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Comparing different deep learning 
architectures for classification 
of chest radiographs
Keno K. Bressem1*, Lisa C. Adams2, Christoph Erxleben1, Bernd Hamm1,2, 
Stefan M. Niehues1 & Janis L. Vahldiek1

Chest radiographs are among the most frequently acquired images in radiology and are often the 
subject of computer vision research. However, most of the models used to classify chest radiographs 
are derived from openly available deep neural networks, trained on large image datasets. These 
datasets differ from chest radiographs in that they are mostly color images and have substantially 
more labels. Therefore, very deep convolutional neural networks (CNN) designed for ImageNet and 
often representing more complex relationships, might not be required for the comparably simpler task 
of classifying medical image data. Sixteen different architectures of CNN were compared regarding 
the classification performance on two openly available datasets, the CheXpert and COVID-19 Image 
Data Collection. Areas under the receiver operating characteristics curves (AUROC) between 0.83 and 
0.89 could be achieved on the CheXpert dataset. On the COVID-19 Image Data Collection, all models 
showed an excellent ability to detect COVID-19 and non-COVID pneumonia with AUROC values 
between 0.983 and 0.998. It could be observed, that more shallow networks may achieve results 
comparable to their deeper and more complex counterparts with shorter training times, enabling 
classification performances on medical image data close to the state-of-the-art methods even when 
using limited hardware.

Chest radiographs are among the most frequently used imaging procedures in radiology. They have been widely 
employed in the field of computer vision, as chest radiographs are a standardized technique and, if compared 
to other radiological examinations such as computed tomography or magnetic resonance imaging, contain a 
smaller group of relevant pathologies. Although many artificial neural networks for the classification of chest 
radiographs have been developed, it is still subject to intensive research.

Only a few groups design their own networks from scratch, while most use already established architectures, 
such as ResNet-50 or DenseNet-121 (with 50 and 121 representing the number of layers within the respective 
neural network)1–6. These neural networks have often been trained on large, openly available datasets, such as 
ImageNet, and are therefore already able to recognize numerous image features. When training a model for a 
new task, such as the classification of chest radiographs, the use of pre-trained networks may improve the train-
ing speed and accuracy of the new model, since important image features that have already been learned can be 
transferred to the new task and do not have to be learned again. However, the feature space of freely available 
data sets such as ImageNet differs from chest radiographs as they contain color images and more categories. The 
ImageNet Challenge includes 1,000 possible categories per image, while CheXpert, a large freely available data 
set of chest radiographs, only distinguishes between 14 categories (or classes)7, and the COVID-19 Image Data 
Collection only differentiates between three classes8. Although the ImageNet challenge showed a trend towards 
higher accuracies through increasing the number of layers in a CNN, this may not be necessary for a medical 
image classification task.

In radiology, sometimes only limited features of an image can be decisive for the diagnosis. Therefore, images 
cannot be scaled down as much as desired, as the required information would otherwise be lost. But the more 
complex a CNN, the more resources are required for training and deployment. As up-scaling the input-images 
resolution exponentially increases memory usage during training for large neural networks that evaluate many 
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parameters, the size of a mini batch needs to be reduced earlier and more strongly (in ranges between 2 and 16), 
which may affect optimizers such as the stochastic gradient descent.

Therefore, it remains to be determined, which of the available artificial neural networks designed for and 
trained on the ImageNet dataset will perform best for the classification of chest radiographs. The hypothesis of 
this work is that the number of layers in a CNN is not necessarily decisive for good performance on medical 
data. CNN with fewer layers might perform similarly to deeper/more complex networks, while at the same time 
requiring less resources. Therefore, we systematically investigate the performance of sixteen openly available 
CNN on the CheXpert dataset and the COVID-19 Image Data Collection.

Methods
Data preparation.  The free available CheXpert dataset consists of 224,316 chest radiographs from 65,240 
patients. Fourteen findings have been annotated for each image: enlarged cardiomediastinum, cardiomegaly, 
lung opacity, lung lesion, edema, consolidation, pneumonia, atelectasis, pneumothorax, pleural effusion, pleural 
other, fracture and support devices. Hereby the findings can be annotated as present (1), absent (NA) or uncer-
tain (− 1). Similar to previous work on the classification of the CheXpert dataset3,9, we trained these networks 
on a subset of labels: cardiomegaly, edema, consolidation, atelectasis and pleural effusion. As we only aim at 
network comparison and not on maximal precision of a neural network, for this analysis, each image with an 
uncertainty label was excluded, and other approaches such as zero imputation or self-training were also not 
adopted. Furthermore, only frontal radiographs were used, leaving 135,494 images from 53,388 patients for 
training. CheXpert offers an additional dataset with 235 images (201 images after excluding uncertainty labels 
and lateral radiographs), annotated by two independent radiologists, which is intended as an evaluation dataset 
and was therefore used for this purpose.

The COVID-19 Image Data Collection is a dataset focusing on chest radiographs for the novel coronavirus 
SARS-CoV-2 with the associated COVID-19 pneumonia. The dataset is still under active development, at the time 
of our analysis it consists out of 46,754 chest radiographs, of which 30,174 represent normal cases without pneu-
monia, 16,384 are cases with non-COVID-19 pneumonia and 196 include radiographs of confirmed COVID-19 
pneumonia. We split the set into a dataset for training and validation consisting of 43,754 cases (28,240 normal, 
15,333 non-COVID-19 pneumonia and 181 COVID-19) and a dataset for testing consisting including 3,000 
cases (1,934 normal, 1,051 non-COVID-19 pneumonia and 15 COVID-19).

Data augmentation.  For the first and second training session, the images were scaled to 320 × 320 pixels, 
using bilinear interpolation, and pixel values were normalized. During training, multiple image transformations 
were applied: flipping of the images alongside the horizontal and vertical axis, rotation of up to 10°, zooming of 
up to 110%, adding of random lightning or symmetric wrapping.

