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"There are reasons to believe, behavioural shifts have been involved in most evolutionary innovations,

hence the saying that behaviour is the pacemaker of evolution."

Ernst Mayr (What Evolution is. 2001)
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SUMMARY

SUMMARY

All ecosystems on Earth are undergoing rapid human-induced changes. One important component of these

changes is the transport of species to new ecosystems, where they often establish and spread, and cause

ecological disruption as invasive species. Behaviour plays a major role in this process, not only by enabling

species to spread or establish, but also in the native species’ response to invasion. These behavioural changes

drive population dynamics, and the speed at which they happen are crucial. The shared evolutionary history

between two species influences how fast  or  effective these changes happen. To study these complicated

interactions, this thesis combines a comparative study of the existing literature with novel concepts and

metadata, as well as analyses of laboratory experiments and field data.

For Chapter 1,  a large cross-taxonomical  dataset  on behavioural  changes in biological  invasions was

gathered and analysed. It is the first to include native and non-native species, to identify types of behaviour

and mechanisms of change and to quantify the speed of the behavioural change. This gave us the opportunity

to  test  hypotheses  in  invasion  ecology,  but  also  to  explore  the  distribution  of  learning  across  types  of

behaviour and its implications for the speed of behavioural change. All analyses were conducted considering

the biases in the data and differences in the ecology of native and invasive species.

In Chapter 2, the behavioural differences between an established non-native crayfish species, the spiny-

cheek crayfish Faxonius limosus, and the novel non-native marbled crayfish (Procambarus virginalis) were

experimentally  quantified,  and  findings  were  used  to  predict  the  invasion  success  of  the  latter  species.

Experiments  were  designed  to  show  the  outcome  of  inter-specific  agonistic  interactions,  activity  and

exploration. Finally, not only inter-specific differences were tested but also between both sexes of the spiny-

cheek crayfish,  and between lab-reared and wild-caught individuals of  the marbled crayfish.  Apart from

predicting invasion success, these analyses help to better understand behavioural plasticity in this special

clonal species.

Chapter  3  contains  the  application  of  two  classification  schemes  -  of  animal  innovation  and  eco-

evolutionary experience - to the dataset of  Chapter 1. I  encourage the use of this  general quantification

scheme of animal innovation to mine a broader range of behavioural changes. The scheme was applied in

this study to specifically investigate if big changes in behaviour help native species to cope with invasion. It

was  also  tested  if  high  eco-evolutionary  experience  with  that  species  buffers  negative  population

consequences for native species. We reject the first  hypothesis and accept the latter and found as well a

negative relationship between both parameters, as lower experience necessitates bigger change. Therefore,

these classifications can help a priori predictions of invasion impact on specific native species.

In  Chapter  4,  the  population  dynamics  and  nesting  behaviour  of  the  common  eider  (Somateria

mollissima) in West Iceland was analysed from field data. The dataset encompasses yearly nest count data on
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134 islands over up to 123 years. Therefore, we were able to investigate how long-term climate dynamics

affect the eider colonies and how that changed with the invasion of the American mink (Neovison vison) into

the region in 1948. Similarly, the arctic fox (Vulpes lagopus), the only native terrestrial nest predator, was

absent from the study area for decades and we compared the behavioural response to both predators. The

differences between the effects of specific predators help to direct targeted conservation efforts to protect the

common eider.

Finally, Chapter 5 presents population dynamics of the American mink in Iceland, Denmark, Germany

and  its  native  range  in  the  USA estimated  from  hunting  bag  data  using  a  novel  method.  Effects  of

anthropogenic factors on the hunting bag were quantified, namely the global price of American mink fur, the

production of fur in the respective country, and hunting effort and legislation connected to hunting and fur

production. While we were able to test several hypotheses on American mink population dynamics in Europe

- for example, if it follows a boom-bust dynamic - the utility of this method stretches beyond this system and

can be applied whenever population numbers are estimated from hunting bag data.

My thesis explores a novel dataset on behavioural changes in biological invasions (Chapter 1). It includes

experimental results on the role of behaviour in an over-invasion scenario of crayfish in Europe (Chapter 2)

and expands the horizon of behavioural studies in invasions by introducing classification schemes for eco-

evolutionary experience and animal innovation (Chapter 3). Finally, the introduction of the American mink in

Europe is  studied,  by its  consequences  for  the  Icelandic  avifauna (Chapter  4)  and the estimation of  its

population dynamics through hunting bag data in several countries (Chapter 5).

Keywords: Behaviour, biological invasions, eco-evolutionary experience, innovation, naïveté, population

dynamics

VII



ZUSAMMENFASSUNG

ZUSAMMENFASSUNG

Sämtliche Ökosysteme der Erde sind rapidem menschengemachten Wandel unterworfen, unter anderem

durch Arten, die in neue Ökosysteme transportiert wurden, sich dort ansiedeln und dann verbreiten, um dabei

oft erheblichen ökologischen Schaden anzurichten: invasive Arten. In diesen biologischen Invasionen spielt

Verhalten eine wichtige Rolle: Verhaltensänderungen können Invasionen ermöglichen, können es heimischen

Arten aber  umgekehrt  auch erlauben,  adäquat  auf  invasive Arten zu reagieren.  Verhaltensveränderungen

können Populationsdynamiken beeinflussen; dabei ist die Geschwindigkeit, in der sie passieren, von großer

Bedeutung.  Diese ist  wiederum davon abhängig,  ob die Arten an ökologisch ählniche Arten evolutionär

angepasst  sind.  Um  diese  Zusammenhänge  zu  erforschen,  wurden  in  vorliegender  Dissertation  eine

Literaturstudie  mit  einer  konzeptionellen  Studie  und  Analysen  von  Experimenten  und  Freilanddaten

kombiniert.

Für die Analysen im ersten Kapitel wurde eine neue Datenbank zu Verhaltensänderungen in heimischen

und  nicht  heimischen  Arten  angelegt.  Diese  vereinigt  zum  ersten  Mal  Daten  zu  verschiedenen

Verhaltensänderungen sowie  den  zugrunde  liegenden  Mechanismen,  wie  z.B.  genetische  Selektion  oder

Lernen, und erfasst zudem die jeweilige Geschwindigkeit, mit der Verhaltensänderungen passieren. Dadurch

konnte die Häufigkeit von Lernverhalten über verschiedene Verhaltenskategorien verglichen werden, immer

mit den Unterschieden zwischen heimischen und invasiven Arten im Fokus. Es wurde diskutiert, welche

Bedeutung diese Unterschiede für die Auswirkungen von Invasionen haben.

In  Kapitel  2  wurden  Verhaltensunterschiede  zwischen  einer  etablierten  nicht  heimischen  Art,  dem

Kamberkrebs  (Faxonius  limosus),  und  einer  neu  eingewanderten  Art,  dem Marmorkrebs  (Procambarus

virginalis), experimentell untersucht, mit Blick auf den potentiellen Invasionserfolg des Marmorkrebses. Die

Experimente sollten den Ausgang zwischenartlicher feindlicher Interaktionen quantifizieren. Schlussendlich

wurde  nicht  nur  auf  Unterschiede  zwischen  den  Arten,  sondern  auch  zwischen  den  Geschlechtern  des

Kamberkrebses  und  zwischen  den  Marmorkrebsen  aus  dem Labor  gegen  die  aus  der  Wildnis  getestet.

Abgesehen von der Vorhersage des Invasionserfolgs hilft  diese Studie, die beeindruckende Plastizität im

Verhalten des klonalen Marmorkrebses besser zu verstehen.

Das  dritte  Kapitel  enthält  die  Anwendung zweier  neuer  Klassifikationsschemata  -  von Innovation  in

einzelnem Tierverhalten und öko-evolutionärer Erfahrung einer Art mit einer anderen - auf einen Teil des

Datensatzes von Kapitel 1. Während das Innovationsschema auch erstellt wurde, um eine größere Vielfalt an

Verhaltensweisen  quantitativ  untersuchen  zu  können  als  bisherige  Schemata,  wurde  es  hier  zusätzlich

verwendet um zu testen, ob innovative Verhaltensänderungen negative Folgen für heimische Arten abwenden

können. Weiterhin wurde analysiert, ob eine hohe öko-evolutionäre Erfahrung Populationsdynamiken positiv

beeinflusst.  Ersteres  konnte  nicht  bestätigt  werden,  zweiteres  schon,  zusätzlich  wurde  ein  negativer

Zusammenhang zwischen Innovation und öko-evolutionärer Erfahrung herausgefunden. Wir konnten zeigen,
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ZUSAMMENFASSUNG

dass diese  Klassifikationen für Vorhersagen der  Auswirkungen von Invasionen auf  bestimmte heimische

Arten benutzt werden können.

Im vierten  Kapitel  wurden  Felddaten  zur  Analyse  von  Populationsdynamiken  und  Nistverhalten  der

Eiderente (Somateria mollissima) in Westisland analysiert.  Die Daten sind jährliche Nestzahlen von 134

Inseln, über einen Zeitraum von bis zu 123 Jahren. Daher konnten wir nicht nur die Effekte von langfristiger

Klimaveränderungen  auf  die  Entenkolonien  untersuchen,  sondern  auch  Veränderungen  durch  mit  der

Invasion des Amerikanischen Nerzes (Neovison vison) im Jahr 1948. In ähnlicher Weise ist der über mehrere

Jahrzehnte abwesende heimische Nesträuber, der Polarfuchs (Vulpes lagopus), 1998 zurückgekehrt, und wir

haben  die  Verhaltensanpassungen  an  beide  Räuber  verglichen.  Diese  Unterschiede  sind  bedeutsam  für

präzise Schutzmaßnahmen für die bedrohte Eiderente in der Region.

Das  fünfte  und  letzte  Kapitel  der  Doktorarbeit  zeigt  die  Populationsdynamiken  des  Amerikanischen

Nerzes in Island, Dänemark, Deutschland und in einem seiner Ursprungsländer, den USA, abgeschätzt aus

den  jährlichen  Abschussraten.  Die  Effekte  anthropogener  Faktoren  -  globaler  Nerzfellpreis,  die

Produktionszahlen des jeweiligen Landes, Jagdaufwand und Gesetze in Bezug auf Jagd und Haltung - auf die

Abschusszahlen wurden quantifiziert. Mit den so korrigierten Daten konnten wir testen, ob die Nerzzahlen in

Europa  dem  Boom-Bust  Schema  folgen.  Die  Anwendbarkeit  der  hier  entwickelten  Korrekturmethode

erstreckt sich aber über dieses System hinaus und kann immer benutzt werden, wenn Populationszahlen aus

Jagddaten approximiert werden.

Meine Doktorarbeit erforscht einen neuen Datensatz zu Verhaltensänderungen in biologischen Invasionen

(Kapitel  1).  Sie  enthält  eine  experimentelle  Studie  zur  Rolle  des  Verhaltens  in  einer  Überinvasion  von

Flusskrebsen  in  Europa  (Kapitel  2)  und  erweitert  den  Horizont  von  Verhaltensstudien  in  der

Invasionsökologie durch Klassifikationsschemata von Innovation und öko-evolutionärer Erfahrung (Kapitel

3). Abschließend wurde die Invasion des Amerikanischen Nerzes in Europa untersucht, einmal in Bezug auf

die Konsequenzen für Vogelarten in Island (Kapitel  4)  und durch die Analyse der Populationsdaten des

Nerzes aus Jagddaten in mehreren Ländern (Kapitel 5).

Schlagwörter:  Biologische  Invasionen,  Innovation,  öko-  evolutionäre  Erfahrung,  Naivität,  Verhalten,

Populationsdynamiken
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THESIS OUTLINE

THESIS OUTLINE

The dissertation consists of a General Introduction, five separate chapters and a General Discussion. The

General  Introduction  describes  the  background  and  purpose  of  the  studies,  and  defines  the  research

objectives.  Each  of  the  following  chapters  represents  an  independent  manuscript  and  follows  the

conventional  structure  of  research papers,  with subsections  for  the  Introduction,  Material  and  Methods,

Results and Discussion. All manuscripts have either been published (Chapter 2) or submitted (Chapters 1, 3

and 4) to a peer-reviewed journal or are in preparation for submission (Chapter 5). In the last section, the

thesis' findings are synthesised, evaluated and discussed with respect to other research in the field, and an

outlook to possible future research is provided as well.
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GENERAL INTRODUCTION

General Introduction
Life on Earth has undergone several massive phases of reorganization (Jablonski and Chaloner 1994).

The origins lie in microbial mats in anoxic ecosystems (Nisbet and Fowler 1999), while the oxygenation of

the atmosphere led to the Cambrian explosion of biodiversity (Chen et al. 2015). It can be argued that these

transitions happened through organisms finding ways to exploit novel energy sources, from geochemical

energy over sunlight and oxygen to flesh; the spread of new life forms was accompanied with the mass

extinction of others (Judson 2017). A lot more recently, modern humans started to use fire (Gowlett and

Wrangham 2013) for cooking, heating, tool building or locomotion and were subsequently able to colonize

the entire planet.  Many more inventions followed like the Haber-Bosch cycle for fixing nitrogen or the

internal combustion engine and facilitated further accelerating population growth and productivity (Lenton et

al. 2016). Humans are now in the exceptional position of simultaneously being observers and drivers of the

reorganization of life on Earth.

And drivers they are: humans change the composition of soils  (Tilman and Lehman 2001),  the flow

dynamics of rivers (Zarfl et al. 2014), increase the atmospheric temperature due to emitting greenhouse gases

(Cook et  al.  2016)  etc.  In  concert,  these  processes  cause catastrophic  population declines  in  most  wild

species (Ceballos et al. 2017), and there is evidence, that we are witnessing the sixth mass extinction event

on Earth (Wake and Vredenburg 2008). With only an estimated 25-39% of the global landmass considered

"wild" (Perring and Ellis 2013), the field of ecology shifted its attention from natural ecosystems to habitats

with differing degrees of disturbance, called Anthromes (Ellis et al. 2010). The study of novel ecosystems

(Morse et al. 2014) - within the general framework of ecological novelty (Jeschke et al. 2013, Heger et al.

2019) - brought about new challenges and the fields of urban ecology and invasion ecology. They can be

seen as modern ecology under human disturbance. While urban ecology has the habitat in focus, exploring

how species adapt to human settlement, the altered nutrient and light availability, noise levels, pollution and

dangers like traffic (Dowding et al. 2010; Slabbekoorn 2013; Potvin 2017; Proppe et al. 2017; Fleming and

Bateman 2018). Invasion ecology has a focus on the species interactions, how species arrived at the new

habitat and what impacts they have on the native species community (Lockwood et al. 2013).

Invasion Ecology
While colonizing the entire planet, humans brought with them a host of other species - some unintentional

parasites or crop pests, others crop or ornamental plants and domesticated farm animals (Zeder 2015). Many

of them are now considered invasive species in various locations around the globe. An invasive species is in

this thesis considered a species that i) was - intentionally or unintentionally - introduced into a new habitat

by humans, ii) escaped from confinement or was released into the wild, iii)  established a self-sustaining

population there and iv) spread beyond the area it was introduced; these are the four stages of the invasion
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process (Blackburn et al. 2011). Invasive species can drastically change the recipient ecosystems and have

received considerable attention over the last decades, evident in the exponential increase of literature in the

field of Invasion Ecology (Richardson and Pyšek 2008, Enders et al. 2019). There has been much discussion

about the definition of “invasive species” (see e.g. Heger et al. 2013), and many synonyms exist for “non-

native” species,  i.e.  those species  that  have reached stage ii  of  the  above-mentioned four  stages  of  the

invasion process: “alien”, “exotic” or “introduced” are common alternative terms. In this thesis, I use the

probably most neutral term “non-native” species.

This field of research is called invasion ecology and aims at answering questions like: Are there general

features, i.e. life-history traits, taxonomy or physiological features making a successful invasive species? The

evidence  is  mixed,  despite  some  strong  results  for  specific  taxonomic  groups.  Ornamental  plants  are

common invaders (Dehnen-Schmutz et al.  2007), fast life-history traits are beneficial for amphibian and

reptile invaders (Allen et al. 2017) and clever birds more commonly become invasive than other bird species

(Sol and Lefebvre 2000). This is explained by the challenges a species is facing in the new ecosystem:

abiotic changes in for example salinity,  temperature  or  humidity;  but  also biotic  changes,  which means

finding new food, evading new predators or coping with new competitors. More generally, biotic changes are

changes in biotic interaction partners. This can be for example a new interaction partner (a new species in the

system) or changes in abundance of local species; something that can be difficult for specialists that are
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dependent  on one  or  few interaction partners  or  specific  food to complete  their  life  cycle.  Generalists,

however, are equipped to feed on a wider range of prey phenotypes and therefore can more easily shift to

other species when their  preferred prey species is  not  present  in the invaded range.  Empirical  evidence

suggests  that  indeed  generalists  are  better  invaders  (Sol  et  al.  2012),  most  importantly  due  to  dietary

flexibility (Harms and Turingan 2012). Higher aggression to the new potential competitors in the invaded

range can further facilitate invasion (Hudina et al. 2014).

Another central aim of invasion ecology is to predict the impact of the non-native species on the native

species  community (Severns  2008;  Moroń et  al.  2009;  Eisenhauer  2010).  As the prediction of  invasion

success,  the  impact  of  a  non-native  species  on  native  species  is  dependent  on  the  dynamics  of  their

interaction.  The non-native species may have escaped predation or parasitism by settling in the invaded

range (as the enemy-release hypothesis predicts; Keane and Crawley 2002) and can, therefore, invest more

energy in reproduction. In the opposite case, the non-native species may be readily exploited as a food source

by a native predator (Pintor and Byers 2015). More generally, the evolutionary adaptation to similar past

biotic interactions - or the eco-evolutionary experience one species has with the other - is predicted to shape

the outcome of the interaction (Saul  and Jeschke 2015). A way to cope with the challenges in the new

interactions  is  shifted  in  behaviour  (Sih  et  al.  2016).  Before  we  will  look  more  closely  at  the  role  of

behaviour in species invasions (and its rising significance since the early key paper by Holway and Suarez

1999), it is worth looking at different concepts in behavioural ecology.

Behavioural Ecology
The behaviour of an animal is part of its observable phenotype, but there are several problems with the

subjectivity in this observation. First, there are problematic interpretations made in terms of the meaning of a

behaviour, especially in animal communication (Scott-Phillips 2015). While the mechanistic definition of a

communication signal, or "information", does not have to contain "meaning" (Shannon & Weaver 1949),

“information” and “meaning” are still often conflated conceptually (Owren et al. 2010). There are a plethora

of concepts about information in animal communication and its implications for observational studies which

are  beyond  the  scope  of  this  introduction  (but  see  Stegmann  2013  for  a  comprehensive  and  critical

overview). Secondly, it is hard to define what is special about behaviour in comparison to other aspects of

the phenotype (Duckworth 2009). How is behaviour drastically different from physiological changes in the

animal  that  are  similarly  induced by the environment?  For  clarity,  let  us  look at  several  definitions  of

behaviour  and  specify  which  is  used  for  this  work.  This  is  especially  important  because  of  the

interdisciplinary nature of the field of behaviour (Levitis et al. 2009).

There  are  many different  definitions  of  behaviour  which  significantly changed over  time.  The early

influential ecologist Tinbergen defined behaviour as "The total movements made by the intact animal" (1955,

page 2).  This restriction to movement and to animals as a taxonomic group was later lifted with Davis’
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definition that behaviour is "[w]hat an animal (or plant) does" (1966, pages 4-5). It is sometimes defined as

the response to stimulation (Raven & Johnsson 1989, page 1119), in other cases the mechanisms like genetic

selection or learning are clearly highlighted (Starr & Taggart 1992, Glossary) or responses are including the

lack of a response and all observable physiological changes like blood flow and pigmentation (Grier & Burk

1992 page 4). I used the synthesis of Levitis et al. (2009) where all above definitions were included as well

as the empirical analysis of 174 expert questionnaire responses. The definition of behaviour consistently used

throughout this thesis therefore is:

“behaviour  is  the  internally  coordinated  responses  (actions  or  inactions)  of  whole  living  organisms

(individuals or groups) to internal and/or external stimuli, excluding responses more easily understood as

developmental changes” (Levitis et al. 2009, p. 103).

It is important to note that this explicitly does not exclude plants as subjects of behaviour. There is a

growing body of literature supporting the notion that plants too behave and that the distinction between

animal and bird behaviour is not as strict as historically assumed (Trewavas 2014). The definition used in

this thesis allows for the classification of plant reaction to stimuli as behaviour, as for example shown in

touch sensitivity of Arabidopsis (Braam and Davis 1990). In this thesis, however, I exclusively focused on

animal behaviour, as the taxonomic breadth and the differences contained therein were already challenging

across invertebrates and vertebrates, spanning from sponges to primates.

The notion that behaviour is a reaction to a stimulus makes it intuitively seem a fast, plastic phenotypical

response of an organism. The behaviour evolved in a certain context, however, and can be quite fixed for a

certain individual/species/developmental stage. It is therefore important to know what mechanism is behind

the behaviour: Is it genetically fixed, formed in development or plastically changed by learning at an infant

or  adult  stage?  This  diversity  of  mechanisms  is  reflected  in  the  above  definition  of  behaviour  and  is

important  for  the  purpose  of  the  work  in  this  thesis.  As  to  other  symptoms  of  human-induced  rapid

environmental change (HIREC, Sih 2013), behavioural changes can mitigate the effects of species invasions

(Hoare et al.  2007). These interactions are therefore good model  systems to look for rapid evolutionary

changes (Moran and Alexander 2014), as species introductions happen at in Earth's history unprecedented

short timescales (Carlton 2016).

Native species can face selection pressures through non-native species that vastly differ from their eco-

evolutionary history. They, therefore, lack eco-evolutionary experience; they are naive to a certain degree. In

the framework of Banks and Dickman (2007) investigates naiveté in interactions between native prey and

novel predators. They describe three levels of naiveté: Level I naiveté is the native species not recognizing

the non-native species as a threat  at  all.  Level  II  naiveté is  the native species recognizing a threat,  but

reacting with an inappropriate response. Finally, level III naiveté is the native species recognizing the threat,
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reacting with an appropriate defence mechanism but being "outgunned" by the non-native species due to lack

of specific adaptation.

Level I and II naiveté are mostly caused by differences in signals.  If  the native prey species do not

recognize the cues emitted by the non-native predator, may it be odour (Banks et al. 2003) or kairomones

(Grason and Miner 2012) in the water, colouration (Théry and Casas 2002) or sounds (Moiseff et al. 1978),

there will be a level I naiveté. The native prey species, however, can correctly interpret the signal but block

out the wrong signal towards the non-native predator to effectively hide for example. The cryptic pose taken

by native New Zealandian birds is ineffective, as the introduced predators like cats and dogs hunt by visual

cues and smell (Karl and Best 1982). A level III naiveté is not a problem of communication but of the eco-

evolutionary history that the two species share and who wins the arms race (Saul and Jeschke 2015). This

sets off new evolutionary dynamics which subjects the native species to change (Strayer et al. 2006).

The non-native species can genetically diverge from the source population by two distinct paths: The

dispersal  filter (Myles-Gonzalez et  al.  2015),  where the individuals fitting better  into the invasive range

arrive there in greater numbers or the local adaptation to the new environments through selection on the

whole population in the invasive range (Brown et al. 2014). Behavioural differences between the populations

in the home- and the invasive range do not necesseralily correspond to genetic differences, though. While it

has been demonstrated how innovation aids species to cope with environmental change (Sol et al. 2016), it is

not entirely clear if the ability to cope with diverse environments evolved in these environments (Sayol et al.

2016) or were a precondition for colonization (Lefebvre et al. 2016). Studies to resolve this question are

usually only focusing on one type of behaviour or behavioural challenge in one taxon (see for example

Quinn et al. 2016 who did not find evidence for heritability in problem-solving ability in great tits ( Parus

major)).

A general framework for experimental studies on innovation was proposed (Tebbich et al.  2016), but

animal innovation research still is focused on a narrow range of taxa, mostly primates (Ramsey et al. 2007)

and birds (Overington et al. 2009), and some specific tasks (Griffin and Guez 2014). It is more promising to

search for innovation across a broader range of taxa and contexts, to make more informed statements about,

for  example,  the  relationship  with  group  size.  Despite  some  evidence  for  a  positive  relationship

(Muthukrishna and Henrich 2016) due to dispersal by social learning (Aplin 2016), conformity effects can

hinder behavioural shifts on the population level (Day et al. 2001). Non-random dispersal of information due

to age, sex and status can further slow the dispersal of new behaviour in a population (Itani 1958). In a novel

ecological interaction with high extinction risk, innovations will be more crucial to behaviourally cope with

the selection pressure fast. Without innovation in the threatened population at the necessary pace, human

intervention and protection has to happen.
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Conservation Ecology
As a strategy to help species threatened by non-native predators, researchers train individuals to recognize

and appropriately respond to cues (Moseby et al. 2012; Steindler et al. 2018). The cases where these training

measures are feasible and make sense to protect threatened native species are rare, however, more commonly

non-native species are controlled by direct killing or poisoning. As it is notoriously difficult to remove non-

native species from places where they established or even halt  their  spread,  the most  effective measure

against negative effects of species invasions is to hinder their introduction (Leung et al. 2002). Non-native

species that are of commercial interest are a special case in that context: their trade can be banned which is a

handy tool not available for cryptic invaders, but criminal actions are still commercially incentivised.

