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Abstract
A well-known result of Rödl and Ruciński states that for
any graph H there exists a constant C such that if p ≥

Cn−1∕m2(H), then the random graph Gn,p is a.a.s. H-Ramsey,
that is, any 2-coloring of its edges contains a monochromatic
copy of H. Aside from a few simple exceptions, the corre-
sponding 0-statement also holds, that is, there exists c > 0
such that whenever p ≤ cn−1∕m2(H) the random graph Gn,p is
a.a.s. not H-Ramsey. We show that near this threshold, even
when Gn,p is not H-Ramsey, it is often extremely close to
being H-Ramsey. More precisely, we prove that for any con-
stant c > 0 and any strictly 2-balanced graph H, if p ≥

cn−1∕m2(H), then the random graph Gn,p a.a.s. has the property
that every 2-edge-coloring without monochromatic copies of
H cannot be extended to an H-free coloring after 𝜔(1) extra
random edges are added. This generalizes a result by Friedgut,
Kohayakawa, Rödl, Ruciński, and Tetali, who in 2002 proved
the same statement for triangles, and addresses a question
raised by those authors. We also extend a result of theirs on the
three-color case and show that these theorems need not hold
when H is not strictly 2-balanced.
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1 INTRODUCTION

The study of sparse generalizations of combinatorial theorems has attracted considerable interest in
recent years and there are now several general mechanisms [2, 3, 16, 17] that allow one to prove that
analogues of classical results such as Ramsey’s theorem, Turán’s theorem and Szemerédi’s theorem
hold relative to sparse random graphs and sets of integers. Much of this work is based, in one way
or another, on the beautiful random Ramsey theorem of Rödl and Ruciński [14, 15] from 1995. This
seminal result gives a complete answer to the question of when the binomial random graph Gn,p is
(H, r)-Ramsey, that is, has the property that any r-coloring of its edges contains a monochromatic copy
of the graph H.

To state the Rödl-Ruciński theorem precisely, we need some notation. For a graph H, we write
𝑑2(H) = 0 if H has no edges, 𝑑2(H) = 1∕2 when H = K2 and 𝑑2(H) = (e(H) − 1)∕(v(H) − 2) in the
general case. We then write m2(H) = maxH′⊆H 𝑑2(H′) and call this quantity the 2-density of H. Though
we will not use these definitions immediately, we also say that H is 2-balanced if m2(H′) ≤ m2(H)
and strictly 2-balanced if m2(H′) < m2(H) for all proper subgraphs H′ of H.

Theorem (Rödl-Ruciński, 1995). Let r ≥ 2 be a positive integer and let H be a graph that is not a
forest consisting of stars and paths of length 3. Then there are positive constants c and C such that

lim
n→∞

P[Gn,p is (H, r)-Ramsey] =

{
0 if p < cn−1∕m2(H),

1 if p > Cn−1∕m2(H).

There has been much work extending this result. We will not attempt an exhaustive survey, but
refer the interested reader instead to some of the latest progress on hypergraphs [8], the asymmetric
case [11], establishing sharp thresholds [18] and the equivalent problem in settings other than the
binomial random graph [5,13]. Our particular concern here will be with the following surprising result
of Friedgut, Kohayakawa, Rödl, Ruciński, and Tetali [6] regarding two-round Ramsey games against
a random Builder.

Theorem (Friedgut-Kohayakawa-Rödl-Ruciński-Tetali, 2003). Let c > 0 be fixed and, for p =
cn−1∕2, let G = Gn,p. Then, with high probability, the following statements hold:

(a) Let 𝜑2 be an arbitrary monochromatic-K3-free 2-edge-coloring of G. If q2 = 𝜔(n−2), then, with
high probability, 𝜑2 cannot be extended to a monochromatic-K3-free 2-edge-coloring of G∪Gn,q2

.
(b) Let 𝜑3 be an arbitrary monochromatic-K3-free 3-edge-coloring of G. If q3 = 𝜔(n−1), then, with

high probability, 𝜑3 cannot be extended to a monochromatic-K3-free 3-edge-coloring of G∪Gn,q3
.

When H = K3, the Rödl-Ruciński theorem implies that if p = Cn−1∕2 for some sufficiently large
C, then every 2-edge-coloring contains a monochromatic triangle. Part (a) of the theorem above says
that for any c > 0, no matter how small, if p = cn−1∕2, then, even though there are 2-edge-colorings of
Gn,p containing no monochromatic K3, no such coloring can be extended to a monochromatic-K3-free
2-edge-coloring after 𝜔(1) extra random edges are added. One interpretation of this result is that for
any c > 0 the random graph Gn,p with p = cn−1∕2 is, with high probability, already extremely close
to being (K3, 2)-Ramsey. Part (b) gives a similar result for 3-edge-colorings, though in this case 𝜔(n)
extra edges may be needed in the second round of coloring to guarantee a monochromatic triangle.

Addressing a problem raised by Friedgut, Kohayakawa, Rödl, Ruciński, and Tetali [6], our
main result says that a similar statement holds for all graphs H containing an edge h for which
m2(H ⧵ h) < m2(H). In particular, the result applies when H is strictly 2-balanced, since any edge h
works in this case.
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Theorem 1.1. Let H be a graph and suppose that there is some edge h ∈ E(H) whose removal
decreases the 2-density, that is, m2(H ⧵ h) < m2(H). Let c > 0 be fixed and, for p = cn−1∕m2(H), let
G = Gn,p. Then, with high probability, the following statements hold:

(a) Let 𝜑2 be an arbitrary monochromatic-H-free 2-edge-coloring of G. If q2 = 𝜔(n−2), then, with
high probability, 𝜑2 cannot be extended to a monochromatic-H-free 2-edge-coloring of G∪Gn,q2

.
(b) Let 𝜑3 be an arbitrary monochromatic-H-free 3-edge-coloring of G. If q3 = 𝜔(n−1∕m(H)), then,

with high probability, 𝜑3 cannot be extended to a monochromatic-H-free 3-edge-coloring of G ∪
Gn,q3

.

Observe that the densities q2 and q3 of the random graphs that must be added to create monochro-
matic copies of H are best possible. Indeed, if q = O(n−2), then with positive probability Gn,q has
no edges, so 𝜑2 trivially extends to G ∪ Gn,q. Only slightly less trivially, if 𝜑3 only uses two of
the three colors on the edges of G, then we can color all the edges of Gn,q with the third color. If
q = O(n−1∕m(H)), then with positive probability Gn,q is H-free, thus giving a valid extension of 𝜑3.
Finally, note that these results cannot be extended to r ≥ 4 colors, since the two random graphs
Gn,p and Gn,q can be colored independently with disjoint pairs of colors, so we can avoid creating
a monochromatic copy of H until the density of one of the two random graphs exceeds the random
Ramsey threshold Cn−1∕m2(H) from Theorem 1.

2 THE NECESSITY OF A CONDITION

In Theorem 1.1, we impose the condition that there is some edge h ∈ E(H) such that H ⧵ h has a
strictly lower 2-density than H. While this condition covers, for example, strictly 2-balanced graphs
(where the edge h can be chosen arbitrarily), it is natural to ask whether it is necessary. In this section
we show that Theorem 1.1 does not apply to all graphs H, so some condition is indeed required.

2.1 Edge-rooted products of graphs

We first define the edge-rooted product of graphs.