Model training.  15 different convolutional neural networks (CNN) of five different architectures (ResNet, 
DenseNet, VGG, SqueezeNet, Inception v4 and AlexNet) were trained on two datasets1,2,10–13. All training was 
done using the Python programming language (https​://www.pytho​n.org, version 3.8) with the PyTorch (https​
://pytor​ch.org) and FastAI (https​://fast.ai) libraries on a workstation running on Ubuntu 18.04 with two Nvidia 
GeForce RTX 2080ti graphic cards (11 GB of RAM each)14,15. In the first training session, batch size was held 
constant at 16 for all models, while it was increased to 32 for all networks in the second session. We decided 
to use two different batch sizes, because maximum batch size is limited mainly by the available GPU-RAM 
and therefore can only increase to a limited amount, especially in larger and thus more memory-demanding 
networks. Especially with increased image resolution, lowering the batch size will be the major limitation to 
network performance.

Each model was trained for eight epochs, whereas during the first five epochs only the classification-head of 
each network was trained. Thereafter, the model was unfrozen and trained as whole for three additional epochs. 
Before training and after the first five epochs, the optimal learning rate was determined16. For CheXpert, it was 
between 1e − 1 and 1e − 2 for the first five epochs and between 1e − 5 and 1e − 6 for the rest of the training, while 
for the COVID-19 Image Data Collection, it was between 1e − 2 and 1e − 3 for the first five epochs and 1e − 5 and 
1e − 6 for the rest of the training. We trained one multilabel classification head for each model for the CheXpert 
dataset and a multi-class model for the COVID-19 Image Data Collection. Since the performance of a neural 
network can be subject to minor random fluctuations, the training was repeated for a total of five times. The 
predictions on the validation data set were then exported as comma separated values (CSV) for evaluation.

Evaluation.  Evaluation was performed using the “R” statistical environment including the “tidyverse” and 
“ROCR” libraries17–19. Predictions on the validation dataset of the five models for each network architecture 
were pooled so that the models could be evaluated as a consortium. For each individual prediction as well as the 
pooled predictions, receiver operation characteristic (ROC) curves and precision recall curves (PRC) were plot-
ted and the areas under each curve were calculated (AUROC and AUPRC). AUROC and AUPRC were chosen as 
they enable a comparison of different models, independent of a chosen threshold for the classification. Sensitiv-
ity and specificity were calculated with an individual cut-off for each network. The cut-off was chosen so that the 
sum of sensitivity and specificity was the highest achievable for the respective network.

Results
The CheXpert validation dataset consists of 234 studies from 200 patients, not used for training with no uncer-
tainty-labels. After excluding lateral radiographs (n = 32), 202 images from 200 patients remained. The dataset 
presents class imbalances (% positives for each finding: cardiomegaly 33%, edema 21%, consolidation 16%, 

https://www.python.org
https://pytorch.org
https://pytorch.org
https://fast.ai


3

Vol.:(0123456789)

Scientific Reports |        (2020) 10:13590  | https://doi.org/10.1038/s41598-020-70479-z

www.nature.com/scientificreports/

atelectasis 37%, pleural effusion 32%), so that the AUPRC as well as the AUROC are reported. The performance 
of the tested networks is compared to the AUROC reported by Irvin et al.3 However, only values for AUROC, 
but not for AUPRC, are provided there.

In most cases, the best results were achieved with a batch size of 32, so all the information provided below 
refers to models trained with this batch size. Results achieved with smaller batch sizes of 16 will be explicitly 
mentioned.

Area Under the Receiver Operating Characteristic Curve.  On the CheXpert dataset, deeper CCN 
generally achieved higher AUROC values than shallow networks (Table 1 and Figs. 1, 2, 3). Regarding the pooled 
AUROC for the detection of the five pathologies, ResNet-152 (0.882), DenseNet-161 (0.881) and ResNet-50 
(0.881) performed best (Irvin et al. CheXpert baseline 0.889)3. Broken down for individual findings, the most 
accurate detection of atelectasis was achieved by ResNet-18 (0.816, batch size 16), ResNet-101 (0.813, batch 
size 16), VGG-19 (0.813, batch size 16) and ResNet-50 (0.811). For detection of cardiomegaly, the best four 
models surpassed the CheXpert baseline of 0.828 (ResNet-34 0.840, ResNet-152 0.836, DenseNet-161 0.834, 
ResNet-50 0.832). For congestion, the highest AUROC was achieved using ResNet-152 (0.917), ResNet-50 
(0.916) and DenseNet-161 (0.913). Pulmonary edema was most accurately detected using DenseNet-161 (0.923), 
DenseNet-169 (0.922) and DenseNet-201 (0.922). For pleural effusion, the four best models were ResNet-152 

Table 1.   Area under the receiver operating characteristic curves—CheXpert. This table shows the different 
areas under the receiver operating characteristic curve (AUROC) for each of the network architectures and 
individual findings as well as the pooled AUROC per model. According to the pooled AUROC, ResNet-152, 
ResNet-50 und DenseNet-161 were the best models, while SqueezeNet and AlexNet showed the poorest 
performance. For cardiomegaly, ResNet-34, ResNet-50, ResNet-152 and DenseNet-161 could surpass the 
CheXpert baseline provided by Irvin et al. ResnEt-50, ResNet-101, ResNet-152 and DenseNet-169 could also 
surpass the CheXpert baseline for pleural effusion. A batch size of 32 often lead to better results compared to a 
batch size of 16.

