0 induced by T0 (without the clause edges) has a unique ordered level
planar drawing, see Figure 15c.

Consider the clause gadget of some clause ci. We call the line segments v′1v6, v′2v7
and v′3v8 the gates of ci, see Figure 16b. Note that the clause edge ei has to intersect
one of the gates of ci. This corresponds to the fact the at least one literal of every
clause has to be satisfied. In tier T1 we bundle all gates that belong to the same
literal together by creating two long paths for each literal. These two paths form
the tunnel of the corresponding literal. All clause edges intersecting a gate of some
literal have to be drawn inside the literal’s tunnel, see Figure 15c. More precisely,
for j = 1, . . . , |U| we use N0

j (n0
j ) to refer to the left-most (right-most) vertex of a

negative clause gadget placed on a line segment of R′ representing uj ∈ U . The
vertices N0

j and n0
j are the first vertices of the paths forming the negative tunnel Tnj

of the negative literal of variable uj . Analogously, we use P 0
j (p0

j ) to refer to the
left-most (right-most) vertex of a positive clause gadget placed on a line segment
of R′ representing uj . The vertices P 0

j and p0
j are the first vertices of the paths

forming the positive tunnel T pj of the positive literal of variable uj . If for some j the
variable uj is not contained both in negative and positive clauses, we artificially add
two vertices N0

j and n0
j or P 0

j and p0
j on the corresponding line segments to avoid

having to treat special cases in the remainder of the construction.
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Tier 1, tier 3, and variable gadgets. Recall that every clause edge has to pass
through a gate that is associated with some literal of the clause, and, thus, every
edge is drawn in the tunnel of some literal. We need to ensure that for no variable it
is possible to use both the tunnel associated with its positive literal and the tunnel
associated with its negative literal simultaneously. To this end, we create a variable
gadget with vertices in tiers T1 and T3 for each variable. The variable gadget of
variable uj is illustrated in Figure 17a. The variable gadgets are nested in the sense
that they start in T1 in the order u1, u2, ..., u|U|, from bottom to top and they end in
the reverse order in T3, see Figure 18. We force each tunnel with index at least j to
be drawn between the vertices uaj and ubj . This is done by subdividing the tunnel
edges on this level, see Figure 17b. The long edge (usj , utj) has to be drawn to the left
or right of ucj in T3. Accordingly, it is drawn to the left of uaj or to the right of ubj
in T1. Thus, it is drawn either to the right (Figure 17b) of all the tunnels or to the
left (Figure 17c) of all the tunnels. As a consequence, the blocking edge (usj , u

p
j ) is also

drawn either to the right or the left of all the tunnels. Together with the edge (uqj , u
p
j )

it prevents clause edges from being drawn either in the positive tunnel T pj or negative
tunnel Tnj of variable uj , which end at level γ(uqj), because they cannot reach their
endpoints in T2 without crossings. We say T pj or Tnj are blocked, respectively.

Construction details. In the following two paragraphs, we describe the construc-
tion of the variable gadgets in detail, for illustrations refer to Figures 17 and 18.

Tier T3 has l3 − l2 = 2 · |U| layers each of which contains precisely one vertex. We
refer to the vertex in layer (l3 − 2j + 1) as utj and to the vertex in layer (l3 − 2j)
as ucj for j = 1, . . . , |U|. Tier T1 has l1 − l0 = 4 · |U| levels. In each of the levels (l0 +
4j − 3), (l0 + 4j − 1), and (l0 + 4j) where j = 1, . . . , |U| we create one vertex. These
vertices are called usj , u

q
j , and u

p
j , respectively. In level (l0 + 4j − 2) we create two

vertices uaj and ubj in this order. We add the edges (usj , utj), (usj , u
p
j ), (uaj , ucj), (ubj , ucj),

and (uqj , u
p
j ).

Finally, for j = 1, . . . , |U| we do the following, see Figure 17b or Figure 17c. In
level (l0 +4j−2) we create vertices P jj , p

j
j , . . . , P

j
|U|, p

j
|U|, N

j
|U|, n

j
|U|, . . . , N

j
j , n

j
j and add

them in this order between uaj and ubj . In level (l0 + 4j − 1) we create vertices P j+1
j

and pj+1
j in this order before uqj and we create vertices N j+1

j and nj+1
j in this order

after uqj . We create edges realizing the paths tPj = (P 0
j , . . . , P

j+1
j ), tpj = (p0

j , . . . , p
j+1
j ),

tNj = (N0
j , . . . , N

j+1
j ) and tnj = (n0

j , . . . , n
j+1
j ). The pair of paths T pj = (tPj , t

p
j ) is

the positive tunnel of variable uj . The pair of paths Tnj = (tNj , tnj ) is the negative
tunnel of variable uj . If an edge e is drawn in the region between the two paths of a
tunnel T , we say it is drawn in T .

Runtime and Properties. The construction of the ordered level graph G can be
carried out in polynomial time. Note that its maximum degree is ∆ = 2. Moreover,
no source or sink with degree ∆ is located on a level Vi with width λi > 2: each
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Figure 17: (a) The variable gadget of uj in (b) positive and (c) negative state. For
the sake of visual clarity, these figures make use of the relaxed but equivalent version
of Ordered Level Planarity that only requires that the vertices of each level
appear according to the total ordering corresponding to χ, cf. Section 3.1.3. In
particular, a vertex v of a level Vi with width λi = 1 may appear anywhere on the
horizontal line Li. The dash-dotted edges are clause edges.

variable gadget has a total of three sinks or sources with degree ∆ (in tiers T1 and T3).
Each of these vertices is located on a level with width 1. Additionally, each clause
gadget has two sources with degree ∆ (in tier T0). These sources are also located
on levels with width 1 due to the assumption that, in the representation R′, the
y-coordinates of each pair of horizontal segments belonging to distinct E-shapes differ
by at least 3.

Correctness. It remains to show that G has an ordered level planar drawing if
and only if ϕ is satisfiable. Assume that G has an ordered level planar drawing Γ.
We create a satisfying truth assignment for ϕ. If Tnj is blocked we set uj to true,
otherwise we set uj to false for j ∈ 1, . . . , |U|. Recall that the subgraph G0 induced
by the vertices in tier T0 has a unique ordered level planar drawing. Consider a
clause ci and let f, g, j be the indices of the variables whose literals are contained
in ci. Clause edge ei = (esi , eti) has to pass level l0 through one of the gates of ci.
More precisely, ei has to be drawn between either N0

f and n0
f , N0

g and n0
g, or N0

j and
n0
j (if ci is negative), or between either P 0

f and p0
f , P 0

g and p0
g, or P 0

j and p0
j (if ci is
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Figure 18: The nesting structure of the variable gadgets. Only the gadgets of the
variables with the four largest indices are shown. They are nested within the remaining
variable gadgets. Tier T0 is located below all these gadgets. As in Figure 17, this
figure makes use of the version of Ordered Level Planarity that uses relative
x-coordinates on each level. The dash-dotted edges are clause edges.
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positive), see Figure 15c. First, assume that ci is negative and assume without loss
of generality that ei traverses l0 between N0

j and n0
j . In this case ei has to be drawn

in Tnj . Recall that this is only possible if Tnj is not blocked, which is the case if uj is
false, see Figure 17c. Analogously, if ci is positive and ei traverses w.l.o.g. between pPj
and ppj , then uj is true, Figure 17b. Thus, we have established that one literal of
each clause in C evaluates to true for our truth assignment and, hence, formula ϕ is
satisfiable.

Now assume that ϕ is satisfiable and consider a satisfying truth assignment. We
create an ordered level planar drawing Γ of G. It is clear how to create the unique
subdrawing of G0. The variable gadgets are drawn in a nested fashion, see Figure 18.
For j = 1, . . . , |U| − 1 we draw edge (uaj , ucj) to the left of uaj+1 and usj+1, and
edge (ubj , ucj) to the right of ubj+1 and usj+1. In other words, the pair ((uaj , ucj), (ubj , ucj))
is drawn between all such pairs with index smaller than j. Recall that the vertices uaj ,
ubj , usj , u

p
j and uqj are located on higher levels than the according vertices of variables

with index smaller than j and that utj and ucj are located on lower levels than the
according vertices of variables with index smaller than j.

For j = 1, . . . , |U| if uj is positive, we draw the long edge (usj , utj) to the right
of ubj and ucj and, accordingly, we have to draw all tunnels left of usj and u

q
j (except

for Tnj , which has to be drawn to the left of usj and must end to the right of uqj), see
Figure 17b. If uj is negative we draw the long edge (usj , utj) to the left of ubj and ucj
and, accordingly, we have to draw all tunnels right of usj and u

q
j (except for T

p
j , which

has to be drawn to the right of usj and end to the left of uqj), see Figure 17c. We have
to draw the blocking edge (usj , u

p
j ) to the right of nj+1

j if uj is positive and to the left
of P j+1

j if uj is negative.
It remains to describe how to draw the clause edges. Let ci be a clause. There is

at least one true literal in ci. Let k be the index of the corresponding variable. We
describe the drawing of clause edge ei = (csi , cti) from bottom to top. We start by
drawing ei in the tunnel T pk (Tnk ) if ci is positive (negative). We exit the tunnel when
passing through level γ(uqk), after which we end up to the left (right) of all tunnels
with index larger than k, see Figure 17b (Figure 17c). Note that since T pk (Tnk ) is not
blocked, we can continue without having to cross blocking edge (usk, u

p
k) or (uqk, u

p
k).

We draw ei to the left (right) of all vertices belonging to variable gadgets with index
larger than k, see Figure 18. This introduces no crossings since above level γ(uqk) all
tunnels with index larger than k are drawn to the right of uak+1, . . . , u

a
|U| and the left

of ubk+1, . . . , u
b
|U|. Connecting to cti in tier T2 is straight-forward since each level of

this tier contains only one vertex.

We obtain NP-hardness for instances with maximum degree ∆ = 2.
In fact, we can restrict our attention to instances with level-width λ = 2. To

this end, we split levels with width λi > 2 into λi − 1 levels containing exactly two
vertices each.
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Figure 19: (a) A level Vi with width λi > 2. (b) To reduce the level-width, we
replace Vi with λi − 1 levels. Thick edges are the stretch edges.

Lemma 14. An instance G = (G = (V,E), γ, χ) of Ordered Level Planarity
with maximum degree ∆ and level-width λ > 2 can be transformed in linear time into
an equivalent instance G′ = (G′ = (V ′, E′), γ′, χ′) of Ordered Level Planarity
with maximum degree ∆′ ≤ ∆ + 1 and level-width λ′ = 2. Further, if G contains no
source or sink with degree ∆ on a level Vi with width λi > 2, then ∆′ ≤ ∆.

Proof. We replace each level Vi with width |Vi| = λi > 2 by λi−1 levels with 2 vertices
each, as illustrated in Figure 19. Accordingly, vertices on levels above Vi are shifted
upwards by λi − 2 levels. Formally, let Vi = {v1, . . . , vλi

} with χ(v1) < · · · < χ(vλi
).

We increase the level of vertex vj by j − 2 for j = 3, . . . , λi. For j = 2, . . . , λi − 1
we create a vertex v′j one level above vj with χ(v′j) = 0 and we create a new stretch
edge (vj , v′j). For j = 2, . . . , λi we set χ(vj) = 1.

For all the vertices v that have been split in this way into v and v′, the bottom
vertex v inherits all the incoming edges and the top vertex v′ inherits all the outgoing
edges. Let G′ denote the resulting instance, which can be constructed in linear time.
It is easy to verify that the vertex degrees behave as desired.

An ordered level planar drawing of G can easily be converted to a drawing of G′.
For the conversion in the other direction, we successively contract each stretch
edge (vi, v′i) back into a single vertex, thereby merging two consecutive levels of G′.
Apart from the edge (vi, v′i), the vertex vi has incident edges from below and the
vertex v′i has incident edges from above only. Therefore, such a contraction cannot
cause any problems. The stretch edges ensure that the vertices of each level of G end
up in the correct order.

Corollary 15. Ordered Level Planarity is NP-hard, even for acyclic ordered
level graphs with maximum degree ∆ = 2 and level-width λ = 2.

The reduction in Lemma 13 requires degree-2 vertices. With ∆ = 1, the problem
becomes polynomial-time solvable. In fact, one can easily solve it as long as the
maximum in-degree and the maximum out-degree are both bounded by 1.
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Lemma 16. Ordered Level Planarity restricted to instances with maximum
in-degree ∆− = 1 and maximum out-degree ∆+ = 1 can be solved in linear time.

Proof. Let G = (G = (V,E), γ, χ) be an ordered level graph with maximum inde-
gree ∆− = 1 and maximum outdegree ∆+ = 1. Such a graph G consists of a set P of
y-monotone paths. Each path p ∈ P has vertices on some sequence of levels, possibly
skipping intermediate levels.

We define the following relation on P : We write p ≺ q, meaning that p must
be drawn to the left of q, if p and q have vertices vp and vq that lie adjacent on a
common level, i.e. γ(vp) = γ(vq) and χ(vq) = χ(vp) + 1. This relation has at most
|V | pairs, and by topological sorting, we can find in O(|V |) time a linear ordering
that is consistent with the relation ≺, unless this relation has a cycle. The former
case implies the existence of an ordered level drawing while the latter case implies
that the problem has no solution.

This follows from considerations about horizontal separability of y-monotone
sets by translations, cf. [14, 43]. An easy proof can be given following Guibas and
Yao [70, 71]: consider an ordered level planar drawing of G. We say that a vertex
is visible from the left if the infinite horizontal ray emanating from that vertex to
the left does not intersect the drawing. Among the paths whose lower endpoint is
visible from the left, the one with the topmost lower endpoint must precede all other
paths to which it is related in the ≺-relation. Removing this path and iterating the
procedure leads to a linear order that extends ≺. Regarding the other direction,
if we have such a linear order x : P → {1, . . . , |P |}, we can simply draw each path
p straight at x-coordinate x(p), subdivide all edges properly and, finally, shift the
vertices on each level such that the vertices of V are placed according to χ while
maintaining the order x.

For λ = 1, Ordered Level Planarity is solvable in linear time since Level
Planarity can be solved in linear time [83]. Proper instances have a unique drawing
(if it exists). The existence can be checked with a simple linear-time sweep through
every level. The problem is obviously contained in NP. The results of this section
establish Theorem 1.

Theorem 1. Ordered Level Planarity is NP-complete, even for acyclic
ordered level graphs with maximum degree ∆ = 2 and level-width λ = 2. The problem
can be solved in linear time if the given level graph is proper, or if the level-width
is λ = 1, or if ∆+ = ∆− = 1, where ∆+ and ∆− are the maximum in-degree and
out-degree respectively.

3.5 Connected instances

To reduce from Ordered Level Planarity to Geodesic Planarity, our main
reduction (to Ordered Level Planarity) is tailored to achieve a small maximum
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Figure 20: (a) The original clause gadget and (b) the augmented version for the
connected case. The clause edge starting at csi is not shown.

degree of ∆ = 2. As a consequence, the resulting graphs are not connected. At the
cost of an increased maximum degree, it is possible to make our instances connected
by inserting additional edges. In this section, we discuss the necessary adaptations to
obtain the following theorem.

Theorem 8. The following problems are NP-hard even for connected instances with
maximum degree ∆ = 4:

– Ordered Level Planarity, even for level-width λ = 2;

– Constrained Level Planarity, even for level-width λ = 2 and prescribed
total orderings;

– Clustered Level Planarity, even for level-width λ = 2 and flat cluster
hierarchies that partition the vertices into two non-trivial clusters; and

– Bi-Monotonicity.

We begin by showing the NP-hardness of Ordered Level Planarity for
connected instances.

Lemma 17. Planar Monotone 3-Satisfiability reduces in polynomial time
to Ordered Level Planarity. The resulting instances are connected and have
maximum degree ∆ = 4. The maximum in-degree ∆− and maximum out-degree ∆+

are both 3.

Proof. We proceed exactly as in Lemma 13. We augment the resulting instances
such that they become connected. During this augmentation step, we need to make
sure that the degree constraints remain satisfied.

Recall that U is the set of variables and that tier T3 contains precisely 2|U|
vertices each of which is the only vertex of its level, see Figure 17a and Figure 18. We
connect all these vertices with a directed path, that is, we insert the edges (ucj , utj)
for j = 1, . . . , |U| and the edges (utj , ucj+1) for j = 2, . . . , |U|. One can easily check
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that the degree constraints are satisfied: the degree of the vertices utj is now 3 (except
for ut1, which has degree 2). The degree of the vertices ucj is now 4 = ∆ (except for
uc|U|, which has degree 3). The largest out-degree of all these vertices is 1 < ∆+,
while the largest in-degree is 3 = ∆−.

Recall that for each clause ci we have created a clause gadget as depicted in
Figure 20a. We replace this graph with the graph shown in Figure 20b. Precisely, we
do the following: We add a new vertex v9 one unit below csi and we add the edges
(v9, c

s
i ), (csi , v4), (csi , v5). Again, the degree bounds are easily verified: Vertex csi now

has degree 4 = ∆ (including the clause edge); vertices v4, v5 and v9 have degree 3
and vertices v1 and v3 have degree 2. The overall maximum out-degree is 3 = ∆+,
while the maximum in-degree is 1.

Recall that the segments v′1v6, v′2v7, and v′3v8 of each clause gadget are called the
gates of ci. All gates (of all clauses) are located on the same level Vg, see Figure 15c.
We now ensure that all vertices of Vg become connected to each other. The two
vertices that bound each gate are already connected through the augmented clause
gadgets. We connect two consecutive vertices u, v from different gates by adding for
each such pair u, v a new vertex w one level below Vg with two edges (w, u) and (w, v).

The resulting instance has two connected components: one component contains all
the clause gadgets, clause edges, and tunnels, and the other contains all the variable
gadgets. We can connect these components by adding a path P between the top-most
vertex vt and bottom-most vertex vb of the instance. Note that vt = ut|U|. The
bottom-most vertex is vertex v9 of the clause gadget corresponding to the (unique)
E-shape with the lowest horizontal line segment. Simply choosing P = (vb, vt) would
result in an increased maximum out-degree of 4. Instead, we choose the (undirected)
path P = (vb, v′b, v′t, vt), where v′b and v′t are new vertices placed below vb and above vt
respectively. This way, the out-degree of vb remains 3.

The new connected instance is equivalent to the original one as the clause edge
(csi , cti) can still reach each of the three gates of ci by choosing the corresponding
embedding. Aside from the edges incident to the vertices csi , no new edge impairs
the realizability of the instance in any way.

We remark that it is possible to decrease the maximum in-degree guaranteed in
Lemma 17 to ∆− = 2 by splitting the vertices ucj before the augmentation step.

Lemma 17 produces instances in which the maximum out-degree and the maximum
in-degree are strictly smaller than the maximum degree ∆ = 4. It follows that no
source or sink has degree ∆. Thus, Lemma 14 implies the statement about Ordered
Level Planarity and Constrained Level Planarity in Theorem 8. The
statement about Bi-Monotonicity follows from Theorem 4. Finally, the statement
about Clustered Level Planarity follows from the fact that the reduction given
in Lemma 12 does not change the graph except for the subdivisions of the edges
and the addition of isolated vertices, which can be removed without affecting the
realizability of the instance. This concludes the proof of Theorem 8.
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3.6 Conclusion

We introduced and studied the problem Ordered Level Planarity. Our main
result is an NP-hardness statement that cannot be strengthened. We demonstrated
the relevance of our result by stating reductions to several other graph drawing
problems. These reductions answer multiple questions posed by the graph drawing
community and establish connections between problems that (to the best of our
knowledge) have not been considered in the same context before. Recently, Da Lozzo,
Di Battista, and Frati [39] used Theorem 1 to show the NP-hardness of another
generalization of Ordered Level Planarity. We expect that Theorem 1 will
serve as a useful tool for further reductions.

In Section 3.5, we extended most of our reductions to produce problem instances
that are connected. We did not provide such a modification for our reduction to
Geodesic Planarity. Due to the increased vertex degrees in Ordered Level
Planarity instances generated by Theorem 8, our reduction to Geodesic Pla-
narity in Step (i) of Lemma 9 breaks down, as there is not enough space anymore to
attach all the edges around each vertex. It does not seem straight-forward to modify
our construction to obtain a reduction to Geodesic Planarity that produces
connected instances. Thus, we leave it as an open question whether NP-hardness
still holds for connected instances of (Manhattan) Geodesic Planarity.



Chapter 4

Two-page book embeddings of
triconnected planar graphs

4.1 Introduction

A book embedding [22, 75, 131] can be thought of as a drawing of a graph in a
book. Formally, the corresponding drawing convention requires that all vertices
are embedded on a line in R3 called spine, and every edge is embedded in a half-
plane, called page, bounded by the spine. No two edges (on the same page) are
allowed to cross. If k pages are used, then the corresponding embedding is a k-
page book embedding. Applications for book embeddings include VLSI design [35],
bioinformatics [74], and other Graph Drawing problems [11, 128].

Obviously, every graph has a book embedding: we can simply realize each edge on
a separate page. The book thickness of a graph is the smallest number of pages that
suffices to realize the graph in form of a book embedding. Graphs with book thickness
at most two are planar since a k-page book embedding with k ≤ 2 corresponds to a
planar drawing of the graph: each page by itself is crossing-free and two pages can
be arranged on a common plane such that they only intersect along the spine.

Bernhart and Kainen [22] characterized the graphs that can be embedded on
k pages, for k ≤ 2. For k = 2 these are the subhamiltonian planar graphs, that
is, subgraphs of Hamiltonian planar graphs, cf. Figure 21. This turns the problem
of embedding a graph on two pages into a graph augmentation problem: a planar
graph admits a 2-page book embedding if and only if one can add edges1 to make it
Hamiltonian while maintaining planarity. It follows that a maximal planar graph is
subhamiltonian if and only if it is Hamiltonian, and, hence, the recognition of graphs
with book thickness at most two is NP-hard [127]. However, no planar graph is too
far away from being subhamiltonian: subdividing at most n/2 of the up to 3n− 6

1Kainen and Overbay [84] observe that it suffices to add edges (rather than vertices and edges)
since by removing the added vertices of a Hamiltonian cycle in a plane augmentation, one obtains a
Hamiltonian cycle in a plane augmentation that only uses new edges.
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edges of a planar graph on n vertices yields a subhamiltonian planar graph [29].
The structure of Hamiltonian paths and cycles in graphs has been a fruitful

subject of intense research over many decades, both from a combinatorial and from an
algorithmic point of view. For general graphs, sufficient conditions for the existence
of a Hamiltonian cycle typically involve rather strong assumptions on the degree,
such as in Dirac’s Theorem [49] (minimum degree ≥ n/2), Ore’s Theorem [103]
(degree sum of every nonadjacent vertex pair ≥ n), or Asratian and Khachatrian’s
Theorem [15] (deg(u)+deg(w) = |N(u)|+|N(v)|+|N(w)|, for every induced path uvw).
Planar graphs provide a lot more structure so that by a famous theorem of Tutte, 4-
connectivity suffices to guarantee the existence of a Hamiltonian cycle [122], which can
be computed in linear time [30]. In contrast, deciding Hamiltonicity is NP-complete
for 3-connected cubic planar graphs [61], and for maximal planar graphs [127]. Finally,
maximal planar graphs of degree at most six are Hamiltonian [52]. Hence, both vertex
degree and connectivity appear to be crucial parameters concerning Hamiltonicity.

(a) (b)

Figure 21: A nonhamiltonian graph with a subhamiltonian cycle (a Hamiltonian
cycle in a plane augmentation) and a corresponding two-page book embedding. In
particular, the order of the vertices along the cycle corresponds to the ordering of
the vertices along the spine. The interior of the cycle corresponds to the right page
and its exterior corresponds to the left page.

Despite a plethora of results concerned with Hamiltonian cycles in planar graphs
and book embeddings, several fundamental questions are still open. Let us give
just two prominent examples to illustrate this point. For once, there is Barnette’s
Conjecture: “Every 3-connected cubic bipartite planar graph is Hamiltonian.” And
then there is the question if every planar graph can be embedded on three pages.
Yannakakis showed, improving a series of earlier results, that four pages are sufficient
for every planar graph [131]. However, a corresponding lower bound is still elusive,
in spite of initial claims [130].

In this chapter, we are interested in sufficient conditions for two-page book em-
beddability. Previously established sufficient conditions for a planar graph to be
subhamiltonian involve assumptions about vertex degrees [20, 21, 75], as is the case



4.1. Introduction 49

with sufficient conditions for classic Hamiltonicity. However, in the subhamiltonian
case, these assumptions require small vertex degrees rather than large vertex degrees.
Intuitively, the reason is that when looking for a Hamiltonian cycle in some augmen-
tation of a given planar graph G, we may create any desired edges that are not part
of G. In contrast, unwanted edges that belong to G may act as obstructions.

Heath [75] showed that planar graphs of maximum degree three are always
subhamiltonian. Later, Bauernöppel [20] and, independently, Bekos, Gronemann, and
Raftopoulou [21] showed that maximum degree four is also a sufficient condition for
a planar graph to be subhamiltonian. On the negative side, Bauernöppel [20] showed
that recognizing subhamiltonian planar graphs is NP-hard even if the maximum
degree is seven (the graphs in his reduction are biconnected, but not 3-connected).
Guan and Yang [69] showed that planar graphs of maximum degree five can be
embedded on three pages.

When sticking to two pages, the ultimate goal is to determine the largest k such
that every planar graph with maximum degree at most k is subhamiltonian. We take
a considerable next step towards this goal by showing that all triconnected planar
graphs of maximum degree five are subhamiltonian planar. In fact, we prove the
following more general statement where the degree restriction applies to vertices of
separating 3-cycles only.

Theorem 18. Let G be a 3-connected simple planar graph on n vertices where
every vertex that belongs to a separating 3-cycle has degree at most five. Then G

is subhamiltonian planar. Moreover, a subhamiltonian plane cycle for G can be
computed in O(n2) time.

Corollary 19. Every 3-connected simple planar graph with maximum vertex degree
five can be embedded on two pages, and such an embedding can be computed in
quadratic time.

We also show that the degree bound in Theorem 18 is tight.

Theorem 20. There exists an infinite family of 3-connected simple planar graphs
that are not subhamiltonian planar and where every vertex of a separating 3-cycle has
degree at most six.

We remark that the condition of Theorem 18 is easy to test in O(n2) time: start
by testing planarity [25, 81] and 3-connectivity [72, 80] in linear time. If the graph
is indeed 3-connected and planar, then it has a unique combinatorial embedding
(up to its orientation) and its separating 3-cycles are separating triangles in this
embedding (see Section 4.2 for the formal definition). Then, for each edge that is
incident to a vertex of degree at least six we check whether its endpoints have a
common neighbor, which is easily done in linear time per edge. It remains to check
whether the thereby found triangles are separating. This can be accomplished in
constant time per triangle by checking whether there is at least one vertex on each of
its sides in the combinatorial embedding.
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Organization. We begin by introducing some terminology and notation in Sec-
tion 4.2. In Section 4.3, we study three special cases for which Theorem 18 is easily
proven. In particular, we show how to deal with the case that the given graph contains
no separating 3-cycle.

In Section 4.4, we proceed with a high-level overview of the proof of Theorem 18,
which is then developed in detail in Sections 4.5–4.8. In short, it consists of three main
steps: in Section 4.5 we describe a recursive algorithm that gets rid of all separating
3-cycles using edge contractions. In Section 4.6, we then augment the graph (by
adding new vertices and edges) without creating any new separating 3-cycles; and
apply the results from Section 4.3 to obtain a subhamiltonian cycle in this contracted,
augmented graph. Finally, in Section 4.7, we reconstruct the collapsed 3-cycles,
one-by-one. Due to the augmentation from Section 4.6, it is possible to maintain
a subhamiltonian cycle throughout the procedure. This is done by applying small
local modifications to the current cycle at every reconstruction step. We conclude
the proof in Section 4.8, in which we deal with the remaining special cases. In this
section we also formally summarize the proof. In Section 4.9, we provide a high-level
summary of the algorithm.

The infinite family of nonsubhamiltonian 3-connected planar graphs described
by Theorem 20 is constructed in Section 4.10. We conclude by discussing future
directions and open questions in Section 4.11.

4.2 Notation

In this chapter, we use the shorthand uv to denote an edge between u and v. We
also use shorthands such as stuvw to denote a path (or cycle) (s, t, u, v, w) (it will
be clear from the context whether a path or cycle is meant). The reason for this
inconsistency in notation is that in this chapter, we often have to argue about small
constant sized configurations, where the shorthands help to remove clutter from the
notation. In contrast, in Chapters 3 and 5, we encounter large graphs with heavily
indexed labeling, where the classic notation improves readability.

A Hamiltonian cycle for a graph is a simple cycle through all vertices and a
graph is Hamiltonian if it contains a Hamiltonian cycle. An augmentation of a graph
G = (V,E) is a supergraph A = (V,E′) with E′ ⊇ E. If G is a plane graph, then a
plane augmentation H of G is an augmentation that is plane and agrees with G, that
is, the plane subgraph of H the corresponds to the underlying abstract graph of G
is G. A (plane) subhamiltonian cycle2 for a (plane) graph G is a Hamiltonian cycle
in some (plane) augmentation of G.

A set of vertices is separating if its removal disconnects the graph. We distinguish
between separating 3-cycles as a notion for both abstract and plane graphs, and

2 This term has been established in the related literature. Arguably, the term superhamiltonian
would be more fitting.
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separating triangles in plane graphs. A separating 3-cycle is a 3-cycle whose removal
disconnects the graph. A separating triangle is a 3-cycle C of a plane graph G such
that both the interior and the exterior region bounded by C contain some vertex of G.
Note that every separating triangle is a separating 3-cycle, whereas the converse is not
true in general. Distinguishing between the two concepts is important in the context
of graph augmentation problems. For instance, if a plane graph G has a separating
triangle abc, then a, b, c form a separating triple in every plane augmentation. Hence,
it is not possible to make G 4-connected by adding edges. On the other hand, if uvw
is a separating 3-cycle of G that is not a separating triangle, then it is easy to find a
plane augmentation in which u, v, w are not separating.

For a cycle C in a plane graph G denote by G+
C the plane subgraph of G that

contains all vertices and edges on C and exterior to C. Similarly denote by G−C the
plane subgraph of G that contains all vertices and edges on C and interior to C.
The inside of C refers to the interior of the bounded region enclosed by C. So a
vertex of G inside of C is a vertex of G−C \ C. Analogously a vertex outside of C is a
vertex of G+

C \ C. A separating triangle T is called trivial if G−T ' K4, that is, if G−T
is isomorphic to K4. Otherwise, T is called nontrivial. A separating triangle T is
maximal if no vertex of T is inside a separating triangle of G+

T .

Triconnected components. Our algorithm described in Section 4.5 uses a decom-
position of a (biconnected) graph into its triconnected components. There are several
distinct, but equivalent definitions of this concept. Here we adopt the notation by
Gutwenger and Mutzel [72].

Let G = (V,E) be a biconnected multigraph and a, b ∈ V . The edge set E can
be partitioned into equivalence classes E1, . . . , Ek such that two edges belong to the
same set Ei if and only if they belong to a common path that does not contain a or b
as an interior vertex. These sets Ei are called separation classes of G with respect
to the pair a, b. Moreover, if k ≥ 2, then a, b is a separation pair unless k = 2 and
one class consists of a single edge; or k = 3 and each class consists of a single edge.
Let E′ =

⋃
i∈I Ei and E′′ = E\E′ with I ⊂ {1, . . . , k} such that |E′| ≥ 2 and |E′′| ≥ 2.

The two graphs G′ = (V(E′), E′ ∪ {e}) and G′′ = (V(E′′), E′′ ∪ {e}), where e = ab

is a new edge, are called split graphs of G with respect to a, b. Replacing G by
two split graphs is called splitting G. The edge e, which occurs in both G′ and G′′,
is called virtual edge and it identifies the split operation. Split graphs are again
biconnected [72].

Iteratively splitting G and the resulting splits graphs until no further split is
possible yields a set of multigraphs that are called split components of G. Each split
component is of one of three types: (1) a set of three parallel edges between two
common vertices, called triple bond; (2) a cycle of length 3, called triangle; (3) a simple
triconnected graph. Consider two split components G1 = (V1, E1) and G2 = (V2, E2)
of G such that E1 and E2 both contain the same virtual edge e′. Replacing G1 and G2
with the graph (V1 ∪ V2, (E1 ∪ E2) \ {e′}) is called merging G1 and G2.
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The triconnected components of G are obtained from its split components by
merging all triple bonds of G into maximal sets of parallel edges; and by merging
all triangles into maximal simple cycles. Each triconnected component is of one of
three types: (1) a set of at least three parallel edges between two common vertices,
called parallel triconnected component; (2) a simple cycle of length at least three,
called series triconnected component; (3) a simple triconnected graph, called rigid
triconnected component. While the split components of a (multi–) graph are not
necessarily unique; its triconnected components are [80, 100]. Each edge in E occurs
in exactly one triconnected component and is called real; and each virtual edge e′′
occurs in exactly two triconnected components N1 and N2 [72]. In N1, the edge e′′
acts as a placeholder for N2; we say it corresponds to N2.

The triconnected components of a biconnected graph can be efficiently com-
puted [72] and maintained [78] via the SPQR-tree data structure.

4.3 Three simple cases

It suffices to prove Theorem 18 for an arbitrary combinatorial embedding of the
given graph (recall that we assume combinatorial embeddings to be given as doubly-
connected edge lists (DCEL), cf. Chapter 2). In fact, by 3-connectivity, the combi-
natorial embedding is unique up to its orientation (cf. Chapter 2), and there is no
difference between separating 3-cycles and separating triangles. So let G be a plane
3-connected simple graph where every vertex that belongs to a separating triangle
has degree at most five.

In this section, we deal with three special cases for which Theorem 18 is easily
proven. In particular, we discuss the case of graphs without separating triangles.
Then, we show that we can assume the separating triangles of G to be trivial and
pairwise vertex-disjoint.

We remark that the notation G retains its meaning throughout the remainder of
Chapter 4. We refer to G as our general assumption. We emphasize that many of
the following theorems are stated for more general graph classes. To avoid mix-ups
with G, the graphs in the preconditions of these theorems are usually labeled G.

4.3.1 Graphs without separating triangles

By combining known results, it is easy to deal with the case that G has no separating
triangle. In fact, a plane graph without separating triangles is subhamiltonian
even if it is not (3-)connected or degree bounded. This was observed already by
Bauernöppel [20], and by Kainen and Overbay [85]. The statement is useful even
if G has separating triangles, in which case we plan to remove them by using
edge contractions. To make use of the thereby obtained subhamiltonian cycle for
the reduced graph, it will be useful to prescribe edges to be part of the cycle.
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Bauernöppel [20] states the fact that one edge may be prescribed. Here, we need a
stronger statement that allows two edges of the graph to be prescribed:

Theorem 21. If a simple plane graph G = (V,E) does not contain any separating
triangle, then for any two distinct edges e1, e2 ∈ E there is a plane augmentation H
of G that contains a Hamiltonian cycle C using e1 and e2. Moreover, the cycle C can
be computed in O(n2) time, where n is the number of vertices in G. If both e1 and e2
belong to the outer face of G and the outer face is a triangle, then C can be computed
in linear time.

Proof. We may assume that G is biconnected. If not, use a linear time algorithm
of Read [110] to make the graph biconnected by adding edges without introducing
separating triangles. As G is biconnected, all faces are bounded by simple cycles.

Biedl, Kant, and Kaufmann [23] have shown that if G does not contain a star,
then G can be augmented (by adding edges) in linear time and space to a maximal
plane graph, without introducing separating triangles. Here, G contains a star (f, v)
if there is a face f and a vertex v such that

(1) either ∂f is a cycle on at least 4 vertices such that v /∈ ∂f , and all vertices of ∂f
are neighbors of v in G;

(2) or ∂f is a cycle on at least 5 vertices such that v ∈ ∂f , and all vertices of ∂f \{v}
are neighbors of v in G.

The algorithm by Biedl et al. either returns a star (f, s) in G, or it returns a maximal
plane graph H = (V,E′) without separating triangles.

Hence, if G does not contain a star, then we obtain a 4-connected plane aug-
mentation H of G, in which the desired cycle exists by a theorem of Sanders [114,
Corollary 2]. Algorithmically, such a cycle may be obtained in quadratic time us-
ing a recently developed algorithmic version of Sanders’ theorem by Schmid and
Schmidt [115]. For the special case where both prescribed edges are on the outer face
of G and the outer face is triangular, we can use a linear time algorithm by Chiba
and Nishizeki [30].

Otherwise, G contains a star (f, s). Let S = V (∂f)∪{s} and consider the induced
plane graph G[S]. As s is adjacent to all vertices in S \ {s}, we know that all faces of
G[S] other then f are triangles. Moreover, these triangles are also faces of G because
G does not have a separating triangle by assumption. It follows that G = G[S].

If (f, s) is of type (1), then set G′ := G; otherwise, (f, s) is of type (2) and we
derive G′ from G by adding an edge between the two neighbors of s on ∂f . Then
G′ is a wheel with at least four spokes. Let f ′ denote the (only) nontriangular face
of G′, and let (u0, . . . , uk = u0) denote the circular sequence of vertices along ∂f ′.
Unless both e1 and e2 are incident to s, the desired Hamiltonian cycle is easily found
in H := G′. Otherwise, e1 = {s, ui} and e2 = {s, uj}, with 0 ≤ i < j < k. If ui and uj
are adjacent along ∂f , then again we find the desired Hamiltonian cycle in H := G′.



54 Chapter 4. Two-page book embeddings of triconnected planar graphs

Otherwise, let H := G′ ∪ e, where e = {ui+1, u(j+1) mod k}. The desired Hamiltonian
cycle in H is (u(j+1) mod k, . . . , ui, s, uj , . . . , ui+1), see Figure 22. Clearly, this case can
be handled in linear time.

uj

ui ui+1

uj+1

e2

e1

s

f ′

Figure 22: A plane subhamiltonian cycle using e1 and e2 in a wheel with at least four
spokes.

4.3.2 Graphs with nontrivial separating triangles

To be able to argue inductively, we prove a stronger statement than necessary, namely
a version of Theorem 18 where, similar to the statement in Theorem 21, two edges of
the desired plane subhamiltonian cycle may be prescribed.

Theorem 22. Let G = (V,E) be a 3-connected simple plane graph on n vertices
where every vertex that belongs to a separating triangle has degree at most five. Then
there is a plane augmentation of G that contains a Hamiltonian cycle C, which can
be computed in O(n2) time.

Moreover, for certain graphs, we may prescribe two edges to be part of the cycle C.
Let F ⊂ E be a set of up to two edges such that if F 6= ∅, the following conditions
are satisfied:

(P1) the edges of F belong to the outer face T◦ of G;

(P2) T◦ is a triangle;

(P3) no vertex of T◦ belongs to a separating triangle of G; and

(P4) either at least one vertex of T◦ has degree three in G, or all vertices of T◦ have
degree four in G.

The cycle C uses all edges in F .

The proof, described in Sections 4.5–4.8, is carried out by induction on the number
of vertices. Due to the ability to prescribe edges, it is easy to recursively deal with
the case that G contains at least one nontrivial separating triangle.

Lemma 23. Suppose that the statement of Theorem 22 holds for all graphs with at
most n− 1 vertices, where n ≥ 6. Then it also holds for every graph on n vertices
that contains at least one nontrivial separating triangle.
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Proof. As a first step we determine all maximal separating triangles, which is easy
to accomplish in linear time, given that the vertices of separating triangles have
degree at most five. If there exists a nontrivial maximal separating triangle T , then
consider the graph G′ obtained from G by replacing G−T by K4. As G′ has less vertices
than G, by the inductive hypothesis we obtain in O(n2) time a plane augmentation
of G′ that contains a Hamiltonian cycle H′ using all edges from F (note that the
outer edges of G remain in G′). Denoting T = uvw, the cycle H′ traverses the unique
vertex t inside T via two neighbors, without loss of generality H′ = . . . utv . . . .

We will show that there is a plane subhamiltonian cycle H′′ for G−T that uses
the edges uw and wv. The path P1 = H′′ \ {w} is a path from u to v in a plane
augmentation of G−T that visits all vertices of G−T except w. On the other hand, P2 =
H′ \ {t} is a path from u to v in a plane augmentation of G′ that visits all vertices
of G′ except t and uses the edges of F . The combination of P1 and P2 yields the
desired plane subhamiltonian cycle H for G that passes through the edges from F .

It remains to prove the existence of H′′. If G−T satisfies the preconditions of
Theorem 22 for the prescribed edges uw and wv, then the cycle H′′ may be obtained
in O(n2) time due to the assumption that Theorem 22 holds for graphs with at
most n− 1 vertices. So suppose that the preconditions are not satisfied. We claim
that the only violated property is (P3), which can be recognized in constant time.
Indeed, clearly G−T is 3-connected and satisfies the degree bounds. Moreover, the
Properties (P1) and (P2) are satisfied. Property (P4) also holds: due to the degree
bounds of G, the vertices u, v, w have degree at most four in G−T . Consequently,
Property (P3) is violated and, so, one of the vertices of u, v, w belongs to a separating
triangle in G−T . In fact, since the degrees of u, v, and w are bounded by four and by
3-connectivity, it follows that an edge of uvw belongs to a separating triangle abc,
say w.l.o.g. {a, b} ⊂ {u, v, w}. Note that V(G−T ) \ V(G−abc) = {u, v, w} \ {a, b} by 3-
connectivity and the degree bounds of {a, b}∩{u, v, w}, for illustrations see Figure 23.
Hence, our plan is to recurse on G−abc and to then incorporate the missing vertex such
the two desired edges uw and vw are part of the resulting cycle.

Just like G−T , for any two prescribed outer edges the graph G−abc satisfies all
preconditions except, possibly, Property (P3). In fact, Property (P3) also holds: since
the degrees of a, b, c in G−abc are bounded by four, a violation of Property (P3) would
imply that an edge of abc belongs to a separating triangle. However, given that the
vertices a, b have degree exactly four in G−T , their degrees in G

−
abc are exactly three.

Consequently, no edge of abc is part of a separating triangle since in a 3-connected
graph, every vertex of a separating triangle has degree at least four. Thus, all
preconditions are satisfied and, by induction, we obtain in O(n2) time

– a plane subhamiltonian cycle Hab for G−abc that uses the edges ca and cb;

– a plane subhamiltonian cycle Hbc for G−abc that uses the edges ab and ac; and

– a plane subhamiltonian cycle Hca for G−abc that uses the edges ba and bc.
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Using these cycles, we obtain the desired plane subhamiltonian cycle H′′ for G−T .
We distinguish three cases regarding the identity of a, b.

Case 1: {a, b} = {u, v}. Refer to Figure 23a. We set H′′ = (Hcu \ {v}) ∪ cvwu. /

Case 2: {a, b} = {u,w}. Refer to Figure 23b. We set H′′ = (Hcu \ {w}) ∪ cvwu. /

Case 3: {a, b} = {v, w}. Refer to Figure 23c. We set H′′ = (Hcv \ {w}) ∪ cuwv. /

vu

w

c

(a) {a, b} = {u, v}.

vu

w

c

(b) {a, b} = {u,w}.

vu

w

c

(c) {a, b} = {v, w}.

Figure 23: An edge of the triangle uvw may be part of another separating triangle abc.

As discussed above, these cycles are indeed plane subhamiltonian for G−T and they
use the edges uw and vw, as desired. The overall runtime is quadratic because we
use a constant number of recursive calls and merge the obtained cycles in constant
time.

4.3.3 Graphs with nondisjoint separating triangles

The degree restriction basically enforces that the separating triangles of G are
pairwise vertex-disjoint. However, there are some exceptional configurations where
two separating triangles share an edge (we encountered such a situation already in the
proof of Lemma 23, see Figure 23). Our next goal is to classify these configurations
precisely.

A double kite is a subgraph U ' K4 of a plane graph G so that exactly two of the
four triangles of U are separating in G, see Figures 23 and 24a. The two separating
triangles are said to define the double kite. Note that G may contain multiple double
kites, see Figure 24c. We refer G itself as a trivial double kite if it is 3-connected,
contains a double kite, and has precisely 6 vertices, see Figure 24b.

The following lemma shows that two separating triangles of graphs such as our
general assumption G never share a single vertex, and they share an edge if and
only if they define a double kite. In fact, the statement is more general since the
degree constraint is only required for one of the two separating triangles. This plays
an important role later on: in Section 4.5, we describe a recursive algorithm to get
rid of the trivial separating triangles in G. The recursive calls are applied to rigid
triconnected components of a graph that is the result of contracting some edges in G.
These components may contain separating triangles that are not part of the original
graph G. In particular, these triangles do not need to satisfy the degree bound.
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Lemma 24. Let G be a 3-connected simple plane graph and let T1, T2 be two distinct
separating triangles of G such that every vertex that belongs to T1 has degree at most
five. Then if T1 and T2 share a vertex, the triangles T1 and T2 define a double kite.

Proof. Let v denote a common vertex of T1 and T2. As G is 3-connected, every
vertex of a separating triangle is adjacent to at least one vertex on each of its sides, as
otherwise, the other two vertices of the triangle would be separating. We distinguish
two cases.

Case 1: v is the only common vertex of T1 and T2. Then v is incident to four pairwise
distinct edges from T1 and T2. Moreover, v has some neighbor v′ on the side of T1
that does not contain T2, bringing the degree of v up to five. However, v also has
some neighbor on the side of T2 that does not contain T1 and v′. This brings the
degree of v up to six; contrary to our assumption. /

v

t1

w

t2

(a) (b) (c)

Figure 24: (a) The degree bounds imply that two nondisjoint separating triangles
form a double kite. (b) A trivial double kite. (c) Schematic of a graph with three
double kites.

Case 2: T1 and T2 share two vertices v and w. For an illustration refer to Figure 24a.
Then v and w each are incident to three pairwise distinct edges from T1 and T2. Let
t1 and t2 denote the remaining vertex ( 6= v, w) of T1 and T2, respectively.

Both v and w have some neighbor on the side of T1 that does not contain t2.
These neighbors belong to the same side of T2 as t1. Hence, both v and w have
some additional neighbor on the other side of T2, bringing their degrees up to the
maximum of five. This implies that there is no vertex located in the intersection of
the side of T1 that contains t2 and the side of T2 that contains t1, since otherwise t1
and t2 would form a separation pair; in contradiction to G being 3-connected. It also
follows that t1 and t2 are adjacent because otherwise v, w is a separation pair of G.
Thus, T1 and T2 define a double kite. �

Observation 25. Let G be a 3-connected simple plane graph and let T1, T2 be two
distinct trivial separating triangles of G such that all vertices of T1 and T2 have degree
at most five. Then if T1 and T2 share a vertex, the graph G is a trivial double kite.

Proof. If T1 and T2 share a vertex, Lemma 24 implies that they define a double kite.
The claim follows since both triangles are trivial.
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For a trivial double kite G, the statement of Theorem 22 is easily verified. Hence,
from now on we may assume that the separating triangles of G are trivial (by
Lemma 23) and pairwise vertex-disjoint (by Observation 25).

4.4 Proof overview

To prove Theorem 22 we proceed in three main steps. We will first remove all
separating triangles of G by using edge contractions. We then obtain a plane
subhamiltonian cycle in an augmented version of the reduced graph. Finally, we undo
the contractions while maintaining a plane subhamiltonian cycle. In this section, we
give a high-level overview of these three steps.

Collapsing edges. In the first step (Section 4.5), we describe a recursive algorithm
that destroys all separating triangles of G by using an operation that replaces a trivial
separating triangle with a single edge as illustrated in Figure 25.

7→
ab

c

d

c

x
e

Figure 25: Collapsing the edge e = ab of the separating triangle T = abc.

To define this operation, let G be a simple plane graph. We emphasize that we
do not require the separating triangles of G to be trivial or pairwise vertex-disjoint.
Moreover, the vertices of separating triangles can have arbitrary degree.

Definition 26 (Collapsible edge). An edge e = ab of G is collapsible if it belongs
to exactly one separating triangle T = abc of G and this triangle is trivial and its
vertices have degree at most five.

We remark that in our general assumption G each edge of a separating triangle is
collapsible. However, to make our recursive strategy work, we need our operation to
be applicable to the more general case of graphs such as G, where this might not be
the case.

The edge e of G is collapsed by contracting (the three edges of) the triangle formed
by a, b, and the single vertex d inside T into a new vertex x and merging the two
edges ac and bc to a new edge cx, see Figure 25. Let G′ denote the resulting graph.
If a and b have a common neighbor z /∈ {c, d} in G, then, in G′, we merge the two
parallel edges between z and x into a singleton edge zx. Since e is collapsible, the
triangle abz is nonseparating and, hence, the two parallel edges form a 2-cycle that
has all vertices of V(G′) \ {x, z} on one of its two sides. Therefore, the embedding
of the merged edge zx is uniquely determined. Due to this merging step, the result
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of an edge collapse is always a simple graph G′′. The collapse operation does not
increase the degree of any vertex. In particular, the degree of c decreases by two. The
degree of the new vertex x is at most five. Hence, the graph G′′ satisfies the degree
constraints, unless the collapse creates a new separating triangle that has a vertex of
degree larger than five. Hence, we need to ensure that this does not happen.

An edge collapse can be performed in constant time in a DCEL.
In Section 4.5, we describe a procedure to find a set K ⊂ E(G) of collapsible

edges such that simultaneously collapsing all edges of K in G results in a graph G′
that does not contain any separating triangle. By simultaneously collapsing the edges
of K, we refer to the process of collapsing the edges of K iteratively, in an arbitrary
order. This is not always a well defined operation since the collapse of an edge e ∈ K
might make some other edge e′ ∈ K noncollapsible. We discuss in Section 4.5 how to
ensure that G′ is a well defined graph.

Stellation. In the second step (Section 4.6), we augment G′ by stellating every
nontriangular face, that is, for each such face f of G′ we insert a new vertex vf into f
and we add an edge between vf and each vertex on the boundary of f . The result is
a triangulation G′′. By choosing the set K suitably in the previous step, we ensure
that G′′ does not contain any separating triangle. Thus, using Theorem 21 we obtain
a plane subhamiltonian cycle C ′′ for G′′.

Reconstruction. By removing the new vertices vf from C ′′, we obtain a plane
subhamiltonian cycle C ′ for G′ that passes through every face at most once, that is,
for each face f of G′, the cycle C ′ contains at most one chord that is drawn in f . We
say that C ′ is unichordal.

7→
ab

c

d

c

x
e

(a)

7→
a

b

c

d

c

x
e

(b)

Figure 26: Examples of two reconstructions. In (a) we can simply replace the edge cx
with a path that is spanning for the closed interior of the separating triangle. In (b)
we first shortcut the current cycle at c in order to visit a and d.

In the third step of our algorithm (Section 4.7), we iteratively revert the edge
collapses while maintaining a plane subhamiltonian cycle. This is done by applying
small local modifications to the current cycle at every reconstruction step; Figure 26
depicts some examples. Such modifications are not always possible: Figure 27 shows
two examples for which there is no easy way to locally extend the current cycle.
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However, since the initial cycle C ′ is unichordal, it cannot contain any of these two
forbidden configurations. The challenging aspect is, that applying local modifications
to one of the triangles might introduce one of the forbidden configurations at another
triangle. Hence, it is important to control the interaction of the cycle with the
remaining triangles at each reconstruction step.

7→
a

b

c

d

c

x
e

(a)

7→
a

b

c

d

x
e

c

(b)

Figure 27: Two types of remaining triangles to avoid: there is no easy way to extend
the cycle. Note that in (a) there is no way to shortcut the current cycle. On the
other hand, in (b) we can shortcut the cycle at c (and, symmetrically, at b), however,
this shortcut is not beneficial since the cycle edges incident to x do not pass through
a face with c on its boundary as in Figure 26b.

Special cases. In some special cases, the three step procedure described above
cannot be applied. In Section 4.8, we deal with these special cases and we formally
summarize the proof. We proceed by describing the three steps for the general case
in more detail.