Definition 2.1. Let G be a graph, let H be a graph rooted at an edge h = {u, v} ∈ E(H) and let
k ∈ N. To build the k-fold edge-rooted product G⊖k (H, h), we start with a central copy of G and then
attach k copies of H to each edge g = {x, y} ∈ E(G) such that {x, y} is the root-edge h in each copy of
H and all other vertices in each copy are new and distinct.

In other words, V(G ⊖k (H, h)) = V(G) ∪ (E(G) × [k] × (V(H) ⧵ {u, v})), V(G) induces a copy of
G and, for each g = {x, y} ∈ E(G) and i ∈ [k], ({g} × {i} × (V(H) ⧵ {u, v})) ∪ {x, y} induces a copy
of H with {x, y} playing the role of {u, v}. (Note that there is some slack in this definition, since we
have not prescribed an orientation for each attached copy of H. In practice, the particular choice of
orientation makes no difference, so we will simply assume that some fixed choice has been made).

The reduced k-fold edge-rooted product, denoted G⊙k (H, h), is the subgraph obtained by removing
all the edges from the central copy of G.

We have already defined 𝑑2(H), m2(H) and stated what it means for a graph to be 2-balanced
or strictly 2-balanced. In a similar fashion, we write 𝑑1(H) = 0 if H has no edges and 𝑑1(H) =
e(H)∕(v(H)−1) otherwise. We then write m1(H) = maxH′⊆H 𝑑1(H′) and call this quantity the 1-density
of H. We say that H is 1-balanced if m1(H′) ≤ m1(H) and strictly 1-balanced if m1(H′) < m1(H) for
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FIGURE 1 C4 ⊖2 K3 (on the left) and C4 ⊙2 K3 (on the right)

all proper subgraphs H′ of H. Finally, write 𝑑(H) = e(H)∕v(H) and m(H) = maxH′⊆H 𝑑(H′), which
we call the density of H. We then say that H is balanced if m(H′) ≤ m(H) and strictly balanced if
m(H′) < m(H) for all proper subgraphs H′ of H. We will make repeated use of the following simple
lemma in what follows.

Lemma 2.2. If H is 2-balanced with 𝑑2(H) > 1, then H is strictly 1-balanced and strictly balanced.

Proof. Suppose that H is not strictly 1-balanced and let F ⊂ H be a subgraph with 𝑑1(F) ≥ 𝑑1(H).
That is, e(F)∕(v(F) − 1) ≥ e(H)∕(v(H) − 1) or, by multiplying the expression out,

e(F)v(H) − e(F) ≥ e(H)v(F) − e(H). (1)

Since H is 2-balanced, we have 𝑑2(H) ≥ 𝑑2(F), which implies that (e(H) − 1)∕(v(H) − 2) ≥ (e(F) −
1)∕(v(F)−2). Rearranging gives e(H)v(F)−2e(H)−v(F)+2 ≥ e(F)v(H)−2e(F)−v(H)+2. Substituting
(1), we get

e(H)v(F) − 2e(H) − v(F) + 2 ≥ e(F)v(H) − 2e(F) − v(H) + 2 ≥ e(H)v(F) − e(H) − e(F) − v(H) + 2.

Canceling the like terms gives −e(H) − v(F) ≥ −e(F) − v(H), which in turn implies that (e(F) − 1) −
(v(F)−2) ≥ (e(H)−1)−(v(H)−2), which can be rewritten as (𝑑2(F)−1)(v(F)−2) ≥ (𝑑2(H)−1)(v(H)−
2). However, this is a contradiction, since by assumption 𝑑2(H)−1 ≥ 𝑑2(F)−1 and v(H)−2 > v(F)−2.
The argument in the strictly balanced case follows along almost exactly the same lines. ▪

The key observation for our purposes is that the edge-rooted product behaves well with respect to
the various graph densities.

Lemma 2.3. For any graphs G and H of density at least 1, any edge h ∈ E(H) and any k ∈ N:

(a) if G is strictly balanced, H is 2-balanced and 𝑑(G) < 𝑑2(H), then G⊖k (H, h) is strictly balanced,
(b) m2(G ⊖k (H, h)) = max{m2(G),m2(H)} and
(c) if m2(H ⧵ h) < m2(H), then m2(G ⊙k (H, h)) < m2(H).

Proof. (a) Let F⊆G ⊖k (H, h) be a smallest (induced) subgraph maximizing 𝑑(F) = e(F)∕v(F).
We wish to show that F = G ⊖k (H, h). We start with a lower bound on the density of



944 CONLON ET AL.

G ⊖k (H, h):

m(G ⊖k (H, h)) ≥ 𝑑(G ⊖k (H, h)) = e(G) + ke(G)(e(H) − 1)
v(G) + ke(G)(v(H) − 2)

=
e(H) − (1 − 1

k
)

v(H) − 1 − (1 − 1
k𝑑(G)

)
≥

e(H)
v(H) − 1

= 𝑑1(H) = m1(H), (2)

where the inequality on the second line follows since either k𝑑(G) = 1, in which case we
have equality, or (1 − 1

k
)∕(1 − 1

k𝑑(G)
) ≤ 1 ≤ 𝑑(H) < 𝑑1(H). Note that the final equality,

𝑑1(H) = m1(H), is an application of Lemma 2.2.
We also observe that 𝑑(G ⊖k (H, h)) is a convex combination of 𝑑(G) and 𝑑2(H):

e(G) + ke(G)(e(H) − 1)
v(G) + ke(G)(v(H) − 2)

= 𝑑(G) v(G)
v(G ⊖k (H, h))

+ 𝑑2(H)
(

1 − v(G)
v(G ⊖k (H, h))

)
. (3)

Now, for each g ∈ E(G) and i ∈ [k], let Fg,i ⊆ H be the subgraph induced by the vertices
of F in the ith copy of H attached to the edge g in the central copy of G. Let F0 ⊆ G be the
subgraph induced by the vertices of F in the central copy of G.

By the minimality of the size of F, we may assume that F is connected, as otherwise its
densest component would be a smaller subgraph attaining the maximum density. We cannot
have F ⊆ H since, by (2), the density of G⊖k (H, h) is at least m1(H), which is strictly larger
than m(H). Thus, Fg,i must be nonempty for at least two pairs (g, i) ∈ E(G) × [k] and, hence,
to be connected, each nonempty Fg,i must contain at least one vertex of g.

Now suppose there was some (g, i) such that Fg,i contained only one of the two endpoints
of g. Then, by removing Fg,i from F, we lose e(Fg,i) edges and v(Fg,i) − 1 vertices. Since
Fg,i ⊂ H, the ratio e(Fg,i)∕(v(Fg,i)−1) is at most m1(H), which by (2) is at most m(G⊖k(H, h)).
Removing Fg,i would therefore not decrease the density of F, contradicting the minimality
of its size. Thus, if Fg,i is nonempty, we must have g ∈ E(Fg,i). Hence,

v(F) = v(F0)+
∑

g∈E(F0)

k∑
i=1

(
v(Fg,i) − 2

)
and e(F) = e(F0)+

∑
g∈E(F0)

k∑
i=1

(
e(Fg,i) − 1

)
. (4)

Thus,

𝑑(F) =
e(F0) +

∑
g∈E(F0)

∑k
i=1(e(Fg,i) − 1)

v(F0) +
∑

g∈E(F0)
∑k

i=1(v(Fg,i) − 2)
= 𝑑(F0)

v(F0)
v(F)

+
∑

g∈E(F0)

k∑
i=1

𝑑2(Fg,i)
v(Fg,i) − 2

v(F)
.