Network Batchsize Atelectasis Cardiomegaly Consolidation Edema Effusion Pooled

CheXpert baseline 16 0.818 0.828 0.938 0.934 0.928 0.889

AlexNet 16 0.790 0.755 0.857 0.894 0.881 0.835

DenseNet-121 16 0.809 0.794 0.895 0.883 0.906 0.857

DenseNet-161 16 0.800 0.817 0.885 0.900 0.923 0.865

DenseNet-169 16 0.805 0.795 0.898 0.891 0.909 0.860

DenseNet-201 16 0.805 0.812 0.891 0.886 0.916 0.862

Inception v4 16 0.796 0.832 0.899 0.917 0.934 0.876

ResNet-101 16 0.813 0.810 0.905 0.889 0.907 0.865

ResNet-152 16 0.801 0.809 0.908 0.896 0.916 0.866

ResNet-18 16 0.816 0.797 0.905 0.868 0.899 0.857

ResNet-34 16 0.799 0.798 0.902 0.891 0.905 0.859

ResNet-50 16 0.798 0.799 0.890 0.880 0.913 0.856

SqueezeNet-1.0 16 0.761 0.755 0.833 0.907 0.885 0.828

SqueezeNet-1.1 16 0.767 0.764 0.880 0.903 0.879 0.839

VGG-13 16 0.798 0.752 0.886 0.867 0.872 0.835

VGG-16 16 0.809 0.766 0.892 0.879 0.883 0.846

VGG-19 16 0.811 0.786 0.901 0.890 0.884 0.854

AlexNet 32 0.791 0.768 0.856 0.894 0.886 0.839

DenseNet-121 32 0.808 0.828 0.879 0.904 0.926 0.869

DenseNet-161 32 0.809 0.834 0.913 0.923 0.928 0.881

DenseNet-169 32 0.809 0.816 0.900 0.922 0.934 0.876

DenseNet-201 32 0.795 0.820 0.904 0.922 0.931 0.874

Inception v4 32 0.796 0.834 0.901 0.933 0.941 0.881

ResNet-101 32 0.797 0.823 0.911 0.915 0.936 0.876

ResNet-152 32 0.802 0.836 0.917 0.920 0.937 0.882

ResNet-18 32 0.796 0.822 0.908 0.903 0.911 0.868

ResNet-34 32 0.797 0.840 0.903 0.902 0.919 0.872

ResNet-50 32 0.811 0.832 0.916 0.913 0.934 0.881

SqueezeNet-1.0 32 0.773 0.769 0.880 0.913 0.895 0.846

SqueezeNet-1.1 32 0.785 0.789 0.895 0.904 0.898 0.854

VGG-13 32 0.800 0.762 0.883 0.896 0.907 0.850

VGG-16 32 0.798 0.776 0.890 0.911 0.906 0.856

VGG-19 32 0.787 0.790 0.879 0.911 0.916 0.857
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(0.937), ResNet-101 (0.936), ResNet-50 (0.934) and DenseNet-169 (0.934), all of which performed superior to 
the CheXpert baseline of 0.928.  

On the COVID-19 dataset, the AUROC did not substantially differ between the models with a range of the 
pooled values between 0.98 and 0.998 (Table 2, Appendix Figures S1–S3 in Supplementary Information). The 
highest pooled AUROC of 0.998 was achieved using a DenseNet-169 and DensNet-201 with AUROC values of 
1.00 for the detection of COVID-19 and 0.997 for the detection of non-COVID-19 pneumonia or the absence 
of pneumonia.

Area Under the Precision Recall Curve and Sensitivity and Specificity.  For AUPRC, CNN with 
less convolutional layers could achieve higher values than deeper network-architectures (Table S1 and Appen-
dix Figures S1–S3 in Supplementary Information). The highest pooled values for the AUPRC were achieved by 
training VGG-16 (0.709), AlexNet (0.701) and ResNet-34 (0.688). For atelectasis, CGG-16 and AlexNet both 
achieved the highest AUPRC of 0.732, followed by Resnet-35 with 0.652. Cardiomegaly was most accurately 

Figure 1.   ROC curves for AlexNet, DenseNet and Inception v4 models. The colored lines represent a single 
training, black lines represent the pooled performance over five trainings. The figure was generated in R20.
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detected by SqueezeNet 1.0 (0.565), Alexnet-152 (0.565) and Vgg-13 (0.563). SqueezNet 1.0 also achieved 
the highest AUPRC values for consolidation (0.815) followed by ResNet-152 (0.810) and ResNet-50 (0.809). 
The best classifications of pulmonary edema were achieved by DenseNet-169, DenseNet-161 (both 0.743) and 
DenseNet-201 (0.742). Finally, for pleural effusion, ResNet-101 and ResNet-152 achieved the highest AUPRC 
of 0.591, followed by ResNet-50 (0.590).   For an overview of sensitivities and specificities (including confidence 
intervals), please refer to Tables 3 and 4. 

On the COVID-19 dataset, very high AUPRC values could be reached with all sixteen different CNN archi-
tectures for the detection of non-COVID-19 pneumonia or absence of pneumonia (Table S2 in Supplementary 
Information, Figs. 4, 5, 6). However, for the detection of COVID-10 pneumonia, heterogenous performances 
were achieved. While using Densnet-121, an AUPRC of 0.329 could be achieved, employment of a VGG-19 
could achieve values of 0.925. However, it should be noted that there were only 15 COVID-19 cases in the 3,000 
image test data set, so even a single misclassification likely had a major impact on the measured performance.

Figure 2.   ROC-curves for the models with ResNet architectures. The colored lines represent a single training, 
black lines represent the pooled performance over five trainings. The figure was generated in R20.
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Training time.  Fourteen different network-architectures were trained ten times each with a multilabel-classifi-
cation head (five times each for batch size of 16 or 32 and an input-image resolution of 320 × 320 pixels) and once 
with a binary classification head for each finding, resulting in 210 individual training runs. Overall, the training 
took 340 h. As to be expected, the training of deeper networks required more time than the training of shallower 
networks. For an image resolution of 320 × 320 pixels, the training of AlexNet required the least amount of time 
with a time per epoch of 2:29–2:50 min and a total duration of 20:25 min for a batch size of 32. Using a smaller 
batch size of 16, the time per epoch raised to 2:59–3:06 min and a total duration of 24:01 min. In contrast, using a 
batch size of 16, training of a DenseNet-201 took the longest with 5:11:22 h and epochs requiring between 40:58 
and 41:00 min. For a batch size of 32, training a DenseNet-169 required the largest amount of time with 3:05:49 h 
(epochs between 20:57 and 27:01 min). Increasing the batch size from 16 to 32 lead to an average acceleration of 
training by 29.9% ± 9.34%. Table 5 gives an overview of training times.