We remark that Bauernöppel [20] also used edge contractions and local modifi-
cations as in Figure 26 to show that every planar graph of maximum degree four
is subhamltonian. However, in the degree four case, it suffices to contract a single
separating triangle T and inductively obtain some arbitrary subhamiltonian cycle.
Challenging cases as in Figure 27 do not exist, so the reconstruction can be easily
performed by distinguishing a small number of cases. This allows Bauernöppel to
describe a very short (one page) proof of his result. Our proof for the degree five case
is significantly more involved since, to avoid the forbidden configurations, we need
to augment the graph and, thus, cannot proceed inductively. Instead, we rely on
Theorem 21, which requires us to get rid of every separating triangle. In particular,
we also have to avoid creating new separating triangles when performing a collapse.

4.5 Collapsing edges

Recall that our general assumption G is a 3-connected simple plane graph such that
every vertex that belongs to a separating triangle has degree at most five. Moreover,
the separating triangles of G are trivial and pairwise vertex-disjoint (by Lemma 23
and Observation 25). In particular, this implies that G does not contain a double
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kite. Let S denote the set of separating triangles of G. Our goal is to get rid of all
triangles in S by using edge collapses. To this end, we want to find a set K ⊂ E of
edges so that (1) every edge in K belongs to a triangle in S; (2) every triangle in S
has exactly one edge of K; and (3) the graph obtained by simultaneously collapsing
the edges of K is well defined and does not contain any separating triangle.

Obviously, there exists a set K̂ of edges that satisfies (1) and (2). Suppose that
the graph Ĝ obtained from G by collapsing the edges in K̂ is well defined, but
contains a separating triangle T . By (2) we know that T is not a triangle in G, but
T corresponds to a separating k-cycle in G, for k ≥ 4. By (1), (2), and since the
triangles in S are pairwise vertex-disjoint, at most every other edge of a cycle in G is
in K̂ and, therefore, we have k ≤ 6. In other words, every separating triangle in Ĝ
corresponds to a separating k-cycle in G where k ∈ {4, 5, 6} and exactly k − 3 edges
are in K̂. Moreover, for any such separating k-cycle in G, both the interior and the
exterior must contain at least one vertex that is not the interior vertex of a triangle
from S because by (2) every interior vertex of a triangle from S disappears when
collapsing the edges in K̂.

Figure 28: A separating 4-cycle that is not hyperseparating with respect to the
depicted separating triangle.

We now formally define these special separating cycles and introduce some related
terminology. The set K will be obtained with a recursive algorithm. For this reason,
we need the definition to apply not only to graphs such as G, but to a more general
case: let G be a simple plane graph and let S be a set of trivial separating triangles
of G where every vertex of a triangle in S has degree at most five. We emphasize
that not all separating triangles of G need to be trivial, and the set S does not have
to contain all trivial separating triangles of G. Inspired by the observations in the
previous paragraph, we call a cycle C of G hyperseparating with respect to S if both
the interior and the exterior contain at least one vertex that is not the interior vertex
of a triangle from S. Every hyperseparating cycle is separating, but the converse is
not true, see Figure 28. We define an inhibitor to be a hyperseparating (with respect
to S) k-cycle I, where k ∈ {4, 5, 6}, for which at least k − 3 edges belong to a trivial
separating triangle of S, for an illustration refer to Figure 30d. We refer to these at
least k − 3 edges as constrained. The idea behind this definition is that an inhibitor
inhibits us from collapsing all of its constrained edges simultaneously since the result
would be a separating triangle (or even a separating 2-cycle if k = 4 and two edges
of I are constrained). An edge e of G is constrained with respect to S if there exists
an inhibitor I with respect to S so that e is a constrained edge of I and unconstrained
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(with respect to S), otherwise. An inhibitor of length k ∈ {4, 5, 6} is also called a
k-inhibitor.

For brevity, when we speak about inhibitors in the context of our general assump-
tion G, we always refer to inhibitors with respect to S. Note that a set K̂ of edges
from G that satisfies (1) and (2) also satisfies (3) if for every k-inhibitor, no more
than k − 4 of its constrained edges are in K̂. In particular, if there is no k-inhibitor
such that K̂ has more than k − 3 of its constrained edges, then collapsing the edges
of K̂ is a well defined operation.

Our recursive algorithm can be thought of as an iterative process that selects the
edges of K one by one and performs a collapse immediately after each edge is added
to K. Hence, the most important case of inhibitors are those of length four since
only these can be turned into a separating triangle by a single edge collapse. For this
reason, the next section is devoted to studying the structure of 4-inhibitors.

4.5.1 Structure of 4-inhibitors

First, let us observe that 4-inhibitors of G are chordless. For the proof we require the
following basic observation.

Observation 27. Let G be a 3-connected simple plane graph and let T = abc be a
trivial separating triangle of G with inner vertex d such that all vertices of T have
degree at most five. Further, let Iab = abxy be a 4-inhibitor with respect to some
set S ⊇ {T} that constrains ab. Then {x, y} ∩ {c, d} = ∅.

Proof. Clearly, x 6= d and y 6= d, as otherwise Iab is uniquely determined and not
separating.

c, x

b

a

y
d z

Figure 29: An inhibitor constraining the edge ab of the triangle abc cannot pass
through c or d.

So assume without loss of generality that x = c. For an illustration refer to
Figure 29. By 3-connectivity and since Iab is hyperseparating with respect to S, there
exists a vertex z 6= d on the side of Iab that contains d. Since d is the only vertex
on its side of abc, the vertex z is located on the side of acy that does not contain d.
By 3-connectivity, this saturates the degree bound of both a and c. However, by 3-
connectivity and since Iab is separating, at least one of a, c has an additional neighbor
on the side of Iab that does not contain d and z; a contradiction.
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Lemma 28. Let G be a 3-connected simple plane graph and let T = abc be a trivial
separating triangle of G with inner vertex d such that all vertices of T have degree
at most five. Suppose that ab is constrained by a 4-inhibitor Iab = abxy with respect
to some set S ⊇ {T}. Then Iab is chordless, unless ab belongs to two separating
triangles that define a double kite.

Proof. Assume without loss of generality that by is a chord of Iab. By Observation 27,
x, y /∈ {c, d} and, so, the degree of b is saturated, see Figure 30a. We claim that by is
on the side of Iab that contains c and d. To see this, assume the contrary. Since Iab
is separating, there is some vertex z on the side of Iab that does not contain c, d.
The chord by splits this side of Iab into two triangles, one of which contains z, see
Figure 30b and 30c. However, by 3-connectivity, this implies that b has a neighbor in
this triangle, in contradiction to the degree bound of b. So the claim holds. Then aby
is a triangle that separates x from c, d, see Figure 30d. By Lemma 24, the triangles abc
and aby define a double kite.

Since G contains no double kite, it follows that all its 4-inhibitors are chordless.
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b
c x

y
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(d)

Figure 30: A 4-inhibitor Iab = abxy that constrains the edge ab of the separating
triangle abc.

A necessary requirement for the existence of a set K of edges to collapse is that
our graph does not contain a separating triangle for which every edge is constrained
by a 4-inhibitor. We show that this requirement is met, except for some specific
special cases.

Lemma 29. Let G be a 3-connected simple plane graph and let T be a trivial separating
triangle of G such that all vertices of T have degree at most five. Further, let I be
a set of 4-inhibitors of G with respect to some set S ⊇ {T}. Finally, assume that G
contains no separating triangle that together with T defines a double kite.

Then either (1) T has at least one edge that is not constrained by a 4-inhibitor
of I; or (2) G contains a subgraph G′ that is isomorphic to G2 or one of the graphs
of the family G1 defined in Figure 31 such that each thick (colored) edge of G′ belongs
to some 4-inhibitor of I that constrains an edge of T .

Proof. For the sake of contradiction, let us assume that each edge of T = abc is
constrained by a 4-inhibitor of I, and that G contains no subgraph G′ as in the claim.
We denote the inhibitors of I constraining ab, bc, ac by Iab = abxy, Ibc = bcst, and
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d
c
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s r′ b

z
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(a) G1

a

d
bc

z

x

y

(b) G2

Figure 31: If all three edges of a separating triangle in the graph G are constrained
by a 4-inhibitor, there is a subgraph G′ isomorphic to G2, depicted in (b), or one of
the graphs of the family G1, depicted in (a). The gray parts in (a) represent arbitrary
nonempty subgraphs (possibly consisting of a single vertex) that result in an overall
3-connected graph. Each black edge is part of the graph. The vertices s, x, y might
have additional neighbors, whereas the neighborhood of the vertices a, b, c, d is exactly
as depicted.

Iac = acvw, respectively. By Observation 27, we have c, d /∈ Iab, a, d /∈ Ibc, and
b, d /∈ Iac. By 3-connectivity and since Iab is separating, we may assume without
loss of generality that b has a neighbor z which is located on the side of Iab that
does not contain c, see Figure 32b. Due to the degree bound of b, we have t ∈ {x, z}.
Accordingly, we distinguish two cases.

Case 1: t = x. We proceed by studying the identity of s, the fourth vertex of Ibc.
We distinguish several cases. By planarity, we have s 6= z, as z is located on the
side of Iab that does not contain c. Next, assume s = y and, thus, Ibc = bcyx, for an
illustration see Figure 32a. By 3-connectivity, the degree bound of b, and since Ibc
is separating, each of the vertices c, x, y has a neighbor on the side of Ibc that does
not contain a. Let r denote the according neighbor of c. We study the third and
final inhibitor Iac = acvw. By Lemma 28, we have v 6= y, as otherwise ay would be
a chord of Iac. Due to the degree bound of c, it remains to consider the case v = r.
By planarity, the vertex w has to belong to Ibc since r and a are located on distinct
sides of Ibc. By Lemma 28, we have w 6= y, as otherwise cy would be a chord of Iac.
Therefore, the only remaining option is w = x. However, this implies the existence of
the edge ax, which is a chord of Iab; a contradiction to Lemma 28.

So far, we have established that s /∈ {a, b, c, d, x, y, z}. Therefore, we have Ibc =
bcsx where s is distinct from all the previously considered vertices. By planarity, s
is located on the side of Iab that contains c, for an illustration see Figure 32b.
By 3-connectivity, the degree bound of b, and since Ibc is separating, each of the
vertices c, x, s has a neighbor on the side of Ibc that does not contain a. Let r′ denote
the according neighbor of c. We study the third inhibitor Iac = acvw. Due to the
degree bound of c, we have v ∈ {s, r′}. Accordingly, we distinguish two cases.
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Figure 32: Illustrations for the Cases 1 (a)–(b) and 2 (c) considered in Lemma 29.

First, assume that v = r′. By planarity, we have w ∈ Ibc. Further, by Lemma 28
applied to Iac, we have w = x. This implies that ax is a chord of Iab; a contradiction
to Lemma 28. It remains to consider the case v = s. We study the identity of w.
The case w = x can be excluded by Lemma 28 applied to Iab. Due to the degree
bounds of a, b, and c, by 3-connectivity, and since Iac is separating, we also have
that w 6= y; otherwise, by 3-connectivity and the degree bounds, G would contain a
subgraph G′ isomorphic to a G1 as in the claim, which contradicts our assumptions.
This establishes that w does not belong to Iab or Ibc. Thus, by planarity, w it is
located on the sides of Iab and Ibc that contain c and a, respectively, and, therefore,
it is distinct from all the previously considered vertices. This brings the degree of a
up to the maximum of five. By 3-connectivity and since Iac is separating, three
vertices of Iac have a neighbor on the side of Iac that does not contain b. This is a
contradiction to the degree bound of a or c. /

Case 2: t = z. Recall that Ibc = bcst = bcsz where z is on the side of Iab that does
not contain c, for an illustration see Figure 32c. By planarity, it follows that s belongs
to Iab and by Lemma 28 applied to Ibc we have s = y and, thus, Ibc = bcyz.

We study the third inhibitor Iac = acvw. The vertex v has to be distinct from y,
as otherwise ay would be a chord of Iac in contradiction to Lemma 28. Note that
the triangle acy is nonseparating by Lemma 24. Thus, v is located on the side
of Ibc that does not contain a and, hence, by planarity, v or w has to belong to Ibc.
Since c ∈ Iac ∩ Ibc, Lemma 28 implies that the only other vertex of Iac in this
intersection is z. As z and c are located on distinct sides of Iab, the vertex v must
belong to Iab and, thus, v = x and Iac = acxz. Altogether, this establishes that G
contains a subgraph G′ isomorphic to G2 as in the claim, which contradicts our
assumption. /

Altogether, we have obtained a contradiction. Hence, at least one of the statements
(1) and (2) is true. Moreover, it is easy to see that not both of them can be true
simultaneously.

In Lemma 23, we have used the inductive framework of the proof of Theorem 22 to
deal with the case that G contains a nontrivial separating triangle. In Section 4.8, we
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show that a similar but more involved idea can be used to deal with the case that G
contains a subgraph isomorphic to a G1 as in Lemma 29. In the same section, we also
show that if G contains a subgraph isomorphic to G2 as in Lemma 29, then it has
constant size, which makes it easy to directly find the desired plane subhamiltonian
cycle.

For now, let us focus on the idea for the general case and, hence, assume from
now on that G does not contain a subgraph isomorphic to a G1 or G2 as in Lemma 29.
The idea to obtain the desired edge set K is to collapse some unconstrained edge of a
separating triangle in G. The existence of such an edge is guaranteed by Lemma 29.
This process may be repeated if the resulting graph is 3-connected. However, in
general an edge collapse may reduce the connectivity of the graph. In this case,
we plan to recurse on the triconnected components of the graph. To make such a
recursion work in the context of our overall proof strategy, we must take special
care concerning the vertices of separation pairs. Specifically, as we will discuss in
the following section, we should never create a separation pair whose vertices are
adjacent.

4.5.2 Avoiding adjacent separation pairs

Recall that we plan to stellate each nontriangular face of the graph G′ that is obtained
by simultaneously collapsing all edges in K, and that we need to ensure that the
resulting graph G′′ does not contain a separating triangle. Consider a face f of G′
and assume that its stellation creates a separating triangle s = abvf where vf is the
new vertex inserted into f . Note that the vertices a and b belong to f . Therefore,
the edge ab ∈ E(G′) is a chord of ∂f and, moreover, a, b is a separation pair of G′.

In order to avoid this situation, it suffices to choose the set K subject to the
following additional constraint: (4) the graph obtained by simultaneously collapsing
the edges of K does not create an adjacent separation pair, i.e., a separation pair a, b
where a and b are adjacent. Inspired by this observation, we devise a strengthened
version (Lemma 32) of Lemma 29. For its proof, we require the two observations.
The first of them is a well-known fact:

Observation 30. Let G be a k-connected simple graph and S ⊆ V(G) with |S| = k

such that G \ S is disconnected. Then for each x ∈ S the set NG(x) \ S contains at
least one vertex of each connected component of G \ S.

Proof. Let x ∈ S and let Ku and Kv be two distinct connected components of G \S.
Further, let u ∈ V(Ku) and v ∈ V(Kv). By k-connectivity, there exist k interior
disjoint paths between u and v in G. Since S is separating and of size k, each of
these paths contains precisely one vertex of S. In particular, one of the paths passes
through x and, hence, x has at least one neighbor in Ku and at least one neighbor
in Kv.
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Observation 31. Let G be a 3-connected simple plane graph and let T = abc be a
trivial separating triangle of G with inner vertex d. Further, assume that collapsing ab
results in a graph G′ that is 2-connected but not 3-connected; and let pab, qab be a
separation pair of G′. Then we may assume (by exchanging the roles of pab, qab
if necessary) that pab is the new vertex that is created by the collapse of ab and
that qab /∈ {c, d}.

Proof. Let x denote the new vertex resulting from collapsing ab and assume, for
the sake of contradiction, that there is some separation pair pab, qab of G′ where x /∈
{pab, qab}. All vertices in the neighborhood of x in G′ \ {pab, qab} belong to the same
connected component. Consequently, undoing the collapse of ab does not reduce the
number of connected components. This implies that pab, qab is a separation pair in G,
which contradicts the 3-connectivity of G. Hence, we may assume without loss of
generality that pab = x.

Obviously qab 6= d since d /∈ G′. Assume that qab = c. By planarity and
3-connectivity, it follows that the graph G \ {a, b, c} has exactly two connected
components. One of these components is the graph (d, ∅), the other is the graph G′′
induced by V(G) \ {a, b, c, d}. This implies that G′ \ {pab, qab} = G′′ is connected,
which is a contradiction to the fact that pab, qab are separating in G′.

We are now prepared to prove the strengthened version of Lemma 29.

Lemma 32. Let G be a 3-connected simple plane graph and let T = abc be a trivial
separating triangle of G with inner vertex d such that all vertices of T have degree at
most five. Further, let I be a set of 4-inhibitors of G with respect to some set S ⊇ {T}.
Finally, assume that G contains no separating triangle that together with T defines a
double kite.

Then either (1) T has at least one edge e such that (i) e is not constrained by
a 4-inhibitor of I; and (ii) collapsing e does not create an adjacent separation pair;
or (2) G contains a subgraph G′ that isomorphic to G2 or one of the graphs of the
family G1 defined in Figure 31 such that each thick (colored) edge of G′ belongs to
some 4-inhibitor of I that constrains an edge of T .

Proof. For the sake of contradiction, assume that G contains no subgraph G′ as in
the claim and that every edge of T violates Property (i) or (ii). By Lemma 29, we
may assume without loss of generality that ab is not constrained by a 4-inhibitor of I
and, consequently, collapsing ab results in a graph containing an adjacent separation
pair pq. Further, by Observation 31, we may assume without loss of generality
that p is the new vertex resulting from collapsing ab and that q /∈ {c, d}. In other
words, a, b, q is a separating triple of G and, without loss of generality, we may assume
that b and q are adjacent. By planarity and 3-connectivity, the graph G \ {a, b, q} has
exactly two connected components K,K ′ and each of the vertices a, b, q is adjacent to
at least one vertex in each of the two components. Assume w.l.o.g. that c, d ∈ K and
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let b′ denote the singleton neighbor of b in K ′ (recall that the degree of b is bounded
by five), for an illustration see Figure 33a.

We distinguish three main cases and show that none of them can occur. First,
we assume that both bc and ac violate Property (i). Next, we consider the case
that bc does not violate Property (i). Finally, we consider the case that bc violates
Property (i), but ac does not. Overall, this yields the desired contradiction.

Case 1: Each of bc and ac is constrained by 4-inhibitor of I. Let Ibc = bcxy and Iac =
acst denote the 4-inhibitors of I constraining bc and ac, respectively. Due to the degree
bound of b and by Observation 27, we have y ∈ {b′, q}. First, assume that y = b′.
Since a, b, q is a separating triple, it follows that x ∈ {a, q}. If x = a, then ab is a
chord of Ibc, and if x = q, then bq is a chord of Ibc. Hence, in both cases we obtain a
contradiction to Lemma 28. It remains to consider the case y = q. By Observation 27
and since a, b, q is separating, the vertex x belongs to K \ {c, d}. By 3-connectivity
and the degree bound of b, each of the vertices c, q, x has a neighbor on the side of Ibc
that does not contain a. Let z denote the according neighbor of c, for an illustration
see Figure 33b.

We study the second inhibitor Iac = acst. By Observation 27, we have {s, t} ∩
{b, d} = ∅. Moreover, we observe that t 6= q since the contrary would imply that abq is
a separating triangle that is not vertex-disjoint from abc; a contradiction to Lemma 24
and the assumption that T does not define a double kite. Due to the degree bound
of c, we have s ∈ {x, z}. First, assume s = z. Since a and z are on distinct sides
of Ibc, it follows that t ∈ Ibc. Further, by Lemma 28 applied to Iac, we have t = q; a
contradiction (recall that we have already established that t 6= q). Therefore, s = x.
Since t 6= q, it follows that t belongs to K. Moreover, by planarity, t belongs to the
side of Ibc that contains a. Since t 6= d, it follows that t is distinct from all previously
considered vertices. Note that this brings the degree of a up to the maximum of five
(recall that a has a neighbor in K ′). By 3-connectivity, three vertices of Iac = acxt

need a neighbor on the side of Iac that does not contain b. However, this is a
contradiction to the degree bound of c or a. /
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Figure 33: Illustrations for Lemma 32.
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Case 2: bc is not constrained by a 4-inhibitor of I. Hence, by assumption, collapsing
bc creates an adjacent separation pair sr. By Observation 31 we may assume without
loss of generality that s is the new vertex created by collapsing bc and that r /∈ {a, d}.
Thus, b, c, r is a separating triple in G such that br ∈ E(G) or cr ∈ E(G). By planarity
and 3-connectivity, the graph G \ {b, c, r} has two connected components K̂, K̂ ′ and
each of the vertices b, c, r is adjacent to at least one vertex in each of these components.
Assume w.l.o.g. that a ∈ K̂.

Our plan is to show that G is isomorphic to the graph G′ depicted in Figure 34,
from which we can easily derive the desired contradiction. To show that G ' G′,
we proceed in four steps. First, we show that r 6= q. From this we conclude that c
and q are adjacent. We then prove that the neighborhood of a is N(a) = {b, c, d, b′}.
Finally, we study the neighborhoods of c and q. Let us carry out this plan.

The identity of r. We start by showing that r 6= q. Assume otherwise. By
3-connectivity and since a, b, q is a separating triple of G, there exists a path from b′

to a that does not visit b or q (= r) and whose inner vertices belong to K ′. This
implies that the vertices NG(b) \ {b, c, r} = {a, b′, d} are connected in G \ {b, c, r},
which yields a contradiction to Observation 30. Thus, r 6= q as claimed.

Towards a contradiction, assume that cr ∈ E(G), in which case r is some vertex
of K \{c, d}. By 3-connectivity and since a, b, q is a separating triple of G, there exists
a path from q to a via b′ whose internal vertices belong to K ′. Since c, r ∈ K, they
do not belong to this path and, hence, we have that NG(b) \ {b, c, r} = {a, b′, d, q} are
connected in G \{b, c, r}), which yields a contradiction to Observation 30. Hence, cr /∈
E(G).

It follows that br ∈ E(G). Moreover, due to the degree constraint of b and
since r 6= q, we have r = b′.

The existence of the edge cq. Assume for the sake of contradiction that c and q
are not adjacent. Since, by Observation 30, the vertices NG(b) \ {b, c, r} = {a, d, q}
are not connected in G \ {b, c, r}) and due to the edge ad, it follows that q ∈ K̂ ′
and a ∈ K̂. Hence, by 3-connectivity, it follows that there exist three simple internally
vertex-disjoint paths Pb, Pb′ , Pc from q to a where b, b′, c is an interior vertex of Pb,
P ′b, Pc, respectively.

By assumption, cq /∈ E(G). Hence, there exists a vertex c′ that belongs to the
subpath of Pc between q and c. Since Pc is simple and does not pass through b, it
follows that c′ ∈ K \ {c, d}. By 3-connectivity, c, q is not a separation pair and, thus,
there must be some simple path Pc′d from c′ to d that does not pass through any of c
or q. This path must visit a or b. Accordingly, we distinguish two cases.

First, assume that Pc′d visits a before potentially also visiting b, that is, if b is
visited, then it belongs to the subpath between a and d. Then the subpath of Pc
from q to c′ together with the subpath of Pc′d from c′ to a forms a path between a
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and q that visits neither of b, c, and b′ (= r); a contradiction to the fact that a ∈ K̂
and q ∈ K̂ ′.

On the other hand, if Pc′d visits b before potentially visiting a, then it has
to visit b′ before b due to the degree bound of b and since Pc′d does not pass
through any of c or q. However, this implies that Pc′d contains a subpath that
connects b′ ∈ K ′ and c′ ∈ K without passing through any of a, b, q, which yields the
desired contradiction. Altogether, this shows that c and q are adjacent, as claimed.

The neighborhood of a. Our goal is to show that N(a) = {b, c, d, b′}. First,
observe that aq /∈ E(G), as otherwise abq would be a separating triangle that is non
vertex-disjoint from abc; a contradiction to Lemma 24 and the assumption that T
does not define a double kite.

Next, we will show that N(a)∩K = {c, d}. Assume otherwise, and let z ∈ K\{c, d}
such that a and z are adjacent. By planarity z is contained on the side of bcq that
contains a. By planarity and since a, b, q is separating, this implies that a, c, q is
separating z from b, d, and all vertices in K ′. By 3-connectivity, this implies that there
exist three path from z to a, c, and q, respectively, that are vertex-disjoint except
for the common endpoint z, and that do not pass through b, d or any vertex of K ′.
However, the path to a together with the path to q forms a path between a and q
that does not visit any of b, c, and b′ (= r); a contradiction to the fact that a ∈ K̂
and q ∈ K̂ ′.

Finally, we show that N(a) ∩K ′ = b′. Assume otherwise, and let a′ ∈ N(a) ∩K ′
such that a′ 6= b′. By 3-connectivity and since a, b, q is a separating triple, there exist
three paths from a′ to a, b, q, respectively, that are pairwise vertex-disjoint except for
the common endpoint a′. The path to b has to contain b′, as b′ is its only neighbor
in K ′. This implies that in G \ {b, c, b′} the vertices a and q belong to the same
connected component, as they are connected via the paths that connect a′ with a and
with q. Once again, this yields a contradiction to the fact that a ∈ K̂ and q ∈ K̂ ′.
Altogether, we obtain N(a) = {b, c, d, b′}, as claimed.

c

d
ab

q

b′

Figure 34: The graph G′ in Case 2 of Lemma 32.

The neighborhoods of c and q. Note that the fact that N(a) = {b, c, d, b′} implies
that that K ′ = {b′}, as otherwise q, b′ would be a separation pair in G. Moreover,
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the side of the triangle bcq that does not contain a is empty by Lemma 24 and the
assumption that T does not define a double kite.

Towards a contradiction, assume that there exists some vertex t on the side of
the cycle cab′q that does not contain b. By 3-connectivity, there exist three paths
from t to cab′q that are pairwise vertex-disjoint except for the common endpoint t.
Since N(a) = {b, c, d, b′}, none of these paths ends at a, and so the three endpoints
on cab′q are c, q, b′. However, this implies that b′ ∈ K ′ and c ∈ K are connected
in G \ {a, b, q}; a contradiction. It follows that the side of the cycle cab′q that does
not contain b does not contain any vertex. It may also not contain the chord cb′

since, again, this would imply that b′ ∈ K ′ and c ∈ K are connected in G \ {a, b, q}.
Altogether, this shows that G is isomorphic to G′, as claimed.

Wrapping up. Now that we have shown that G ' G′, it is easy to derive the
desired contradiction: By our assumption, the edge ac violates property (i) or (ii).

First, assume the former is true, and let Iac = acst be a 4-inhibitor of I constrain-
ing ac. By Observation 27, we have Iac = acqb′. However, this cycle is nonseparating;
a contradiction.

Therefore ac violates property (ii), i.e., collapsing ac creates an adjacent separation
pair. However, collapsing ac creates a graph isomorphic to K4, which does not contain
any separation pair. Thus, we obtain the desired contraction. /

Case 3: bc is constrained by a 4-inhibitor Ibc = bcxy of I and ac is not constrained by
a 4-inhibitor of I. For illustrations, refer to Figure 35a. By assumption, collapsing ac
creates an adjacent separation pair vw. By Observation 31, we may assume without
loss of generality that v is the new vertex created by collapsing ac and that w /∈ {b, d}.
Thus, there exists a separating triple a, c, w in G such that aw ∈ E(G) or cw ∈ E(G).
By planarity and 3-connectivity, the graph G \ {a, c, w} has exactly two connected
components K̃, K̃ ′ and each of the vertices a, c, w is adjacent to at least one vertex
in each of these components. Assume w.l.o.g. that b ∈ K̃.

We proceed in four steps. First, we show that a and w cannot be adjacent. It
follows that cw ∈ E(G). We then show that this implies that w ∈ K \ {c, d}. From
this, we conclude that Ibc = bcwq, as shown in Figure 35b. Finally, we use the fact
that Ibc is separating and the degree bound of c to show that c cannot actually have
a neighbor in K̃ ′, which yields the desired contradiction. Let us proceed by carrying
out this plan.

Vertices a and w are nonadjacent. Towards a contradiction, assume aw ∈ E(G).
Then w 6= q, as otherwise a, b, q would be a separating triangle that is not vertex-
disjoint from abc; a contradiction to Lemma 24 and the assumption that T does not
define a double kite. We claim that w ∈ K ′. Assume otherwise, that is, w ∈ K \{c, d}.
Let a′ denote the (unique) neighbor of a in K ′. By 3-connectivity and since the
triple a, b, q separates K from K ′, there is a path between a′ and b whose interior
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vertices belong to K ′. This path cannot pass through c, w ∈ K. It follows that the
vertices NG(a) \ {a, c, w} = {a′, b, d} are connected in G \ {a, c, w}, which yields a
contradiction to Observation 30. Therefore w ∈ K ′ as claimed.

If a has no neighbor distinct from b, c, d, w, then, once again, NG(a) \ {a, c, w} =
{b, d} ⊆ K̃ and we obtain a contradiction to Observation 30. So let a′ ∈ NG(a) \
{b, c, d, w}. If a′ ∈ K ′, then by 3-connectivity there exist three paths from a′ to the
vertices a, b, q that are pairwise vertex-disjoint except for the common endpoint a′
and whose interior vertices belong to K ′. Only one of these paths may pass through w
and, thus, at least one of the two paths that connect a′ to b and to q is still present
in G \{a, c, w}. Due to the edge bq, this implies that, once again, (NG(a)\{a, c, w}) ⊆
K̃, which yields a contradiction to Observation 30.

It remains to consider the case a′ ∈ K. By 3-connectivity, there exist three
simple paths from a′ to the vertices a, b, q that are pairwise vertex-disjoint except
for the common endpoint a′ and whose interior vertices belong to K. Deleting the
vertices a and c may only destroy two of these paths, one of which is the one to a.
Therefore the path to b or the path to q still exists. Once again, this implies that
(NG(a) \ {a, c, w}) ⊆ K̃, which yields a contradiction to Observation 30. Altogether,
this shows that aw /∈ E(G).
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Figure 35: Illustrations for Lemma 32.

The identity of w. The discussion in the previous paragraph shows that cw ∈ E(G)
(since vw is an adjacent separation pair). Let us study the identity of w.

First, assume w = q. Recall that bc is constrained by a 4-inhibitor Ibc = bcxy.
Due to the degree bound of b and by Observation 27, we have y ∈ {q, b′}. If y = b′,
then x ∈ {a, q} since a, b, q is a separating triple. If x = a, we obtain a contradiction to
Observation 27. On the other hand, if x = q, we obtain a contradiction to Lemma 28
due the edge bq. It follows that y = q. In this case, the edge cq is a chord of Ibc,
again contradicting Lemma 28. Altogether, this shows that w 6= q.

Since a, b, q is separating and c and w are adjacent, it follows that w /∈ K ′.
Consequently, w ∈ K \ {c, d}.
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The identity of Ibc. Let us study the identity of Ibc = bcxy. As in the previous
paragraph, we have y = q due to the degree bound of b and by Observation 27 and
Lemma 28. Recall that c has a neighbor c′ in K̃ ′. Hence, due the degree bound of c, its
neighborhood is NG(c) = {a, b, d, w, c′}. By Observation 27 it follows that x ∈ {w, c′}.

We have x 6= c′, since otherwise c′ ∈ K̃ ′ is connected to b ∈ K̃ in G \ {a, c, w} via
the path c′qb (= xyb). Consequently, we obtain x = w. Therefore, Ibc = bcwq, for an
illustration see Figure 35b.

Wrapping up. Since Ibc is separating, there exists a vertex z on the side of Ibc =
bcwq that does not contain a. By 3-connectivity, there exist three paths from z to Ibc
that are disjoint except for the common endpoint z. Due to the degree bound of b,
it follows that the endpoints of these paths are c, w, q, respectively. We denote that
path that connects z with q by Pq. Due to the degree bound of c, we may assume
without loss of generality that z = c′. However, this implies that Pq ∪ qb is a path
between c′ ∈ K̃ ′ and b ∈ K̃, that does not pass through any of a, c, w. This yields a
contradiction to the definition of K̃ and K̃ ′.

Altogether, this shows that collapsing ac does not create an adjacent separation
pair. /

We have shown that the statements (1) and (2) cannot simultaneously be violated.
By Lemma 29 they also cannot simultaneously be satisfied, which proves the claim.

4.5.3 Strategy to choose the set of edges to collapse

We are now prepared to discuss how the desired edge set K is obtained. More
precisely, we prove the following statement.

Theorem 33. Let H be a 3-connected simple plane graph on n vertices where every
vertex that belongs to a separating triangle has degree at most five and where every
separating triangle is trivial. Further, let S denote the set of separating triangles
in H. Assume that H is not a trivial double kite and that H contains no subgraph
isomorphic to a G1 or G2. Then we can compute in O(n2) time a set K ⊂ E(H) of
edges so that:

(I1) every edge in K is collapsible and belongs to a triangle in S; and

(I2) every triangle in S has exactly one edge of K.

(I3) The graph H contains no k-inhibitor I with respect to S such that K contains
more than k − 3 edges of I. Let H′′ denote the graph obtained by simultaneously
collapsing the edges of K. If H contains a k-inhibitor I with respect to S such
that K contains exactly k − 3 edges of I, then the triangle corresponding to I
in H′′ is nonseparating.

(I4) The graph H′′ is biconnected and does not contain an adjacent separation pair.
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The general idea for the proof of Theorem 33 is to collapse some edge e that
satisfies Property (1) of Lemma 32. If the resulting graph H′ is 3-connected, the
process may be repeated. On the other hand, if H′ is biconnected only, we plan to
recurse on the rigid triconnected components of H′, making use of the fact that each
separating triangle still present in H′ appears in one of these components:

Lemma 34. Let G be a 3-connected simple plane graph and let T1 = abc and T2 = fgh

be two vertex-disjoint trivial separating triangles of G. Assume that collapsing the
edge e = ab results in a graph G′ that is biconnected, but not 3-connected. Then the
graph G−T2

appears with all its real edges in a common rigid triconnected component
of G′.

Proof. Let d and d′ denote the unique interior vertices of T1 and T2, respectively.
Since T1 and T2 are vertex-disjoint, the graph G−T2

is a subgraph of G′. Moreover,
since G−T2

is 3-connected, there is a rigid triconnected component R of G′ that contains
a induced subgraph T ′2 isomorphic to G−T2

whose vertices are f, g, h, d′ (copies of some
of these vertices may additionally appear in other triconnected components).

It remains to show that all edges of T ′2 are real. Since virtual edges of R correspond
to separation pairs of G′, it suffices to show that there is no separation pair p, q of G′
such that p, q ⊂ {f, g, h, d′}. So let p, q be a separation pair of G′. By Observation 31,
we may assume without loss of generality p is the vertex resulting from the collapse
of e. Since T1 and T2 are vertex-disjoint, we have p /∈ {f, g, h, d′}, which proves the
claim.

In order to make this recursive strategy work, we actually prove a generalized
version of Theorem 33, which is formulated as the upcoming Lemma 38. In preparation,
let us discuss the intuition behind its statement: Let G be a 3-connected simple plane
graph in which each edge is labeled as either real or virtual. We refer to a separating
triangle as real if its three edges are real. Assume that in G every vertex that belongs
to a real separating triangle has degree at most five and that each real separating
triangle is trivial and its three interior edges are real. Such a graph G can arise as
a rigid triconnected component of a biconnected simple graph that is the result of
iteratively applying some number of edge collapses to a graph H that satisfies the
preconditions of Theorem 33.

Our goal is to find a set K ⊂ E(G) of edges that satisfies relaxed versions of the
Properties (I1)–(I4). Property (I4) remains unchanged and in order to maintain it,
our plan is to never perform edge collapses that result in an adjacent separation
pair. Therefore, no (newly created) virtual edge e will ever correspond to a (parallel)
triconnected component with a real edge parallel to e. Hence, virtual edges may
be thought of as paths of length at least two and, thus, we may ignore separating
triangles that use virtual edges. Similarly, we ignore inhibitors that use virtual
edges. To this end, in G (and, more generally, in graphs that are not 3-connected
but otherwise satisfy all properties of G), we refer to an inhibitor with respect to the
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set of real separating triangles as real if all of its edges are real. Further, we call an
edge e of a real separating triangle a candidate edge if (i) e is not constrained by
a real 4-inhibitor; and (ii) collapsing e does not create an adjacent separation pair.
Note that collapsing a candidate edge cannot create new real separating triangles due
to Property (i), but it may create separating triangles that are not real. Lemma 32
specializes to:

Lemma 35. Let G be a 3-connected simple plane graph in which each edge is labeled
as either real or virtual. Assume that in G every vertex that belongs to a real separating
triangle has degree at most five and that each real separating triangle is trivial and
its three interior edges are real. Further, let T be such a real separating triangle.
Finally, assume that G contains no separating triangle (real or not) that together
with T defines a double kite.

Then either (1) T has at least one candidate edge; or (2) G contains a subgraph G′
that isomorphic to G2 or one of the graphs of the family G1 depicted in Figure 31 such
that each thick (colored) edge of G′ belongs to some real 4-inhibitor that constrains an
edge of T .

Proof. Follows from Lemma 32 by choosing I as the set of real 4-inhibitors.

By the preconditions of Theorem 33, the initial graph H does not satisfy Prop-
erty (2) of Lemma 35. Consequently, by Property (1), we find a first candidate
edge for inclusion in the desired edge set K. Given that our plan is to iterate this
process, we need to ensure that our edge collapses never result in a situation where
Property (2) is satisfied. Specifically, we need to avoid creating one of the following:

Definition 36 (Real subgraphs). Let G be a simple plane graph in which each edge
is labeled as either real or virtual. Then,

– G is a real trivial double kite if it is a trivial double kite whose edges are real.

Moreover, we say that

– G contains a real G1 subgraph if it contains a subgraph isomorphic to a G1 such
that the thick (colored) edges and the three edges incident to d of the G1 are
real; and

– G contains a real G2 subgraph, if it contains a subgraph isomorphic to G2 whose
edges are real.

Lemma 37. Let G be a 3-connected simple plane graph in which each edge is labeled
as either real or virtual. Assume that in G every vertex that belongs to a real separating
triangle has degree at most five and that each real separating triangle is trivial and its
three interior edges are real. Let G′ denote the graph resulting from collapsing some
candidate edge e of a real separating triangle T in G. Then:
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– G′ is not a real trivial double kite.

Moreover, under the assumption that in G no real separating triangle defines a double
kite with some other separating triangle (real or not), the following properties hold:

– if G contains no real G2 subgraph, then G′ contains no real G2 subgraph; and

– if G contains no real G1 subgraph, but G′ contains a real G1 subgraph, then there
is a candidate edge e′ of T such that collapsing e′ in G results in a 3-connected
graph that does not contain a real G1 subgraph.

Proof. We start with some basic observations and then prove the three conclusions
of the lemma individually.

Preliminary considerations. Since e is a candidate edge, it is not constrained
by a real 4-inhibitor in G. Consequently, each real separating triangle TG′ (6= T ) of G′
corresponds to a real separating triangle TG ( 6= T ) of G. The triangle TG is trivial
and its three interior edges are real and none of these edges can be e since they do
not belong to separating triangles. Consequently, the triangle TG′ is also trivial and
its three interior edges are real and correspond to the interior edges of TG .

Avoiding real trivial double kites. Towards a contradiction, assume that G′ is
a real trivial double kite. Then, by the preliminary considerations, G contains two
real trivial separating triangles T1 6= T and T2 6= T corresponding to the triangles of
the double kite. If the trivial triangle T shares a vertex with one of these triangles,
then, by Observation 25, the graph G is a trivial double kite (that is not necessarily
real). We obtain a contradiction due to the fact that edge collapses always decrease
the number of vertices.

So assume that T does not share a vertex with T1 or T2. In particular, this implies
that these triangles do not share a vertex with e. Hence, since their corresponding
triangles in G′ share an edge, the triangles T1 and T2 also share an edge. Again, by
Observation 25, the graph G is a trivial double kite (that is not necessarily real) and
we obtain a contradiction due to the fact that edge collapses always decrease the
number of vertices.

Additional assumption. From now on, assume that G contains no real separating
triangle that defines a double kite with some other separating triangle (real or not).
Lemma 24 implies that

(F1) the edge e is not incident to a vertex that belongs to a real separating triangle
of G other than T .
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Avoiding real G2 subgraphs. Towards a contradiction assume that G contains no
real G2 subgraph, but that G′ contains a real G2 subgraph whose vertices are denoted
by a, b, c, d, x, y, z as in Figure 31a on page 64. One of these vertices has to be the
vertex ê created by collapsing e, since otherwise G also contains a real G2 subgraph.
Let T ′ be the real separating triangle of G that corresponds to abc. By (F1), the
edge e and T ′ are vertex-disjoint. Consequently, ê /∈ {a, b, c}. Moreover, by the
preliminary considerations, we have ê 6= d. Hence, ê ∈ {x, y, z}.

Collapsing e replaces T and its interior vertex with an edge incident to ê and
some other vertex e3 whose degree is at most three. Since all neighbors of ê in the G2
subgraph of G′ have degree at least four, it follows, that e3 is located in one of the
triangular faces of the G2 subgraph of G′ with ê on its boundary. However, this
implies that the boundary ∂f of this face f is a real separating triangle in G′. By the
preliminary considerations, a corresponding real separating triangle exists in G and
we obtain a contradiction to (F1).

Avoiding real G1 subgraphs. Assume that G contains no real G1 subgraph, but
that G′ contains a real G1 subgraph whose vertices are denoted by a, b, c, d, x, y, s

as depicted in Figure 36a. One of these vertices has to be the vertex ê created by
collapsing e, since otherwise G also contains a real G1 subgraph. Let T ′ be the real
separating triangle of G that corresponds to abc. By (F1), the edge e and T ′ are vertex-
disjoint. Consequently, ê /∈ {a, b, c}. Moreover, by the preliminary considerations,
we have ê 6= d. Therefore, we may assume without loss of generality that ê = y.
Collapsing e replaces the triangle T and its interior vertex with an edge yz (= êz),
which has one endpoint with degree at most three and another with degree at most
five. Since y has degree at least five in G′, the vertex z has degree at most three.
Moreover, since x and s have degree at least five in G′, it follows that z /∈ {x, s}.
Moreover, the vertex z cannot lie on the side of xys in G′ that does not contain d
since this would imply that y has degree hat least six. Consequently, the vertex z is
located on the side of C ′ab = abxy (see Figure 36a) or C ′ca = cays (see Figure 36b),
respectively, that does not contain d.

Let T = vwz with interior vertex d′ such that v is adjacent to a in G, see Figure 37.
The five neighbors of y in G′ are s, x, z, a, u. If z is located on the side of C ′ab that
does not contain d, then the vertex u is located on the side of C ′ca that does not
contain d. Otherwise, that is, if z is located on the side of C ′ca that does not contain d,
the vertex u is located on the side of C ′ab that does not contain d. By planarity
and due to the degree bounds, the edges of G that correspond to yx and ys of G′
are both incident to w, and the edges of G that correspond to ya and yu are both
incident to v. The neighborhood of v is NG(v) = {w, z, d′, a, u} where u lies in the
side of Cca = cavws that does not contain d if z lies on the side of Cab = abxwv that
does not contain d (see Figure 37a); and otherwise u lies on the side of Cab that does
not contain d (Figure 37b). We will show that the edge vz is the desired candidate
edge e′. Hence, we need to show that vz is not constrained by a real 4-inhibitor,
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Figure 36: The edge yz corresponds to the collapsed triangle T .

that vz can be collapsed without creating a separation pair, and that collapsing vz
does not result in a graph that contains a real G1 subgraph.
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Figure 37: Collapsing the edge e = vw creates a G1.

First, we show that vz is not constrained by a real 4-inhibitor in G. For the sake
of contradiction, assume that vzij is a real 4-inhibitor constraining vz. Let us study
the identity of j. By Observation 27, we have j ∈ {a, u}. Assume first that j = u. By
planarity, we have that i ∈ {w, a}. However, i = w can be excluded by Observation 27
and i = a contradicts Lemma 28. So assume that j = a. We distinguish two cases
regarding the location of z. If z belongs to the side of Cab = abxwv that does not
contain d (Figure 37a), then, by planarity and the degree bound of a, we have i = b.
However, since the inhibitor vzij is separating and G is 3-connected, this implies
a contradiction to the degree bound of v or a. On the other hand, if z belongs to
the side of Cca = cavws that does not contain d (Figure 37b), then, by planarity
and the degree bound of a, we have that i = c or i is the unique neighbor of a on
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the side of Cca = cavws that does not contain d. The former case contradicts the
degree bound of c. The latter case contradicts the degree bound of v or a due to the
3-connectivity of G and since vzij is separating. So overall, it follows that vz is not
constrained by a real 4-inhibitor.

Next, assume for the sake of contradiction that collapsing vz creates a separation
pair p, q. By Observation 31, we may assume without loss of generality that p is the
new vertex resulting from collapsing vz in G and that q /∈ {w, d′}. We will show that
the vertices NG(v) \ {v, z, q} = {a, u, w, d′} \ {q} are connected in G \ {v, z, q}, which
yields a contradiction to Observation 30. There exist two interior vertex-disjoint
paths between a and w in G \ {v, z}, namely, acsw and abxw. Consequently, the
vertices {a,w, d′} \ {q} are connected in G \ {v, z, q}. It remains to show that u also
remains connected to these vertices (if u 6= q). If u lies on the side of Cca that does
not contain d (Figure 37a), there exist three paths from u to v, a, s, respectively,
that are pairwise vertex-disjoint except for the common endpoint u. Given that z
is located on the side of Cab that does not contain d, it follows that at least one of
the paths to a or to s, respectively, remains in G \ {v, z, q}. If the path to a remains,
there is nothing to show. On the other hand, if the path to s remains, then u is
also connected to {a,w, d′} \ {q} due to the edge sw. Similarly, if u lies on the side
of Cab that does not contain d (Figure 37b), there exist three paths from u to v, b, x,
respectively, that are pairwise vertex-disjoint except for the common endpoint u.
Given that z is located on the side of Cca that does not contain d, it follows that at
least one of the paths to b or to x, respectively, remains in G \ {v, z, q}. If the path
to x remains, then the edge xw implies the claim. On the other hand, if the path
to b remains, the two interior vertex-disjoint paths bcsw and bxw imply the claim.
Altogether this shows that collapsing vz does not create a separation pair.

Finally, assume towards a contradiction that collapsing vz in G results in a
graph G̃ that contains a real G1 subgraph. We denote the vertices of this subgraph
by ã, b̃, c̃, d̃, x̃, ỹ, s̃ where ã corresponds to its pendant a in Figure 36a and so on. As
above, we may assume without loss of generality, that ỹ is the vertex generated be
collapsing vz and we use ṽ, z̃, w̃ to denote the vertices of G that correspond to their
pendants v, z, w in Figure 37a and 37b, i.e., we have {ṽ, w̃} = {v, z} such that w̃
is the vertex incident to the two edges of G corresponding to the edges ỹx̃ and ỹs̃
of G̃, ṽ is the vertex adjacent to ã, and z̃ = w.

Note that due to the degree bounds, none of x̃ and s̃, which are adjacent to w̃,
can belong to a real separating triangle in G. Consequently, we have w̃ 6= v, as w̃ = v

would imply that a ∈ {x̃, s̃} due to the degree bound of v. Therefore w̃ = z and ṽ = v.
Let C = Cab if z is located on the side of Cab that does not contain d; and otherwise
let C = Cca. By planarity, the vertices x̃ and s̃ (which are adjacent to w̃) are located
on C or on the side of C that contains z (= w̃). Note that not both x̃ and s̃ can
be located on C simultaneously, since C has only one vertex (namely x or s) that
does not belong to a real separating triangle. Hence, at least one of x̃ and s̃ is
located on the side of C that contains z. Since the edges ṽã, x̃b̃, s̃c̃ connect ṽ, x̃, s̃
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to a common real separating triangle ãb̃c̃, it follows that {ã, b̃, c̃} = {a, b, c} by
planarity and due to the degree bound of ṽ = v. Regardless of the position of z, the
edges ṽã, x̃b̃, s̃c̃ cannot be drawn without violating planarity or the degree bounds:
if C = Cab, then none of ṽ, x̃, s̃ can be adjacent to c ∈ {ã, b̃, c̃} due to the definition
of G1. Similarly, if C = Cca, then none of ṽ, x̃, s̃ that can be adjacent to b ∈ {ã, b̃, c̃}
due to the definition of G1. Overall, it follows that collapsing vz cannot create a
real G1 subgraph and, hence, e′ = vz is an edge as in the claim.

Let us now formally state Lemma 38, which is the generalized version of Theo-
rem 33. Indeed, if all edges of G are real, the statement of Lemma 38 matches that
of Theorem 33.

Lemma 38. Let G be a 3-connected simple plane graph on n vertices in which each
edge is labeled as either real or virtual. Further let S denote the set of real separating
triangles in G and assume that the following properties are satisfied.

(G1) each triangle of S is trivial and its three interior edges are real;

(G2) each vertex that belongs to a triangle of S has degree at most five;

(G3) there is no virtual edge incident to vertices of two distinct triangles of S; and

(G4) G is not a real trivial double kite and it does not contain a real G1 subgraph or
a real G2 subgraph, cf. Definition 36.

Then we can compute in O(n2) time a set K ⊂ E(G) of edges so that

(J1) every edge in K is collapsible and belongs to a triangle in S; and

(J2) every triangle in S has exactly one edge of K.

(J3) The graph G contains no k-inhibitor with respect to S with more than k − 3
edges of K. Let G′′ denote the graph obtained by simultaneously collapsing the
edges of K. If G contains a real k-inhibitor I with exactly k− 3 edges of K, then
the triangle corresponding to I in G′′ is nonseparating.

(J4) The graph G′′ is biconnected and does not contain an adjacent separation pair.

Some remarks regarding the upcoming proof of Lemma 38, which stretches
over the pages 82–130. We collapse edges of G resulting in simple graphs G′ (after
collapsing a single edge of K) and G′′ (after collapsing all edges in K) that are possibly
biconnected only. As discussed earlier, it is useful to think of G as a rigid triconnected
component of a graph resulting from collapsing some edges in a graph such as H
from the statement of Theorem 33. However, we emphasize that our algorithm and
our terminology is actually oblivious to this notion, that is, the endpoints of a virtual
edge in G are not considered to be a separation pair. Similarly, the edge-labeling
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(real and virtual) of the edges in G′ and G′′ is ignored when it comes to determining
the separation pairs in these graphs.

In particular, an edge collapse that merges a virtual edge with a real edge
corresponds (conceptually) to the creation of an adjacent separation pair in the
graph H. However, this is not a violation of Property (J4), which is only concerned
with separation pairs in the graph G′′ that results from collapsing some edges in the
3-connected graph G. Note that when Lemma 38 is applied to an original graph H
that only has real edges (as is the case in the statement of Theorem 33), Property (J4)
ensures that this special type of edge collapse cannot actually occur during one of the
recursive calls. For the sake of proving the claim in its full generality, when merging
a virtual edge with a real edge, we refer to the resulting singleton edge as real. This
is justified since real edges are strictly more restrictive than virtual edges when it
comes to the Properties (G1), (G2), (G4), and (J1)–(J4). As an exception, virtual
edges are more restrictive, when it comes to Property (G3). However, when the
collapse of a candidate edge results in the merge of a real with a virtual edge, the
resulting singleton edge is incident to the new vertex created by the collapse, and
this vertex does not belong to a real separating triangle since the real separating
triangles of our graphs are pairwise vertex-disjoint (by (G4) and Observation 25) and
since the collapse of a candidate edge does not create new real separating triangles.
Consequently, Property (G3) is maintained regardless of the label that is assigned to
the new edge.

Occasionally, it will be important to be able to distinguish between virtual
edges of G and virtual edges created during the decomposition of, say G′′, into its
triconnected components. In such cases, we refer to the latter as G′′-virtual edges.
Note that the endpoints of a G′′-virtual edge uv that appears in some rigid triconnected
component R of G′′ correspond to a separation pair in G′′, but they do not form a
separation pair in R.