Trade bans and other legislation to suppress further spread are used against two species in this thesis: The

first  is  the  marbled  crayfish  (Procambarus  virginalis),  the  only  known parthenogenetically  reproducing

decapod (Scholtz et al. 2003). It appeared in 2003 in a lake near Freiburg, Germany (Marten et al. 2004), and

is  now distributed across  Europe,  Madagascar  and Japan.  Its  reproduction  strategy -  all  individuals  are

genetically identical (Vogt et al. 2015; Gutekunst et al. 2018) - makes it a dangerous invader as one female

can populate any water-body given enough resources and low predation pressure. To prevent further spread,

it has been classified as invasive alien species of European Union concern under the Regulation 1143/2014,

but is likely still released by hobbyists keeping them in aquaria.

The American mink (Neovison vison) was introduced into several European countries for the fur trade in

the first half of the 20th century (MacDonald and Harrington 2003). It is now distributed across at least 16

countries (Bonesi and Palazon 2007) and considered one of the worst invasive species in Europe (Nentwig et

al. 2018), while it is still commercially bred in many countries. As of 2016, Europe held 27% of the global

production of mink fur (14 mio. of 52 mio., Kopenhagen Fur 2016). Mink are shot in most countries where it

is spreading but the fur quality of feral mink is lower than of farmed mink, so while the hunting pressure on

mink is not high enough for its eradication, it is meanwhile behaviourally adapting to the human control

measures (Bodey et al. 2010).

The mink's spread and current behaviour are particularly well studied in Iceland (Stefansson et al. 2016),

where bounties for shot mink are paid. Iceland with its fish-rich waters is an important breeding spot for

many seabird species, which were breeding safely from arctic fox (Vulpes lagopus) nest predation on islands

along the shore. But as the American mink is a good swimmer, these bird species suffer massive declines

from the mink invasion (Magnusdottir et al. 2014). The commercially important common eider (Somateria

mollissima),  whose  down are  harvested,  is  declining  despite  protection efforts  (VU,  IUCN Red List  of

Endangered Species of Iceland, Schmalensee 2010). It will be important to know if behavioural shifts - for

example shifts to islands further from the shore - will be sufficient to buffer predation effects or if species

will be lost without further intervention.
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Animal Behaviour in Biological Invasions - Thesis Objectives
Changes in the behaviour of non-native individuals have to happen fast after their arrival in the new

ecosystem in order for them to successfully establish. A high degree of innovation in the early stages of

invasion is predicted, followed by social learning by which the new behavioural traits disperse in the founder

population (Wright  et  al.  2010).  Vice versa,  an asymmetrical  ecological  mismatch of  the native species

community not being adapted to the non-native species with a non-native species thriving in the new habitat

causes disruptions in the ecosystem. In fact, we have seen that invasive species are one of the most serious

threats  to  global  biodiversity,  and  animal  behaviour  serves  as  a  double-edged  sword  in  that  context.

Behavioural predispositions enable invasions and correlate with invasion success, while behavioural shifts

help both non-native and native species to strive in the new species communities. It is crucial to know how

fast the behaviours will change in these interactions and how the population dynamics will be after the shift.

Figure 1 is a flow chart illustrating how these questions were tackled in this thesis.

In Chapter 1, a broad number of studies was scanned and searched through for instances of changes in

behaviour during or following an invasion. Changes in both native and non-native species across all animal

taxa were recorded and classified in terms of i) type of behaviour, ii) mechanism underlying the behavioural

change and iii) speed of change. We aimed to get an overview of the field and see what cases of behavioural

change  were  commonly  investigated.  Are  there  biases  in  taxonomy?  How  diverse  are  the  kinds  of

behavioural  interactions? Are the frameworks to understand behavioural  interactions between native and

non-native species sufficient to contain the diversity in the literature?

Chapter 2 investigates behavioural differences between two non-native crayfish species in Europe, the

spiny-cheek  crayfish  (Faxonius  limosus)  that  was  introduced  in  the  1890s  and  the  marbled  crayfish

(Procambarus virginalis) which originated in the aquarium trade and was first  found in European water-

bodies in 2003 (Marten et al. 2004). In this study, we tested for behavioural differences between the old and

the new non-indigenous crayfish species (NICs). We were looking for potential competitive advantages of

one  species  over  the  other  by  aggression  in  direct  competition,  activity  (higher  foraging  potential)  or

response to aggression. The extent of these differences are helpful to inform statements of a potential over-

invasion by the marbled crayfish.

In Chapter 3, we conducted empirical analyses on the outcome of novel species interactions depending on

the  eco-evolutionary  experience  the  native  species  has  with  the  non-native  species  and  the  degree  of

innovation in the new behaviour. The cases of behavioural shifts of native mammals, birds and amphibians

from  Chapter  1  were  classified  along  a  gradient  of  innovation  (innovation  gradient,  IG)  and  the  eco-

evolutionary experience (EEE) the native species had with the non-native species. Population dynamics after

the onset of the interaction is correlated with IG as well as EEE. We argue for searching for innovative

behaviour in the context of these novel species interactions, as well as quantifying the degree of innovation
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in the behaviour. This can not only help studying the evolution of cognition and culture in a broader range of

animals (Arbilly and Laland 2017), but show if drastic behavioural changes can mitigate negative effects of

invasion.

Chapter 4 looks at the specific case of nest-site choice in the native common eider in Iceland (Somateria

mollissima), where we studied if EEE shaped the population dynamics consequences of behavioural shifts

towards the return of the known predator, the arctic fox, and the invasion of the non-native mink. In the bay

of Breiðafjörður in West Iceland, there are islands inaccessible to the fox, while the mink is able to reach all

islands.  We looked at  the  overall  nest  number  dynamics  in  the  Purkey  and the  Brokey archipelago  in

Breiðafjörður to know the overall  population-level impacts before and after  the arrival of  the respective

predator.  Then we investigated the migration patterns between the islands to see if  an effective shift  in

breeding grounds has taken place in either or both of the archipelagos.

In the last chapter, we performed similar analyses of mink numbers in Iceland, Germany and Denmark, in

which countries the mink is invasive, plus in the USA where the mink is native. Control measures differ and

all available data are hunting bag data. We corrected these data for the anthropogenic factors production,

hunting effort and legislation to get a better estimate of population numbers from the hunting bag data.

In the last section of this thesis, I discuss implications of my research on estimating extinction risk for

native species  as well  as invasion potential  of  non-native species.  I  suggest  using the broad innovation

scheme to scan through more broad literature in the search for innovative non-human animal behaviour.

Species invasions can be seen as large-scale natural experiments, and before-after comparisons as well as

temporal dynamics in behaviour and population dynamics can inform us about plasticity, adaptations and

general evolutionary dynamics. The relatively young and trophically simple ecosystem of Iceland constitutes

a special example. I will make a case about what was learned from the dynamics following the mink invasion

and point to future directions and ongoing projects.
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Chapter 1: How Biological Invasions Affect Animal 
Behaviour: A Global, Cross-Taxonomic Analysis

Resubmitted to the Journal of Animal Ecology as:

Ruland F,  Jeschke JM.  How biological  invasions affect  animal behaviour:  A global,  cross-taxonomic

analysis.

Abstract
1. In the Anthropocene, species are faced with drastic challenges due to rapid, human-induced changes,

such as habitat destruction, pollution and biological invasions. In the case of species invasion, native species

potentially  change their  behaviour  to  cope with invaders,  but  invaders  also need to  be flexible  in  their

behaviour to be successful in their new environment.

2. We aimed at giving an overview of which changes in behaviour are studied in invasions, and what is

known about the types of behaviour, mechanisms and speed.

3. Based on a review of the literature, we identified 191 studies and 360 records (some studies reported

multiple records) documenting behavioural change caused by biological invasions in native (236 records

from 148 species) or invasive animals (124 records from 50 species). We investigated both the underlying

mechanisms and the speed of behavioural changes. This global dataset - which we make openly available - is

not restricted to particular taxonomic groups.

4. However, we did find a taxonomic bias in the literature: most records were reported for mammals,

birds and insects. We also found that native species changed their anti-predator behaviour more frequently

than invasive species, which is in line with the enemy release hypothesis. Types of behaviour changed at

different speeds. Mechanisms such as learning and genetic adaptation were surprisingly evenly distributed

across taxa and allowed for faster or slower change, respectively.

5. Our findings may help to better understand the role of behaviour in biological invasions as well as

temporal changes in both population densities and traits of invasive species, and of native species affected by

them.

Keywords: behavioural flexibility, biological invasions, ecological novelty, global change, 
HIREC, invasive alien species, phenotypic plasticity, temporal dynamics
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CHAPTER 1: HOW BIOLOGICAL INVASIONS AFFECT ANIMAL BEHAVIOUR

1 Introduction
Invasive species profoundly affect native species, communities and ecosystems (Bellard, Genovesi, &

Jeschke,  2016;  Vilà  and  Hulme  2017).  They  are  defined  as  species  that  have  been  intentionally  or

unintentionally (i) transported and (ii) introduced to a new habitat by humans, have (iii) established in the

wild and (iv) substantially spread beyond their point(s) of introduction (Blackburn et al.,  2011; Jeschke,

Keesing, & Ostfeld, 2013). Behaviour can affect all of these four steps of the invasion process. For example,

ship rats (Rattus rattus) need to enter a ship and, after it has crossed the sea, leave it at a distant location.

They will have to find food, cope with potential competitors and evade predators and parasites in order to

establish themselves and spread there. At the same time, climatic conditions in the new environment may

differ  from  those  in  the  home  range  or  fluctuate  more  strongly,  necessitating  immediate  behavioural

adjustments.

Studies investigating the role of behaviour in biological invasions either look at the invasive or native

species. On the one hand, some, but not all, found animal personality (Brodin & Drotz, 2014) or behavioural

flexibility (Sol & Lefebvre, 2000; Weis and Sol 2016) to be related to invasion success. On the other hand,

behavioural flexibility is also beneficial for native species interacting with invaders (Berthon, 2015; Sih,

Trimmer, & Ehlman, 2016). It makes sense not to generalize over invasive and native species, as both groups

face a different ecological situation: Invasive species find themselves in a sometimes drastically different

environment with almost all ecological aspects changed at once. Native species, on the contrary, will have to

cope with the arrival of the focal invasive species, but the other characteristics of their environment will

initially be rather unaffected.

This ecological difference should be reflected in how the behaviour of invasive vs native species changes,

yet case studies can only focus on one type of behaviour. For example, the invasive species can be a new

parasite (Dunn et al., 2012) or a predator (Carthey & Banks, 2014), and native species have to cope with this

new stress; or  the focus lies on prey choice of invaders (Chabaane, Laplanche,  Turlings, & Desurmont,

2015), changes in sociality (Fogarty, Cote, & Sih, 2011) or aggression and dispersal (Michelangeli, Smith,

Wong,  & Chapple,  2017).  Case  studies  cannot  offer  comparisons  of,  for  example,  the  speed  by  which

different behavioural changes manifest. At the intersection of conservation ecology and animal behaviour,

there have been efforts for overarching theory (Sih, 2013, Berger-Tal & Saltz 2016) which found biases in

the  studied  types  of  behaviour.  Most  studies  focus  on  foraging  and  dispersal,  fewer  on  mating  and

competition, and fewest on anti-predator behaviour (Berger-Tal et al., 2016).

It is important to know the speed of behavioural change to predict lags in invader impacts (Epanchin-

Niell  &  Liebhold,  2015)  and  potential  boom-and-bust  dynamics  (Strayer  et  al.,  2017;  Strayer,  Eviner,

Jeschke, & Pace, 2006 and references therein). This may be especially important in novel ecological settings
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when species that have not previously interacted come into contact (cf. Saul & Jeschke, 2015) and also differ

between invasive and native species. For example, if a delayed behavioural innovation allows an invasive

species to feed on an abundant prey species in its new environment, this will likely lead to a delayed increase

in  the  population  density  of  the  invasive  species.  Vice  versa,  a  delayed innovation  in  a  native  species

allowing it to effectively reduce predation by an invader may reduce the invader’s population density with a

time delay. Similarly, the recognition of the invader as prey can lead to an increase in native species and

increased predation pressure on the invader. This effect was observed in the Jeziorsko Reservoir in central

Poland,  where  native  mute  swans  (Cygnus  olor)  started  to  feed  on  invasive  zebra  mussels  (Dreissena

polymorpha). Swans began to exploit the zebra mussel as a food source from the winter 1998/1999 on, when

they  became  hugely  abundant  a  few years  after  their  introduction  (Wlodarczyk  & Janiszewski,  2014).

Whether or not the population of a high-impact invader will crash without targeted management action is of

high practical value, but at the moment we cannot predict which native or invasive species will change their

behaviour quickly or with a delay.

There  is  a  mechanism behind each behavioural  change,  specifically  learning or  adaptation,  and it  is

important to have information about this mechanism, for example because it determines the speed of change.

For the invasive species, the new environment poses new challenges that serve as a barrier or select on the

species traits after establishment. When the golden apple snail (Pomacea canaliculata), native to regions

with a tropical climate, arrived in South Korea, it was subjected to selection for increased activity to reduce

thermal stress in its invaded range (Bae, Chon, & Park, 2015). A mechanism that acts within one generation

is learning. For instance, the common planigale, a native predator of Australia, has learned to avoid the cane

toad as toxic prey over a few days of experiments with staged encounters (Llewelyn, Webb, Schwarzkopf,

Alford, & Shine, 2010). In this example, the planigales learned through individually acquired cues, which is

a fast but risky way to interact with the environment. Social learning is using the experience of others which

is safer, especially when ingesting potentially toxic prey, but this may fail if the environment changes too

rapidly (Brown, 2012). Other mechanisms behind behavioural changes that were observed in invasions are

epigenetics (Ardura, Zaiko, Morán, Planes, & Garcia-Vazquez, 2017) and maternal effects (Badyaev, 2005).

There is a difference in the potential for rapid genetic adaptation and the need for learning between native

and invasive species. While the native species has a regular population size at the onset of the interaction

between the native and invasive species, the invader may arrive to the new system in low numbers. Invasive

species are therefore predicted to typically learn at the first step of the invasion process; they innovate more

individually in the early stages of invasion and then disperse the new behavioural traits across the population

via social learning (Wright, Eberhard, Hobson, Avery, & Russello, 2010). Generation time and the number of

reproductive events differ vastly among taxa, as do fecundity and parental care. Investing in learning and the

potential  for  selection  to  act  will  therefore  differ  among  taxa.  Understanding  this  taxonomic  range  of
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behavioural changes and their underlying mechanisms thus requires comparative studies across taxa (Griffin,

2016).

Although  behavioural  changes  in  a  dynamic  environment  are  generally  well  investigated  (Wong  &

Candolin, 2015), and biological invasions have been recognized as drivers of behavioural change (Holway &

Suarez, 1999), a synthesis of the literature that combines all these data is currently lacking. Instead, data and

hypotheses  have  been  linked  to  a  particular  perspective.  For  example,  starting  from  a  conservation

perspective, some studies have explored the evolutionary capacity of native species responding to invasion

(Strauss, Lau, & Carroll, 2006), the naiveté of natives towards invaders (Carthey & Banks, 2014) and - along

similar lines - the danger of ecological traps in interactions with invaders (Robertson, Rehage, & Sih, 2013).

Similarly,  studies  with  a  behavioural  focus  have  proposed  concepts  about  the  specific  mechanisms

underlying behavioural change of native (Berthon, 2015) or invasive species (Wagner, 2017), but not both in

parallel.

We  therefore  aimed  to  combine  and  compare  data  about  behavioural  changes  caused  by  biological

invasions,  bridging  research  in  invasion  biology,  conservation  and  animal  behaviour  across  taxonomic

groups.  While we are aware of a growing literature on plant behaviour, we restrict  our study to animal

behaviour (Trewaras, 2014). We gathered records of behavioural change in native and invasive species across

a wide range of taxa, all types of behaviour, the speed at which the behaviour changed and the mechanism by

which the data changed.

The following research questions were addressed: (1) Do different types of behaviour change in native as

compared to invasive species? According to the enemy release hypothesis, invasive species can be relatively

safe  from (specialist)  predators  in  the  invaded range  and thereby under  less  stress  to  innovate  defence

strategies (Heger & Jeschke, 2014, 2018; Keane & Crawley, 2002). (2) Do some types of behaviour change

faster  than  others?  We expect  behavioural  changes  that  are  either  not  complex  or  linked to  immediate

survival to happen faster than complex or less vital changes. (3) Does learning allow for faster behavioural

changes than other mechanisms in an invasion context, and is it more commonly studied in vertebrates than

invertebrates (Rosenthal, Gertler, Hamilton, Prasad, & Andrade, 2017)? (4) Are specific types of behavioural

change associated with specific underlying mechanisms of behavioural change? In all these comparisons, we

distinguish between invasive and native species, as they are subjected to very different ecological settings,

and also consider biases in published studies, especially towards high-impact invaders.
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2 Material and Methods

2.1 Literature Search
We used  a  general  search  algorithm following  the  PRISMA statement  (Moher,  Liberati,  Tetzlaff,  &

Altman, 2009). Specifically, we searched the Web of Science on 30 June 2015, from the institution Freie

Universität Berlin in Germany. We searched “All databases”, but selected the research areas "Behavioural

Sciences",  "Genetics  Heredity",  "Environmental  Sciences  Ecology",  "Plant  Sciences",  "Biodiversity

Conservation",  "Zoology"  and "Evolutionary  Biology",  using  the  general  search  string:  Behavio*  AND

(shift* OR change* OR transition*) AND (alien OR exotic OR introduc* OR invas* OR naturali?ed OR

nonindigenous OR non-indigenous OR nonnative OR non-native).

This initial search yielded 6463 studies before and 5948 studies after duplicate removal (see Appendix S1

for PRISMA flow chart). In the next step, we scanned the titles and abstracts of these studies to exclude

obvious false hits, for example studies from other research fields. The remaining 524 studies were read to

identify those that fit our criteria of eligibility: (i) One or more specific behaviours were observed to have

changed. The definition of behaviour we use in this study is that “[B]ehaviour is the internally coordinated

responses  (actions  or  inactions)  of  whole  living  organisms  (individuals  or  groups)  to  internal  and/or

external stimuli, excluding responses more easily understood as developmental changes” (Levitis, Lidicker,

& Freund, 2009, p. 103). (ii) The change in behaviour had to be observed either in an invasive species or in a

native species now interacting with an invasive species. We found 191 studies from 1990 to 2015 that were

eligible according to these criteria. It was not uncommon that a study documented more than one record of a

species' behavioural change or different types of behaviour that changed for one species. As a results, our

dataset includes a total number of 360 records.

2.2 Data on individual records of behavioural change

General Data

Each record of behavioural change focused on exactly one native or invasive species that changed its

behaviour. All records were subsequently scanned for information on the respective study system. F irst, we

extracted background information reported in the study, i.e. year of publication, title, journal, the location

where the behavioural observations were made, the type of study (laboratory, field or enclosure), type of

evidence (experimental or observational/correlational),  type of habitat (aquatic,  terrestrial,  marine or any

combination) and the focal species as well as – if any – the species that the focal species interacted with. The

focal species in each record of behavioural change was classified into its respective higher taxonomic group.

We used five vertebrate (mammals, birds, reptiles, amphibians, fish) and four invertebrate groups (insects,

crustaceans, molluscs, other invertebrates).
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Types of Behaviour

While  most  studies  that  compare drivers  and taxonomic  bias  in  behavioural  shifts  focus  on  feeding

innovations,  e.g. a shift  of  prey items or technical innovations (Overington, Morand-Ferron, Boogert,  &

Lefebvre, 2009; Sol, Duncan, Blackburn, Cassey, & Lefebvre, 2005), we aimed to capture the full range of

behaviours that  can change during invasions in native or invasive species.  We noted the observation of

behavioural change in each record, for example gut content analysis showing that a predator species ingested

a new prey species. This can be understood as the means of the animal species to change its ecological

interaction with the environment. As we were more interested in the ecological context of the behaviour and

not the actual motor activity performed, we then classified the ends of the behavioural shift in one of these

six, mutually exclusive categories: (1) "Feeding", i.e. behavioural changes of the focal species to feed on a

new prey  species  and/or  development  of  a  new feeding  technique  by  the  focal  species.  (2)  "Defence"

describes records where the focal species changed its behaviour to defend itself against a new predator or

parasite. (3) Behavioural changes allowing species to better cope with abiotic stress were classified in the

category "climate". (4) Changes that allowed for better dispersal or migration were classified as "dispersal".

(5) "Mating" describes behavioural changes to enable any stages of the reproduction, including courtship.

Finally,  (6)  changes  allowing  to  better  cope  with  a  competitor  in  direct  interaction  were  labelled  as

"competition".

This way we ended up with the exact behaviour that changed in the respective species, but also with its

ecological ends. For example, the change in nest height of native Hawaiian Oahu Elepaio (Chasiempis ibidis)

after the introduction of ship rats (Rattus rattus) fits the "defence" category. Birds are choosing higher trees

to move their nest as a defence against nest predation by rats (Vanderwerf, 2012). From the 360 records of

behavioural  change  we  found  in  total,  only  4  were  impossible  to  classify  in  (only)  one  of  the  above

categories; these were excluded from analyses using the type of behaviour.

Speed of Behavioural Change

Some records in our dataset were reported to be instant, flexible behavioural changes, whereas others

were plastic changes over a certain time span, for example over an individual’s lifetime or adaptations over

generations. We calculated the speed of such plastic behavioural changes by using the estimated time span of

the interaction between the focal species and the new stimulus (either abiotic or interacting species).

This estimated interaction time came from different sources. In some studies, sites with different, known

invasion histories were compared, such as for native fence lizards Sceloporus undulatus in the southern USA

predated by the invasive red imported fire ant  Solenopsis invicta. The antipredator response of the lizards

was compared between uninvaded sites and sites invaded 23, 54 and 68 years prior to the data collection

(Langkilde, 2009). In other cases, species that have never interacted in the wild were experimentally brought

together,  like  the  native  European  mirid  bug  Macrolophus  pygmaeus feeding  on  the  invasive  tomato
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leafminer Tuta absoluta in a laboratory setting (Jaworski, Bompard, Genies, Amiens-Desneux, & Desneux,

2013). As in habituation to anthropogenic stimuli, a behavioural response can only be triggered at a certain

degree of repeated stimulation (Blumstein, 2016). This stimulation by interaction necessitates a substantial

population size or spatial proximity. Thus if available, we also noted the point in time when the species was

spreading in the introduced range when interactions with the native species became far more common. An

example for this scenario is the more frequent egg rejection of native village weavers (Ploceus cucculatus) in

Hispaniola  in  the  West  Indies  with  a  growing  population  of  invasive  shiny  cowbirds  (Molothrus

bonariensis), documented over the course of 16 years (Robert & Sorci, 1999).

In some cases, it was appropriate to use the difference between the time of introduction and the first

documentation of the behavioural change. While this time span can be very long, as for example in case of

the introductions of several mammal species to Australia with the first Europeans, we only used this time

span if the author(s) give evidence for the respective behaviour changing over that time span. Where ongoing

genetic changes are documented, as in the cane toad population in Australia for instance, the time span can

realistically be several decades long.

We performed two types of analysis with these data: First, we used the categorical data of instant (i.e.

flexible)  vs non-instant (i.e.  plastic or adaptive) behavioural changes to compare the relative number of

instant changes between types of behaviour, native and invasive species and among taxa, using Chi-Square

tests with 100'000 simulations. To compare the speed of behavioural change between learning and rapid

genetic adaptation, we used the estimates of interaction time over which the change occurred and compared

them by calculating Hedge's g effect sizes. We only used the time records of behavioural change where there

was evidence of the change happening over a known interaction time as described in the previous two

paragraphs. The time span of the behavioural change was corrected for differences in life history by dividing

by the age at sexual maturity (ASM) of the focal species. We chose ASM as it was more commonly available

than generation time or age at first reproduction. We also performed analyses based on the absolute time span

of behavioural changes, as these can also be relevant, for example for species conservation, and provide the

results in the Supplement S1.

Mechanisms of Behavioural Change

Another major goal  of  this  study was to  document  the  different  mechanisms of  behavioural  change,

compare their  speed of change and look at  their  distribution across taxa.  To categorize the mechanisms

behind behavioural changes in our dataset, we used an explorative approach. We took down each mechanism

of behavioural change proposed by the author(s) and checked if the study provides empirical evidence for

this mechanism. In many cases, more than one mechanism was mentioned in the discussion, but no empirical

evidence was provided.
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Since only few studies reported epigenetic (Liebl & Martin, 2014) and maternal effects (Forister et al.,

2013), we restricted our analyses to two types of mechanisms that were commonly reported: rapid genetic

adaptation and learning. A record of genetic adaptation was noted if it was documented that a behavioural

change during the invasion of a species was based on a genetic change. This happened, for example, in the

Polynesian field crickets Teleogryllus oceanicus, where the flatwing morphology is more common in males

in the invaded range (Oceanian islands like Kauai).  This mutation disables courtship songs,  but  renders

males less susceptible to the acoustically oriented parasitoid fly Ormia ochracea. As males do not perform

courtship songs, females have evolved relaxed mating requirements (Tinghitella & Zuk, 2009). We noted a

behavioural change through learning if the change occurred after (and not before) the interaction with the

stimulus,  either  directly  by  the focal  individual  or  through observation  of  or  communication with  con-

specifics. The soft-shell clam (Mya arenaria), for example, changed its burrowing behaviour in the presence

of the invaded green crab (Carcinus maenas). In this particular case, social cues from attacked con-specifics

were enough to increase burrowing depth (Flynn & Smee, 2010).