Since F0 ⊆ G and G is balanced, 𝑑(F0) ≤ 𝑑(G). Similarly, for each g and i, 𝑑2(Fg,i) ≤ 𝑑2(H).
We therefore have

𝑑(F) ≤ 𝑑(G)v(F0)
v(F)

+ 𝑑2(H)
(

1 − v(F0)
v(F)

)
.

Comparing this to (3), since 𝑑(G) < 𝑑2(H), for 𝑑(F) ≥ 𝑑(G ⊖k (H, h)) to hold we require

v(F0)
v(F)

≤
v(G)

v(G ⊖k (H, h))
= 1

1 + k𝑑(G)(v(H) − 2)
. (5)



CONLON ET AL. 945

Now v(F) = v(F0) +
∑

g∈E(F0)
∑k

i=1(v(Fg,i) − 2) ≤ v(F0) + ke(F0)(v(H) − 2), with equality if
and only if Fg,i = H for all g ∈ E(F0) and i ∈ [k]. Therefore,

v(F0)
v(F)

≥
v(F0)

v(F0) + ke(F0)(v(H) − 2)
= 1

1 + k𝑑(F0)(v(H) − 2)
.

Thus, in order to satisfy the inequality of (5), 𝑑(F0) ≥ 𝑑(G). As G is strictly balanced, it
follows that F0 = G and then, since Fg,i = H for all g and i, we have F = G ⊖k (H, h), as
required.

(b) Since G,H ⊆ G ⊖k (H, h), we immediately have m2(G ⊖k (H, h)) ≥ max{m2(G),m2(H)}.
The proof of the upper bound follows the same lines as in part (a). Let F ⊆ G ⊖k (H, h)
be a smallest subgraph realizing the 2-density, that is, m2(G ⊖k (H, h)) = 𝑑2(F) = (e(F) −
1)∕(v(F) − 2). Let F0 and, for each (g, i) ∈ E(G) × [k], Fg,i be defined as in part (a). We may
assume that Fg,i ≠ ∅ for at least two pairs (g, i), since otherwise F ⊆ H and thus 𝑑2(F) ≤
m2(H). By the minimality of the size of F, we may further assume that F is 2-connected, as
otherwise one of the blocks B of F will satisfy m2(B) ≥ m2(F) (see, for instance, Lemma 8
of [12]). In particular, this implies that g ∈ E(Fg,i) whenever Fg,i ≠ ∅.

The vertices and edges of F can then be enumerated as in (4), so

𝑑2(F) =
e(F) − 1
v(F) − 2

=
e(F0) − 1 +

∑
g∈E(F0)

∑k
i=1

(
e(Fg,i) − 1

)
v(F0) − 2 +

∑
g∈E(F0)

∑k
i=1

(
v(Fg,i) − 2

) . (6)

Since e(F0) − 1 ≤ m2(G)(v(F0) − 2) and e(Fg,i) − 1 ≤ m2(H)(v(Fg,i) − 2) for each (g, i), it
follows that 𝑑2(F) = m2(G ⊖k (H, h)) ≤ max{m2(G),m2(H)}.

(c) The product G ⊙k (H, h) is obtained by deleting the edges of the central copy of G from the
product G ⊖k (H, h). We show m2(G ⊙k (H, h)) < m2(H) by following the argument of part
(b). To start, let F ⊆ G ⊙k (H, h) be a smallest subgraph attaining the 2-density.

As before, let F0 be the subgraph of G induced by the vertices of F from the central copy
of G and, for g ∈ E(G) and i ∈ [k], let Fg,i be the subgraph of H induced by the vertices of F
in the ith copy of H attached to the edge g. Note that, since the edges from the central copy of
G are deleted in G⊙k (H, h), neither the edges of F0 nor the edge g in Fg,i (if present) appear
in F. However, it will be convenient for us to include them in F0 and Fg,i for our calculations.

If Fg,i is only nonempty for one pair of (g, i), then F = Fg,i ⧵ g ⊆ H ⧵ h, so 𝑑2(F) ≤

m2(H ⧵h) < m2(H). Otherwise, since F must be 2-connected, g must be in Fg,i whenever Fg,i
is nonempty. We can then compute the 2-density of F as in part (b), arriving at an expression
similar to (6), except the edges in F0 do not appear in F. Thus,

𝑑2(F) =
−1 +

∑
g∈E(F0)

∑k
i=1

(
e(Fg,i) − 1

)
v(F0) − 2 +

∑
g∈E(F0)

∑k
i=1

(
v(Fg,i) − 2

) <

∑
g∈E(F0)

∑k
i=1

(
e(Fg,i) − 1

)
∑

g∈E(F0)
∑k

i=1

(
v(Fg,i) − 2

) ≤ m2(H),

since Fg,i ⊆ H implies e(Fg,i) − 1 ≤ m2(H)(v(Fg,i) − 2). ▪

2.2 Graphs requiring unusually many extra random edges

Part (c) of Lemma 2.3 shows the role played by the assumption of the existence of the edge h in
Theorem 1.1. We will show how to use this to prove Theorem 1.1 in the next section, but first we use
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the other parts of this lemma to construct graphs for which the conclusion of Theorem 1.1 does not
hold.

Theorem 2.4. Let F be a 2-balanced graph containing a cycle, let f ∈ E(F) be an arbitrary edge
of F and let H = F ⊖1 (F, f ). Let G = Gn,p for p = cn−1∕m2(H), where c > 0 is a sufficiently small
constant. Then, with high probability, the following statements hold:

(a) There is a monochromatic-H-free 2-edge-coloring of G such that if q = o(n−v(F)∕e(F)) the coloring
can with high probability be extended to a coloring of G ∪ Gn,q without monochromatic copies
of H.

(b) There is a monochromatic-H-free 3-edge-coloring of G and 𝛿 = 𝛿(H) > 0 such that if q =
o(n−1∕m(H)+𝛿) the coloring can with high probability be extended to a coloring of G∪Gn,q without
monochromatic copies of H.

Proof. Since F is 2-balanced and contains a cycle, we have 𝑑(F) ≥ 1 and 𝑑2(F) > 1. Using
Lemma 2.3(b), m2(H) = m2(F). Hence, if the constant c is sufficiently small, the Rödl-Ruciński
theorem implies that with high probability we can find a 2-coloring 𝜑 of E(G) without any monochro-
matic copy of F. This is the edge-coloring we extend in both cases.

(a) In this case, extend 𝜑 to the edges of Gn,q arbitrarily. Observe that H = F ⊖1 (F, f ) consists
of e(F) edge-disjoint copies of F. Since there are no monochromatic copies of F in G, any
monochromatic copy of H in G ∪ Gn,q must contain at least e(F) edges from Gn,q.