To prove Lemma 38, we proceed recursively. More specifically, we will identify
a collapsible candidate edge e, collapse it, and then recursively determine a set
of edges K′ that satisfies the Properties (J1)–(J4) for the reduced graph. This is
sufficient to establish the Properties (J1)–(J4) of the set K = {e} ∪ K′ for G:

Lemma 39. Let G be a graph as in the statement of Lemma 38. Assume that e
is a collapsible candidate edge of G. Finally, let G′ denote the graph obtained from
collapsing e in G and assume that there exists a set of edges K′ ⊂ E(G′) that satisfies
the Properties (J1)–(J4) for G′. Then the set K = {e} ∪ K′ satisfies (J1)–(J4) for G.

Proof. Let S be the set of real separating triangles of G. The triangles of S are
pairwise vertex-disjoint by Property (G4) and Observation 25. Hence, there is a
unique real separating triangle T = abc of S with interior vertex d that uses the
candidate edge e = ab.

Since e is a candidate edge, its collapse does not create a new real separating
triangle. Hence, the set of real separating triangles of G′ is S \ {T}. Moreover, since
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the triangles of S are pairwise vertex-disjoint, none of the triangles S \ {T} passes
through c or the vertex created by the collapse of e in G′. Thus, the Properties (J1)
and (J2) for K′ imply (J1) and (J2) for K.

Next, we show that K satisfies (J3). Let I denote a k-inhibitor of G with respect
to S. We consider two cases regarding whether or not e belongs to I. First, assume
that e ∈ I. We consider two subcases. For the first subcase, assume that k ∈ {5, 6}.
Consequently, I becomes a (k − 1)-inhibitor with respect to S \ {T} in G′. In this
case, the Property (J3) of K′ implies Property (J3) of K for the inhibitor I. For the
second subcase, assume that k = 4 (in which case I is not real since e is a candidate
edge). Hence, I becomes a separating triangle T ′ in G′, which is not real. Since,
by (J1), each edge of K′ is collapsible in G′, it follows that no edge of K′ belongs
to T ′ and, hence, (J3) of K is established for the inhibitor I.

It remains to consider the case that e /∈ I. Consequently, I corresponds to a
k-cycle I ′ in G′. If I ′ is hyperseparating with respect to S\{T}, then I ′ is a k-inhibitor
with respect to S \{T} and the Property (J3) of K′ implies Property (J3) of K for the
inhibitor I. So assume that I ′ is not hyperseparating with respect to S \{T}. Since I
is hyperseparating with respect to S, both of its sides contain at least one vertex that
is not the interior vertex of a real separating triangle of G. The collapse operation
decreases the number of vertices that are not interior to a real separating triangle
by exactly one. Since one side of I ′ contains no such vertex, the corresponding side
of I contains either a or b, say a, and the edge bc belongs to I. The edge between c
and the vertex created by the collapse of ab and its two neighboring edges along I ′
cannot belong to K′ by (J1) of K′ since the real separating triangles of G are pairwise
vertex-disjoint. Hence, K cannot possibly contain more than k − 3 edges of I. If I
is real and K contains exactly k − 3 edges of I, the triangle corresponding to I in
the graph G′′ created by simultaneously collapsing all edges of K in G cannot be
separating since all (possibly none) vertices on one of the sides of I ′ are interior
vertices of real separating triangles and none of these vertices are contained in G′′
by (J2) of K′ ⊆ K.

Property (J4) for K follows directly from (J4) for K′.

Proof of Lemma 38. We prove the claim by induction on the number |S| of real
separating triangles of G. If |S| = 0 there is nothing to show. So assume that |S| > 0.

4.5.4 Data structures

We begin by describing the data structures that are used to efficiently carry out the
algorithm corresponding to the proof. As a first step we determine all real separating
triangles (which are trivial, by (G1)). This is easy to accomplish in linear time,
given that the vertices of these triangles have degree at most five. Due to the degree
bound, it is also easy to determine in quadratic time which edges of triangles in S
are constrained by a real 4-inhibitor. For each constrained edge, we store a list of
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the (constant number of) real 4-inhibitors that constrain them. We can update this
information under an edge collapse in constant time, by checking all real separating
triangles in the constant size neighborhood of the collapsed edge.

To maintain the triconnected components, we use a decremental data structure
by Holm et al. [78, Theorem 11] that allows to dynamically maintain an SPQR-tree
under a sequence of edge contractions or deletions in O(n log2 n) total time. The
structure can also be used to answer triconnectivity queries (Are two given vertices
in the same triconnected component?) in constant time [78, Theorem 1]. Note that
an edge collapse can be implemented using a constant number of edge contractions
and deletions.

In order to drive the algorithm, we also need to determine all separation pairs
created by a potential edge collapse. To this end, we maintain for every edge e = uv

of a real separating triangle uvw ∈ S a list P(e) of vertices—other than w—that
together with u, v form a separating triple in the unique rigid triconnected component
of the current graph that contains e (cf. Lemma 34). For a single edge, this list can
be initialized using the following well-known fact:

Observation 40. In a 3-connected simple planar graph Q, a triple of vertices u, v, x
is separating if and only if the 3-connected simple graph Q∪ {uv, vx, xu} is planar
and uvx is separating triangle in Q (in the unique combinatorial embedding).

Hence, it suffices to check whether there exist two distinct faces fu and fv and a
vertex x /∈ {u, v, w} of G such that

– neither of ∂fu, ∂fv contains the edge uv;

– u ∈ ∂fu and x ∈ ∂fu;

– v ∈ ∂fv and x ∈ ∂fv; and

– if u, v, x form a triangle, then it is separating.

This test can be performed in linear time, given that there is only a constant number
of choices for fu and fv. As in a 3-connected graph every pair of faces can share at
most two vertices,

(F2) each of the lists P(e) has constant size.

When an edge xy collapses to a vertex x̂y, we update the structure as follows.
We want to find those edges e = uv of some triangle in S, for which u, v, x̂y is a
separating triple. Due to the degree bound, there is a constant number of faces with
x̂y on their boundary. For every pair fu, fv of such faces, we traverse the boundary
∂fu and test for every vertex u ∈ ∂fu whether it is incident to an edge such as e
whose other endpoint v is on ∂fv such that u, v, w = x̂y, fu, fv satisfy the above
properties. Since the endpoints of edges of real separating triangles have degree at



84 Chapter 4. Two-page book embeddings of triconnected planar graphs

most five, testing a single endpoint can be done in constant time, and the overall
update time per collapse is linear.

As a final step of processing the collapse of an edge e, for every edge h that was
in the rigid triconnected component of e before the collapse, we go over the list P(h)
and remove all vertices that are not in the same rigid triconnected component as h
after the collapse of e. These decisions can be made using triconnectivity queries in
constant time per edge and, therefore, by (F2) in linear time per collapse. We also
check for each real 4-inhibitor whether its four real edges belong to a common (rigid)
triconnected component R and, if so, whether it is hyperseparating in R. If one of
these conditions is not satisfied, we remove the inhibitor from the (up to two) lists
that it is stored in.

In each step of the algorithm, we select and collapse a collapsible candidate edge.
The edge is selected according to certain priorities explained below (in particular,
we prioritize candidate edges whose collapse preserves 3-connectivity). To efficiently
find the next edge to collapse, we partition the set of edges that belong to triangles
of S into three lists. The first list contains those edges whose collapse creates an
adjacent separation pair (the edges in this list are never considered for inclusion in the
set K). Among the edges whose collapse does not create an adjacent separation pair,
the second list contains those that are constrained by real 4-inhibitors. The third
list contains the remaining edges (which are not constrained by real 4-inhibitors).
Both the second and third list are further partitioned into two sublists: the first
sublist contains those edges e whose collapse preserves 3-connectivity of the rigid
triconnected component that contains e. Note that these edges are easy to identify
since their lists P(e) are empty. The other sublist contains the remaining edges,
whose collapse decreases the connectivity. As described above, it is easy recognize
when an edge should be moved to another list, which can be done in constant time.

Among the candidate edges whose collapse decreases the connectivity, we will
prioritize those which are safe. This property is defined below, see Definition 41.
Intuitively, the separation pairs resulting from the collapse of a safe edge cannot
become adjacent by performing further collapses. To find the next safe candidate
efficiently, we further partition each of the two lists of edges whose collapse decreases
connectivity into a sublist of safe edges and a sublist of unsafe edges.

4.5.5 Handling triangles of double kites

We start by taking care of the special case that S contains a real separating triangle T1
that together with some other separating triangle T2 (real or not) defines a double
kite D. Note that we can find all such double kites in linear time because T1 has
bounded degree and a vertex of T2 must be adjacent to all three vertices of T1. We
distinguish two cases regarding T2.

First, towards a contradiction, assume that there is such a triangle T2 that is real,
i.e., T2 ∈ S. Then, by Observation 25, the graph G is a trivial double kite. The edges
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of T1 and T2 are real by assumption. The edges interior to T1 and T2 are real by
Property (G1). The remaining edge of D, which is exterior to both T1 and T2, is
also real by Property (G3). However, this implies that G is a real trivial double kite,
contradicting Condition (G4).

It remains to consider the case that there is no real separating triangle that
defines a double kite with T1. In particular, the triangle T2 is not real. Note that by
Lemma 24, the triangle T1 is vertex-disjoint from all other separating triangles in S.
Let T1 = uvw where uv is the edge that also belongs to T2, for an illustration see
Figure 38. The edge uv is not collapsible, but uw and vw are collapsible. In fact,
both of these edges are candidate edges; we show this for the edge e = uw: Let G′
denote the graph that results from collapsing e. Clearly, the graph G′ is 3-connected,
and so collapsing e does not create an adjacent separation pair. So assume that e
is constrained by a real 4-inhibitor Iuw in G. By Observation 27, we may assume
that Iuw = uwxy where wx is the edge of D that belongs to the two nonseparating
triangles of D. But then, xu is a chord of Iuw; a contradiction to Lemma 28. So e is
a candidate edge and G′ clearly satisfies the Properties (G1)–(G3).

w
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e

y T1
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z

Figure 38: A double kite defined by the real separating triangle T1 and the separating
triangle T2. The solid edges belong to the subgraph Ĝ, which is isomorphic to the
graph G′ that results from collapsing e.

To see that Condition (G4) also holds, observe that G contains a subgraph Ĝ
isomorphic to G′. The only possible difference between Ĝ and G′ is that the edge
corresponding to ux might be real in G′, but virtual in Ĝ (in case ux is virtual and wx
is real in G). By Lemma 37, the graph G′ is not a real trivial double kite. Towards a
contradiction, assume that G′ contains a real G1 subgraph or a real G2 subgraph. By
Condition (G4) of G, the graph Ĝ does not contain a real G1 subgraph or a real G2
subgraph. Consequently, by Definition 36, the edge of G′ corresponding to ux has to
correspond to one of the thick (colored) edges or to one of the edges incident to the
vertex d of the G1 or the G2. In fact, the latter has to be the case given that the degree
of u is three in Ĝ (by (G2) for G), i.e, u corresponds to the vertex d of the G1 or G2
subgraph. However, this implies that the three neighbors of u in Ĝ, that is, v, x, and
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some other vertex z, form a separating triangle in Ĝ. Hence, by 3-connectivity, the
vertex v has some neighbor on the side of xzv that does not contain u. Consequently,
in G the degree of v is at least six, contradicting (G2). Altogether, this shows that
Condition (G4) holds for G′.

Thus, all preconditions of the lemma hold and, by induction, we obtain a set K′
of edges satisfying Properties (J1)–(J4) for G′. Thus, Lemma 39, K = K′ ∪ {e} is the
desired set for G that satisfies Properties (J1)–(J4).

4.5.6 Handling the remaining triangles

So from now on, assume that no separating triangle of S defines a double kite together
with some other separating triangle (real or not) and, hence, by Lemma 24

(F3) every (real) separating triangle in S is vertex-disjoint from every other separating
triangle (real or not) of G.

Consequently, every candidate edge is collapsible.
Let e be a candidate edge, which exists by Lemma 35 and Condition (G4).

If |S| = 1, then K = {e} is the desired set of edges that satisfies the Properties (J1)–
(J4). So assume that |S| ≥ 2. Our plan is to proceed inductively and, thus, we need to
argue that collapsing e results in a graph G′ that satisfies the Preconditions (G1)–(G4).
These conditions hold for the input graph G. Since e is a candidate edge, it is not
constrained by a real 4-inhibitor. Hence, G′ does not contain any real separating
triangle that is not already present in G and, by Property (G1) of G, we obtain
Property (G1) for G′. Collapsing e creates a new vertex x of degree at most five. The
degree of the remaining vertices cannot increase. Hence, we obtain Property (G2)
for G′. Observe that the endpoints of the edges of G remain unchanged in G′, except
for the edges that are adjacent to e in G and, hence, incident to x in G′. The vertex x
cannot belong to a real separating triangle since the triangles of S are pairwise
vertex-disjoint. Hence, Property (G3) of G implies Property (G3) of G′. Finally,
Property (G4) follows from Lemma 37, possibly after choosing a different candidate
edge e. If, additionally, G′ is 3-connected, it satisfies all preconditions of the lemma.
Hence, we obtain by induction a set K′ of edges satisfying Properties (J1)–(J4) for G′
and, thus, by Lemma 39, K = K′ ∪ {e} is the desired set for G.

It remains to consider the case that

(F4) for every candidate edge e, collapsing e results in a graph G′ that is biconnected,
but not 3-connected.

Note that collapsing e creates a separation pair, which is nonadjacent since e is a
candidate edge. So let e = ab and let abc ∈ S be the real separating triangle that e
belongs to. Moreover, let d be the singleton inner vertex of abc. Even though G′ is
only biconnected, our plan is to proceed inductively, making use of the decomposition
of G′ into its triconnected components.
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By Lemma 34, every real separating triangle of G′ appears with all its real edges
and its three interior real edges in a common rigid triconnected component of G′.
Let R denote the set of rigid triconnected components of G′. Each R ∈ R satisfies the
preconditions of the lemma: By definition, R is 3-connected. Recall that R is created
by performing some number of split operations. Clearly, the split operation cannot
produce any new real separating triangle in R since the newly created edges are
virtual. Moreover, for each vertex v of R the degree of v in R cannot be larger than
its degree in G′. Hence, the Properties (G1) and (G2) of G′ imply the Properties (G1)
and (G2) for R. Recall that the new vertex x that is created by collapsing e does
not belong to a real separating triangle. Moreover, by Observation 31, every newly
created virtual edge of R is incident to x. Thus, we obtain Property (G3) for R
by Property (G3) of G′. Finally, Property (G4) holds since every subgraph of R
that consists exclusively of real edges also appears in G′, for which Property (G4) is
satisfied.

For each R ∈ R we will obtain a set of edges KR to collapse that satisfies
Properties (J1)–(J4) for R. In general these sets are obtained via induction, but in
some special cases (in which R has constant size) we will determine KR explicitly.
Let K′ =

⋃
R∈RKR denote the (disjoint) union of all the edge sets KR (the sets KR

are disjoint since they only contain real edges). We show that K = K′ ∪ {e} is an
edge set that satisfies Properties (J1)–(J4) for G. In fact, by Lemma 39, it suffices to
argue that the set K′ satisfies these properties for G′.

Clearly, Properties (J1) and (J2) are satisfied. The main and quite substantial
part of the work is to guarantee Property (J4), which we will discuss next. Eventually,
once (J4) is established, we can use it to prove that Property (J3) holds as well.

4.5.7 Ensuring Property (J4)

Recall that simultaneously collapsing the edges of K′ refers to the process of collapsing
them iteratively, in an arbitrary order. Given that we have not yet established (the
first part of) Property (J3), it is a priori not clear that this simultaneous collapse
of K′ in G′ is a well defined operation (since some of the edges of K′, which are
initially collapsible by (J1), could become noncollapsible after performing some of the
collapses). Therefore, we will prove a slightly generalized version of Property (J4): the
statement remains exactly the same, but we will relax the definition of the collapse
operation, allowing it to be applied to noncollapsible edges. This ensures that the
graph G′′ from the statement of Property (J4) is well defined.

Collapsing noncollapsible edges. Let e′ = a′b′ be a noncollapsible candidate
edge of a real separating triangle a′b′c′. Since e′ is noncollapsible, there is a vertex z′ 6=
c′ that forms a separating triangle with a′ and b′. The only problem with performing
the collapse as in the collapsible case is that the resulting parallel edges between z′
and the new vertex created by the collapse form a separating 2-cycle with vertices
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on both of its sides. Hence, when merging these parallel edges, the embedding of
the resulting edge is not uniquely determined. To allow the collapse of e′, we simply
choose the embedding of the merged parallel edges arbitrarily.

With this relaxation in place, simultaneously collapsing the edges of K′ in G′
is always a well defined operation, though the resulting plane graph is a priori not
necessarily unique. So let G′′ denote a graph resulting from simultaneously collapsing
all edges of K′ in G′ (later, once Property (J3) is established, it follows that G′′ is
unique after all).

Overview. To prove the generalized version of Property (J4), we begin by showing
that G′′ is biconnected in Section 4.5.7.1. It remains to show that G′′ does not
contain any adjacent separation pair. We prove this statement in two steps. First, in
Section 4.5.7.2 we show (after possibly choosing a different candidate edge e, see (F5)
and the subsequent discussion) how to choose the edge sets KR, for R ∈ R, such that
no separation pair that is already present in G′ becomes adjacent in G′′. Then, in
Section 4.5.7.3 on page 128 we use the Property (J4) of the sets KR in order to show
that G′′ also does not contain any new separation pair that is adjacent.

4.5.7.1 Biconnectivity of G′′

The set K′ contains no virtual edges by (J1) (we consider real separating triangles only).
In particular, none of the G′-virtual edges, created by computing the triconnected
components of G′, are contained in K′. It follows that every edge of K′ belongs to a
single rigid triconnected component exclusively.

We claim that this implies that to obtain the graph G′′, instead of collapsing the
edges of K′ directly in G′, we may collapse the edges of K′ in the decomposition of G′
into its triconnected components, and then merge all pairs of identical G′-virtual edges.
To see this, it suffices to show that for each separation pair p, q of G′ there are two
distinct vertices of G′′ corresponding to p and q, respectively (in other words, p and q
cannot be contracted to a single vertex). By Observation 31, we may assume without
loss of generality that p is the vertex created by collapsing e in G. Moreover, by (F3),
this vertex does not belong to a real separating triangle of G′. Since K′ contains only
edges of real separating triangles (by (J1)), it follows that simultaneously collapsing
the edges of K′ does not merge any vertex with p. This proves the claim.

Consequently, to argue about the biconnectivity of G′′, we may use the fact that
each of the triconnected components of G′ remains biconnected when collapsing its
edges of K′. This is discussed in the following paragraphs, in which we also analyze
what types of triconnected components appear in the decomposition of G′. For
illustrations refer to Figure 39.

Triconnected components of G′. Let N be one of the triconnected components
of G′. We observe that N cannot be parallel: it suffices to show that no separation
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(a) G (b) G′ (c) Decomposition of G′

Figure 39: The graph in (a) is 3-connected. Each of the large round colored vertices
forms a separating triple together with the two square vertices. Collapsing the edge
spanned by the square vertices results in the graph in (b), which is biconnected
only. Each of its separation pairs involves the vertex created by the collapse. Its
decomposition into triconnected components is depicted in (c); dashed edges of the
same color correspond to the same virtual edge.

pair in G′ has three or more separation classes. All separation pairs in G′ result from
collapsing a single edge e = ab whose endpoints together with some other vertex
form a separating triple in the 3-connected planar graph G. Hence, the removal of
any separation pair of G′ results in a graph with exactly two connected components.
As no separation pair is adjacent, it follows that every separation pair of G′ has
exactly two separation classes. Thus, G′ does not have any parallel triconnected
component. Therefore, N is series or rigid. We remark that if N is series, it is a
3-cycle. This follows from the facts that all pairs of nonadjacent vertices of a series
triconnected component correspond to a separation pair, and that, by Observation 31,
every separation pair of G′ involves the vertex created by collapsing e.

Biconnectivity of the collapsed components. Let N ′ be the graph created by
collapsing all edges of K′ ∩ E(N) in N . Then N ′ is biconnected: this is clear if N is
series, in which case N ′ = N since edge collapses only affect rigid components. If N
is rigid, i.e. N ∈ R, the biconnectivity of N ′ follows from Property (J4) of KN .

Biconnectivity of G′′. We have shown that each of the triconnected components
of G′ remains biconnected when collapsing its edges of K′, which we can now use
to prove that G′′ is biconnected. To this end, we consider vertices u, v, w ∈ V(G′′)
with w /∈ {u, v} and show that u and v are connected in G′′ \ {w}. The collapsed
version N ′ of each triconnected component N of G′ is biconnected. Hence, the
graph N ′ \ {w} is connected. Therefore, if one of the collapsed triconnected compo-
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nents N ′ contains both u and v, there is nothing to show. So assume that this is not
the case and let N ′u and N ′v denote collapsed triconnected components that contain u
and v, respectively, and let Nu and Nv denote the triconnected components of G′ that
these collapsed graphs originate from. In the decomposition of G′, there is a sequence
of triconnected components Nu = N1, N2, . . . , Nt = Nv such that Ni and Ni+1 share a
G′-virtual edge ei for each i = 1, 2, . . . , t− 1. Let N ′1, N ′2, . . . , N ′t denote the collapsed
versions of N1, N2, . . . , Nt. Since N ′i is biconnected, the graph N ′i \ {w} is connected
for each i = 1, 2, . . . , t. Since N ′i and N ′i+1 both contain (an edge corresponding to)
ei, each of the graphs N ′i \ {w} and N ′i+1 \ {w} still contains at least one endpoint of
(the edge corresponding to) ei. Hence, the vertices of N ′i \ {w} and N ′i+1 \ {w} are
connected in G′′ \ {w}, and so are the vertices of N ′1 \ {w} and N ′t \ {w}. Therefore, u
and v are connected in G′′ \ {w}.

Altogether, this shows that G′′ is biconnected, which proves the first part of the
statement in (J4).

4.5.7.2 Separation pairs of G′ remain nonadjacent in G′′

Let p, q denote a separation pair of G′. By Observation 31, we may assume without
loss of generality that p is the new vertex resulting from collapsing e = ab in G and
that q /∈ {c, d}. Suppose that we have obtained a set KR for each R ∈ R that satisfies
the Properties (J1)–(J4) for R. Assume that simultaneously collapsing all edges in K′
results in an edge between (the vertices corresponding to) p and q. Then there exists
some simple path P between p and q in G′ that uses some edges of K′. By (F3), the
edges of K′ are pairwise vertex-disjoint. In particular, no two edges of K′ are adjacent
along P . Together with the fact that p does not belong to a separating triangle in G′,
it follows that the path P has only two edges, exactly one of which belongs to K′,
that is, we have P = psq, where sq ∈ K′. The motivates the following definition.

Definition 41. An edge ab of a real separating triangle abc is called unsafe if a
or b is adjacent to a vertex s of another real separating triangle sqt, and a, b, q is a
separating triple. If ab is not unsafe, it is called safe.

We may assume that

(F5) no candidate edge is safe,

as otherwise we can simply select our candidate e to be safe to ensure that the
separation pairs of G′ remain nonadjacent. Algorithmically, whenever we add a new
vertex q to one of the lists P(e), it is easy to determine in constant time whether there
is a path asq or bsq that makes e unsafe since the three vertices of such a path have
degree at most five. By performing further edge collapses, an unsafe edge may become
safe (namely, if for each triangle sqt that is part of a path that makes e unsafe some
edge other than sq is collapsed), which is easy to recognize (when performing the
collapse). Therefore, the two lists of safe edges whose collapse decreases connectivity
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(introduced in Section 4.5.4) are easy to maintain, and, using these lists we can find
the next safe candidate edge (if it exists) in constant time.

Often, we will make use of the following weak version of (F5), which follows
directly from (F4), (F5), and Observation 31:

(F6) for every candidate edge e = ab, collapsing e results in at least one (nonadjacent)
separation pair p, q where p is the vertex created by the collapse of e and q belongs
to a real separating triangle.

We consider two main cases. In Case 1, we show that if an edge such as sq is
constrained by a real 4-inhibitor in G, then for every collection of sets KR that satisfy
Properties (J1)–(J4), for each R ∈ R, we have sq /∈ K′ =

⋃
R∈RKR. In other words,

the path P is an obstruction that is already taken into account implicitly when
selecting KR.

In Case 2, the edge sq is not constrained by a real 4-inhibitor. This implies
that collapsing sq in G creates a separation pair (that is not necessarily adjacent)
since either sq is a candidate edge, which creates a (nonadjacent) separation pair by
assumption (F4), or it is not a candidate edge and its collapse (given that we are
not in Case 1) creates an adjacent separation pair. We will show that this is only
possible in two very specific local configurations:

– either (in Case 2.2.2.1) the triconnected component R of G′ that contains the
separating triangle that uses sq has constant size (in this case we select the
set KR explicitly, rather than inductively);

– or (in Case 2.2.2.3.2) we can apply a replacement strategy % to obtain a new
candidate edge %(e) 6= e. We show that % is acyclic, that is, if the Case 2.2.2.3.2
also arises for %(e), we may then consider %(%(e)) and so on, until, eventually,
we find a candidate edge %i(e) with i ∈ O(n) for which we end up in one of the
easy Cases 1 or 2.2.2.1.

K ′

K

ab

s

q

e

Figure 40: Notation for Section 4.5.7.2 in Lemma 38.
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Before we proceed to discuss the two cases, let us introduce some notation; for
illustration, refer to Figure 40. The vertices a, b, q form a separating triple in G. The
vertex s has to be adjacent to a or b since p and s are adjacent in G′. By planarity
and 3-connectivity, the graph G\{a, b, q} has exactly two connected componentsK,K ′,
and each of the vertices a, b, q is adjacent to at least one vertex in each of the two
components. Assume w.l.o.g. that s ∈ K ′. Further, let sqt denote the separating
triangle that uses sq, and let d′ be the unique inner vertex of sqt.

A more detailed overview of Section 4.5.7.2 and its two main cases is illustrated
in Figure 41.

Case 1: sq is constrained by a real 4-inhibitor Isq = sqxy in G. We will show that Isq
also appears as a 4-cycle of real edges in the triconnected component R ∈ R of G′ that
contains sqt. Moreover, we will also show that this 4-cycle is hyperseparating (i.e., it
is a real 4-inhibitor) in R, or collapsing sq in R creates an adjacent separation pair.
Thus, any KR that satisfies Properties (J3) and (J4) for R cannot contain sq, and so
the path P is not an obstruction (that can make the separation pair p, q adjacent).

We start by showing that

(F7) the vertices of Isq belong to K ′ ∪ {a, b, q}.

Assume otherwise, i.e., some vertex of Isq belongs toK. Since a, b, q are separating,
we have y ∈ {a, b}, and x ∈ K. We may assume without loss of generality that y = b.
We will now establish that x = c, and that b and q have neighbors on the side of Isq
that does not contain a, as illustrated in Figure 42b.

For illustrations of the following steps, refer to Figure 42a. Clearly, we have x 6= d

since dq /∈ E(G). Since Isq is separating, there is some vertex z on the side of Isq
that does not contain a, d. By 3-connectivity, there are three paths from z to three
distinct vertices of Isq = sqxb and these paths are pairwise vertex-disjoint except
for the common endpoint z. None of these paths can pass through a given that z
and a are on distinct sides of Isq. The paths can also not have b or q as interior
vertices since b and q belong to Isq. Hence, it is not possible that one of the three
paths leads to s ∈ K ′ while another leads to x ∈ K. It follows that two of the
paths lead to b and q, respectively. Let b′ denote the neighbor of b along its path
to z. Hence, {a, c, d, s, x, b′} ⊆ NG(b). Since the degree of b is bounded by five, two
of these vertices have to coincide. The vertices a, c, d, s, b′ are pairwise distinct. In
particular, c 6= s by (F3), and b′ is distinct from a, c, d, s since each of these vertices
either belongs to Isq or the side of Isq that does not contain b′. It follows that x = c,
as claimed.

Recall that sq is an edge of a real separating triangle sqt with unique interior
vertex d′. We distinguish two cases regarding the positions of d and t in relation
to Isq = sqcb. In both cases we show that there exists some candidate edge that can
be collapsed without creating a separation pair, thus, obtaining a contradiction to
assumption (F4).
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Case 1: sq is constrained by a real 4-inhibitor Isq.

Case 2: Collapsing sq creates a separation pair psq, qsq (implied by (F4) and the negation of Case 1).
Consider a cycle C formed by the path bsq and some path between b and q through K.

Case 2.1: t and a belong to distinct sides of C.

Case 2.2: t and a belong to the same side of C.

Case 2.2.1: st is constrained by a real 4-inhibitor Ist.

Case 2.2.2: Collapsing st creates a separation pair pst, qst (implied by (F4)).

Case 2.2.2.3: qst ∈ K ′ ∪ {a}.

Case 2.2.2.3.1: qt is constrained by a real 4-inhibitor Iqt.

Case 2.2.2.3.2: Collapsing qt creates a separation pair pqt, qqt.

Implicitly taken care of by (J1)–(J4) for KR.

Cannot occur.

Cannot occur.

Cannot occur.

Replace e with %(e) ∈ {st, qt}.

Collapsing ab of abc ∈ S creates a separation pair p, q. There is a path psq such that sq belongs to a triangle
of S. We need to ensure that p, q remain nonadjacent and, hence, that sq is never collapsed.

Case 2.2.2.2: qst = b.

Cannot occur.

Case 2.2.2.1: qst ∈ K.

Explicitly choose KR.
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Figure 41: Overview of Section 4.5.7.2 in the proof of Lemma 38.
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Figure 42: Illustrations for (a) Case 1 and (b) Case 1.1 of Section 4.5.7.2 in Lemma 38.

Case 1.1: d and t are located on the same side of Isq. For an illustration refer to
Figure 42b. Note that due to the paths from b and q to z, the degree bounds for b
and q are saturated. This implies that

(F8) d is the unique vertex of K on the side of Isq that contains d and t,

since, by 3-connectivity, another vertex in K on this side of Isq would need three
disjoint paths via K to a, b, c. However, by planarity, the path to b has to pass
through c, and this implies an additional edge incident to q, contradicting its degree
bound.

Our plan is to show that ac or st is a candidate edge that can be collapsed without
creating a separation pair, which is a contradiction to assumption (F4).

Assume that collapsing ac in G creates a separation pair pac, qac. By Obser-
vation 31, we may assume without loss of generality that pac is the new vertex
resulting from collapsing ac in G and that qac /∈ {b, d}. We show that the vertices
of NG(c) \ {a, c, qac} are connected in G \ {a, c, qac}, which yields a contradiction to
Observation 30. The vertices b, d ∈ NG(c) \ {a, c, qac} are adjacent. There are two
interior vertex-disjoint paths connecting b and q: (1) bsq; and (2) the path via z on
the side of Isq that does not contain d and t. Neither of these paths contains a or c as
a vertex. Thus, removing a, c, qac destroys at most one of them. By (F8), there is no
neighbor of c in K, other than d, on the side of Isq that contains d and t. Finally, if c
has a neighbor z′ 6= qac on the side of Isq that does not contain d and t, then there
exist three paths from z′ to b, c, q that are pairwise internally vertex-disjoint except
for the common endpoint z′. Removing a, c, qac can destroy either the path to b or
the path to q, but not both. Therefore, the neighborhood of c remains connected, as
claimed, and we obtain a contradiction to the assumption that ac creates a separation
pair. In particular, by (F4) we may assume that ac is not a candidate edge.
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Therefore, ac is constrained by a real 4-inhibitor Iac = acvw. The vertex v belongs
to Isq or to the side of Isq that contains d and t, as otherwise, by Lemma 28 applied
to Iac we would obtain that w = s and, thus, an edge between v ∈ K and s ∈ K ′.
By Observation 27 and (F8), the only remaining option is v = q. As the degree
bound for q is saturated with its five neighbors t, d′, s, c, and some vertex on the path
that leads to z, we conclude that w must be among these neighbors. The vertex c is
already used on Iac and d′ is nonadjacent to a. Moreover, by planarity, the vertex w
cannot be located on the side of Isq that does not contain d and t. This leaves the
options w = t and w = s. If w = t, then Iac cannot be separating: A vertex on the
side of Iac that does not contain s is connected to three distinct vertices of Iac. Two
of these vertices need to be a and q as otherwise a, b, q would not be separating. This
is a contradiction to the degree bound of q. Therefore, Iac = acqs, as depicted in
Figure 43a.

We claim that in this case the edge st is not constrained by a real 4-inhibitor,
and it can be collapsed without creating a separation pair. Note that a, s, q is a
separating triple because every path between c ∈ K and t ∈ K ′ must pass through
one of a, b, or q, and b and t are on different side of Iac. By 3-connectivity, there is a
simple path from t to a that does not pass through s or q. The degree bounds of s
and q imply that t and a are adjacent, as otherwise t and a would be separating in G.

Assume that st is constrained by a real 4-inhibitor Ist = stgh. If h = a, the edge at
would be a chord of Ist, contradicting Lemma 28. Thus, h = b by Observation 27. It
remains to study the identity of g. If g = a then sa is a chord of Ist, contradicting
Lemma 28. We also have g 6= c since otherwise ct is an edge between a vertex of K
and a vertex of K ′. The final two options, d and b′, violate planarity since these
vertices belong to the side of Iac that does not contain t. Thus, st is not constrained
by a real 4-inhibitor, as claimed.

Therefore, by assumption (F4), collapsing st creates a separation pair pst, qst. By
Observation 31, we may assume without loss of generality that pst is the new vertex
resulting from collapsing st in G, and that qst /∈ {q, d′}. The degree bounds of a, s, q
and 3-connectivity imply that NG(t) = {s, q, d′, a}. We show that NG(t) \ {s, t, qst} is
connected in G \ {s, t, qst}. Clearly, q and d′ are still connected. Thus, if qst = a there
is nothing to show. So assume qst 6= a. Consider the following two pairwise internally
vertex-disjoint paths in G that connect a and q: (1) acq; and (2) the path consisting
of the edge ab and the path between a and q via z on the side of Isq that does not
contain d and t. None of these paths contain s or t and, thus, removing s, t, qst can
only destroy one of them. So, NG(t) \ {s, t, qst} is connected in G \ {s, t, qst}, which
yields a contradiction to Observation 30. Therefore, collapsing st does not create any
separation pair, as claimed.

Altogether, this yields a contradiction to assumption (F4). /

Case 1.2: d and t are located on distinct sides of Isq. The following steps are illustrated
in Figure 43b. Note that b, s, q are separating in G. Therefore, by 3-connectivity, the
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Figure 43: Illustrations for (a) Case 1.1 and (b) Case 1.2 in Lemma 38.

vertex b has some neighbor in K ′ on the side of Isq that contains t. As a consequence,
the degree bound of b, 3-connectivity, and planarity imply that

(F9) the side of Isq that contains t does not contain any vertex of K

(such a vertex would have three disjoint paths to vertices of Isq and none of them
may end at s).

As in the previous case, our plan is to show that st is a candidate edge that
can be collapsed without creating a separation pair, which is a contradiction to
assumption (F4). As a first step, we will show that

(F10) as ∈ E(G) and c has a neighbor c′ on the side of Isq that contains d such that
there exist two internally vertex-disjoint paths from c′ to a and q, respectively, whose
interior vertices belong to K \ {c}, as depicted in Figure 43b.

By assumption (F4), the edge ac is either not a candidate edge or it is a candi-
date edge, but its collapse creates a separation pair. Consequently, the edge ac is
constrained by a real 4-inhibitor or collapsing ac creates a separation pair. We will
show that either of these properties already implies (F10).

So suppose first that ac is constrained by a real 4-inhibitor Iac = acvw. We
distinguish two cases regarding the identity of v. First, assume that v is some
neighbor c′ ∈ K of c (by (F9) on the side of Isq that contains d). We have that w 6= q,
as w = q would imply that collapsing e = ab creates an adjacent separation pair,
contradicting our choice of e. Therefore, we have w ∈ K. However, since Iac is
separating and by 3-connectivity, three vertices of Iac have a neighbor on the side
of Iac that does not contain t. This contradicts the degree bounds of a or c (recall
that a has a neighbor in K ′). Altogether, we obtain that v is not a neighbor of c
in K. By Observation 27, the only other option is v = q.
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Let us study the identity of w. By planarity, we have w /∈ {t, d′}. We claim
that w = s. Towards a contradiction, assume that w 6= s, i.e., w ∈ NG(q) \ {s, t, d′, c}.
By planarity, w belongs to the side of Isq that contains d. Since Iac is separating,
there exists a vertex z on the side of Iac that does not contain t. By 3-connectivity,
there exists three paths from z to Iac that are pairwise vertex-disjoint except for the
common endpoint z. We consider two subcases. First, suppose that w ∈ K. Then
one of the three paths leads to a or to q, contradicting the degree bound of a or q,
respectively. Secondly, suppose that w ∈ K ′. In this case, two of the three paths lead
to a and q, respectively (otherwise, there would be a path between c ∈ K and s ∈ K ′
via z that does not pass through any of a, b, q). However, this contradicts the degree
bound of q. Altogether, this shows that w = s. Hence, as ∈ E(G), which establishes
the first statement of (F10). Moreover, since Iac is separating, there is a vertex c′
on the side of Iac that does not contain t. By 3-connectivity, there exist three paths
from c′ to Iac that are pairwise vertex-disjoint except for the common endpoint c′.
Due to the degree bound of s, these paths lead to c, a, q, respectively. Since the path
to c cannot pass through any of a, s, q, we have that c′ belongs to K, and without
loss of generality we may assume that c′ is a neighbor of c. This establishes the
second part of (F10) and, hence, shows that (F10) holds if ac is constrained by a real
4-inhibitor.

It remains to prove (F10) for the case that collapsing ac creates a separation
pair pac, qac. By Observation 31, we may assume without loss of generality that pac
is the new vertex resulting from collapsing ac in G. As b, s, q are separating and by
3-connectivity, the vertex t has three paths to the vertices b, s, q that are pairwise
vertex-disjoint except for the common endpoint t. Together with the path bsq, we
obtain the existence of two internally vertex-disjoint paths between b and q that do
not pass through ac. As a consequence, the neighbors b, d, q (in case qac 6= q) of c
remain connected in G \ {a, c, qac}. Thus, in order for a, c, qac to be separating, c
needs to have some neighbor c′ ∈ K (by (F9) on the side of Isq that does contain not
contain t). By 3-connectivity and since a, c, q are separating, the vertex c′ has three
paths to a, c, q that are pairwise vertex-disjoint except for the common endpoint c′.
This saturates the degree bounds of a, c, q. Note that for example with qac = q the
vertices a, c, qac are actually separating. The 3-connectivity of G implies that the
side of Isq that does not contain t does not contain any vertex of K ′, as the degree
bound of b or q would be violated due to 3-connectivity. Thus, the neighbor of a
in K ′ is s. This establishes (F10) for the case that collapsing ac creates a separation
pair. Moreover, together with the discussion in the previous paragraph, it follows
that (F10) holds, regardless of whether ac is a candidate edge (whose collapse creates
a separation pair) or not.

We proceed by showing that the edge st can neither be constrained by a real
4-inhibitor nor can its collapse create a separation pair. First, assume towards
a contradiction that st is constrained by a 4-inhibitor Ist = stgh. If h = a, we
have g = c by Lemma 28 applied to Isq. However, his implies that c ∈ K and t ∈ K ′
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are adjacent; a contradiction. Otherwise, we have h = b due to Observation 27. By
planarity, the vertex g must be located on the side of Isq that contains t or on Isq
itself. If g = c, we have an edge between c ∈ K and t ∈ K ′; a contradiction. If g = q,
collapsing e = ab creates an adjacent separation pair. Finally, assume that g is
some new (that is, not named so far) vertex of K ′. Since Ist is separating and by
3-connectivity, three vertices of Ist have a neighbor on the side of Ist that does not
contain a. This violates the degree bound of b or s. Hence, we conclude that the
edge st is not constrained by a real 4-inhibitor.

Finally, assume that collapsing st creates a separation pair pst, qst. By Obser-
vation 31, we may assume without loss of generality that pst is the new vertex
resulting from collapsing st in G and that qst 6= d′, q. We will show that the vertices
NG(s) \ {s, t, qst} are connected in G \ {s, t, qst}, which yields a contradiction to
Observation 30. The vertices q and d′ are adjacent, as are a and b. There are two
internally vertex-disjoint paths from q to b that do not pass through s or t: (1) qcb;
and (2) the edge ab together with the path from a to q via c′. Similarly, there are
two internally vertex-disjoint paths from q to a that do not pass through s or t: (1)
qca; and (2) the path from a to q via c′. Removing s, t, qst destroys at most one of
the paths between q and a and, similarly, at most one of the paths between q and b.
Altogether, this yields the claimed contradiction to Observation 30. Consequently,
collapsing st does not create a separation pair. Together with the fact that st is not
constrained by a real 4-inhibitor, we obtain a contradiction to assumption (F4). /

Overall, we obtain a contradiction to the assumption that Isq has a vertex in K.
Hence, (F7) is established, that is, the vertices of Isq = sqxy belong to K ′ ∪ {a, b, q}.

We can turn to our main objective to resolve Case 1: show that

– Isq appears as a 4-cycle of real edges in the triconnected component R ∈ R
of G′ that contains sqt and

– that this 4-cycle is hyperseparating in R, or collapsing sq in R creates an
adjacent separation pair.

Note that x /∈ {a, b}, as otherwise collapsing e = ab would create an adjacent
separation pair. Let I ′sq = sqxy′ denote the 4-cycle of G′ corresponding to Isq, i.e.,
if y /∈ {a, b} we have y′ = y; and otherwise y′ = p, where p is the vertex created
by collapsing ab. Let R ∈ R denote the rigid triconnected component of G′ that
contains sqt.

We proceed by showing that I ′sq = sqxy′ is a 4-cycle of R. It suffices to show
that for each separation pair of G′ the vertices s, q, t, d′, x, y′ are incident to edges
of a common separation class. In fact, we show something stronger: Since Isq is
hyperseparating in G, there is some vertex z that is not the interior vertex of some
real separating triangle and that is located on the side of Isq that does not contain
the vertices of K; see Figure 44 for illustration. Further, by 3-connectivity, there exist
three simple paths P1, P2, P3 that connect z with Isq that are pairwise vertex-disjoint
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except for their common endpoint z. Note that in G′ the vertex z and P1, P2, P3 are
also on the side of I ′sq that does not contain the vertices of K. We show that for each
separation pair of G′ the vertices s, q, t, d′, x, y′, and, in addition, z are incident to
edges of a common separation class. Recall that, by Observation 31, each separation
pair of G′ involves p. So let pq′ be a separation pair of G′. Note that we do not
necessarily have q′ = q.
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Figure 44: The possible ways the inhibitor Isq can interact with the triangle abc.

The vertices s, q, t, d′, x, y′ induce a 2-connected subgraph of G′. Adding the
paths P1, P2, and P3 to this subgraph yields another 2-connected subgraph H ′ of G′.
If y′ 6= p, we have p /∈ H ′ and, hence, the vertices {s, q, t, d′, x, y′, z} \ {p, q′} belong
to the same connected component of G′ \ {p, q′}; for an illustration see Figure 44a.
In fact, this statement is true even for y′ = p: Recall that in this case y ∈ {a, b}
in G and, therefore, y belongs to the real separating triangle abc and has at least
one neighbor in K, see Figure 44b and 44c. Thus, even if the edge yc of abc belongs
to Isq, y cannot have a neighbor on the side of Isq that contains z since the degree
of y is bounded by five. Hence, the endpoints of P1, P2, P3 on Isq are s, q, x and the
degree of y′ in H ′ is 2. Consequently, removing p = y′ from H results in yet another
2-connected subgraph of G′ and, thus, the vertices {s, q, t, d′, x, y′, z} \ {p, q′} belong
to the same connected component of G′ \ {p, q′}. This implies that, regardless of
whether y′ 6= p or y′ = p, the vertices s, q, t, d′, x, y′, z belong to edges of a common
separation class of the separation pair p, q′. Consequently, I ′sq is a 4-cycle in R, as
claimed. Moreover, the vertex z also appears in R.

It remains to study whether I ′sq is hyperseparating in R. This is clearly the
case if y′ 6= p since p is an endpoint of every G′-virtual edge (see Figure 45a); or if
the vertex t of the triangle sqt is located on the side of I ′sq that does not contain z
(see Figure 45b). Thus, in these cases, Property (J3) of R ensures that sq /∈ KR.
So assume that y′ = p and that t, d′ are located on the same side of I ′sq as z (see
Figure 45c). Recall that the former assumption implies that y′ has no neighbor on
the side of I ′sq that contains z, t, d′. This implies that the triple s, q, x separates t
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Figure 45: The inhibitor Isq appears as a 4-cycle I ′sq in the rigid triconnected compo-
nent R of G′ that contains the triangle stq. Depending on how Isq interacts with p and
the triangle stq, it may be hyperseparating or not. Regardless, Properties (J1)–(J4)
for KR ensure that sq is not collapsed.

from y′ = p in R and, hence, collapsing sq in R creates an adjacent separation pair.
Hence, Property (J4) for R ensures that sq /∈ KR. Altogether, we have shown that
if sq is constrained by a real 4-inhibitor in G, then the edge sq is not in any set KR,
for any rigid triconnected component R of G′, that satisfies Properties (J1)–(J4). /

We have shown that if the edge sq of the separating triangle sqt is constrained by a
real 4-inhibitor, the path P = psq is an obstruction that is already taken into account
implicitly when selecting the set KR of the rigid triconnected component R ∈ R that
contains sqt. So from now on, we may assume that:

Case 2: Collapsing sq in G creates a separation pair psq, qsq. (This follows from the
assumptions that sq is not constrained by a real 4-inhibitor and (F4), as explained
in the beginning of Section 4.5.7.2.) By Observation 31, we may assume that psq is
the vertex resulting from collapsing sq and that q /∈ {t, d′}. Our plan is to show that
this is only possible in two very constrained special cases for which we will describe
separate treatments.

We begin by showing that the vertex t of the triangle sqt is positioned in a specific
way. Recall that, in G′, the new vertex p that is created by the collapse of e = ab is
adjacent to s and, hence, s is adjacent to a or b in G. Without loss of generality, we
assume that s is adjacent to b. By 3-connectivity, there exists a simple path from b

to q whose inner vertices belong to K. Together with the edges bs and sq, this path
forms a simple cycle C, see Figure 46a. We will show that the vertex t belongs to the
side of C that also contains a. Towards a contradiction, assume otherwise, that is:

Case 2.1: t and a belong to distinct sides of C. For an illustration, refer to Figure 46a.
By planarity and since a, b, q separate the vertices in K ′ (in particular, t) from the
vertices in K, the vertices b, s, q form a separating triple. Thus, by 3-connectivity,
the vertex s has a neighbor s′ on the side of C that contains a (possibly s′ = a).
Further, the vertex b has some neighbor b′ ∈ K ′ on the side of C that contains t
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(possibly b′ = t). By the degree constraints for s, we have NG(s) = {b, t, q, d′, s′},
where d′ is the interior vertex of stq.

Let us study the location of the vertices c, d. By Property (F3), we have c 6= s.
Further, c cannot belong to the side of C that contains t, since otherwise the edge ac
would cross C. Recall that the degree of b is bounded by five and, hence, NG(b) =
{a, c, d, s, b′}. Since b has at least one neighbor in K it follows that c, d belong to K,
see Figure 46b.

Our plan is to show that at least one of the edges st and tq is not constrained
by a real 4-inhibitor and can be collapsed without creating a separating pair, which
yields a contradiction to assumption (F4).

First, assume that st is constrained by a real 4-inhibitor Ist = stxy. If y = s′, we
have x = b or x = q since b, s, q is separating. In both cases, we obtain a contradiction
to Lemma 28. By Observation 27, it follows that y = b. Since b, s, q is separating
and by Observation 27, we obtain that x = b′ 6= t. As Ist is separating, three of
its vertices have a neighbor on the side of Ist that does not contain a. This is a
contradiction to the degree bound of b or s.
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Figure 46: Illustrations for Case 2.1 in Lemma 38.

It remains to consider the case that collapsing st creates a separation pair pst, qst,
where by Observation 31, we may assume that pst is the vertex resulting from
collapsing st and that qst /∈ {q, d′}. We will show that |K ∩NG(q)| = 1 and that qst is
the (only) vertex in this set. As a first step, we show that each vertex z in G\{s, t, qst}
is still connected to at least one of b or q, regardless of the identity of qst (in particular,
if qst = b, every vertex is connected to q). For the case z = d′ the statement is clearly
true. Next, assume that z belongs to the connected component of G \ {b, s, q} that
does not contain t. By 3-connectivity, there exist three paths from z to b, s, q that
are pairwise vertex-disjoint except for the common endpoint z. Only up to two of
these paths can be destroyed by removing s, t, and qst, as t belongs to the connected
component of G \ {b, s, q} that does not contain z. As removing s destroys the path
between z and s, we obtain that the path between z and q or the path between z
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and b remains after the removal of s, t, qst. It remains to consider the case that z
( 6= d′) belongs to the connected component of G \ {b, s, q} that contains t. Again,
there exist three paths from z to b, s, q that are pairwise vertex-disjoint except for
the endpoint z. Due to the degree bound of s, the path to s must contain t. Thus,
the removal of s, t, and qst can only destroy the path from z to b or the path from z

to q, but not both. Altogether, this shows that

(F11) each vertex is connected to b or q in G \ {s, t, qst}.

We now show that, unless qst ∈ K ∩ NG(q) and |K ∩ NG(q)| = 1, every vertex
of G\{s, t, qst} belongs to the same connected component, which yields a contradiction
to Observation 30. If qst = b, all vertices are connected to q by (F11). So assume
that qst 6= b. If b and q are connected in G \ {s, t, qst}, then all vertices are connected.
So assume that b and q are not connected. This implies that qst ∈ K, as otherwise
there clearly is some path between b and q whose inner vertices belong to K. Assume
that there is a vertex k 6= qst that belongs to K ∩NG(q). From k there exist three
paths to a, b, q in G that are pairwise vertex-disjoint except for the common endpoint k
and whose inner vertices belong to K. We may assume the path to q to be the edge qk.
Thus, removal of qst may only destroy the path to a or to b but not both. Since a
and b are adjacent, together with (F11) we obtain that all vertices in G \ {s, t, qst}
are connected, a contradiction. In conclusion, s, t, qst is a separating triple where qst
is the singleton vertex in K ∩NG(q), as depicted in Figure 46b.

In order to prepare for the final step, in which we consider the remaining edge tq,
we will show that NG(q) = {s, t, d′, qst}. Our choice of e implies that a, b /∈ NG(q). So
assume that there is a neighbor z /∈ {s, t, d′, qst} of q. We have z ∈ K ′, since K ∩
NG(q) = {qst}, as established in the previous paragraph. Assume that z belongs
to the side of C that contains t. By 3-connectivity and since b, s, q are separating,
there exist three paths from z to b, s, q that are pairwise vertex-disjoint except for
the common endpoint z. The path to s must contain t due to the degree bound for s.
Therefore, in G \ {s, t, qst} the vertices q and b are still connected via z since qst ∈ K
cannot belong to any of these paths. However, by (F11), this is a contradiction to
the fact that s, t, qst are separating. Thus, it remains to consider the case that z
belongs to the side of C that does not contain t. By 3-connectivity and since a, b, q are
separating, there exist three paths from z to a, b, q that are pairwise vertex-disjoint
except for the common endpoint z. We may assume that the path to q is the edge qz.
By planarity, any of the paths to a, b can pass through t only after going through s;
and none of the two paths passes through qst ∈ K. Hence, due to these paths and
the edge ab, the vertex z is connected to both b and q in G \ {s, t, qst}. Again this
is a contradiction to (F11) and the fact that s, t, qst is separating. Altogether this
shows that NG(q) = {s, t, d′, qst}, as claimed.