Additionally to the mechanisms, we noted if there is evidence for a pre-disposition of the focal species to

shift to the new behaviour. The native Australian whelk Haustrum vinosum, for example, recognizes predator

cues from the invasive Carcinus maenas independently if the crab was present 0, 20 or 100 years at the site.

According to the authors, the "recognition of invasive predators may occur innately through ‘‘exaptation’’ or

‘‘coincidental pre-adaptation’’" (Freeman, Wright, Hewitt, Campbell, & Szeto, 2013). These latent traits – as

they are termed in the White Knight Hypothesis (Wagner, 2017) – accelerate behavioural shifts and allow for

behavioural flexibility.

2.3 Weighting records in the database
To correct for potential biases that arise with multiple records in one study, we analysed both weighted

and unweighted data. Following previous studies (e.g. Heger & Jeschke, 2014; Willer, Li, & Abecasis, 2010;

Zaykin, 2011), the relative weight of a record was calculated as 1/sqrt(number of records in the study), so

that the combined weight of all records in one study was sqrt(number of records in the study). Since there

were no qualitative differences in the results between weighted and unweighted data, we chose to present the

results for unweighted data in the main article for higher accessibility, while those for the weighted analyses

are provided in the Supplementary Material (Appendix A).
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3 Results and Discussion
We present and discuss our results in the same order as the questions were outlined in the Introduction.

We conclude with future perspectives based on our main findings. First, however, we look at potential biases

in the dataset.

Out of the 360 records of behavioural change in total, birds were most frequently studied (65 records),

followed by mammals (58 records) and insects (48 records). A similar bias can be found for the general field

of  behavioural  ecology where most  studies  are  focused on species  that  are  relatively closely related or

appealing  to  humans  or  show  supposedly  complex  behavioural  patterns,  i.e.  mammals  and  birds.  For

example, Rosenthal et al.  (2017) reported that about half of the studies published in the journal Animal

Behaviour from 1953 to 2015 focused on mammals and birds. Our sample is actually less taxonomically

biased towards mammals and birds, as about two thirds of the records of behavioural change we found were

documented in reptiles, amphibians, fish and invertebrates. Interestingly, our dataset indicates that invasive

species have been mainly investigated for mammals and insects, whereas the relative majority of studies

looking at native species focused on birds, with significant numbers also for fishes, mammals and molluscs

(see Figure 1.1).
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native vs invasive species.



CHAPTER 1: HOW BIOLOGICAL INVASIONS AFFECT ANIMAL BEHAVIOUR

Looking at all 360 records of behavioural change included in our dataset, only 15 species appeared in four

or  more records;  six  of  these 15 species  are  included in the  "100 of  the  World’s  Worst  Invasive Alien

Species" list of IUCN’s Global Invasive Species Database (www.iucngisd.org/gisd/100_worst.php; the black

rat Rattus rattus, the cane toad Rhinella marina, the zebra mussel Dreissena polymorpha, the golden apple

snail  Pomacea canaliculata, the feral pig Sus scrofa and the Argentine ant  Linepithema humile). This also

means that while the taxonomic bias (see Figure 1.1) should be kept in mind when interpreting the results of

our cross-taxonomic analyses, the results reported in the following sections are not primarily driven by a few

species.

3.1 Different behavioural changes reported for native and invasive species
We found records of different types of behaviour changing in native and invasive species (Figure 1.2;

Chi-square test,  100'000 bootstrap simulations with the numbers of records across natives and invasives

across the six categories; X²=54.95, p<0.001). More specifically, defence behaviour – avoiding predation and

parasitism – was more commonly reported to  change in  native as  compared to  invasive species.  These

included native Australian marsupials dealing with the cane toad (Rhinella marina)  invasion,  the  North

American fence lizard (Sceloporus undulatus) coping with invasive ants, but also records of the avoidance of

the Turkish crayfish (Astacus leptodactylus) by the common toad (Bufo bufo) in France (Langkilde, 2009;

Llewelyn et al., 2010; Mandrillon & Saglio, 2007).

The observation that behavioural changes to avoid enemies have been more frequently reported for native

than invasive species is in line with previous studies based on smaller sample sizes (Berthon, 2015; Strauss

et al., 2006). It also provides potential support for the enemy release hypothesis which posits that the absence

of enemies in the exotic range of invasive species is a cause of invasion success (Heger & Jeschke, 2014;
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2018; Keane & Crawley, 2002). A more specific variant of this hypothesis says that "Invaders are released

from enemies", which is empirically better supported than the enemy release hypothesis in general (Heger

and Jeschke 2018). We found the behavioural changes that were less frequently observed in invasive species

were defence measures against predation. A possible underlying reason is their lower risk of predation by

local predators. An alternative explanation may be a research bias: It is more fitting to the classic image that

an invader is a dangerous new predator, while native species need to hide and run. But this paradigm is

shifting and the role of invasive prey's antipredator behaviour in invasions is increasingly being recognised

(Mennen & Laskowski, 2018).

Changes in dispersal behaviour and coping with the abiotic environment were more frequently reported

for invasive than native species. Behavioural traits linked to dispersal were expected to have changed more

often in invasive species, as dispersal and spread are part of the invasion process. For example, cane toads

were found to move faster and follow straighter paths following selection in their new environment, the open

Australian landscape (G. P. Brown, Phillips, & Shine, 2014). Environmental conditions in new habitats can

be  challenging  for  invasive  species,  requiring  changes  in  activity,  movements  or  strategies  against

dehydration. Invasive species commonly have different environmental characteristics in the invaded range to

cope with, but also native species can be forced to change their behaviour due to invasions. The native lizard

Liolaemus wiegmannii changed its basking pattern after the spread of acacia trees (Acacia longifolia) in

Argentina, which produces significantly more shade than the native vegetation (Block, Stellatelli, García,

Vega, & Isacch, 2013).

3.2 Specific types of behaviour change at different speeds
The  speed  of  behavioural  change  varied  substantially  between  the  different  categories  of  behaviour

(Figure 1.3). We found that behavioural coping strategies to changed climatic condition, oxygen levels in

water and hydration in terrestrial habitats was the behavioural category with most records of instant change

(Figure 1.3).  While such environmental changes usually manifest over long periods of time, an invasive

species entering a new range will have to cope with the changed conditions immediately. The invasive green

mussel Perna viridis, for example, closes its valves in waters with low salinity in the invaded range rapidly

in order to survive osmotic stress (McFarland, Donaghy, & Volety, 2013). Similarly, native species that were

pushed out of their abiotic optimal niche through predation or competition had to cope with the new abiotic

conditions instantly.
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Feeding behaviour changed relatively rapidly, but only in invasive species (Figure 1.3). There is a large

and still  growing body of  research showing how exactly  this  dietary flexibility  explains  the  success  of

invasive species (Sol & Lefebvre, 2000; Wright et al., 2010). The field of innovation research quantifies the

innovation in a new behaviour of a species. In birds in particular, this literature distinguishes between simple

"food type innovations" and more complex "technical  innovations" (Ducatez,  Clavel,  & Lefebvre,  2014;

Overington et al., 2009). It is often not the greater innovation propensity of invaders, but simply the choice

of a new food source without the accompanying behavioural innovation that facilitate invasion.
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Figure  1.3 -  Percentage  of  records  of  behavioural  change  that  happened  instantly  across  types  of
behaviour in native and invasive species. The numbers of records in each category is given at the bottom
of  each  bar.  Significant  differences  from the  mean (shown as  dashed  line)  are  indicated  above  bars
(*p<0.05, ***p<0.001).



CHAPTER 1: HOW BIOLOGICAL INVASIONS AFFECT ANIMAL BEHAVIOUR

On the other side, defence or escape strategies against new predators or parasites are relatively slow

(Figure 1.3). These kinds of behavioural change were more prevalent in native than invasive species. When

combined with the finding above, this suggests a dire situation for potentially endangered natives. If the

invasive species is a predator readily feeding on the native species and the latter takes a longer time to react

with an appropriate defence mechanism, it is under increased pressure from an effective novel predator.

Furthermore, while we found that defence behaviour changes less often instantly, even a behavioural change

in time is not guaranteed to be effective for the prey species.

Following the proposed definitions of Banks & Dickman (2007), there are three levels of naiveté. First,

most harmful to the respective species is level-1 naiveté where the prey does not recognize the predator as a

potential threat. In level-2 naiveté, the prey species recognizes the danger, but the reaction is inappropriate as

an antipredator response. Finally, if the prey shows level-3 naiveté, it manages to recognize the potential

threat and shows an appropriate response, but it is not skilled enough to escape. For example, Australian

bilbies (Macrotis lagotis) were trained to recognize and avoid introduced predatory feral cats (Felis catus)

and  foxes  (Vulpes  vulpes),  but  survival  rates  after  release  into  the  wild  did  not  improve  significantly

(Moseby, Cameron, & Crisp, 2012). The bilbies were trained to show the appropriate response, which is

leaving the burrow when smelling the scent of the predator, but it was still ineffective, therefore showing

level-3 naiveté. We describe only the speed of behavioural changes in native or invaders and do not have

data  on  their  population  dynamics  outcomes.  However,  we  can  say  that  not  changing  the  behaviour

(therefore staying in the most harmful level-1 or level-2 naiveté) is happening more commonly for native

than invasive prey species.
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3.3 Mechanisms enable change at different speeds
For  behavioural  changes  that  did  not  happen  instantly,  we  found  differences  between  the  speed  of

learning compared to rapid genetic adaptation (Figure 1.4). Rapid genetic adaptation takes longer in both

native (Hedge's g=1.9 (large), CI: 1.16, 2.64) and invasive species (Hedge's g=0.87 (large), CI: 0.05, 1.69).

There was less difference in speed between native and invasive species (Hedge's g=0.53 (negligible), CI:

0.07, 0.99). The results are qualitatively the same for the absolute time span not corrected for age at sexual

maturity (see Appendix A).
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Figure  1.4 -  Density  plots  of  the  speed of  behavioural
changes  that  did  not  happen  instantly,  split  by  the
mechanisms learning and rapid genetic adaptation, for (A)
native and (B) invasive species. Speed is displayed as the
natural  logarithm of  the  time  it  took  for  the  change  to
occur divided by the age at sexual maturity of the focal
species.
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It has been conceptually proposed how learning in this context will act at a faster speed than rapid genetic

adaptation (Zuk, Bastiaans, Langkilde, & Swanger, 2014); however, we are not aware of a study showing

such empirical data across taxonomic groups. It is possible that the observation of a behavioural change over

a certain time span inspires authors to interpret the underlying mechanism a posteriori. For example, if a

given behaviour changed quickly, a researcher may assume the underlying mechanism was learning. Such a

posteriori author interpretations are obviously not useful for our analysis; using them would result in circular

reasoning. Thus, we only used records for which actual empirical evidence for a mechanism was available.
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Figure 1.5 - Cases of behavioural change through learning or rapid genetic adaptation across
taxonomic groups in native vs invasive species.
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We found that all taxa changed their behaviour at least to some degree through both learning and rapid

genetic adaptation (Figure 1.5).  We expected a taxonomic bias,  that  learning would be more commonly

reported for vertebrate than invertebrate species, as traditionally the focus lies on mammals and birds for

studies on learning (Avital & Jablonka, 2000). This was not the case, however (Chi-Square test with 100'000

bootstrap simulations: X² = 3.26, p-value = 0.09); more experimental setups have recently been developed

for learning experiments with invertebrates. Only when specifically comparing the nine taxonomic groups in

our dataset (five vertebrate and four invertebrate groups) did we find differences, as insects were frequently

reported  to  show rapid  genetic  adaptation,  and  birds  to  learn  (Chi-Square  test  with  100'000  bootstrap

simulations: X² = 26.1, p-value < 0.001).

Native species more often changed their behaviour through learning compared to invasive species, which

was not exclusively explained by the taxonomic bias in the data (Chi-Square test with 100'000 bootstrap

simulations: X² = 8.7, p-value < 0.01). In the most represented taxonomic group of our invasive species

sample - insects, molluscs and amphibians - the ratio of rapid genetic adaptation to learning is higher than in

its native counterparts.

It may be counter-intuitive to find that invasive species change their behaviour less often through learning

than  native  species.  But  this  is  only  the  learning  that  happens  within  an  individual's  lifetime  through

behavioural plasticity or across generations. In contrast, the instant changes through behavioural flexibility –

where species are pre-disposed to perform a new behaviour – are more common in invasive than native

species (Chi-Square test with 100'000 bootstrap simulations: X² = 14.97, p-value < 0.001, see Table 1.1).

Table 1.1 - Numbers of records of behavioural change in native and invasive species that happened instantly
or not.

Native species Invasive species

Instant changes 35 40

Non-instant changes 201 84

We found significant differences in the speed of behavioural change across taxonomic groups (Figure 1.6,

Chi-square  test  with  100'000  bootstrap  simulations,  X²  =  24.13,  p  <  0.001).  Learning  was  not  evenly

distributed across taxa, thus we expected a corresponding difference in the speed of change. There was no

difference in the frequency of instant changes between vertebrates and invertebrates (Chi-Square test with

100'000 bootstrap simulations: X² = 3.8, p-value = 0.06). Results from the analysis with weighted records

were similar (see Appendix A).
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Figure 1.6 - Percentage of behavioural changes that happened instantly across taxa in native
vs invasive species.
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3.4 Specific types of behavioural change are associated with specific 
mechanisms

We found evidence for  the  mechanisms of  behavioural  change to  differ  between types  of  behaviour

(Figure  1.7).  Among  invasive  species,  dispersal  was  most  strongly  associated  with  genetic  adaptation,

followed by feeding, coping with abiotic environmental differences and mating. Across categories, learning

was more common in native than invasive species, most pronounced in defence behaviour, although not

significantly so. It may be more challenging to recognize and behaviourally adapt to a new threat in the form

of a predator or parasite than to a change in temperature. Sensory input from changing climatic conditions is

immediate and clear,  while threat  cues from novel  predators require interpretation before an appropriate

response can be performed. Defence behaviour is more complex and not happening instantly, but still has to

develop over a relatively short time period to be effective, and this is better possible through learning than

genetic selection (cf. Figure 1.4).
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Figure  1.7 -  Percentages  of  behavioural  change  through  learning  (as
compared to rapid genetic adaptation) across types of behaviour in native
vs invasive species. The dashed line indicates the mean percentage across
all records. Sample sizes are indicated at the bottom of the bars. Significant
differences  from the  mean  are  indicated  above  bars  (■p<0.1,  *p<0.05,
***p<0.001).
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4 Conclusions
This study represents a general, cross-taxonomic overview of behavioural changes caused by biological

invasions, considering both native and invasive species and a wide range of different data. We found that

some taxonomic groups, particularly mammals and birds, are more frequently investigated than other taxa.

We also found support for the enemy release hypothesis, as behavioural adjustments to a novel predator were

more commonly described in native than invasive species,  although this finding could also be due to a

research bias.

Furthermore, we showed that different types of behaviour change at different speeds. For example and

worryingly from the perspective of native species, feeding-related behaviour changes faster than avoidance

behaviour against predators and parasites. The latter type of behavioural change was more prevalent among

natives, thus our findings suggest a disadvantage in the arms race between invasive predators and native

prey. This may in part explain cases of boom-bust population dynamics of predator invaders, which swiftly

shift to new prey in their exotic range (leading to a "boom"), but decrease in their abundance (the "bust")

when their prey either have finally developed avoidance strategies or have become (locally) extinct.

These differences in the speed of behavioural changes are enabled by different mechanisms. For instance,

the mechanism underlying a change in defence behaviour of prey against predators was typically learning. It

seems that  at  least  for  the  cases  of  biological  invasions  covered  by  the  studies  analysed  here  –  either

introduced predators interacting with resident prey, or resident predators interacting with introduced prey –

predators frequently have an advantage due to a high eco-evolutionary experience (sensu Saul & Jeschke,

2015)  in  these  interactions.  This  higher  experience  relates  to  a  higher  frequency of  pre-dispositions  in

predators as compared to prey species. Whether this result is robust for cases of biological invasions beyond

those covered in our dataset is a question to be addressed in the future.

We publish our dataset of 360 records extracted from 191 studies along with this study to provide a

resource for additional analyses and encourage other scientists to expand it. The dataset allows for several

analyses that we could not focus on here, for example in-depth analyses for particular taxonomic groups. To

foster  the  investigation  of  mechanisms  underlying  behavioural  change,  we  also  encourage  that  future

empirical studies include targeted observations or experiments focusing on such mechanisms.  Behaviour

and, more specifically,  behavioural changes have only been recently recognized as shaping outcomes of

biological invasions (Weis & Sol, 2016). As pointed out above, these shifts can be of high interest for other

research fields  such as  animal  learning,  innovation and conservation biology.  We hope  to  inspire  more

research in that direction to (1) help predicting how changes in invader behaviour affect communities and

ecosystems, (2) protect native species by assisting their behavioural change and (3) draw general conclusions

on the role of behaviour and its temporal dynamics for biological invasions.
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Appendix A

2.1 Literature Search
A flow chart showing the number of studies found in our initial search and how many records remained

after each of our processes of scanning for eligibility is shown in Figure A.1.

Figure  A.1 -  Flowchart  with  numbers  of  studies
collected, scanned for eligibility and analysed in this
study (modified after Moher et al. 2014).
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3 Bias in Taxonomy and Origin of Species
When records of behavioural change in each study are sqrt-weighted, mammals, birds and insects remain

the most studied taxa. Also, mammals and insects remain the taxa with the most invasive species studied.

Distribution  of  non-natives/natives  across  taxa  is  non-random  (Chi-square  test  with  100'000  bootstrap

simulations, X²=58.86, p<0.001, see Figure A.2).
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Figure A.2 - Records of behavioural change weighted by /sqrt of n of records per study.



APPENDIX CHAPTER 1

3.1 Different changes in behaviour reported for native and invasive species
Predator-  or  parasite-avoidance  behaviour  was  more  frequently  changing  in  native  species,  while

behavioural changes to cope with climate and dispersal behaviour was more often documented to change in

invasive species, also if records of behavioural change were subjected to sqrt-weighting (Chi-square test with

100'000 bootstrap simulations, X²=38.74, p<0.001, see Figure A.3).
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Figure  A.3 -  Types  of  behaviour  across  native
and  non-native  species.  Records  of  behavioural
change were sqrt-weighted.
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3.2 Specific types of behaviour change at different speeds
Changes in feeding behaviour of invasive species happened faster than other types of behaviour, also if

records of behavioural change were subjected to sqrt-weighting (see Figure A.4). Defence behaviour changed

more slowly, although not significantly so.
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Figure  A.4 -  Percentage  of  records  of  behavioural  change  that  happened  instantly  across  types  of
behaviour in native and invasive species. Records of behaviour were sqrt-weighted and rounded, and are
given at the bottom of each bar. The dashed line indicates the mean percentage. Significance levels of the
outcomes of Chi-square tests with 100'000 simulations between the respective subsample and the rest are
indicated above bars (■p<0.1, ***p<0.001).
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3.3 Mechanisms enable change at different speeds
In absolute time, learning was also faster than rapid genetic adaptation in both native (Hedge's g = 1.72

(large), ci = [1.06; 2.37], Figure A.5) and invasive species (Hedge's g = 1.34 (large), ci = [0.5; 2.18], Figure

A.5A). No difference between invasive and native species was observed: Hedge's g = 0.03, ci = [-0.46; 0.41].
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Figure A.5 -  Density plots of the speed of behavioural
changes  that  did  not  happen  instantly,  split  by  the
mechanisms learning and rapid genetic adaptation, for (A)
native and (B) invasive species.  A vertical  grey dashed
line indicates one year.
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There were significant differences between the distribution of mechanisms across the taxonomic groups,

also when records were subjected to sqrt-weighting (Chi-square test  with 100'000 simulations:  X²=5.03,

p<0.05, Figure A.6). Learning was especially rare for insects and reptiles, while it was most common for

birds.
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Figure A.6 - Cases of behavioural change through learning or rapid genetic adaptation across
taxonomic groups in native vs invasive species. Records of behavioural change were sqrt-
weighted.
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There were significant differences between the speed of behavioural change across the taxonomic groups,

also when records were subjected to sqrt-weighting (Chi-sqare test  with 100'000 simulations:  X²=16.37,

p<0.05, Figure A.7). Invasive species changed their behaviour faster than native species (X²=5.47, p-value <

0.05) and there was no difference between vertebrates and invertebrates (X²=1.23, p-value = 0.33).
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Figure A.7 - Percentage of behavioural changes that happened instantly across taxa in native
vs invasive species. Records of behavioural change were sqrt-weighted.
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3.4 Specific types of behavioural change are associated with specific 
mechanisms

As for non-weighted data, dispersal in invasive species was associated with genetic adaptation, while

native species' defence behaviour was mostly changing through learning (see Figure A.8).
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Figure  A.8 -  Percentages  of  behavioural  change  through  learning  (as  compared  to  rapid  genetic
adaptation) across types of behaviour in native and invasive species. Records of behavioural change were
sqrt-weighted and rounded, and are given at the bottom of each bar. The dashed line indicates the mean
percentage. Sample sizes are indicated at the bottom of the bars. Significant differences from the mean are
indicated above bars (■p<0.1, **p<0.01).
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Abstract
New species often invade ecosystems already dominated by previous invaders. Ornamental freshwater

crayfish, particularly parthenogenetic marbled crayfish (Procambarus virginalis), increasingly establish in

European water bodies where they interact with resident native and non-native species. Behavioral traits and

behavioral syndromes can influence the outcome of these species interactions. The behavior of non-native

crayfish  is  often  studied  in  notorious  invaders  but  rarely  in  new and emerging  species,  although those

provide the best opportunity for management. Activity, aggressiveness, and boldness have repeatedly been

associated with invasion success and species displacement. Further, crayfish can adapt their behavior after

they have established in the new range. We investigated whether marbled crayfish can displace the widely

established spiny-cheek crayfish (Orconectes limosus). Specifically, we compared their behavioral traits and

evaluated whether these traits  differ,  using marbled crayfish populations from aquaria and the field and

spiny-cheek crayfish from the field. We staged agonistic ecounters, measured activity levels, and recorded

the response to a simulated threat of both species and both origins (field and aquarium) in laboratory trials.

We found that in agonistic encounters, marbled crayfish were on average more aggressive than spiny-cheek

crayfish,  even against larger opponents. Aggressiveness and activity were positively correlated,  which is

indicative for an aggression syndrome. Marbled crayfish from the field were less active than those from

aquaria,  but  there  was  no  difference  in  aggressiveness.  Marbled  crayfish  often  froze  in  response  to  a

simulated threat, whereas spiny-cheek crayfish reacted either offensively or defensively. These results from

the laboratory illustrate potentially important  behavioral  mechanisms behind crayfish over-invasions and

show behavioral  plasticity  in  a  species  where  all  known individuals  are  genetically  identical.  To better

understand the invasion process  in  nature,  the  species’ reproductive biology and interactions  with other

members of the community should be considered. We conclude that the recent success of marbled crayfish in

establishing  new  populations  could  be  influenced  by  their  behavioral  flexibility  and  their  potential  to

competitively persist in the presence of established invasive crayfish.

Keywords: aggression; behavioral flexibility; behavioral syndromes; behavioral variability; 
biological invasions; freshwater crayfish; shelter use; threat response.
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Introduction
Species invasions have already massively altered aquatic communities and are still increasing worldwide

(Gallardo et al. 2016, Seebens et al. 2017). Consequently, more and more invasive species compete with

already established,  functionally  similar  invasive  species,  a  process  that  has  been  termed over-invasion

(Russell et al. 2014). In novel communities, such over-invasions and species introduction dates are of great

relevance and allow for more detailed analyses than a simple, dichotomous distinction between native vs.

non-native species that ignores species residence times (Dornelas et al. 2014).

The consequences of multiple species invasions are largely unknown (Hewitt and Huxel 2002), but the

invasion  outcome  and  interaction  strength  between  invading  and  resident  species  can  be  assessed  by

behavioral differences and correlated suites of behavioral traits (i.e., behavioral syndromes; Chapple et al.

2012, Sih et al. 2012, Penk et al. 2017). Some behavioral traits such as activity, aggressiveness, and boldness

have repeatedly been associated with invasion success (Weis 2010, Chapple et al. 2012). Furthermore, the

ability to behaviorally adapt to a new environment, that is, behavioral flexibility, promotes invasion success

(Wright et al. 2010). Naïve non-native species have to adapt to new prey, competitors, or predators by means

of evolution or learning (Saul and Jeschke 2015, Wong and Candolin 2015). Comparative studies across

invading species can help elucidate what makes some invaders more successful than others (van Kleunen et

al. 2010).

Ornamental crayfish invasions

Particularly since the beginning of the 20th century, decapod crayfish invasions have resulted in a decline

of native crayfish populations and severe changes to ecosystems, for example, in Europe (Holdich et al.