On the COVID-19 Image Data collection, training of an epoch took between 03:52 and 11:33 min. There was 
not much difference in duration of an epoch between the models. This is probably primarily due to the fact that, 
in contrast to the CheXpert data set, in which all images are available in a resolution of 320 × 320 px, an on-the-
fly down-scaling of the images to 320 × 320 px had to be performed for the COVID-19 Image Data Collection, 

Figure 3.   ROC-curves for the models with Squeezenet and VGG architectures. The colored lines represent a 
single training, black lines represent the pooled performance over five trainings.
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which likely represented the performance bottleneck of the training. Considering the nevertheless very short 
training times, we refrained from downsizing the images to 320 × 320 px in advance (Table 6).

Discussion
In the present work, different architectures of artificial neural networks are analyzed with respect to their perfor-
mance for the classification of chest radiographs. We could show that deeper neural networks do not necessarily 
perform better than shallow networks. Instead, an accurate classification of chest radiographs may be achieved 
with comparably shallow networks, such as AlexNet (8 layers), ResNet-34 or VGG-16.

The use of CNN with fewer layers has the advantage of lower hardware requirements and shorter training 
times compared to their deeper counterparts. Shorter training times allow to test more hyperparameters and 
facilitates the overall training process. Lower hardware requirements also enable the use of increased image 
resolutions. This could be of relevance for the evaluation of chest radiographs with a generic resolution of 
2,048 × 2,048 to 4,280 × 4,280 px, where specific findings, such as small pneumothorax, require larger resolu-
tions of input-images, because otherwise the crucial information regarding their presence could be lost due to a 
downscaling. Furthermore, shorter training times might simplify the integration of improvement methods into 
the training data, such as the implementation of ‘human in the loop’ annotations. ‘Human in the loop’ implies 
that the training of a network is supervised by a human expert, who may intervene and correct the network at 

Table 2.   Areas Under the Receiver Operating Characteristic Curve—COVID 19 image data collection. 
This table shows values for the Area Under the Receiver Operating Characteristics Curve (AU-ROC). For 
calculation of the ROC, a one-against all approach was chosen. This means, that the models were evaluated 
regarding their performance in detecting one outcome (e.g. COVID-19) against the two others (e.g. no 
pneumonia or non-COVID-19 pneumonia). All networks achieved a very high accuracy with AUROC values 
greater than 0.98 for the detection of COVID-19 and values greater than 0.97 for the detection of non-
COVID-19 pneumonia or absence of pneumonia. BS Batchsize.

Network BS COVID-19 No pneumonia Non-COVID-19 pneumonia Pooled

AlexNet 16 0.986 0.977 0.977 0.980

DenseNet-121 16 1.000 0.995 0.995 0.997

DenseNet-161 16 1.000 0.996 0.996 0.997

DenseNet-169 16 1.000 0.995 0.995 0.997

DenseNet-201 16 1.000 0.996 0.995 0.997

Inception v4 16 0.995 0.985 0.985 0.988

ResNet-18 16 1.000 0.992 0.992 0.995

ResNet-34 16 1.000 0.994 0.994 0.996

ResNet-50 16 1.000 0.995 0.994 0.996

ResNet-101 16 1.000 0.995 0.994 0.996

ResNet-152 16 1.000 0.996 0.996 0.997

SqueezeNet-1.0 16 0.995 0.980 0.980 0.985

SqueezeNet-1.1 16 0.995 0.979 0.978 0.984

VGG-13 16 0.999 0.991 0.991 0.994

VGG-16 16 1.000 0.993 0.993 0.995

VGG-19 16 0.999 0.993 0.993 0.995

AlexNet 32 0.994 0.978 0.978 0.983

DenseNet-121 32 1.000 0.996 0.996 0.997

DenseNet-169 32 1.000 0.997 0.997 0.998

DenseNet-201 32 1.000 0.997 0.997 0.998

Inception v4 32 0.995 0.987 0.987 0.990

ResNet-18 32 1.000 0.993 0.993 0.995

ResNet-34 32 1.000 0.995 0.995 0.997

ResNet-50 32 1.000 0.995 0.995 0.997

ResNet-101 32 1.000 0.996 0.996 0.997

ResNet-152 32 1.000 0.995 0.995 0.997

SqueezeNet-1.0 32 0.996 0.982 0.982 0.987

SqueezeNet-1.1 32 0.998 0.981 0.980 0.986

VGG-13 32 1.000 0.992 0.992 0.995

VGG-16 32 1.000 0.995 0.995 0.997

VGG-19 32 1.000 0.995 0.995 0.997
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critical steps. For example, the human expert may check the misclassifications with the highest loss for incorrect 
labels, thus effectively reducing label noise. With shorter training times, such feedback loops can be executed 
faster. In the CheXpert dataset, which was used as a groundwork for the present analysis, labels for the images 
were generated using a specifically developed natural language processing tool, which did not produce perfect 
labels. For example, the F1 scores for the mentioning and subsequent negation of cardiomegaly were 0.973 and 
0.909, and the F1 score for an uncertainty label was 0.727. Therefore, it can be assumed, that there is a certain 
amount of noise in the training data, which might affect the accuracy of the models trained on it. Implement-
ing a human-in-the loop approach for partially correcting the label noise could further improve performance 
of networks trained on the CheXpert dataset21. Our findings differ from applied techniques used in previous 
literature, where deeper network architectures, mainly a DenseNet-121, were used to classify the CheXpert data 
set6,9,22. The authors of the CheXpert dataset achieved an average overall AUROC of 0.8893, using a DenseNet-121, 
which was not surpassed by any of the models used in our analysis, although differences between the best per-
forming networks and the CheXpert baseline were smaller than 0.01. It should be noted, however, that in our 
analysis the hyperparameters for the models were probably not selected as precise as in the original CheXpert 
paper by Irvin et al., since the focus of this work was more on the comparison of different architectures instead 
of the optimization of one specific network. Keeping all other hyper-parameters constant across the models 
might also have affected certain architectures more than others, thus lowering the comparability between the 
different networks we evaluated.

Also, the comparability of our approach and the CheXpert dataset might be limited as we adopted a different 
method for evaluation of our results, excluding lateral radiographs. Inclusion of lateral radiographs makes the 
dataset more diverse and maybe more challenging for different models. On the other hand, some findings such 

Table 3.   Sensitivity on the CheXpert dataset. This table gives estimates of sensitivity and specificity on the 
CheXpert dataset alongside their corresponding 95% confidence intervals.