Let us now study the remaining edge tq. First, assume that tq is constrained
by a real 4-inhibitor Itq = tqvw. We study the identity of v. By Observation 27
we have v /∈ {s, d′}. Together with NG(q) = {s, t, d′, qst} it follows that v = qst.
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Since a, b, q is separating, we have w ∈ {a, b}. As a and t are on different sides of
the cycle C, by planarity we have w = b and so Itq = tqqstb. The degree bound
of b enforces qst = c. The vertices s, d′, a belong to the same side of Itq. Since Itq
is separating, there is some vertex z on the side of Itq that does not contain a. By
3-connectivity, there exist three paths from z to vertices of Itq that are pairwise
vertex-disjoint except for the common endpoint z. We obtain a contradiction to
the degree bound of b or the fact that NG(q) = {s, t, d′, qst}. Altogether, this shows
that tq is not constrained by a real 4-inhibitor.

It remains to consider the case that collapsing tq creates a separation pair ptqqtq
where by Observation 31, we may assume that ptq is the vertex resulting from
collapsing tq and that qtq /∈ {s, d′}. We claim that NG(q) \ {t, q, qtq} is connected
in G \ {t, q, qtq}, which yields a contradiction to Observation 30. Recall that NG(q) =
{s, t, d′, qst}. Hence, if qtq = qst, our claim obviously holds. Otherwise, it suffices to
show that qst is still connected to s. There exist three paths from qst to a, b, q that are
pairwise vertex-disjoint except for the common endpoint qst and whose inner vertices
belong to K. We may assume that the path to q is the edge qqst. Since t ∈ K ′, the
removal of t, q, qtq may only destroy the path from qst to a or the path to b, but not
both. Thus, if qtq 6= b, the edges bs and ab imply the claim. So assume that qtq = b.
There exist three paths from s to a, b, q that are pairwise vertex-disjoint except for
the common endpoint s. The path to a cannot contain t and, thus, in G \ {t, q, qtq}
there exists a path from s to a. Since G \ {t, q, qtq} also contains a path from a to qst
(through K), we conclude that s and qst are connected, which yields the desired
contradiction. Altogether this shows that collapsing tq does not create any separation
pair. Since tq is also not constrained by a real 4-inhibitor, we obtain a contradiction
to assumption (F4). Hence, the vertices t and a cannot belong to distinct sides of
the cycle C, that is, Case 2.1 does not occur, as claimed. /

Case 2.2: t and a belong to the same side of C. See Figure 47a for illustration. Our
plan is to establish that qsq ∈ K ′ ∪ {a} and then to study the constraints implied
by assumption (F4) for the remaining two edges st and tq of the triangle stq. As a
preparation, we show that

(F12) the side of C that does not contain a and t does not contain any vertices
of K ′ and, hence,

– the cyclic order of neighbors around s is t, d′, q, b and then, potentially some
other vertex s′;

– the cyclic order of neighbors around b is s, then some vertices of K, a, and then
potentially some vertices in K ′; and

– the cyclic order of neighbors around q is s, d′, t, potentially some vertex in K ′,
and then at least one vertex in K.
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Towards a contradiction, assume that (F12) does not hold. This implies that b, s, q
are separating and by 3-connectivity each of them has a neighbor in K ′ on the side
of C that does not contain a and t, see Figure 47b. Let s′ denote the neighbor
of s. We show that st is not constrained by a real 4-inhibitor and, further, that
collapsing st cannot create a separation pair, which contradicts assumption (F4).

First, assume that st is constrained by a real 4-inhibitor Ist = stxy. We study
the identity of y. Assume that y = s′. In this case, since b, s, q is separating, we
have x ∈ {b, q}. In both cases we obtain a contradiction to Lemma 28. So assume
that y = b. Since a, b, q are separating, we have x /∈ K. Since b, s, q are separating, x
cannot be the neighbor of b on the side of C that does not contain t. Finally, since ab
is not constrained by a real 4-inhibitor (because e = ab is a candidate edge), it follows
that x 6= a and, hence, x ∈ K ′ and it belongs to the side of C that contains t. Three
of the vertices of Ist have a neighbor on the side of Ist that does not contain a. This
is a contradiction to the degree bound of b or s. Hence, the edge st is not constrained
by a real 4-inhibitor.
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Figure 47: Illustrations for Case 2.2 in Lemma 38.

Next, assume that collapsing st creates a separation pair pst, qst where by Ob-
servation 31, we may assume that pst is the vertex resulting from collapsing st and
that qst /∈ {q, d′}. We will show that the vertices in NG(s) \ {s, t, qst} ⊆ {b, q, d′, s′}
are connected in G \ {s, t, qst}, which yields a contradiction to Observation 30. The
vertices q and d′ remain connected regardless of the choice of qst. If qst = b, the
vertex s′ is still connected to q in G \ {s, t, qst} by 3-connectivity and since b, s, q are
separating. If qst = s′, the vertex b is still connected to q via some path through K in
G \ {s, t, qst} by 3-connectivity and since a, b, q are separating. If qst ∈ K ′ \ {s′}, the
vertex s′ remains connected to at least one of b or q in G \ {s, t, qst} since b, s, q is sep-
arating and t and s′ are in distinct components of G \ {s, t, qst} and by 3-connectivity.
Further, b and q are connected via some path through K as a, b, q is separating and
by 3-connectivity. Finally, if qst ∈ K ∪{a} then, by 3-connectivity and since b, s, q are
separating, there exists a path in G \{s, t, qst} between b and s′ and a path between s′



4.5. Collapsing edges 105

and q. Thus, regardless of the choice of qst, we obtain a contradiction and, hence,
collapsing st does not create a separation pair. Since st is also not constrained by
a real 4-inhibitor, we obtain a contradiction to assumption (F4). Altogether, this
establishes (F12).

The identity of qsq. We claim that

(F13) qsq ∈ K ′ ∪ {a}.

First we will establish qsq 6= b by showing that the graph G \ {s, q, b} is connected.
Clearly every vertex of K remains connected to a. It suffices to show that every z ∈
K ′ \ {s} is also connected to a. By 3-connectivity, there exist three paths Pa, Pb, Pq
between z and a, b, q, respectively, that are pairwise vertex-disjoint except for the
common endpoint z and whose interior vertices belong to K ′. The vertices b, q
cannot belong to the path Pa. Assume that s ∈ Pa and, hence, s /∈ Pb, Pq. Then,
by planarity, fact (F12), and 3-connectivity, the subpath of Pa that connects s
with a intersects Pb − z or Pq − z, contradicting the assumption that these paths
are pairwise vertex-disjoint. It follows that s /∈ Pa and, hence, the vertex z is
connected to a in G \ {s, q, b}. Altogether, this shows that G \ {s, q, b} is connected
and, consequently, qsq 6= b.

Next, assume that that qsq ∈ K. We show that every vertex of G \ {s, q, qsq} is
connected to b and, thus, obtain a contradiction. The vertex a is connected to b via
the edge ab. For each vertex v′ ∈ K ′ there exist three paths to a, b, q in G that are
pairwise vertex-disjoint except for the common endpoint v′. As qsq is located in K,
removing s, q, qsq from G leaves the path from v′ to a or the path from v′ to b intact.
In any case, this implies that v′ is connected to b in G \ {s, q, qsq} due to the edge ab.
Finally, each vertex v of K has three paths to a, b, q that are pairwise vertex-disjoint
except for the common endpoint v. As s is located in K ′, removing s, q, qsq from G
leaves the path from v to a or the path from v to b intact. Again, this implies that v
remains connected to b due to the edge ab. Altogether, this shows that qsq /∈ K and
establishes (F13).

Next we show that (F13) implies that

(F14) t and b are not connected in G \ {s, q, qsq}.

Assume otherwise. Each of s, q, qsq has a neighbor in the component of G\{s, q, qsq}
that does not contain b, t, d′. Let s̃ and q̃ denote these neighbors of s and q, respectively.
A path from b to t in G \ {s, q, qsq} together with the edges st and bs form a cycle C ′
in G, for an illustration see Figure 48. By (F12), the vertices s̃ and q̃ are located on
distinct sides of C ′ (none of these vertices belongs to C ′ since they are not is connected
to t and b in G\{s, q, qsq}). By planarity, the path from q̃ to s̃ in G\{s, q, qsq} intersects
the path from b to t in some vertex. However, this implies that NG(s) \ {s, q, qsq} is
connected in G \ {s, q, qsq}, since the two intersecting paths are in G \ {s, q, qsq}. We
obtain a contradiction to Observation 30. Altogether, this establishes (F14).
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Figure 48: Illustrations for Case 2.2 in Lemma 38.

We proceed by studying the remaining edges of stq. Recall that, by assump-
tion (F4), each of st and tq is constrained by a real 4-inhibitor or its collapse creates
a separation pair. Let us start by studying the edge st.

Case 2.2.1: st is constrained by a real 4-inhibitor Ist = stxy. We will show that
this case cannot occur. We begin by studying all possible identities of the vertices x
and y. We will see that there are two principal options for the identity of Ist,
namely Ist = stqsqb as depicted in Figure 49a, or Ist = stt′s′ as depicted in Figure 49b.
Having these two options in mind, we proceed to show that qt is a candidate edge.
Using assumption (F5), we show that the situation looks as depicted in Figure 50b.
To obtain the desired contradiction, we then show that the edge ŝt′ is a candidate
edge that can be collapsed without creating a separation pair, which contradicts (F4).
Let us proceed to carry out this plan.

To establish the first possible identity of Ist, assume that y = b. By (F14), the
vertices b and t are in distinct components of G \ {s, q, qsq} (in particular, they are
nonadjacent). It follows that x ∈ {q, qsq}. If x = q, then collapsing e = ab creates an
adjacent separation pair, in contradiction to the choice of e. So we obtain Ist = stqsqb,
see Figure 49a. Note that in this case qsq 6= a because e = ab is a candidate edge.

For the other identity of Ist, assume that y 6= b. By Observation 27, we have q, d′ /∈
Ist. Further, x 6= b since b and t are in distinct components of G \ {s, q, qsq}.
Thus, x, y ∈ K ′ ∪ {a}. By 3-connectivity three vertices of Ist need a neighbor on the
side of Ist that does not contain q and b. The degree bound of s implies that these
three vertices are x, y, t. Now the degree bound of a implies that none of x, y can
be a. In particular, even if c ∈ K ′ and Ist shares the edge ac with abc the degree
bound of a is violated since it has at least one neighbor in K.

Hence, we either have Ist = stqsqb; or Ist = stt′s′ where s′ and t′ are neighbors
of s and t, respectively, in K ′; see Figure 49. In both cases, 3-connectivity implies
that t has a neighbor t̂ on the side of Ist = stxy that does not contain q: if Ist = stt′s′,
this follows from the degree bound of s as explained above. If Ist = stqsqb, it follows
from the degree bound of b. In particular, even if c ∈ K ′ and Ist shares the edge bc
with abc the degree bound of b is violated since it has at least one neighbor in K.

Let us proceed by studying the last edge tq of sqt. For the sake of contradiction,
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Figure 49: Illustrations for Case 2.2.1 in Lemma 38.

assume that qt is constrained by a real 4-inhibitor Itq = tqvw. If w = t̂, then by
Lemma 28, v is the vertex y of Ist = stxy. If Ist = stqsqb and, thus, y = b, we obtain
a contradiction to the degree bound of b. If Ist = stt′s′ and, thus, y = s′, the triple
sqs′ forms a real separating triangle that is not vertex-disjoint from sqt, which is a
contradiction to (F3). By Observation 27, the only other option is w = x. However,
since Itq = tqvw is separating and by 3-connectivity, three vertices of Itq have a
neighbor on the side of Itq that does not contain t̂. This contradicts the degree bound
of t or q regardless of whether Ist = stqsqb or Ist = stt′s′. Hence, qt is not constrained
by a real 4-inhibitor.

Next suppose that collapsing tq creates a separation pair ptqqtq where by Obser-
vation 31, we may assume that ptq is the vertex resulting from collapsing tq and
that qtq /∈ {s, d′}. We claim that

(F15) Ist = stt′s′, qtq = s′, and t′ is not connected to a in G \ {t, q, s′}.

To prove the claim we show that if any of the three conditions is violated, we obtain
a contradiction to the fact that, by Observation 30, the vertices NG(t) \ {t, q, qtq} are
not connected in G \ {t, q, qtq}. Obviously, d′ and s remain connected G \ {t, q, qtq}.

Assume towards a contradiction that Ist = stqsqb. By 3-connectivity, there exist
paths from t̂ to s, t, qsq. These paths are pairwise vertex-disjoint, except for the
common endpoint t̂. Thus, if qtq = t̂ or qtq = qsq, we obtain the claimed contradiction
to Observation 30 (in the former case, due to the edges sb, bqsq), so assume otherwise.
As t̂ is on the side of Ist that does not contain q, removing t, q, qtq from G leaves the
path from t̂ to s or the path from t̂ to qsq intact. If the former path is intact, we
obtain the claimed contradiction to Observation 30 (qsq can reach s via the path
to t̂ or the path qsqbs). So assume that this is not the case and, hence, that the
path to qsq is intact, which together with the edges bqsq and bs yields the claimed
contradiction to Observation 30.

This establishes the first statement of Claim (F15), namely, Ist = stt′s′. By
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3-connectivity, there exist paths from t̂ to t, s′, t′. These paths are pairwise vertex-
disjoint, except for the common endpoint t̂. Thus, if qtq = t̂ or qtq = t′, we obtain
the claimed contradiction to Observation 30 due to the edges ss′ and s′t′, so assume
otherwise. Removing t, q, qtq from G leaves the path from t̂ to s′ or the path from t̂

to t′ intact. If the path to s′ is intact, the contradiction to Observation 30 follows due
to the edges ss′ and s′t′. So assume that the path to s′ is destroyed by removing qtq
and, thus, the path to t′ remains. If qtq 6= s′, we again obtain a contradiction to
Observation 30 due to the edges s′t′ and ss′. It follows that qtq = s′, which establishes
the second statement of Claim (F15). The final statement, t′ is not connected to a
in G \ {t, q, s′}, is also satisfied, since otherwise the edges ab and bs yet again yield
the claimed contradiction to Observation 30. Altogether this proves Claim (F15).

By 3-connectivity, there is a path Ps′a from s′ to a that does not pass through any
of b, q. Let z the first vertex of Ist that is encountered when traversing Ps′a from a

towards s′. We have z /∈ {s, t} due to the degree bounds of s and t and because Ps′a
does not pass through q. Further, z 6= t′ since t′ is not connected to a in G \ {t, q, s′}
by assumption. It follows that z = s′ and that s′ has an edge to a neighbor s̆ on the
side of Ist that does not contain t̂ such that s̆ ∈ Ps′a (it is possible that s̆ = a), see
Figure 50a.

We remark that this situation is actually plausible, e.g. consider the case that s̆ = a

and that t′ has an edge to q. Recall that qt is not constrained by a real 4-inhibitor
and that the only separation pair created by collapsing qt is ptq, s′, which cannot be
adjacent as this would imply an edge between s′ and t, which violates the degree
bound of t, or an edge between s′ and q, which implies that sqs′ is a separating
triangle (real or not) that is not vertex-disjoint from the real separating triangle stq
and, hence, yields a contradiction to (F3). Thus, qt is a candidate edge.

We now make use of the fact that, by assumption (F6), s′ belongs to a real
separating triangle s′vw with inner vertex d′′. Recall that s′ has edges to s, t′, s̆,
and a vertex, which we denote by ŝ, on the side of Ist that does not contain s̆. Due
to the degree constraints for s′ (implied by (G2)), at least two of these edges lead
to v, w, d′′. The vertex s cannot be part of real separating triangle other than sqt
by (F3). Moreover, due to the degree of s, we have s 6= d′′. By planarity, we
have {ŝ, s̆} 6⊆ {v, w, d′′}, as otherwise there would be an edge between ŝ and s̆.
Hence, t′ ∈ {v, w, d′′}. Recall that t′ and a belong to distinct connected components
of G \ {q, t, s′}. Moreover, the vertex s̆ belongs to the path Ps′a that connects s′
with a without visiting any of s, q, t, t′, b. It follows that s̆ /∈ {v, w, d′′}, as otherwise s̆
would be adjacent to t′ and, thus, t and a would be connected in G \ {q, t, s′}, which
is not the case by assumption. Hence, ŝ ∈ {v, w, d′′}.

So far we have shown that {s′, ŝ, t′} ⊆ {s′, v, w, d′′}. By planarity, the fourth
vertex {s′, v, w, d′′} \ {s′, ŝ, t′} cannot belong to the side of Ist that does not contain ŝ.
It cannot belong to Ist itself, either, as this would imply a chord of Ist, contradicting
Lemma 28. By planarity, we have t′ 6= d′′. Hence, we may assume without loss of
generality that v = t′ and ŝ = w, see Figure 50b.
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Figure 50: Illustrations for Case 2.2.1 in Lemma 38.

By 3-connectivity, the vertex t′ has three chordless paths to t, q, s′ that are pairwise
vertex-disjoint except for the common endpoint t′. We may assume that the paths
to t and s′ are the edges t′t and t′s′, respectively. Hence, due to the degree bound
of s, the path to q implies an edge incident to t′ on the side of Ist that does not
contain t̂, see Figure 50b.

The degree bounds of s, s′, and t′ (implied by (G2)) and 3-connectivity now imply
that the side of Ist that contains ŝ contains no other vertex aside from ŝ and d′′,
since otherwise ŝ and t would be a separation pair in G. This implies that ŝ = t̂ and,
hence, NG(ŝ) = {s′, t, t′, d′′}. It follows, by Observation 27 and Lemma 28, that the
edge ŝt′ cannot be constrained by a real 4-inhibitor (since tt′ would be a chord of
such an inhibitor). Moreover, it follows by Observation 30 that collapsing ŝt′ cannot
create a separation pair: in G \ {ŝ, t′, qŝt′} with qŝt′ ∈ V(G) \ {s′, d′′} the vertices
NG(ŝ) \ {ŝ, t′, qŝt′} are connected regardless of the identity of qŝt′ : if qŝt′ 6= s, this
follows due to the edges ss′ and st. Otherwise, it follows due to the edge qt, path
between q and a via K and the path Ps′a. Hence, ŝt′ is a candidate edge that can be
collapsed without creating a separation pair, in contradiction to (F4). In summary,
we have shown that st is not constrained by a real 4-inhibitor. /

Having obtained a contradiction in Case 2.2.1, it follows that we are in

Case 2.2.2: Collapsing st creates a separation pair pst, qst. (This follows from the
assumption that st is not constrained by a real 4-inhibitor and (F4), as explained in
the beginning of Section 4.5.7.2.) By Observation 31, we may assume that pst is the
vertex resulting from collapsing st and that qst /∈ {q, d′}. Recall that by (F13) we
have qsq ∈ K ′ ∪ {a}. We distinguish several cases regarding the position of qst. Let
us assume that:

Case 2.2.2.1: qst ∈ K. We show that this is possible in a constrained special case only
and describe a separate treatment for this case. For illustration refer to Figure 51.
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Preparation. We start by establishing some statements which will be useful for
the upcoming considerations regarding the last edge qt of stq. First, we show that

(F16) K ∩NG(q) = {qst}.

Assume otherwise and let k ∈ K ∩NG(q) with k 6= qst. We claim that the vertices
in NG(s) \ {s, t, qst} are connected in G \ {s, t, qst}, which yields a contradiction to
Observation 30. We proceed by proving this claim. By 3-connectivity and since a, b, q
is a separator, there exist three paths from k to a, b, q that are pairwise vertex-disjoint
except for the common endpoint k. Moreover, the interior vertices of these paths
belong to K. We may assume that the path to q is the edge kq. Hence, since s, t ∈ K ′,
removing s, t, qst can only destroy the path to a or to b, but not both. Due to the
edge ab, this implies that q and d′ belong to the same component as a and b in
G\{s, t, qst}. If |NG(s)| = 4 of if s is adjacent to a, we obtain the claimed contradiction
to Observation 30. So assume that s has another neighbor s′ ∈ K ′ \ {b, t, q, d′}. By 3-
connectivity there exist three paths from s′ to s, t, qst that are pairwise vertex-disjoint
except for the common endpoint s′. The path to qst passes through a, b, or q. This
path shows that s′ is also connected to b, q, d′ in G \ {s, t, qst} and, hence, we obtain
the claimed contradiction to Observation 30. Altogether, this establishes (F16).

We observe that in G \ {s, t, qst} all vertices of K \ {qst} are connected to a and b:
this follows from the fact that each vertex in K \{qst} has three disjoint path to a, b, q
and only the path to q is destroyed by removing s, t, qst by (F16) and since s and t
belong to K ′. In particular, this holds for the neighbors of qst in K. Thus,

(F17) in G \ {s, t, qst}, the vertices a and b belong to a different component than q,

since by Observation 30, the vertices NG(qst)\{s,t,qst} are not connected in the
graph G \ {s, t, qst}. We proceed by showing that

(F18) K ′ ∩NG(q) = {s, t, d′}.

Assume otherwise and let k ∈ K ′ \ {s, t, d′} be a neighbor of q. Recall that
by (F12) the side of C that does not contain a and t does not contain any vertices
of K ′. By 3-connectivity there exist three paths from k to a, b, q that are pairwise
vertex-disjoint except for the common endpoint k. We may assume that the path to q
is the edge kq. Assume that one of the two remaining paths passes through s. Then,
by planarity, the other remaining path cannot pass through t. Thus, in G \ {s, t, qst},
there is a path from k to a or to b since qst belongs to K. We obtain a contradiction
to (F17) due to the edge kq. Altogether, this establishes (F18).

Algorithmic considerations. Before we continue with the argument, let us
briefly note how to efficiently recognize this case (qst ∈ K), for the given ver-
tices a, b, c, d, s, t, q, d′. We have seen that (1) qst is the only neighbor of q in K and
(2) the only neighbors of q in K ′ are s, d′, t. Therefore, degG(q) = 4. Conversely, if
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degG(q) = 4, then the unique neighbor of q outside of s, d′, t together with s, t forms
a separating triple. Hence, we are in this case if and only if degG(q) = 4, which can
be tested in constant time.
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Figure 51: Illustration for Case 2.2.2.1 in Lemma 38.

The last edge qt. Let us continue our argument by considering the third edge qt
of stq. We will start by showing that qt cannot be constrained by a real 4-
inhibitor. Assume otherwise and let Iqt = qtvw be a real 4-inhibitor constraining qt.
By (F16), (F18), and Observation 27, we have w = qst. As a, b, q is separating,
we obtain that v = a or v = b. The latter case would imply an edge between b

and t, a contradiction to (F14). So v = a and it follows that a and t are adjacent.
Since Iqt = qtvw = qtaqst is separating, there is a vertex z on the side of Iqt that
does not contain b. By 3-connectivity there exist three paths from z to three distinct
vertices of Iqt that are pairwise vertex-disjoint except for the common endpoint z.
As t ∈ K ′ and qst ∈ K, two of these paths have their endpoints at q and a, respectively.
This is a contradiction to (F16) and (F18). Altogether, this shows that qt cannot be
constrained by a real 4-inhibitor.

It remains to consider the case that collapsing qt creates a separation pair pqt, qqt
where by Observation 31, we may assume that pqt is the vertex resulting from
collapsing qt and that qqt /∈ {s, d′}. We will show that the only possibility is qqt = b.
Towards a contradiction, assume otherwise:

Case 2.2.2.1.1: qqt 6= b. We show that NG(q) \ {q, t, qqt} = {s, d′, qst} \ {qqt} is
connected in G \ {q, t, qqt}, which yields a contradiction to Observation 30. It suffices
to show that each vertex of the set is connected to b. This is clear for s and d′ due to
the edge bs. By (F16) and (F18) the only other vertex that may be contained in the
set is qst; this is the case only if qqt 6= qst. The vertex qst (assuming that qqt 6= qst)
has three paths to the vertices a, b, q that are pairwise vertex-disjoint except for the
common endpoint qst and whose interior vertices belong to K. Removing q, t, qqt can
destroy at most two of these paths, as t ∈ K ′. Moreover, one of the destroyed paths
is the one to q. Hence, the path to to a or the path to b remains intact. In the latter
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case, there is nothing to show; in the former case the edge ab implies the claim, which
yields the claimed contradiction to Observation 30. /

Having obtained a contradiction in the previous case, it follows that collapsing qt
creates a unique separation pair, namely pqt, qqt = b.

Case 2.2.2.1.2: qqt = b. We proceed in three steps. First, we show that in G \{q, t, b}
there is no path from s to a. From this we can conclude that s cannot have any
neighbor in K ′ except for the vertices t, d′. Finally, we will derive that the rigid
triconnected component R ∈ R of G′ that contains sqt is a specific graph of constant
size. We will use this fact and choose the edge set KR explicitly, rather than inductively.
Let us proceed by carrying out this plan.

First, assume, towards a contradiction, that in G \ {q, t, b} there is a path Psa
from s to a. We show that this path implies that NG(b) \ {q, t, b} is connected
in G \ {q, t, b}, which yields a contradiction to Observation 30. This is obvious for
the vertices s, a, c, d. So let b′ denote a fifth neighbor of b. If b′ ∈ K, it is still
connected to a, by 3-connectivity and since a, b, q is separating and t ∈ K ′. So assume
that b′ ∈ K ′. The edges bs and ab together with Psa form a cycle Csa. If b′ is on Psa,
then it is connected to a via this path. So assume otherwise. By planarity b′ is
located on the side of Csa that does not contain t. By 3-connectivity there exist
three paths from b′ to three distinct vertices of Csa. Since q, t belong to the side of
the Csa that does not contain b′, two of these paths remain in G \ {q, t, b}. Hence, b′
is connected to a, b, c, d, s and we obtain the claimed contradiction to Observation 30.
Altogether, this shows that

(F19) in G \ {q, t, b} there is no path from s to a.

Next, we show that

(F20) NG(s) = {q, d′, t, b}.

Assume otherwise and let s′ ∈ (K ′ ∪ {a}) \ {t, d′} be a neighbor of s. By (F19),
we have s′ 6= a. Recall that, by (F12), the side of C that does not contain a and t
does not contain any vertices of K ′. Observe that the path abstq separates s′ from K

since a, b, q is separating. Thus, by 3-connectivity there exist three paths connecting s′
to distinct vertices of abstq. By (F18) (K ′ ∩NG(q) = {s, t, d′}) and (F19), the paths
from s′ lead to s, t, and b. This implies the existence of a path Pbt between t and b
via s′ that does not pass through s, a, or q. By (F14), the vertices t and b are not
connected in G \ {s, q, qsq}. As a consequence, qsq belongs to Pbt.

We will show that there is another path between b and t that does not pass
through s and q and, in addition, it does not pass through qsq, either; altogether,
this yields a contradiction to (F14). By (F19), the vertices a and s belong to distinct
components of G \ {q, t, b}. Moreover, the vertex qsq belongs to the component
of G \ {q, t, b} that contains s since s′ belongs to Pbt and s and s′ are adjacent.
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This implies that there exist three paths from a 6= qsq to q, t, b that are pairwise
vertex-disjoint except for that common endpoint a and that do not contain any
of s, q, qsq as interior vertices. But then b and t belong to the same connected
component of G \ {s, q, qsq}, which is the desired contradiction to (F14). Altogether
this shows (F20).

We observe that t has some neighbor t′ other than s, q, d′, as otherwise s, q would
be a separation pair in G. By (F14), this neighbor cannot be b. It could be that
there is an edge between t and a, as shown in Figure 52a. Alternatively, t′ could be
some vertex of K ′ \ {s, d′}, see Figure 52b. As the path abstq separates t′ from the
vertices in K, we obtain that there are three paths from t′ to three distinct vertices
of abstq. By (F18) and (F20), the endpoints of these paths are a, b, t. Therefore, in
this case, a, b, t is a separating triple and, thus, collapsing e = ab also creates the
separation pair p, t (in addition to p, q). Note our choice of e implies that these two
possibilities are mutually exclusive, that is, either there is an edge between t and a
or there is the neighbor t′ ∈ K ′ \ {s, d′} as otherwise collapsing e would create an
adjacent separation pair. Further, note that these two cases can be distinguished in
constant time (by checking for the presence of the edge at).
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Figure 52: Illustrations for Case 2.2.2.1.2 in Lemma 38.

It also follows that in both cases the triconnected component R ∈ R of G′ that
contains sqt has an explicit form, see Figure 53: it contains sqt together with its inner
vertex d′, the edge ps, the G′-virtual edge pq and the edge pt which is either G′-virtual
or not.

Recall that currently, in Section 4.5.7.2, we are only concerned with ensuring
that the separation pairs of G′ do not become adjacent when collapsing the edges
in K′ if the sets KR are chosen, inductively or explicitly, such that (J1)–(J4) hold for
the respective rigid triconnected component R of G′ (the remaining separation pairs
of G′′ are dealt with in Section 4.5.7.3).

If pt is not G′-virtual in R (and thus p, t is not a separation pair in G′), we
set KR = {st}. This choice of KR clearly satisfies the Properties (J1)–(J4) for the
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Figure 53: Illustrations for Case 2.2.2.1.2 in Lemma 38.

graph R (note that collapsing st in R results in a K3). Moreover, this choice does
not create any new adjacencies for the vertices of G′. In particular, the separation
pair p, q remains nonadjacent.

If pt is G′-virtual in R (and so p, t is a separation pair in G′), we set KR = {qt}.
Again, this choice of KR clearly satisfies the Properties (J1)–(J4) for the graph R
(note that collapsing qt in R results in a K3). Recall that, by Observation 31, every
separation pair of G′ involves p. The collapse of qt in G′ does not create any new
adjacencies for p since our choice of e guarantees that pq /∈ E(G′) and pt /∈ E(G′). In
particular, the separation pairs p, q and p, t remain nonadjacent. /

Altogether, we have shown how to explicitly deal with the obstruction presented
by the path psq for the case that collapsing st creates a separation pair pst, qst
where qst ∈ K (Case 2.2.2.1). Thus, from now on, we may assume that none of the
separation pairs pst, qst has qst ∈ K. /

Recall that we are considering the case that collapsing sq creates a separation
pair psq, qsq where psq is the new vertex created by the contraction and qsq ∈ (K ′ ∪
{a}) \ {t, d′} due to (F13). Moreover, collapsing st creates a separation pair pst, qst
where pst is the vertex resulting from collapsing st and qst /∈ {q, d′}. We are in the
process of determining the possible identities of qst.

Note that collapsing st may create multiple separation pairs (all involving pst),
i.e., our choice of qst might not be unique. So far, we have dealt with the case
that there exists a choice for qst such that qst ∈ K. It remains to consider the case
that qst ∈ K ′ ∪ {a, b}. First, assume that:

Case 2.2.2.2: qst = b. (And collapsing st does not create a separation pair pst, q2
st

with q2
st ∈ K.) We will show that this case cannot occur. To this end, we claim

that NG(s) \ {s, t, b} is connected in G \ {s, t, b}, which yields a contradiction to
Observation 30. If s has no neighbor except b, t, q, d′, our claim clearly holds. So
assume that s has some neighbor s′ in (K ′ ∪ {a}) \ {t, d′}. By 3-connectivity and
since a, b, q is separating in G, there is a path between a and q whose interior vertices
belong to K. Consequently, we have that
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(F21) a, q, d′ belong to the same connected component of G \ {s, t, b}.

This implies our claim for the case that s′ and a are connected in G \ {s, t, b}. It
follows that it is sufficient to deal with the case that

(F22) s′ and a belong to distinct connected components of G \ {s, t, b}.

In particular, this implies that s′ 6= a, i.e., s′ ∈ K ′ \ {t, d′}. There exist three
paths from s′ to b, s, t, respectively, that are pairwise vertex-disjoint except for the
common endpoint s′; see Figure 54 for illustration. This implies the existence of a
path Pbt between b and t via s′ such that, by (F21) and (F22),

(F23) the interior vertices of Pbt belong to the connected component of G \ {s, t, b}
that does not contain a, q, d′.

In other words, Pbt does not pass through any of s, q, d′, a. By (F14), the path Pbt
passes through qsq and, in particular, qsq 6= a.
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Figure 54: Illustration for Case 2.2.2.2 in Lemma 38.

We will show that there is another path between b and t that does not pass
through s nor q and, in addition, it does not pass through qsq, either; altogether, this
yields a contradiction to (F14). By 3-connectivity, there exist three paths Pas, Pat, Pab
from a (6= qsq) to s, t, b, respectively, that are pairwise vertex-disjoint except for the
common endpoint a. We may assume that Pab = ab. By (F23), none of Pas and Pat
contain an interior vertex of Pbt (because the interior vertices of Pas and Pat belong to
the connected component of G \ {s, t, b} that contains a). In particular, Pat does not
go through qsq, and Pas does not go through s′. Therefore, Pas must pass through q,
because all other neighbors of s (except d′) are excluded. It follows that Pat cannot
pass through q. Thus, Pat together with the edge ab constitutes a path between b
and t in G \ {s, q, qsq}, which is the desired contradiction to (F14). /

It remains to treat the case that:

Case 2.2.2.3: qst ∈ K ′ ∪ {a}. (And collapsing st does not create a separation
pair pst, q2

st where q2
st ∈ K ∪ {b}.) We show that this is possible in a constrained
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special case only, for which we will describe a separate treatment. We start by
establishing some basic properties implied by the case assumption and then study
the constraints implied by (F4) for the final edge qt of sqt.

Preparation. The main goal of this preparatory step is to show that

(F24) there exists a path Psa between s and a (as depicted in Figure 55) whose
length is at least two and whose interior vertices belong to K ′ \ {t, d′} (in particular,
it does not pass through any of a, b, q, t, d′).

Since s, t, qst belong to K ′∪{a}, there is a path Pbq between b and q in G\{s, t, qst}
(via K). The vertices NG(s) \ {s, t, qst} are not connected in G \ {s, t, qst} due to
Observation 30. The vertices b, q, d′ belong to this set and are connected in G\{s, t, qst}
due to Pbq. Consequently, s has a neighbor s′ ∈ (K ′ ∪ {a}) \ {d′} that belongs to
the connected component of G \ {s, t, qst} that does not contain b, q, d′. The vertex a
also does not belong to said component due to the edge ab and consequently, we
have s′ 6= a. Hence, s′ ∈ K ′ \ {d′}, for an illustration see Figure 55. Recall that,
by (F12), the side of C that does not contain a and t does not contain any vertices
of K ′. In particular, this implies that the cyclic order of edges around s is as depicted.

K ′

K

ab

s

q

t

d′

e

s′

qstPsa

Figure 55: Illustrations for Case 2.2.2.3 in Lemma 38.

By 3-connectivity, there exist three paths connecting s′ with s, t, qst, respectively,
that are pairwise vertex-disjoint except for the common endpoint s and that, by
the discussion in the previous paragraph, do not contain a, b, q, d′, s, t, qst as interior
vertices.

We claim that there is a simple path between qst and a, that does not pass through
any of b, s, t, q. If qst = a, the claim holds. So assume that qst 6= a. By 3-connectivity,
there exist three simple paths Ps, Pt, Pqst that connect a with s, t, qst, respectively,
that are pairwise vertex-disjoint except for the common endpoint a. Note that, by
the definition of s′, these paths belong to the connected component of G \ {s, t, qst}
that does not contain s′. We will show that Pqst has the desired properties. Let `
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denote the last vertex of {a, b, q} visited by Pqst when traversed from a towards qst.
If ` = a, there is nothing to show.

So assume that ` = q, for an illustration see Figure 56a. Consider a cycle formed
by the edge sq, the subpath of Pqst that connects q with qst, and a simple path Psqst

between qst and s via s′ that does not pass through t (which exists by 3-connectivity
and since s, t, qst is a separating triple). By planarity (recall that, by (F12), the cyclic
order of edges around s is as depicted ), this cycle separates t from a. Moreover,
it is vertex-disjoint from Pt (by definition of Pt, Pqst , Psqst). Hence, we obtain a
contradiction to planarity and, thus, ` 6= q.

It remains to consider the case that ` = b, for an illustration see Figure 56b. We
will show that there is a path between t and b in G \ {s, q, qsq} and, thereby, obtain
a contradiction to (F14). Consider a cycle C ′′ formed by the subpath of Pqst that
connects b with qst, the edge tq, the path C − s, and a simple path between qst and t
via s′ that does not pass through s (which exists by 3-connectivity and since s, t, qst
is a separating triple). This cycle separates s from a (by the cyclic order of edges
around b implied by (F12)) and, hence, it must be intersected by Ps. We claim
that Ps passes C ′′ via q. To this end, we analyze the different parts of C ′′: the
paths Ps and Pqst are disjoint by definition. Hence, Ps does not intersect the part
of C ′′ formed by the subpath of Pqst . By definition of Ps, it does not intersect the
part of C ′′ formed by the simple path between qst and t via s′ (that does not pass
through s). Hence, Ps intersects C ′′ in the part formed by (C − s− b). Towards a
contradiction, assume that Ps does not intersect q. It follows that all vertices in the
intersection of C ′′ with Ps belong to K. However, this implies that Ps contains a
subpath from s ∈ K ′ to some vertex of K that does not pass through any of a, b, q,
contradicting the 3-connectivity. Consequently, Ps intersects C ′′ in q. This implies
that Pt does not pass through any of s, q, b. By (F14), we have qsq ∈ (Pt ∪ ab).
However, there is another path from b to t that does not pass through s and q and
that is internally vertex-disjoint from Pt ∪ ab: the path formed by the subpath of Pqst

that connects b with qst and the path between qst and t via s′. Hence, b and t are
connected in G \ {s, q, qsq} and we obtain a contradiction to (F14).

Altogether, this shows that there is a simple path Pqst between qst and a, that does
not pass through any of b, s, t, q (to unify notation, we set Pqst = a in case qst = a).

The path formed by Pqst together with some simple path between qst and s via s′
that does not pass trough t is the desired path Psa from (F24), see Figure 55. We
conclude the preparatory step by showing that

(F25) all neighbors of b in K ′ belong to the connected component of a in G \ {q, t, b}.

This is clear for s due to existence of the path Psa. So suppose that b has a
neighbor b′ ∈ K ′ with b′ 6= s. (F25) holds for b′ if it belongs to Psa. Hence, assume
that this is not the case. By 3-connectivity and (F12), there exist three paths from b′

to the cycle Psa ∪ sba, which separates b′ from q. These paths are pairwise vertex-
disjoint except for the common endpoint b′. We may assume that one of the paths
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Figure 56: Illustrations for Case 2.2.2.3 in Lemma 38.

is the edge bb′. Since s, t, qst is separating b′ from s′ and due to the degree bound
of s, the remaining two paths lead to Pqst (which implies that qst 6= a in case a vertex
such as b′ exists) and, therefore, b′ is connected to a in G \ {q, t, b}, which establishes
claim (F25).

The final edge qt. Let us proceed by considering the final edge qt of stq. We
distinguish two cases.

Case 2.2.2.3.1: qt is constrained by a real 4-inhibitor Iqt = qtvw. We will show that
this cannot actually be the case. To this end, we study all possible identities of v
and w.
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Figure 57: Illustrations for Case 2.2.2.3.1 in Lemma 38.

The identity of Iqt. By Observation 27, we have {v, w} ∩ {s, d′} = ∅. Since e is
a candidate edge, we have w /∈ {a, b} (otherwise, collapsing e creates an adjacent
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separation pair). Assume that w ∈ K. Since a, b, q is separating, this implies
that v = a or v = b. The latter would imply an edge between b and t, which violates
planarity since b and t are separated (due to the cyclic order of edges around s implied
by (F12)) by a cycle formed by the path Psa∪sq and a path between between q and a
via K. Thus, v 6= b. So assume that v = a and, thus, there is an edge between a
and t. Recall that a belongs to the separating triangle abc with inner vertex d. Due
to the degree bound of a we obtain that c = w (Figure 57a); or c belongs to Psa
(Figure 57b). Since Iqt is separating, there is a vertex on the side of Iqt that does
not contain s. Moreover, this vertex has three paths to distinct vertices of Iqt, which
violates the degree bound of a or t. Altogether, this shows that w /∈ K.

It remains to consider the case that w ∈ K ′. Assume that the vertex v does not
belong to the component of G \ {s, t, qst} that does not contain q (in particular, this
is the case if w 6= qst). This brings the degree of t up to five. Since Iqt is separating,
there is a vertex on the side of Iqt that does not contain s. By 3-connectivity, this
violates the degree bound of t or q.

So assume that v belongs to the component of G\{s, t, qst} that does not contain q,
which implies that w = qst and, moreover, qst 6= a by our choice of e. Since Iqt
is separating, there is vertex z on the side of Iqt that does not contain s. By 3-
connectivity, there exist three paths from z to Iqt that are pairwise vertex-disjoint
except for the common endpoint z. Due to the degree bound of q, these paths lead
to v, qst, t, see Figure 58. Again, this brings the degree of t up to five. W.l.o.g. we
may assume that z is a neighbor of t.
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Figure 58: Illustrations for Case 2.2.2.3.1 in Lemma 38.

Obtaining the contradiction. Now that we have established that the situation
looks as depicted in Figure 58, our plan is as follows: first, we show that collapsing st
creates precisely one separation pair, i.e, the vertex qst is unique. It easily follows
that st is a candidate edge. We then use the fact that, by (F6), the vertex qst belongs
to a real separating triangle, which yields the desired contradiction due to the degree
bound implied by (G2).
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So first, let us establish that pst, qst is the unique separation pair created by
collapsing st. Towards a contradiction, assume that this is not the case and let p2

st, q
2
st

be another separation pair created by collapsing st. By Observation 31, we may
assume that p2

st = pst and q2
st 6= q, d′. Assume that q2

st belongs to the component
of G \{s, t, qst} that contains q. Then, by 3-connectivity, all vertices in the component
of G \ {s, t, qst} that does not contain q, in particular the two neighbors v and z

of t, remain connected to qst in G \ {s, t, q2
st}. However, due to the path qstqd′, this

implies that the vertices NG(t) \ {s, t, q2
st} are connected in G \ {s, t, q2

st}, which yields
a contradiction to Observation 30. It remains to consider the case that q2

st belongs to
the component of G\{s, t, qst} that does not contain q. We claim that, once again, the
vertices NG(t)\{s, t, q2

st} are connected in G\{s, t, q2
st}, which yields a contradiction to

Observation 30. If q2
st = z, the claim follows due to the path vqstqd′. So assume q2

st 6= z.
Recall that z has two vertex-disjoint paths to v and qst, respectively. The vertex q2

st

can only belong to one of these paths and, so, z remains connected to v or to qst.
In any case, this implies that z remains connected to qst (due to the edge vqst) and,
hence, q and d′. Finally, if v 6= q2

st, the vertex v also remains connected to qst, q, d′ due
to the edge vqst. Altogether, this yields the claimed contradiction to Observation 30.
Therefore, pst, qst is the unique separation pair created by collapsing st, as claimed.

Due to the degree bounds of s and t, neither s nor t is adjacent to qst. Further,
by the case assumption of Case 2.2.2, st is not constrained by a real 4-inhibitor and,
hence, it is a candidate edge. By (F6), no candidate edge is safe. Thus, qst belongs to
a real separating triangle T and, hence, its degree is bounded by five by (G2). Let ET
denote the set of six edges that are incident to vertices of T and do not lead to the
exterior of T . Due to the degree bound of qst, at most two of its incident edges do not
belong to ET . By (F3), real separating triangles are pairwise vertex-disjoint and the
edge qqst cannot belong to ET . Thus, at most one of the remaining edges incident
to qst does not belong to ET . We distinguish two cases regarding the identity of v.

First, assume that v = s′, for an illustration see Figure 59a. In this case, the
edge vqst cannot belong to ET : v cannot be the interior vertex of T since its degree
is larger than three. Moreover, if vqst belongs to T , the Precondition (G3) implies
that vs is real. This, in turn, implies that sqqstv is a real 4-inhibitor constraining sq,
which contradicts the assumption of Case 2. Thus, both vqst and qqst do not belong
to ET . But this implies that the vertices of NG(qst) \ {v, q} are pairwise adjacent
since the edges of ET form a K4. However, two of these vertices belong to distinct
sides of Iqt, which yields the desired contradiction.

So assume that v 6= s′, for an illustration see Figure 59b. Recall that s′ has three
pairwise vertex-disjoint paths to s, t, qst, respectively. The path to s is the edge ss′,
which together with the path to qst forms a subpath of Psa. The path to t must
pass through v due to the degree bound of t and by planarity. Hence, Psa does not
pass through v. This implies that qst has the following set of neighbors: q, v, two
vertices along Psa (recall that qst 6= a), and a vertex on the side of Iqt that does
not contain s. The last three of these neighbors are pairwise nonadjacent: the two
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Figure 59: Illustrations for Case 2.2.2.3.1 in Lemma 38.

vertices along Psa belong to the side of Iqt that contains s. Moreover, these two
vertices belong to distinct components of G \ {s, t, qst}. Consequently, at most one of
the edges between qst and these three neighbors belongs to ET . Together with the
fact that qqst does not belong to ET , we obtain that ET contains at most two edges
incident to qst, which yields the desired contradiction.

Altogether, this shows that qt is not constrained by a real 4-inhibitor. /

Having obtained a contradiction in the previous case, it follows that:

Case 2.2.2.3.2: Collapsing qt creates a separation pair pqt, qqt. (This follows from
the assumption that qt is not constrained by a real 4-inhibitor and (F4), as explained
in the beginning of Section 4.5.7.2). We will show that this is possible in a specific
special case only and we will describe a separate treatment to deal with this situation.

We start by studying the identity of qqt and the neighborhoods of q and t. The
derived facts allow us to show that both st and qt are candidate edges (in particular,
their collapses do not create adjacent separation pairs). We will then describe a
replacement strategy % to find, in at most a linear number of steps, a candidate
edge for which the current Case 2.2.2.3.2 does not arise. More precisely, the first
step replaces e with %(e) ∈ {qt, st}. There is no guarantee that Case 2.2.2.3.2 does
not arise for %(e). However, we will make sure that % is acyclic, that is, after at
most i ∈ O(n) repetitions, we end up with a candidate edge %i(e) 6= e for which
Case 2.2.2.3.2 does not arise. So let us proceed by carrying out this plan.

The identity of qqt and the neighborhood of q and t. By Observation 31, we
may assume that pqt is the vertex resulting from collapsing qt and that qqt 6= s, d′. Let
us study the identity of qqt. It can not belong to K, as otherwise, by 3-connectivity
and since a, b, q is separating, every vertex of G \ {q, t, qqt} remains connected to
the edge ab, as qqt ∈ K and t ∈ K ′. So assume that qqt = b. Note that the
neighbors a, c, d, s of b belong to the same connected component of G \ {q, t, b} due
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to the path Psa. By Observation 30, this implies that b has a fifth neighbor b′ such
that b′ and a belong to distinct components of G \{q, t, b}. By (F25), we have b′ /∈ K ′.
However, if b′ ∈ K, the 3-connectivity also implies that b′ remains connected to a
in G\{q, t, b} since t ∈ K ′. Thus, we obtain a contradiction and it follows that qqt 6= b.

So far, we have established that qqt ∈ K ′ ∪ {a} (and collapsing qt does not create
a separation pair pqt, q2

qt where q2
qt ∈ K ∪ {b}). The vertex qqt cannot belong to the

component of G \ {s, t, qst} that does not contain q since otherwise, the vertices in
NG(qqt)\{q, t, qqt} clearly belong to to the same connected component of G \{q, t, qqt},
which yields a contradiction to Observation 30.

We claim that, as depicted in Figure 60, both q and t have some neighbor (denoted
by t′ and q̂, respectively) in K ′ \ {d′, s} that does not belong to the connected
component of s′ in G \ {s, t, qst} and that does not belong to the path Psa.

Assume that a vertex with the properties of q̂ does not exist. We will show
that this implies that NG(q) \ {q, t, qqt} is connected in G \ {q, t, qqt}, contradicting
Observation 30. The neighbor(s) of q in K and the vertices d′ and s are connected
in G \ {q, t, qqt} due to the path d′sb and some path(s) through K (which exist by
3-connectivity and since none of q, t, qqt belongs to K ∪ {b}). Moreover, q cannot
have a neighbor in the connected component of s′ in G \ {s, t, qst}, and if it has a
neighbor (distinct from qqt) on Psa, then this neighbor remains connected to b since
it belongs to the cycle formed by Psa and the path sba, which does not contain q or t.
Altogether, this yields the claimed contradiction to Observation 30.

Similarly, we show that if no vertex with the properties of t′ exists, then NG(t) \
{q, t, qqt} is connected in G\{q, t, qqt}, contradicting Observation 30. The neighbors d′
and s of t are connected to b in G \ {q, t, qqt}. Each of the neighbors of t in the
connected component of G \ {s, t, qst} that contains s′ remains connected to s (recall
that qqt does not belong to this component) and, hence, it also remains connected to b.
Finally, if t has a neighbor on Psa, then it belongs to the cycle formed by Psa and sba,
which does not contain q or t and, hence, this neighbor also remains connected to b.
Altogether, this yields the claimed contradiction to Observation 30.

It follows that q has a unique neighbor in K, which we denote by k. Moreover,
t has a unique neighbor in the connected component of s′ in G \ {s, t, qst}, which is
denoted by t̂. Note that it is possible that qqt = qst or qqt = a or both.

st and qt are candidate edges. Let us proceed by showing that both st and qt
are candidate edges. By the assumptions of Case 2.2.2 and 2.2.2.3.2, neither qt nor st
is constrained by a real 4-inhibitor. To see that the collapse of st or qt cannot create
an adjacent separation pair, we can make use of the fact that we are aware of the
entire neighborhood of each of s, q, t. Hence, we can explicitly check all edges incident
to pst or pqt in the graph created by collapsing st or qt, respectively. These edges
are pqtk, pqtq̂, pqtt′, pqtt̂, pstt′, pstt̂, psts′, and pstb. Their endpoints are the potential
adjacent separation pairs.

The pair pst, b is nonseparating by the assumption of Case 2.2.2.3. The pairs pqt, k
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Figure 60: Illustrations for Case 2.2.2.3.2 in Lemma 38.

and pqt, t̂ are nonseparating since we have established above that qqt ∈ K ′ ∪ {a} and
that qqt does not belong to the connected component of G \ {s, t, qst} that does not
contain q for any valid choice of qqt. Moreover, by 3-connectivity, it is easy to see
that the vertices

– NG(q) \ {q, t, q̂} = {s, d′, k} are connected in G \ {q, t, q̂};

– NG(t) \ {q, t, t′} = {s, d′, t̂} are connected in G \ {q, t, t′};

– NG(t) \ {s, t, t′} = {q, d′, t̂} are connected in G \ {s, t, t′};

– NG(t) \ {s, t, t̂} = {q, d′, t′} are connected in G \ {s, t, t̂}; and

– NG(s) \ {s, t, s′} = {q, d′, b} are connected in G \ {s, t, s′};

respectively. Altogether, by Observation 30, this shows that collapsing st or qt cannot
create an adjacent separation pair and, thus, st and qt are candidate edges.

Implications of (F5). By (F5), no candidate edge is safe. Hence, we may assume
without loss of generality (recall that qqt is not necessarily unique) that there is a
path P̃ = p̃s̃qqt where p̃ = t or p̃ = q, and s̃qqt is an edge that belongs to a real
separating triangle.

We have established that qqt ∈ K ′ ∪ {a}. We will now show that qqt 6= a. So,
towards a contradiction, assume that qqt = a. To obtain the desired contradiction,
we proceed in two steps. First, we show that c = k. From this we derive that the
edge bc violates (F4).

So let us start be showing that c = k. Since s̃qqt belongs to a separating triangle,
we have s̃ = b or s̃ = c. Assume s̃ = b. This implies that there is an edge between q
and b; or between t and b. The former is not possible by our choice of e. The
latter is not possible due to the degree bound of t. Hence, in both cases we obtain a
contradiction and so s̃ = c.
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We show that this implies that p̃ 6= t. Assume otherwise. We have c /∈ K, as
otherwise there would be an edge between c ∈ K and t ∈ K ′. So assume that c ∈ K ′
and that there is an edge between c and t. Due to the degree bound of t it follows
that c ∈ {t′, t̂}. In both cases we obtain a contradiction due to the edge bc: the
case c = t′ is not possible since t′ and b belong to distinct components of G \{q, t, qqt}
(due to the path bss′ the vertex b belongs to the same component as s′, which does
not belong to the component of t′ by definition of t′). The case c = t̂ is also not
possible since t̂ and b belong to distinct components of G \ {s, t, qst} (by definition
of t̂, it belongs to the component of s′, which does not belong to the component of b
by definition of s′). Altogether, this shows that p̃ 6= t and, thus, p̃ = q.