There are at most nv(H) potential copies of H and 2e(H) ways to distribute its edges between
G and Gn,q. Since q ≤ p, the probability that a copy with at least e(F) edges from Gn,q appears
in G ∪ Gn,q is at most pe(H)−e(F)qe(F). Thus, by the union bound, the probability that there is
a copy of H in G ∪ Gn,q with at least e(F) edges from Gn,q is at most

nv(H)2e(H)pe(H)−e(F)qe(F) = 2e(H)ce(H)−e(F)nv(F)+e(F)(v(F)−2)−e(F)(e(F)−1)∕m2(H)qe(F),

where we used that v(H) = v(F) + e(F)(v(F) − 2) and e(H) = e(F)2. As m2(H) = m2(F) =
e(F)−1
v(F)−2

, this simplifies to 2e(H)ce(H)−e(F)nv(F)qe(F), which is o(1) by our choice of q. Hence, with
high probability our arbitrary extension of 𝜑 to G ∪ Gn,q does not create a monochromatic
copy of H.

(b) The coloring 𝜑 uses two colors, say red and blue. This leaves us with one unused color, say
green, that we can use when extending 𝜑 to the edges of Gn,q.

As F is 2-balanced, Lemma 2.2 implies that it is also strictly balanced. By Lemma 2.3(a),
it follows that H is strictly balanced. As a consequence, any union of two copies of H that
share at least an edge must be strictly denser than H itself. Indeed, the subgraph common
to both copies of H is a proper subgraph and therefore strictly sparser than H. Hence, the
vertices and edges added in the second copy in the union must increase the overall density.

There is thus some 𝛿1 = 𝛿1(H) > 0 such that, whenever q = o(n−1∕m(H)+𝛿1), intersecting
copies of H do not appear in Gn,q. That is, the copies of H appearing in Gn,q are with high
probability pairwise edge-disjoint. We shall choose our 𝛿(H) to be less than this 𝛿1(H).

We now order the edges of Gn,q arbitrarily and process them one-by-one. We color each
edge green, unless that would create a green copy of H, in which case we color the edge red.
When coloring in this fashion, if we create a monochromatic copy of H, it clearly must be
red.
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Consider a red copy H0 of H in our coloring of G ∪ Gn,q. Since H0 is an edge-disjoint
union of e(F) copies of F and the coloring 𝜑 of G has no monochromatic copy of F, each
copy of F in H0 must contain at least one red edge from Gn,q. An edge e from Gn,q is only
red if it is the last edge of an otherwise green copy He of H, which must be wholly contained
in Gn,q. Moreover, for e ≠ e′, the copies He and He′ of H are edge-disjoint.

This gives us a subgraph of G∪Gn,q with at most v(F)+e(F)(v(F)−2+v(H)−2) vertices
and e(F)(e(F) + e(H) − 1) edges, of which at least e(F)e(H) edges come from Gn,q. Since
q ≤ p and there are at most some constant K ways of building such a subgraph and dividing
its edges between G and Gn,q, the probability of finding such a structure is at most

Knv(F)+e(F)(v(F)−2+v(H)−2)pe(F)(e(F)−1)qe(F)e(H).

Since p ≤ n−1∕m2(H) = n−(v(F)−2)∕(e(F)−1), this is at most Knv(F)+e(F)(v(H)−2)qe(F)e(H). Now q =
o(n−1∕m(H)+𝛿) = o(n−v(H)∕e(H)+𝛿), since H is strictly balanced. Thus the upper bound on the
probability of the appearance of a red copy of H is o(nv(F)−2e(F)+𝛿e(F)e(H)) = o(ne(F)(𝛿e(H)−1)),
since e(F) ≥ v(F). Hence, if we choose 𝛿 ≤ min{1∕e(H), 𝛿1(H)}, this probability is o(1),
so with high probability we can extend the coloring to the edges of Gn,q without creating a
monochromatic copy of H. ▪

3 THE PROOF OF THEOREM 1.1

Having shown in the previous section that some condition on the graph H is necessary in Theorem 1.1,
we now show that our condition is sufficient. We begin with a sketch of the proof and then recall
several useful results before providing the details of the argument.

3.1 An overview of the proof

We shall assume the colors used are red, blue and, in the case of three-colorings, green. Our goal is
to find structures in the first random graph, G, that force the creation of a monochromatic copy of
H no matter how the edges of the second random graph, Gn,q, are colored. To that end, we make the
following definitions.

Definition 3.1 (Color-forced edges). A copy of H ⧵ h in G is supported on the pair {x, y} if {x, y}
maps to the missing edge h. We then call {x, y} the base of the copy. Given an edge-coloring 𝜑, we say
{x, y} is a red, blue or green base if it is the base of a monochromatic copy of H⧵h of the corresponding
color. Finally, we say a pair {x, y} is green-forced if it is both a red and a blue base simultaneously,
with blue-forced and red-forced defined similarly.

In the two-color case, observe that it is impossible to extend𝜑2 to a green-forced pair, since coloring
it either red or blue would create a monochromatic copy of H. For the first assertion of Theorem 1.1,
we shall show that with high probability G is such that every two-coloring 𝜑2 admits quadratically
many green-forced pairs. Then, again with high probability when q2 = 𝜔(n−2), one of these pairs
will be an edge of the second random graph Gn,q2

, so any extension of 𝜑2 to G ∪ Gn,q2
will create a

monochromatic copy of H.
When dealing with three colors, our goal will instead be to show that there is some color, say green,

such that the green-forced pairs in G are sufficiently dense that, when q3 = 𝜔
(
n−1∕m(H)), we will find



948 CONLON ET AL.

a copy of H in Gn,q consisting solely of green-forced pairs. If any one of its edges is colored red or
blue, it will complete a monochromatic copy of H with edges from G. On the other hand, if all of its
edges are colored green, we obtain a green copy of H instead.

To find these color-forced structures, we consider the reduced graph of a regular partition of G
(with respect to the coloring 𝜑2 or 𝜑3). In this reduced graph we will find two colors, say red and
blue, and a copy of H ⊙2 (H, h) such that for each (removed) edge from the central copy of H, one of
the attached copies of (H, h) is monochromatic red and the other is monochromatic blue. By applying
the sparse counting lemma, we will deduce the existence of many potential copies of H consisting of
green-forced edges, from which we will be able to draw the desired conclusion.

Although the proof can be simplified in the two-colored setting, for the sake of brevity we shall
present a single unified argument allowing for three colors throughout, and only differentiate between
the two cases at the end of the proof.

3.2 Some preliminaries

Here we collect several results about random graphs and sparse regularity that we shall use in our proof.

3.2.1 Random graphs
The Hoeffding inequality shows that Gn,p does not have any subgraphs that are far sparser or denser
than expected with high probability.

Proposition 3.2. Let 𝜂 > 0 be fixed and suppose p = 𝜔(n−1). Then, with high probability, Gn,p is
such that the following holds for any disjoint sets X,Y of vertices with |X| , |Y| ≥ 𝜂n:

(i) 1
2

(|X|
2

)
p ≤ e(Gn,p[X]) ≤ 2

(|X|
2

)
p and

(ii) 1
2
|X| |Y| p ≤ e(Gn,p[X,Y]) ≤ 2 |X| |Y| p.

A simple application of Markov’s inequality also shows that Gn,p is unlikely to contain many more
copies of any subgraph than expected.

Proposition 3.3. Given any graph F with v vertices and e edges and any K > 1, the probability that
there are more than Knvpe copies of F in Gn,p is at most 1∕K.

In the other direction, we can use Chebyshev’s inequality to establish the existence of subgraphs
in Gn,p when p is suitably large. More precisely, it follows from Theorem 4.4.5 in The Probabilistic
Method by Alon and Spencer [1] that if p = 𝜔(n−1∕m(F)), then the number of copies of F in Gn,p is
concentrated around its expectation.