Network BZ Atelectasis Cardiomegaly Consolidation Edema Effusion

AlexNet 16 0.65 (0.53–0.76) 0.65 (0.52–0.76) 0.88 (0.71–0.96) 0.86 (0.71–0.95) 0.77 (0.64–0.86)

DenseNet-121 16 0.77 (0.66–0.86) 0.65 (0.52–0.76) 0.88 (0.71–0.96) 0.83 (0.69–0.93) 0.81 (0.70–0.90)

DenseNet-161 16 0.81 (0.71–0.89) 0.70 (0.57–0.80) 0.84 (0.67–0.95) 0.88 (0.74–0.96) 0.92 (0.83–0.97)

DenseNet-169 16 0.81 (0.71–0.89) 0.86 (0.76–0.94) 0.88 (0.71–0.96) 0.81 (0.66–0.91) 0.97 (0.89–1.00)

DenseNet-201 16 0.71 (0.59–0.81) 0.74 (0.62–0.84) 0.88 (0.71–0.96) 0.83 (0.69–0.93) 0.73 (0.61–0.84)

Inception v4 16 0.72 (0.6–0.82) 0.8 (0.69–0.89) 0.84 (0.67–0.95) 0.88 (0.74–0.96) 0.81 (0.7–0.9)

ResNet-101 16 0.75 (0.63–0.84) 0.65 (0.52–0.76) 0.84 (0.67–0.95) 0.86 (0.71–0.95) 0.84 (0.73–0.92)

ResNet-152 16 0.77 (0.66–0.86) 0.73 (0.60–0.83) 0.88 (0.71–0.96) 0.86 (0.71–0.95) 0.94 (0.85–0.98)

ResNet-18 16 0.73 (0.62–0.83) 0.91 (0.81–0.97) 0.84 (0.67–0.95) 0.83 (0.69–0.93) 0.67 (0.54–0.78)

ResNet-34 16 0.76 (0.65–0.85) 0.76 (0.64–0.85) 0.84 (0.67–0.95) 0.83 (0.69–0.93) 0.97 (0.89–1.00)

ResNet-50 16 0.79 (0.68–0.87) 0.74 (0.62–0.84) 0.84 (0.67–0.95) 0.86 (0.71–0.95) 0.70 (0.58–0.81)

SqueezeNet-1.0 16 0.67 (0.55–0.77) 0.59 (0.46–0.71) 0.81 (0.64–0.93) 0.81 (0.66–0.91) 0.91 (0.81–0.96)

SqueezeNet-1.1 16 0.68 (0.56–0.78) 0.70 (0.57–0.80) 0.91 (0.75–0.98) 0.76 (0.61–0.88) 0.92 (0.83–0.97)

VGG-13 16 0.83 (0.72–0.90) 0.77 (0.65–0.87) 0.91 (0.75–0.98) 0.81 (0.66–0.91) 0.84 (0.73–0.92)

VGG-16 16 0.72 (0.60–0.82) 0.71 (0.59–0.82) 0.88 (0.71–0.96) 0.86 (0.71–0.95) 0.66 (0.53–0.77)

VGG-19 16 0.83 (0.72–0.90) 0.67 (0.54–0.78) 0.88 (0.71–0.96) 0.79 (0.63–0.90) 0.84 (0.73–0.92)

AlexNet 32 0.79 (0.68–0.87) 0.70 (0.57–0.80) 0.88 (0.71–0.96) 0.79 (0.63–0.90) 0.77 (0.64–0.86)

DenseNet-121 32 0.73 (0.62–0.83) 0.65 (0.52–0.76) 0.84 (0.67–0.95) 0.86 (0.71–0.95) 0.91 (0.81–0.96)

DenseNet-161 32 0.83 (0.72–0.90) 0.70 (0.57–0.80) 0.91 (0.75–0.98) 0.93 (0.81–0.99) 0.77 (0.64–0.86)

DenseNet-169 32 0.77 (0.66–0.86) 0.74 (0.62–0.84) 0.88 (0.71–0.96) 0.86 (0.71–0.95) 0.95 (0.87–0.99)

DenseNet-201 32 0.87 (0.77–0.93) 0.73 (0.60–0.83) 0.94 (0.79–0.99) 0.86 (0.71–0.95) 0.91 (0.81–0.96)

Inception v4 32 0.71 (0.59–0.81) 0.85 (0.74–0.92) 0.91 (0.75–0.98) 0.9 (0.77–0.97) 0.89 (0.79–0.95)

ResNet-101 32 0.76 (0.65–0.85) 0.77 (0.65–0.87) 0.81 (0.64–0.93) 0.83 (0.69–0.93) 0.78 (0.66–0.87)

ResNet-152 32 0.68 (0.56–0.78) 0.74 (0.62–0.84) 0.94 (0.79–0.99) 0.88 (0.74–0.96) 0.89 (0.79–0.95)

ResNet-18 32 0.72 (0.60–0.82) 0.76 (0.64–0.85) 0.88 (0.71–0.96) 0.79 (0.63–0.90) 0.91 (0.81–0.96)

ResNet-34 32 0.79 (0.68–0.87) 0.86 (0.76–0.94) 0.84 (0.67–0.95) 0.86 (0.71–0.95) 0.92 (0.83–0.97)

ResNet-50 32 0.84 (0.74–0.91) 0.77 (0.65–0.87) 0.84 (0.67–0.95) 0.81 (0.66–0.91) 0.88 (0.77–0.94)

SqueezeNet-1.0 32 0.59 (0.47–0.70) 0.82 (0.70–0.90) 0.84 (0.67–0.95) 0.88 (0.74–0.96) 0.72 (0.59–0.82)

SqueezeNet-1.1 32 0.75 (0.63–0.84) 0.76 (0.64–0.85) 0.91 (0.75–0.98) 0.81 (0.66–0.91) 0.94 (0.85–0.98)

VGG-13 32 0.72 (0.60–0.82) 0.74 (0.62–0.84) 0.88 (0.71–0.96) 0.83 (0.69–0.93) 0.70 (0.58–0.81)

VGG-16 32 0.80 (0.69–0.88) 0.62 (0.49–0.74) 0.84 (0.67–0.95) 0.76 (0.61–0.88) 0.91 (0.81–0.96)

VGG-19 32 0.72 (0.60–0.82) 0.70 (0.57–0.80) 0.84 (0.67–0.95) 0.88 (0.74–0.96) 0.91 (0.81–0.96)
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as small effusions, can only be seen on lateral radiographs and would thus be missed by our models, leading to 
a lower accuracy in comparison to the CheXpert baseline.