This implies an edge between q and c and, thus, due to the degree bound of q we
have c ∈ {k, q̂}. Yet again, the case c = q̂ is not possible due to the edge bc since, as
discussed above, b belongs to the connected component of G \ {q, t, qqt} that does not
contain t′, which, by definition, is in the same component as q̂. Therefore, c = k as
claimed, for an illustration see Figure 61.
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Figure 61: Illustrations for Case 2.2.2.3.2 in Lemma 38.

To prepare for the next step, we show that

(F26) the cycle cbsq is nonseparating.

Indeed, towards a contradiction, assume that cbsq is separating and let z be a
vertex on the side of cbsq that does not contain t. By 3-connectivity, there exist three
paths connecting z with cbsq that are pairwise vertex-disjoint except for the common
endpoint z. Since c ∈ K and s ∈ K ′, two of these paths lead to b and q, respectively.
However, this contradicts the degree bound of q. Altogether, this shows (F26).

It remains to show that bc violates (F4). To this end, we show that bc is a
candidate edge that can be collapsed without creating a separation pair. So ,towards
a contradiction, assume that bc is constrained by a real 4-inhibitor Ibc = bcxy. Assume
that y ∈ K ′. Since a, b, q is separating, we have x = a or x = q. The former can
be excluded by Observation 27. In the latter case, planarity and the degree bound
of q imply that y = s, y = t, or that y = q̂. The first option contradicts (F26). The
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case y = t violates the degree bound of t. Finally, the case y = q̂ can also be excluded
since, as discussed above, q̂ and b are nonadjacent. Thus, in all cases we obtain a
contradiction and, therefore, y /∈ K ′.

Next assume that y ∈ K. This implies that bcqs is separating, which contra-
dicts (F26). Finally, the case y = a can be excluded by Observation 27. Altogether,
this shows that bc is not constrained by a real 4-inhibitor.

It remains to sow that bc can be collapsed without creating a separation pair. So,
towards a contradiction, assume that collapsing bc creates a separation pair pbcqbc
where by Observation 31, we may assume that pbc is the vertex resulting from
collapsing bc and that qbc 6= a, d. By (F26), there is no vertex of K on the side of bcqs
that does not contain a and t. The other side of bcqs also cannot contain a vertex
of K \ {d}: by 3-connectivity, such a vertex z would have three vertex path to a, b, q
that are disjoint except for the common endpoint z. Moreover, the interior vertices
of these paths belong to K. By (F26), the only neighbors of b in K are c and d.
Hence, the path from z to b has to pass through c. However, due to the degree bound
of q, the vertex c is the only neighbor of q in K and, therefore, the path from z to q
also passes through q; a contradiction. Thus, there cannot be a vertex in K other
than c, d, which implies that NG(c) = {a, b, d, q}. Further, since qbc 6= a, b, c, d, this
implies that qbc ∈ K ′ ∪ {q}.

If qbc = q, then clearly the vertices NG(c) \ {b, c, qbc} = {a, d} are connected
in G\{b, c, qbc}, which yields a contradiction to Observation 30. So assume that qbc 6= q

and, hence qbc ∈ K ′. Again, we show that the vertices NG(c)\{b, c, qbc} = {a, d, q} are
connected in G \ {b, c, qbc}, which yields a contradiction to Observation 30. It suffices
to show that there is a path between a and q in G \{b, c, qbc}. This is true, since there
are two interior vertex-disjoint paths between a and q, none of which passes through b
or c: the path Psa together with the edge sq; and the path through the component
of G \ {q, t, qqt} (recall that we are assuming qqt = a) that contains t′. This yields the
desired contradiction and so, altogether, establishes that collapsing bc cannot create
a separation pair. Since bc is also not constrained by a real 4-inhibitor, as shown
above, we obtain a contradiction to (F4). Altogether, this establishes that qqt 6= a

and, consequently, qqt ∈ K ′.

Replacement strategy. Recall that P̃ = p̃s̃qqt is a path where p̃ = t or p̃ = q,
and s̃qqt is an edge that belongs to a real separating triangle. By (F3), the triangle sqt
is vertex-disjoint from all other separating triangles. It follows that s̃ /∈ {s, t, q, d′}
(since qqt /∈ {s, t, q, d′}). Together with the degree bounds of q and t, this lets us
narrow down the possible identities of P̃ : if p̃ = q, then P̃ = qq̂qqt since there cannot
be an edge between k ∈ K and qqt ∈ K ′. If p̃ = t, then P̃ = tt′qqt or P̃ = tt̂qqt, where
the latter case is only possible if qqt = qst (since qqt does not belong to the component
of G \ {s, t, qst} that contains s′ and t̂).

We choose the replacement %(e) for the edge e according to the following rules:
note that qst and qqt are not necessarily unique. Moreover, P̃ is not necessarily
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unique even for fixed choices of qst and qqt. If there exist valid choices of qst, qqt,
and P̃ = p̃s̃qqt (according to all the restrictions established for this case so far),
such that qst = qqt and P̃ = tt̂qst (= tt̂qqt), then we choose %(e) = st. Otherwise,
we choose %(e) = qt. We will argue below that % is acyclic, that is, after at most
i ∈ O(n) repetitions, we end up with a candidate edge %i(e) 6= e for which the current
Case 2.2.2.3.2 does not arise.

Algorithmic considerations. But before we dive into the proof of acyclicity,
let us discuss the algorithmic complexity of computing %(e) (given the vertices
a, b, c, d, s, t, q, d′), that is, a single iteration of the replacement strategy. We will
show below that if %(e) = st, then pst, qst is the unique separation pair created by
collapsing st. Therefore, if collapsing st creates more than one separation pair, we
choose %(e) = qt. With the data structures that were set up in the very beginning of
the proof (in particular, the list P(st) of separating pairs created by collapsing st),
this decision can be made in constant time. Otherwise, we search for the vertex qst
in the list P(qt) of separation pairs created by collapsing qt. By (F9), this test can
be done in constant time. If qst does not appear in said list, then we set %(e) = qt.
Otherwise, we find t̂ as the neighbor of t that follows d′, s in the cyclic order of
neighbors around t, and test whether t̂ is adjacent to qst and the edge t̂qst is part of
a real separating triangle. Due to the degree bounds for vertices of real separating
triangles, this check can also be carried out in constant time. In case of a positive
answer, we set %(e) = st. Otherwise, we choose %(e) = qt. It follows that %(e) can be
computed in constant time overall.

Acyclicity. Let us now prove that % is acyclic. There is no guarantee that
Case 2.2.2.3.2 does not arise for the new choice %(e) = āb̄ of e as well. However, we
claim that for any separating triple ā, b̄, q̄ and for any path P̄ = p̄s̄q̄ where p̄ = ā

or p̄ = b̄, where p̄s̄ is a real edge, and where s̄q̄ belongs to a real separating triangle,
our choice of %(e) guarantees that the vertices of the component K̄ ′ of G \ {ā, b̄, q̄}
that contains the vertex s̄ form a proper subset of K ′. This claim implies that the
replacement procedure may be iterated without cycling, since the original edge e is
not incident to a vertex of K ′, but the replacement edge %(e) is incident to t ∈ K ′.
Thus, after at most a linear number of steps, we find an edge for which Case 2.2.2.3.2
does not arise.

If %(e) = qt, the rules according to which %(e) is chosen directly imply our claim
since, as discussed above, for any choice of qqt and P̃ , we have P̃ = qq̂qqt or P̃ = tt′qqt
and, hence, s̃ ∈ {q̂, t′} belongs to the connected component of G \ {q, t, qqt} that
does not contain s. So assume our choice was %(e) = st and, hence, we may assume
that qst = qqt and P̃ = tt̂qqt (= tt̂qst). We claim that this implies that pst, qst is the
unique separation pair created by collapsing st. Assume otherwise and let p2

st, q
2
st

be another separation pair created by collapsing st. By Observation 31, we may
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assume that p2
st = pst and q2

st 6= q, d′. We show that the vertices NG(t) \ {s, t, q2
st} are

connected in G \ {s, t, q2
st}, which yields a contradiction to Observation 30.

For an illustration, see Figure 62. Consider the cycle composed of the subpath Pqst

of Psa that connects qst = qqt with a, some path between a and q whose interior
vertices belong to K, and, finally, some path between q and qqt (= qst) via t′ through
the connected component of G \ {q, t, qqt} that contains t′. This cycle does not
contain s or t as a vertex. Hence, even if it contains q2

st as a vertex, its remaining
vertices are connected in G \ {s, t, q2

st}. Moreover, we have q2
st /∈ {q, qst} and, hence,

due to the edges t̂qst and qd′, the vertices {s, d′, q, t′, t̂} \ {s, t, q2
st} are connected

in G \ {s, t, q2
st}. As discussed above, this yields the desired contradiction.

K ′

K

ab

s

q

t

d′

e

s′

qst, qqt

t′

t̂

q̂

k

Figure 62: Illustrations for Case 2.2.2.3.2 in Lemma 38.

Altogether, this establishes that pst, qst is the unique separation pair created by
collapsing st. Thus, it suffices to show that for any path P̄ = p̄s̄qst where p̄ = s

or p̄ = t, where p̄s̄ is real, and where s̄qst belongs to a real separating triangle, the
vertices of the component K̄ ′ of G \{s, t, qst} that contains the vertex s̄ form a proper
subset of K ′. This is clear, since qst can belong to only one real separating triangle
and its remaining two vertices (one of which is t̂ since %(e) = st), which are the only
possible identities of s̄, belong to the connected component of G \ {s, t, qst} that does
not contain q. Altogether, this shows that the replacement strategy is acyclic as
claimed and, so, after a linear number of steps, we end up with a candidate edge of G
for which Case 2.2.2.3.2 does not arise.

This finally concludes Case 2.2.2.3.2 and, by extension, the Cases 2.2.2.3, 2.2.2,
2.2, and 2. /

This concludes the first step of our proof that G′′ contains no adjacent separation
pairs: we have established Property (J4) for the separation pairs that are already
present in G′, that is, simultaneously collapsing all edges in K′ results in a biconnected
graph G′′ in which no two vertices that correspond to a separation pair of G′ are
adjacent. It remains handle the second step, where we have to show that G′′ does not
contain any new adjacent separation pairs.
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4.5.7.3 G′′ contains no new adjacent separation pairs

To show that G′′ does not contain any adjacent separation pair whose vertices do not
correspond to a separation pair in G′, we recall several facts from Section 4.5.7.1:

– each separation pair of G′ corresponds to a separation pair of G′′;

– to obtain the graph G′′, instead of collapsing the edges of K′ directly in G′, we
may collapse the edges of K′ in the decomposition of G′ into its triconnected
components, and then merge all pairs of identical G′-virtual edges;

– G′ has no parallel triconnected components, and its series components are
3-cycles; and

– each of the triconnected components of G′ remains biconnected when collapsing
its edges of K′.

Towards a contradiction, assume that G′ contains an edge p′q′ such that the
vertices p̂, q̂ of G′′ that correspond to p′ and q′ form an adjacent separation pair.
Let N denote the triconnected component of G′ that contains the edge p′q′, which
is not G′-virtual since it belongs to G′. We distinguish two cases depending on
whether N is series or rigid.

Series components. Assume that N is series, i.e., N is a 3-cycle p′q′x′. At least
one of the edges of N has to be G′-virtual, say p′x′. Since p′ and x′ form a separation
pair in G′ that separates q′ from the subgraph represented by p′x′, it follows that
the vertex p̂ and the vertex x̂ corresponding to x′ form a separation pair of G′′ that
separates q̂ from the subgraph of G′′ corresponding to the collapsed version of the
subgraph of G′ corresponding to p′x′. Since G′′ is biconnected, all vertices contained in
this subgraph of G′′ remain connected to x̂ in G′′ \{p̂, q̂}. In case q′x′ is also G′-virtual,
symmetric arguments apply to the collapsed version of the subgraph represented
by q′x′. Therefore, all vertices of G′′ \ {p̂, q̂} are connected to x̂; a contradiction to
the assumption that p̂, q̂ are separating.

Rigid components. It remains to consider the case that N is rigid, i.e., N ∈ R.
By Property (J4) for KN , collapsing all edges of KN in N results in a biconnected
graph N ′ without adjacent separation pairs. Thus, since p̂, q̂ are adjacent, N ′\{p̂, q̂} is
connected. Moreover, since no separation pair of G′ becomes adjacent when collapsing
all edges of K′ ⊇ KN , the edge p̂q̂ cannot correspond to a G′-virtual edge (as such an
edge corresponds to a separation pair of G′). Therefore, for each G′-virtual edge e′
in N ′, one of its endpoints remains in N ′ \ {p̂, q̂}. Since only one vertex is removed
from the biconnected graph represented by e′, it is still connected. In particular, all
remaining vertices are still connected to the remaining endpoint of e′. Thus, they
are also connected to all the remaining vertices in N ′ \ {p̂, q̂} and, so, all vertices
of G′′ \{p̂, q̂} are connected; a contradiction to the assumption that p̂, q̂ are separating.
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Altogether, we have established Property (J4) for K′.

4.5.8 Ensuring Property (J3)

It remains to show that K′ satisfies Property (J3).
For the first statement of Property (J3), suppose that there is a k-inhibitor I

in G′ with respect to the set of real separating triangles of G′ such that K′ contains
more than k − 3 edges of I. Since the real separating triangles of G′ are pairwise
vertex-disjoint, we have by (J1) and (J2) that at most bk2c edges of I belong to K′ and
this number can be larger than k − 3 only if k = 4 and K′ contains exactly two edges
of I. However, this implies that the graph G′′ obtained by the simultaneous collapse
of the edges in K′ contains an adjacent separation pair formed by the two vertices u, v
that correspond to the two collapsed edges of I , which yields a contradiction to (J4)
of K′. (The vertices u and v are indeed separating in G′′ because I is hyperseparating
in G′ and no edge between a vertex of V(G′) \V(I) and a vertex of V(I) can be in K′
by (J1) and (J2) and since the separating triangles of G′ are pairwise vertex-disjoint.)

For the second statement of Property (J3), suppose that there is some real k-
inhibitor I in G′ such that K′ contains exactly k− 3 edges of I and the triangle in G′′
corresponding to I is separating. We distinguish two cases regarding whether the
edges of I belong to a single triconnected component of G′ or not.

First, assume that all edges of I belong to a single (rigid) triconnected componentR
of G′. By Property (J3) for R, the cycle I is not hyperseparating in R (with respect to
the set of real separating triangles of R), but as a real inhibitor it is hyperseparating
in G′ (with respect to the set of real separating triangles of G′). In particular, there
is at least one vertex that is not interior to a separating triangle of G′ on either side
of I. This situation can arise only if all such vertices on one side of I belong to other
triconnected components. Hence, two vertices p, q of I form a separation pair in G′,
which is nonadjacent by Property (J4) for K′. Hence, R contains a chord pq of I that
is G′-virtual. However, after collapsing the edges of K′, the vertices p and q become
adjacent; a contradiction to Property (J4) for K′.

It remains to consider the case that the edges of I belong to at least two distinct
triconnected components of G′. Then I passes through both vertices of a separation
pair. By Property (J4), no separation pair of G′ becomes adjacent and, hence, the
length of I after collapsing all edges of K′ is at least four (at least two edges in each
triconnected component that I passes through); a contradiction.

We have shown that K′ satisfies the Properties (J1)–(J4) for G. By Lemma 39,
this establishes the Properties (J1)–(J4) of the set K = K′∪{e} for G, which concludes
the proof.
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4.6 Stellation

Recall that our general assumption is that G is a 3-connected simple plane graph
such that every vertex of a separating triangle has degree at most five. Moreover, all
separating triangles of G are trivial, G is not a double kite and, hence, the separating
triangles of G are pairwise vertex-disjoint (by Lemma 23 and Observation 25). Finally,
we are assuming that G does not contain a subgraph isomorphic to a G1 or G2 as in
Lemma 29. (We deal with these special cases in Section 4.8.)

Let K ⊂ E(G) be a set of edges to collapse as described in Theorem 33, and
let G′ denote the graph that results from simultaneously collapsing the edges from
K in G. Then by Property (I3) of Theorem 33 the graph G′ does not contain any
separating triangle. Let G′′ denote the graph that results from stellating all faces in
G′, that is, for every nontriangular face f of G′ we insert a new vertex vf into f and
we add an edge between vf and each vertex on ∂f . As discussed in Section 4.5.2, the
following lemma is an easy consequence of Property (I4) of Theorem 33.

Lemma 42. The graph G′′ does not contain any separating triangle.

Proof. Suppose for the sake of a contradiction that there exists a separating triangle
T in G′′. Given that G′ does not contain any separating triangle, at least one vertex
vf of T is a stellation vertex, which has been inserted into a nontriangular face f of
G′. As all neighbors of vf are on ∂f , so are the remaining two vertices u and w of
T . As T is separating, u and w are not consecutive along ∂f . Therefore, the edge
uw of T is a chord of the cycle ∂f (so that uw is drawn in the exterior of f) in G′,
and so {u,w} forms a separation pair in G′. However, according to Property (I4) of
Theorem 33 the graph G′ does not contain any adjacent separation pair, which leads
to a contradiction.

Therefore, we can apply Theorem 21 to G′′ to obtain a Hamiltonian cycle C ′′ for
G′′. It remains to address the case that one or two edges of the outer face T◦ of G
are prescribed.

Observation 43. If any edge of T◦ is prescribed, then T◦ is also the outer face of
G′′.

Proof. By Property (P3) we know that T◦ is also the outer face of G′. By Prop-
erty (P2) we know that T◦ is a triangle and, therefore, it is not subdivided when
going from G′ to G′′.

By Observation 43 we can pass any possibly prescribed edge of T◦ to Theorem 21
so that the obtained Hamiltonian cycle C ′′ for G′′ passes through the(se) prescribed
edge(s).
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4.7 Reconstructing collapses

As a final step to prove Theorem 22, it remains to handle the edge collapses, that
is, to go back from the modified graph G′′, from Section 4.6, to the original graph
G. We proceed in three phases. In a first phase, we deal with some easy cases
where we can reconstruct collapsed triangles, one by one, while maintaining a plane
subhamiltonian cycle in the current graph. At the end of the first phase, we move
on to the graph G, that is, we reconstruct all remaining triangles in one step. The
previously plane subhamiltonian cycle then becomes a plane nonspanning cycle that
visits all vertices of G but a pair of vertices from each of the remaining triangles
(that have not been reconstructed during the first phase). We can classify these
remaining triangles into five different types according to how they interact with the
current cycle. During the second phase we then maintain this classification: although
a triangle may change its type, it always remains one of these five types. As in the
first phase, we process the triangles one by one. Processing a triangle amounts to
extending the current cycle to visit the two missing vertices. At the end of Phase 2
we either have a plane subhamiltonian cycle for G (and are done), or we are in a
situation where all remaining triangles to be handled are of a very specific type with
respect to the current cycle. These remaining triangles are then processed during a
third phase, at the end of which we obtain the desired plane subhamiltonian cycle
for G.

During the whole reconstruction process, we modify the current cycle in specific
ways only. In particular, we only modify edges of the cycle that share at least one
endpoint with a separating triangle of G (including vertices that result from the
collapse of an edge in K). By Observation 43 and Property (P3) this assertion suffices
to ensure that prescribed edges on the outer face of G (if any) are part of the cycle
that is constructed.

Notation. Next we define some notation for of our reconstruction algorithm. Let T
with |T | = s denote the set of separating triangles of G. We will incorporate the
vertices of the triangles of T in some order T1, . . . , Ts. This linearly ordered sequence
is not fixed in advance. Instead, we will iteratively specify the order as we go and
describe how to select the next triangle to be processed.

Specifically for Phase 1, for i ∈ {1, . . . , s}, let ei = uivi denote the edge of Ti
in K, let ti denote the interior vertex of G−Ti

, let ui denote the vertex of G′ that
corresponds to the collapsed edge ei, and let wi denote the vertex in V(Ti) \V(ei).

Recall that the collapse operation merges parallel edges in order to ensure that
its output is always a simple graph, cf. Section 4.4. This merging step is justified
since the operation is only applied to collapsible edges, which ensures that whenever
parallel edges are created during a collapse, these edges form a nonseparating 2-cycle.
We define a sequence of plane graphs Gi, for i = 0, . . . , s, where the graph Gi is
obtained by collapsing the edges ei+1, . . . , es in G, but without merging the created
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parallel edges. Note that Gs = G. The graph G0 corresponds to G′, but potentially
with some parallel edges that form nonseparating bigons. The advantage of not
merging edges is that for each pair Gi, Gj , the faces of Gi and Gj that are noninterior
to separating triangles are in one-to-one correspondence, which allows us to develop
a consistent labeling scheme.

In Phase 1, we start from G0 and maintain a subhamiltonian plane cycle Ci in
Gi, for increasing i = 0, . . . . To incrementally maintain these cycles, we impose an
additional restriction on the cycles Ci that we call unichordality, which is defined in
the next paragraph.

The vertices in {uj : j > i} ∪ {wj : j > i} as well as the triangles Tj , for i < j ≤ s,
are called relevant for Gi and for Ci. A subhamiltonian plane cycle Ci for Gi consists
of two possible types of edges: proper edges of Gi and chords of faces of Gi. Here, a
chord of a face f is a chord of the cycle ∂f that is drawn inside f . Denote by G⊗i
the chordal completion of Gi, that is, the graph (drawn in general with crossings)
obtained from Gi by adding as edges all chords of the faces of Gi. Note that if Gi is
2-connected only, adding the chords in order to obtain G⊗i might create additional
multiple edges, i.e., G⊗i might not be simple even if Gi is simple. We are looking
for a plane Hamiltonian cycle in G⊗i , that is, a Hamiltonian cycle that does not
use two chords of G⊗i that cross each other. Specifically, we are interested in plane
Hamiltonian cycles with the following property:

Definition 44. A cycle in G⊗i is unichordal if it is a plane Hamiltonian cycle that
uses at most one chord of every face of Gi.

Lemma 45. There exists a unichordal subhamiltonian cycle C0 for G0.

Proof. Take the Hamiltonian cycle C ′′ for G′′ obtained as described in Section 4.6.
Removing all stellation vertices from C ′′ we obtain a subhamiltonian plane cycle C ′
for G′. The cycle C ′ may be interpreted as a plane subhamiltonian cycle C0 of G0.
To this end, we simply replace each proper edge e of C ′ of which there exists multiple
proper copies in G0 with any one of these copies. We claim that C0 is unichordal
for G0.

Every stellation vertex vf has degree two in C ′′, and both neighbors a and b of vf
lie on ∂f . Thus, there are two options: Either a and b are adjacent in ∂f , in which
case they are connected by a proper edge of G0 in C0; or a and b are not adjacent in
∂f , in which case they are connected by a chord of the face corresponding to f in C0.
Therefore, for every face f of G′, the corresponding face of G0 has at most one chord
in C0 since f has a unique stellation vertex vf .

4.7.1 Reconstruction Phase 1: the easy cases

We start with G0 and its subhamiltonian unichordal cycle C0 in G⊗0 that is guaranteed
by Lemma 45. In each step of Phase 1, we have a current subhamiltonian cycle Ci−1
for G⊗i−1 and we need to select a relevant triangle to be reconstructed next so that
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we can extend the current subhamiltonian cycle to also visit the vertices of the
reconstructed triangle. For notational convenience we denote the candidate triangle
to be reconstructed by Ti, although in principle we may choose any of the not yet
reconstructed triangles. Recall that since each of ui, vi, and wi have degree three in
G−Ti

, we have degG′(wi) ≤ 3 and degG′(ui) ≤ 5.
If the current cycle Ci−1 is unichordal, then, for any choice of Ti, it is quite easy to

find a subhamiltonian cycle Ci that also visits the vertices of Ti. However, to iterate
the procedure, it is also necessary to maintain unichordality of the current cycle,
which does not always seem easy to accomplish. The goal of Phase 1 is to handle
some easy cases where the next triangle Ti can be chosen such that a subhamiltonian
unichordal cycle Ci is easily obtained. At the end of Phase 1, we have chosen and
reconstructed the triangles T1, T2, . . . , Tk and a subhamiltonian unichordal cycle Ck.
The remaining cases are more challenging and will be the subject of the Phases 2
and 3.

Each case in Phase 1 is phrased as a lemma in the following that lists a condition
on the (any) triangle Ti in relation to the current cycle Ci−1 under which Ti can be
reconstructed and Ci−1 can be locally extended to a subhamiltonian unichordal cycle
Ci in G⊗i . Note that in order to show unichordality of Ci we need to consider new
chords only, that is, chords in Ci that are not in Ci−1 already.

ui

wi

(a) Ci−1 in G⊗i−1

ti

ui
vi

wi

(b) Ci in G⊗i

Figure 63: Reconstruction of Ti if Ci−1 uses the edge uiwi.

Lemma 46. If uiwi ∈ E(Ci−1), then there is a subhamiltonian unichordal cycle Ci
in G⊗i .

Proof. We obtain Ci from Ci−1 by replacing the edge uiwi by one of the paths
uitiviwi or vitiuiwi, depending on the other neighbor of ui in Ci−1 (which is adjacent
to at least one of ui or vi in G⊗i ); see Figure 63. In particular, we prefer a proper
edge over a chord, that is, if ui is incident to a proper edge uiz, z 6= wi along Ci−1,
we replace uiwi such that Ci uses the proper edge corresponding to uiz. Thus, no
new chord is introduced and therefore Ci is unichordal in G⊗i .
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Figure 64: Illustrations for the normalization in Phase 1. In (a), (b), and (c), the
orientation and labeling is uniquely defined. In (d), both ui and vi are incident to
the same number of elements in {h(αi, h(βi)}, and both these elements are edges.
Hence, the roles of ui and vi could be exchanged.

Normalization. Using Lemma 46 we may assume that ujwj /∈ E(Ci−1), for all
j ≥ i. In other words, Ci−1 visits uj and wj independently. Let us apply some
normalization in order to name the vertices of relevant triangles consistently, for
illustrations refer to Figure 64.

Let ai and bi denote the neighbors of ui in Ci−1. We denote the edges uiai and uibi
in Ci−1 by αi and βi, respectively. If αi ∈ E(Gi−1), we define α′i = αi. Otherwise,
we define α′i to be the face in which the edge αi is drawn. Analogously, we define β′i.
Finally, denote by h(αi) and h(βi) the element (edge or face) of Gi that corresponds
to α′i and β′i, respectively. For instance, if αi is a chord in a face f of Gi−1, then h(αi)
denotes the corresponding face of Gi.

Exchange the roles of ui and vi if necessary so that ui is incident to at least
as many elements of {h(αi), h(βi)} as vi (see Figures 64b and 64c), and if both
belong to the same number of elements, then ui is incident to at least as many
edges in {h(αi), h(βi)} as vi (see Figure 64a). Reflect the drawing if necessary to
ensure that the triple uiviwi is oriented anticlockwise. Exchange the roles of ai and
bi if necessary so that the edges uiwi, αi, and βi appear in this order anticlockwise
around ui. As a consequence of this normalization, ui is a vertex of h(αi). Moreover,
if h(αi) /∈ E(Gi) and h(βi) ∈ E(Gi), then h(βi) = uibi (since h(βi) = vibi would imply
that ui is incident to at most one element of {h(αi), h(βi)}, namely the face h(αi),
while vi is incident to at least one element of {h(αi), h(βi)}, namely the edge h(βi)),
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see Figure 64c.
(Note that this normalization may prescribe different orientations for different

triangles. This is no problem since we consider the triangles individually.)
Finally, let ci and di denote the two (distinct) neighbors of wi in Ci−1, denote the

edges ciwi and diwi by γi and δi, respectively, and exchange the roles of ci and di if
necessary so that uiwi, γi, and δi appear in this order anticlockwise around wi. The
elements h(γi) and h(δi) are defined analogously to h(αi).

The vertices ui, vi, and wi in Gi are surrounded by altogether up to six neighbors
and up to six faces. Starting from the face f` to the left of the edge uiwi and then in
clockwise order we denote the faces around Ti in Gi by f`, ft, fr, fbr, fb, and fb`; see
Figure 65b. The faces f`, fr, and fb always exist. On the other hand, fb`, ft, and fbr
exist only if the degree of the corresponding vertex of Ti is five in Gi. Further, note
that some of these three faces (if they exist) might be bigons (if their bounding edges
where merged due to the collapse of some ej ∈ K, j > i. We use g`, gt, gr, gbr, gb,
and gb` to denote the face of Gi−1 that corresponds to f`, ft, fr, fbr, fb, and fb`,
respectively (if it exists); see Figure 65a. Note that gb is a bigon if fb is a triangle.

ui

wi

g` gr

gbrgb

gt

gb`

(a)

ti

ui

vi

wi

f` fr

fbrfb

ft

fb`

(b)

Figure 65: Labeling the faces around Ti in (a) Gi−1 and (b) Gi.

Let k ∈ {`, t, r, br, b, b`}. We define Eik = E(∂fk) and we use Xi
k to denote the set

of chords of fk. Moreover, we define
⊗i

k = Eik ∪Xi
k. The sets Ei−1

k , Xi−1
k , and

⊗i−1
k ;

and Ek, Xk, and
⊗
k are defined analogously except that the role of fk is taken over

by the face corresponding to fk in Gi−1 and G, respectively (in the former case the
corresponding face is gk). If a face does not exist, the corresponding edge set is a
singleton edge and its set of chords is empty. For instance, if degGi

(wi) = 4, then⊗i
t = Eit ⊆ Ei` ∩ Eir and it consists of the single edge of Gi that connects wi to a

vertex outside of Ti.
Let us proceed by reconstructing further triangles where the current cycle may

easily be extended.

Lemma 47. If βi ∈
⊗i−1

r ∪
⊗i−1
br ∪X

i−1
b , then there exists a subhamiltonian uni-

chordal cycle Ci for G⊗i .

Proof. We obtain Ci from Ci−1 by replacing the path aiuibi by the path aiuitivibi;
see Figure 66. If αi is a chord, we draw the edge aiui in h(αi); and if αi is an edge,
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we use the corresponding proper edge h(αi) of Gi. We proceed analogously, with βi
and vibi.

If βi ∈ E(Gi−1), then no new chord is introduced and, hence, Ci is unichordal in
G⊗i . So suppose that βi ∈ Xi−1

r ∪Xi−1
br ∪X

i−1
b . Then the edge βi is the only chord of

its face of Gi−1 in Ci−1 (because Ci−1 is unichordal). Therefore, the edge bivi retains
that role for the corresponding face h(βi) of Gi in Ci. It follows that the cycle Ci is
unichordal in G⊗i .

ui

wi

bi

ai

di
ci

(a) Ci−1 in G⊗i−1

di
ci

ai
ti

ui

vi

wi

bi

f`
fr

ft

fb` fbrfb

(b) Ci in G⊗i

Figure 66: Vertex bi is adjacent to vi in G⊗i but not to ui in Gi.

By Lemma 47 we may assume that αi, βi ∈
⊗i−1

b` ∪X
i−1
` , for every possible choice

of Ti from Ti, . . . , Ts.

Lemma 48. If γi ∈ Xi−1
r , then there exists a subhamiltonian unichordal cycle Ci for

G⊗i .

Proof. We obtain Ci from Ci−1 by replacing the path ciwidi by the path civitiwidi;
see Figure 67. If δi is a proper edge, we use the corresponding edge h(δi). In this
case, no new chord is created and, hence, Ci is unichordal for G⊗i . Otherwise, we
draw widi in h(δi), so that the role of the chord δi is taken over by widi and, hence, Ci
is unichordal for G⊗i . Note that civi might be a proper edge of Gi even tough γi is a
chord by assumption. In this case, we choose the corresponding edge on the boundary
of fr and, thus, no new chord is created. Otherwise, if civi /∈ E(Gi), we draw it
in h(γi), so that the role of γi is taken over by civi. Therefore, Ci is unichordal in
G⊗i .

Lemma 49. If (1) αi ∈ Xi−1
` , (2) {γi, δi} ⊂

⊗i−1
t , and (3) {γi, δi}∩Xi−1

t 6= ∅, then
there exists a subhamiltonian unichordal cycle Ci for G⊗i .

Proof. We obtain Ci from Ci−1 by (1) replacing the path ciwidi by the edge cidi
and (2) replacing the edge aiui by the path aiwivitiui; see Figure 68. If βi ∈ E(Gi−1),
we use the corresponding edge h(βi). Otherwise, we draw biui in h(βi) (= fb`, by
unichordality of Ci−1), where it takes over the role of the chord βi as the only chord
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(a) Ci−1 in G⊗i−1

di

ci
ai

ti

ui vi

wi

bi

f`
fr

ft

fb` fbrfb

(b) Ci in G⊗i

Figure 67: If ciwi is a chord in fr, then we reroute the cycle via vi.

of its face. By assumption, αi is a chord. So if aiwi /∈ E(Gi), we draw it in h(αi)
(= f`), where it takes over the role of αi as the only chord of its face. Otherwise,
we simply use the proper edge aiwi on the boundary of f`, so that no new chord is
created. Finally, by assumption and unichordality of Ci−1, exactly one of γi, δi is a
chord of gt and the other is a proper edge of ∂gt. By drawing cidi in h(γi) or h(δi),
depending on which edge is the chord of gt, the edge cidi takes over the role of the
previous chord as the only chord of its face (or it is a proper edge of the boundary
of ft). Altogether, no new chord is created and, thus, Ci is unichordal in G⊗i .
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(a) Ci−1 in G⊗i−1

di

ci

ai ti
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wi

bi

f`

fr
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fb` fbrfb

(b) Ci in G⊗i

Figure 68: If aiui is a chord in f` and we can shortcut ciwidi, then we reroute aiui
via wi.

In the same way we obtain the following symmetric statement.

Lemma 50. If (1) δi ∈ Xi−1
` , (2) {αi, βi} ⊂

⊗i−1
b` , and (3) {αi, βi} ∩ Xi−1

b` 6= ∅,
then there exists a subhamiltonian unichordal cycle Ci for G⊗i .

Classification. The five statements in Lemma 46–50 summarize the cases that
we handle in Phase 1 of our algorithm. All triangles that satisfy any of the listed
conditions are selected and reconstructed in an arbitrary order. Hence for Phase 2 of
the algorithm we may suppose that none of the remaining relevant triangles (if any)
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satisfy any of the conditions listed in Lemma 46–50. As a result we can classify how
the relevant triangles are traversed by the current subhamiltonian unichordal cycle
Ci−1 at the end of Phase 1.

Lemma 51. If Phase 1 of the algorithm ends with a subhamiltonian unichordal cycle
Ci−1 in G⊗i−1, for some i ≤ s, then every remaining relevant triangle Ti is of one of
the following types (see Figure 69):

(S1) αi ∈ Xi−1
` , βi ∈

⊗i−1
b` , and {γi, δi} ⊆ Ei−1

t ,

(S2) δi ∈ Xi−1
` , γi ∈

⊗i−1
t , and {αi, βi} ⊆ Ei−1

b` , or

(S3) {αi, βi} ⊆
⊗i−1
b` with at least one of αi or βi in Ei−1

b` ; and {γi, δi} ⊆
⊗i−1

t with
at least one of γi or δi in Ei−1

t .

Proof. By Lemma 47 we know that {αi, βi} ⊆
⊗i−1

b` ∪X
i−1
` , and by Lemma 48 we

know that {γi, δi} ⊆
⊗i−1

t ∪Xi−1
` . We distinguish three cases.

Case 1: αi ∈ Xi−1
` . Then the unichordality of Ci−1 implies that it uses no other

chord of f` and, thus, βi ∈
⊗i−1

b` and {γi, δi} ⊆
⊗i−1

t . By Lemma 49 we have
{γi, δi} ⊆ Ei−1

t and, hence, the triangle Ti is of type (S1). /

Case 2: δi ∈ X`. Symmetrically to Case 1 we conclude that Ti is of type (S2) for
Ci−1. /

If neither of the two cases above applies, the combination of all conditions yields
{αi, βi} ⊆

⊗i−1
b` and {γi, δi} ⊆

⊗i−1
t . The unichordality of Ci−1 implies that Ti is of

type (S3).
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Figure 69: The three different types of relevant triangles in Gi at the end of Phase 1.

Transition to G. For the remainder of the algorithm, we will work in G and G⊗,
rather than in the collapsed graphs Gi and G⊗i . This simplifies our notation scheme:
by 3-connectivity of G, the graph G⊗ is simple. Hence, given a vertex u and its two
neighbors a, b in a cycle of G⊗, the edges au and ub are uniquely defined.
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The classification in Lemma 51 allows us to interpret a final cycle Ck, k < s

of Phase 1 as an almost spanning cycle in G⊗, meaning that it passes through all
vertices but the pairs tj and vj , for k + 1 ≤ j ≤ s. To this end, we simply replace
every vertex uj along Ck with the corresponding vertex uj .

In the following lemma we restate the classification of Lemma 51 in terms of this
interpretation of Ck in G⊗. Since we are no longer transitioning between graphs Gi−1
and Gi in every step, our earlier notation is no longer suited for this task and, hence,
we will slightly repurpose it (intuitively, the meaning remains the same): when we
refer to a relevant triangle Ti of G⊗ as being of a certain type with respect to some
cycle Cj , then, in the description of the type, the vertices ui, vi, wi of the triangle Ti
are assumed to appear in this counterclockwise order; and the cycle Cj is visiting ui
and wi, but not vi. The neighbors of ui along Cj are denoted by ai and bi and the
(unique) edges uiti, uiai, and uibi appear in this counterclockwise order around ui.
Further, the neighbors of wi along Cj are denote by ci and di and the edges witi,
wici, and widi appear in this counterclockwise order around wi. We also reuse fk
for k ∈ {`, t, r, br, b, b`} to denote the faces of G that surround Ti as in the earlier
definition of these faces in Gi.

Lemma 52. If Phase 1 of the algorithm ends with an almost spanning unichordal
cycle Ck in G⊗ for some k < s, then every remaining relevant triangle Ti is of one
of the following types with respect to Ck (see Figure 70):

(T1) aiui ∈ X`, biui ∈
⊗
b`, and {ciwi, diwi} ⊆ Et,

(T2) diwi ∈ X`, ciwi ∈
⊗
t, and {aiui, biui} ⊆ Eb`, or

(T3) {aiui, biui} ⊆
⊗

b` with at least one of aiui or biui in Eb` and {ciwi, diwi} ⊆
⊗

t

with at least one of ciwi or diwi in Et.
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(a) Type (T1)
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ti
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ai, bi? f` fr
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ci, di? ft

(c) Type (T3)

Figure 70: The three different types of relevant triangles in G⊗ at the end of Phase 1.

We remark that in the upcoming phases of the algorithm, we will treat symmetric
cases explicitly. In particular, (T1) and (T2) are symmetric, and (T3) is selfsymmetric.
Hence, the orientation of the drawing is globally consistent (which was not the case
in Phase 1).
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4.7.2 Reconstruction Phase 2: the hard cases

In this phase, we handle the remaining relevant triangles that do not classify as easy
cases, as discussed in the previous section. In analogy to Phase 1, we use the term
relevant with respect to a cycle Ci to denote those triangles T \ {T1, . . . , Ti}, for
which not all vertices are visited by Ci. Also the vertices of a relevant triangle are
called relevant, regardless of whether or not Ci visits them.

The main challenge in this phase is not so much to handle any single triangle
but rather to handle it and at the same time maintain the property that all relevant
triangles interact with the current cycle according to the classification in Lemma 52.
In fact, we do not know how to always achieve both of these goals. Instead, we
introduce two relaxations of our classification: First, we allow two more types of
triangles, (T4) and (T5) defined below, which may arise after reconstructing some
relevant triangles (which, initially, are of the types (T1), (T2), and (T3) only). Second,
we allow (up to) one exceptional triangle to leave the classification, in a controlled
way. Whenever such an exceptional triangle appears, we handle it next, thereby
making it irrelevant for the correspondingly updated cycle. For such a scheme to
work, we need to show that every step in Phase 2 creates at most one exceptional
triangle.
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Figure 71: Three more types of relevant triangles in G⊗ in Phase 2.

Additional types. As in the first phase, we aim to maintain and iteratively extend
a cycle C, but this time in G⊗. Also, in contrast to the first phase we do not insist
that the cycle remains unichordal. Instead, we demand that (almost) every triangle
Ti that is relevant with respect to C is of one of the types (T1)–(T3) (described in
Lemma 52), or of one of the following two types (T4) and (T5) with respect to C;
see also Figure 71. Note that the types (T4) and (T5) are symmetric to each other.

(T4) aiui ∈ X`, ciwi ∈ Xt, biui, diwi ∈ E`, and bi is irrelevant for C.

(T5) diwi ∈ X`, biui ∈ Xb`, aiui, ciwi ∈ E`, and ci is irrelevant for C.

Phase 2 will end with a cycle C for which every remaining relevant triangle Ti
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has the following type (T6) with respect to C. Note that type (T6) is selfsymmetric,
and a specialization of (T3).

(T6) aiui, diwi ∈ E`, biui ∈ Xb`, ciwi ∈ Xt, and both ai and di are relevant for C,
with aia′ ∈ Xb` and did′ ∈ Xt, where a′ and d′ is the other (not in Ti) neighbor
of ai and di, respectively, on C (in particular, ai 6= di).

Slide operations. Whenever we modify the cycle, the type of a triangle may
change. However, we change the cycle in a very controlled way only. For once, going
from Ci−1 to Ci, thereby making some triangle Ti part of the cycle, only edges in the
neighborhood of Ti may change. Moreover, we allow edges to change by the following
three slide operations only; see Figure 72 for examples.

– In a chord slide at x, a chord xy of some face f is replaced by either a proper
edge xy′ ∈ E of G along ∂f (chord-to-edge slide) or by another chord xy′ of f
(chord-to-chord slide);

– in an edge slide at x, a proper edge xy is replaced by a chord xy′ of a face
with xy on its boundary (edge-to-chord slide) or by another proper edge xy′ so
that xy and xy′ are consecutive in the circular order of edges around x in G
(edge-to-edge slide);

– finally, a cone slide at x combines an edge slide at x that replaces a proper edge
xy and a chord-to-edge slide at x that replaces a chord with xy.

A triangle Ti is normal for a cycle C in G⊗ if it is of one the five types (T1)–(T5)
with respect to C. Recall that our plan is to maintain the types (T1)–(T5) for
almost all the remaining relevant triangles—we only allow one triangle that is not
normal with respect to the current cycle, and if such an exceptional triangle exists,
it is handled next. When the next triangle Ti is normal for the current cycle Ci−1,
then its type precisely describes the interaction of Ci−1 with Ti. If Ti is not normal,
then the interaction of Ci−1 with Ti may be derived from its type in the previous
cycle Ci−2, given that only a limited number of slide operations is used to modify
the neighborhood of Ti when going from Ci−2 to Ci−1. Hence, in Phase 2, we will
not only keep track of the current cycle Ci−1, but also its predecessor.

Lemma 53. Let Ck be the almost spanning cycle obtained during Phase 1, cf.
Lemma 52. Let Tk denote the triangles of G that are still relevant for Ck. We can
extend Ck to an almost spanning cycle C` for which all of its remaining relevant
triangles T` ⊆ Tk (if any) are of type (T6).

Proof. We inductively generate a sequence of almost spanning cycles Ck, Ck+1, . . . , C`
with ` ≤ s, and a sequences of triangles Tk+1, Tk+2, . . . , T`′ from Tk where `′ =
min{` + 1, s}. Denote Vi = V(G−Ti

) = {ui, vi, wi, ti} and V −i = {ti, vi}. We ensure
that for each index i ∈ {k, . . . , `} the following invariants are satisfied.
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Figure 72: Examples of slides: From (a) to (b) there is a chord-to-chord slide
(uid → uic) at ui and an edge-to-chord slide (wig → wif) at wi. From (b) to (c)
there is a chord-to-edge slide (uic → uib) at ui and a cone slide (around the edge
wie) at wi. From (d) to (e) there is an edge-to-edge slide (wie→ wiui) at wi and a
chord-to-edge slide from (uie→ uiwi). Note that the resulting undirected edge is the
same for both slides.

(N1) The set of triangles that are still relevant for Ci is Ti, where Ti = Ti−1 \ {Ti}
if k > 1.

(N2) All triangles in Ti are normal for Ci, with the possible exception of Ti+1.

(N3) If i > k, to create Ci from Ci−1, some edges of Ci−1 are deleted and some new
edges are added. Each endpoint of an added cycle edge e+ ∈ E(Ci) \ E(Ci−1)
belongs to Vi or some neighbor of a vertex from Vi along the cycle Ci−1, that
is, e+ ∈ G⊗[Vi ∪ NCi−1(Vi)]. For the deleted edges e− ∈ E(Ci−1) \ E(Ci), we
distinguish two cases: if e− ∈ E(G), then we demand that e− has at least one
endpoint in Vi. If e− /∈ E(G), then e− has at least one endpoint that belongs
to a relevant triangle of Ti−1 and e− passes through a face with a vertex of Vi
on its boundary.

(N4) If i > k, orient the cycles Ci−1 and Ci counterclockwise and consider a directed
edge e = xy of Ci−1 where x /∈ Vi. Then the directed edge e′ = xy′ of Ci is
either unchanged (that is y′ = y), or it is obtained from e by an edge slide or
chord slide (possibly as part of a cone slide) at x. Analogously, the incoming
edge zx of x in Ci−1 is either unchanged in Ci or replaced by an edge z′x
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obtained from zx by an edge slide or chord slide (possibly as part of a cone
slide) at x. For examples, consider Figure 73 or any of the other figures in the
remainder of Section 4.7.2.

(N5) If i < s, either Ti+1 is normal with respect to Ci, or i > k and the edges of Ci
that are incident to a vertex of Ti+1 are obtained from the edges of Ci−1 that
are incident to a vertex of Ti+1 by performing a single edge slide or cone slide at
a vertex of Ti+1, plus optionally a single chord slide at another vertex of Ti+1,
for an example see Figure 73. Note that E(Ci)4E(Ci−1) may also contain
edges that are not incident to vertices of Ti+1. Such edges are not affected
by (N5). (See for example Figure 74, where the transition from Ci−2 to Ci−1
affects not only Ti, but also wj of Tj . Property (N5) holds, since only one
vertex of Ti is affected by the transition, by a single edge slide.)
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(a) Ci−1
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(b) Ci

Figure 73: For the cycle Ci−1, the triangle Ti is of type (T4), and the triangle Ti+1
is of type (T2). The transition to Ci makes Ti+1 special. Property (N5) is satisfied
since the transition is perceived as a single edge slide at ui+1 and a single chord slide
at wi+1 of Ti+1.

We start with the cycle Ck that is obtained during Phase 1, and some arbitrary
triangle Tk+1 of Tk. By Lemma 52, all triangles of Tk are normal with respect to Ck.
Hence, the Conditions (N1)–(N5) are satisfied. To compute, for some i > k, the
cycle Ci and, if i < s, the triangle Ti+1, we only need the following inductively
obtained objects: the cycle Ci−1, the triangle Ti, and, if i > k + 1, the cycle Ci−2.

If the remaining relevant triangles Ti−1 of the given cycle Ci−1 are all of type (T6)
with respect to Ci−1 (in particular, this is the case if i = s+ 1), we set ` = i− 1 and
abort the process; the cycle C` has the desired properties.

So assume that not all triangles in Ti−1 are of type (T6) with respect to Ci−1.
To establish (N1) for Ci we need to make sure that Ci visits the vertices of V −i , in
addition to the vertices V(Ci−1). The remaining properties (N2)–(N5) for Ci and Ti+1
follow, for the most part, from the properties (N2)–(N5) for Ci−1 and Ti, except that
we have to separately consider the (few) edges that change when going from Ci−1
to Ci —if these edges are incident to a vertex of a triangle of Ti. Note that by (N2)
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all triangles of Ti are normal for Ci−1. By property (N5), either Ti is also normal
for Ci−1 or it is normal for Ci−2 (by (N2)) and changed by a single edge slide or
cone slide at a vertex of Ti, plus optionally a single chord slide at another vertex
of Ti, between Ci−2 and Ci−1. If Ti is not normal for Ci−1, then we call Ti special
for Ci−1; the proper edge of Ci−2 that was affected the edge slide (either directly or
as part of a cone slide) that made Ti special for Ci−1 is called the special edge of
Ti, see Figure 74. Accordingly, we will distinguish ten cases depending on how Ci−1
and Ci−2 interact with Ti. Some of these cases are symmetric to each other.
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(a) Ci−2
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wjuj
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(b) Ci−1

Figure 74: For the cycle Ci−2, the triangle Ti−1 is of type (T4), the triangle Ti is of
type (T1), and the triangle Tj is of type (T3). The transition to Ci−1 is perceived as
an edge slide at wi of Ti, which makes Ti special for Ci−1. The edge di−1wi−1 of Ci−2
is the special edge of Ti. Note that the vertex wj of the triangle Tj is also affected by
a slide operation, but its type (T3) is maintained.

Regarding (N2), we need to ensure that going from Ci−1 to Ci creates at most
one special triangle (which is then chosen to be Ti+1). Using chord slides at a vertex
of Tj , a triangle Tj cannot leave the classes (T1)–(T5): a single chord-to-chord slide
cannot change the type of a given triangle. Moreover, under a single chord-to-edge
slide, a (T3)-triangle remains (T3), a (T1)– or (T2)-triangle remains what it is or it
becomes (T3), and a (T4)– or (T5)-triangle remains what it is or it becomes (T1)
or (T2), respectively. Multiple simultaneous chord slides at vertices of Tj may be
thought of as a sequence of chord slides, given that, regardless of the type of Tj , at
most two of the four cycle edges incident to some vertex of Tj are chords, and if
there are two such chords, then they belong to distinct faces. Hence, by the above
argument, even when the change from Ci−1 to Ci results in multiple chord slides
at Tj , it remains of one of the types (T1)–(T5).

Therefore, in order to check whether a triangle Tj ∈ Ti, that is normal for Ci−1
remains normal for Ci, it suffices to consider triangles where at least one of its vertices
is affected by an edge slide or a cone slide when going from Ci−1 to Ci. Whenever
the change from Ci−1 to Ci does not create any special triangle, we choose some
arbitrary Ti+1 ∈ Ti as the next triangle.
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Case 1: bivi ∈
⊗

b (regardless of whether Ti is normal or special for Ci−1). Then we
obtain Ci from Ci−1 by replacing the edge biui by the path bivitiui; see Figure 75.
Compared to Ci−1, the only new edge in Ci outside of Ti is bivi. If bi is irrelevant,
then there is nothing to show. Hence suppose that bi is relevant, and let Tp denote
the corresponding triangle that is relevant for Ci.

If bivi is obtained from biui by a chord slide (note that it might be that biui ∈ Xb

if Ti is special), then Tp remains normal. However, if bivi is obtained from biui by an
edge slide, then Tp may not be normal for Ci. In that case, we set Ti+1 = Tp. So in
any case (N1)–(N5) hold. /
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Figure 75: Case 1 (bivi ∈ E(G⊗)) in Lemma 53. We remark that the figure does
not depict all possibilities. Since Ti could be special, it is possible that ai = wi
and di = ui. Moreover, it could be that bi is some other vertex of fb \ {ui, vi}, that
is, uibi ∈ Xb. Analogously, we could have wici ∈ Xr.

Case 2: civi ∈
⊗
r. Symmetric to Case 1. /

Hence we may suppose that bivi /∈
⊗

b and civi /∈
⊗
r. In particular, it follows

that biui /∈
⊗
b and ciwi /∈

⊗
r, and that Ti is neither of type (T1) nor of type (T2)

for Ci−1.