2009, Lodge et al. 2012). Nowadays, increasing numbers of new non-native crayfish species are imported by

the pet trade from North America and Australasia to Europe, and some species have already been released in

nature (Chucholl 2013, Chucholl and Wendler 2017). As more of these recently arrived species have started

to establish populations, interactions with other invasive species will shape future crayfish distributions and

novel species communities (Kouba et al. 2014). However, the propagule pressure of the new invaders and the

incumbent advantage of the old invaders will be decisive for potential competitive displacement in these

over-invasion scenarios (Lockwood et al. 2005, Russell et al. 2014). Crayfish from the pet trade have the

disadvantage that they are naïve to prey,  predators, or competitors when they are released from aquaria

(Hazlett  1994,  Martin 2014).  For example,  aquaria or other hatchery-reared fish are more vulnerable to

predation than those that have experienced predation (Kellison et al. 2000, Yokota et al. 2007). Some studies

looked at agonistic behaviors among competing old and new invasive crayfish species (Chucholl et al. 2008,

Hudina et al. 2011, James et al. 2016), but broader behavioral comparisons are necessary to investigate the

invasive potential of species before or at an early stage of invasion.
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Invasive crayfish: behavioral differences and flexibility

Non-native crayfish are model organisms in invasion ecology and are also frequently used in behavioral

studies (Gherardi et al. 2012, Lodge et al. 2012). Evidence suggests that highly invasive crayfish typically

display stronger interspecific aggression toward resident congeners, in that way limiting access to critical

resources for competitors (e.g. Gherardi and Cioni 2004, Klocker and Strayer 2004, Chucholl et al. 2008).

Also, larger body and chela size are advantageous in these agonistic interactions (Garvey and Stein 1993,

Vorburger and Ribi 1999). Invasive crayfish species are often more active (Bubb et al. 2006), perceive more

predation cues (Hazlett et al. 2003), or avoid predation more effectively (Garvey et al. 1994) than native

crayfish. Activity, aggressiveness, and boldness in crayfish are often correlated and thought to be part of an

aggression syndrome (Pintor  et  al.  2008,  2009).  These behavioral  syndromes can be explained by state

variables (such as growth) that often covary with sets of behaviors (Biro et al. 2014). Furthermore, invasive

crayfish adapt behavioral traits after introduction in response to resident crayfish species and the community

of invaded water bodies (Pintor et al. 2008, Hanshew and Garcia 2012). For example, native crayfish that

had experience with an invasive competitor were more aggressive toward the opponent than naïve native

individuals (Hayes et al. 2009). Also, the presence of predators alters the activity of invasive and native

crayfish (Hirvonen et al. 2007, Aquiloni et al. 2010). It has been shown that invasive crayfish and crabs can

learn how to respond to newly emerging threats after invading new territories (Hazlett et al. 2002, Roudez et

al. 2008). By looking at multiple behavioral traits and integrating behavioral flexibility and new concepts

like behavioral syndromes (Gherardi et al. 2012), species displacements and ecological invasions might be

better understood and managed.

Model organisms

Spiny-cheek crayfish (Orconectes limosus) and marbled crayfish (Procambarus virginalis) are examples

for invaders with a high functional similarity. They can thus be used as comparator organisms sensu Penk et

al.  (2017):  Comparing  marbled  crayfish  to  resident  spiny-cheek  crayfish  allows  assessing  the  invasive

capacity of marbled crayfish. Furthermore, both species are included in the List of Invasive Alien Species of

Union Concern (EU Regulation 1143/2014). They co-occur in some lakes in Germany, but differ in their

invasion history and morphology (Chucholl and Pfeiffer 2010, Chucholl et al. 2012).

Spiny-cheek crayfish have been spread across Central Europe since the late 19th century, now being one

of the most common European crayfish species (Kouba et al. 2014). They display sexual dimorphism with

males having larger chelae than females (Souty-Grosset et al. 2006). In parts of their native range, spiny-

cheek crayfish were outcompeted by other invasive species from the genus Orconectes (Klocker and Strayer

2004). The interactions of spiny-cheek crayfish with other crayfish in their invasive range, however, have

rarely been studied (Musil et al. 2010).
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The  peculiar  marbled  crayfish  are  triploid  descendants  of  the  sexually  reproducing  slough  crayfish

(Procambarus fallax; Martin et al. 2010, Lyko 2017, Gutekunst et al. 2018). Marbled crayfish represent the

only known decapod crustacean capable of apomictic parthenogenesis (Scholtz et al. 2003, Seitz et al. 2005).

What makes marbled crayfish even more unique is the fact that no native population has been recorded so far

(summarized in Chucholl et al. 2012 and citations therein). The obscure origin of marbled crayfish lies in the

tanks of traders or breeders of crayfish, and neither behavior nor ecology of the species within invaded lakes

is yet understood (Chucholl et al. 2012). The first naturalized marbled crayfish population (i.e., in the field)

was reported near Freiburg,  Germany, in 2003 (Marten et  al.  2004).  In recent  years,  sightings from the

Netherlands, Italy, Slovakia, Sweden, and other German lakes followed (see Chucholl et al. 2012 for review).

Since these populations stem from marbled crayfish previously reared in aquaria, they can be considered to

have been naïve to interspecific competition and predators before they were released. The aquarium origin

and the beginning establishment of isogenic populations in pre-invaded lakes provide a unique opportunity to

study behavioral mechanisms of species displacement and behavioral flexibility in the natural environment.

Goals and hypotheses

We  compared  the  behavior  of  marbled  and  spiny-cheek  crayfish  to  assess  competitive  interaction

strength, flexibility in behavior of an invader, and possible species displacement in crayfish (over-)invasions.

Specifically,  we assessed interspecific aggressiveness,  activity,  and boldness of the two focal  species. In

addition, we compared naïve, aquarium, and naturalized populations of marbled crayfish that are sympatric

to spiny-cheek crayfish with each other to elucidate changes in behavior that result  from naturalization.

Finally,  we  looked  for  correlations  between  aggressiveness  and  activity,  associated  with  aggression

syndromes in individuals of both crayfish species. We hypothesized that crayfish species differ in behavioral

traits that are important for invasion success, for example, agonistic behavior. Resident spiny-cheek crayfish

were expected to dominate marbled crayfish because their males have large chelae in contrast to the all-

female marbled crayfish. The latter were thought to be more active than spiny-cheek crayfish and respond

less appropriately to a threat since they originate from aquaria without natural selection regimes. Marbled

crayfish should generally exhibit less variability in behavior since they are isogenic. We further hypothesized

that after marbled crayfish came in contact with spiny-cheek crayfish and predators in a natural environment,

they will  adapt  their  behavior.  Marbled crayfish  from invaded water  bodies  were expected to  be  more

aggressive  than  aquarium crayfish  to  compete  and  coexist  with  spiny-cheek  crayfish.  Finally,  marbled

crayfish  experiencing  predation  in  the  field  should  be  less  active  and  more  responsive  to  threats  than

aquarium marbled crayfish.
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Material and Methods

Study sites

Spiny-cheek crayfish were collected in lake Müggelsee in front of the institute (52°26’06″ N, 13°38’06″

E), Germany, with crayfish traps (type PIRAT, 610 × 315 × 250 mm, mesh width 40 × 10 mm, Rapurosvo,

Parainen, Finland) between April 2015 and June 2016. The traps were baited with dog food or dead fish and

were set overnight and checked on the next day. Aquarium stocks of marbled crayfish were provided by Peer

Martin (Comparative Zoology, Humboldt University, Berlin, Germany). Additional marbled crayfish that live

in sympatry with spiny-cheek crayfish were mostly hand-collected or, to a minor degree, caught by traps in

the littoral zone from lakes (1) Moosweiher (48°01’51″ N, 7°48’17″ E) in Baden-Württemberg, Germany,

and  (2)  Krumme Lanke  (52°2700″  N,  13°13’52″  E)  in  Berlin,  Germany.  Crayfish  were  transported  in

Styrofoam boxes filled with water 30 mm deep and macrophytes in excess.

Maintenance of test animals

All crayfish were sexed and measured manually with a sliding caliper to the nearest millimeter.  The

length  was measured as  carapace  length (CL)  from the  tip  of  the  rostrum to  the  posterior  edge of  the

carapace. Tanks were set up on shelves in a climate chamber with a constant temperature at 17 °C under a

photoperiod of 14:10 h light:dark. All crayfish were kept in the laboratory for at least one month before being

used in experiments. All aquarium marbled crayfish, naturalized marbled crayfish from lake Krumme Lanke,

and all  spiny-cheek crayfish used for individual  measurements (>3 replicates)  in behavioral  experiments

were kept individually in tanks (300 × 200 × 200 mm) filtered by air-driven sponge filters.  Naturalized

marbled crayfish from lake Moosweiher and additional spiny-cheek crayfish that have been used only as

opponents  in  agonistic  encounters  were  marked and  housed  in  filtered  single-species  community  tanks

separated by sex (800 × 400 × 200 mm). All housing tanks were filled with 30 mm of fine gravel, and PVC

pipes (150 mm, diameter 50 mm) were provided for shelter. Communal tanks were provided with a surplus

of shelters (>2 per crayfish) to minimize aggression. To differentiate among the crayfish kept in communal

tanks, we used the non-invasive, numerical marking system of Abrahamsson (1965) where crayfish were

marked with a point code on top of their carapace. The crayfish were marked with a white outdoor marker

(Edding 8055, Ahrensburg, Germany). After molts, we waited for the exoskeleton to be hardened completely

and measured the new length before remarking the animals. Tanks were cleaned once a week and around

75% of water was exchanged with fresh tap water. Individual crayfish were fed half a ring of commercial

crayfish food (Crabs natural, sera, Heinsberg, Germany) daily. Dried and blanched oak leaves were provided

ad libitum as additional food and environmental enrichment. After the end of the study, crayfish were used

for further experiments on their prey choice and feeding mechanics.

The protocol  and procedures  employed were ethically reviewed and approved by the Landesamt  für

Gesundheit und Soziales (LAGeSo), Berlin, Germany. All experiments were performed in accordance with
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Directive  2010/63/EU  of  the  European  Parliament  and  of  the  Council  of  22  September  2010  on  the

protection of animals used for scientific purposes.

Setup and standard procedure

All  experiments  were  conducted  in  the  climate  chamber  to  reduce  handling  and guarantee  minimal

disturbance from outside. Two tanks measuring 400 × 400 × 200 mm were set up in the chamber, each filmed

by two cameras (one vertically above the tank and another one at the side of the tank). All experiments were

recorded or photographed with network cameras (Dinion HP 1080p, Bosch, Stuttgart, Germany) capable of

recording under infrared illumination. Videos and photographs were recorded and saved with VLC player

(version  2.2.1.0).  Each  setup  was  covered  with  an  opaque,  black  plastic  tarpaulin  to  further  minimize

disturbances.

All crayfish used for the experiments were in good condition (no obvious diseases, all appendages present

and intact). Each crayfish was used only for one experimental trial per day. Intermolt individuals of both

male and female sex (22 – 50 mm CL) were used in experiments. Females carrying eggs or larvae were

excluded  from experiments  up  to  at  least  one  week  after  the  release  of  the  brood.  Test  animals  were

randomly chosen among available crayfish with a pair of ten-sided dice.

In each experiment, the tanks were filled with 20 mm of fine gravel and 150 mm of tap water of 15 °C

temperature. Crayfish were released into experimental tanks and allowed to acclimatize for 30 min prior to

the experiment. After each trial, the tank was completely drained before setting up another experiment to

avoid a potential bias by remaining pheromones in the water (Breithaupt 2011).

Allometry

Since larger chelae can be advantageous in agonistic encounters, we measured chela length of the right

cheliped (in mm) for a random set of crayfish from three groups: male spiny-cheek crayfish (N = 52), female

spiny-cheek crayfish (N = 28), and marbled crayfish (N = 81) with CLs between 20 and 50 mm. We fitted

linear regression models (command lm())  in  R version 3.4.0 (R Core Team 2017) to  predict  chela size

depending on CL in each of these groups. To test for differences in intercept and slope in the three regression

lines, we fitted three models for each pair of two of the three groups accounting for CL, the group, and their

interaction.

Aggressiveness

We tested agonistic behavior against size-matched opponents (± 1 mm CL) in interspecific encounters of

individual  spiny-cheek crayfish males (N = 12),  spiny-cheek crayfish females (N = 7),  aquarium-reared

marbled crayfish (N = 14), and naturalized marbled crayfish (N = 13). Three encounters were staged for each

individual against three different opponents. The availability of matching pairs was reduced by egg-bearing
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females and molting individuals and resulted in uneven numbers of replicates. To better discriminate species

and size effects, we later staged confrontations of the same individuals with smaller (<4 ± 2 mm CL [mean ±

standard deviation, SD]; N = 15 for spiny-cheek crayfish, N = 13 for marbled crayfish) and larger opponents

(>4 ± 2 mm CL [mean ± SD]; N = 16 for spiny-cheek crayfish, N = 14 for marbled crayfish; modified from

Vorburger and Ribi 1999).

Experimental tanks were separated into two sides with a removable opaque divider (PVC). The corners

were rounded with plastic glass to avoid that submissive animals become trapped. For each trial, one crayfish

was  transferred  into  each  compartment.  After  acclimatization,  the  divider  was  lifted  and the  encounter

recorded on video to later assess and score each interaction. The experiments were conducted in the dark

when crayfish are most active and illuminated by infrared headlights (Holdich and Black 2007, Luna et al.

2009). Each confrontation was recorded with both cameras. The recording time was set at 35 min. The first

30 min after opening the divider was analyzed for agonistic behavior, and 5 min was added as buffering time.

If  fewer  than five interactions  took place within the  30 min,  the  buffering time was checked for  more

interactions. If there were still fewer than five interactions including the buffering time, the experiment was

repeated with another opponent for each crayfish on another day.

To quantify interaction strength during the confrontations, the observed behavior was scored with the

system developed by Atema and Voigt (1995; Table 2.1). For every five-seconds, each member of the pair

was assigned an aggression score. The scoring system was modified by giving ignoring, which was not

originally included in the system, the score 0. Ignoring was observed when crayfish were within one body

length of one another or had physical contact, but did not show any visible response (i.e., taxis) toward the

opponent’s  presence  (e.g.,  crawling  along  the  aquarium pane,  crawling  over  or  under  the  body  of  the

opponent).  The  opponent  could  show  another  agonistic  behavior  at  the  same  time  and  was  scored,

respectively. The term separate includes all situations where the individuals were apart for more than one

body length and no score was applied. When more than one agonistic behavior was shown within five-

seconds,  higher  scores  outranked  lower  (positive)  scores  0–5).  Score  −2  outranked  −1  and  both  flight

behaviors (scores −1 and −2) outranked score 0 or positive scores. The interactions ended with one crayfish

fleeing or separating itself from the counterpart by more than one body length.

For every individual and confrontation, we counted the total number of each observed score (for all five-

second intervals) during the 30 min of confrontation for each crayfish. To see relative frequencies of certain

scores among the groups, a standardized count was calculated by adding up the scores for each group and

dividing it by the number of tested individuals. For every individual and confrontation, we calculated an

aggression score by multiplying each score with the number of observations and adding them up for all

behaviors (Karavanich and Atema 1998). We then adjusted the aggression score by dividing it by the number

of interactions (5-s intervals) that were observed during 30 min (adj. AS). We did this adjustment to obtain a
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better measure of average aggression level since the time spent interacting with the other crayfish differed

largely between trials. A negative or low aggression score represents a submissive individual or the loser of

the encounter, whereas a high value indicates an aggressive individual or the winner of the encounter.

Table 2.1 - Definitions of agonistic behaviors observed in crayfish and their designated score (modified from
Atema and Voigt (1995)).
Scor

e

Behavior Definition

−2 Fleeing
Walking away (rapidly), walking backwards (rapidly), tail-
flipping (rapid contraction of the abdomen)

−1 Avoidance
Walking away (slowly), walking backwards (slowly), turning 
away

0 Ignoring
Indifference towards each other within less than one body-
length, or even in contact

1
No physical contact 

(initiation)
Facing, approaching, turning towards, following

2
No physical contact 

(threat display)
High on legs, claw open, meral spread, claw forward, antenna 
point

3
Physical contact 

(claws not used to grasp)
Antenna touching, claw touching, claw tapping, claw pushing, 
antenna whipping, claw boxing, claw scissoring

4
Physical contact 

(claws used to grasp)
Claw lock

5 Unrestrained use of claws Claw snapping, claw ripping

n/a Separate Opponents one body-length or more apart

We performed analyses using linear mixed-effects models to detect agonistic score differences between

the groups or species with individual as random factor (command lmer() from package lme4, (Bates et al.

2014)). As fixed effects, we used species, CL at the time of the fight (molting and therefore growth can occur

between days  of  the  experimental  period),  origin  (aquarium or  naturalized,  only  applicable  to  marbled

crayfish), and sex (only applicable to spiny-cheek crayfish). All possible combinations of fixed effects and

interactions between fixed effects were calculated—except between species,  origin,  and sex as these are

confounded.  Models  were  ranked by  Akaike’s  information  criterion  (AIC)  and Akaike’s  model  weight.

Marginal (fixed factors only) and conditional (fixed factors and random factor) R2 values for the best model

were calculated using the MuMIn package (Bartón 2013).
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Activity

We tested the activity (time spent outside of the shelter) of individual spiny-cheek crayfish males (N =

11),  spiny-cheek crayfish females  (N = 5),  aquarium-reared marbled crayfish (N = 13),  and naturalized

marbled crayfish (N = 14). Each individual crayfish was tested in three trials. The experimental tanks were

filled with gravel 20 mm deep and completely divided by half with an opaque divider (PVC). A PVC pipe (l

= 150 mm, diameter 50 mm) in each compartment was provided as shelter. A crayfish was transferred into

each compartment. After acclimatization, photographs were taken in the dark under infrared light every 30

min for 6 h, starting 30 min after artificial nightfall. Photographs were later checked for the position of the

crayfish in the tank. Crayfish were considered to be outside the shelter when all of the carapace and the

pereopods  were  visible  outside  the  PVC pipe,  as  viewed  from  above.  We  summed up  the  number  of

observations outside the shelter and the number of observations inside the shelter for each trail.

We then applied a generalized linear mixed-effects model (GLMM) for binary responses with R to detect

differences  in  time spent  outside and inside the shelter  among spiny-cheek crayfish males,  spiny-cheek

crayfish females,  aquarium-reared  marbled  crayfish,  and  naturalized  marbled  crayfish  (command glmer;

package lme4). The individual was included in the model as random factor. Similar to the aggression scores,

we calculated all  possible combinations of fixed effects and interactions between fixed effects— except

between species, origin, and sex as these are confounded. Models were ranked by AIC and Akaike’s model

weight and we calculated marginal and conditional R2 values for the best model using the MuMIn package

(Bartón 2013).

Threat response

The response to a simulated threat as a measure of boldness was tested for spiny-cheek crayfish males (N

= 15), spiny-cheek crayfish females (N = 15), aquarium-reared marbled crayfish (N = 13), and naturalized

marbled crayfish (N = 19). Individual crayfish were placed in the experimental tank with 20 mm of sand as

substrate and allowed to acclimatize. The crayfish were then approached from the upper front, using an angle

of ~45°, by the hand of the experimenter in a steady but brisk movement. Threat responses were recorded

under dim light conditions from above the tank. Each individual crayfish was tested three times but only

once per day. The experiment followed the approach by Pintor et al. (2008), but with a modification since

most crayfish in preliminary trials did not show a response to the hand if its movement was stopped above

the surface. Thus, the movement of the hand was extended into the water, aiming for the front of the crayfish

until a contact would occur. The hand was put through a hole in the tarpaulin when the crayfish was in a

suitable position. Before the crayfish was approached, it needed to be at least one body length away from the

aquarium pane, so it would not be constrained when displaying a flight reaction. Hands were washed with

warm water after each trial to avoid a potential bias by remaining pheromones (Breithaupt 2011).
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The first, initial response of the crayfish to the hand was assessed. Crayfish responded either by tail-

flipping, that is, shooting backward (flight; score −1); stop moving and ducking (freezing; score 0); or by

showing a threat  display,  that  is,  lifting their  claws (fight;  score 1).  The scores of the three trials  were

summed up, and a general response score was given to each individual crayfish. A negative sum resulted in a

general flight response, a positive score resulted in a fight response, and a sum of 0 was classified as freeze.

We tested for differences between the groups with a chi-square test in R (command chisq.test) with 100,000

bootstrap simulations. We also compared all combinations of groups of crayfish and corrected for multiple

testing using the Bonferroni-Holm method. Additionally, all groups of crayfish were checked for potential

effects of CL using Spearman rank correlations.

Results

Allometry

Carapace length was a significant predictor of chela length for crayfish from all groups (Figure B.1). The

average chela length was significantly smaller, and the slope was less steep for marbled than for spiny-cheek

crayfish males (linear regression, t = 8.75, P < 0.001 and t = −13.49, P < 0.001). There were also significant

differences in chela length and slope of the regression lines between spiny-cheek crayfish females and males

(linear regression, t = 4.60, P < 0.001 and t = −7.16, P < 0.001). There was no significant difference in chela

size  between  marbled  crayfish  and  spiny-cheek  crayfish  females  or  slope  of  regression  lines  (linear

regression, t = 1.55, P = 0.12 and t = −1.3, P = 0.20).

Aggression

All linear mixed-effects models were sorted according to their delta-AIC value and AIC weights. Models

with an AIC weight above 0.05 are presented in Table 2.2 (see Table B.1 for all models). The best model

includes species and individual CL (size) as predictors (marginal R2 = 0.16; conditional R2 = 0.31). All other

models with a model weight above 0.05 also include species and size plus either origin, sex, or interaction

terms. Species and size thus seem to be the most important predictors for aggressiveness, whereas other

factors are less important. Carapace length was positively correlated with adj. AS. We considered individual

as random factor in the analyses but found no statistical effect on aggression. In initial exploratory analyses,

we also looked for an effect of the day of experiment (1st, 2nd, or 3rd) but did not find such an effect.
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Table 2.2: Linear mixed-effects models of adjusted aggression score (adj. AS) analysis.

Model (fixed effects) delta-AIC AIC weight

– species(SC) + size 0 0.221

species(SC) + size – species(SC):size 1.3 0.116

– species(SC) + size + origin(aq) 1.7 0.095

– species(SC) + size − sex(m) 2 0.082

– species(SC) + size + sex(m) – size:sex(m) 2.5 0.063

species(SC) + size + origin(aq) – species(SC):size 2.9 0.053

Notes: Listed are the best models according to Akaike’s model weight (Akaike’s information criterion
[AIC] weight). Indicated positive or negative effects of variables relate to the values of these variables given
in brackets (m, male; SC, spiny-cheek crayfish; aq, aquarium origin); these are compared to female marbled
crayfish from the field as reference. All models include the individual (IND) as random factor (Adj. AS ~
intercept + fixed effects + (1|IND)).

The adj. AS of marbled crayfish was on average 0.67 ± 0.16 standard error (SE) higher than the adj. AS of

spiny-cheek crayfish (Figure 2.1). The results of the mixed-effects models that neither (1) sex nor (2) origin

is important predictor of aggression are also illustrated in Figure 2.1: adj. AS of (1) male and female spiny-

cheek crayfish, and (2) aquarium-reared and naturalized marbled crayfish were similar.

Aggression encounters rarely escalated (scores 4 and 5 were rare; Figure C.2) and were mostly resolved

by  claw pushing  or  boxing  (score  3).  Marbled  crayfish  rarely  initiated  fights  with  a  threat  display  or

responded equally to spiny-cheek threat displays (score 2). Furthermore, marbled crayfish often ignored their

opponent (score 0). Higher negative scores indicated that spiny-cheek crayfish lost more encounters than

marbled crayfish.
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Figure  2.1 -  Adjusted  aggression  scores  in  pairwise  interspecific  interactions  among spiny-cheek
crayfish males  (open boxplot),  spiny-cheek crayfish females  (gray boxplot),  and marbled crayfish
from aquaria (light green boxplot) and naturalized populations (darkgreen boxplot).

In agonistic encounters against smaller opponents from either sex, marbled crayfish differed significantly

from spiny-cheek crayfish and won all  interactions,  whereas  spiny-cheek crayfish lost  most  interactions

(Fisher’s exact test, df = 25, P < 0.001; Figure 2.2). Against larger opponents, marbled crayfish similarly won

64% of encounters and spiny-cheek only 31%, but this difference was not statistically significant (Fisher’s

exact test, df = 28, P = 0.14).
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Figure 2.2 – Agonistic encounters won (in percent ± standard error) by marbled crayfish (triangles,
light green) and spiny-cheek crayfish (both sexes; circles, black) with opponents of unequal size of the
other species. The left side shows the outcomes against larger opponents (spiny-cheek crayfish, N =
16; marbled crayfish, N = 14) and the right side against smaller opponents (spiny-cheek crayfish, N =
15; marbled crayfish, N = 13).
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Activity

The best model (marginal R2 = 0.10; conditional R2 = 0.21) uses origin and size as predictors: Aquarium

marbled crayfish were more active than all other groups (Table 2.3, Figure 2.3; see Table C.2 for all models).

Activity  was  negatively  correlated  with  size  for  all  crayfish.  Spiny-cheek  crayfish  males,  spiny-cheek

crayfish  females,  and  naturalized  marbled  crayfish  spent  more  time  inside  than  outside  the  shelter.  All

models  using  other  predictors  along origin  were  weaker  than  the  one  with  origin  and size  as  the  sole

predictors, and models not accounting for origin were negligible in explanatory power (AIC weights <0.001;

Table  2.3).  In  conclusion,  shelter  use  did  not  differ  markedly  among  sex  or  species,  but  the  rearing

environment (origin) and size were meaningful predictors of activity. We considered individuals as random

factor, but these had no effect on shelter use. In initial exploratory analyses, we also looked for an effect of

the day of experiment but did not find one.

Table 2.3 - Generalized linear mixed-effects model results of activity analysis.