Pham et al. also used a DenseNet-121 as the basis for their model and proposed the most accurate model of 
the CheXpert dataset with a mean AUROC of 0.940 for the five selected findings6. The good results are probably 
due to the hierarchical structure of the classification framework, which takes into account correlations between 
different labels, and the application of a label-smoothing technique, which also allows the use of uncertainty 
labels (which were excluded in our present work). Allaouzi et al. similarly used a DenseNet-121 and created three 
different models for the classification of the CheXpert and ChestX-ray14, yielding an AUC of 0.72 for atelectasis, 
0.87–0.88 for cardiomegaly, 0.74–0.77 for consolidation, 0.86–0.87 for edema and 0.90 for effusion22. Except for 
cardiomegaly, we achieved better values with several models (e.g. ResNet-34, ResNet-50, AlexNet, VGG-16). This 
suggests, that complex deep networks are not necessarily superior to more shallow networks for chest X-ray clas-
sification. At least for the CheXpert dataset, it seems that methods optimizing the handling of uncertainty labels 
and hierarchical structures of the data are important to improve model performance. Sabottke et al. trained a 
ResNet-32 for classification of chest radiographs and therefore are one of the few groups using a smaller network9. 
With an AUROC of 0.809 for atelectasis, 0.925 for cardiomegaly, 0.888 for edema and 0.859 for effusion, their 
network performed not as good as some of our tested networks. Raghu et al. employed a ResNet-50, an Inception-
v3 as well as a custom-designed small network. Similar to our findings, they observed, that smaller networks 
showed a comparable performance to deeper networks7. Regarding the COVID-19 Image Data Collection, only 
few analyses have been published due to the novelty of this dataset. Nearly all tests networks performed similar, 
again showing that for the analysis of chest radiographs very deep and complex neuronal network architectures 
are not necessarily needed. Farooq and Hafeez published a model with an accuracy of 100% for the detection of 
COVID-19; however, they only had eight cases in their dataset and thus even less than in the present analysis23. 

Table 4.   Specificity on the CheXpert dataset.

Network BZ Atelectasis Cardiomegaly Consolidation Edema Effusion

AlexNet 16 0.80 (0.71–0.86) 0.73 (0.65–0.80) 0.75 (0.68–0.82) 0.78 (0.70–0.84) 0.83 (0.76–0.89)

DenseNet-121 16 0.72 (0.64–0.80) 0.78 (0.70–0.85) 0.79 (0.72–0.85) 0.82 (0.76–0.88) 0.80 (0.72–0.86)

DenseNet-161 16 0.65 (0.56–0.74) 0.79 (0.72–0.86) 0.81 (0.74–0.87) 0.79 (0.72–0.85) 0.74 (0.66–0.81)

DenseNet-169 16 0.69 (0.60–0.76) 0.58 (0.49–0.66) 0.79 (0.73–0.85) 0.85 (0.79–0.90) 0.64 (0.56–0.72)

DenseNet-201 16 0.79 (0.71–0.85) 0.74 (0.66–0.81) 0.81 (0.74–0.87) 0.84 (0.78–0.90) 0.89 (0.83–0.94)

Inception v4 16 0.79 (0.71–0.85) 0.74 (0.66–0.81) 0.81 (0.74–0.87) 0.84 (0.78–0.9) 0.89 (0.83–0.94)

ResNet-101 16 0.77 (0.69–0.84) 0.81 (0.73–0.87) 0.83 (0.76–0.88) 0.82 (0.75–0.88) 0.78 (0.70–0.84)

ResNet-152 16 0.75 (0.66–0.82) 0.73 (0.65–0.80) 0.81 (0.74–0.87) 0.84 (0.77–0.89) 0.70 (0.62–0.78)

ResNet-18 16 0.79 (0.71–0.85) 0.51 (0.42–0.59) 0.84 (0.78–0.89) 0.81 (0.74–0.87) 0.94 (0.89–0.97)

ResNet-34 16 0.75 (0.66–0.82) 0.71 (0.63–0.79) 0.81 (0.74–0.86) 0.81 (0.74–0.87) 0.65 (0.57–0.73)

ResNet-50 16 0.69 (0.60–0.77) 0.73 (0.65–0.80) 0.77 (0.70–0.83) 0.81 (0.74–0.87) 0.93 (0.87–0.96)

SqueezeNet-1.0 16 0.72 (0.64–0.80) 0.79 (0.71–0.85) 0.77 (0.70–0.83) 0.84 (0.78–0.90) 0.69 (0.60–0.76)

SqueezeNet-1.1 16 0.72 (0.63–0.79) 0.70 (0.61–0.77) 0.75 (0.68–0.82) 0.92 (0.87–0.96) 0.65 (0.57–0.73)

VGG-13 16 0.65 (0.56–0.73) 0.60 (0.51–0.68) 0.71 (0.64–0.78) 0.81 (0.74–0.86) 0.73 (0.65–0.80)

VGG-16 16 0.78 (0.70–0.85) 0.70 (0.61–0.77) 0.78 (0.71–0.84) 0.81 (0.74–0.86) 0.93 (0.87–0.96)

VGG-19 16 0.69 (0.60–0.76) 0.76 (0.68–0.83) 0.76 (0.69–0.82) 0.86 (0.80–0.91) 0.75 (0.67–0.82)

AlexNet 32 0.68 (0.59–0.76) 0.71 (0.62–0.78) 0.72 (0.64–0.78) 0.82 (0.76–0.88) 0.81 (0.74–0.87)