Case 3: Ti is special for Ci−1 and of type (T1) for Ci−2. Then Ti differs by a single
edge slide or cone slide at a vertex of Ti, plus optionally a single chord slide at another
vertex of Ti, from a triangle of type (T1) for Ci−2.

Since ciwi /∈
⊗
r, it follows that the special edge of Ti is ciwi. Since wi is not

incident to a chord in Ci−2, the special edge ciwi can only be affected by an edge-
to-chord slide that is not part of a cone slide when going from Ci−2 to Ci−1, that
is, ciwi ∈ Xt in Ci−1, see Figure 76a. If there is an optional chord slide, it has
to affect ui. It suffices to consider the case that it is a chord-to-edge slide. If it
affects biui, the situation does not change , i.e., we are still applying an edge-to-chord
slide to the special edge ciwi in a type (T1) triangle. Therefore we may assume that
the chord-to-edge slide affects aiui. It cannot become uiwi as this would imply a
vertex of degree three in the cycle Ci−1. However, the only remaining option would
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imply that Ti is of type (T3), which contradicts the case assumption. Hence, we may
assume that there is no optional chord slide.

We obtain Ci from Ci−1 by replacing the edge aiui with the path aiwivitiui and
shortcutting ciwidi to cidi; see Figure 76. Regarding (N4), there are three directed
edges of Ci−1 that are affected by this change. The changes from aiui to aiwi and
from ciwi to cidi are perceived as chord slides at ai and ci, respectively; and the
change from diwi to dici is an edge slide. Regarding (N5), if di is not relevant, there
is nothing to show. So assume that di is relevant and let Tp denote the corresponding
relevant triangle. If Tp is not normal for Ci, we set T ′i+1 = Tp. The vertex di perceives
the change from Ci−1 to Ci as an edge slide or a cone slide (the latter if ai = di). It
remains to consider the slide operations affecting other vertices (6= di) of Tp. The
only slide operations that may affect Tp at a vertex z 6= di are chord slides, namely
if z ∈ {ci, ai}. Note that ai 6= ci since otherwise wi and ai form a separation pair,
which contradicts the 3-connectivity. Hence, z may be affected by at most one chord
slide, and so (N5) holds. In any case, (N1)–(N5) hold. /
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Figure 76: Case 3 (Ti is special for Ci−1 and of type (T1) for Ci−2) in Lemma 53.

Case 4: Ti is special for Ci−1 and of type (T2) for Ci−2. Symmetric to Case 3. /

Case 5: Ti is of type (T4) for Ci−1. We obtain Ci from Ci−1 by replacing the edge
aiui by the path aiwivitiui and by replacing the path ciwidi by the edge cidi; see
Figure 77. Analogous to Case 3, we obtain that (N1)–(N5) hold. /

Case 6: Ti is of type (T5) for Ci−1. Symmetric to Case 5. /

Case 7: Ti is special for Ci−1 and of type (T4) for Ci−2 (but not for Ci−1). Then Ti
differs by a single edge slide or cone slide at a vertex of Ti, plus optionally a single
chord slide at another vertex of Ti, from a triangle of type (T4) for Ci−2. As bi is
irrelevant for Ci−2 by definition of (T4), the incident cycle edge biui does not change
between Ci−2 and Ci−1 by (N3). It follows that the special edge is diwi.

Hence, if there is an optional chord slide when going from Ci−2 to Ci−1, then it
affects aiui. It suffices to consider the case that this edge is affected by a chord-to-edge
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Figure 77: Case 5 (Ti is of type (T4) for Ci−1) in Lemma 53.

slide. The only way to turn aiui into a proper edge is a chord slide to uiwi, which
is only possible if ai = di and the special edge diwi is affected by an edge slide
to wiui (otherwise, there is a vertex of degree three along Ci−1). In this case, we
may obtain Ci from Ci−1 by simply replacing the edge uiwi by the path uivitiwi.
Obviously, all triangles in Ti are normal for Ci and (N1)–(N5) hold.

Thus, we may assume that there is no optional chord slide and, moreover, that diwi
is affected by an edge-to-chord slide (possibly as part of a cone slide). An edge-to-
chord slide that transforms diwi to a chord of ft allows us to proceed in the same
way as in Case 5. In fact, here the argument is even easier because the shortcut of
the path ciwidi to cidi encompasses chord slides only.

It remains to consider an edge-to-chord slide that makes diwi a chord of f`,
possibly as part of a cone slide that turns ciwi into a proper edge. Regardless,
we obtain Ci from Ci−1 by replacing the edge diwi by the path diuitiviwi and by
shortcutting aiuibi to aibi; see Figure 78. Regarding (N4), there are three directed
edges of Ci−1 that are affected by this change. The changes from diwi to diui and
from aiui to aibi are perceived as chord slides at di and ai, respectively. The change
from biui to biai is an edge slide at bi. Since bi is irrelevant by the condition of (T4),
it follows that no relevant triangle becomes special. In any case, (N1)–(N5) hold. /
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Figure 78: Case 7 (Ti is special for Ci−1 and of type (T4) for Ci−2) in Lemma 53.
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Case 8: Ti is special for Ci−1 and of type (T5) for Ci−2 (but not for Ci−1). Symmetric
to Case 7. /

Case 9: Ti is of type (T3) for Ci−1. Given that civi /∈
⊗

r, we have ciwi ∈ Xt and
diwi ∈ Et and, symmetrically, biui ∈ Xb` and aiui ∈ Eb`; see Figure 79a. As Ti being
of type (T3) for Ci−1 is the last of the nonspecial cases, we may assume without loss
of generality that all remaining relevant triangles in Ti−1, are of type (T3) and look
as in Figure 79a with respect to Ci−1. (Otherwise, since Ti is not special, we could
pick a different triangle in the role of Ti and apply one of the other Cases 1, 2, 5, or
6.) We distinguish two subcases.

Case 9.1: At least one of ai or di is irrelevant for Ci−1. Suppose without loss of
generality that di is irrelevant for Ci−1. We obtain Ci from Ci−1 by shortcutting
aiuibi to aibi and replacing the edge diwi by the path diuitiviwi; see Figure 79b.
The change from biui to biai is a chord slide at bi. The changes from aiui to aibi
and from diwi to diui are edge slides. Since di is irrelevant by assumption, the
only way to create a special triangle is if ai is relevant (in this case ai 6= di). In
this case, if the relevant triangle Tp that contains ai is not normal for Ci, we set
Ti+1 = Tp. The vertex ai perceives the change from Ci−1 to Ci as a single edge slide
(since ai /∈ {bi, di}). Hence, even if bi also belongs to Tp, Property (N5) holds. /
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Figure 79: Case 9.1 (Ti is of type (T3) and di is irrelevant for Ci−1) in Lemma 53.

Case 9.2: Both ai and di are relevant for Ci−1. We may suppose without loss of
generality that for every triangle Tx ∈ Ti−1 the vertices ax and dx are both relevant,
that is, each of them belongs to some other triangle from Ti−1 \ {Tx}. Otherwise, we
could select Tx to take the role of Ti and proceed as in Case 9.1.

Since not all triangles in Ti−1 are of type (T6) (otherwise, we are done), we may
suppose that Ti is not of type (T6). Consider the relevant triangle Tj that contains
di. There are two edges of Ci−1 incident to di: one is the proper edge widi, the other
edge e is in one of the two faces Xt and X` incident to widi because Tj is of type
(T3). In other words, either di = wj , as depicted in Figure 81, or di = uj as depicted
in Figure 80a. We claim that we may suppose without loss of generality that di = wj
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and wjcj ∈ X`, as shown in Figure 81. Note that both statements (“di = wj” and
“e ∈ X`”) are equivalent, given that Tj is of type (T3).

To prove the claim, suppose to the contrary that di = uj ; see Figure 80a. Let Th
denote the relevant triangle that contains ai as a vertex. Then, as Ti is not of type
(T6), not both edges of Ci−1 incident to ai are in

⊗
b` (and so the situation depicted

in Figure 80a does not occur). Instead, the other (6= aiui) edge of Ci−1 incident to
ai is in X`; see Figure 80b. In particular, it follows that ai 6= wj , i.e., ai belongs
to a relevant triangle Th 6= Tj . Now the claim follows by symmetry: Reflecting R2

exchanges the roles of ui and wi, as well as the roles of Th and Tj .
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Figure 80: Using symmetry in Case 9.2 of Lemma 53.

So we face a situation as depicted in Figure 81, with di = wj and wjcj ∈ X`.
We observe that ai 6= uj due to 3-connectivity (otherwise, uj and wj would form a
separation pair in G). In particular, the relevant triangles of di and ai, respectively,
are distinct.

We obtain Ci from Ci−1 by shortcutting aiuibi to aibi and replacing the path
ciwiwjcj by the path ciwjwivitiuicj ; see Figure 81b. Regarding (N4), the changes
from ciwi to ciwj , from biui to biai, and from cjwj to cjui are perceived as chord
slides. The changes from aiui to aibi and from wjwi to wjci are edge slides (the latter
as part of a cone slide and the former possibly, if ai = cj , also as part of a cone slide).

Regarding (N5), it remains to show that at most one special triangle is created
and that all other remaining relevant triangles belong to one of the types (T1)–(T6).
The edge slide from wjwi to wjci together with the chord-to-edge slide from cjwj
to wiwj is perceived as a cone slide at wj , which belongs to the relevant triangle Tj .
If the cycle edges incident to uj do not change, then Tj is of type (T5) with respect to
Ci (because wi is irrelevant for Ci). Given that uj 6= ai, the cycle edges incident to uj
change only if ujbj = ciwi or if ujbj = biui. The former case would imply that uj is a
cut vertex, which contradicts the 3-connectivity. So assume that ujbj = biui. In this
case, the slide biui to biai amounts to a slide ujui to ujai. If this change is perceived as
a chord-to-chord slide, then Tj is of type (T5) with respect to Ci, as above. However,
if the slide ujui to ujai is a chord-to-edge slide, that is, if ujai ∈ E(G), then Tj is of
type (T2) with respect to Ci. So, in any case, Tj is normal with respect to Ci.
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It remains to consider the edge slide aiui to aibi. Note that ai 6= ci, as this
would imply that ai and wi form a separation pair. Hence, the edge slide from aiui
to aibi is either perceived as an edge slide or a cone slide (the latter if cj = ai) at
the vertex ai and its relevant triangle Tp (6= Tj). If Tp is not normal for Ci, we set
Ti+1 = Tp. It remains to consider the slide operations affecting other vertices ( 6= ai)
of Tp. Since wj and wi cannot belong to Tp, the only slide operations that may
affect Tp at a vertex 6= ai are chord slides, namely if one of bi, ci, cj belongs to Tp.
Given that Tp is of type (T3), each vertex of Tp may only be affected by a single
chord slide. Hence, (N5) is satisfied. In any case (N1)–(N5) are satisfied. /
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Figure 81: Case 9.2 (Both ai or di are relevant for Ci−1 and di = wj) in Lemma 53.

Case 10: Ti is special for Ci−1 and of type (T3) with respect to Ci−2 (but not for
Ci−1). Given that civi /∈

⊗
r, we have ciwi /∈

⊗
r and, symmetrically, biui /∈

⊗
b. As

Ti is not of type (T3) with respect to Ci−1, by (N5) its normality is destroyed by an
edge slide or cone slide between Ci−2 and Ci−1 at either wi or ui. Assume without
loss of generality that this slide affects wi. Then, if Ti is also affected by an optional
chord slide when going from Ci−2 to Ci−1, it affects ui. However, note that such a
slide does not change the situation: we are still applying an edge or cone slide to the
vertex wi of a type (T3) triangle. Hence, we may suppose that there is no optional
chord slide.

We have already established that ciwi /∈
⊗

r. Since Ti is not of type (T3) it follows
that diwi /∈ Et. Consequently, we have diwi ∈ X` or diwi ∈ Xt.

Case 10.1: diwi ∈ X`. (in this case diwi was affected by the edge or cone slide and,
hence, ciwi remains a chord in Xt, or it assumes the former role of diwi and becomes
the proper edge in Et ∩E`.) We obtain Ci from Ci−1 by shortcutting the path aiuibi
to the edge aibi and by replacing the path ciwidi by ciwivitiuidi; see Figure 82. The
changes from diwi to diui and from biui to biai are chord slides. The change from aiui
to aibi is an edge slide (recall that biui /∈

⊗
b). Hence, regarding (N5), there is nothing

to show if ai is not relevant. So assume that Tp is a relevant triangle containing ai.
If Tp is not normal for Ci, we set Ti+1 = Tp. The vertex ai perceives the change
from Ci−1 to Ci is an edge slide or a cone slide (the latter if ai = di).
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It remains to consider the slide operations affecting other vertices (6= ai) of Tp.
The only slide operations that may affect Tp at a vertex z 6= ai are chord slides,
namely if z ∈ {bi, di}. Note that bi 6= di since otherwise ui and bi form a separation
pair, which contradicts the 3-connectivity. Hence, z may be affected by at most one
chord slide, and so (N5) holds. In any case (N1)–(N5) are satisfied. /
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Figure 82: Case 10.1 (Ti is special for Ci−1 and of type (T3) for Ci−2 and diwi ∈ X`)
in Lemma 53.

Case 10.2: diwi ∈ Xt. Then we obtain Ci from Ci−1 by shortcutting ciwidi to cidi
and replacing the edge aiui by the path aiwivitiui; see Figure 83. The change
from diwi to dici and from ciwi to cidi are chord slides. The change from aiui to
to aiwi is an edge slide (recall that biui /∈

⊗
b).

Hence, regarding (N5), there is nothing to show if ai is not relevant. So assume
that Tp is a relevant triangle that uses ai. If Tp is not normal for Ci, we set Ti+1 = Tp.
The vertex ai perceives the change from Ci−1 to Ci is an edge slide (not a cone
slide, since this would imply that ai ∈ {ci, di}, which implies that ai and wi form a
separation pair and, hence, contradicts the 3-connectivity).

It remains to consider the slide operations affecting other vertices (6= ai) of Tp.
The only slide operations that may affect Tp at a vertex z 6= ai are chord slides,
namely if z ∈ {ci, di}. Since ci 6= di, z may be affected by at most one chord slide,
and so (N5) holds. In any case (N1)–(N5) are satisfied. /

This concludes our case analysis and also the proof of Lemma 53.

4.7.3 Reconstruction Phase 3: wrapup

In this section we discuss the third phase that we use to finish the (re)construction
of our cycle in case the cycle C` obtained in Phase 2 is not yet subhamiltonian, that
is, ` < s. In this case, all remaining relevant triangles T` interact with C` in a very
specific way only, which makes it easy to adapt C` so as to incorporate the missing
vertices.
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Figure 83: Case 10.2 (Ti is special for Ci−1 and of type (T3) for Ci−2 and diwi ∈ Xt)
in Lemma 53.

Lemma 54. Let C = C` be the almost spanning cycle obtained in Phase 2, cf.
Lemma 53. Assume that ` < s and, hence, the set T` of remaining relevant triangles
is nonempty, and all these triangles are of type (T6) with respect to C. Then there
exists a Hamiltonian plane cycle in G⊗.

Proof. Consider a triangle Ti of type (T6) for C. By definition both edges uiai and
widi are proper edges of G along ∂f` and both ai and di belong to other relevant
triangles Tk and Tj , respectively, with possibly j = k. Moreover, all edges of C
adjacent to the edges uiai and widi in C are chords of faces other than f`.

As the situation is symmetric among Ti, Tj , Tk, we conclude that there exists a
cycle Tj , Ti, Tk, . . . of (at least two) relevant triangles so that consecutive triangles
are connected by an edge of ∂f` ∩ E(C) and X` ∩ E(C) = ∅; see Figure 84a. We say
that f` is the central face of the cycle Tj , Ti, Tk, . . ..

We obtain a new cycle C ′ from C by replacing the edge diwi by the path ∂f`\{dwi}
and removing all other occurrences of the vertices on ∂f` from the cycle; see Figure 84b.
For every edge of ∂f` in C the two adjacent edges belong to the same face and so the
corresponding shortcuts are possible without crossing any edge of C or G. Moreover,
all these “shortcut faces” are pairwise distinct (because G is 3-connected). In other
words, the cycle C ′ is plane. Now every triangle in our cycle Tj , Ti, Tk, . . . has an
edge in common with C ′ and we can modify C ′ locally to visit all vertices of those
triangles as in Lemma 46; see Figure 84c.

This procedure may be repeated to handle all remaining central faces and their
relevant triangles. Resolving one of the central faces may change the edges of the
current almost spanning cycle that pass through the shortcut faces of other central
faces. However, each of these edges will be replaced by a new edge that still belongs
to the original shortcut face, so that the shortcuts may be carried out as described
above. Intuitively, this strategy produces no crossings since, in each shortcut face,
performing all shortcuts simultaneously corresponds to a homotopic deformation of
the maximal paths of cycle edges along which the chords of the shortcut face and
proper edges of the adjacent central faces alternate.
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Figure 84: A step of the third reconstruction phase in Lemma 54.

More formally, let us consider four maps: Every relevant vertex v on the current
cycle (initially C) is incident to exactly two cycle edges; one of these edges, the
central edge c(v), is a proper edge of G that belongs to the central face ζ(v) of the
corresponding relevant triangle of v; the other edge is the shortcut edge s(v). Initially,
s(v) is a chord of some face σ(v) 6= ζ(v). While the shortcut edge incident to a
relevant vertex v may change throughout our algorithm in Phase 3, we claim that
the following properties are invariants of our algorithm.

(O1) For every relevant vertex v on the current cycle, all of c(v), ζ(v), and σ(v)
remain constant and

(O2) s(v) is either a chord or a proper edge along the boundary of σ(v); and

(O3) for every shortcut edge uv ∈ im(s) with relevant vertex u, we have s(u) = uv;
moreover, if v is also relevant, we have s(u) = s(v) = uv and σ(u) = σ(v).

It is easy to see that (O1)–(O3) hold at the beginning of Phase 3. We prove by
induction on the number of steps that they continue to hold throughout Phase 3.

Suppose that, after performing some number of steps, we obtain an almost
spanning plane cycle Ck and let f` be a central face whose vertices are still relevant
for Ck. By (O1), the original central edges of f` are still on Ck. Moreover, by (O1)
and (O2), the shortcut edges are chords or proper edges of the original shortcut
faces. Hence, we can make all vertices of relevant triangles around f` irrelevant by
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replacing one of the central edges diwi by an appropriate path and by shortcutting
the remaining central edges, as described above. It remains to argue that the resulting
almost spanning cycle Ck+1 is plane and that the invariants hold for those vertices
that are relevant for Ck+1 and incident to edges along Ck+1 that were affected by
the shortcuts.

Consider a shortcut that replaces a path uvwx by the edge ux, where c(v) =
c(w) = vw, s(v) = uv and s(w) = wx. By (O1) we know that vw = c(v) = c(w) is a
central edge of ζ(v) = ζ(w) and σ(v) = σ(w). Hence, by (O2) both s(v) and s(w)
are either a chord or a proper edge along the boundary of σ(v), and so the shortcut
can be performed without introducing edge crossings. The resulting edge ux is either
a chord or a proper edge along the boundary of σ(v). By (O3) we have σ(v) = σ(u)
if u is relevant; and σ(w) = σ(x) if x is relevant. Therefore, the new shortcut edge
ux incident to u and x satisfies (O2) and (O3) holds. Moreover, (O1) holds for σ.

To see that (O1) holds for c and ζ, observe that every shortcut involves a central
edge vw and its two adjacent edges in the current cycle. Initially all central edges
are pairwise nonadjacent (both in the graph G and in the cycle C). As the maps c
and ζ remained constant up to this step, neither uv nor wx are a central edge of any
relevant vertex, and so (O1) holds for c and ζ.

This concludes the proof that properties (O1)–(O3) are invariants of our algorithm.
Consequently, we can perform all steps of the algorithm to eventually obtain a
Hamiltonian plane cycle in G⊗.

It remains to argue that the prescribed edges (if any) are still on the cycle.

Lemma 55. Let H ∈ {Ck, C`, Cs} be the (almost) spanning cycle obtained in Phase 1,
Phase 2, or Phase 3, respectively, cf. Lemmata 52–54. Then H uses all of the
prescribed edges in F .

Proof. In each step of the reconstruction algorithm, we obtain a cycle Ci from some
cycle Ci−1 by deleting some edges of Ci−1 and adding some new edges. Each of the
deleted edges E(Ci−1)\E(Ci) is incident to at least one vertex of a separating triangle
of G (including vertices that result from the collapse of an edge in K): this is easily
seen for the Phases 1 and 3, and for Phase 2 this follows by Property (N3). Hence,
proper cycle edges that are not incident to a vertex of a separating triangle are never
deleted.

By Observation 43, the (proper) edges of F belong to the initial cycle C0 for the
collapsed graph G0 in the beginning of Phase 1. By Property (P3), the edges of F
have no endpoint that belongs to a separating triangle of G and, hence, they also do
not have an endpoint that belongs to an edge of G0 that corresponds to a collapsed
separating triangle of G. By the above argument, this implies that the edges of F
never leave the cycle.

From an algorithmic perspective, the reconstruction algorithm is straightforward.
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Lemma 56. The reconstruction algorithm can be implemented to run in linear time.

Proof. The reconstruction step starts with a subhamiltonian cycle C ′′ for the stella-
tion G′′ of the graph G′ in which all separating triangles of our general assumption G
have been collapsed. To initiate Phase 1, we turn C ′′ into a subhamiltonian cycle C0
for the graph G0, which corresponds to G′, but potentially with some duplicate edges.
This is easily done in linear time.

In the beginning of Phase 1 and of Phase 2, we classify all (relevant) separating
triangles, which takes constant time per triangle. We maintain the classification with
respect to the evolving cycle throughout Phase 1 and 2. To this end, for each of the
lemmata and cases of the respective phase, we maintain a list of all relevant triangles
that satisfy the respective precondition. In Phase 2, the list of type (T3) triangles is
split into a list of type (T6) triangles and a list of type (T3) triangles that are not of
type (T6).

In Phase 1 and 2, the next triangle to handle is either determined by the previous
step, or we pick an arbitrary triangle from one of our lists according to the priorities
described in the respective phase. In every step, a constant number of cycle edges
are modified. These changes affect constantly many remaining triangles, whose
classification we need to check and possibly update, which can be done in constant
time per affected triangle. Hence, every step of Phase 1 and Phase 2 takes constant
time.

During Phase 3, we do not care for the classification anymore. A single step may
affect many remaining triangles, and its complexity is linear in the number of these
triangles (constant per triangle). As the number of separating triangles is linear, so
is the overall runtime of Phase 3.

Since each phase is carried out in linear time, the entire reconstruction algorithm
takes linear time as claimed.

4.8 Special cases and proof summary

So far, we have considered the case that our general assumption G is not a trivial
double kite and that it contains no subgraph isomorphic to a G1 or G2. In this section,
we deal with these remaining special cases and we formally summarize the proof of
Theorem 22, the generalization of our main result Theorem 18.

Theorem 22. Let G = (V,E) be a 3-connected simple plane graph on n vertices
where every vertex that belongs to a separating triangle has degree at most five. Then
there is a plane augmentation of G that contains a Hamiltonian cycle C, which can
be computed in O(n2) time.

Moreover, for certain graphs, we may prescribe two edges to be part of the cycle C.
Let F ⊂ E be a set of up to two edges such that if F 6= ∅, the following conditions
are satisfied:
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(P1) the edges of F belong to the outer face T◦ of G;

(P2) T◦ is a triangle;

(P3) no vertex of T◦ belongs to a separating triangle of G; and

(P4) either at least one vertex of T◦ has degree three in G, or all vertices of T◦ have
degree four in G.

The cycle C uses all edges in F .

Proof. The proof is by induction on the number n of vertices. For the base of the
induction, note that the smallest plane simple 3-connected graph is K4, where the
statement holds. Similarly, there is a unique maximal planar graph on 5 vertices (the
triangular bipyramid). In this graph, every face shares a vertex with a separating
triangle and, hence, Property (P3), we have F = ∅. The claim follows since the graph
is obviously Hamiltonian.

Hence suppose n ≥ 6 and that the statement holds for all graphs on at most n− 1
vertices. If G does not contain a separating triangle, then we are done by Theorem 21.
So let S denote the nonempty set of separating triangles of G. By Lemma 23, we
may assume that each triangle in S is trivial.

If G is not a trivial double kite or contains a subgraph isomorphic to a G1 or G2, we
obtain a set K ⊂ E(G) of edges to collapse as described in Theorem 33 and proceed as
in Sections 4.6 and 4.7. So it remains to consider the cases where G is a trivial double
kite or contains a subgraph isomorphic to a G1 or G2. Accordingly, we distinguish
three cases.
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Figure 85: If all three edges of a separating triangle in the graph G are constrained by
a 4-inhibitor, there is a subgraph G′ isomorphic to a G1 or G2. In fact, if all separating
triangles of G are trivial, then G itself is isomorphic to a G1 or one of G2,G3. The
gray parts in (a) represent arbitrary subgraphs.

Case 1: G is a trivial double kite. Every face of G shares a vertex with a separating
triangle. Hence, by Property (P3), we have F = ∅. The claim follows since the trivial
double kite is obviously Hamiltonian. /
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Case 2: G contains a subgraph isomorphic to G2. We use a, b, c, d, x, y, z to denote
the vertices of the G2 subgraph as depicted in Figure 85b. By Observation 25, the
triangles in S are pairwise vertex-disjoint. Hence, the only face of the G2 subgraph
that is not necessarily a face of G is xyz. Thus, if G 6' G2, then xyz is a separating
triangle of S that, by assumption, is trivial. Therefore, G is isomorphic to the graph G3
depicted in Figure 85c.

If G ' G3, then every face shares a vertex with a separating triangle. Hence, F = ∅
by Property (P3) and the claim follows since G3 is easily seen to be Hamiltonian.
On the other hand, if G ' G2, then it might be that F 6= ∅ if T◦ = xyz. It is easy
to verify that G2 admits a Hamiltonian cycle that passes through any given pair of
edges of xyz. /

Case 3: G contains a subgraph isomorphic to a G1. We use a, b, c, d, x, y, s to denote
the vertices of the G1 subgraph as depicted in Figure 85a. The triangle xys has to
be facial in G since, otherwise, it is separating and its vertices violate the degree
bound. If T◦ = xys, then F = ∅ by Property (P4). So it suffices to consider the case
where T◦ 6= xys. We may assume without loss of generality that T◦ is located on the
side of Cab = abxy that does not contain d.

Our general plan is to proceed similarly as in the proof of Lemma 23: inductively,
we will obtain a path that uses all edges in F and visits all vertices exterior to Cab and
some of the vertices on Cab. Note that, contrary to what is depicted in Figure 85a,
the exterior of Cab is the side that does not contain d, due to the assumption about
the position of the outer face. Depending on how the vertices of Cab are visited, we
perform two more inductive calls to obtain two paths that visit the vertices interior
to Cbc = bcsx and Cca = cays, respectively. We make use of the fact that we may
prescribe edges in order to be able to glue the three obtained paths appropriately.
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Figure 86: The graph Ĝ. The vertices interior to Cbc and Cca are visited by making
inductive calls to the highlighted subgraphs.

Covering the interior of Cbc and Cca. Let us first describe how we visit the
vertices interior to Cbc and Cca. Add the edges sa and cx in a planar fashion to G and
denote the resulting graph by Ĝ, for an illustration refer to Figure 86. In this graph,
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consider the triangles Tbc = csx and Tca = ays. We now introduce notation for a total
of six plane subhamiltonian cycles for the graphs T−bc = Ĝ−Tbc

and T−ca = Ĝ−Tca
. Each of

these cycles uses two of the edges of the outer face of the respective graph, which
allows us to combine these cycles in order to ultimately obtain a plane subhamiltonian
cycle for G. We will show that these cycles always exist and how to find them.

– Hcx is a plane subhamiltonian cycle in T−bc that uses the edges sc and sx.

– Hcs is a plane subhamiltonian cycle in T−bc that uses the edges xs and xc.

– Hsx is a plane subhamiltonian cycle in T−bc that uses the edges cs and cx.

– Hay is a plane subhamiltonian cycle in T−ca that uses the edges sa and sy.

– Has is a plane subhamiltonian cycle in T−ca that uses the edges ya and ys.

– Hsy is a plane subhamiltonian cycle in T−ca that uses the edges as and ay.

We show how to obtain the three cycles for T−bc ; the cycles for T−ca are obtained
analogously. It suffices to show that T−bc satisfies the preconditions of the theorem for
any two prescribed outer edges. The graph T−bc is clearly 3-connected. The degree of
each vertex of T−bc is at most as large as in G. Hence, if T−bc does not satisfy the degree
bounds, then it contains a separating triangle that is not part of G. Such a triangle
must use the added edge cx. However, the degree bounds of G imply that the degree
of c in T−bc is exactly three. If follows that c and, consequently, cx cannot belong to a
separating triangle in T−bc since in a 3-connected graph every vertex of a separating
triangle has degree at least four. The Conditions (P1), (P2), and (P4) obviously
hold. Regarding Condition (P3), we have already established that neither c nor cx
belong to a separating triangle. Consequently, if one of the vertices x or s belongs to
a separating triangle in T−bc , then it also belongs to this triangle in G. However, if x
or s belongs to a separating triangle in T−bc , its degree in this graph is at least four
and, consequently, its degree in G is at least six, which contradicts the degree bounds
for G. Altogether, this show that T−bc satisfies the preconditions of the theorem and,
hence, the desired cycles may be obtained by induction.

Covering the exterior of Cab. Let us discuss how to obtain the path that covers
the vertices exterior to Cab. We remove, from G, all vertices interior to Cbc. The
resulting graph G̃ clearly satisfies all preconditions of the theorem. Moreover, the
outer face T◦ of G is also the outer face of G̃. Hence, we may inductively obtain a
plane subhamiltonian cycle H for G̃ that uses the edges of F .

Covering G. Removing the vertices interior to Cab from H, yields a set of paths.
The endpoints of these paths belong to the set {a, b, x, y}. Consequently, there is
either exactly one such path P that passes through all vertices in the exterior of Cab,
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or exactly two such paths P ′, P ′′ where the disjoint union of their interior vertices
coincides with the set of vertices in the exterior of Cab.
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Figure 87: Obtaining a plane subhamiltonian cycle in the case that the exterior of Cab
is covered by two paths.

If H covers the exterior of Cab by two paths P ′ and P ′′, then, by planarity, either,
say, P ′ ends at a and b and P ′′ ends at x and y; or, say, P ′ ends at a and y and P ′′
ends at x and b. In the former case, the following cycle is plane subhamiltonian for G,
for illustration see Figure 87:

P ′ ∪ bdcs ∪ (Hsx \ {c}) ∪ P ′′ ∪ (Hay \ {s})

In the latter case, the desired cycle is:

P ′ ∪ (Hsy \ {a}) ∪ (Hsx \ {c}) ∪ P ′′ ∪ bcda

It remains to consider the case that the exterior of Cab is covered by a single
subpath P of H. We distinguish several cases regarding the endpoints u, v of P .

Case 3.1: {u, v} = {y, a}. For an illustration refer to Figure 88. The desired cycle is

P ∪ (Hsy \ {a}) ∪ P1 ∪ P2

where P1 is a path whose endpoints are s and c such that

P1 =

Hcs \ {x}, if P visits x
sx ∪ (Hcx \ {s}), if P does not visit x

and P2 = cda or P2 = cbda depending on whether P visits b or not. /

Case 3.2: {u, v} = {y, b}. We proceed as in Case 3.1 except that we replace P2 with
cdb or cadb depending on whether P visits a or not. /
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Figure 88: Case 3.1.
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Figure 89: Case 3.3.

Case 3.3: {u, v} = {y, x}. For an illustration refer to Figure 89. Without loss of
generality we may assume that P does not visit a, since otherwise we could simply
shortcut P at a, that is, replace the subpath a′aa′′ of P with the edge a′a′′, given
that a has no neighbor exterior to Cab. Note that this shortcut cannot affect the
edges of F : if T◦ is triangular, the vertex a cannot belong to T◦ as this would imply
the existence of the edge by, which by 3-connectivity and the degree bound of b
implies that Cab is not separating, contradictory to the definition of G1.

The desired cycle is

P ∪ (Hay \ {s}) ∪ P2 ∪ cs ∪ (Hsx \ {c})

where P2 is defined as in Case 3.1. /

Case 3.4: {u, v} = {a, b}. For an illustration refer to Figure 90. The desired cycle is

P ∪ P3 ∪ P1 ∪ cdb

where P3 is a path whose endpoints are a and s such that

P3 =

Has \ {y}, if P visits y
(Hay \ {s}) ∪ ys, if P does not visit y
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Figure 90: Case 3.4.

and P1 is defined as in Case 3.1. /

Case 3.5: {u, v} = {a, x}. For an illustration refer to Figure 91. We distinguish three
subcases regarding the incidences of y and b with P .

Case 3.5.1: P does not visit y. The desired cycle is

P ∪ xy ∪ (Hsy \ {a}) ∪ (Hcs \ {x}) ∪ P2

where P2 is defined as in Case 3.1. /

Case 3.5.2: P visits y, but does not pass through b. The following

P ∪ xbdc ∪ (Hcs \ {x}) ∪ (Has \ {y})

is the desired plane subhamiltonian cycle for G. /
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Figure 91: Case 3.5.

Case 3.5.3: P visits both y and b. For an illustration refer to Figure 92a. We make
use of the way how H traverses G̃. Given that P has b as an interior vertex and a as
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one of its endpoints, the cycle H cannot contain the edge bd. Hence, the path adc is a
subpath of H. This implies that s has to be a neighbor of x along H. It follows that

H = P ∪ adc ∪ P4 ∪ sx

where P4 is a path whose endpoints are c and s and whose interior vertices are exactly
all vertices in the interior of Cca. Thus, we may obtain the desired cycle by replacing
the edge sx of H with the path Hsx \ {c}. /

Case 3.6: {u, v} = {b, x}. For an illustration refer to Figure 92b. As in Case 3.3, we
may assume without loss of generality that P does not visit a. The desired path is

P ∪ (Hsx \ {c}) ∪ P3 ∪ adcb

where P3 is defined as in Case 3.4. /
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Figure 92: Cases 3.5.3 and 3.6.

Altogether, we have shown how to obtain a plane subhamiltonian cycle for G that
uses the edges of F for the cases that G is a trivial double kite or contains a subgraph
isomorphic to a G1 or G2. This concludes the proof. �

Theorem 22 implies our main result:

Theorem 18. Let G be a 3-connected simple planar graph on n vertices where
every vertex that belongs to a separating 3-cycle has degree at most five. Then G

is subhamiltonian planar. Moreover, a subhamiltonian plane cycle for G can be
computed in O(n2) time.

Corollary 19. Every 3-connected simple planar graph with maximum vertex degree
five can be embedded on two pages, and such an embedding can be computed in
quadratic time.
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4.9 Summary of the algorithm

The details of the algorithm are scattered throughout the proofs of the different
lemmata that contribute to the proof of Theorem 22. In this section, we collect these
pieces into a high-level summary of the algorithm.

If n = 4, the given graph is a K4, and if n = 5, we face a triangular bipyramid. In
these cases, we simply return a Hamiltonian cycle for the respective graph, as described
in Section 4.8. Otherwise, as described in Lemma 23, we begin by determining the
maximal separating triangles in linear time.

If there is no separating triangle, we proceed as in Theorem 21: by using the
algorithm of Biedl, Kant, and Kaufmann [23], we augment, if possible, the graph to
be 4-connected, and then use the algorithm by Chiba and Nishizeki [30] to find a
Hamiltonian cycle using the prescribed edges in the augmented graph. If it is not
possible to find a 4-connected plane augmentation, the graph can be augmented to a
wheel with at least four spokes, which makes it easy to directly determine the cycle.
Each of the two cases takes linear time. For the case n ≥ 6, this is the first way the
algorithm can terminate.

In case there exist separating triangles, we check if all of them are trivial. If
not, we split the graph at a nontrivial separating triangle as described in Lemma 23,
recursively find subhamiltonian plane cycles for the two parts, and glue them together
in constant time to find the desired cycle for G.

If all separating triangles are trivial, we test if we face one of the following constant
sized cases: the trivial double kite (Figure 24b), the graph G2 (Figure 85b), or the
graph G3 (Figure 85c). If so, it is easy to determine the desired cycle in constant
time as described in the Cases 1 and 2 in Section 4.8, which is another way for the
algorithm to terminate.

If G is not a trivial double kite, or G2 or G3, we proceed by setting up the data
structures described in Section 4.5.4. Using these data structures, it is easy to
determine whether G belongs to the family G1 of graphs (Figure 85a). If so, we may
obtain the desired cycle by means of three recursive calls as described in Case 3 in
Section 4.8.

If G is not a G1, we now face the subproblem of finding a set K of edges to
collapse as described by Theorem 33. As long as possible, we pick edges that are
not constrained by 4-inhibitors and whose collapse maintains 3-connectivity and we
perform the collapse. The next edge to pick can be efficiently determined by means
of our data structures. Maintaining these data structures may take linear time per
step and is one of the bottlenecks of our algorithm. If at some point it is not possible
to choose an edge whose collapse preserves 3-connectivity, we check, using our data
structures, if there is a safe candidate edge. If so, we collapse this edge. If not, we pick
an arbitrary unsafe candidate edge e. For each of the constantly many (by (F2) and
the degree bounds) paths psq that make e unsafe, there are three possibilities, namely,
the two easy Cases 1 and 2.2.2.3.1 and the difficult Case 2.2.2.3.2 in Lemma 38. If
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the difficult Case 2.2.2.3.2 arises for at least one of the paths psq, we need to choose
a new candidate edge to replace e. Testing for Case 1 amounts to checking whether
the edge sq is constrained by a 4-inhibitor, which can be done in constant time due
to our data structures. Testing whether we are in Case 2.2.2.3.1, can be done by
checking whether the degree of q is four, which is trivially possible in constant time.
Hence, checking whether the Case 2.2.2.3.2 arises for at least one of the paths can
be done in constant time. If this is not the case, we collapse e. Otherwise, we use
our replacement strategy % to find a replacement for e. Finding the edge %(e) takes
constant time. However, a linear number i ∈ O(n) of iterations may be required to
find an edge %i(e) for which Case 2.2.2.3.2 does not arise. This is another bottleneck
of our algorithm.

In any case, we end up collapsing a candidate edge. The resulting graph is
2-connected only and we recursively find an edge set KR for each rigid triconnected
component R. Here, we face the generalized version of the subproblem, as described
by Lemma 38: some of the edges of R are virtual, and these edges may be part of
separating triangles that do not belong to the original graph. These triangles are not
necessarily trivial and they may have vertices of degree larger than five. In particular,
an original separating triangle T may now be part of a nontrivial double kite. We
deal with this case next. As shown in Lemma 38, we can safely collapse any of the
two edges of T that belong to only one separating triangle (namely T ). Other than
that, the algorithm operates as in the initial phase, except that when collapsing an
edge, we need to worry about creating a 4-inhibitor only if its edges are real. The
recursion has two base cases. One of them is a rigid triconnected component that
does not have one of the original separating triangles (in this case, we are done),
the other is described in Case 2.2.2.3.1, where the rigid triconnected component has
constant size.

Once we have dealt with the subproblem and obtained the set K, we return to our
original problem of finding a subhamiltonian cycle that uses the prescribed edges (if
any). We collapse the edges in K and stellate all nontriangular faces of the resulting
graph, which can be done in linear time. We then apply the algorithm for the case
of graphs without separating triangles as described above. Finally, we apply our
reconstruction algorithm, described in Section 4.7. The algorithm has three phases.
In each step of one of the first two phases, we pick a triangle and incorporate its
vertices into the current (almost) spanning cycle. Choosing the next triangle can be
done in constant time by means of the data structures described in Lemma 56. To
make its vertices part of the cycle amounts to changing a constant number of cycle
edges in the neighborhood of the triangle and updating the data structures, both
of which is easily done in constant time. In each step of Phase 3, multiple triangles
are made part of the cycle by modifying a constant number of cycle edges in the
neighborhood of each affected triangle. Overall, the reconstruction takes linear time
and it terminates with a subhamiltonian plane cycle that uses the prescribed edges.
This concludes the description of our algorithm.
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4.10 Planar graphs that are not subhamiltonian

A maximal planar graph is subhamiltonian if and only if it is Hamiltonian. In order
to establish upper bounds on the vertex degrees, we are looking for graphs that are
maximal planar and nonhamiltonian to begin with. A large class of these graphs is
known as Kleetopes [68]: a Kleetope G′ is obtained from a maximal planar graph
G by stellating each face, that is, by adding a new vertex vf for each face f of G
and connecting vf to each of the three vertices on the boundary of f . If G has n
vertices, then it has 2n− 4 faces and so G′ has 3n− 4 vertices. Every vertex in G′ \G
has only three neighbors, all of which are vertices of G. In other words, the set of
vertices in G′ \G is independent in G′. For n ≥ 5, we have 2n− 4 > n and so this
independent set contains more than half of the vertices of G′. No graph with such a
large independent set can be Hamiltonian because every vertex needs two neighbors
in a Hamiltonian cycle. Therefore, every Kleetope that is obtained from a maximal
planar graph other than K3 or K4 is nonhamiltonian—the smallest such Kleetope
is obtained from a triangular bipyramid and has 11 vertices [51, 68], and is known
under the name Goldner-Harary graph [51], see Figure 93.

Figure 93: The Goldner-Harary graph contains an independent set (red) of size 6,
but only 11 vertices in total and, hence, is not subhamiltonian.

Observation 57 ([51, 68]). There exists a 3-connected planar graph of vertex degree
at most eight that is not subhamiltonian.

The argument above generalizes to planar 3-connected graphs: start with any
3-connected planar graph G, add a new vertex vf for each face f and connect vf to
some of the vertices on the boundary of f such that the resulting planar graph G′ is
3-connected and, hence, has a unique combinatorial embedding (up to its orienta-
tion). Thus, in any plane augmentation of G′ the neighborhood of each of the new
vertices vf consists exclusively of vertices of G, i.e., G′ \ G is an independent set.
Hence, if G′ admits a plane subhamiltonian cycle, then G has at most as many faces
as vertices. This idea was also used in the NP-hardness proof for the recognition
of subhamiltonian planar graphs by Bauernöppel [20] (in fact, his construction is
only 2-connected—Bauernöppel connects some of the vertices vf to two nonadjacent
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vertices of a face f only). We will use this idea to prove the following theorem.

Theorem 20. There exists an infinite family of 3-connected simple planar graphs
that are not subhamiltonian planar and where every vertex of a separating 3-cycle has
degree at most six.

Proof. For an integer k ≥ 3, we build a graph Gk on 8k + 25 vertices as follows.
Start from the Cartesian product C4�Pk of a fourcycle with a path on k vertices.
(The Cartesian product of two graphs G1 = (V1, E1) and G2 = (V2, E2) is the graph
G1�G2 = (V,E) on the vertex set V = V1 × V2 with (u1, u2)(v1, v2) ∈ E if and
only if u1 = v1 and u2v2 ∈ E2 or u1v1 ∈ E1 and u2 = v2.) This product is a planar
quadrilateralization on 4k vertices with 8k− 4 edges and 4k− 2 faces; see Figure 94a.
Next pick any set of three pairwise nonadjacent faces; to each picked face f , attach a
cube: Denote ∂f = u1u2u3u4 and add a fourcycle v1v2v3v4 of four new vertices to the
graph so that ui and vi are connected by an edge, for i ∈ {1, 2, 3, 4}; moreover, add
one chord v1v3 to the new fourcycle. We call the resulting graph the frame Fk ⊂ Gk;
it has 4k + 12 vertices, 8k + 23 edges and 4k + 13 faces; see Figure 94b.

(a) C4�P3 (b) F3 (c) G3

Figure 94: The construction of G3, a 3-connected planar graph that is not subhamil-
tonian and where every vertex of a separating triangle has degree at most six. We
start from the Cartesian product C4�P3, where we pick three pairwise nonadjacent
faces (shaded in (a)). Then we plant a cube on each picked face, obtaining the frame
F3 (b). Finally, to obtain G3 we add a new vertex in every face of F3 and connect it
to three vertices on the boundary (c). The separating triangles of G3 are shaded red;
their vertices have degree six. The red vertices form an independent set, and no edge
between any two red vertices can be added while maintaining planarity. As there are
25 red vertices and 24 black vertices, no plane augmentation of G3 is Hamiltonian.

Note that Fk has exactly six triangular faces—created by the chords added to
the three rectangular prisms—while all other faces are bounded by fourcycles; let
us call the latter faces quadrilaterals. Also note that Fk has one more face than
it has vertices and, therefore, adding vertices to Fk in a stellating fashion yields a
nonhamiltonian maximal planar graph. In fact, for every quadrilateral face f of Fk,
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it suffices to connect the added vertex vf only to three out of the four vertices on ∂f
in order to make the resulting graph 3-connected. So this is exactly what we do to
obtain Gk from Fk: In every face f , add a new vertex vf and connect vf to three
selected vertices on ∂f ; see Figure 94c. Although Gk is not maximal planar, by being
3-connected its combinatorial embedding is unique (up to its orientation), and by the
Kleetope condition (an independent set of 4k + 13 out of 8k + 25 vertices, no two of
which bound a common face) Gk is not subhamiltonian.

It remains to argue about the degree restriction, for which we will use the choice
of which three vertices on the boundary of a face the added vertex is connected to.
For a triangular face f , there is no choice: We have to add edges from vf to all
vertices on ∂f . But in every quadrilateral face f , we may select one vertex on ∂f to
not receive an edge from vf . In many faces, we can make that choice arbitrarily. But
in quadrilaterals that are adjacent to a triangular face, we will make a specific choice,
so as to ensure the degree restriction for vertices of separating triangles in Gk.

v1
v2

v3v4

Figure 95: Distributing the edges of the added vertices vf to achieve a degree of at
most six at v1, v2, v3, v4.

For every vertex v we have degGk
(v) ≤ 2 degFk

(v) because a vertex can get at
most one additional edge from each of its faces. The triangles in Fk appear along the
added fourcycles in the three selected faces only. Let v1v2v3v4 denote such a fourcycle
and let v1v3 denote the added chord, see Figure 95. Then degFk

(v1) = degFk
(v3) = 4

and degFk
(v2) = degFk

(v4) = 3. It immediately follows that degGk
(v2) ≤ 6 and

degGk
(v4) ≤ 6. The vertices v1 and v3 get two more edges from their two triangles

of Fk, bringing their degree up to six. But we can ensure that they do not get any
more edge from the remaining two (quadrilateral) faces of Fk that contain them:
since there is no quadrilateral face whose boundary passes through both v1 and v3,
for every quadrilateral face f that contains v1 or v3, we select v1 or v3, respectively,
to be the vertex on ∂f that does not get an additional edge from vf . (The three
faces to which we attached the cubes are pairwise nonadjacent in C4�P3 and, thus,
every quadrilateral of Fk is adjacent to at most one triangle.) Therefore, we have
degGk

(v1) = degGk
(v3) = 6. It follows that all vertices of separating triangles in Gk

have degree at most six, as claimed.
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4.11 Conclusion

We have shown that k = 5 is the largest k ∈ N such that each 3-connected planar
graph where the degree of vertices that belong to separating 3-cycles is bounded by k is
subhamiltonian planar. It remains to investigate what happens when the connectivity
condition is dropped. It was observed already by Bernhart and Kainen [22] that
the book thickness of a graph is dominated by the maximum book thickness of its
maximal 2-connected subgraphs (since it is easy to glue two book embeddings at a
cut vertex). Therefore it suffices to consider the case of 2-connected graphs. Our
main open question becomes:

1. Is every 2-connected planar graph in which every vertex of a separating 3-cycle
has degree at most five subhamiltonian planar?

As a corollary of our main result, we also obtain that 3-connected planar graphs of
maximum degree five are always subhamiltonian planar. In terms of 3-connected
graphs, this improves the previous result of Bauernöppel [20], and, independently,
Bekos, Gronemann, and Raftopoulou [21] who showed that (2-connected) planar
graphs of maximum degree four are subhamiltonian planar. We are not aware of
examples that show either of these two statements to be tight.

Bauernöppel’s NP -hardness proof [20] for the problem of recognizing subhamilto-
nian planar graphs generates 2-connected instances with maximum degree seven.

2. Is every 2-connected planar graph with maximum degree five subhamiltonian
planar?

3. Is every 2-connected planar graph with maximum degree six subhamiltonian
planar?

The Goldner-Harary graph (Figure 93) is a 3-connected planar graph with maximum
degree eight that is not subhamiltonian planar.

4. Is every 3-connected planar graph with maximum degree six subhamiltonian
planar?

5. Is every 3-connected planar graph with maximum degree seven subhamiltonian
planar?



Chapter 5

Convexity-increasing morphs

5.1 Introduction

Broadly speaking, morphing refers to the act of continuously transforming a given
graphical object or shape into another [65]. Gomes, Darsa, Costa, and Velho [65]
provide an extensive survey and list several applications from the field of computer
graphics such as animation, modeling, and geometric correction and matching. Here,
we focus on 2-dimensional morphs between objects whose shapes can be represented
by graph drawings. More specifically, a morph between two straight-line drawings Γ0
and Γ1 of a graph G is a continuous deformation that transforms Γ0 into Γ1 while
preserving straight-line edges throughout the motion [3, 4, 7, 12]. In other words,
each vertex moves from its position in Γ0 to its position in Γ1 and the edges follow
along as line segments. A morph is planar if Γ0 and Γ1 are planar and the morph
preserves planarity throughout the entire deformation.

It was established long ago [28, 120] that there exists a planar morph between
any two planar straight-line drawings of the same plane graph. More recent results [3,
4, 7, 12] aim to efficiently compute morphs and decrease the “complexity” of the
deformation. Instead of morphing between two given drawings, our focus is somewhat
different, and more aligned with graph drawing goals: we are interested in transforming
an initial drawing Γ into one that is strictly convex, that is, the boundary of each
face is described by a strictly convex polygon. This drawing convention is motivated
by visual qualities [109]. We say that such a morph convexifies Γ.

It is easy, using known results, to find a planar morph that convexifies a given
planar straight-line drawing Γ of a plane graph G: we can just create a strictly convex
drawing ΓC of G (assuming such a drawing exists), and morph between Γ and ΓC using
the known planar morphing algorithms (for a discussion of the techniques used, see
the Section 5.1.1). However, it has been established by empirical investigations [107]
that, for the purposes of visualization, it is important to maintain the viewer’s
“mental map”, which means changing as little as possible while making observable
progress towards a goal. Hence, we would like our morphs to be convexity-increasing,
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(a) (b)

(c)(d)

Figure 96: A sequence of convexity-increasing morphs (horizontal, vertical, horizontal)
that morph a straight-line drawing of a graph G (a) into a strictly convex drawing
of G (d). The marked vertices have reflex angles that are eliminated in the next step.
All convex angles are preserved.

meaning that once an internal angle is strictly convex, it remains strictly convex, and
once an outer angle is reflex, it remains reflex. We illustrate a convexity-increasing
morph in Figure 96. Most previous morphing algorithms fail to provide convexity-
increasing morphs even if the target is a strictly convex drawing because they start
by triangulating the drawing. Therefore, an original strictly convex angle may be
subdivided by new triangulation edges, so there is no constraint that keeps it strictly
convex.

5.1.1 Related work

To the best of our knowledge, previous work on convexity-increasing morphs only
considers the case when the input graph is a simple cycle: Connelly, Demaine, and
Rote [37] and Streinu [117, 118] showed how to morph a simple polygon (i.e., a
drawing of a simple cycle) to a convex polygon while preserving the length of each
edge. Moreover, their motions are expansive, meaning that the pairwise vertex
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distances do not decrease. The combination of these two properties implies that once
an angle is 180◦, it remains 180◦. Hence, their morphs are convexity-increasing in a
slightly different sense, namely, once an angle is convex, it remains convex (but not
strictly convex). Other authors [2] showed how to convexify a given simple polygon
while preserving vertex visibilities. This condition also implies the condition of being
convexity-increasing.