Model (fixed effects) delta-AIC AIC weight

origin(aq) – size 0.0 0.161

origin(aq) 0.4 0.131

origin(aq) – size – origin(aq):size 1.4 0.079

origin(aq) + sex(m) – size – sex(m):size 1.5 0.077

origin(aq) + sex(m) – size − sex(m):size – origin(aq):size 1.8 0.066

origin(aq) + sex(m) – size 1.9 0.062

origin(aq) – size – species(SC) 2.0 0.060

origin(aq) + sex(m) 2.3 0.051

Notes:  Listed are the  best  models  with decreasing Akaike’s  model  weight.  Indicated positive or
negative effects of variables relate to the values of these variables given in brackets (m, male; SC, spiny-
cheek crayfish;  aq,  aquarium origin);  these  are  compared to  female  marbled  crayfish from the  field as
reference. All models include the individual (IND) as random factor (ratio of time spent outside/inside the
shelter ~ intercept + fixed effects + (1|IND)). AIC, Akaike’s information criterion.
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Figure 2.3 - Percentage of time spent outside the shelter (± standard error) over 6 h for spiny-cheek
crayfish males, spiny-cheek crayfish females, and marbled crayfish from aquarium and naturalized
populations.
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Aggression syndrome

We tested for correlations between activity and aggression. Therefore, we used the means of individual

aggression scores and ratios of time spent outside or inside the shelter for all individuals where we had at

least three observations for aggression and activity. We calculated separate linear regressions for spiny-cheek

crayfish, aquarium marbled crayfish, and naturalized marbled crayfish. Individuals of both sexes of spiny-

cheek  crayfish  have  been  combined  in  the  analysis  since  we  did  not  find  differences  in  activity  and

aggression (see above). Naturalized marbled crayfish and marbled crayfish from aquaria have been tested

separately; as they differed in activity (see above).

Figure 2.4 - Correlations between mean activity score (ratio of time spent outside/inside the
shelter;  ACT) and mean adjusted aggression score (adj.  AS) of spiny-cheek and marbled
crayfish individuals across experiments. Regression lines: naturalized marbled crayfish, Adj.
AS ~ 0.75 + 2.7·ACT (linear regression, t = 3.09, P = 0.015, adj.  R2 = 0.49); aquarium
marbled crayfish, Adj. AS ~ 1.05 + 0.85·ACT (linear regression, t = 2.10, P = 0.06, adj. R2 =
0.22). No line is shown for spiny-cheek crayfish, as no trend was observed, Adj. AS: ~ 0.97 –
0.39·ACT; linear regression: t = −0.295, P = 0.77, adj. R² = 0.08).
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One aquarium marbled crayfish had only two aggression scores because an interspecific mating took

place during the third experiment; thus, the observation was excluded. Also, one naturalized marbled crayfish

had  only  two  observations  for  activity  because  it  was  cannibalized  during  molting  before  the  third

experiment could be conducted.

We found that in naturalized marbled crayfish, mean adj. AS (aggression) was positively correlated with

the ratio of time spent outside or inside a shelter (activity; Figure 2.4). A similar trend was observed for

aquarium-reared marbled crayfish, whereas no such correlation was found for spiny-cheek crayfish.

Threat response

Crayfish groups significantly differed in their threat response (Pearson's Chi-squared test with simulated

P-value, based on 100 000 replicates: χ2 = 54.91, P < 0.001, Figure 2.5, Table 2.4). The CL was not related to

threat  response in  any of  the  groups (spiny-cheek crayfish (male):  rS = −0.046,  P = 0.87;  spiny-cheek

crayfish (female): rS = 0.149, P = 0.60; marbled crayfish (aquarium): rS = −0.321, P = 0.29; marbled crayfish

(naturalized): rS = 0.217, P = 0.40. Remarkably, marbled crayfish frequently stopped and ducked in response

to the approaching threat (37% or 47% for aquarium or naturalized marbled crayfish, respectively), whereas

spiny-cheek  crayfish  did  not  show  such  behavior.  Male  spiny-cheek  crayfish  mainly  responded  with

aggression (93% of all trials), whereas females mostly displayed flight behavior (93%). If not “freezing” in

response  to  a  threat,  marbled  crayfish  most  often  fled  from  the  threat  (62% or  37%  for  aquarium  or

naturalized marbled crayfish, respectively). Aquarium marbled crayfish did not fight, whereas naturalized

marbled crayfish showed fight behavior in about 15% of the trials.

Table 2.4 - Chi-square statistics (χ2) of all pairwise comparisons between groups of crayfish and among all 
groups tested for their threat response.

Comparison χ2 P

spiny-cheek (female) vs. spiny-cheek (male) 19.29 <0.001

marbled crayfish (naturalized) vs. marbled crayfish (aquarium) 3.20 0.21

spiny-cheek crayfish vs. marbled crayfish (species) 21.96 <0.001

marbled crayfish (aquarium) vs. all naturalized crayfish (origin) 7.20 0.055

all female crayfish vs. male spiny-cheek crayfish (sex) 35.81 <0.001

comparison between all groups 50.44 <0.001

Notes: P-values are corrected for multiple testing using the Bonferroni-Holm method.
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Figure 2.5 - The percentage of displayed behaviors in response to a simulated threat for spiny-cheek
crayfish of either sex and marbled crayfish from aquarium and naturalized populations. The behaviors
displayed encompass aggressive behavior (dark grey bars),  freezing (grey bars)  or  flight  behavior
(light grey bars).
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Discussion

Differences between species and implications

Our results illustrate some of the key behavioral characteristics in invasion success of crayfish. In the

over-invasion  scenario  we  investigated,  the  recently  invading  marbled  crayfish  were  able  to  dominate

resident spiny-cheek crayfish of either sex in agonistic encounters even if their opponents were larger and

had larger claws.

Aggressiveness  has  been  one  of  the  main  behavioral  traits  associated  with  species  displacement  in

crayfish (Capelli and Munjal 1982, Usio et al. 2001). So far, interspecific aggression has only been tested for

juveniles  of  marbled  crayfish  interacting  with  red  swamp  crayfish  (Procambarus  clarkii),  which  were

similarly aggressive (Jimenez and Faulkes 2011). As we demonstrated here, the lack of sexual dimorphism

does  not  constrain  the  ability  of  marbled  crayfish  to  win  agonistic  encounters  against  another  species.

Aggressive dominance also translates to superiority in competition over shelters, an important resource for

crayfish that relieves them from predation pressure (Gherardi and Daniels 2004, Moore 2007). Thus, we

assume  that  preferred  resources  of  spiny-cheek  crayfish  like  shelters  would  be  frequently  occupied  by

invading marbled crayfish where both species co-occur.

In former invasions of North American species across Europe, interspecific competition between crayfish

was mostly no relevant determinant of invasion success because the crayfish plague (Aphanomyces astaci,

Leptolegniaceae) often completely eradicated native competitors before or shortly after introduction of non-

native crayfish (Gherardi and Holdich 1999). The die-off of potential competitors and its high tolerance

toward poor habitat quality probably had a major effect on the former success of spiny-cheek crayfish. There

is  surprisingly  little  work  on  the competitive  ability  of  spiny-cheek crayfish in  contrast  to  other  major

invasive crayfish in Europe like the red swamp crayfish or the signal crayfish (Pacifastacus leniusculus). In

the  few  available  studies  on  spiny-cheek  crayfish  aggression,  they  were  usually  inferior  in  agonistic

encounters (either in their native range against an invader or against another invader in their introduced range

(Klocker and Strayer 2004, Hudina et al. 2011). It should be noted that the average aggression level of the

tested spiny-cheek crayfish might be even lower since they were caught with traps, which can select for

aggressive individuals (Ogle and Kret 2008).

In the invasion scenarios we are facing today, crayfish plague-resistant species over-invade other plague-

resistant species, and the traits and interactions with the community will become paramount for distribution

and impacts of crayfish (Russell et al. 2014, James et al. 2016). In general, species distributions and impacts

in novel  communities  and ecosystems can probably be better  understood when considering the time of

introduction  of  species  rather  than  simply  dividing  species  into  native  and non-native  ones.  The  latter,

dichotomous classification is often based on a reference year, for example, 1492 which is sometimes rounded
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to 1500 (DAISIE 2009):  Species  present  before  this  year  are considered native,  and species  introduced

thereafter are considered non-native.  A finer approach considering the time of introduction and the eco-

evolutionary experience of introduced and resident species (Saul and Jeschke 2015) seems to be a promising

way forward.

Behavioral syndromes

We also explored the flexibility and the correlations among behaviors (i.e., behavioral syndromes). We

observed two traits in particular that are beneficial during the introduction and spread of species: Higher

aggression  jointly  with  higher  activity  was  observed  in  marbled  as  compared  to  spiny-cheek  crayfish.

Positive correlations of aggressiveness and activity have been referred to as so-called aggression syndromes

in invasive species (Sih et al. 2004, Pintor et al. 2009). Our results suggest that marbled crayfish exhibit such

an aggression syndrome which can lead to more agonistic encounters, but may also be positively related to

attacks on prey, that is, increased foraging rate (Sih et al. 2004, Sih and Bell 2008, Pintor et al. 2009). Both

would facilitate species displacement through either interspecific aggression or competition for resources.

Thus far, marbled crayfish have not outcompeted spiny-cheek crayfish in water bodies where both species

co-occur (Chucholl and Pfeiffer 2010). Trade-offs associated with the aggression syndrome, for example,

higher intraspecific aggression, might limit the success of marbled crayfish. Elevated intraspecific aggression

levels might, for example, constrain marbled crayfish densities. We did not include intraspecific aggression

in our study design, but from our observations in communal tanks, we suspect intraspecific aggression to be

low. High genetic relatedness has been shown to lower intraspecific aggression in insects (Carazo et al. 2014,

Jandt et al. 2014), but marbled crayfish also form dominance hierarchies (Luna et al. 2009).

Marbled crayfish might also suffer higher predation rates despite similar activity levels because their

antipredator behavior (i.e.,  threat response) is not appropriate or their morphology makes them easier to

attack. After handling both species for years, we have the impression that spiny-cheek crayfish have a thinner

carapace and they have, as their name implies, spines in contrast to marbled crayfish. To our knowledge, data

on exoskeleton thickness are not available in the literature for either species. We also noted that, if lifted up,

spiny-cheek crayfish pull their legs together beneath the carapace and the abdomen to form a spiny ball that

is difficult to swallow for gape-limited predators like fish. The importance of the aggression syndrome for

population dynamics and invasion success should therefore be examined in relation to predators foraging on

marbled crayfish (Pintor et al. 2009).

Species  displacement  in  crayfish  can  take  decades,  as  a  long-term  study  on  a  Finnish  lake  has

demonstrated  (Westman  et  al.  2002).  Higher  reproduction  rates,  activity,  and  aggressive  behavior  were

suspected to promote the displacement of noble crayfish (Astacus astacus) by plague-free signal crayfish in

the Finnish lake, but the mechanisms of displacement have remained unclear.
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Individual differences in behavior are often linked to variation in life-history parameters and morphology.

Biro et al. (2014) found that individual differences in life-history and behavior of common yabby ( Cherax

destructor)  express  very  early  in  life,  and  variation  might  arise  primarily  from  genetic  or  permanent

environmental  effects.  The limited genetic diversity  of marbled crayfish,  however,  should not  allow for

significant  effects  on  variability  in  behavior.  Permanent  environmental  effects  such  as  maternal  effects,

epigenetic effects, and other effects that influence development already before hatching can be the cause for

this  variation  (Dochtermann  et  al.  2015).  For  example,  clonal  Amazon  mollies  (Poecilia  formosa)

consistently showed individual  variation in behavior among isogenic individuals reared in isolation, and

social experience during ontogeny had no effect on individual behavioral variation (Bierbach et al. 2017). In

marbled crayfish, developmental variation probably explains much of the variation in coloration, growth,

lifespan, reproduction, number of sense organs, and behavior, even when they are reared under identical

conditions (Vogt et al. 2008). The emergence of personality and its genetic basis are yet barely understood,

and studies on isogenic marbled crayfish might help deepen our understanding.

Will these behaviors promote marbled crayfish invasions?

We presented evidence that  marbled crayfish are more aggressive and active competitors than spiny-

cheek  crayfish.  Risk  assessments  confirm  that  marbled  crayfish  have  many  traits  promoting  high

invasiveness (Twardochleb et al. 2013, Chucholl and Wendler 2017). For example, marbled crayfish cope

well  with low water temperatures despite their  origin in warm-water aquaria (Veselý et  al.  2015).  High

aggression  and  activity  together  with  high  potential  population  growth  rates  make  marbled  crayfish

exemplary for a fast pace-of-life species (Réale et al. 2010). Marbled crayfish have a higher reproductive

potential than most other crayfish, as they lay more clutches and are not bound to mating seasons due to

parthenogenesis (Scholtz et al. 2003, Souty-Grosset et al. 2006). By parthenogenetic reproduction, marbled

crayfish overcome many challenges that invasive species face after introduction. For example, small founder

populations of marbled crayfish should not be impaired by failing to recognize conspecifics or mate choice

(Chapple  et  al.  2012).  A  single  marbled  crayfish  is  sufficient  to  establish  a  population.  However,

parthenogenetic reproduction also reduces adaptability to cope with parasites or changes in the environment.

Predation by native predators, for example, might limit the spread of marbled crayfish. The response to

threat  or  boldness  that  we  observed  in  marbled  crayfish  differs  from many other  crayfish  species.  We

expected marbled crayfish to respond inappropriately to a threat because organisms from the pet trade should

be naïve to threats. Fight-or-flight behavior is most often observed in crayfish as appropriate responses to

predation threats (Stein and Magnuson 1976). However, marbled crayfish ducked or seemed to freeze before

the approaching hand. We tried to minimize contacts with the crayfish during cleaning or feeding and never

approached them upfront,  but  their  aquarium legacy might  have  made  them more  used  to  handling.  A

comparable antipredator behavior was found in New Zealand big-handed crabs (Heterozius rotundifrons) that
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remained immobile when an enemy approached them (Hazlett and McLay 2005). Marbled crayfish have the

eponymous marbled pattern and might rely more on their camouflage, like it was reported for invasive green

crabs  (Carcinus  maenas;  Lohrer  and  Whitlatch  2002).  The  camouflage  made  marbled  crayfish  less

conspicuous than spiny-cheek crayfish when we caught them in the lakes. We also observed freezing when

we approached marbled crayfish in the lakes in a brisk and steady movement, but they still tail-flipped when

the movement was more sudden.

Also,  chemical  stimuli  might  have been more important  for  marbled crayfish to  elicit  tail  flips.  For

example, northern-clearwater crayfish (Orconectes propinquus) showed a stronger tail-flip behavior when

chemical and tactile cues were presented simultaneously (Bouwma and Hazlett 2001). We can only speculate

whether natural enemies like birds or fish are faced in an effective way. Active predators that can detect the

crayfish might prey more heavily on marbled crayfish than passive predators that rely on movement of their

prey. Studying predator–prey interactions with natural enemies would help to shed light on these questions

and could explain population dynamics in invaded lakes.

In the direct agonistic interactions, marbled crayfish sometimes did not  react  to the threat  display of

spiny-cheek crayfish  and  simply  ignored  them.  Ignoring  behavior  of  competitors  or  predators  is  rarely

included in behavioral studies on crayfish (Bergman and Moore 2003). However, ignoring was found to be

pronounced in marbled crayfish. It might be related to problems in sensing signals of the opponent. Chemical

communication via the urine plays an important role in intraspecific recognition and social dominance in

crayfish  (Breithaupt  2011);  agonistic  interactions  last  longer  when  chemical  cues  are  absent  (Zulandt

Schneider  et  al.  2001).  Both species  are  part  of  the  same family  (Cambaridae),  but  they are  relatively

distantly related (Martin et al. 2010). We speculate that marbled crayfish cannot recognize signals of the

opponent and engage more strongly in agonistic interactions.

Aquarium vs. naturalized populations of marbled crayfish

We compared a  naturalized and an aquarium population of  marbled crayfish to  look for  changes in

behavior. In contrast to our predictions, no differences were found in aggressiveness, and small differences in

boldness toward a threat. As marbled crayfish are generally more aggressive than spiny-cheek crayfish, they

do not have to elevate aggressiveness in sympatry to better compete in agonistic encounters. By contrast,

resident  spiny-cheek  crayfish  that  live  in  sympatry  with  marbled  crayfish  might  have  adapted  their

aggressiveness. For example, native populations of virile crayfish (Orconectes virilis) have been shown to be

more aggressive when they had prior experience with invading rusty crayfish (Orconectes rusticus; Hayes et

al. 2009). Additional trials with sympatric spiny-cheek crayfish, which we did not test, might show more

elevated aggression levels in these populations. Hayes et al. (2009) asked whether behavioral flexibility or

evolution of genotypes in naïve and experienced populations underlie this difference. Marbled crayfish are

genetically  uniform due  to  parthenogenesis  (see  Martin  et  al.  2007),  and  behavioral  differences  should
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therefore be mostly linked to behavioral flexibility or learning, respectively. However, the correlation of

activity and aggressiveness was not decoupled by adapting a lower activity in naturalized marbled crayfish,

but instead persisted on a different level. Some individuals seem to be generally more aggressive and active

than others, but are still flexible enough to adapt their activity to different environments.

Naturalized marbled crayfish had a lower activity level than aquarium animals and mimicked the activity

levels of spiny-cheek crayfish. Rearing conditions in early juvenile stages might have had an influence on

their activity. However, the marbled crayfish from the aquarium were reared under similar, stable laboratory

conditions. In the critical phase after introduction of a new species, flexibility in behavior is crucial for

survival and helps to overcome the problem of small propagule size (Sagata and Lester 2009). Invaders often

lack experience in ecological interactions with competitors, prey, and predators (Saul and Jeschke 2015).

Invasive signal crayfish, for example, reduced shelter use and increased their foraging activity despite the

presence  of  predator  cues  (Hirvonen  et  al.  2007).  Behavioral  flexibility  can  counteract  potentially

maladaptive responses (Wright et al. 2010). The lower activity in naturalized marbled crayfish could be a

response to predation. For example, European eels (Anguilla anguilla) reduced foraging activity in invasive

red swamp crayfish (Aquiloni et al. 2010). In a recent study on rusty crayfish, Reisinger et al. (2017) found

that prior experience had a strong effect on activity (i.e., time spent walking or feeding) in the presence of

predatory smallmouth bass, but not when predators were absent (Micropterus dolomieu). However, they also

found that crayfish raised with predatory fish exhibited reduced activity levels in general. We found activity

to be lower in experienced individuals even in the absence of predators, which can be attributed to a high

capacity of flexible behavior and a notable memory capacity. Invasive crayfish and crabs are behaviorally

flexible and able to learn and memorize new predation cues quickly (Hazlett et al. 2002, Roudez et al. 2008).

Leaving the shelter to forage is very risky in an environment with predators. Naturalized individuals that

have experienced predation seem to have adapted their activity and memorized predation threat also under

safe laboratory conditions.

Conclusions

Ecological consequences of over-invasions, specifically the interactions of invaders with other invaders in

the  community,  are  largely  unknown  (Russell  et  al.  2014).  The  recent  success  of  marbled  crayfish  in

establishing new populations  might  be  influenced by their  superiority  in  agonistic  encounters  and  their

behavioral flexibility. Marbled crayfish seem to be very adaptive and have the potential to competitively

exclude or coexist with the most common invasive crayfish in Central Europe when competing for limited

resources. Furthermore, experience with natural conditions can reduce activity of invasive crayfish. Marbled

crayfish that originated in the aquarium trade showed that they adapt their behavior to the new environment.

This  trade-off  between  foraging  and  defense  might,  however,  limit  the  impact  of  marbled  crayfish.

Behavioral syndromes in marbled crayfish can occur despite genetic uniformity and thus should stem from
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permanent environmental effects. Our results from the laboratory explain important behavioral mechanisms

behind crayfish over-invasions and reveal large behavioral variability in an isogenic crayfish. To predict

invasion success and assess ecological risks in nature, the species’ reproductive biology, feeding behavior,

and predator– prey relationships in the community should be considered. Marbled crayfish (and spiny-cheek

crayfish)  have  been  listed  in  the  new  EU  regulation  on  invasive  alien  species  (No  1143/2014).  This

regulation lays the foundation for the prevention of further spread and future introductions of non-native

crayfish.
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Appendix B

Figure B.1 - Chela length (in mm) plotted against carapace length (in mm) for spiny-cheek crayfish
males  (open circles;  N = 52),  spiny-cheek crayfish females  (solid  circles;  N =28)  and all-female
marbled crayfish (dark green triangles; N = 81). Regression lines: spiny cheek crayfish females: Chela
length ~ −4.66 + 0.7·CL (t = 18.26, P < 0.001, adj. R² = 0.92); spiny-cheek crayfish males: Chela
length ~ −17.15 + 1.23·CL (t = 26.45, P < 0.001, adj. R² = 0.93); marbled crayfish: Chela length ~
−2.33 + 0.64·CL (t = 35.46, P < 0.001, adj. R² = 0.94).
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Table B.1 - Linear mixed-effects models of adjusted aggression score (adj. AS) analysis. All models include 
the individual as random factor. Indicated positive or negative effects of variables relate to the values of these
variables given in brackets (m = male, SC = spiny-cheek crayfish, aq = aquarium origin); these are compared
to female marbled crayfish from the field as reference. The table lists all models with decreasing Akaike's 
model weight (AIC).

Model delta-AIC AIC weight

− species(SC) + size 0 0.22057

species(SC) + size − species(SC):size 1.291 0.11567

− species(SC) + size + origin(aq) 1.686 0.09494

− species(SC) + size − sex(m) 1.978 0.08204

− species(SC) + size + sex(m) − sex(m):size 2.497 0.06329

species(SC) + size + origin(aq) − species(SC):size 2.851 0.05302

− species(SC) 3.018 0.04878

species(SC) + size − sex(m) − species(SC):size 3.291 0.04255

− species(SC) + size + origin(aq) − sex(m) 3.662 0.03535

− species(SC) + size − origin(aq) + origin(aq):size 3.672 0.03517

− species(SC) + size + origin(aq) + sex(m) − sex(m):size 4.059 0.02898

− species(SC) + size + sex(m) + species(SC):size − sex(m):size 4.497 0.02328

species(SC) + size + origin(aq) − species(SC):size − origin(aq):size 4.788 0.02013

species(SC) + size + origin(aq) − sex(m) − species(SC):size 4.851 0.01951

− species(SC) + origin(aq) 4.983 0.01826

− species(SC) + sex(m) 5.007 0.01804

− species(SC) + size − origin(aq) − sex(m) + origin(aq):size 5.65 0.01308

− species(SC) + size + origin(aq) + sex(m) − sex(m):size − origin(aq):size 6.007 0.01094

− species(SC) + size + origin(aq) + sex(m) − species(SC):size − sex(m):size 6.056 0.01068

species(SC) + size + origin(aq) − sex(m) − species(SC):size − origin(aq):size 6.787 0.00741

− species(SC) + sex(m) + origin(aq) 6.973 0.00675

size + origin(aq) − sex(m) 7.178 0.00609

size + origin(aq) + sex(m) − sex(m):size 7.231 0.00593

− species(SC) + size + origin(aq) + sex(m) − species(SC):size − sex(m):size − 
origin(aq):size 7.992 0.00406

size − sex(m) 8.26 0.00355

size + sex(m) − size:sex(m) 8.606 0.00298

sex(m) + size + origin(aq) − sex(m):size − origin(aq):size 9.058 0.00238

− sex(m) + size + origin(aq) − origin(aq):size 9.176 0.00224

size + origin(aq) 9.491 0.00192

size + origin(aq) + size:origin(aq) 11.49 0.00071

origin(aq) − sex(m) 11.772 0.00061

− sex(m) 11.821 0.0006

origin(aq) 13.462 0.00026

size 14.54 0.00015

null model 16.717 0.00005
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Figure B.2 - Standardized counts (by sample size) of the different scores corresponding to different
behaviors in agonistic encounters.  The counts are given as the total number of recorded behaviors
divided by the number of trials (N) for spiny-cheek crayfish males (open bars), spiny-cheek crayfish
females (black bars) and marbled crayfish from aquaria (light green bars) and naturalized populations
(dark green bars).
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Table B.2 - Generalized linear mixed-effects model results of activity analysis. All models include the
individual as random factor. Indicated positive or negative effects of variables relate to the values of these
variables given in brackets (m = male, SC = spiny-cheek crayfish, aq = aquarium origin); these are compared
to female marbled crayfish from the field as reference. The table lists all models with decreasing Akaike's
model weight (AIC).