Proposition 3.4. Given a graph F on v vertices and a constant 𝜁 > 0, let  be a collection of 𝜁nv

potential copies of F. If p = 𝜔nn−1∕m(F) with some 𝜔n = 𝜔(1), then the probability that Gn,p does not
contain a copy of F from  is at most v!2v

𝜁𝜔n
.

If the edge probability p is even larger, then the following result, a consequence of Theorem 3.29
from the book Random Graphs by Janson, Łuczak, and Ruciński [9], shows that there will be many
pairwise edge-disjoint copies of H in Gn,p.
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Proposition 3.5. For every graph H with m2(H) > 1, there is a constant 𝜅 = 𝜅(H) such that, given
constants 𝜌, c > 0 and setting p = cn−1∕m2(H), with high probability every induced subgraph of Gn,p on
at least 1

2
𝜌n vertices contains at least 𝜅ce(H)−1𝜌v(H)n2p edge-disjoint copies of H.

3.2.2 Sparse regularity and counting
Given an n-vertex graph G, two disjoint sets of vertices X and Y form an (𝜀, p)-regular pair of density
𝑑 if 𝑑(X,Y) = 𝑑 and, for all X′ ⊆ X with |X′| ≥ 𝜀 |X| and Y ′ ⊆ Y with |Y ′| ≥ 𝜀 |Y|, we have|𝑑(X′,Y ′) − 𝑑(X,Y)| < 𝜀p, where 𝑑(U,V) denotes e(U,V)|U||V| . This notion of regularity is inherited by
induced and random subgraphs (see Lemma 4.3 in [7]).

Proposition 3.6. Suppose that c ∈ (0, 1
2
], G is a graph and U,W are disjoint vertex sets, both of size

N, with (U,W) an (𝜀, p)-regular pair of density 𝑑 = 𝜔(N−1). Then the following is true:

(i) for X ⊂ U and Y ⊂ W with |X| , |Y| ≥ cN, the pair (X,Y) is (𝜀∕c, p)-regular with density at least
𝑑 − 𝜀p and

(ii) for m ≥ c𝑑N2, the subgraph G′ of G obtained by choosing m edges from G[U,W] uniformly at
random forms a (2𝜀, p)-regular pair with high probability.

An (𝜀, p)-regular partition  of G is a partition V(G) = V0 ∪ V1 ∪ · · · ∪ Vk such that |V0| ≤ 𝜀n,|V1| = |V2| = · · · = |Vk| and all but at most 𝜀k2 pairs (Vi,Vj), 1 ≤ i < j ≤ k, are (𝜀, p)-regular. When
the graph G is edge-colored, we say a partition is (𝜀, p)-regular if for all but at most 𝜀k2 pairs of parts
the edges of each color between the two parts form an (𝜀, p)-regular subgraph. If G has density 𝑑, we
say it is (𝜂,D)-upper-uniform if, for all disjoint sets X and Y of size at least 𝜂n, we have 𝑑(X,Y) ≤ D𝑑.
With these definitions in place, we may state a version of the sparse regularity lemma, originally due
to Kohayakawa and Rödl [10].

Theorem 3.7. For all 𝜀,D > 0 and r, t ∈ N, there are 𝜂 > 0 and T ∈ N such that every r-coloring of
the edges of an (𝜂,D)-upper-uniform graph G of density 𝑑 on at least T vertices has an (𝜀, 𝑑)-regular
partition  with k parts for some k ∈ [t,T].

The final ingredient we will need is a sparse counting lemma due to Conlon, Gowers, Samotij and
Schacht [4]. Given a graph H, integers N and m, and 𝜀, p > 0, we define the family (H,N,m, p, 𝜀)
to be all graphs obtained by replacing each vertex of H by an independent set of size N and replacing
each edge of H by an (𝜀, p)-regular bipartite graph with exactly m edges. Given such a graph G, let
G(H) denote the number of canonical copies of H in G (by which we mean that each vertex of H in
the copy belongs to the corresponding independent set in G).

Theorem 3.8. For every graph H and every 𝑑 > 0, there exist 𝜀, 𝜉 > 0 with the following property.
For every 𝜂 > 0, there is C > 0 such that if p ≥ Cn−1∕m2(H), then, with high probability, for every

N ≥ 𝜂n, m ≥ 𝑑pN2 and every subgraph G of Gn,p in (H,N,m, p, 𝜀), G(H) ≥ 𝜉Nv(H)
(

m
N2

)e(H)
.

3.3 The reduced graph

With these preliminaries in hand, we can proceed with the proof of Theorem 1.1. We begin by
describing the (standard) construction of the reduced graph and proving it has some useful properties.
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Let t, 𝜀, 𝛼 be defined such that 1∕t ≤ 𝜀 ≪ 𝛼 ≪ 𝜅, c, where 𝜅 = 𝜅(H) is the constant from Propo-
sition 3.5, p = cn−1∕m2(H) and ‘≪’ means these parameters are sufficiently small for the subsequent
calculations to hold.

Now consider a monochromatic-H-free 3-edge-coloring 𝜑 of the edges of G ∼ Gn,p (where, as in
the case of 𝜑2, we may only be using two of the three colors) and let Gre𝑑 , Gblue and Ggreen represent
the red, blue and green subgraphs of G, respectively. Given our choice of 𝜀 and t and setting r = 3
and D = 4, let 𝜂 and T be as in Theorem 3.7. Proposition 3.2 shows that G is with high probability
(𝜂, 4)-upper-uniform. Hence, there is an (𝜀, p)-regular partition V(G) = V0 ∪ V1 ∪ · · · ∪ Vk, where
t ≤ k ≤ T .

We next define three graphs, Γre𝑑 , Γblue and Γgreen, on the same vertex set [k]. Γre𝑑 has an edge
between i and j if and only if the bipartite induced subgraph Gre𝑑[Vi,Vj] forms an (𝜀, p)-regular pair of
density at least 𝛼p, with Γblue and Γgreen defined similarly with respect to Gblue and Ggreen, respectively.
The reduced (multi)graph Γ is the colored union of Γre𝑑 in red, Γblue in blue and Γgreen in green. Given
a vertex i ∈ [k], we write Nre𝑑(i), Nblue(i) and Ngreen(i) for its neighborhoods in Γre𝑑 , Γblue and Γgreen,
respectively, and write 𝑑re𝑑(i), 𝑑blue(i) and 𝑑green(i) for the sizes of these sets.

We first show that any induced subgraph of Γ with linearly many vertices has a vertex with large
degree in at least two of the colors.

Lemma 3.9. Define f (𝜌) = 1
24
𝜅ce(H)−1𝜌v(H)−1. Suppose 𝜌 satisfies

6𝜌f (𝜌) ≥ 3𝜀 + 1
2
𝛼. (7)

Then, with high probability, for any subset U ⊆ [k] of 𝜌k vertices of the reduced graph Γ, we can find
a vertex u ∈ U, two disjoint sets X1,X2 ⊂ U of size at least f (𝜌)k and two distinct colors 𝜒1, 𝜒2 such
that, for each i ∈ [2], u is adjacent to all vertices in Xi with edges of color 𝜒i.