There is an algorithm to morph a strictly convex drawing to another strictly
convex drawing of the same graph while preserving planarity and strict convexity [10].
Such morphs are convexity-increasing by default, but they are not applicable to solve
our problem since our initial drawing is not strictly convex.

Many previous morphing algorithms find “piece-wise linear” morphs [3, 4, 7, 12],
which are composed of some number of linear morphing steps that can be efficiently
encoded: a morph is called linear if each vertex moves along a straight-line segment
at constant speed (depending on the length of the line segment) such that it arrives
at its final position at the end of the morph. Note that vertices are allowed to move
at different speeds, and some vertices may remain stationary. A linear morph is
completely specified by the initial and final drawings. Hence, a morph that is a
composition of linear morphs can be encoded as a sequence of drawings. A special
case of linear morphs are unidirectional morphs. In these morphs, all the lines along
which vertices move are parallel.

Alamdari et al. [3] gave an algorithm with runtime O(n3) that takes as input two
planar straight-line drawings of a plane graph on n vertices. It then constructs a planar
morph between the two drawings that consists of a sequence of O(n) unidirectional
morphs, which they show to be optimal in the worst case.

5.1.2 Main results and organization

We present an algorithm that convexifies a given straight-line planar drawing of a
plane graph G via a planar convexity-increasing morph. The only requirement is
that G admits a strictly convex drawing. This is the case if and only if G is internally
3-connected, see Section 5.2.1 for the definition and related discussions.

Our morphs are composed of a linear number of horizontal and vertical morphs.
A horizontal morph is a unidirectional morph that moves vertices along horizontal
lines. Vertical morphs are defined analogously. Figure 96 illustrates a sequence
of horizontal and vertical morphs. Orthogonality is a well-studied graph drawing
convention [50] with empirically proven visual qualities [13, 101, 108]. Similarly, it
seems natural that orthogonal motion should be easier to comprehend. By using
a shearing transformation, it is not difficult to turn a single linear morph into two
horizontal / verticals morphs, but this will of course double the number of total steps.
We count the number of morphing steps of our algorithm explicitly, and show that
orthogonality can be achieved with a less significant increase in the number of steps.

Our algorithm has another advantage in terms of visualization: previous morphing
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algorithms, such as the one by Alamdari et al. [3] or by Aichholzer et al. [2], move
vertices very close together such that they almost coincide, effectively “contracting”
the vertices, which destroys the user’s “mental map” [107] of the graph. We do
not use such contractions, which might result in more visually pleasing morphs in
practice.

Our main result is summarized in the following theorem.

Theorem 58. Let Γ be a planar straight-line drawing of an internally 3-connected
graph G on n vertices. Then Γ can be morphed to a strictly convex drawing via a
sequence of at most 3.5n+ 2 convexity-increasing planar morphing steps each of which
is either horizontal or vertical.

In the special case that Γ has a convex outer face, the upper bound on the number
of morphing steps is max{2, r + 1}, where r denotes the number of internal reflex
angles of Γ.

Furthermore, there is a O(n1+ω/2 + n2 logn) time algorithm to find the sequence
of morphs, assuming that two n× n matrices can be multiplied with O(nω) arithmetic
operations.

The term ω appears in the run time due to the fact that one of the steps of our
algorithm uses a variant of Tutte’s graph drawing algorithm [124], for which we need to
solve a linear system of equations. The run time is O(n2.5) with Gaussian elimination
and O(n2.1865) when using the current fastest matrix multiplication method with
ω ≈ 2.3728639 [95].

In Section 5.3, we will first prove a weaker version (Theorem 68) of Theorem 58,
where the morphs are only required to maintain strict convexity of internal angles—
outer reflex angles are allowed to switch their convexity status arbitrarily often. We
call such a morph weakly convexity-increasing. We then extend the algorithm to also
maintain outer reflex angles in Section 5.5.

Theorem 58 guarantees the existence of a convexity-increasing morph to a strictly
convex drawing where the morph is composed of O(n) horizontal/vertical morphs. In
Section 5.6, we show that this bound is optimal in the worst case. In fact, we show
something stronger:

Theorem 59. For any n > 3, there exists a drawing of an internally 3-connected
graph on n vertices for which any convexifying planar morph composed of a sequence
of linear morphing steps requires Ω(n) steps.

Our model of computation is the real-RAM. In particular, we do not have a
polynomial bound on the bit-complexity of the coordinates of the vertices in the
sequence of drawings that specify the morph. This is a common problem of most
previous morphing algorithms. An exception is a morphing approach by Barrera-Cruz,
Haxell, and Lubiw [19], which is based on Schnyder drawings and maintains a grid
size of O(n)×O(n). Since this method only applies to special types of triangulations
(so-called weighted Schnyder drawings), it does not seem applicable to solve our
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problem. A main ingredient of most other morphing algorithms [3, 10, 40], including
the one presented in this thesis, is a procedure for redrawing a given planar drawing
to have convex faces while preserving the y-coordinate of each vertex (we formally
define this concept in Section 5.2.4). In Section 5.7, we show that a single application
of this procedure can blow up the width of a given drawing from W ∈ Θ(n) to
2W−2(W − 2)!. Hence, it seems not possible to achieve a good resolution with our
current approach for proving Theorem 58 and, more generally, with any approach
that naively uses this redrawing procedure.

In the following Section 5.2, we introduce several techniques and concepts used
throughout this chapter.

5.2 Preliminaries

We define (strictly) convex drawings and internally 3-connected graphs in Section 5.2.1.
In Section 5.2.2, we discuss drawings with y-monotone faces, which play an important
role for our morphing procedure. We proceed by stating several useful properties of
unidirectional morphs in Section 5.2.3. Finally, we address the concept of finding
(strictly) convex redrawings while preserving the y-coordinate of each vertex in
Section 5.2.4.

Throughout this chapter, we use x(v) and y(v) to denote the x-coordinate and
y-coordinate of a vertex v, respectively. All graphs in this chapter are simple.

5.2.1 Convex drawings and internal 3-connectivity

Given a planar straight-line drawing Γ of a graph, its angles are formed by pairs of
consecutive edges around a face, with the angle measured inside the face. An internal
angle is an angle of an inner face. We say an angle is reflex if it exceeds π, convex if
it is at most π, and strictly convex if it is less than π. A drawing Γ is convex if the
boundary of every face is a convex polygon, i.e., angles of the inner faces are convex
and angles of the outer face are reflex or of size π. The drawing is strictly convex if
the boundary of every face is a strictly convex polygon.

Conditions for the existence of convex drawings. Throughout, we assume
that our input is a drawing of a plane graph that admits a strictly convex drawing.
Necessary and sufficient conditions for the existence of a strictly convex drawing
were given by Tutte [123], Thomassen [121], and Hong and Nagamochi [79]. These
conditions can be tested in linear time using an algorithm presented by Chiba,
Onogushi, and Nishizeki [31].

Such conditions are usually stated for a fixed (strictly) convex drawing of the
outer face, but the conditions become simpler when, as in our case, the drawing of
the outer face may be freely chosen. In particular, when it may be chosen to have no
three consecutive collinear vertices. Internal vertices of degree 2 play a special role in
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these conditions: in a convex drawing, an internal vertex of degree 2 must be drawn
as a point in the interior of the straight line segment formed by its two incident edges.
This has two implications: (1) a graph with an internal vertex of degree 2 has no
strictly convex drawing, and (2) for a convex drawing we may eliminate every internal
degree 2 vertex by repeatedly replacing a degree 2 vertex and its two incident edges
by a single edge. Whenever this produces multiple edges, then there exists no convex
drawing.

With these observations, the necessary and sufficient conditions for the existence
of a (strictly) convex drawing become quite simple to state. A plane graph G is
internally 3-connected if the graph is 2-connected and any separation pair u, v is
external, meaning that u and v lie on the outer face and that every connected
component of G \ {u, v} contains a vertex of the outer face of G. Observe that the
two neighbours of an internal vertex of degree 2 form a separation pair that is not
external. The results of Tutte [123], Thomassen [121], and Hong and Nagamochi [79]
become:

Lemma 60 ([79, 121, 123]). Let G be a plane graph. Then

1. G has a strictly convex drawing if and only if G is internally 3-connected.

2. G has a convex drawing if and only if repeatedly eliminating internal vertices
of degree 2 produces a graph that has no multiple edges and is internally 3-
connected.

Note that a separation pair that is not external can have both of its vertices on
the outer face, see Figures 97(b) and 97(c). For this reason, we refer to a separation
pair that is not external as nonexternal, rather than using the more straightforward,
but misleading term internal.

C C ′
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Figure 97: (a) An external separation pair u, v and its two components C and C ′.
(b,c) In these cases, u, v form a nonexternal separation pair since the component
marked with a jagged arrow has no vertex on the outer face, which implies that there
is no convex drawing of G.
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Structure of internally 3-connected graphs. There are multiple well-known
equivalent definitions of internal 3-connectivity. Each of them provides a different
perspective on the concept and it will be convenient to refer to all of them. Hence,
we state the following well-known characterization:

Lemma 61. Let G be a plane 2-connected graph and let fo denote its outer face.
The following statements are equivalent:

(K1) G is internally 3-connected.

(K2) Inserting a new vertex v in fo and adding edges between v and all vertices of fo
results in a 3-connected graph.

(K3) From each internal vertex w of G there exist three paths to fo that are pairwise
disjoint except for the common vertex w.

Proof. (K1) obviously implies (K2), which in turn implies (K3) by 3-connectivity. It
remains to show that (K3) implies (K1). So suppose that from each internal vertex w
there exist three paths to fo that are disjoint except for the common vertex w.
Consider a pair of vertices p, q and an arbitrary vertex w of G \ {p, q}. Then the
connected component of w in G\{p, q} has at least one vertex that belongs to fo: this
is clear if w belongs to fo. Otherwise, w is an internal vertex of G and, hence, there
are three disjoint path from w to fo, and only two of these paths can be destroyed by
removing p and q.

Moreover, we claim that if p, q is a separation pair of G, then both p and q belong
to fo. Towards a contradiction, assume that the conclusion of this claim does not
hold. Since G is 2-connected, fo is a simple cycle and, hence, all vertices of fo \ {p, q}
belong to the same connected component of G \ {p, q}. However, by assumption
from each internal vertex w there exist at least one path to fo in G \ {p, q} and,
thus, G \ {p, q} is connected, which yields the desired contradiction.

The following statement gives a characterization of external separation pairs
and describes the structure of internally 3-connected graphs. For an illustration see
Figure 97(a).

Observation 62. Let H be a plane 2-connected graph and let u, v be a separation
pair of H. Then, the separation pair u, v is external if and only if all of the following
conditions hold:

(E1) Vertices u and v belong to the outer face of H.

(E2) The outer face of H decomposes into two internally disjoint paths
(u,w1, . . . , wj , v) and (v, w′1, . . . , w′`, u) each with at least 3 vertices,
i.e. j ≥ 1and l ≥ 1.

(E3) Vertices w1, . . . , wj belong to a connected component C of H \ {u, v}.
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(E4) Vertices w′1, . . . , w′j belong to a connected component C ′ of H \ {u, v}.

(E5) The graph H \ {u, v} has no connected component other than C,C ′.

(E6) The components C and C ′ are distinct.

Proof. If the six conditions hold, then clearly u, v form an external separation pair.
On other hand, if u, v form an external separation pair, then u and v belong to the
outer face of H (E1). Since H is 2-connected, its outer face is a simple cycle. Further,
the removal of u and v splits the graph into at least two connected components each
of which has a vertex that belongs to the outer face of H. Hence, the removal of u
and v decomposes the outer face into two internally disjoint paths (u,w1, . . . , wj , v)
and (v, w′1, . . . , w′`, u) each with at least 3 vertices (E2). Since (w1, . . . , wj) is a path
in H \ {u, v}, its vertices belong to a connected component C (E3). Analogously,
(w′1, . . . , w′j) is a path in H \ {u, v}, its vertices belong to a connected component C ′
(E4). Since these two paths together with u and v cover the entire outer face of H,
there can not be any more components (E5). Finally, since there are at least two
components, C and C ′ have to be distinct (E6).

5.2.2 Drawings with y-monotone faces

Let G be a 2-connected planar graph and consider a planar drawing Γ of G. A
face of Γ is y-monotone if its boundary consists of two y-monotone paths. A path
is y-monotone if the y-coordinates of the points along the curve realizing the path
are strictly increasing. These definitions apply to general planar graph drawings,
not just straight-line drawings. We remark that if all faces of Γ are y-monotone
and, additionally, the y-coordinates of vertices are pairwise distinct, then Γ is y-
monotone (cf. Section 3.1.4). The converse is not true in general. Directed graphs
that have drawings with y-monotone faces are the so-called st-planar graphs, which
are well-studied [47].

Assume that each edge of Γ is a y-monotone curve. We say a vertex v is a local
minimum (local maximum) of a face f in Γ if both neighbors of v in f lie above
(below) v. A local extremum refers to a local minimum or a local maximum. Note
that a face f of Γ is y-monotone if and only if it has exactly one local maximum and
exactly one local minimum. Equivalently, in case the edges of Γ are polygonal chains,
an interior (exterior) face f is y-monotone if and only if it has no reflex (convex)
local extremum, that is, a local extremum whose angle in f is reflex (convex).

5.2.3 Linear and unidirectional morphs

A linear morph is completely specified by the initial and the final drawing. To
denote the unique linear morph from a drawing Γ1 to a drawing Γ2, we use the
notation 〈Γ1,Γ2〉. Restricting to linear morphs is a sensible way to discretize morphs.
Essentially, it amounts to requiring piece-wise linear vertex trajectories. At first
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glance, further restriction to unidirectional morphs seems arbitrary and too restrictive.
However, unidirectional morphs are conceptually much simpler than linear morphs
and they have several useful properties, some of which are described in this section.
Moreover, we show that the necessary number of linear morphing steps for convexifying
a given drawing (Theorem 59) is always sufficient even when restricted to unidirectional
morphs (Theorem 58).

Suppose we perform a horizontal morph. Then every vertex keeps its y-coordinate.
Alamdari et al. [3] gave conditions on the initial and final drawing that guarantee
that the horizontal morph between them is planar:

Lemma 63 ([3]). If Γ and Γ′ are two planar straight-line drawings of the same graph
such that every line parallel to the x-axis crosses the same ordered sequence of edges
and vertices in both drawings, then the linear morph 〈Γ,Γ′〉 is planar.

The statement of Lemma 63 is formulated as in intermediate claim in the proof
of [3, Lemma 13], but the authors do not state it as an independent theorem. It is
proven in the proof of [3, Lemma 13]. The idea is that it suffices to show that if two
points p and q move along a horizontal line at constant speeds for a unit of time
and q is to the right of p in the initial and final position, then q is to the right of p at
every time instant throughout the movement. The latter claim is formulated as [3,
Lemma 14] and follows directly by linearity.

Observe that the conditions of Lemma 63 imply that every vertex is at the same
y-coordinate in Γ and Γ′ and, hence, the linear morph between them is horizontal.
Also note that the lemma generalizes in the obvious way to any direction, not just
the direction of the x-axis. We note several useful consequences:

Lemma 64. Let Γ1,Γ2,Γ3 be three planar straight-line drawings of the same graph
where the linear morphs 〈Γ1,Γ2〉 and 〈Γ2,Γ3〉 are horizontal and planar. Then the
linear morph 〈Γ1,Γ3〉 is a horizontal planar morph.

Proof. The morphs 〈Γ1,Γ2〉 and 〈Γ2,Γ3〉 are horizontal and planar, so every line
parallel to the x-axis crosses the same ordered sequence of edges and vertices in Γ1
and Γ3. Then by Lemma 63 the morph 〈Γ1,Γ3〉 is horizontal and planar.

Lemma 64 allows us to merge two morphs 〈Γ1,Γ2〉 and 〈Γ2,Γ3〉 as in the statement
into a single morph, which we will use to decrease the overall number of morphing
steps.

Lemma 65. Let Γ1,Γ2 be two planar straight-line drawings of the same graph such
that 〈Γ1,Γ2〉 is a horizontal planar morph. Then the convexity status of an angle β
formed by two edges {a, b}, {b, c} at a vertex b can change at most once during the
morph 〈Γ1,Γ2〉, i.e., β cannot change from < 180◦ to ≥ 180◦ and then back to < 180◦,
or from ≥ 180◦ to < 180◦ and then back to ≥ 180◦.

Moreover, if every strictly convex internal angle of Γ1 is also strictly convex in Γ2,
then the morph 〈Γ1,Γ2〉 is weakly convexity-increasing. If additionally, every outer
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reflex angle of Γ1 is also reflex in Γ2, then the morph 〈Γ1,Γ2〉 is convexity-increasing.

Lemma 65 is a generalization of [10, Lemma 7], which states that a horizon-
tal morph between two strictly convex drawings that satisfy the preconditions of
Lemma 63 preserves strict convexity. The proof of [10, Lemma 7] uses basic properties
of unidirectional morphs from [3]. In contrast, we prove the generalization Lemma 65
using the orientation test, a standard operation in computational geometry [42].

Proof of Lemma 65. The orientation test [42] determines the orientation of a
sequence (p, q, r) of points p = (px, py), q = (qx, qy), r = (rx, ry) in the plane by
checking the sign of the determinant∣∣∣∣∣∣∣

px qx rx
py qy ry
1 1 1

∣∣∣∣∣∣∣ = pxqy + qxry + pyrx − qyrx − pyqx − pxry =: ori(p, q, r).

Specifically, ori(p, q, r) > 0 if (p, q, r) appear in counterclockwise order, ori(p, q, r) < 0
if (p, q, r) appear in clockwise order, and ori(p, q, r) = 0 if p, q, r are colinear. Hence,
the convexity status of an angle β formed by two edges {a, b} and {b, c} can be
checked by considering the sign of ori(a, b, c).

The morph 〈Γ1,Γ2〉 is horizontal. Hence, the y-coordinates ay, by, cy of a, b, c are
maintained, while their x-coordinates ax(t), bx(t), cy(t) vary linearly with the time t.
Plugging (ax(t), ay), (bx(t), by), (cx(t), cy) into ori, we obtain the function

ax(t)by + bx(t)cy + aycx(t)− bycx(t)− aybx(t)− ax(t)cy =: f(t),

which is linear in t, and whose sign describes the convexity status of the angle β at
time t. By linearity, f(t) is either constantly 0, or it is 0 at most once during any time
interval. Consequently, the convexity status changes at most once during 〈Γ1,Γ2〉,
which proves the first statement of the lemma.

We prove the second statement of the lemma by contrapositive. Suppose the
horizontal morph 〈Γ1,Γ2〉 is not (weakly) convexity-increasing. Then some angle α
looses its desired status during the morph. The first statement of the lemma implies
that α also does not have its desired status in Γ2.

Alamdari et al. gave the following further condition that implies the precondition
of Lemma 63. We emphasize that the statement applies to planar graph drawings in
general, that is, edges are not required to be straight-line.

Observation 66 ([3]). Let G be a plane graph and let Γ and Γ′ be two planar graph
drawings of G. Further, assume that all faces in both drawings are y-monotone and
each vertex of G has the same y-coordinate in both drawings. Then every line parallel
to the x-axis crosses the same ordered sequence of edges and vertices in both drawings.
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The statement of Observation 66 is formulated as an intermediate claim in the
proof of [3, Lemma 13] for the case of straight-line drawings without horizontal edges.
It is not stated as an independent theorem. We observe that the proof of Alamdari
et al., also discussed in the proof of [3, Lemma 13], does not actually make use of
the fact that the edges are straight-line segments. Instead, it suffices that they are
y-monotone. For the sake of self-containment, we summarize the proof by Alamdari
et al. in terms of graph drawings with y-monotone edges:

Proof of Observation 66. Consider a horizontal line ` that intersects a face f of Γ.
Since f is y-monotone, ` crosses the boundary of f in up to 2 points. Since the
y-coordinates of vertices are the same in both drawings, the crossings belong to the
same edges/vertices of f in both drawings. Moreover, since Γ and Γ′ are drawings of
the same plane graph, the order in which the edges/vertices of f are crossed by ` is
identical. Hence, it remains to argue that ` crosses the same sequence of faces. Again
this follows from the fact that Γ and Γ′ are drawings of the same plane graph and
each vertex has the same y-coordinate in both drawings. This implies that if ` crosses
the interior of two faces f and f ′ consecutively in Γ, then it also crosses the interiors
of f and f ′ consecutively in Γ′, even in the case that the intersection of f, f ′, and `
is a vertex.

To make use of the above lemmata, we will again follow Alamdari et al. [3] and
use a procedure for redrawing a given planar drawing to have convex faces while
preserving the y-coordinate of each vertex, which is described in the next section.

5.2.4 Redrawing with convex faces while preserving y-coordinates

Amain ingredient of many morphing algorithms [3, 10, 40], including the one presented
in this thesis, is a procedure for redrawing a given planar (straight-line) drawing
to have convex faces while preserving the y-coordinate of each vertex. An idea for
obtaining such a procedure was described already in 1996 by Chrobak, Goodrich, and
Tamassia in a paper [33] that was only published as a “preliminary version”. Their
approach is based on using Tutte’s graph drawing algorithm [124] and it has been
reused and extended, for instance, in [116] and [111]. However, the idea does not
appear to be widely known. Instead, modern graph morphing papers [3, 10, 40] build
on a well-known convex redrawing technique described by Hong and Nagamochi [79]
in 2012. The drawings generated by the algorithm of Hong and Nagamochi [79] are in
general not strictly convex since the corresponding recursive algorithm draws certain
paths of the graph by placing all its vertices on a common line. Angelini, Da Lozzo,
Frati, Lubiw, Patrignani, and Roselli [10] extended the result to strictly convex faces
by perturbing vertices to avoid angles of 180◦. Since the idea by Chrobak et al. is
based on Tutte’s algorithm, it automatically produces strictly convex drawings. The
algorithm of Hong and Nagamochi has a runtime of O(n2). Angelini et al. did not
analyze the runtime of their extension. Chrobak et al. pointed out [33] that their
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approach can be implemented in time O(nω/2 + n logn) by using the generalized
nested dissection method by Lipton, Rose, and Tarjan [98, 99].

For the morphing algorithm presented in this thesis, we rekindle the idea of
Chrobak et al. [33]. Using an improved version of generalized nested dissection due
to Alon and Yuster [5] from 2013, we give a very simple and short proof, based on
the ideas of Chrobak et al., of the strengthened version of Hong and Nagamochi’s
well-known result while achieving the improved runtime of O(nω/2 + n logn).

Tutte’s algorithm is a very flexible framework that can be used to achieve additional
properties, which is another advantage of using the method by Chrobak et al. In
Section 5.5, we use the freedom that this framework provides to extend our algorithm
for the weakly convexity-increasing case to also maintain outer reflex angles.

In the following, we give the precise formulation of the redrawing technique. The
proof is discussed in Section 5.4.

Lemma 67 ([10, 33, 79]). Let Γ be a planar drawing of an internally 3-connected
graph G such that every face is y-monotone. Let C be a strictly convex straight-line
drawing of the outer face of G such that every vertex of C has the same y-coordinate
as in Γ. Then there is a strictly convex straight-line drawing Γ′ of G such that the
subdrawing of the outer face is C and every vertex of Γ′ has the same y-coordinate as
in Γ.

Furthermore, the drawing Γ′ can be found in time O(nω/2 + n logn), even if only
the underlying abstract graph of G, the cycle corresponding to C, and the y-coordinates
of vertices are given, assuming that two n× n matrices can be multiplied with O(nω)
arithmetic operations.

5.3 Computing weakly convexity-increasing morphs

In this section, we prove the following theorem, which is a weaker version of The-
orem 58. It is mainly concerned with maintaining internal strictly convex angles
(though, if the outer face of the given drawing is already convex, the produced morphs
are convexity-increasing in the strong sense).

Theorem 68. Let Γ be a planar straight-line drawing of an internally 3-connected
graph G on n vertices. Then Γ can be morphed to a strictly convex drawing via a
sequence of at most 3.5n+ 2 weakly convexity-increasing planar morphing steps each
of which is either horizontal or vertical.

In the special cases that G is 3-connected or Γ has a convex outer face, the upper
bound on the number of morphing steps can be improved to 1.5n+ 2 or max{2, r+ 1},
respectively, where r denotes the number of internal reflex angles of Γ. Moreover, if Γ
has a convex outer face, the morph is convexity-increasing.

Furthermore, there is an O(n1+ω/2 + n2 logn) time algorithm to find the sequence
of morphs, assuming that two n× n matrices can be multiplied with O(nω) arithmetic
operations.
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In fact, we show multiple variants of Theorem 68, starting with a highly specialized
version and proceeding to more and more general ones, which use the more specialized
cases as building blocks. So let Γ be a planar straight-line drawing of an internally
3-connected graph G on n vertices. Our goal is to convexify Γ by means of a weakly
convexity-increasing morph.

Section overview. In Section 5.3.1, we start with the simple case that all faces
of Γ are y-monotone. The purpose of this section is to demonstrate how all the
lemmata and observations from Sections 5.2.3 and 5.2.4 fit together. Indeed, by simply
combining the tools from these sections, we obtain a horizontal convexity-increasing
morph to a strictly convex drawing of G.

The first more challenging case is discussed in Section 5.3.2, where we prove
Theorem 68 for the case that the outer face of Γ is already drawn as a convex
polygon. The idea is to augment Γ to be y-monotone and apply the algorithm for the
y-monotone case to convexify some angles. After that, we repeat the same strategy,
but we augment the drawing to be x-monotone and perform a vertical morph to
convexify further angles. We continue to alternate between horizontal and vertical
morphs until the drawing is convexified.

In Section 5.3.3, we allow the outer face to be realized as a nonconvex polygon,
but we restrict our attention to the case that G is 3-connected (rather than internally
3-connected). The idea is to augment the outer face by adding its convex hull edges
and then apply the algorithm for the convex case. After that, we iteratively remove
the additional edges while performing a constant number of morphing steps after
each removal.

Finally, in Section 5.3.4, we prove the general case of Theorem 68, that is, we
allow G to be internally 3-connected. The reason why the algorithm for the 3-
connected case does not apply to internally 3-connected graphs is that adding the
convex hull edges may create nonexternal separation pairs. The idea to overcome
this problem is to augment the outer face of Γ by creating a “buffer” layer of new
vertices and edges that ensure that adding the convex hull edges preservers internal
3-connectivity. After that, we apply the algorithm for the 3-connected case and then
iteratively remove the vertices that do not belong to G while performing a constant
number of morphing steps after each removal.

5.3.1 A simple case: morphing y-monotone drawings

To give some intuition about our general proof strategy, we first consider an easy
case where all faces (including the outer face) of Γ are y-monotone. We choose
some strictly convex polygon C as a redrawing of the outer face of Γ that preservers
the y-coordinate of each vertex. We can immediately apply Lemma 67 with C

as the prescribed drawing of the outer face to obtain a new straight-line strictly
convex drawing Γ′ of G in which each vertex has the same y-coordinate as in Γ. By
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Observation 66, every line parallel to the x-axis crosses the same ordered sequence of
edges and vertices in Γ and in Γ′. Thus, by Lemma 63 the morph 〈Γ,Γ′〉 is planar.
Moreover, it is a horizontal morph. Hence, we have a morph from Γ to a strictly
convex drawing Γ′ by way of a single horizontal morph. Furthermore, this morph is
weakly convexity-increasing by Lemma 65 since every internal angle is strictly convex
in the final drawing Γ′ (in fact, the morph is even convexity-increase in the strong
sense since every angle has its desired status in Γ′).

5.3.2 Morphing drawings with a convex outer face

In this section, we consider the case that the subdrawing C of the outer face in Γ is
convex (but not necessarily strictly convex) and the inner faces of Γ are not necessarily
y-monotone. Additionally, we assume that Γ has no horizontal edge; we will later
show how to ensure this.

Overview. As in Section 5.3.1, we begin by performing a horizontal morph. Observe
that such a morph preserves the local extrema and does not change their convexity
status. Thus, the only inner angles that can be convexified via a horizontal morph
are the h-reflex angles, that is, those reflex or 180◦ angles of an inner face f that
are not local extrema of f . We will show that a single horizontal morph suffices to
convexify all these angles. The plan is to then repeat the procedure after conceptually
“turning the paper” by 90◦, that is, we proceed by performing a vertical morph to
make every v-reflex angle strictly convex, where a v-reflex angle is defined as an
inner angle that becomes h-reflex after rotating the drawing by 90◦. By continuing
to alternate between the horizontal and the vertical direction, we eventually end up
with a strictly convex drawing and, thus, prove Theorem 68 for the case of a convex
outer face.

A horizontal morphing step. To find the desired horizontal morph, we will
apply Lemma 67. Therefore, we must first augment Γ to a drawing with y-monotone
faces by inserting y-monotone edges (that are not necessarily straight-line). For an
example see Figure 98. This is a standard operation in the context of drawing styles
that use y-monotone edges, see for example [47, Lemma 4.1] [104, Lemma 3.1], and
it is also used in an algorithm for triangulating a simple polygon [42, Section 3.2].
However, the approaches in [47, 104] are not directly applicable in our case since
we need our augmented drawing to satisfy an additional constraint: the new edges
are only allowed to be incident to local extrema since otherwise we would relinquish
control of convexity at an incident vertex.

Lemma 69. Let Γ be straight-line planar drawing of an internally 3-connected
graph G without horizontal edges. Then Γ can be augmented by adding edges into
the inner faces to obtain a planar drawing Γ′ such that each additional edge is a
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y-monotone curve joining two local extrema of some face in Γ, every inner face is y-
monotone, and the augmented plane graph G′ is internally 3-connected. Furthermore,
the plane graph G′ can be computed in O(n logn) time.

Proof. Recall that a face of a drawing with y-monotone polygonal edges is y-
monotone if and only if it has no reflex local extremum. Our proof is by induction
on the number of reflex local extrema in all inner faces of the drawing. If there are
none, then all inner faces are y-monotone. Otherwise, consider an inner face f that
has a local reflex extremum u. Without loss of generality, u is a local minimum. For
an illustration consider Figure 98.

(a) (b)

Figure 98: (a) A face that is not y-monotone. The dashed edges inside the face are
added by Lemma 69. (b) The face after application of Lemma 70.

We want to find a local extremum v below u such that we can insert a y-monotone
curve from v to u within face f . To construct the curve go vertically downwards
from u to the first point pu on the boundary of f , and then follow a y-monotone
path along the boundary of f downwards from pu to some local minimum v. Adding
the edge {u, v} splits f into two faces, and decreases the total number of local reflex
extrema.

Note that the procedure cannot create multiple edges since all edges remain
y-monotone and the new edge connects a vertex u with a vertex v such that all
neighbors of u have larger y-coordinates than u, but the vertex v has a smaller
y-coordinate than u. Since we only insert inner edges, the graph remains internally
3-connected.

We remark that Pach and Tóth [104] used a similar idea to triangulate with
monotone curves, although their curves stopped at the first vertex on f ’s boundary
and we must continue to the first local minimum.

To complete the proof we describe how the set of augmenting edges can be found
in time O(n logn). We deal with the local reflex minima; the maxima can be dealt
with in a second phase. Find a trapezoidal decomposition [42] of the drawing in
O(n logn) time (in such a decomposition, each face is partitioned into trapezoids by
shooting two rays rt and rb to the top and bottom at each vertex v of the face, and



184 Chapter 5. Convexity-increasing morphs

adding segments between v and the first edge intersected by rt and rb, respectively).
This gives the point pu for each local reflex minimum u in face f . By traversing
each face once, we can preprocess the graph in total time O(n) to find, for each
edge e in face f , the local minimum v that is reached by following a y-monotone
curve downward from e in f . This gives the set of augmenting edges and, hence,
the underlying abstract graph of the desired plane graph G′. To determine G′ (i.e.,
the combinatorial embedding), for each vertex v, we sort in each incident face f
the new edges incident to v according to the order in which their endpoints appear
along f , which is easily done in total time O(n logn). (The embedding can even be
determined in O(n) time by traversing each face and adding the edges at each vertex
in the order in which they are discovered.)

This observation allows us to prove the following:

Lemma 70. Let Γ be a straight-line planar drawing of an internally 3-connected
graph G with a convex subdrawing C of the outer face and no horizontal edge. There
exists a straight-line planar drawing Γ′ of G such that Γ′ has a strictly convex outer face
and each internal angle of Γ′ whose corresponding angle in Γ is not a local extremum
is strictly convex in Γ′. Furthermore, the morph 〈Γ,Γ′〉 is convexity-increasing,
horizontal, and planar and can be found in time O(nω/2 +n logn), assuming that two
n× n matrices can be multiplied with O(nω) arithmetic operations.

Proof. If C is not strictly convex, we choose some strictly convex redrawing C ′ of C
that preserves the y-coordinate of each vertex. Otherwise, we set C ′ = C.

By Lemma 69 there exists a set A of edges that can be drawn as a set ΓA of
y-monotone curves such that Γ ∪ ΓA is a planar drawing of G ∪A in which all faces
are y-monotone, and any edge of A is incident to two local extrema of some inner
face. Its underlying plane graph G′ can be computed in O(n logn) time.

Apply Lemma 67 to G′ and C ′ with the y-coordinates as in Γ to obtain in time
O(nω/2 + n logn) a new straight-line strictly convex drawing Γ′ ∪ Γ′A of G′ with each
vertex at the same y-coordinate as in Γ. Here, Γ′A denotes the set of straight-line
edges corresponding to A. By Observation 66 every line parallel to the x-axis crosses
the same ordered sequence of edges and vertices in Γ ∪ ΓA and in Γ′ ∪ Γ′A. This
property carries over to the two corresponding subdrawings of G, i.e, every line
parallel to the x-axis crosses the same ordered sequence of edges and vertices in Γ
and Γ′. Consequently, by Lemma 63 the horizontal morph 〈Γ,Γ′〉 is a planar.

Each internal angle of Γ that is not a local extremum has no edge of A incident
to it, and thus becomes strictly convex in Γ′. Any internal angle of Γ that is a local
extremum maintains its convexity status status in Γ′ since 〈Γ,Γ′〉 is horizontal and
planar. Moreover, since C ′ is strictly convex, every outer angle in Γ′ is reflex. Thus
by Lemma 65 the morph is convexity-increasing.

The time to find the morph (i.e., to find Γ′) is dominated by the application of
Lemma 67 and sums up to O(nω/2 + n logn).
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Making progress. Lemma 70 generalizes to directions other than the horizontal
direction: for any direction d that is not parallel to an edge of Γ, there exists a
convexity-increasing unidirectional (with respect to d) morph that convexifies all
internal angles that are not extreme in the direction orthogonal to d. Thus, if we do
not insist on a sequence of horizontal and vertical morphs, we immediately obtain
a proof of Theorem 68 for the case of a convex outer face, since, for each inner
angle that is not strictly convex, we can choose a direction d that convexifies it and,
therefore, we need at most one morph for each of these angles (in the case that all
inner angles are strictly convex, but the outer face is not strictly convex, we need a
single morphing step).

In order to prove the stronger result that uses only two orthogonal directions, we
need to alternate between the horizontal and the vertical direction. Note that after
one application of Lemma 70, we do not necessarily obtain a drawing that contains
a v-reflex vertex, see Figures 99(a) and 99(b). To ensure that our algorithm makes
progress after every step, we prove a strengthened version of Lemma 70 that ensures
that there is at least one h-reflex or v-reflex vertex available after each step.

Lemma 71. Let Γ be a straight-line planar drawing of an internally 3-connected
graph with a convex subdrawing of the outer face and no horizontal edge. There exists
a convexity-increasing, horizontal, and planar morph to a straight-line drawing Γ′′
such that

(i) the outer face of Γ′′ is strictly convex,

(ii) each internal angle of Γ that is not a local extremum is strictly convex in Γ′′,

(iii) Γ′′ has no vertical edge, and

(iv) if Γ′′ is not strictly convex, then it has at least one v-reflex angle.

Furthermore, the morph can be found in time O(nω/2 + n logn), assuming that two
n× n matrices can be multiplied with O(nω) arithmetic operations.

Proof. We first apply Lemma 70 to obtain a morph from Γ to a drawing Γ′ that
satisfies (i) and (ii). If Γ′ satisfies all the requirements, we are done. Otherwise, we
will achieve the properties (iii) and (iv) by shearing the drawing Γ′. Eliminating
vertical edges via a horizontal shear is easy, so we concentrate on the requirement
(iv) about v-reflex angles.

Suppose Γ′ is not strictly convex and has no v-reflex angle. Consider any angle
that is not strictly convex at some vertex u in an internal face f in Γ′. By property
(ii), u must be a local extremum in Γ′ and, hence, its angle in f is reflex (rather
than 180◦). We apply a shearing transformation along the x-axis to create a drawing
Γ′′ in which the angle at u in f becomes v-reflex, i.e., in which the x-coordinate of u
is between the x-coordinates of its two neighbors in f , see Figure 99. Furthermore,
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(a) (b) (c)

Figure 99: (a) A face that is not y-monotone. (b) The face after application of
Lemma 70. There is a vertical edge and the unique reflex vertex is not v-reflex. (c)
After applying a horizontal shear transformation, the reflex vertex is v-reflex and
there are no vertical edges.

the shear should eliminate all vertical edges. It is easy to compute the corresponding
shearing factor in linear time.

Since shearing is an affine transformation, it preserves the convexity status of each
angle and, thus, Γ′′ satisfies the properties (i)–(iv). The horizontal morph 〈Γ′,Γ′′〉
is planar by Lemma 63 and it the preserves the convexity status of each angle by
Lemma 65. By Lemma 64 the morph 〈Γ,Γ′′〉 is a horizontal planar morph. By
Lemma 65 it is convexity-increasing.

The time to find the morph (i.e., to find Γ′′) is dominated by the application of
Lemma 70 and sums up to O(nω/2 + n logn).

We are now ready to prove Theorem 68 for the case of a convex outer face.

Proof of Theorem 68 for the case of a convex outer face. If the given draw-
ing Γ has a horizontal edge and/or if the set of internal reflex angles is nonempty and
contains no h-reflex angle, then we use one vertical shear as in the proof of Lemma 71
to remedy this. Then, in the special case that there is no internal reflex angle, but
there are angles of degree exactly 180◦, we may apply Lemma 71 once to obtain the
desired strictly convex drawing. Otherwise, there are internal reflex angles, and we
apply Lemma 71 alternately in the horizontal and vertical directions until the drawing
is strictly convex. In each step there is at least one h-reflex or v-reflex angle that
becomes strictly convex. All internal angles of degree exactly 180◦ becomes strictly
convex after the first application of Lemma 71. Thus, the number of morphing steps
is at most max{2, r + 1} ≤ n, where r is the number of internal reflex angles in Γ.
The resulting total runtime is O(n1+ω/2 + n2 logn).

5.3.3 Morphing drawings of 3-connected graphs

In this section, we no longer insist on the convexity of the subdrawing of the outer
face of Γ. However, we are still not ready to prove Theorem 68 in its general form.
Instead, we assume the given graph G to be 3-connected (rather than just internally
3-connected).
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Overview. On a high level, our approach works as follows: we start by augmenting
the outer face of Γ with edges from its convex hull to obtain a drawing of an augmented
graph with a convex outer face. We then apply the results from Section 5.3.2 to
morph to a strictly convex drawing and then remove the extra edges on the outer face
one by one. After each removal of an edge, we morph to a strictly convex drawing of
the reduced graph using at most three horizontal or vertical morphs. Let us proceed
by discussing these steps in more detail.

Augmenting the outer face. We begin by computing the convex hull of Γ in O(n)
time [96]. Any segment of the convex hull that does not correspond to an edge of G
becomes a new edge that we add to G. Let A denote the new edges and let G ∪A
denote the augmented graph with straight-line planar drawing Γ ∪ ΓA. Note that
adding edges maintains 3-connectivity. Each edge e ∈ A is part of the boundary of
an inner face fe of Γ ∪ ΓA. We call fe the pocket of e.

We now apply the results of Section 5.3.2 to obtain a morph to a strictly convex
drawing Γ′ ∪ Γ′A of G ∪A, see Figure 100(a). Recall that the techniques used in that
section give us a drawing without horizontal or vertical edges. Note that this step
makes the outer angles of all outer vertices of G that do not belong to the convex
hull strictly convex, even though their desired convexity status is reflex. Hence, the
morph is only weakly convexity-increasing in general.

We remark that this step is the reason why we limit ourselves to 3-connected
graphs in this section: adding the convex hull edges in a drawing of an internally
3-connected graph may create nonexternal separations pairs, see Figure 101(a). This
would prevent us from using the algorithm from Section 5.3.2 since it builds on
Lemma 67, which requires the input graph to be internally 3-connected.

Popping a pocket outward. In this step, we describe a way to remove an edge
of A and “pop” out the vertices of its pocket so that they become part of the convex
hull. Lemma 67 serves once again as an important subroutine. We make ample use
of the fact that we may freely specify the desired subdrawing of the outer face after
each application of Lemma 67, as long as we maintain either the x-coordinates or the
y-coordinates of all vertices.

We remark that the following lemma applies to internally 3-connected graphs,
not only 3-connected graphs. We plan to re-use it in the upcoming Section 5.3.4,
in which we prove Theorem 68 in its general form. In fact, the final algorithm will
use the entire procedure described in the current section as a subroutine. We will
augment the given internally 3-connected graph such that adding the convex hull
edges does not create nonexternal separation pairs.

Lemma 72. Let Γ be a strictly convex drawing of an internally 3-connected graph G
without vertical edges and let e be an edge on the outer face. If G \ {e} is internally
3-connected, then Γ \ {e} can be morphed to a strictly convex drawing of G \ {e}
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without vertical edges via at most three weakly convexity-increasing planar morphs,
each of which is horizontal or vertical. Furthermore, the morphs can be found in time
O(nω/2 + n logn).

Proof. Our morph consists of up to three unidirectional morphs specified by a
sequence of drawings Γ, Γ1, Γ2, and Γ3. The first and the last morph are vertical.
The second morph, which we can sometimes skip, is horizontal.

Let e = {u, v}. We show that there is a vertical planar morph 〈Γ,Γ1〉 such that Γ1
is a strictly convex drawing of G in which the vertex u has either the largest or the
smallest y-coordinate among all vertices. Moreover, Γ1 does not contain vertical or
horizontal edges.

Since Γ is strictly convex and has no vertical edges, all of its faces are x-monotone.
Therefore, the desired drawing Γ1 can be found by choosing some strictly convex
subdrawing of the outer face in which u is top-most or bottom-most while maintaining
the x-coordinates of all vertices, and then using one application of Lemma 67 (for
vertical morphs). We may need to apply a vertical shearing transformation in order
to get rid of horizontal edges. This is easily done while still guaranteeing that u is
top-most or bottom-most. (In fact, we can also obtain the desired drawing Γ1 directly
by means a shearing transformation, by making some tangent of u that is not parallel
to any edge horizontal.)

Analogous to Section 5.3.1, by combining Observation 66, Lemma 63, and
Lemma 65 we conclude that the vertical morph 〈Γ,Γ1〉 is planar and weakly convexity-
increasing (the term convexity-preserving is actually more fitting since Γ is already
strictly convex). It follows that the vertical morph 〈Γ \ {e},Γ1 \ {e}〉 is also planar.
Moreover, it is weakly convexity-increasing since the removal of e decreases the set of
internal angles.

For the remainder of the proof, assume without loss of generality that u is the
top-most vertex and that v lies to the right of u in Γ1. The other cases are symmetric.
Let puv denote the unique path from u to v in fe \ {e}. We distinguish two cases
depending on the shape of fe in Γ1.

Case 1: The path puv is x-monotone in Γ1, see Figure 100(b). In this case we can
skip the second step (to Γ2) of our morphing sequence. We compute a vertical
morph from Γ1 \ {e} to a strictly convex drawing Γ3 of G \ {e} without vertical
edges. Once again, this can be done by combining Lemma 67 (for vertical morphs),
Observation 66, Lemma 63, and Lemma 65 as long as we can specify a strictly convex
drawing of the outer face of Γ1 \ {e} in which the x-coordinates match those of Γ1.
It suffices to compute a suitable new reflex chain for puv, which is easy to achieve,
see Figure 100(b). /

Case 2: The path puv is not x-monotone. Our plan is to perform a reduction to
Case 1, that is, we will morph to a drawing in which puv is x-monotone.
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Figure 100: (a) Schematic of the convex drawing of G ∪A. Graph G is depicted in
gray and the thick green edges belong to A. (b)–(c) Cases 1 and 2 for Lemma 72,
where faint gray arrows indicate explicit placements on the convex hull.

To this end, we compute a horizontal, weakly convexity-increasing, and planar
morph from Γ1 to a strictly convex drawing Γ2 in which u and v are the unique left-
most and the unique right-most vertices, respectively. Moreover, we require that Γ2
contains no vertical edge. Once again, this can be done by combining Lemma 67, a
horizontal shearing transformation, Observation 66, Lemma 63, and Lemma 65 as
long as we can specify a strictly convex subdrawing of the outer face of Γ1 in which u
and v are the left-most and right-most vertices and the y-coordinates match those
of Γ1. Given that u is top-most, such a drawing is easily obtained, see Figure 100(c).

The morph 〈Γ1,Γ2〉 is horizontal, weakly convexity-increasing, and planar, and
the morph 〈Γ1 \{e},Γ2 \{e}〉 retains these properties since the removal of e decreases
the set of internal angles. Moreover, in the drawing Γ2 the pocket fe is strictly convex
with unique extreme points u and v in the x-direction. Therefore, the path puv
is x-monotone in Γ2 and, hence, analogous to Case 1, we obtain a vertical planar
weakly convexity-increasing morph from Γ2 \ {e} to a strictly convex drawing Γ3 of
G \ {e}. �

To conclude the proof of Theorem 68 for the 3-connected case, we simply iterate
the procedure described by Lemma 72. More formally, for each e ∈ A, Lemma 72
guarantees a sequencesM of at most three vertical / horizontal weakly convexity-
increasing planar morphs between (Γ′ ∪ Γ′A) \ {e} and some strictly convex drawing
of G ∪ (A \ {e}). The sequenceM is also planar and weakly convexity-increasing if
restricted to Γ′ since the removal of A decreases the set of internal angles. Moreover,
applying M to Γ′ results in a straight-line planar drawing Γ′′ of G such that the
number of segments of the convex hull of Γ′′ that do not correspond to edges of G
is |A| − 1. Hence, by induction on this number, we obtain a sequence of vertical
/ horizontal weakly convexity-increasing planar morphs that transforms Γ′ into a
drawing with a strictly convex subdrawing of the outer face. Moreover, this drawing
is strictly convex since the internal angles of Γ′ are strictly convex.

It remains to analyze the number of morphing steps. Let ρ denote the number of
pockets of Γ′ ∪Γ′A.We observe that ρ ≤ n/2, since each pocket can be associated with
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two private vertices of G: the clockwise first of the two convex hull vertices defining
the pocket and its clockwise successor, which is private to the pocket.

Obtaining Γ′ ∪ Γ′A from Γ ∪ ΓA requires at most max{2, r + 1} morphing steps,
where r is the number of internal reflex angles in the drawing Γ∪ΓA. We have r ≤ n−ρ
since each pocket can be associated with a private vertex of the convex hull, that
cannot have an internal reflex angle. Hence, the number of morphing steps for
obtaining Γ′ ∪ Γ′A is bounded by max{2, r + 1} ≤ n− ρ+ 1.

We then use at most three horizontal and vertical morphs to pop out each pocket,
which results in at most 3ρ additional morphing steps. This bound can be improved
to at most 2ρ+ 1 since each application of Lemma 72 involves a vertical-horizontal-
vertical morphing sequence, and Lemma 64 allows us to compress two consecutive
vertical morphs into one.

Summing up, the total number of morphs is at most

n− ρ+ 1 + 2ρ+ 1 = n+ ρ+ 2 ≤ 1.5n+ 2,

where the last inequality uses the fact that ρ ≤ n/2.
The run time of the algorithm is O((1 + ρ)nω/2 +n2 logn) ⊆ O(n1+ω/2 +n2 logn).

5.3.4 Morphing drawings of internally 3-connected graphs

So far, if the given drawing does not have a convex outer face, we have restricted
our attention to the class of 3-connected graphs. The only reason why the approach
described in Section 5.3.3 is not able to handle the case of internally 3-connected
graphs is that the addition of the convex hull edges may create nonexternal separation
pairs, see Figure 101(a). As a result, the augmented drawing is no longer a valid
input for Lemma 67. In this section, we extend our algorithm such that it is able to
convexify drawings of internally 3-connected graphs and, thus, we conclude the proof
of Theorem 68 in its general form.

Overview. Let Γ be a straight-line planar drawing of an internally 3-connected
graph G = (V,E). As a first step, we augment the outer face of Γ by adding new
edges and vertices near each pocket as illustrated in Figure 102. The goal of this
step is to ensure that we can add convex hull edges without introducing nonexternal
separation pairs. We then apply the algorithm from Section 5.3.3, which results in
a drawing in which all the new vertices appear on the strictly convex outer face.
Finally, we remove the new vertices one by one, gradually turning the strictly convex
drawing of the augmented graph into a strictly convex drawing of G.

In slightly more detail, our method involves the following steps:

Step 1: Augmenting the outer face. We will augment G, by adding vertices
and edges, to obtain an internally 3-connected graph G′. We then extend Γ to obtain
a drawing Γ′ of G′, which involves geometric arguments. The goal is to ensure that G′
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has the additional property that adding convex hull edges to Γ′ does not introduce
nonexternal separation pairs, as, for example, in Figure 101(a). We will show that
bad cases only arise when a pocket has a vertex that is part of a separation pair.
Thus, our method will be to add an extra “buffer” layer of vertices to each pocket
boundary as illustrated in Figure 102 while ensuring that no buffer vertex is part of
a separation pair.

Step 2: Convexifying the augmented drawing. The goal of this step is to
find a weakly convexity-increasing morph from the drawing Γ′ of the augmented
graph G′ to a strictly convex drawing of G′. To this end, we apply the algorithm
described in Section 5.3.3 to Γ′. Recall that this algorithms adds the missing edges
of the convex hull and then iteratively removes them while performing morphing
steps before and after each removal. The challenging aspect is that these morphs
are computed via Lemma 67 and, hence, we need to ensure that the graph remains
internally 3-connected throughout the entire procedure.

Step 3: Removing the additional vertices. At this point we have a strictly
convex drawing of G′. We must now “reverse” the augmentation process, removing
vertices of G′ to get back to G. After each removal, we will perform a morph, involving
Lemma 67, to obtain a strictly convex drawing. Hence, as in Step 2, we have to
ensure that the graph remains internally 3-connected at each step. We will therefore
interpret the augmentation process of Step 1 as an iterative process and we show
that G′ can be obtained from G by performing a sequence of operations that preserve
internal 3-connectivity.

Let us proceed by discussing these steps in detail.

C1

C2

u

v

w v0

v5

v1

v2
v3 v4

vb1
vb2 vb3

vb4

Pe

P ′e

e

(a) (b)

Figure 101: (a) An internally 3-connected graph with an external separation pair u, v.
Adding the convex hull edge uw turns u, v into a nonexternal separation pair both
since v becomes an internal vertex and since C1 no longer has a vertex on the outer
face. (b) Schematic drawing of the path P ′e created for the pocket defined by the
convex hull edge e = {v0, v5}.
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Step 1: Augmenting the outer face. We compute the convex hull of Γ in O(n)
time [96]. Let e be a convex hull edge with e /∈ E. The following steps are illustrated
in Figure 101(b). Let Pe = (v0, v1, . . . , vk+1) be the unique path on the outer face
of Γ such that Pe ∪ {e} is a cycle with G \ Pe in its exterior. We introduce 2k + 1
new vertices that form a path P ′e connecting v0 and vk+1. Let

P ′e = (v0, v
a
1 , v

b
1, v

c
1 = va2 , v

b
2, v

c
2 = va3 , . . . , v

c
k−1 = vak , v

b
k, v

c
k, vk+1).