Model delta-AIC AIC weight

origin(aq) – size 0.000 0.16063
origin(aq) 0.403 0.13132

origin(aq) – size – origin(aq):size 1.427 0.07870

sex(m) + origin(aq) – size – sex(m):size 1.465 0.07722

sex(m) + origin(aq) – size – sex(m):size – origin(aq):size 1.779 0.06600

sex(m) + origin(aq) – size 1.890 0.06243

– species(SC) + origin(aq) – size 1.985 0.05954

sex(m) + origin(aq) 2.276 0.05148

– species(SC) + origin(aq) 2.400 0.04838

– species(SC) + sex(m) + origin(aq) – size – sex(m):size 3.218 0.03214

sex(m) + origin(aq) – size – origin(aq):size 3.312 0.03066

– species(SC) + origin(aq) – size – origin(aq):size 3.418 0.02908

– species(SC) + sex(m) + origin(aq) – size – sex(m):size – 
origin(aq):size

3.588 0.02671

– species(SC) + sex(m) + origin(aq) – size 3.614 0.02637

species(SC) + origin(aq) – size – species(SC):size 3.837 0.02359

– species(SC) + sex(m) + origin(aq) 4.074 0.02095
– species(SC) + sex(m) + origin(aq) – size + species(SC):size – 
sex(m):size

4.450 0.01736

species(SC) + origin(aq) – size – species(SC):size – origin(aq):size 4.742 0.01500

– species(SC) + sex(m) + origin(aq) – size – origin(aq):size 5.066 0.01276
– species(SC) + sex(m) + origin(aq) – size – species(SC):size – 
sex(m):size – origin(aq):size

5.382 0.01089

species(SC) + sex(m) + origin(aq) – size – species(SC):size 5.423 0.01067
species(SC) + sex(m) + origin(aq) – size – species(SC):size – 
origin(aq):size

6.304 0.00687

– species(SC) – size 12.357 0.00033

– species(SC) + sex(m) – size 14.099 0.00014

– size 14.239 0.00013

– species(SC) – size + species(SC):size 14.263 0.00013

– species(SC) + sex(m) – size + species(SC):size – sex(m):size 14.522 0.00011

– species(SC) + sex(m) – size – sex(m):size 14.678 0.00010

– sex – size 14.870 0.00009

sex(m) – size – sex(m):size 15.472 0.00007

– species(SC) + sex(m) – size + species(SC):size 16.025 0.00005

– species(SC) 16.397 0.00004

– species(SC) + sex(m) 18.213 0.00002

null model 19.004 0.00001

sex(m) 19.166 0.00001

105





CHAPTER 3: ECO-EVOLUTIONARY EXPERIENCE AND INNOVATION

Chapter 3: Eco-Evolutionary Experience and Behavioral 
Innovation in Interactions with Non-Native Species

In revision at Behavioral Ecology as:

Ruland  F,  Meltl  AA,  Neugebauer  MS,  Jeschke  JM.  Eco-Evolutionary  Experience  and  Behavioral

Innovation in Interactions with Non-Native Species.

Abstract
Behavioral  changes  have  been  recognized  to  play  an  important  role  in  human-induced  rapid

environmental change (HIREC). In the context of biological invasions, both native and non-native species

can change their behavior. The level of eco-evolutionary experience (EEE) of native and non-native species

is also relevant, as it potentially relates to (a) the impact of non-native species and thus (b) the necessity of

native species to be innovative. We developed classification schemes to score both EEE and the degree of

innovation in  behavioral  changes  (adjusted  innovation  gradient,  AIG).  We applied  these  schemes  to  81

records  of  native  vertebrate  species  that  have  changed their  behavior  when interacting  with  non-native

species (39 records for birds, 21 for mammals, 21 for amphibians). We found that native species with high

EEE tend have a positive population trend when interacting with non-native species, whereas the opposite is

true for native species with low EEE. Our results also show that species with low EEE show more innovation

than species  with  high EEE.  Thus,  innovation by native prey  species  was often insufficient  to  counter

negative  effects  of  non-native  species.  This  study gives  insights  on  the  interconnectedness  of  the  eco-

evolutionary experience of native with non-native species, the role of animal innovation and the effects of

both on population dynamics of native species. Furthermore, it provides two new classification schemes that

we hope will be useful for future studies of animal behavior and inform conservation ecology.

Keywords: behavioral flexibility, biological invasions, ecological novelty, global change, eco-
evolutionary experience, animal innovation
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1 - Introduction
Animal behavior has been recognized to be a crucial mechanism for animal species to cope with all forms

of human-induced rapid environmental change (HIREC, Sih 2013) including biological invasions (Holway

and Suarez 1999). The number of publications on the role of behavior in invasions has greatly increased over

the last 20 years. These studies follow different goals and apply different methods. For example, some aim at

explaining the success of invasive species by their behavioral flexibility (e.g. Wright et al. 2010; Sol et al.

2012),  whereas  others  focus on  the  behavior  of  native species  interacting  with  non-native  species  (e.g.

Schlaepfer et al. 2005; Berthon 2015).

While innovative behavior and high plasticity are considered beneficial for both native and non-native

species  (Griffin  and  Guez  2014),  their  quantification  has  remained  difficult  (Logan  and  Logan  2016).

Methods from other fields are either too detailed to be used for quantitative data collection (Ramsey et al.

2007) or focus on feeding behavior as the most reported type of innovation (Overington et al. 2009; Ducatez

et al. 2014). While the latter has been very useful to, for example, predict bird invasion success in New

Zealand  (Sol  and  Lefebvre  2000),  feeding  behavior  accounts  for  less  than  half  of  behavioral  changes

reported in empirical  studies (Ruland and Jeschke,  submitted).  Thus,  other types of innovative behavior

cannot be quantified with this existing method.

In addition, it has been hypothesized that the eco-evolutionary experience (EEE; Saul et al. 2013; Saul

and  Jeschke  2015)  of  interacting  native  and  non-native  species  can  predict  invasion  success.  While

evolutionary adaptations after the onset of the interaction are widely documented (Prentis et al. 2008; Moran

and Alexander 2014), the EEE concept synthesizes evidence of how a priori experience with similar species

can shape the outcome of the interaction, may they be framed as contact  experience (Kondoh 2006) or

evolutionary legacy (Pianka 2000). The degree of familiarity and the corresponding appropriateness of the

behavioral response has been described in the framework of naiveté (Banks and Dickman 2007), which has

recently been connected to the shared evolutionary history of the interacting species (Steindler et al. 2018).

The consequences of interactions between native and non-native species vary greatly and are of high

conservation concern (Keller, Cadotte and Sandiford 2015): While some native species are not affected by

invasion or even benefit from an invader, for example as a novel food source (Wlodarczyk and Janiszewski

2014), populations of other native species collapse (Blackburn et al. 2004). Saul and Jeschke (2015) have

worked out how EEE should affect the consequences of interactions between native and non-native species,

but have not provided an easy-to-use framework on how to measure EEE. In addition to measuring EEE, we

here  additionally  consider  the  importance  of  behavioral  innovation,  as  highly  innovative  native  species

should be better able to mitigate negative effects of non-native species than less innovative species.
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In this study, we thus measure and analyze both innovation in behavior and eco-evolutionary experience

of native species interacting with non-native species, and investigate how these affect population trends of

the native species. Our study focuses on mammals, birds and amphibians, and we addressed the following

three research questions: (1) Do taxonomic groups differ in the types of behavior they change? (2) Do these

types of behavior differ in their degree of innovation? (3) Do taxa differ in the degree of innovation within

our dataset?

Furthermore,  we  addressed  the  following  three  hypotheses:  (Hypothesis  H1)  There  is  a  negative

correlation between EEE and innovation, as invaders similar to the ecological environment of the native

species do not require the native species to drastically change its behavior. (Hypothesis H2) More innovative

behavior  should  lead  to  a  more  positive  outcome of  the  interaction  for  the  native  species  in  terms  of

population trend compared to less innovative behavior. In other words, there should be a positive correlation

between the degree of innovation and population trend. (Hypothesis H3) A higher level of eco-evolutionary

experience of  the  native species  interacting with the  non-native species  should lead to  a  more positive

outcome in terms  of  population  trend.  Hence,  there  should be a  positive  correlation  between EEE and

population trend.

2 - Material and Methods

2.1 Data collection
All records  of  behavioral  change come from the systematic  literature review of Ruland and Jeschke

(submitted). For this study, the Web of Science database was searched for studies documenting behavioral

change during species invasions using a general search string. A study was selected as eligible when either

the native or non-native species was documented to show a behavioral change since or during the invasion.

The dataset used in this study was restricted to behavioral changes in native species. We included birds as the

most numerous taxon in our dataset as well as mammals and amphibians as taxa with a different expected

observed degree of innovation in behavior.

While the original dataset also contains cases of behavioral change associated with other species or the

abiotic environment, the present study focuses on changes in interactions with the non-native species. We

used the six mutually non-exclusive types of behavior defined in the original publication (Ruland & Jeschke,

submitted):  "feeding",  "predator  or  parasite  avoidance"  (henceforth  called  "defense"),  "mating",

"competition",  "thermoregulation,  hydration  and  oxygenation"  (henceforth  called  "climate")  and

"locomotion".

For all native species, we checked if the population dynamics were positive, stable or negative after the

arrival of the non-native species. Information was - if available - taken directly from the original publication.

If not, the authors of the study were contacted which were in many cases the most knowledgeable experts of
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the system. The population trend had to be directly related to the invasive species. We also checked available

information on the IUCN Red List of Threatened Species (IUCN, 2018) and the Encyclopedia of Life (EOL,

2018). Only if the respective population trend of the focal native species was known for the location and

directly related to the invasive species did we use it in the analyses.

Of the six types of behavior defined in the original publication (Ruland & Jeschke, submitted), five were

present in this subset (Figure 3.1). Most cases of behavioral change documented changes in feeding behavior

(42.2%), closely followed by predator and parasite avoidance behavior (35.3%). The remaining types of

behavioral change accounted for less than a third of the total mentions of types of behavior with mating

behavior (10.8%),  locomotion behavior (7.8%) and competition (3.9%).  For later analysis of differences
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between types of behavior, we split the records of behavioral change into "feeding" (43 records), "defense"

(36 records) and "other" (10 records of behavioral change not connected to defense or feeding). Types of

behavior are mutually non-exclusive, therefore numbers add up to more than 81.

2.2 Classification schemes
Our innovation gradient (IG) scheme consists of four questions, all about the new behavior displayed by

the native species (Figure 3.2). The first question asks if the behavior has been observed before. If that is the

case, we follow the left branch and ask if the focal species displays the behavior with a different rate than

before; if not, we arrive at a score of 0 (no new behavior); if yes, the score is 1 (modification of behavior). If

the behavior has not been observed before, we ask if the object of interest is new; if yes, the IG is increased

by 2. If this is the only question that is answered positively, the final score is 2 and the new behavior is an

object innovation. If the object of interest is new and the behavior is additionally displayed with a different

rate than before, the total score is 3 and the new behavior is a modified object innovation. Analogously to

Overington et al.’s (2009) classification scheme related to feeding behavior, the next question is if the action

pattern of the behavior is new. Such a new action pattern was, for example, observed in the black-capped

chickadee (Poecile atricapillus) in Western Montana (Ortega et al. 2014). The exotic pest control Urophora

sp. larvae are commonly found in risky open habitat on the invasive spotted knapweed (Centaurea stoebe).

The larvae can be accessed by a new hovering technique that black-capped chickadees now show and which

minimizes time in the open habitat. Since such a new action pattern is a strong innovation – stronger than the

object innovation – an increment of 4 is given. That means when only this question is answered with yes, we

arrive at a score of 4 (technical innovation). An innovation can be both on a new object and by a new

technique, resulting in a total score of 6 (invention). There is no possibility for a total score of 5, as the action

pattern cannot be new and the behavior at the same time not be defined as new.

As our dataset represents a special ecological situation, we adapted the innovation gradient,  hereafter

called the adjusted innovation gradient (AIG). In all studies used in our analyses, the non-native species is

the stimulus for the change in behavior. It is very common that the non-native species is also the new object

of interest which overestimates the degree of innovation in the focal species in our study. Therefore, in the

AIG the total score is reduced by 2 if the object of interest was the non-native species itself (see dashed box

in Figure 3.2). Object innovations are still regarded as such as long they are not directed towards the non-

native species. For example, there was a shift towards steeper habitats of the Tibetan argali (Ovis ammon

hodgsoni)  in  Ladakh,  India,  after  the  arrival  of  competing sheep and goats  (Namgail  et  al.  2007).  The

introduced grazers are the stimulus for the behavioral change in the argali, but the new object of interest is

the steeper habitat and not the species. While the IG was developed to score the level of innovation in all

kinds  of  species  across  types  of  behavior  and  interactions,  in  our  subset  the  AIG gives  more  reliable

information without circularity.
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Figure 3.2 - Classification scheme for the eco-evolutionary experience. Questions relate to the non-
native species interacting with the focal native species. Scores are added up from the top to the
bottom.

The eco-evolutionary experience of the focal native species interacting with the non-native species was

scored by applying a framework with three questions about the characteristics of the non-native species in

relation to the native species (Figure 3.3). First, does the non-native species represent a new guild in the

community? When addressing this question,  we followed Root’s (1967) guild definition as "a  group of

species that exploit the same class of environmental resources in a similar way". The second question is if the

non-native species shows traits that are new to the native species. And in the third question, we ask if this

trait/these traits serve a function in the interaction between the two species, thus defined as "direct functional

traits". If the answer to a question is "no", it means the non-native species is closer to the known environment

of the focal species, therefore the EEE score is raised by 1 (no new guild or no new trait) or 2 (no new direct

functional trait). Positive answers to the questions do not increase the EEE score. The final sum is therefore

between 0 (no EEE) and 4 (very high EEE). Scores are unambiguous except for a sum of 3 (high EEE) which

can result from either (i) a new guild but no new traits or (ii) no new guild but one or more new, not direct

functional, traits.
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Figure 3.3 - Classification scheme for the innovation gradient (IG) and adjusted innovation gradient
(AIG, see box). Questions relate to the behavior of the focal native species interacting with the non-
native species. Scores are added up from the top to the bottom.

To minimize subjectivity and arrive at a more robust score for EEE as well as AIG, we used a Delphi

consensus  method (Linstone  & Turoff  1975)  for  both  classification  schemes.  All  records  of  behavioral

change in our dataset were independently scored by two of the authors (AAM and MSN). We calculated

intra-class  correlation  coefficients  between  both  observers  for  EEE  and  AIG.  Second,  the  results  were

exchanged between both researchers, and each of them reassessed and possibly changed the scores for the

records in which the rankings differed. Third, the revised rankings were compared to identify records that

were still classified differently by the two researchers. Finally, there was a joint discussion between both

researchers and a third author, FR, as moderator to arrive at consensus for each of these remaining records.

Following this method, we were able to reach consensus about all EEE and AIG scores for all records of

behavioral change analyzed in this study. To quantify inter-observer reliability, we calculated the intra-class

correlation coefficient for EEE and AIG values.
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2.3 Statistical Analyses
To detect taxonomic differences in our dataset, we compared the distribution of types of behavior, EEE,

AIG and population trend between the three taxonomic groups. In order to test for differences between types

of behavioral change, we split  the distributions of EEE, AIG and population trend by the above defined

groups "feeding" (43), "defense" (36) and "other" (10). We used Fisher tests between each subset (taxon or

type of behavior) and the rest. As there were partly low estimated probabilities and many ties, we performed

100'000 p-value simulations per test.

To test for relationships between the parameters, we performed Kendall's tau correlation analyses, each

one for mammals, birds and amphibians separately as well as all combined. The correlations were calculated

between EEE and AIG, AIG and population trend as well as EEE and population trend. To decrease leverage

of single values and multiple observations per species/study, we performed bootstrap analyses with 10'000

simulations each (Davison & Hinkley 1997).  All  analyses were performed using the core package of R

(version 3.4.4), the "ICC" package (Wolak et al. 2012) and the 'boot' package (Canty & Ripley 2017).

3 - Results

3 -1 Distribution of variables across taxa

Types of behavior

The three taxonomic groups significantly differed in  the  occurrences  of  behavioral  types  (Table  3.1,

Figure 3.1). Birds were the only taxon to show changes in all five behavioral types in our study, and the only

ones to show changes in locomotion behavior. Amphibians changed their defense behavior most frequently,

while  feeding  behavior  changed  less  commonly  than  in  other  taxa.  The  range  of  behavioral  types  in

mammals was narrow with only three of five behavioral types covered.

Table 3.1 - P-values resulting from pairwise Fisher tests comparing each taxonomic group with the other
groups  for  occurrences  of:  (i)  types  of  behavior,  (ii)  adjusted  innovation  gradient  scores,  (iii)  eco-
evolutionary experience scores and (iv)  population trends.  All  tests  with 100'000 simulated p-values,  p-
values <0.05 are highlighted in bold.

Mammals Birds Amphibians
Types of Behavior 0.07 < 0.001 < 0.01

Adj. Innovation Gradient 0.33 0.0078 0.028
Eco-Evolutionary Experience 0.074 0.0081 0.0024

Population Trend 0.8 0.028 0.0068
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Adjusted innovation gradient (AIG)

The majority of AIG scores are either 0 or 1 (Figs. 4, 5). This is mostly because the object of interest was

often the non-native species in our subset of studies, and therefore many scores were reduced by 2 when

calculating  AIG  from  an  original  "object  innovation"  or  "modified  object  innovation".  The  effect  was

particularly strong in birds, where 21 records of behavioral change were known action patterns performed on

new objects of interest, resulting in an IG score of 2 and an AIG score of 0 because the new object of interest

was the non-native species. As a result, the AIG of birds is most commonly 0, and more frequently so than in

other taxa. On the other hand, they were the only taxonomic group showing a technical innovation without

object innovation (AIG of 4). This was, for example, the case for the O’ahu’elepaio (Chasiempis ibidis) in

Hawaii that started to build nests at elevated heights in order to avoid predation by the invasive black rat

(Rattus rattus) (Vanderwerf 2012).

"Modification of behavior" was most common for defense behaviors, for example an increased amount of

time spent hiding. Despite three cases of technical innovation directed to the non-native species, the most

common innovation in feeding behavior was a shift to the non-native species without changing predation

strategy (therefore resulting in an AIG score of 0). There was no case of a new technique involving a new

object of interest that was not the non-native species.
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Figure 3.4 - Adjusted innovation gradient (AIG) plotted against eco-evolutionary experience. Records of
behavioral change were split by taxonomic group of the native species (A) or type of behavioral change (B).
Results of all Kendall correlation analyses with 10'000 bootstrap simulations are given; Kendall's τ is in
brackets if 95%-confidence interval overlaps with 0. Sample sizes: mammals=21, birds=39, amphibians=21,
feeding=43, defense=36, other=10, all=81
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Eco-evolutionary experience (EEE)

The distribution of eco-evolutionary experience scores in our data is bimodal, with most species either

possessing EEE scores of 1 or 4 (Figures 3.4, 3.6). While mammals had the highest frequency of an EEE

score of 1, their distribution of EEE scores did not differ significantly from the other taxa. Birds showed a

significantly higher frequency of a score of 4 and the only record where a species had an EEE score of 2 (see

Table 3.1). The distribution of amphibian EEE scores also differed significantly from the other taxa, as it was

more homogeneous with a higher than average number of species with an EEE score of 3. Feeding behavior

changed significantly more frequently in cases of high EEE, while EEE was significantly lower for changes

in defense behavior (Table 3.2, Figure 3.4B).

Table 3.2 - P-values resulting from pairwise Fisher tests comparing each type of behavior (feeding, defense,
other)  with  the  remaining  types  for  occurrences  of:  (i)  adjusted  innovation  gradient  scores,  (ii)  eco-
evolutionary experience scores and (iv) population trends between each taxon and the respective rest. All
tests with 100'000 simulated p-values, p-values <0.05 are highlighted in bold.

Feeding Defense Other
Adj. Innovation Gradient < 0.001 0.0035 0.85

Eco-Evolutionary Experience 0.0045 0.0036 0.35
Population Trend < 0.001 0.087 0.01
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Figure 3.5 - Adjusted innovation gradient (AIG) plotted against the population trend of the native species.
Records of behavioral change were split by taxonomic group of the native species (A) or type of behavioral
change  (B).  Results  of  all  Kendall  correlation  analyses  with  10'000  bootstrap  simulations  are  given;
Kendall's τ is in brackets if 95%-confidence interval overlaps with 0. Sample sizes: mammals=17, birds=26,
amphibians=10, feeding=31, defense=20, other=7, all=53.
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Population trends

Population trends were only counted for publications where reliable information was available (Figures

3.5, 3.6). The native species had a decreasing population in most cases, but roughly a third of the species

showed a positive population trend. Bird species had significantly different population trends, with most

species showing a positive trend (Table 3.1). Population trends of amphibians were significantly different

from the rest, with no species showing a positive trend (Table 3.1).

While species changing their feeding behavior more commonly showed a positive population trend than

species changing their defense behavior, this difference was not significant (Table 1.2, Figure 3.5B). Changes

in behavior not connected to feeding or defense, however, led to a significantly more negative population

trend.

Inter-observer reliability

We followed the categorization of inter-observer reliability as proposed in Cicchetti (1994) with ranges of

intra-class correlation coefficients (ICC) classified as poor (ICC < 0.4), fair (0.4 < ICC < 0.6), good (0.6 <

ICC < 0.75) and excellent (0.75 < ICC). Our results indicated fair inter-observer reliability for both EEE

(ICC = 0.46, p < 0.01) and AIG (ICC = 0.55, p < 0.001). To be more careful, we did not use the original

values, but values obtained from the consensus finding method for all subsequent analyses.
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Figure 3.6 - Eco-evolutionary experience (EEE) plotted against the population trend of the native species
interacting with the non-native species. Records of behavioral change were split by (A) taxonomic group of
the native species or (B) type of behavioral change. Results of Kendall correlation analyses with 10'000
bootstrap  simulations  are  given;  Kendall's  τ  is  in  brackets  if  95%-confidence  interval  overlaps  with  0.
Sample sizes: mammals=17, birds=26, amphibians=10, feeding=31, defense=20, other=7, all=53.
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3.2 – Correlation analyses

AIG and EEE

All correlations - in all taxa and all types of behavior - between the adjusted innovation gradient (AIG)

and  EEE  were  negative  (Figure  3.4).  There  was  a  significant  overall  negative  correlation  and  95%-

confidence intervals not overlapping with 0 for birds, feeding behavior and other types of behavior. This

correlation indicates - in line with our hypothesis H1 - that low eco-evolutionary experience is related to

more  drastic  changes  in  behavior.  In  other  words,  high  eco-evolutionary  experience  is  related  to  small

changes in behavior; there were no innovative changes in behavior with high eco-evolutionary experience

(Figure 3.4).

AIG and population trend

There was a negative relationship between AIG and population trend (Figure 3.5). Again, birds showed

the same correlation, also the subsets of feeding behavior and other types of behavior. This contradicts our

hypothesis H2, which expected innovative changes in behavior to be beneficial for the focal species. This

was, however, only indicated in defense behavior, which showed a weak positive correlation between AIG

and population trend. A big change in behavior does not seem to be beneficial in itself for the native species

interacting with the invader.

EEE and population trend

In line with our hypothesis H3, eco-evolutionary experience was a significantly positive predictor for the

population trend over all records combined (Figure 3.6). This seems to be driven mostly by bird species in

our dataset, as the sign of correlations for the other taxa was negative but insignificant (Figure 3.6A). There

was no significant correlation for changes in feeding or defense behavior, but EEE and population trend were

strongly positively correlated for changes in other types of behavior.

4 - Discussion

4.1 - Animal innovation is context-dependent
Animal innovation can be observed and documented in a wide range of contexts, either when researchers

actively looked for it and highlighted it in a publication, but also when the focus of a study lies elsewhere.

We are aware of the benefits of studies that look for keywords in papers to find records of animal innovation

as done in comparative studies in birds (Lefebvre et al. 1997) or primates (Reader and Laland 2002). In these

studies,  papers on innovation were found by a keyword search for innovative behavior and not  through

individual assessment by the researchers. While inter-observer reliability is higher when making decisions

about the degree of innovation in an observed behavior by keywords, it misses papers where innovative

behavior might have been described but not named as such. This is why we decided to look for more general
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terms like "shift" and "change", and individually assessed the degree of innovation. While our inter-observer

reliability  was only low, we followed the Delphi  consensus method to remove error from the data.  We

encourage researchers who will in the future use the classification schemes proposed here to also apply a

consensus method.

The dataset we used is particular in terms of the ecological setting where the observations of animal

behavior were made: all studies were conducted with a focus on native species that changed their behavior

after  the arrival  of  a non-native species.  First,  we excluded cases where species changed their  behavior

towards  the  abiotic  environment.  Second,  all  focal  native  species  changed  their  behavior  after  being

subjected to an environmental stimulus in the form of a new species. Our distinction between environmental

induction and innovation is therefore gradual (Ramsey et al. 2007). The definition of (Kummer and Goodall

(1985) of innovation being a "solution to a novel problem or a novel solution for a known problem" is split

by our classification scheme into a "solution to a novel problem" (object innovation) and a "novel solution

for  a  known problem" (technical  innovation).  We do not  distinguish  between innovation  and invention

according to Slater & Lachlan (2003, page 117), where innovations are the creation of new means in contrast

to inventions as the creation of new ends. In contrast, we defined inventions within the range of innovations,

which is in line with Ramsey et al.’s (2007, page 396) notion that inventions are "a subset of innovations".

The application of the innovation gradient scheme in our specific subset of observations of behavioral

changes in new species interactions was possible by accounting for the non-native species as the stimulus

(adjusted innovation gradient, AIG). We believe this step is important to remove circularity and inherent bias

towards more innovative behavior, and recommend everyone using our classification scheme in very specific

areas (e.g. urbanization) to do the same. This adjustment and the fact that innovation was not the focus of the

studies we used rendered the innovation score expectedly low. On the other hand, it increases the contrast

between observations in our study to better compare correlations with EEE and population trend in different

subsets  (taxa  or  types  of  behavior)  in  our  data.  This  helps  to  identify  the  innovators  among  natives

interacting with non-native species more clearly. Let us look at two examples. First, black-capped chickadees

(Poecile  atricapillus)  feeding  on  introduced  Urophora  larvae  in  western  Montana  showed  innovative

behavior by way of a novel hovering technique to pick the larvae from the seedheads of invasive spotted

knapweed (Centaurea stoebe) (Ortega et al. 2014). Second, the long-fingered bat (Myotis capaccinii) has

been documented to feed on invasive mosquitofish (Gambusia affinis) in North-Western Israel (Levin et al.