Proof. Let W = ∪u∈UVu be the vertices in the parts of G corresponding to the vertices of U and
note that |W| ≥ (1 − 𝜀)𝜌n ≥

1
2
𝜌n. Hence, by Proposition 3.5, we may assume G[W] contains at

least 24𝜌f (𝜌)n2p edge-disjoint copies of H. Since there are no monochromatic copies of H in the
3-edge-coloring of G, each such copy must contain two edges of distinct colors. It easily follows that
there are two colors, say red and blue, that each appear on at least 12𝜌f (𝜌)n2p edges of G[W].

Using Proposition 3.2, we observe that all but at most (3𝜀 + 1
2
𝛼)n2p red edges of G[W] are con-

tained within dense (𝜀, p)-regular pairs. Indeed, at most k ⋅ 2
(n∕k

2

)
p ≤ n2p∕k ≤ 𝜀n2p edges can be

contained within the parts Vi, at most 𝜀k2 ⋅ 2(n∕k)2p ≤ 2𝜀n2p edges can be within irregular pairs
(Vi,Vj) and at most

(k
2

)
⋅ (n∕k)2𝛼p ≤

1
2
𝛼n2p edges are within (𝜀, p)-regular pairs (Vi,Vj) of density less

than 𝛼p. From (7), it follows that there are at least 6𝜌f (𝜌)n2p red edges in G[W] that are contained in
(𝜀, p)-regular pairs of density at least 𝛼p. Again by Proposition 3.2, each such pair can account for at
most 2(n∕k)2p edges in G[W], so there must be at least 3𝜌f (𝜌)k2 such pairs, each of which corresponds
to an edge of Γre𝑑[U]. By symmetry, we also find at least 3𝜌f (𝜌)k2 edges in Γblue[U].

Now let A = {a ∈ U ∶ 𝑑re𝑑(a,U) ≥ 2f (𝜌)k}. By summing the red degrees of vertices in U,
distinguishing between those in A and those not, we have

6𝜌f (𝜌)k2 ≤ 𝜌k ⋅ |A| + 2f (𝜌)k ⋅ 𝜌k,

from which we deduce that |A| ≥ 4f (𝜌)k. Defining B = {b ∈ U ∶ 𝑑blue(b,U) ≥ 2f (𝜌)k}, we similarly
have |B| ≥ 4f (𝜌)k. If A ∩ B ≠ ∅, let u ∈ A ∩ B. Since 𝑑re𝑑(u,U), 𝑑blue(u,U) ≥ 2f (𝜌)k, we can find the
required disjoint sets X1 and X2 of size f (𝜌)k of red and blue neighbors, respectively.
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Otherwise, for every a ∈ A and b ∈ B, by Proposition 3.2, there are at least 1
2
(n∕k)2p edges in

G between Va and Vb, so one of the three colors appears on at least 1
6
(n∕k)2p > 𝛼(n∕k)2p edges. Let

𝜒1 be the color that appears most commonly as the majority color in these |A| |B| pairs. Ignoring the
pairs that give rise to irregular pairs in Γ𝜒1

, it follows that there are at least 1
3
|A| |B|− 𝜀k2 edges in Γ𝜒1

between A and B. Provided 𝛼 is sufficiently large with respect to 𝜀, (7) and our lower bound on |A| , |B|
imply this is at least 1

4
|A| |B| edges.

If 𝜒1 is not red, then take 𝜒2 to be red and, by averaging, find some u ∈ A with a set X1 of at least
1
4
|B| ≥ f (𝜌)k neighbors in B in the color 𝜒1. Since u ∈ A, we have 𝑑re𝑑(u,U) ≥ 2f (𝜌)k, so we can find

a disjoint set X2 of f (𝜌)k red neighbors of u, as required. Otherwise, if 𝜒1 is red, we take 𝜒2 to be blue.
By the same argument, we can find some u ∈ B with a set X1 of at least f (𝜌)k red neighbors in A and,
since u ∈ B, it has large enough degree in Γblue[U] to guarantee a disjoint set X2 of blue neighbors. ▪

Through repeated use of this lemma, we can build large multicolored structures in Γ.

Corollary 3.10. Given t ∈ N, let 𝜌0 = 1 and, for 1 ≤ i ≤ 2t − 2, let 𝜌i = f (𝜌i−1). Pro-
vided 6𝜌2t−3f (𝜌2t−3) ≥ 3𝜀 + 1

2
𝛼, there is with high probability a vertex v0 of Γ contained in two

monochromatic t-cliques of distinct colors.

Proof. Applying Lemma 3.9 with 𝜌 = 𝜌0 = 1 and U = [k], we find a vertex u0 with large degrees in
two colors. Without loss of generality, let the colors be red and blue. In the first stage of this algorithm,
we iterate within the red neighborhood of u0, finding either a vertex in blue and green t-cliques, in
which case we are done, or a red t-clique containing u0.

To start, apply Lemma 3.9 again, this time taking U to be the set of red neighbors of u0. This gives
a vertex with large degrees in two colors. While one of those colors is red, we repeat the process,
giving us a sequence of vertices with large nested red neighborhoods. If this sequence (including u0)
has length t−1, by choosing an arbitrary vertex in the final red neighborhood, we obtain a red t-clique
containing u0 and can proceed to the second stage.

Otherwise, after some h ≤ t − 2 steps we obtain a vertex u1 that has large blue and green neigh-
borhoods. In this case, we first iterate within the blue neighborhood of u1. Each subsequent vertex has
either a large red neighborhood or a large blue neighborhood within which we can proceed. Once we
have obtained a sequence of 2t − 3 vertices, there are either t − 1 of them (including u0) for which we
iterated within a red neighborhood or t − 1 of them (including u1) for which we iterated within a blue
neighborhood. In the first case, we choose an arbitrary vertex in the final neighborhood to create a red
t-clique containing u0 and can then proceed to the second stage.

In the second case, choosing an arbitrary vertex in the final neighborhood gives a blue t-clique
containing u1. We can then return to the green neighborhood of u1 and repeatedly iterate, at each
point proceeding with a red or green neighborhood of the latest vertex. Once we reach a sequence of
length 2t− 3 (including the vertices between u0 and u1), we again either have t− 1 vertices with green
neighborhoods or t − 1 vertices with red neighborhoods. In the first case, we can complete a green
t-clique containing u1 that, together with the earlier blue t-clique, completes the desired structure. In
the second case, choosing a vertex in the final neighborhood again completes a red t-clique containing
u0, with which we proceed to the second stage.

If we proceed to the second stage, we will have already found a red t-clique containing u0. The
second stage consists of mirroring the above process in the blue neighborhood of u0. This results in a
blue t-clique containing u0 or a vertex u2 in the blue neighborhood that is contained in both red and
green t-cliques; in either case, we are done. ▪
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FIGURE 2 The parts of G corresponding to the two cliques from Corollary 3.10 [Colour figure can be viewed at
wileyonlinelibrary.com]

3.4 Building color-forced structures

Let n(H) denote the family of all copies of H in Kn. Using the cliques from Corollary 3.10, we will
prove the following key proposition.

Proposition 3.11. There are positive constants 𝜅 = 𝜅(c,H) and 𝜁 = 𝜁(c,H) such that, for any
K > 1, with probability at least 1 − 𝜅K−1 − o(1), for every monochromatic-H-free 3-edge-coloring 𝜑

of G, there is some color 𝜒 with at least 𝜁K−1nv(H) 𝜒-forced copies of H in n(H).