Every interior vertex vi of Pe gets a “private copy” vbi in P ′e. Two consecutive private
copies vbi and vbi+1 are connected via another vertex which is equipped with two labels
vci = vai+1, which will simplify the notation later on. Additionally, we add the edges
{vi, vai }, {vi, vbi} and {vi, vci } for i = 1, . . . , k.
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Figure 102: Geometrically, we embed P ′e very close to Pe. This is possible regardless
of the shape of the pocket.

Geometrically, the new path P ′e is embedded in a planar fashion very close to Pe,
see Figure 102. This can be accomplished regardless of the shape of Pe: let ε be the
smallest distance between any edge of the cycle Pe ∪ {e} and any of its nonincident
vertices along the cycle. For i = 1, . . . , k, we place vbi on the angular bisector of the
outer angle at vi such that its distance to vi is smaller than ε/2. For all i > 1, the
vertex vai is placed in the center of the line segment vbi−1v

b
i .

We make sure that during this procedure no vertex is placed in the exterior of
the convex hull of Γ with the following exceptions: the vertices va1 and vck (which
have not been placed according to the above rules) play a special role and are placed
close to v0 and vk+1, respectively, such that they appear between v0 and vk+1 on the
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convex hull of the augmented drawing, see Figure 102.
We repeat the process for all convex hull edges e /∈ E of Γ and use G′ = (V ′, E′)

and Γ′ to denote the resulting plane graph and its straight-line planar drawing,
respectively. The total runtime for this step is dominated by the time to compute
the values ε. Given that the overall runtime of our algorithm is Ω(n2), it suffices to
compute these values by brute force in O(n2) total time. However, we remark that
this step could be implemented more efficiently by means of more advanced tools [32]
from computational geometry.

We will now prove that G′ is internally 3-connected. Keeping in mind our plan
for Step 3, we will add the vertices of G′ one by one, showing that each addition
preserves internal 3-connectivity. To this end, we define the following two operations.

Lemma 73. Let H be an internally 3-connected graph with an edge {a, b} on the
outer face. Construct H ′ by adding a new vertex x in the outer face connected to a
and b. Then H ′ is internally 3-connected.

Proof. By internal 3-connectivity, Property (K3) of Lemma 61 holds forH. Thus, it is
clear that H ′ also satisfies Property (K3) and, hence, H ′ is internally 3-connected.

Lemma 74. Let H be an internally 3-connected graph with two consecutive edges
{a, b} and {b, c} on the outer face. Construct H ′ by adding a new vertex x in the
outer face connected to a, b and c. Then H ′ is internally 3-connected.

Proof. By internal 3-connectivity, Property (K3) of Lemma 61 holds for H. It
suffices to show that Property (K3) also holds for H ′. Let f0 and f ′0 denote the outer
faces of H and H ′, respectively. Clearly, b has three paths to f ′0 that are disjoint
except for b. So let v 6= b be some internal vertex of H ′ and note that v is also internal
in H. Hence, by Property (K3) of H, v has three paths to f0 that are disjoint except
for v. At most one of these paths does not end at f ′0, namely if its endpoint on f0
is b. However, appending the edge {b, x} to this path yields the desired three paths
from v to f ′0 that are disjoint except for v. Hence, Property (K3) holds for H ′.

With these operations in hand, we can show that G′ is internally 3-connected. In
fact, we can build G′ by adding one vertex at a time, preserving internal 3-connectivity.
Let V ′ = V ∪ V b ∪ V ac where V b is the set of all vertices whose upper index is b, and
where V ac is the set of the remaining vertices (whose upper index is a and/or c).

Lemma 75. Starting with G and adding the vertices of V ac one by one in any order
and then the vertices of V b one by one in any order produces an internally 3-connected
graph at each step.

Proof. The addition of each vertex of V ac maintains internal 3-connectivity by
Lemma 73. The addition of each vertex of V b maintains internal 3-connectivity by
Lemma 74.
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Step 2: Convexifying the augmented drawing. As mentioned above, the plan
is to apply the algorithm described in Section 5.3.3 to Γ′. That algorithm adds the
convex hull edges of Γ′ and then iteratively removes these edges while performing
some morphing steps before and after each removal. Each morphing step requires
one application of Lemma 67. Therefore, in order to prove the correctness of Step 2,
we need to ensure that before and after each removal of a convex hull edge, the input
graph is internally 3-connected.

We begin by observing that the new vertices of G′ are not part of separation pairs.
Then we show that adding a convex hull edge is safe when none of the vertices of the
pocket belong to a separation pairs.

Observation 76. No vertex of V ′ \ V belongs to a separation pair of G′.

Proof. Let v ∈ V ′ \ V and assume that it forms a separation pair together with a
vertex u of G′. All vertices in NG′(v) belong to the outer face of G′ \ {v}, which,
by construction, is a simple cycle. Hence, the removal of u from G′ \ {v} cannot
disconnect NG′(v) \ {u, v}, which yields a contradiction to Observation 30.

We require one more operation that preserves internal 3-connectivity.

Lemma 77. Let H be an internally 3-connected graph, with two nonadjacent vertices
a and b on the outer face. Let P be one of the paths from a to b along the outer face.
Assume that no vertex of P is part of a separation pair in H. Let H ′ be the result of
adding the edge {a, b} embedded such that P becomes internal. Then H ′ is internally
3-connected.

Proof. Suppose that H ′ has a separation pair u, v. This pair is also separating in H.
Further, since H is internally 3-connected, u, v is an external separation pair of H.
Since both u and v do not belong to P , the vertices a and b belong to the same
component of H \ {u, v}. Thus, is easy to verify that adding the edge between a

and b maintains the six conditions of Observation 62 (in particular, Property (E2)
holds as a and b remain on the outer face). Therefore, u, v is an external separation
pair of H ′.

Recall that the construction of Γ′ ensures that all convex hull edges e′ that do not
correspond to edges of G′ have the form e′ = {va1 , vck}, where va1 , vck are the first and
last internal vertex of one of the paths P ′e. By Observation 76 the interior vertices
of P ′e form a path P on the outer face that does not contain any vertices that are
part of a separation pair. Further, adding the edge e′ encloses P in an internal face.
Thus, we obtain:

Corollary 78. Let A denote the set of convex hull edges of Γ′ that do not correspond to
edges of G′. Then, for any S ⊆ A the plane graph G′∪S is internally 3-connected.
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Step 3: Removing the additional vertices. At this point we have a strictly
convex drawing of G′ and want to convert it to a strictly convex drawing of G. We
will remove the vertices of V b iteratively, one by one. After each such removal, we
will perform up to two morphing steps to recover a strictly convex drawing of the
reduced graph. Recall that by Lemma 75, all the intermediary graphs are internally
3-connected and, thus, they are valid inputs for Lemma 67. The final strictly convex
drawing of G′ \ V b can then be turned into the desired drawing of G by simply
removing all vertices of V ac.

Let us describe a single step of the removal process for the vertices of V b.

Lemma 79. Let B ⊆ V b and let Γ′B be a strictly convex drawing of G′ \B without
vertical or horizontal edges. Further, let vbi ∈ V b \ B. Then there is a weakly
convexity-increasing planar morph from Γ′B \ {vbi} to a strictly convex drawing Γ′′ of
G′ \ (B ∪ {vbi}) without vertical or horizontal edges. Moreover, there is such a morph
that consists of a sequence of up to 2 horizontal / vertical morphs. The morphing
sequence can be found in O(nω/2 + n logn) time, assuming that two n× n matrices
can be multiplied with O(nω) arithmetic operations.

Proof. Without loss of generality, we may assume that vci is located to the bottom-
right of vai and that vbi is located to the right of the oriented line −−→vci vai , see Figure 103(a).
We distinguish four cases regarding the position of the vertex vi, for an illustration
see Figure 103(b).

(a)

vai
vbi

vci

−−→
vci v

a
i

vai

vci

(b)

4

2

4 43

1

vi

Figure 103: (a) In Step 3, we iteratively remove the vertices vbi causing their coun-
terparts vi to become part of the outer face. (b) The regions corresponding to the
Cases 1–4.

Case 1: vi is located to the right of the oriented line −−→vci vai . We observe that the
subdrawing Γ′B \ {vbi} is already a strictly convex drawing of G′ \ (B ∪ {vbi}), so there
is nothing to show. /

Case 2: y(vai ) > y(vi) > y(vci ) and we are not in Case 1. Let C be a strictly convex
drawing of the outer face of G′ \ (B ∪ {vbi}) such that every vertex in C has the
same y-coordinate as in Γ′B \ {vbi} (we can easily find such a drawing C by adding vi
to the convex hull of Γ′B \ {vbi} in a strictly convex fashion). Then Lemma 67 applied
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to Γ′B \ {vbi} and C (potentially followed by a horizontal shearing transformation
in order to remove vertical edges), yields the desired drawing Γ′′. Analogous to
Section 5.3.1, by combining Observation 66, Lemma 63, and Lemma 65, we conclude
that the horizontal morph 〈Γ′B\{vbi},Γ′′〉 is planar and weakly convexity-increasing. /

Case 3: x(vai ) < x(vi) < x(vci ) and we are not in one of the Cases 1 or 2. This case can
be handled analogous to Case 2 (by morphing vertically rather than horizontally). /

Case 4: We are not in one of the Cases 1, 2, or 3. We reduce to Case 2 or Case 3:
using a shearing transformation along the x-axis (or along the y-axis), we obtain a
drawing Γ′′B of G′ \B satisfying the preconditions of Case 3 (or Case 2). Analogous to
Section 5.3.1, by combining Observation 66, Lemma 63, and Lemma 65, we conclude
that the linear morph 〈Γ′B,Γ′′B〉 is planar and weakly convexity-increasing. �

Starting with the drawing Γ′ of G′ and iterating Lemma 79, we obtain a strictly
convex drawing of G′ \ V b. By construction, we can simply remove all the vertices
of V ac to obtain a strictly convex drawing of G.

Observation 80. Let Γ′ac be a strictly convex drawing of G′ \ V b. Then, Γ′ac \ V ac

is a strictly convex drawing of G.

We summarize:

Proof of Theorem 68. We analyze the three steps of the algorithm individually.

Step 1: We begin by augmenting G and Γ to G′ and Γ′. As discussed in the
corresponding section, this can be done in O(n2) time.

Step 2: Next, we apply the algorithm from Section 5.3.3 to G′ and Γ′. This
algorithm was designed for 3-connected graphs. However, since Lemma 72 applies
to internally 3-connected graphs as well, the algorithm also works for internally 3-
connected graphs as long as adding convex hull edges and then successively removing
them never creates a plane graph that is not internally 3-connected. This is the case
by Corollary 78. Thereby, we obtain in

O
(
(n′) 1+ω/2 + n2 logn

)
⊆ O(n1+ω/2 + n2 logn)

time a weakly convexity-increasing morph from Γ′ to a strictly convex drawing of G′,
where n′ ∈ O(n) is the number of vertices of the augmented graph G′. This morph
is also weakly convexity-increasing with respect to the subdrawing of G as every
internal angle of Γ is also internal in Γ′.

Let Γ′ ∪ Γ′A and Γ ∪ ΓA denote Γ′ and Γ′ augmented by their convex hull edges,
respectively. As discussed in the final paragraphs of Section 5.3.3, the upper bound on
the number of morphing steps guaranteed by the algorithm is max{2, r′+ 1}+ 2ρ′+ 1,
which can be bounded by 1.5n′ + 2. Here, ρ′ and r′ denote the number of pockets
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and internal reflex angles of Γ′ ∪Γ′A, respectively. In fact, the bound can be improved
to 1.5n+ 2 (< 1.5n′ + 2) by observing that r = r′ and ρ = ρ′, where ρ and r denote
the number of pockets and internal reflex angles of the drawing Γ ∪ ΓA, respectively.
The latter identity is obvious.

It remains to show that r = r′. Observe that each vertex vai ∈ V ac, 2 ≤ i ≤ k

has an angle of π and, hence, it has no reflex angle. The vertices v0, v
a
1 , v

c
k, vk+1 of

each pocket P ′e belong to the convex hull of Γ′ ∪ Γ′A and, thus, they do no have any
internal reflex angles. By construction, an outer angle of Γ′ at a vertex vbi ∈ V b

is reflex if and only if the outer angle at the corresponding vertex vi is reflex in Γ.
Other angles at vbi cannot be reflex. Moreover, if the outer angle at vi is reflex in Γ
then vi has no reflex angle in Γ′. Consequently, we can charge the reflex angles of the
vertices vbi to their counterparts vi. Finally, the convexity status of the remaining
angles is untouched by the augmentation and, hence, r = r′ as claimed. Altogether,
we obtain the improved bound

max{2, r′ + 1}+ 2ρ′ + 1 = max{2, r + 1}+ 2ρ+ 1 ≤ 1.5n+ 2,

where the last inequality was already discussed in the last paragraph of Section 5.3.3.

Step 3: Finally, we iteratively apply Lemma 79 to the strictly convex drawing of G′
that was obtained in the previous step. Each application increases the number of
vertices of G on the convex hull. Thus, by induction we arrive at a strictly convex
drawing of G. Each of the intermediary morphing steps is weakly convexity-increasing
with respect to the respective augmented graph. Once again, since every internal angle
of Γ remains internal in (all) the augmented graph(s), we have that the morphing
sequence is weakly convexity-increasing for G as well. The number of morphing
steps is bounded by 2n and the time required to obtain the entire sequence sums up
to O

(
(n′) 1+ω/2 + n2 logn

)
⊆ O(n1+ω/2 + n2 logn).

Summing up, we have performed a total of at most 3.5n+ 2 morphing steps. The
algorithm has a total runtime of O(n1+ω/2 + n2 logn).

5.4 Finding strictly convex redrawings while preserving
y-coordinates

In this section, we follow the idea of Chrobak, Goodrich, and Tamassia [33] to prove
Lemma 67 using Tutte’s graph drawing algorithm (see Section 5.2.4 for a discussion
about related results and literature). This reduces the problem to solving a linear
system. Due to an improved version of generalized nested dissection by to Alon and
Yuster [5] from 2013, this results in a very simple and short proof.

Tutte’s theorem. In his paper, “How to Draw a Graph,” [124] Tutte showed that
every 3-connected plane graph G = (V,E) admits a convex drawing such that the
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convex subdrawing C of the outer face can be prescribed as part of the input. This
method is sometimes referred to as Tutte’s spring theorem since its idea is based on a
physical analogy: the idea is to think of the vertices as small metal rings and of inner
edges as springs that connect the two rings that correspond to its endpoints. The
outer edges are thought of as a solid frame. The equilibrium state of this physical
system corresponds to the desired drawing. Tutte computes his drawings by means
of a linear system of equations: for each v ∈ V let the variables (xv, yv) represent the
coordinates of vertex v. Let VI be the internal vertices of G and let VB be the vertices
of the outer face. For each vertex v ∈ VB let (xbv, ybv) be its (fixed) coordinates in C.
Let dv be the degree of vertex v. Consider the system of equations:

∀u ∈ VI (xu, yu) =
∑

(u,v)∈E

1
du

(xv, yv), (5.1)

∀u ∈ VB (xu, yu) = (xbu, ybu). (5.2)

Tutte proved that this system of equations has a unique solution and that the
solution gives a convex drawing of G with C as the outer face. In fact, the drawing
is even strictly convex if C is strictly convex.

Tutte’s theorem can be generalized to more general “barycenter” weights other
than 1/du. Assign a weight wu,v > 0 to each ordered pair (u, v) with {u, v} ∈ E such
that

∑
v wu,v = 1 for each internal vertex u. We emphasize that wu,v may be different

from wv,u. Consider the system of equations:

∀u ∈ VI (xu, yu) =
∑

(u,v)∈E
wu,v(xv, yv), (5.3)

∀u ∈ VB (xu, yu) = (xbu, ybu). (5.4)

This system also has a unique solution that gives a convex drawing of G with outer
face C and a strictly convex drawing of G if C is strictly convex. This generalization
was first stated by Floater in 1997 [55] for triangulations and one year later [56]
for general 3-connected planar graphs, though the result is not stated as a theorem
in either case. Floater proved that the constraint matrix is non-singular and, for
the rest, said that Tutte’s proof1 carries over. An explicit statement that the linear
system (5.3–5.4) has a unique solution that gives a strictly convex drawing of G if C
is strictly convex is due to Gortler, Gotsman, Thurston in 2006 [66, Theorem 4.1].
They give a new proof using “one-forms”.

Tutte’s theorem was originally stated for 3-connected graphs. However, it is
well-known that Tutte’s proof also applies to the more general class of internally
3-connected graphs since it only uses Property (K3) of Lemma 61. In fact, (Floater’s
version of) Tutte’s theorem can be generalized even further: it is possible to allow

1 Colin de Verdiere et al. [36] point out that Tutte’s original proof is complicated because Tutte is
also re-proving Kuratowski’s theorem, and they recommend the simpler proof by Richter-Gebert [112].
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weights wu,v of value wu,v = 0, as long as the following relaxed version of Property (K3)
of Lemma 61 is satisfied. Suppose we are given a non-negative weight wu,v for each
ordered pair (u, v) with {u, v} ∈ E such that

∑
v wu,v = 1 for each internal vertex u.

Then we say that an internal vertex x is positively 3-connected to the boundary if
there exist three directed paths from x to the outer face C that are disjoint except
for the common endpoint x and whose directed edges have positive weight. If every
internal vertex is positively 3-connected to the boundary, we say that the graph itself
is positively 3-connected to the boundary (with respect to the assignment of weights),
which is sufficient to ensure that Tutte’s method can be applied. This version of
Tutte’s theorem was formulated and proven by Haas et al. [73, Theorem 8]:

Theorem 81 ([73]). Let G be an internally 3-connected graph and suppose we are
given a non-negative weight wu,v for each ordered pair (u, v) with {u, v} ∈ E such
that

∑
v wu,v = 1 for each internal vertex u. Assume that G is positively 3-connected

to the boundary. Let C be a strictly convex drawing of the outer face of G. Then, the
system (5.3–5.4) has a unique solution that corresponds to a strictly convex planar
drawing of G with C as the outer face.

We can now give an alternate proof of Hong and Nagamochi’s well-known result
based on the idea of Chrobak et al. We will only use positive weights—specifying
weights of value 0 will be relevant for the upcoming Section 5.5, where we extend
our algorithm for weakly convexity-increasing morphs to also maintain outer reflex
angles.

Lemma 67 ([10, 33, 79]). Let Γ be a planar drawing of an internally 3-connected
graph G such that every face is y-monotone. Let C be a strictly convex straight-line
drawing of the outer face of G such that every vertex of C has the same y-coordinate
as in Γ. Then there is a strictly convex straight-line drawing Γ′ of G such that the
subdrawing of the outer face is C and every vertex of Γ′ has the same y-coordinate as
in Γ.

Furthermore, the drawing Γ′ can be found in time O(nω/2 + n logn), even if only
the underlying abstract graph of G, the cycle corresponding to C, and the y-coordinates
of vertices are given, assuming that two n× n matrices can be multiplied with O(nω)
arithmetic operations.

Proof. We must show that there is a strictly convex drawing of G with C as the
subdrawing of the outer face that preserves the y-coordinates of the vertices from the
drawing Γ. The idea by Chrobak et al. [33] is to do this in two steps: first choose the
barycenter weights to force the vertices to lie at the required y-coordinates, and then
solve system (5.3–5.4) with these barycenter weights to determine the x-coordinates.
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For the first step, we solve the following system separately for each u ∈ VI :

yu =
∑

(u,v)∈E
wu,vyv, 1 =

∑
v

wu,v (5.5)

Here the y’s are the known values from Γ and the wu,v’s are variables. There are two
equations and du > 2 variables, so the system is under-determined and can easily be
solved: since Γ has y-monotone faces, each vertex u ∈ VI has a neighbor with a larger
y-coordinate and a neighbor with a smaller y-coordinate. Let N+

u be the neighbors
of u that lie above u in Γ. Let d+

u = |N+
u |. Similarly, let N−u be the neighbors of u

that lie below u in Γ and let d−u = |N−u |. Compute the average y-coordinate of u’s
neighbors above and below:

y+
u =

∑
v∈N+

u

1
d+
u
yv y−u =

∑
v∈N−u

1
d−u
yv

Observe that yu lies between y+
u and y−u . Thus, we can find a value tu, 0 < tu < 1,

such that

yu = tuy
+
u + (1− tu)y−u

=
∑
v∈N+

u

tu

d+
u
yv +

∑
v∈N−u

1− tu
d−u

yv

Therefore, setting wu,v = tu
d+

u
for v ∈ N+

u and wu,v = 1−tu
d−u

for v ∈ N−u , yields a
solution to (5.5). Observe that wu,v > 0 for all (u, v) with {u, v} ∈ E.

Given values wu,v > 0 satisfying the constraints (5.5) for all u ∈ VI , we then solve
the equations (5.3–5.4) to find values for the x-coordiantes xu. By Theorem 81, this
provides a strictly convex drawing of G with C as the subdrawing of the outer face
while preserving y-coordinates.

It remains to discuss how to obtain the claimed runtime. Recall that we assume
a real-RAM model of computation—in particular, each arithmetic operation takes
unit time. Observe that solving the system (5.5) to find the appropriate weights wu,v
based on the y-coordinates takes linear time. The significant aspect is solving Tutte’s
generalized system of equations (5.3–5.4).

Tutte’s method gives rise to two linear systems Ax = b and Ay = b (for the
x-coordinates and the y-coordinates, respectively) that have the the same constraint
matrix A with a row and column for each vertex and where the nonzero entries in the
matrix correspond to edges in the planar graph. In more detail, the equations (5.1)
can be re-written as

∀u ∈ VI − du(xu, yu) +
∑

(u,v)∈E
(xv, yv) = 0,

so the part of the constraint matrix that corresponds to the interior vertices VI
consists of entries −du down the main diagonal, and au,v = av,u = 1 if {u, v} is an
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edge. The equations (5.2) for the vertices in VB correspond to the remaining part of
the constraint matrix, which is just an identity matrix. The crucial property is that
the constraint matrix is symmetric. In fact, symmetry holds more generally if we
choose weights or “stresses” su,v = sv,u and define wu,v = su,v/

∑
(u,z)∈E su,z. Tutte’s

original theorem is the special case where su,v = 1 for all (u, v).
Chrobak et al. [33] point out that when the constraint matrix A is symmetric with

the nonzero entries corresponding to the edges of a planar graph, the system Ax = b

can be solved in O(nω/2 + n logn) arithmetic operations using the generalized nested
dissection method of Lipton, Rose, and Tarjan [98, 99]. However, this version of
nested dissection does not apply when the matrix A is not symmetric. In particular,
it does not apply to the linear system (5.3–5.4). As described in [33], it is also possible
to compute symmetric weights that ensure the desired y-coordinates. However, our
easily obtained system (5.3–5.4) with asymmetric weights can also be solved efficiently
due to a recent generalization of nested dissection by Alon and Yuster [5]. They
consider a linear system Ax = b where A has a row and a column for each vertex
of an associated graph G and there is an edge {u, v} in G if and only if au,v 6= 0 or
av,u 6= 0 (the diagonal entries of A play no role in the definition of G).

Theorem 82 (Theorem 1.1 in [5], specialized to Q and to planar graphs). Let
A ∈ Qn×n be a nonsingular matrix and let b ∈ Qn. If the graph associated with A
is planar, then Ax = b can be solved in O(nω/2 + n logn) time, assuming that two
n× n matrices can be multiplied with O(nω) arithmetic operations.

This theorem also assumes that each arithmetic operation takes unit time and
the matrix is assumed to be given in a sparse form.

Note that in our case the matrix A is non-singular because of Theorem 81. This
completes the proof of Lemma 67.

5.5 Maintaining outer reflex angles

So far, we have restricted our attention to weakly convexity-increasing morphs, that
is, we have only insisted that the set of internal strictly convex angles is nondecreasing.
However, outer reflex angles may become convex throughout the morphs generated by
our current approach. In particular, the algorithm corresponding to the 3-connected
case of Theorem 68 starts by convexifying each pocket, thereby making all reflex
angles of interior vertices of the pocket strictly convex. This is not necessarily the
case with the algorithm for the internally 3-connected case described in Section 5.3.4
(since it first adds a buffer layer of vertices in each pocket), but there is no guarantee
yet that outer reflex angles are maintained. In this section, we modify the algorithm
corresponding to Theorem 68 to ensure that the set of outer reflex angles is also
nondecreasing, thereby obtaining the main result of this chapter:
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Theorem 58. Let Γ be a planar straight-line drawing of an internally 3-connected
graph G on n vertices. Then Γ can be morphed to a strictly convex drawing via a
sequence of at most 3.5n+ 2 convexity-increasing planar morphing steps each of which
is either horizontal or vertical.

In the special case that Γ has a convex outer face, the upper bound on the number
of morphing steps is max{2, r + 1}, where r denotes the number of internal reflex
angles of Γ.

Furthermore, there is a O(n1+ω/2 + n2 logn) time algorithm to find the sequence
of morphs, assuming that two n× n matrices can be multiplied with O(nω) arithmetic
operations.

To prove Theorem 58, we only need to make a minor change to our current
approach: it suffices to slightly modify the weights that are computed during the
calls to Lemma 67. To this end, we will use the fact that Theorem 81 allows us to
choose weights of value 0, as long as the graph remains positively 3-connected to the
boundary.

Proof of Theorem 58. The statement for the case that Γ has a convex outer face
follow directly from Theorem 68.

For the general case, we proceed as in the proof of Theorem 68, except that, for
some vertices, we modify the weights that are computed when applying Lemma 67.
Recall that the algorithm corresponding the proof of Theorem 68 has three steps: in
Step 1, we augment the outer face of G and Γ to G′ and Γ′ by adding a path P ′e near
each pocket Pe. Along this path, each interior vertex vi of Pe gets a private copy vbi
and two other new neighbors vai and vci , see Figure 104(a), which is a schematic version
of Figure 102 (compared to Figure 101(b), the Figure 104(a) properly reflects the
fact that the first and last interior vertex va1 and vck, respectively, of P ′e are positioned
such that they appear between v0 and vk+1 on the convex hull). In Step 2, we add
the missing convex hull edges and then iteratively remove them while performing
morphing steps before and after each removal. Finally, in Step 3, we first iteratively
remove all the private copies vbi while performing morphing steps before and after
each removal to make the vertices vi part of the outer face, and then remove the
remaining vertices vai and vci that where added during Step 1.

The target drawing for each of the morphing steps during Step 2 and 3 is obtained
by one of two means: a shearing transformation, or appealing to Lemma 67. As an
affine transformation, the former preserves the convexity status of each angle (in
particular those of the outer reflex vertices). It remains to ensure that drawings
produced by Lemma 67 also preserve the outer reflex angles. To prove Lemma 67, we
used Theorem 81. In particular, we determined, in a preprocessing step, weights wij
that force the vertices to maintain their y-coordinates. This was done by interpolating,
for each vertex v, between the average y-coordinate of the neighbors of v with a
larger y-coordinate, and the average y-coordinate of the neighbors of v with a smaller
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y-coordinate. For the current proof, we proceed in the same way, except that when
determining the weights for an outer vertex of G sometimes not all of its neighbors
are taken into account.

More specifically, let G′′ and Γ′′ denote the current graph and drawing, respectively,
after performing some number (possibly zero) of morphs of Step 2 and Step 3. Let vi
be an outer vertex of G that is internal in G′′ (and, hence, an interior vertex of a
pocket Pe) and whose outer angle α (formed by the edges {vi−1, vi}, {vi, vi+1}) in
the subdrawing of G in Γ′′ is reflex. For each such vi, we need to ensure that its
angle α remains reflex. When computing the weights for vi, we only take into account
the vertices S = {vi−1, v

a
i , v

b
i , v

c
i , vi+1} (the vertex vbi is still part of G′′ since vi is

internal). Since α is reflex, the vertex vi is located in the interior of the polygon
(vi−1, v

a
i , v

b
i , v

c
i , vi+1) formed by vertices of S. Consequently, the position of vi is in

the interior of the convex hull of S. Therefore, at least one of the neighbors of vi in S
is located above and at least one them is located below vi (moreover, at least one of
them is to the left of and at least one of them is to the right of vi). Hence, the weights
for the directed edges from vi to S can be computed with the method described
in (the beginning of) the proof of Lemma 67 to ensure that the y-coordinate (or
x-coordinate, depending on the current direction) of vi is maintained. The remaining
weights for edges outgoing from vi are set to 0. For the remaining vertices (which are
not outer vertices of G with a reflex outer angle in the subdrawing of G in Γ′′), the
weights are computed normally. For an illustration, see Figure 104(b).

Let us prove that this assignment of weights ensures that each internal vertex v
of G′′ is positively 3-connected to the boundary. We distinguish three cases. First
assume that v belongs to one of the paths P ′e, which implies that the convex hull
edge e′ of the corresponding pocket Pe still belongs to G′′ and that v is one of the
vertices vai , vbi , vci of P ′e (but not first or last interior vertex va1 , vck of P ′e). Two of the
desired paths from v to the boundary are found on P ′e, and the remaining path is
formed by (v, vi) together with a part of Pe, see Figure 104(c). Next assume that v
belongs to some of the pockets Pe and, hence, is one of the vertices vi. Two of the
desired paths are found on Pe, and the remaining path is formed by (vi, vbi ) and
if e′ belongs to G′′ (so that vbi is internal), a part of P ′e, see Figure 104(d). Finally,
assume that v is an internal vertex of G. By condition (K3) of Lemma 61 for G,
there exist three disjoint paths from v to the outer face of G, and the weights of
the directed edges along these paths are positive by construction. The only difficult
case arises when the three endpoints of these paths all belong to the same pocket Pe.
Denote by vh, vi, vj the endpoints of the three paths in the order in which they appear
along Pe, i.e., h < i < j. The first of the desired paths is obtained from the path
to vh by traversing Pe towards v0, see Figure 104(e). The second path is obtained
from the path to vj by traversing Pe towards vk+1. The final path is obtained from
the path to vi by appending the edge (vi, vbi ) and if e′ belongs to G′′ (so that vbi is
internal), a part of P ′e.

Our new weight assignment ensures that for each outer reflex angle α formed by
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Figure 104: (a) An augmented pocket Pe. (b) The arrows correspond to edges that
are possibly positively weighted in the indicated direction only. (c)–(e) Obtaining
three disjoint paths of positively weighted edges to the outer face.

two edges {vi−1, vi}, {vi, vi+1} at some vertex vi of G that does not yet belong to the
convex hull, the position of vi is a strict convex combination of S in the generated
drawing. Since vi−1 and vi+1 are consecutive in the cyclic order of the neighbors S
of vi, this implies that α remains reflex.

Overall, we have shown that once an outer angle is reflex, it remains reflex in
all subsequent drawings of the morphing sequence. Hence, by Lemma 65, the set of
outer reflex angles is nondecreasing.

The remaining parts of the statement follow analogous to the proof of Theorem 68.
This concludes the proof.

5.6 Lower bound on the number of morphing steps

In this section, we show a linear lower bound on the number of required morphing
steps.
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Theorem 59. For any n > 3, there exists a drawing of an internally 3-connected
graph on n vertices for which any convexifying planar morph composed of a sequence
of linear morphing steps requires Ω(n) steps.

Our proof of Theorem 59 builds on the following result by Alamdari et al. [3].

Theorem 83 ([3]). There exist two straight-line planar drawings Γ∆(n′) and Γ−(n′)
of a path with n′ vertices such that any planar morph between them that is composed
of a sequence of linear morphing steps requires Ω(n′) steps.

Alamdari et al. [3] describe the two drawings in the statement of Theorem 83 as
follows. In the drawing Γ−(n′) the n′ vertices a1, . . . , an′ are placed on a horizontal
line with ai to the left of ai+1 for 1 ≤ i < n′, see Figure 105(a). In the drawing Γ∆(n′)
the path forms a spiral, see Figure 105(b).

More precisely, let ei denote the edge {ai, ai+1}. Then for each i with i ≡ 1 (mod 3),
the edge ei is horizontal and ai is to the left of ai+1. For each i with i ≡ 2 (mod 3),
the edge ei is parallel to the line y = tan(2π/3)x and ai is to the right of ai+1. Finally,
for each i with i ≡ 0 (mod 3), the edge ei is parallel to the line y = tan(−2π/3)x
and ai is to the right of ai+1.

To prove Theorem 59, we present a drawing Γ∆(n) of a cycle on n vertices that
contains a subdrawing of Γ∆(n′) for some n′ ∈ Θ(n), see Figure 105(c). The existence
of a convexifying planar morph for Γ∆(n) with o(n) linear morphing steps would
imply the existence of a planar morph between Γ∆(n′) and Γ−(n′) with o(n′) linear
morphing steps, contradicting Theorem 83.

a1

b1

a2

b2

a3

b3
a4

a1 a2 a3 a4

(a) (b)

a5 a6 a7

b4

b5

b6b7a5

a6

a7

a1 a2

a3

(c)

Figure 105: The drawings (a) Γ−(7), (b) Γ∆(7), and (c) Γ∆(14).

Proof of Theorem 59. Let n′ = bn/2c. Let Γ∆(n) be some planar straight-line
drawing of the cycle C = (a1, . . . , an′ , b1, . . . , bn−n′) such that the subdrawing of the
path P = (a1, . . . , an′) is Γ∆(n′). The exact realization of the path (b1, . . . bn−n′) is
irrelevant for the purposes of this proof. We give an example in Figure 105(c).

Assume for a contradiction that there exists a morphM composed of sequence
of o(n) linear morphing steps that convexifies Γ∆(n). Restricting the morphM to
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the path P transforms Γ∆(n′) into a reflex chain ΓP on the boundary of a strictly
convex polygon. It is easy to find O(1) additional morphing steps that transform ΓP
into the drawing Γ−(n′). For example, we can intermediately aim for coordinates
of a1 and an that are extreme in some direction as in the proof of Lemma 72. In
fact, our situation here is much simpler, as we are not restricted to horizontal and
vertical morphs anymore. ExtendingM by these additional morphs yields planar
morph with o(n) ⊆ o(n′) linear morphing steps that transforms Γ∆(n′) into Γ−(n′).
This is a contradiction to Theorem 83.

5.7 Lower bound on grid size

Every 3-connected planar graph can be drawn with convex faces on a O(n)×O(n)
grid [24, 34, 53] or with strictly convex faces on a O(n2)×O(n2) grid [18]. It would be
desirable to find convexifying morphs in which the intermediate drawings also lie on
a polynomial-sized grid. In this section, we show that this is not achievable with our
current approach and, more generally, with any approach that naively uses a convex
redrawing technique as described in Sections 5.2.4 and 5.4. To do so, we design a
family of drawings to show that a single horizontal morph to a convex drawing may
unavoidably blow up the width of the drawing from W ∈ Θ(n) to 2W−2(W − 2)!.

A grid-drawing of a plane (or planar) graph G is a straight-line planar drawing
of G in which all vertices are placed at integer coordinates. The width of a grid-
drawing Γ is the length of the horizontal sides of the bounding box of Γ. The height
is defined analogously.

We remark that each of our grid-drawings uses consecutive integer y-coordinates
from an integer interval and, hence, may be thought of as a straight-line level planar
drawing, cf. Section 3.1.1. Though, it does not seem sensible to express our result in
terms of level graphs as this would unnecessarily clutter up the notation and require
several new definitions.

We will prove the following lemma, which describes our family of drawings.

Lemma 84. There exists a family of grid-drawings (Γk)k of internally 3-connected
graphs Gk on nk = 6k + 1 vertices such that the width of Γk is w(Γk) = 2k, and the
height of Γk is 4k − 1. Moreover, any grid-redrawing of Γk with convex inner faces
that preservers the y-coordinate of each vertex has a width of at least

wc(Γk) := 4k−1(2k − 2)! = 2w(Γk)−2(w(Γk)− 2)!.

Our construction is inspired by a family of level graphs presented by Lin and
Eades [97] to show that level planar straight-line drawings (that are not necessarily
convex) may require large width. In particular, they used an elementary geometric
observation very similar to the following Observation 85. The fundamental difference
between our construction and the one by Lin and Eades is that our drawings Γk,
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which are straight-line planar, have a small width of O(nk). Only the convexity
requirement enforces a large width.

Observation 85. Consider a grid-drawing of a path (a1, b1, c, b2, a2) such that y(c) =
k, b1 is to the left of b2 with y(b1) = y(b2) = k + 1, and a1 is to the left of a2 with
y(a1) = y(a2) = k + j where j ≥ 2. Let D denote the distance of b1 and b2.

If a1 is not to the right of the oriented line
−→
cb1 and a2 is not to the left of the

oriented line
−→
cb2, then the distance between a1 and a2 is at least jD, for an illustration

see Figure 106.

D

2D
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b1 b2

a1 a2
jD

...

k

k + 1

k + j

k + 2

...

Figure 106: Illustration of Observation 85.

Proof of Lemma 84. The drawing Γ1 of G1 is depicted in Figure 107. The drawing
Γk+1 of Gk+1 is obtained from Γk by introducing six new vertices on a total of four
new y-coordinates. More precisely, we introduce a cycle on the six new vertices as
the new outer face and four new internal edges as shown in Figure 107.

Note that Gk has exactly two vertices of degree two on the outer face. By
construction, the graph Gk has 6k + 1 vertices. Moreover, the drawing Γk uses 4k
pairwise distinct y-coordinates and has width w(Γk) = 2k. We shift the coordinate
system such that in each drawing Γk, the smallest y-coordinate is 1 and, consequently,
the largest y-coordinate is 4k.

The drawing Γ1 is convex. Moreover, if Γk−1 admits a grid-redrawing Γ′k−1 with
convex inner faces that preserves the y-coordinates of Γk−1, then the analogous
statement holds for Γk: we can simply augment Γ′k−1 to a redrawing of Γk and then
shift the vertices with y-coordinates (4k− 3), 2, and (4k− 1) far enough outwards, in
this order, such that the four new inner faces become convex. This shows that every Γk
admits a grid-redrawing with convex inner faces that preserves the y-coordinates.
Moreover, we can turn this drawing into a convex drawing by further shifting the
two vertices with y-coordinate 2, which are the only vertices that may have convex
outer angles, while maintaining convex inner faces. Consequently, for each k ≥ 1, the
graph Gk has a convex grid-drawing. By Lemma 60, it follows that Gk is internally
3-connected. This concludes the construction of the family (Γk)k. It remains to argue
about the required width of the desired redrawings.
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Figure 107: Illustration of the drawings Γk for small values of k. Any redrawing of
Γk that preserves the y-coordinates and has convex inner faces needs an exponential
increase in width.

Since Γ1 contains three vertices with y-coordinate 3, every grid-redrawing that
preserves the y-coordinate of each vertex has a width of at least 2 > wc(Γ1) = 1. For
k > 2, we prove the claim by induction with the stronger induction hypothesis that in
any grid-redrawing Γ′k of Γk with convex inner faces that preserves the y-coordinate
of each vertex, the two vertices with y-coordinate 2 have distance at least wc(Γk).
Note that this implies that the width of the redrawing is at least wc(Γk) as in the
statement of the lemma.

For the base case k = 2, consider any grid-redrawing Γ′2 of Γ2 with convex inner
faces that preserves the y-coordinate of each vertex. Since there are three vertices
with y-coordinate 5, the left-most and right-most of these vertices have distance at
least 2. Consider the path induced by the outermost vertices with y-coordinate 6, 5,
and 2, respectively, see Figure 107. By Observation 85 applied to this path, we obtain
that the distance between the two vertices with y-coordinate 2 is at least 8 = wc(Γ2).

For the induction step with k > 3, consider a grid-redrawing Γ′k of Γk with convex
inner faces that preserves the y-coordinate of each vertex. We apply Observation 85
twice in Γ′k. By the induction hypothesis, the distance of the vertices with y-
coordinate 4 in Γ′k is at least wc(Γk−1) since Γ′k contains a redrawing of Γk−1 in
which all inner faces are convex. Applying Observation 85 to the path induced by
the outermost vertices with y-coordinates 3, 4, and 4k − 3 in Γ′k (highlighted by the
blue path in Figure 107) shows that the vertices with y-coordinate 4k − 3 in Γ′k have
a distance of at least (4k − 6)wc(Γk−1).

Applying Observation 85 to the outermost vertices with y-coordinate 2, 4k − 3,
and 4k − 2 (highlighted by the red path in Figure 107) shows that the vertices with
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y-coordinate 2 in Γ′k have distance at least

(4k − 4) · (4k − 6) · wc(Γk−1) = 2(2k − 2) · 2(2k − 3) · wc(Γk−1)
= (2k − 2) · (2k − 3) · 4 · 4k−2(2k − 4)!
= 4k−1(2k − 2)!
= wc(Γk),

which concludes the proof.

5.8 Conclusion

We have shown how to morph any straight-line planar drawing of an internally 3-
connected graph to a strictly convex drawing while preserving planarity and increasing
convexity throughout the morph. Moreover, our morph is composed of a linear number
of horizontal and vertical steps, which is asymptotically optimal. The following
questions are open:

1. Our algorithm for finding a convexity-increasing morph to a strictly convex
drawing can be executed in O(n1+ω/2 + n2 logn) time on a real-RAM. It would
be interesting to find even more efficient algorithms, or to establish non-trivial
lower bounds on the runtime.

2. A main open question is to design piece-wise linear morphs with a polynomial
bound on the bit complexity of the intermediate drawings. This would be a
step towards having intermediate drawings that lie on a polynomial-sized grid,
i.e. with a logarithmic number of bits for each vertex’s coordinates. This is
open both for our problem of morphing to a (strictly) convex drawing and for
the problem of morphing between two given planar straight-line drawings.
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Concluding remarks

“Graph drawing is the best possible field I can think of. It merges aesthetics, math-
ematical beauty and wonderful algorithms.” This quote is attributed to Donald
E. Knuth, on the occasion of the Symposium on Graph Drawing in 1996. In the
author’s opinion, one of the most beautiful aspects of Graph Drawing is that it is
a very multifaceted discipline that borrows techniques from several research fields
such as classical graph theory, algorithms and complexity, computational geometry,
information visualization, the theory of topological and geometric graphs, knot theory,
topology, order theory, physics, and algebra. Consequently, the individual problems
can have very distinct flavor despite their common goal—drawing graphs. We hope
that this aspect became apparent in this thesis. In this section, we briefly discuss the
facets that played a role throughout Chapters 3–5, and then conclude by giving a
summary of our results and discussing the most intriguing open problems.

In Chapter 4, we considered the problem of two-page book embeddability. We
used a fact that allows for a reformulation as a graph augmentation problem: a
graph can be embedded on two pages if and only if it is a subgraph of a Hamiltonian
planar graph [22]. Consequently, our algorithms and the corresponding proofs make
heavy use of many concepts of classical graph theory: connectivity, separators, edge
contractions, decomposition trees, graph augmentation, and more. In particular, we
devised an algorithm to solve the major subproblem of finding a set of edges that
belong to separating triangles such that their simultaneous collapse results in a graph
without separating triangles or adjacent separation pairs.

Very much in contrast are the techniques employed in Chapter 3, about Ordered
Level Planarity. Here, one of our main goals was to reduce to Manhattan
Geodesic Planarity such that the resulting instances are matchings. To achieve
this goal, the reduction that shows theNP-hardness of Ordered Level Planarity
was designed to produce instances with maximum degree two. More precisely, the
generated instances are disjoint unions of paths. As such, they do not exhibit much
in terms of meaningful graph theoretic properties. Instead, we had to rely on direct
planarity arguments to prove the correctness of the reduction, which is reminiscent
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of problems related to topological graphs.
The objects of desire in Chapter 5 were straight-line drawings in which each

face is described by a convex polygon. Naturally, we relied on techniques from
computational geometry [42], such as convex hulls, trapezoidal decompositions, and
the orientation test to accomplish our goals. In that chapter, we also used Tutte’s
graph drawing algorithm, which highlights two additional facets of Graph Drawing:
Tutte’s algorithm is based on a physical analogy, as explained in Section 5.4. The
use of such analogies is no rarity in Graph Drawing; Brandes [26] provides a
comprehensive survey. In addition, Tutte’s algorithm involves solving a system of
linear equations, which can be done efficiently by using advanced techniques from
linear algebra.

Of course, given that we considered computational problems, we also made use
of algorithmic techniques, data structures (in particular, for dynamic connectivity
queries), and concepts from complexity theory.

Outlook

We conclude by summarizing our contributions and discuss the most intriguing open
problems. Further open problems can be found in the conclusions (Sections 3.6, 4.11,
and 5.8) of the three main Chapters 3, 4, and 5.

Ordered Level Planarity. Our research on Ordered Level Planarity was
conclusive: we have established a complexity dichotomy with respect to both the
maximum degree ∆ and the level width λ. The most significant result is an NP-
hardness proof for the case ∆ = λ = 2.

We demonstrated the relevance of our result by stating reductions to several other
graph drawing problems that have been studied in the literature: Clustered Level
Planarity, T-Level Planarity, Constrained Level Planarity, Geodesic
Planarity, and Bi-Monotonicity. Due to the simple structure of the instances
for which we show Ordered Level Planarity to be NP-hard, these reductions
were readily obtained. Moreover, they produce very constrained instances of the
targeted problems, which allowed us to solve multiple open questions that were posed
by members of the Graph Drawing community.

Recently, Da Lozzo, Di Battista, and Frati [39] applied our result to show the
NP-hardness of another generalization of Ordered Level Planarity. We expect
that the NP-hardness of Ordered Level Planarity will serve as a useful tool
for further reductions.

Only a minor problem regarding the complexity of the (Manhattan) Geodesic
Planarity problem remains open: the case where the input graph is connected. We
conjecture that NP-hardness holds even in this case.



213

Convexity-increasing morphs. We presented an algorithm to convexify any
given straight-line planar drawing of an internally 3-connected graph by means of a
convexity-increasing morph. For graphs that are not internally 3-connected such a
morph cannot exist since these graphs do not admit strictly convex drawings. Our
morph is composed of a linear number of horizontal and vertical steps, which is
asymptotically optimal.

The runtime of our current approach is O(n1+ω/2 + n2 logn). It would be inter-
esting to find even more efficient algorithms. Of course, one could try to find an
entirely new method to achieve convexity-increasing morphs. A much more intriguing
question is whether the runtime of the procedure for finding convex redrawings while
maintaining y-coordinates (Lemma 67) can be improved, as this is the bottleneck
of our morphing algorithm, and would also speed up the runtime of the many other
morphing algorithms that rely on a convex redrawing technique.

Hong and Nagamochi’s [79] version of the redrawing method is a combinatorial
algorithm that operates recursively. Its runtime is O(n2). In contrast, the version
by Chrobak, Goodrich, and Tamassia [33] is based on using Tutte’s graph drawing
algorithm [124], which requires solving a linear system of equations and can be
executed in O(nω/2 +n logn). To improve the runtime further, it would be interesting
to explore entirely new methods for creating convex redrawings while maintaining
y-coordinates.

Two-page book embeddings of triconnected planar graphs. We have shown
that k = 5 is the largest k ∈ N such that each 3-connected planar graph where the
degree of vertices that belong to separating 3-cycles is bounded by k is subhamiltonian.
Equivalently, these graphs admit two-page book embeddings. Our results strengthen
earlier work by Heath [75] and by Bauernöppel [20] and, independently, Bekos,
Gronemann, and Raftopoulou [21], who showed that planar graphs of maximum
degree three and four, respectively, can always be realized on two pages.

It is a very intriguing question, whether our result can be extended to the 2-
connected case. It is not clear how one could design an algorithm for the 2-connected
case that adopts the same high-level strategy as our current approach, as 3-connectivity
is used throughout the entire proof. For instance, in a 2-connected graph, it is no
longer true that separating triangles are pairwise vertex-disjoint. Moreover, it is also
no longer true that a 4-inhibitor has at least three edges to each of its sides. An
even more severe problem is that the graph can contain adjacent separation pairs.
This prevents us from stellating the graph. Further, it implies that the edges of a
separating triangle may belong to distinct triconnected components, so that it is
no longer possible to recurse on the rigid triconnected components while ignoring
separating triangles that use virtual edges.

However, maybe it is possible to use our result in a black box fashion to prove the
result for the 2-connected case? One such approach would be to apply it directly to
the rigid triconnected components. However, it is not clear how to glue the resulting
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cycles together. Another option would be to augment the graph such that it becomes
3-connected. It does not always seem possible to do so without violating the degree
bounds, but perhaps the augmentation can be carried out while increasing the degree
of at most one vertex per separating 3-cycle? If so, it would be interesting whether our
high-level strategy for the 3-connected case can be extended to this slightly relaxed
degree bound.
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Zusammenfassung
Diese Arbeit behandelt drei unterschiedliche Problemstellungen aus der Disziplin des
Graphenzeichnens (Graph Drawing). Bei jedem der behandelten Probleme ist die
gesuchte Darstellung planar.
Ordered Level Planarity. Wir führen das Problem Ordered Level Planarity
ein, bei dem es darum geht, einen Graph so zu zeichnen, dass jeder Knoten an einer
vorgegebenen Position der Ebene platziert wird und die Kanten als y-monotone
Kurven dargestellt werden. Dies kann als eine Variante von Level Planarity inter-
pretiert werden, bei der die Knoten jedes Levels in einer vorgeschriebenen Reihenfolge
platziert werden müssen. Wir klassifizieren die Eingaben bezüglich ihrer Komplexität
in Abhängigkeit von sowohl dem Maximalgrad, als auch der maximalen Anzahl
von Knoten, die demselben Level zugeordnet sind. Wir motivieren die Ergebnisse,
indem wir Verbindungen zu einigen anderen Graph Drawing Problemen herleiten:
Mittels Reduktionen von Ordered Level Planarity zeigen wir die NP-Schwere
einiger Probleme, deren Komplexität bislang offen war. Insbesondere wird gezeigt,
dass Clustered Level Planarity bereits für Instanzen mit zwei nichttrivialen
Clustern NP-schwer ist, was eine Frage von Angelini, Da Lozzo, Di Battista, Frati
und Roselli [2015] beantwortet. Wir zeigen die NP-Schwere des Bi-Monotonicity
Problems und beantworten damit eine Frage von Fulek, Pelsmajer, Schaefer und
Štefankovič [2013]. Außerdem wird eine Reduktion zu Manhattan Geodesic Pla-
narity angegeben. Dies zeigt, dass ein bestehender [2009] Polynomialzeitalgorithmus
für dieses Problem inkorrekt ist, es sei denn, dass P = NP ist.
Bucheinbettungen von dreifach zusammenhängenden planaren Graphen
mit zwei Seiten. Wir zeigen, dass jeder dreifach zusammenhängende planare Graph
mit Maximalgrad 5 Teilgraph eines Hamiltonischen planaren Graphen ist. Dies ist
äquivalent dazu, dass ein solcher Graph eine Bucheinbettung auf zwei Seiten hat.
Der Beweis ist konstruktiv und zeigt in der Tat sogar, dass es für die Realisierbarkeit
nur notwendig ist, den Grad von Knoten separierender 3-Kreise zu beschränken—die
übrigen Knoten können beliebig hohe Grade aufweisen. Dieses Ergebnis ist best-
möglich: Wenn die Gradschranke auf 6 abgeschwächt wird, gibt es Gegenbeispiele.
Diese Ergebnisse verbessern Resultate von Heath [1995] und von Bauernöppel [1987]
und, unabhängig davon, Bekos, Gronemann und Raftopoulou [2016], die gezeigt
haben, dass planare Graphen mit Maximalgrad 3 beziehungsweise 4 auf zwei Seiten
realisiert werden können.
Konvexitätssteigernde Deformationen. Wir zeigen, dass jede planare geradlin-
ige Zeichnung eines intern dreifach zusammenhängenden planaren Graphen stetig zu
einer solchen deformiert werden kann, in der jede Fläche ein konvexes Polygon ist.
Dabei erhält die Deformation die Planarität und ist konvexitätssteigernd—sobald
ein Winkel konvex ist, bleibt er konvex. Wir geben einen effizienten Algorithmus an,
der eine solche Deformation berechnet, die aus einer asymptotisch optimalen Anzahl
von Schritten besteht. In jedem Schritt bewegen sich entweder alle Knoten entlang
horizontaler oder entlang vertikaler Geraden.
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