2006). This is not only a novel food item, but the first species of bats in the middle East where piscivory has

been shown. So in both cases, the change in behavior was more than a simple interaction with the stimulus

species.
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When scoring innovations of species more generally or when pooling observations from more diverse

ecological contexts, however, it is not necessary to adjust the innovation gradient, thus unadjusted IG scores

should then be used.

4.2 - Causes and population-level consequences of innovation
The consistent negative relationship between AIG and EEE across all  taxonomic groups and types of

behavior is supporting our hypothesis H1, according to which low EEE requires more innovative behavior.

This  indicates  high and sometimes unprecedented flexibility  in  for  example feeding mode (see the  two

examples above) triggered by a novel species. While this is a positive sign of species matching the degree of

innovation in their behavioral change to the degree of novelty in the invader, it is not clear if this behavioral

plasticity suffices to buffer adverse effects (Wong and Candolin 2015).

In fact, we found evidence that in the cases of native species dealing with non-natives, it often does not.

Contradictory to our hypothesis H2, the relationship between innovation and population trend was negative.

One  possible  underlying  factor  is  the  cost  of  innovation  (Hendry  2016).  Furthermore,  it  seems  that

innovative behavior of native species with low eco-evolutionary experiences was insufficient to effectively

respond to the non-native species. This was true for feeding and other types of behavior, whereas for defense

the relationship was positive (although not significant). 

Thus, while innovation seems to be generally beneficial to invasive species (Sol  and Lefebvre 2000;

Wright et al. 2010), the ecological situation for native species is quite different. Incorporating a new prey

species into the diet is - even though often beneficial – a rather optional choice, reacting to a new predator

with behavioral defense mechanisms is critical to survive. This logic can explain why innovation in a feeding

technique in response to a non-native species is less beneficial than innovation in a defense response against

predation.

4.3 - Naïveté and beneficial experience
The positive relationship between EEE and population trend is in line with hypothesis H3 outlined in the

Introduction. It means that native species failed to sufficiently adapt to those non-native species that are very

different from the types of species they interacted with in their evolutionary past (i.e. for which they have a

low EEE). Theory predicts this effect to be driven by native prey species failing to defend against a non-

native predator they are naïve to (Carthey and Banks 2014). In our data, however, we found this relationship

to be mainly driven by feeding and other types of behavior. This makes sense, as the selection of a new prey

item for a native species is a choice they can make (see above). If the native species recognizes the non-

native  prey  species  and has  the  necessary  predation  technique  in  its  behavioral  repertoire,  it  may start

incorporating the new species into its diet; this is optional, though, and not normally critical to survival. In

contrast and in order to survive, the native prey species will have to change its behavior under predation
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pressure of the non-native predator independently of its EEE. In such cases in which species had to change

defense behavior, we observed a negative relationship between EEE and population trend. Indeed, all three

cases of high EEE in our dataset showed a negative population trend (Figure 3.6); these were the Australian

common bushtail (Trichosurus vulpecula) and in two cases the common parsley frog in Europe (Pelodytes

punctatus).

Conclusions and outlook
This first application of our EEE and AIG classification schemes provided results for three groups of

vertebrates.  For  bird  species,  for  which  we  had  a  higher  number  of  records  than  for  mammals  and

amphibians, we have demonstrated clear relationships between EEE and AIG, population trend and EEE, and

population trend and AIG. Birds were in many ways the most convenient subset to work with, as they (i)

showed the most diverse changes in types of behavior, (ii) had most species diversity and (iii) their EEE

scores were most balanced. The sample size of birds with 39 records of behavioral change was roughly the

number of records in mammals and amphibians combined. Further analyses will have to be performed with

different  datasets  to  see  if  the  results  of  birds  can  be  reproduced  in  other  taxa  and  under  which

circumstances.  The  distinction  between  food-type  and  technical  innovations,  which  inspired  our  AIG

classification, was also designed for and applied to birds.

While our EEE classification scheme, including its integrated questions (Figure 3.2), is based on various

discussions and pre-analyses, additional questions can, of course, be added to make it more detailed and

adapt it for specific purposes. We do not believe, however, that a distinctly more complicated catalogue of

questions would generally be a good way forward, as it would require very detailed knowledge of both

species that will often be impossible to obtain, e.g. for rare or understudied species. Our approach was to

design a ready-to-use simple framework that still has predictive power in terms of how a non-native species

will affect a native species. Its application can lead to swifter action in order to protect species threatened by

invasion, and to a more diverse and quantifiable analysis of animal innovation.

The (A)IG innovation scheme can also be applied in other studies of animal behavior.  Compared to

previous studies (e.g. Overington et al. 2009), we extended the range of types of behavior that are now easy

to score. The (A)IG scheme can be used for future comparative or correlational analyses of innovation. In

Ruland and Jeschke (submitted), we showed that less than half of the types of behavioral changes observed

during species invasions fit the feeding category. Studying only cases of this category leaves an estimated

60%  of  changes  of  behavior  untapped,  a  source  of  data  we  hope  will  be  exploited  using  the  (A)IG

classification scheme. The search for big innovations will be easier if a larger set of data can be tapped using

the (A)IG scheme, and high scoring records can be studied more intensely thereafter. Applying the (A)IG

classification to invertebrates and species  that  are usually missed when looking for  innovative behavior

would be a particularly promising next step.
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Chapter 4: Climate and predator presence drive nest site and 
number of the common eider (Somateria mollissima) in West 
Iceland

In preparation as:

Jónsson JE, Ásgeirsson A, Ruland F. Climate and predator presence drive nest site and number of the 

common eider (Somateria mollissima) in West Iceland.

Abstract
The Northern Atlantic avifauna is  highly dependent  on resources from the sea due to  low terrestrial

productivity  and therefore  breeding success is  dependent  on climatic processes.  At the  same time,  high

breeding densities make colonies attractive targets for nest predation by terrestrial predators. The common

eider (Somateria mollissima) commonly breeds on islands in Breiðafjörður in West Iceland the moste remote

of which offer safety from predation by the native Arctic fox (Vulpes lagopus). In the 1930s, the American

mink (Neovison vison) was introduced and spread in the area in the late 1940s. We used data from two

archipelagos, Brokey (95 islands with data from 1892-2014) and Purkey (39 islands from 1986-2012) to

quantify the effect of climate fluctuations and predator presence on nest numbers. Our results show, how

eider breeding corresponded to resource availability approximated by the Atlantic-multidecadal oscillation

index  (AMO)  until  numbers  were  suppressed  by  the  mink  invasion.  Furthermore,  we  show  that  nest

relocation to isolated islands is an effective strategy against the native arctic fox but does not buffer adverse

effects of mink predation. When predators colonize a given archipelago, condensing nesting into safe islands

(inaccessible  to  predators)  may  be  the  only  option  to  maintain  a  colony.Our  study  shows  how  eco-

evolutionary experience can shape the outcome of native species responses to invasion.
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Introduction
The  ways  in  which  humans  shape  ecosystems  worldwide  are  diverse,  fast  and  drastic  with  species

introductions being among the most important factors threatening local biodiversity. It is often difficult to

disentangle these processes, as chlimate change happens simultaneously with species introductions and for

the latter often data of the ecosystem from before the introduction are lacking. The North Atlantic, a large

and  threatened  ecosystem,  is  undergoing  a  period  of  climatic  change  while  simultaneously  species  are

moving northward. Within lies the relatively young volcanic island Iceland is a distinct ecosystem more than

300 km from the next landmass. Its terrestrial productivity is low but it is an important breeding ground for a

large number of bird species due to highly productive waters around. That makes it 1) very sensitive to

climatic changes, especially changes that affect marine biota and 2) vulnerable to introduction of terrestrial

species by humans.

Effects of climate on Icelandic biota
Oceanic  conditions  can change dramatically  within a  short  period with prolonged future  impacts  on

ecosystems (Collie et al.  2004). Many studies on how climate change affects birds at high latitudes are

related  to  distribution  of  sea  ice  in  spring  or  how sea  ice  affects  predator  access  (Chaulk  et  al.  2006,

Lehikoinen et al. 2006, Dey et al. 2017) but in relatively ice-free regions climate change affects populations

via food webs (for example via mussel growth, see Waldeck and Larsson 2013), frequencies of storms or

inclement weather (Jónsson et al. 2009, 2013) or multi-stressor effects by combinations of these or other

unknown mechanisms (Bårdsen  et  al.  2018).  Some species  respond to  such  stochastic  regime shifts  in

oceanic conditions, seemingly without correlations to climate parameters (Agler et al. 1999, Flint 2013). A

regime shift is reflected in population data as a “turning point”, i.e. a major shift in trends which happens

before or after the climatic regime shift. Collie et al. (2004) defined regime shifts as “low-frequency, high-

amplitude changes in  oceanic  conditions  that  may be especially  pronounced in biological  variables  and

propagate through several trophic levels.” Regime shifts have been implicated in to changes in nutrient flows

within ecosystems and subsequent changes in species abundances in the North Atlantic, North Sea and the

Pacific (Alvarez-Fernandez et al. 2012, Beaugrand et al. 2014, Hátún et al. 2016).

The common eider (Somateria mollissima, hereafter eider) underwent several regime shifts due to climate

shifts and predation over the last century. With about 16% of the world population and 32% of the European

population  of  eiders  nesting  in  Iceland,  the  fluctuations  in  these  colonies  are  quite  important  (Birdlife

International 2018). Their nest initiation dates respond to warmer climate (D’Alba et al. 2010, Jónsson 2017)

and  there  are  mass  deaths  occured  in  the  especially  cool  summer  of  1918  following  a  harsh  winter

(Anonymous 1918, Guðmundsson 1918, Helgason 1919, Guðmundsson 1940, Jónsson et al. 2013). There are

two climate indices, the Atlantic Multidecadal Oscillation index (hereafter AMO) and the North Atlantic
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Oscillation index (hereafter NAO), both of which influence temperature, nutrient availability and therefore

the presence of  fish around Iceland (Alheit  et  al.  2014).  The presence of  nutrients in the water and its

implications  for  a  trophic  cascade  through plankton  to  crustaceans  and mollusks,  especially  during  the

breeding season of the eider, is an important "bottom-up" factor determining nest numbers and densities of

eiders (Fauchald et al. 2015). But also predator presence affects nesting of eiders and other seabirds.

Native and introduced predators
Predator presence can affect nesting of eiders and other seabirds (Gerell 1985, Nordström et al. 2002,

Barros et al. 2016). Only two mammalian predators live in Iceland (after all, there are 300 km to the next

mainland mass): 1) arctic fox (Vulpes lagopus hereafter fox) is the most significant predator on ground-

nesting birds in the Arctic (Petersen et al. 2015, Waltho & Coulson 2015) and has lived in Iceland since

before human settlement (Hersteinsson 2004, Dalerum et al. 2012), and 2) American mink (Neovison vison

hereafter  mink)  was  introduced in  Iceland in  1932 and  has  been  problematic  to  bird  populations,  like

elsewhere in Europe (Jónsson 2001,  Desholm et  al.  2002,  Nordström and Korpimäki 2004,  Chen 2016,

Stefansson et al. 2016).

Nesting on  offshore  islands  is  considered  an adaptation  against  arctic  fox predation (Schamel  1977,

Petersen et al. 2015) but such a strategy potentially is less effective against the semi-aquatic mink, unless the

islands  are  somewhat  isolated,  are  farther  from  shores  or  offer  some  sort  of  safety  (Nordström  and

Korpimäki 2004). Arctic fox is less able to reach island colonies some distances from shore (1 km or greater)

than the mink, which can reach the closest offshore islands, i.e. those 5-9 km from the shoreline (Björnsson

& Hersteinsson 1991, Jónsson 2001). Mink and arctic fox do not just predate on nests and females, they also

elicit  nest  relocation  (Dall  1875,  Petersen  et  al.  2015,  Barros  et  al.  2016),  delayed  nest  initation,  nest

relocation or even abandonment (Jónsson 2001, Chen 2016).

Most eiders nest therefore off-shore islands (5-9 km from shore or greater) or specific near-shore islands

(≤5 km from the shore) which land predators cannot reach (i.e. due to strong tidal currents between adjacent

islands or islands and mainland; Björnsson & Hersteinsson 1991). On the islands of Breiðafjörður, West

Iceland, eider generally is only affected by avian predators (Common Raven (Corvus corax), Gulls (Larus

spp.), White-tailed sea eagles (Haliaeetus albicilla). Most islands were completely safe from land predation

by the fox, but things changed with mink introduction in Breiðafjörður in 1948. It played an important role in

reductions  in  local  bird  populations  of  near-shore  islands,  including  those  of  eiders,  black  guillemot

(Cepphus Grylle),  and Atlantic puffin (Fratercula arctica) (Stefansson et al.  2016 and citations therein).

Mink dens are found annually on most near-shore Breiðafjörður islands until this day whereas arctic fox dens

were  rarely  found in  the  20th  century (Hallgrímsson and Petersen  2005).  This  means,  while  the  eiders

evolved a nesting strategy that was effective against arctic fox predation (Petersen et al. 2015), they had

significantly lower eco-evolutionary experience with the aptly swimming mink (Saul and Jeschke 2015).
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Species nesting in archipelagoes allow study of relationships between patch size, proximity, geographical

features and local population stability and also behavioral responses to predators (Nordström and Korpimäki

2004, Petersen et al. 2015). Eider down is harvested in Breiðafjörður for centuries and numbers of nests per

island are meticuosly documented per year by some families (Chen 2016). We were able to use a uniquely

long time-series of 95 islands in the Brokey archipelago (1892-2014) and a shorter time series of 39 islands

in the Purkey archipelago (1986-2012) to answer questions about the relationship of climate and predator

presence with eider nest density and location.

Goals and hypotheses
We analysed changes in nest numbers and nest distributions in the Brokey and the Purkey archipelagos.

First, we used the total nest numbers of the Brokey archipelago to calculate change points in populations

from 1892 to 2014. We were especially interested in potential correlation with the climate indices AMO and

NAO, as well as the effect of the arrival of the American mink in Breiðafjörður in 1948. We also took the

interaction between mink arrival and climate into account, as we were interested if the population was more

climate- or predator driven after 1948. We used the shorter time series combining Purkey and Brokey (1986-

2012), as well as of Purkey separately to test for similar climate correlations and a potential effect of the

return of the fox into the islands in 1998. While some islands are more or less attractive breeding grounds in

the presence of the two predators, we tested if the number of islands changed according to the climate and

predation factors in Brokey or Purkey over the respecite time series. Finally, we tested to nest densities on all

individual islands of both archipelagos and its correlation with the above parameters plus their area and

predator accessibility.
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Material and methods

Data sources

Eider nest data

Eider colonies are defined by ownership (Jónsson et al. 2013, Chen 2016), which in our study correspond

to the two archipelagos Brokey and Purkey in the south-east of Breiðafjörður (Figure 4.1, Björnsson et al.

1989, Jónsson et al. 2013). We used nest counts done annually in a consistent manner by the respective local

eider down collectors (see Jónsson et al. 2013), which maintain their ancestral homes, i.e. the Brokey and

Purkey properties,  for  summer farming,  such as small-scale sheep husbandry,  eider-down collection and

traditional egg collection (Björnsson et al. 1989).
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Figure 4.1 -  Map of the study area in  Breiðafjörður,  West  Iceland,  showing locations  of
Brokey  (Red  shape),  Purkey  (blue  oval),  mainland  municipalities  (Fellsströnd  and
Skógarströnd). Brokey and Purkey are 4 km from each other.



CHAPTER 4: EIDER POPULATION DYNAMICS IN WEST ICELAND

Climate data

In the  northern  hemisphere,  two main  indices  have been implicated as  indicators  of  climate  change

affecting biological systems: 1) ambient and oceanic temperatures, often indexed by regional indices such as

the Atlantic Multi-decadal Oscillation index (AMO; Trenberth et al. 2017) and 2) changes in frequencies and

occurrences of prevailing wind conditions or storminess; in Europe, the North Atlantic Oscillation index

(NAO; Hurrell et al. 2016) often is used to explain changes in species abundances. We used both, the AMO

and the NAO as these are not co-linear with one another.

Predator indices

Icelandic eider farmers commonly possess ecological knowledge about predators near their properties

(Chen 2016). We based our predator indices on interviews (our own and interviews with local eider farmers,

found in the Icelandic  newspaper database timarit.is),  personal  accounts  and journals of  land-owners  in

Brokey and Purkey from 1900-2014. Consequently, we were able to have precise presence/absence temporal

data for the mink and the fox, specific to each archipelago. For Brokey, we marked all years prior to the well-

documented mink introduction in 1948 as "mink absent" (0) and all subsequent years as "mink present" (1).

The first fox den was recorded in Brokey in 1998, after more than a century of absence. Therefore, in Brokey

the fox variable was "fox absent" (0) before 1998 and "fox present" (1) from 1998-2014. The fox can access

all islands in Brokey, they were therefore marked as "fox accessible".

For Purkey, the local farmers reported that mink were ever-present 1986-2012, and thus, no mink index

was employed for Purkey. The fox index was the same as for Brokey, the years from 1986-1997 were marked

as "fox absent" (0) while the years from 1998-2012 were marked as "fox present" (1). There are 14 islands in

Purkey that are not fox accessible and were therefore marked as "fox inaccessible" (0), while the other 25

islands were marked as "fox accessible" (1). All these islands were located in the south east of Purkey and

are protected by strong tidal currents (Jón Helgi Jónsson of Purkey pers. obs.).

Statistical analyses
We used  four  different  methods  of  analysis,  which  we  present  in  the  logical  order  of  the  research

questions we tackled. i) We first used the total number of nests on all islands to look for change points. ii)

Then we fitted linear models to predict this total number of nests using the predator and climate variables

described above, performed explorative model selection and discuss the best models. iii) The same analysis

was performed on the total number of inhabited islands (i.e. islands hosting at least one eider nest in the

given year).  iv) Finally, we calculated the log(density) of nests on each individual island and performed

mixed model  analyses using the predator and climate variables and the area of each island as potential

predictors. All analyses were performed for the two archipelagos individually as well as both archipelagos

combined with the archipelago as an additional potential predictor. The structure of the next sections follows
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the research questions around the mink arrival in the region in1948 and the return of the fox in 1998. The

analyses are described for the two archipelagos separately but joint analyses of the years from 1986-2012 are

presented in the supplementary material.

Long-term population dynamics in Brokey

We performed change point analyses in the total nest numbers in Brokey for the years 1892-2014 (Zeileis

et al. 2003), using the "strucchange"-package of R (Zeileis et al. 2015). Then we fitted linear models to both

the nest numbers and the number of inhabited islands using our climate and predator indices. The full model

for the Brokey archipelago was:

[I]   total nest number [Brokey] ~ AMO + NAO + mink + foxPresence + AMO:mink + NAO:mink

We performed model selection with the dredge() command of the MuMIn package (Bartón 2013), sorted

models  by  AIC value  and calculated  their  relative  AIC weights.  To discuss  the  relative  importance  of

predictors we considered all models with an accumulated relative AIC weight of >0.95.

Both analyses - the change point analysis and the linear model comparison - were performed using the

total number of inhabited islands in the in Brokey instead of the total nest number as the dependent variable

(see supplement S1).

Behavioural shifts in the Brokey

We used mixed-effects models from the "lme4"-package (Bates et  al.  2015) to estimate the effect of

climate variables, island characteristics and predator presence on eider nest density of individual islands in.

We analyzed the eider nest density in Brokey depending on mink and fox arrival into the area, as well as the

interaction of mink and climate variables as well as island area. Therefore, we can estimate which islands

with which size were preferred with the arrival of the mink. The full model therefore was:

[II]   log(density)[Brokey] ~ area + AMO + NAO + mink + foxPresence + mink:area + mink:AMO +

mink:NAO

We used the same model selection method as for the analysis of model [I].

Short-term population dynamics in Purkey

We performed the same change point and model selection analyses with the total nest numbers in the

Purkey archipelago from 1986-2012. The full models were:

[III]   total nest numbers [Purkey] ~ AMO + NAO + foxPresence

We used the same model selection method as for the analysis of models above. The same analyses were

performed using the number of inhabited islands in Purkey as a response variable, as well as using all nest
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numbers  of  both  archipelagos combined and the number  of  inhabited  islands  of  both archipelagos  (see

supplement S1).

Behavioural shifts in the Purkey population

Finally, we estimated the effect of the return of the fox on eider nest density on islands in Purkey, while

including the differences in accessibility of individual islands by the fox. Therefore we used the years from

1986 to 2012 and fitted the full model:

[IV]   log(density) [Purkey] ~ area + AMO + NAO + foxPresence + foxAccessibility +

foxPresence:foxAccessibility

We used the same model selection method as of the analyses above and fitted models using both datasets

combined for the same years (see supplement S1).
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Results

Long-term population dynamics and nest relocation in Brokey
We detected 12 change points in the total nest numbers from the Brokey archipelago (see Figure 4.2).

Numbers went up in 1896 and 1909 to reach the maximum at just above 2400 nests until 1917 when they

dropped to ~1900. Numbers increased again in 1923 but further decreased to ~ 1500 in 1933. The downward

trend continued with further decreases in 1939, 1953 and 1971 to the minimum of the study period of below

400 nests from 1971 to 1983. Nest numbers increased fast after 1983 and again in 1986 to ~1700 nests from

1986 to 2002 but then decreased to ~1200 and again in 2010 to values below 900 nests.

The model comparison for the total nest numbers in Brokey yielded a plateau of six models with similar

predictive power and a combined AIC weight of >0.95 (see table 4.1). AMO and mink presence decreased

nest numbers in all these models, while their interaction is always positive (Figure 4.2). Our results do not

provide evidence for the return of the fox 1998 or changes in NAO to have an effect on total nest numbers in

the Brokey archipelago.
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Figure 4.2 - Nest number dynamics of eider nests in Brokey from 1892 to 2014 (black line) as well as its
regimes and regime shifts (black dashed line). The grey line shows the numbe rof inhabited islands in the
Brokey archipelago, the dashed grey line the respective regimes and regime shifts. The AMO is shown by
the salmon coloured line. Mink arrival into Brokey is indicated by a vertical line in 1947 and subsequent
background colour change. Fox arrival in 1998 is indicated by a vertical line and further background
colour change.
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Table 4.1 - Results of pairwise model comparison of total nest numbers in Brokey from 1892 to 2014.

Model ΔAICAIC AIC weight

- AMO +NAO - mink + AMO:mink 0 0.308

- AMO + NAO - mink + AMO:mink + NAO:mink 0.66 0.222

- AMO - mink + AMO:mink 1.32 0.16

- AMO + NAO - mink + fox + AMO:mink 1.66 0.134

- AMO - mink + fox + AMO:mink 2.51 0.088

- AMO + NAO - mink + fox + AMO:mink + NAO:mink 2.53 0.087

The number of inhabited islands was highly correlated with the total nest numbers in Brokey over the

study period (Pearson's r = 0.73, p < 0.001, Figure 4.2, see Appendix D). Total nest numbers and number of

inhabited islands have largely overlapping change points and the results of the pairwise model comparison of

models predicting the number of inhabited islands in Brokey yielded qualitatively the same results as for nest

numbers (see Appendix D).

We did find evidence that eiders changed their nest site in response to the arrival of the mink in Brokey in

1948. As in the total nest number dynamics, AMO and mink arrival were negative predictors for individual

island nest density; their interaction being positive (see table 4.2). Additionally, island area appeared as a

negative predictor of density with a positive interaction with the mink. The best six models with accumulated

relative AIC weight of >0.95 were all possible combinations using these parameters. Our analysis found no

evidence that that NAO or the return of the fox affected density or island choice of the eiders in Brokey.

Table 4.2 - Results of pairwise model comparison of the log(density) of nests on individual islands in Brokey
from 1892 to 2014.

Model ΔAICAIC AIC weight

- area - AMO + NAO - mink + area:mink + AMO:mink 0 0.356

- area - AMO + NAO - mink + area:mink + AMO:mink + NAO:mink 0.64 0.259

- area - AMO + NAO - mink + fox + area:mink + AMO:mink 1.46 0.172

- area - AMO + NAO - mink + fox + area:mink + AMO:mink + NAO:mink 2.3 0.113

- area - AMO - mink + area:mink + AMO:mink 3.54 0.061
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In conclusion, Brokey nest numbers underwent dynamic changes in the years from 1892 to 2014, driven

chiefly by long-term climatic dynamics through the AMO and the arrival of the introduced mink. While there

were periodical oscillations of eider nest numbers and numbers of inhabited islands with the AMO until

1948,  these were broken with the  arrival  of  the  mink,  indicating its  importance as driver  of  ecosystem

processes. Our results further demonstrate, that while the eider generally breed more densely on smaller

islands than larger islands in Brokey, this relationship became weaker after the arrival of the American mink.

Figure 4.3 illustrates this finding, by showing how the ratio of eider nests found on the 20% largest islands

fluctuated between 50- and 60% before the arrival of the mink in 1948 and lies between 60% and 90% after.
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Figure 4.3 - The ratio of nest found on the largest 20% of the islands in Brokey. A
vertical  line indicates the  arrival  of  the  mink in the archipelago with subsequent
change in background colour.
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Short-term population dynamics and nest relocation in Purkey
There were no change points in nest numbers in the Purkey archipelago from 1986 to 2012 (Figure 4.4).