Proof. For convenience, we write v = v(H) and e = e(H). Setting t = e(v − 2) + 1 and applying
Corollary 3.10, which holds with high probability, we find a vertex x in the reduced graph Γ that is
in, say, both a red and a blue Kt. Let u1, u2,… , ut−1 be the other vertices from the red clique and
w1,w2,… ,wt−1 be the other vertices from the blue clique. Consider the corresponding parts in the
graph G. We know that, for all 1 ≤ i < j ≤ t − 1, the pairs Gre𝑑[Vx,Vui],Gre𝑑[Vui ,Vuj],Gblue[Vx,Vwi]
and Gblue[Vwi ,Vwj] are all (𝜀, p)-regular pairs of density at least 𝛼p. This situation is illustrated below
in the case H = K3.

Partition the part Vx into v equal-sized subsets, X1,X2,… ,Xv, letting N denote the size of these
sets. Define 𝜂 by N = 𝜂n, noting that 𝜂 ≥

1−𝜀
kv

, where we recall that k ≤ T is the number of parts in
the (𝜀, p)-regular partition of G. For each i, let Ri ⊂ Vui and Bi ⊂ Vwi be arbitrary subsets of size N.
Let  = {X1,… ,Xv},  = {R1,… ,Rt−1} and  = {B1,… ,Bt−1}. By Proposition 3.6(i), it follows
that the pairs Gre𝑑[Xi,Rj],Gre𝑑[Ri,Rj],Gblue[Xi,Bj] and Gblue[Bi,Bj] are all (𝜀v, p)-regular of density at
least (𝛼 − 𝜀)p.

Next consider the graph H⊙2(H, h) and note that it has precisely v+2(t−1) vertices, with one central
copy H0 of H, whose edges are deleted, and each deleted edge g ∈ E(H0) supporting two otherwise
vertex-disjoint copies Hg,1 and Hg,2 of H. We can build a bijection 𝜓 ∶ V(H ⊙2 (H, h)) →  ∪ ∪

such that:

• 𝜓(H0) =  and
• for all g ∈ E(H0), 𝜓(V(Hg,1) ⧵ g) ⊂  and 𝜓(V(Hg,2) ⧵ g) ⊂ .

That is, for each edge g ∈ E(H0), we send one of the attached copies of H to the red parts  and the
other copy to the blue parts .

Let m = 1
2
𝛼pN2 and consider an edge f = {y, z} ∈ E(H ⊙2 (H, h)). If f ∈ E(Hg,1) for some g ∈

E(H0), then the pair Gre𝑑[𝜓(y), 𝜓(z)] is an (𝜀v, p)-regular pair of density at least (𝛼−𝜀)p. Define 𝜓(f ) ⊆
Gre𝑑[𝜓(y), 𝜓(z)] to be the subgraph obtained from this pair by choosing m edges uniformly at random.

http://wileyonlinelibrary.com
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FIGURE 3 We divide the central part into v(H) subsets and shrink the other parts accordingly [Colour figure can be viewed
at wileyonlinelibrary.com]

FIGURE 4 We imagine a copy of H between the subsets of the central part, with each edge supporting both a red and a blue
copy of H ⧵ h using the parts from the red and blue cliques [Colour figure can be viewed at wileyonlinelibrary.com]

By Proposition 3.6, 𝜓(f ) is (2𝜀v, p)-regular with high probability. Otherwise, f ∈ E(Hg,2) for some
g ∈ E(H0), in which case we define 𝜓(f ) to be the subgraph obtained by selecting m edges uniformly
at random from Gblue[𝜓(y), 𝜓(z)]. We again have, with high probability, that 𝜓(f ) is (2𝜀v, p)-regular.

Now define the subgraph G′ ⊂ G to be the union of all these subgraphs 𝜓(f ), that is,

V(G′) =
⋃

y∈V(H⊙2(H,h))
𝜓(y) and E(G′) =

⋃
f∈E(H⊙2(H,h))

𝜓(f ).

From the above discussion, it is clear that G′ ∈ (H⊙2 (H, h),N,m, p, 2𝜀v), where this family of graphs
is as defined before Theorem 3.8. Since p = cn−1∕m2(H) and, by Lemma 2.3(c), m2(H ⊙2 (H, h)) <

m2(H), we can apply Theorem 3.8. This gives some constant 𝜉 > 0 such that there are with high

probability at least 𝜉Nv(H⊙2(H,h))
(

m
N2

)e(H⊙2(H,h))
copies of H⊙2 (H, h) in G′, where each vertex y comes

from the set 𝜓(y). To simplify this expression, we define c′ = 𝜉𝜂v(H⊙2(H,h))
(

1
2
𝛼

)e(H⊙2(H,h))
and 𝜇 =

nv−2pe−1. Our lower bound on the number of copies of H⊙2 (H, h) can then be written as c′𝜇2env. Note
that c′ > 0 is a constant, while, since p = cn−1∕m2(H) ≥ cn−(v−2)∕(e−1), 𝜇 = Ω(1).

In each such copy of H ⊙2 (H, h), each missing edge g ∈ E(H0) in the central copy of H supports
both a red copy Hg,1 of H ⧵ h and a blue copy Hg,2 of H ⧵ h. In particular, this means g is green-forced
and, as this holds for all edges g, this shows that the central copy H0 forms a green-forced copy of H
in n(H).

http://wileyonlinelibrary.com
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FIGURE 5 Applying Theorem 3.8 gives many copies of H ⊙2 (H, h) in which the central copy of H is green-forced [Colour
figure can be viewed at wileyonlinelibrary.com]

However, we are not quite done, as these green-forced copies of H may contribute to multiple
copies of H ⊙2 (H, h), in which case they will have been overcounted. To rectify this, and complete
the proof, we now show that most of these copies of H are not counted too often.

To this end, suppose we have found r distinct green-forced central copies H0 of H above and
enumerate them as H(1),H(2),… ,H(r). For each 1 ≤ i ≤ r, let Zi denote the number of copies of
H ⊙2 (H, h) found above in which H(i) is the central copy H0. We have thus far established that

r∑
i=1

Zi ≥ c′𝜇2env, (8)

while we wish to show that r ≥
𝜁

K
nv.

Now consider the quantity Z2
i . This counts the number of ordered pairs (A,B) of canonical copies

of H ⊙2 (H, h) with H(i) as the central copy H0. Given such a pair, let J = A ∪ B. In J, each edge
g ∈ H0 is contained in a red copy of H ⧵ h from A and one from B as well. The same holds true for
the blue copies of H ⧵ h. These attached copies of H ⧵ h in J are mostly disjoint outside the central H0,
except that the two copies of the same color supported on the same edge g may share some vertices.
We consider such a graph J as a degenerate copy of H⊙4 (H, h). There are several isomorphism classes
J could belong to, depending on which vertices are shared by A and B.

For each edge g ∈ H0, let Fg,1 be the subgraph of H induced by the vertices shared between the red
copies of H ⧵ h in A and B supported on g and define Fg,2 analogously for the blue copies. We include
the edge g in Fg,1 and Fg,2, even though it does not appear in J. Note that the union ∪g∈E(H0) ∪

2
j=1 Fg,j

determines the isomorphism class of J. Hence, there are at most 2v(H⊙2(H,h)) possible isomorphism
types, as for each vertex in H ⊙2 (H, h), we can decide whether or not it belongs to the corresponding
Fg,j. Set 𝜅 = 2v(H⊙2(H,h)).