DenseNet-121 32 0.76 (0.67–0.83) 0.85 (0.78–0.91) 0.79 (0.72–0.85) 0.83 (0.76–0.89) 0.78 (0.70–0.84)

DenseNet-161 32 0.65 (0.56–0.74) 0.81 (0.73–0.87) 0.83 (0.76–0.88) 0.78 (0.71–0.84) 0.91 (0.85–0.95)

DenseNet-169 32 0.72 (0.64–0.80) 0.76 (0.68–0.83) 0.82 (0.75–0.87) 0.84 (0.78–0.90) 0.72 (0.63–0.79)

DenseNet-201 32 0.61 (0.52–0.70) 0.77 (0.69–0.84) 0.76 (0.69–0.83) 0.86 (0.79–0.91) 0.77 (0.69–0.84)

Inception v4 32 0.76 (0.68–0.83) 0.64 (0.55–0.72) 0.76 (0.69–0.82) 0.85 (0.79–0.9) 0.83 (0.75–0.89)

ResNet-101 32 0.72 (0.63–0.79) 0.71 (0.63–0.79) 0.88 (0.82–0.92) 0.88 (0.81–0.92) 0.92 (0.86–0.96)

ResNet-152 32 0.80 (0.72–0.87) 0.78 (0.70–0.85) 0.75 (0.68–0.82) 0.81 (0.74–0.87) 0.83 (0.76–0.89)

ResNet-18 32 0.75 (0.66–0.82) 0.74 (0.65–0.81) 0.82 (0.76–0.88) 0.89 (0.83–0.93) 0.73 (0.65–0.80)

ResNet-34 32 0.72 (0.63–0.79) 0.65 (0.56–0.73) 0.82 (0.76–0.88) 0.84 (0.77–0.89) 0.74 (0.66–0.81)

ResNet-50 32 0.67 (0.58–0.75) 0.75 (0.67–0.82) 0.85 (0.78–0.90) 0.86 (0.80–0.91) 0.83 (0.75–0.89)

SqueezeNet-1.0 32 0.83 (0.75–0.89) 0.58 (0.49–0.66) 0.78 (0.71–0.84) 0.79 (0.72–0.85) 0.90 (0.84–0.94)

SqueezeNet-1.1 32 0.70 (0.61–0.78) 0.71 (0.62–0.78) 0.76 (0.69–0.83) 0.89 (0.83–0.93) 0.69 (0.60–0.76)

VGG-13 32 0.79 (0.71–0.85) 0.67 (0.58–0.75) 0.76 (0.69–0.82) 0.84 (0.78–0.9) 0.92 (0.86–0.96)

VGG-16 32 0.65 (0.56–0.74) 0.80 (0.72–0.86) 0.81 (0.74–0.87) 0.93 (0.88–0.97) 0.75 (0.67–0.82)

VGG-19 32 0.74 (0.65–0.81) 0.80 (0.72–0.86) 0.78 (0.71–0.84) 0.83 (0.76–0.89) 0.75 (0.67–0.82)
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Figure 4.   Illustration of the precision recall curves for AlexNet, DenseNet and Inception v4 models. The 
colored lines represent a single training, black lines represent the pooled performance over five trainings. The 
figure was generated in R20.
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Figure 5.   Illustration of the precision recall curves for models with ResNet architectures. The colored lines 
represent a single training, black lines represent the pooled performance over five trainings. The figure was 
generated in R20.
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Figure 6.   Illustration of the precision recall curves for models with Squeezenet and VGG architectures. The 
colored lines represent a single training, black lines represent the pooled performance over five trainings. The 
figure was generated in R20.
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The original COVID-Net achieved a sensitivity of 91% for the detection of COVID-19, which was surpassed by 
all models in our analysis24. Yet, the dataset was substantially smaller at the time of training the COVID-Net, 
which could have had an effect on the accuracy.

A limitation of the present work is, that only two openly available datasets were used. As a consequence, an 
overfitting with a lower generalizability of the results cannot be excluded and should be considered when inter-
preting our results. However, this is a common problem in deep learning research25.

Conclusion
In the present work, we could show that increasing complexity and depth of artificial neural networks for the 
classification of chest radiographs is not always necessary to achieve state of the art results. In contrast to many 
previous studies, which mostly used a 121-layer DenseNet, we achieved comparable results with networks con-
sisting of fewer layers (e.g. eight layers for AlexNet). Especially with limited hardware, using those networks 
could be advantageous because they can be trained faster and more efficiently.

Table 5.   Sensitivity and specificity for the detection of COVID-19 or non-COVID-19 pneumonia. This table 
gives Sensitivity and specificity, as well as the corresponding confidence intervals for the COVID-19 Image 
Data Collection. BS Batchsize.

Network BS

COVID-19 pneumonia Non-COVID-19 pneumonia No pneumonia

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

AlexNet 16 0.93 (0.68–1.00) 0.91 (0.90–0.92) 0.94 (0.93–0.95) 0.91 (0.89–0.93) 0.90 (0.88–0.92) 0.95 (0.94–0.96)

DenseNet-121 16 0.93 (0.68–1.00) 1.00 (1.00–1.00) 0.97 (0.96–0.98) 0.97 (0.96–0.98) 0.97 (0.96–0.98) 0.97 (0.96–0.97)

DenseNet-161 16 0.93 (0.68–1.00) 1.00 (1.00–1.00) 0.98 (0.98–0.99) 0.96 (0.95–0.97) 0.96 (0.95–0.97) 0.98 (0.98–0.99)

DenseNet-169 16 0.93 (0.68–1.00) 1.00 (1.00–1.00) 0.98 (0.97–0.98) 0.96 (0.95–0.97) 0.96 (0.94–0.97) 0.98 (0.97–0.98)

DenseNet-201 16 0.93 (0.68–1.00) 1.00 (1.00–1.00) 0.98 (0.97–0.98) 0.97 (0.95–0.98) 0.96 (0.95–0.97) 0.98 (0.97–0.98)

Inception v4 16 0.93 (0.68–1.00) 0.95 (0.94–0.95) 0.93 (0.92–0.94) 0.95 (0.94–0.96) 0.95 (0.93–0.96) 0.93 (0.92–0.94)