We shall use Proposition 3.3 to show that, regardless of isomorphism type, there cannot be many
copies of J in G. Indeed, we have

v(J) = v(H) +
∑

g∈E(H0)

2∑
j=1

(
2(v(H) − 2) − (v(Fg,j) − 2)

)
= v + 4e(v − 2) −

∑
g,j

(v(Fg,j) − 2)

http://wileyonlinelibrary.com
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and

e(J) =
∑

g∈E(H0)

2∑
j=1

(
2(e(H) − 1) − (e(Fg,j) − 1)

)
= 4e(e − 1) −

∑
g,j

(e(Fg,j) − 1).

This gives

nv(J)pe(J) = nv+4e(v−2)−
∑

g,j(v(Fg,j)−2)p4e(e−1)−
∑

g,j(e(Fg,j)−1) = 𝜇4env∏
g,j
(
nv(Fg,j)−2pe(Fg,j)−1

) .
Since Fg,j ⊆ H and p = cn−1∕m2(H), we have nv(Fg,j)−2pe(Fg,j)−1 ≥ ce(Fg,j)−1 for all g, j. Thus, nv(J)pe(J) ≤

c−2e2
𝜇4env. Hence, by Proposition 3.3, with probability at least 1 − K−1 there are at most Kc−2e2

𝜇4env

copies of J in G. Taking a union bound over all isomorphism classes, we find that with probabil-
ity at least 1 − 𝜅K−1, there are at most 𝜅Kc−2e2

𝜇4env of these degenerate copies of H ⊙4 (H, h)
in G.

We noted earlier that each pair (A,B) of copies of H ⊙2 (H, h) counted by
∑

i Z2
i gives rise to

a degenerate copy J = A ∪ B of H ⊙4 (H, h). To reverse the correspondence, for each vertex in
H ⊙4 (H, h) ⧵ (A∩B), we must decide how to assign the corresponding vertices of J to A and B. Thus,
there are at most 𝜅2 ≥ 2v(H⊙4(H,h)) pairs (A,B) giving rise to the same J = A ∪ B.

Putting all this together, we have, with probability at least 1 − 𝜅K−1,

r∑
i=1

Z2
i ≤ 𝜅3Kc−2e2

𝜇4env.

Define I = {i ∶ Zi ≥
2
c′
⋅ 𝜅3Kc−2e2

𝜇2e}. It then follows from the above inequality that
∑

i∈I Zi ≤
1
2
c′𝜇2env. Plugging this into (8), we obtain

∑
i∉I Zi ≥

1
2
c′𝜇2env. As there are at most r summands, each

of which has size less than 2
c′
⋅ 𝜅3Kc−2e2

𝜇2e, we can conclude that

r ≥

(
(c′)2c2e2

4𝜅3K

)
nv.

Setting 𝜁 = 1
4
(c′)2c2e2

𝜅−3 completes the proof. ▪

3.5 Finishing the proof

We begin with part (a). Suppose we have a monochromatic-H-free 2-edge-coloring 𝜑2 of G and q2 =
𝜔nn−2 for some 𝜔n → ∞. Set K = 𝜔

1∕2
n . By Proposition 3.11, with probability 1 − 𝜅K−1 − o(1) =

1 − o(1), there is some color 𝜒 such that there are at least 𝜁K−1nv(H) 𝜒-forced copies of H. As the
coloring 𝜑2 only has red and blue edges, the color 𝜒 must be green.

Each edge can be in at most nv(H)−2 green-forced copies of H, so there must be at least 𝜁K−1n2

green-forced edges. If any of these edges were to appear in Gn,q2
, we would not be able to extend the

coloring𝜑2, as coloring the edge red or blue creates a monochromatic copy of H. Hence, the probability
that 𝜑2 extends to G ∪ Gn,q2

is at most

(1 − q2)𝜁K−1n2
≤ exp

(
−𝜁K−1n2q2

)
= exp (−𝜁K) = o(1),
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FIGURE 6 H, drawn on the left, consists of two triangles joined by a path of length 𝓁. On the right, Fre𝑑 is drawn in red, Fblue

in blue and the matching M is drawn with dashed lines [Colour figure can be viewed at wileyonlinelibrary.com]

as required.
Part (b) follows the same lines. We begin as before: given the coloring 𝜑3 and some q3 =

𝜔nn−1∕m(H), where 𝜔n → ∞, we set K = 𝜔
1∕2
n . By Proposition 3.11, with probability 1 − o(1), there is

some color 𝜒 with at least 𝜁K−1nv(H) 𝜒-forced copies of H.
If any 𝜒-forced copy of H appears in Gn,q3

, then 𝜑3 cannot be extended. Indeed, coloring all of
its edges with the color 𝜒 clearly creates a monochromatic copy of H, but since all the edges are
𝜒-forced, using any other color on an edge also completes a monochromatic copy. By Proposition 3.4,
the probability that none of the 𝜒-forced copies of H appear in Gn,q3

is at most

v(H)!2v(H)K
𝜁𝜔n

= v(H)!2v(H)

𝜁K
= o(1),

as desired. This completes the proof of Theorem 1.1.

4 CONCLUDING REMARKS

Our investigations point to several open problems, perhaps the most interesting of which is to classify
all graphs H for which Theorem 1.1 holds. We have shown that our condition, that there exists an edge
h such that m2(H ⧵ h) < m2(H), cannot be entirely dispensed with. However, there are also examples
of graphs which do not satisfy this condition, but still satisfy some of the conclusions of Theorem 1.1.

Indeed, our proof of Theorem 1.1(a) readily generalizes to the following statement.

Theorem 4.1. Given a graph H, suppose there are graphs Fre𝑑 , Fblue and a matching M such that

(i) V(Fre𝑑) ∩ V(Fblue) = V(M), with V(M) forming an independent set in Fre𝑑 and Fblue,
(ii) m2(H) > m2(Fre𝑑 ∪ Fblue),

(iii) m2(H) ≥ e(J)
v(J)−v(M)

for all J ⊆ Fre𝑑 ∪ Fblue with V(M) ⊂ V(J) and e(J) ≥ 1 and
(iv) for any partition of the matching M = Mre𝑑∪Mblue, H is a subgraph of Fre𝑑∪Mre𝑑 or Fblue∪Mblue.

Let c > 0 be fixed and, for p = cn−1∕m2(H), let G = Gn,p. Then, with high probability, the following
holds. Let 𝜑 be an arbitrary monochromatic-H-free 2-edge-coloring of G. If q = 𝜔(n−2), then, with
high probability, 𝜑 cannot be extended to a monochromatic-H-free 2-edge-coloring of G ∪ Gn,q.

One of the simplest examples satisfying the conditions of Theorem 4.1 is the graph H consisting
of two triangles joined by a path of length 𝓁 ≥ 2. In this case we can take M to have size three with
the corresponding graphs Fre𝑑 and Fblue depicted above.
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This example shows that the condition in Theorem 1.1 is not best possible, as Theorem 4.1 applies
to a wider class of graphs. However, there is a subtle trade-off in finding appropriate forcing structures
Fre𝑑 ∪ Fblue for Theorem 4.1—we need them to be sparse enough to satisfy (ii) and (iii), but to have
enough copies of H for (iv).
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