ResNet-18 16 0.93 (0.68–1.00) 0.99 (0.99–1.00) 0.97 (0.96–0.98) 0.95 (0.93–0.96) 0.95 (0.93–0.96) 0.97 (0.96–0.98)

ResNet-34 16 0.93 (0.68–1.00) 1.00 (1.00–1.00) 0.97 (0.96–0.98) 0.96 (0.95–0.97) 0.96 (0.94–0.97) 0.97 (0.96–0.98)

ResNet-50 16 0.93 (0.68–1.00) 1.00 (1.00–1.00) 0.98 (0.97–0.98) 0.96 (0.94–0.97) 0.96 (0.94–0.97) 0.98 (0.97–0.98)

ResNet-101 16 0.90 (0.55–1.00) 1.00 (1.00–1.00) 0.98 (0.97–0.98) 0.95 (0.94–0.96) 0.95 (0.94–0.96) 0.98 (0.97–0.98)

ResNet-152 16 0.93 (0.68–1.00) 1.00 (1.00–1.00) 0.97 (0.97–0.98) 0.96 (0.95–0.97) 0.97 (0.96–0.98) 0.97 (0.96–0.98)

SqueezeNet-1.0 16 0.93 (0.68–1.00) 0.97 (0.97–0.98) 0.94 (0.93–0.95) 0.92 (0.9–0.94) 0.90 (0.88–0.92) 0.96 (0.95–0.97)

SqueezeNet-1.1 16 0.93 (0.68–1.00) 0.95 (0.94–0.96) 0.92 (0.90–0.93) 0.94 (0.93–0.96) 0.94 (0.92–0.95) 0.92 (0.91–0.94)

VGG-13 16 0.93 (0.68–1.00) 0.98 (0.97–0.98) 0.97 (0.96–0.97) 0.94 (0.92–0.95) 0.94 (0.92–0.95) 0.97 (0.96–0.97)

VGG-16 16 0.93 (0.68–1.00) 1.00 (0.99–1.00) 0.97 (0.96–0.98) 0.95 (0.93–0.96) 0.95 (0.93–0.96) 0.97 (0.96–0.98)

VGG-19 16 0.93 (0.68–1.00) 0.99 (0.99–0.99) 0.97 (0.96–0.98) 0.95 (0.94–0.97) 0.95 (0.94–0.97) 0.97 (0.96–0.98)

AlexNet 32 0.93 (0.68–1.00) 0.95 (0.94–0.96) 0.94 (0.93–0.95) 0.92 (0.90–0.94) 0.92 (0.91–0.94) 0.94 (0.93–0.95)

DenseNet-121 32 0.93 (0.68–1.00) 1.00 (1.00–1.00) 0.98 (0.97–0.98) 0.97 (0.96–0.98) 0.97 (0.96–0.98) 0.98 (0.97–0.98)

DenseNet-161 32 0.93 (0.68–1.00) 1.00 (1.00–1.00) 0.98 (0.98–0.99) 0.98 (0.97–0.99) 0.98 (0.97–0.98) 0.98 (0.98–0.99)

DenseNet-169 32 0.93 (0.68–1.00) 1.00 (1.00–1.00) 0.99 (0.98–0.99) 0.97 (0.96–0.98) 0.97 (0.96–0.98) 0.99 (0.98–0.99)

DenseNet-201 32 0.93 (0.68–1.00) 1.00 (1.00–1.00) 0.99 (0.98–0.99) 0.98 (0.97–0.99) 0.98 (0.97–0.99) 0.99 (0.98–0.99)

Inception v4 32 0.93 (0.68–1.00) 0.94 (0.93–0.94) 0.94 (0.93–0.95) 0.95 (0.93–0.96) 0.95 (0.93–0.96) 0.94 (0.93–0.95)

ResNet-18 32 0.93 (0.68–1.00) 1.00 (1.00–1.00) 0.97 (0.96–0.97) 0.96 (0.94–0.97) 0.96 (0.94–0.97) 0.97 (0.96–0.97)

ResNet-34 32 0.93 (0.68–1.00) 1.00 (1.00–1.00) 0.99 (0.98–0.99) 0.95 (0.94–0.96) 0.95 (0.93–0.96) 0.99 (0.98–0.99)

ResNet-50 32 0.93 (0.68–1.00) 1.00 (1.00–1.00) 0.98 (0.97–0.98) 0.96 (0.95–0.97) 0.96 (0.94–0.97) 0.98 (0.97–0.99)

ResNet-101 32 0.93 (0.68–1.00) 1.00 (1.00–1.00) 0.99 (0.98–0.99) 0.96 (0.94–0.97) 0.96 (0.94–0.97) 0.99 (0.98–0.99)

ResNet-152 32 0.93 (0.68–1.00) 1.00 (1.00–1.00) 0.98 (0.97–0.98) 0.96 (0.94–0.97) 0.96 (0.94–0.97) 0.98 (0.97–0.99)

SqueezeNet-1.0 32 0.93 (0.68–1.00) 0.96 (0.95–0.96) 0.96 (0.95–0.97) 0.91 (0.89–0.93) 0.93 (0.92–0.95) 0.93 (0.92–0.95)

SqueezeNet-1.1 32 0.93 (0.68–1.00) 0.99 (0.98–0.99) 0.95 (0.94–0.96) 0.92 (0.90–0.93) 0.92 (0.91–0.94) 0.95 (0.94–0.96)

VGG-13 32 0.93 (0.68–1.00) 1.00 (0.99–1.00) 0.95 (0.94–0.96) 0.97 (0.96–0.98) 0.95 (0.94–0.97) 0.96 (0.95–0.97)

VGG-16 32 0.93 (0.68–1.00) 1.00 (1.00–1.00) 0.98 (0.97–0.98) 0.95 (0.94–0.97) 0.95 (0.94–0.96) 0.98 (0.97–0.98)

VGG-19 32 0.93 (0.68–1.00) 1.00 (1.00–1.00) 0.96 (0.95–0.97) 0.98 (0.97–0.98) 0.98 (0.96–0.98) 0.96 (0.95–0.97)
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