The number of inhabited islands in Purkey decreased drastically, though, with change points in 1998 and

2004 (see Appendix D). half of the islands 1986-2012, with almost 40 inhabited islands before 1998 to just

above 20 after 2004 (Figure 4.4). Total nest numbers and number of inhabited islands were not correlated in

Purkey (Pearson's r = -0.26, p = 0.19), contrary to their relationship in Brokey. There was no evidence for

either the return of the fox, AMO or NAO to predict total nest numbers or the number of inhabited islands in

Purkey;  the  same  goes  for  both  archipelagos  combined  (see  Appendix  D).  In  conclusion,  numbers  of

inhabited islands in the Purkey archipelago dropped while nest numbers remained stable.
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Figure 4.4 - Total nest numbers in Purkey and the number of inhabited islands from 1986 to 2012. There
were no regime shifts in the total nest numbers, regimes and regime shifts in the number of inhabited
islands are given illustrated by the dashed grey line.
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We did find evidence of eider nest relocation in response to the fox arrival in 1998 in Purkey and Brokey.

The arrival of the fox and fox accessibility were positive predictors of density, while their interaction was

negative, both for the Purkey archipelago as well as both archipelagoes combined (table 4.3 and Appendix

D). While there was no evidence for the climatic factors AMO and NAO to have an effect nest density within

individual islands, area was always negatively correlated with eider density. In conclusion, the fox drove

eiders to nest on more remote islands to avoid nest predation,  an apparently effective strategy to buffer

declines in the Purkey archipelago.

Table 4.3 - Results of pairwise model comparison of the log(density) of nests on individual islands in Purkey
from 1986 to 2012.

Model ΔAICAIC AIC weight

- area + fox + foxAccessible - fox:foxAccessible 0 0.466

- area + NAO + fox + foxAccessible - fox:foxAccessible 1.12 0.266

- area - AMO + fox + foxAccessible - fox:foxAccessible 1.99 0.172

- area - AMO + NAO + fox + foxAccessible - fox:foxAccessible 3.17 0.096
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Discussion

Climate fluctuations in Breiðafjörður
We found that before the mink introduction into the Breiðafjörður area in 1948, the Atlantic-multidecadal

oscillation index (AMO) was a  driver  of  eider  nest  numbers  in  Brokey.  The  first  change  point  in  nest

numbers was at the end of the 19th century, when a warm AMO ended and a 25-year long cool AMO began

(1901-1925). Nest numbers remained high during this favorable period with high resource abundance, except

for a drop around the episodic year of 1918, which was uniquely stochastic and widely reported to have

caused  mass  deaths  of  live-stock  and  wildlife,  including  eiders,  oystercatchers,  whooper  swans  etc.

(Anonymous 1918,  Guðmundsson 1918,  Arnþórsson 1979,  Ásgeirsson & Jónsson 2017).  The year 1918

holds  two national  records  for  Iceland:  the  coldest  January on record to  date  and also the lowest  June

temperature.

The first of a few change points showing declining nest numbers coincides with a rising AMO but also

with the beginning of human de-population, i.e.  reduced number of farms in the islands and subsequent

urbanization on the mainland in relation to increased fisheries (Anonymous 1960, Björnsson et al. 1989,

Kjartansdóttir  2009).  Furthermore,  new practices  and machinery were  established  in  some island farms

around 1940 in an attempt to stabilize farming the islands (Skúlason 1970). Nevertheless, humans abandoned

most Breiðafjörður island farms; in 1942, 1960 and 1975 there were 26, 8 and 3 island farms inhabited in

Breiðafjörður, respectively (Anonymous 1960, 1975; Björnsson et al. 1989).

Nest numbers began long-standing declines after both AMO shifts from cool to warm in 1925 and 1995.

There are anecdotal reports that the 1920s were similar to the late 1990s and 2000s in that local people

noticed breeding failures among seabirds and an associated “ lack of “healthy sandeel”, such as arctic tern

(Sterna paridisea), puffin, and kittiwake (Rissa tridactyla) (Skúlason 1970, Katz 2014). Thus, during 1926-

1962 and 1995-2010 seabirds in Iceland experienced similar, unfavorable oceanic conditions in Iceland or

perhaps even the entire Northern Atlantic, during a period of warm AMO.

Environmental changes also affect natural enemies of eiders, i.e. gulls (Larus spp.) benefit from a higher

proportion of fish in diets, which correlated with a higher reproductive success (van Donk et al. 2017). But in

years the gulls find less of their preferred marine prey, they supposedly rely more on alternative prey such as

eggs and young of other birds to feed their young (Guðmundsson 1940). Unfortunately, there are limited

population data available on gulls in Iceland and even in the presence of such data, any gull predation effects

would also be dependent on context, region or vary by scale (Votier et al. 2008).

The years  when eider  nest  numbers  increased 1980-1990 (Jónsson et  al.  2013,  2015)  were years  of

recovery in Brokey, after an all-time low in nest numbers in the 1970s, during which period we have no data

for Purkey. Causes of the 1980-1990 increase in eider numbers in Iceland are unknown but this decade was a
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period of cool climate (Hanna et al. 2004), coupled with changed oceanic effects, such as spikes of positive

values of the sub-polar Gyre Index, which later turned negative (from 1995 onwards: Hátún et al. 2016) and

the migration of cold-water species such capelin (Mallotus villosus) into Icelandic waters (Jónsson 2017).

During 1980-1990, capelin fisheries were at record-high in Iceland, and in late winter capelin roe would spill

into harbors during off-loading of the fishing boats, allowing large flocks of eiders to forage on the spilled

roe; however such practices were abandoned in the 1990s (Jónsson 2017). It is also noteworthy that blue

mussel (Mytilus edulis), the eider’s preferred prey item throughout the range (Waltho and Coulson 2015)

attain a greater soft body mass in cooler years, relative to that in warmer years which cause reduced soft

body mass (Waldeck and Larsson 2013). Thus, we would expect better nutrient content of mussel and other

molluscs in cooler AMO periods compared to warmer AMO periods. Mink introduction in 1948 occurred

during an already unfavorable period (warm AMO) when eiders nest numbers declined, either because of

climate or possibly lessened emphasis on eider farming (Guðmundsson 1940).

Predation by mink in Brokey
The decline in eider nest numbers after 1950 probably occurred due to combined effects of mink and

unfavorable  climatic  and  human  conditions,  whereas  the  furthered  low  in  1972-1983  should  only  be

attributed to mink as this was a cool (favorable) climatic period and there were abundant mink problems

reported by Brokey farmer Jón Hjaltalín for this decade (Arnþórsson 1979). We found that mink wiped out

eider nesting in many smaller islands and increased the chances of island abandonment after its introduction.

Before mink introduction in Brokey, number of islands without nests ranged between 9 and 14 through the

first 59 years (1892-1950) but this number more than doubled during the mink-induced low in nest numbers

during 1971-1980. Mink generally limit their home-ranges to coastlines (Zabala et al. 2007, Carlsson et al.

2010, Wolff et al. 2015, Palomares et al. 2017) so in the larger islands, eiders will move their nests onto

hilltops and central areas which are rarely visited by mink (Anonymous 1949, 1952). Brokey was in decline

2000-2014, which the farmers attributed to the return of the arctic fox in 1998 (Chen 2016). When mink is

absent, small islands are preferred by eiders over larger islands because larger islands can support resident

arctic foxes, whereas the foxes can only use smaller islands on a temporary basis (Björnsson & Hersteinsson

1991, Petersen et al. 2015, Waltho & Coulson 2015).

Behavior or territoriality of predator (rather than predator numbers) may affect the eiders response to

predators (Gerell 1985). Territorial mink have smaller home ranges than non-territorial mink and may thus

not visit colonies nearby (Chen 2016). Lastly, eider female experience (possibly via habituation or “learning”

with mink or fox may counteract the disturbance effect of the predators (Arnþórsson 1979, Nordström and

Korpimäki 2004, Van Den Brink et al. 2012). Newly introduced mink (1948) and subsequent releases of farm

mink (1970s) may have caused greatest disturbances thereafter, as nesting eider females were surprised by

new predators behaving aberrantly in new surroundings.
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During nest  initiation,  ducks perceive predator presence,  possibly by detecting urinal  markings from

mammals  (Eichholz  et  al.  2012)  and eider  farmers  claim that  eiders  will  hesitate  to  initiate  nesting  in

particular islands if a mink is present (Chen 2016). Thus, predator effects can be independent of predator

numbers  but  behavioral  responses  of  eider  nesting  an  all-or-nothing  response,  perhaps  to  1-2  animals,

leading to island or nest area desertion upon detecting visits of single animals. Eider females avoid mink by

nesting away from the shoreline, which explains why there has been more safety in the larger islands or

offshore islands (the farmers noted this already in the first mink years; Anonymous 1952). This is shown in

our study, the proportion of eiders nesting on large islands where they can nest further away from the shore

(“inland”) rises significantly after the mink arrives in the archipelago. In Brokey, there are no known islands

where they are completely safe from either mink or arctic fox, i.e. islands that offer isolation, which is often

the only protection for ground-nesting bird nests against mink (Nordström and Korpimäki 2004, Barros et al.

2016). We would expect such safe islands to fill up with very high nest densities (Jónsson and Lúovíksson

2013) which would not go undetected by eider-down collectors. Such an example was found in Breiðafjörður

in 2015-2018, where a small cliff named Helgasker was colonized by 20-30 females within a few years (the

authors unpublished data). Eiders can breed in exceptionally high densities when needed or rapidly form new

colonies (Waltho & Coulson 2015, Kristjansson and Jónsson 2015); and thus, eiders were quick to settle in

safe places in Purkey to successfully cope with the return of the arctic fox into the region.

Predation by arctic foxes in Purkey
The south-east of  Purkey is  4 km from the north-east of Brokey (Figure 1),  and thus we considered

analyzing them as one entity 1986-2012,  although our findings show that  the two sets of  nest  numbers

behave independently. The shortest distance from Brokey to nearby mainland is 2.5 km. Both colonies have a

history of arctic fox and mink problems, especially during colder periods with winter ice (Björnsson et al.

1989, Björnsson & Hersteinsson 1991). Like most islands nearby, Brokey and Purkey employ mink traps

year-round and use dogs or additional traps whenever mink are detected. Mink can easily swim to both

colonies  and  if  they  are  eradicated  from islands  during  spring  or  summer,  immigrants  re-colonize  the

archipelagoes in winter (Arnþórsson 1979, Bergur and Páll Hjaltalín, pers. obs). Based on information from

the land-owners, we know that for our index of local fox presence: 1) Brokey: when present, arctic fox and

mink can access most islands; and 2) Purkey: when present, arctic fox can access all islands except eleven

islands in the southeastern part of the archipelago, which are separated by the rest of the archipelago by 200-

400 m wide, relatively deep channels with tidal currents (Stangarstraumur and Knarrarbrjótur) that have thus

far generally proven impassable to the arctic foxes. Thus, some Purkey islands benefit from a natural barrier

to arctic fox and mink traffic whereas there are no such barriers within Brokey.

Nest relocation to safer islands allowed Purkey to maintain increasing nest numbers after 2000. In Purkey,

this safe area (14 of 39 islands) highlights how fox presence clump eider numbers (cf. 2005-2012) within
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safe nesting grounds but eider absence in the remaining 25 islands can be explained by the neighbor island

Skáley,  which semi-connects  Purkey to the mainland and likely provides the  arctic  foxes with a  “land-

bridge”. Skáley can be reached on foot from the mainland and Purkey from there by horse at spring low tides

(Björnsson et al. 1989); there have been no nesting eiders in Skáley since early 2000s because of arctic fox

and mink presence (Authors unpubl. data). In Denmark and United Kingdom red fox (Vulpes vulpes) may

suppress  formation of new colonies or shift  eiders  into forming new colonies in  safer  areas (Waltho &

Coulson 2015) but Iceland is the only place where this has been documented for arctic fox (Hersteinsson

2004).

Control efforts against the American mink
The relationship between humans and animal species of Breiðafjörður is particular, historically and to this

day (Björnsson et al. 1989, Jakobsson 2016). From the first settlements on, people on the islands and the

mainland were  dependent  on  using  the  available  animal  species  for  food,  clothing  and other  materials

(Björnsson et al. 1989, Garðarsson & Jónsson 2019). Some species highly benefitted from this interaction, as

we found that the human presence on the islands actually stabilised eider nest populations. However, the

introduction  of  the  mink for  pelt  farming had  strong detrimental  effects  on  the  avifauna  in  the  region

(Jónsson 2001). These predation effects can only partially be ameliorated by behavioural adaptations in bird

species  like  the  eider.  This  study adds  to  the  evidence  that  mink control  efforts  are  necessary  to  keep

threatened species like the eider in Iceland.

Studies indicate mixed results from predator control efforts,  which began in the 1950s in Iceland. In

Finland, eider nest densities did not respond to mink removal in a 9-year long mink removal study (1993-

2001;  Nordström  et  al.  2002),  which  may  be  explained  by  a  concurrent  decline  of  the  Finnish  eider

population at the time. Conversely, eider populations in Svalbard benefitted from predator control (including

that  of  arctic  fox  but  mink  is  not  found  in  Svalbard),  where  predator  control  increased  within-island

population  growth  and  also  carrying  capacity  and  probability  of  immigration  (Hanssen  et  al.  2013).

Similarly, the Aleutian Islands have been slowly re-colonized by eiders following eradication of imported

arctic fox populations (Petersen et al. 2015). Based on our interviews in this study, the timing of the mink

control,  i.e.  ideally timed just before nest initiation, is crucial for the control effort‘s success (Þorvaldur

Björnsson pers. com).

Conclusions
The eiders' world is not the same with the presence of mink, the introduced predator; small islands (the

historical refuge from arctic fox, the only land mammal) became dangerous places and large islands more

attractive. Simultaneously, arctic fox limits eider nest site choices. While the effects of climate change still

may play a role for eiders in Iceland, some of it is masked by the dominant role of the American mink in the
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overall  ecosystem.  These  findings  show that  local  predator  presences  vs.  absences  are  just  as  likely  to

dramatically change nest numbers as are large-scale climatic variables, and can even off-set relationships

with climate change. Our results further indicate, that a plastic change in behavior - here: nest site choice -

can buffer detrimental effects of predation but are less effective with novel than with known predators.
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Appendix D

Long-term population dynamics in Brokey

Change point analyses of number of inhabited islands in Brokey

The 14 breakpoints in the number of inhabited islands are in up in 1899 and 1911, where it stays at the

absolute maximum until 1932 and further decreases in 1944 and 1952, and after an increase 1958 goes down

at 1965, 1971, 1974 and to the absolute minimum between 1977 and 1983. After further increases in 1986

and 1995 it goes down in 2000 again.

Linear models - Number of inhabited islands

We fitted linear models using the same predictor variables as for the total nest numbers in Brokey, but

using the number of inhabited islands (islands with at least one nest in the given year) as a response variable.

The full model therefore was:

[SI]   number of inhabited islands[Brokey] ~ AMO + NAO + mink + fox + AMO:mink + NAO:mink

The results of the pairwise model comparison of models predicting the number of inhabited islands in

Brokey yielded strikingly similar results, there was a plateau of six similarly strong models (see table D.1),

all possible combinations using the interaction of AMO and mink arrival. Again, the numbers of inhabited

islands decreases with high AMO and with the arrival of the mink, their interaction is positive.

Table D.1 - Results of pairwise model comparison of the number of inhabited islands in Brokey from 1892
to 2014.

Model ΔAICAIC AIC weight

- AMO - NAO - mink + AMO:mink 0 0.281

- AMO - NAO - mink + foxPresence + AMO:mink 0.29 0.243

- AMO - mink + AMO:mink 1.48 0.134

- AMO - NAO - mink + AMO:mink -NAO:mink 1.52 0.132

- AMO - NAO - mink + foxPresence + AMO:mink - NAO:mink 1.56 0.129

- AMO - mink + foxPresence + AMO:mink 2.49 0.081
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Short-term population dynamics in Purkey

Linear models - total nest numbers and number of inhabited islands

The results of the linear model comparisons for the total number of nests on all islands in Purkey were

inconclusive (table D.2). There is no clear predictor of total nest numbers in Purkey and the null model is

among the six best models with accumulated AIC weight > 0.95.

Table D.2 - Results of pairwise model comparison of total nest numbers in Purkey from 1986 to 2012.

Model delta-AIC AIC weight

foxPresence 0 0.424

AMO 1.54 0.198

AMO + foxPresence 2.46 0.124

NAO + foxPresence 2.77 0.106

1 4.21 0.052

AMO + NAO 4.23 0.051

The number of islands, however, dropped with the arrival of the fox, it is a negative predictor in all four

best models (table D.3).

Table D.3 - Results of pairwise model comparison of the number of inhabited islands in Purkey from 1986 to
2012.

Model delta-AIC AIC weight

- foxPresence 0 0.601

+ NAO - foxPresence 2.56 0.167

- AMO - foxPresence 2.71 0.155

- AMO + NAO - foxPresence 5.58 0.037

Both archipelagos combined

Change point analyses

We found one change point in the total nest numbers of both archipelagos combined in the year 2002

(Figure D.1). It constitutes a decrease, which matches the change point in the Brokey nest dynamics. There

were two change points in the dynamics of numbers of inhabited islands in both islands combined, one

upwards shift in 1995 and a decrease in 2004.
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Linear models

The model comparison of linear models to predict total nest numbers in both archipelagos and the sum of

inhabited islands of both archipelagos gave no evidence for AMO, NAO or fox arrival to be a significant

predictor. In both cases, the null model was the best model (tables D.4 and D.5).

Table D.4 - Results of pairwise model comparison of total nest numbers in both archipelagos combined from
1986 to 2012.

Model delta-AIC AIC weight

1 0 0.431

- AMO 2 0.158

- foxPresence 2.19 0.144

NAO 2.26 0.139

- AMO + NAO 4.7 0.041

- AMO - foxPresence 4.76 0.040
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Figure D.1 - Nest number dynamics of eider nests in Brokey and Purkey combined from 1986 to 2012
(black line) as well as its regimes and regime shifts (black dashed line). The grey line shows the number of
inhabited islands in both archipelagos, the dashed grey line the respective regimes and regime shifts. Fox
arrival in 1998 is indicated by a vertical line and background colour change.
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Table D.5 - Results of pairwise model comparison of the number of inhabited islands in Purkey from 1986 to
2012.

Model delta-AIC AIC weight

1 0 0.305

foxPresence 0.12 0.288

AMO 1.86 0.121

- NAO 2.44 0.09

foxPresence + NAO 2.8 0.075

- AMO + foxPresence 2.85 0.073

Inter-island migration

The results of the model comparison to predict log(density) of all islands of both archipelagos combined

are qualitatively the same as for the Purkey archipelago alone (see table D.6): fox presence incresed density,

but only on fox-inaccessible islands (negative interaction between fox accessibility and fox presence). There

is no evidence for AMO or NAO to be predictors of nest density. The overall densitity of eider nests was

lower in Purkey than in Brokey.

Table D.6 - Results of pairwise model comparison of the log(density) of nests on individual islands in both 
archipelagos from 1986 to 2012.

Model delta-AIC AIC weight

- Purkey - area + fox - foxAccessible - fox:foxAccessible 0 0.458

- Purkey - area + NAO + fox - foxAccessible - fox:foxAccessible 1.36 0.232

- Purkey - area + AMO + fox - foxAccessible - fox:foxAccessible 1.68 0.198

- Purkey - area + AMO + NAO + fox - foxAccessible - fox:foxAccessible 2.82 0.112
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Chapter 5: Of mink and men: socio-economic factors 
influence the hunting bag of American mink in Europe and 
North America

In preparation as:

Stille D, Ruland F, Stefánsson RA, Jeschke JM. Of mink and men: socio-economic factors influence the

hunting bag of American mink in Europe and North America.

Abstract
Hunting bag series are widely used and often the only long-term data available for assessing population

dynamics of game species.  However,  such data are prone to influences by extrinsic factors.  Although a

correction for hunting effort is often recommended when dealing with harvest data, reliable data on hunting

effort are rarelyavailable, and the influence of other socio-economic factors on harvest data has not been

addressed sufficiently. We present a new approach to the use of harvest data, using the American mink as a

case  example.  We  hypothesized  that  although  population  dynamics  of  this  successful  invader  are

encapsulated in the hunting bag series, they are masked by extrinsic effects. We thus analysed the influence

of  socio-economic  factors  on  hunting  bag  data,  then  corrected  the  data  for  these  factors  and  finally

investigated whether the corrected data show so-called boom-bust dynamics. The boom-bust concept posits

that  strong population  declines  and  fluctuations  are  typical  phenomena  in  invasive  populations.  Recent

declines in mink hunting bag series of several countries apparently support this concept. Our study focuses

on three European countries where the mink is invasive (Denmark, Germany, Iceland) and the USA where it

is native, with data covering 19 to 46 years per country. We found strong influences of socio-economic

factors on mink hunting bag data, particularly fur price and mink production on farms. After correcting the

data for these factors, boom-bust dynamics were not found to be a general phenomenon in invasive mink

populations. Our findings suggest that hunting bag data should be controlled for socio-economic factors,

particularly for animals with a socio-economic value such as the American mink.

Keywords: Boom-bust dynamics, Fur farming, Hunting bag, Invasive species, Regime shifts
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Introduction
The American mink (Neovison vison, Schreber 1777), a mammal of the family Mustelidae, is known for

its valuable fur. In its native range from Canada and Alaska down to New Mexico, the mink has been among

the most hunted furbearer species for centuries (Obbard et al. 1987), and fur trade has been of significant

economic importance in North America (Spraakman and Wilkie 2000). In the late 19th century, when the

populations of wild mink began to suffer from excessive hunting, first experiments for breeding mink on

farms were conducted (Nituch et al. 2011). Starting in the 1920s, American mink have been imported to

several European countries for fur farming, and first mink farms were founded in France, Scandinavia and

the United Kingdom (Macdonald and Harrington 2003). Within decades, escaped or released farm animals

established populations in the wild and by 1960 the American mink had been naturalised in at  least  16

European countries (Bonesi and Palazon 2007), making it one of the most successful invasive species in

Europe (Nentwig et al. 2010).

The invasion history of  the  American mink is  distinct  from other  biological  invasions.  Unlike other

invasive species that spread uncontrollably after one or several  releases of few individuals,  the invasive

populations of the American mink in Europe have been characterised by a continuous supplementation with

farm mink over a long time period. Despite being one of the most destructive invasive species in Europe

(Genovesi et al. 2012; Nentwig et al. 2018), the American mink is still kept on farms for fur production in

many  European  countries  and  in  2016  mink  farms  in  Europe  accounted  for  70%  of  the  global  mink

production (International Fur Trade Federation 2003; Kopenhagen Fur 2016a). Escapees from these farms

influence the dynamics of established feral populations to this day (Hammershøj et al. 2005). This constant

restocking of feral populations by escaped or released farm animals might have helped to overcome genetic

drift and genetic bottlenecks that often occur in populations with a small founder population (Allendorf and

Lundquist 2003). In Norway at least 6 subspecies of mink originating from different climate zones have been

used for fur farming, possibly leading to a high degree of genetic variability in the feral mink population

(Bevanger and Henriksen 1995). In contrast to other invasive species with genetically less diverse founder

populations (Simberloff 2009), its multi-subspecies background might have enabled the American mink to

rapidly and permanently colonise the greater part of Europe covering several climate zones, from northern

Norway to southern Spain (Bonesi and Palazon 2007).

Invasive  species  have  significant  impact  on  native  ecosystems,  and  terrestrial  vertebrates  have  been

identified  as  the  most  destructive  invaders  (Robertson  et  al.  2017).  Many  publications  emphasise  the

destructive effect of invasive mink on native species (e.g. Manchester and Bullock 2000; Banks et al. 2008).

Invasive American mink have been documented to cause damage to a wide range of local wildlife, from

crustaceans (Reynolds 1988; Fischer et al. 2009), fish (Zschille et al. 2014) and amphibians (Ahola et al.
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2006) to birds (Ferreras and Macdonald 1999; Nordström and Korpimäki 2004) and mammals (Rushton et

al. 2000; Brzeziński et al. 2010; Põdra et al. 2013).

Due  to  its  impact  on  native  species,  rapid  colonisation  and  well  documented  invasion  history,  the

American mink is among the best studied invasive species. As furbearers are notoriously hard to census,

harvest data have been widely used to assess the population status of the American mink (Bowman et al.

2007). For several countries, severe declines in the annual harvest numbers and mink abundance have been

reported, among others in Iceland since 2003 (Magnusdottir et al. 2014; Stefansson et al. 2016), Sweden

since 1988 (Carlsson et al. 2010), United Kingdom since the late 1980s (Bonesi et al. 2006) and Canada

since the 1950s, with a sharp decline since 1987 (Bowman et al. 2007; Nituch et al. 2011). There exists a

variety of hypotheses covering local and global explanations for this decline, but overall there is no definite

conclusion about the reasons for this widespread phenomenon.

One possible interpretation of this pattern of rapid growth and spontaneous decline found in the mink

hunting bag series is seeing it as an example of boom-bust dynamics. According to the boom-bust concept,

an  invasive  species’ population  increases  during  a  “boom”  phase  to  an  unsustainable  peak  and  then

undergoes an apparently spontaneous severe  decline (the  “bust”  phase),  sometimes all  the  way to local

extinction of invasive populations that had been well established for decades (Simberloff and Gibbons 2004;

Strayer et al. 2017). These dramatic population declines are often considered typical for abundance data of

invasive species (Lester and Gruber 2016). However, there is conflicting information in the literature about

how common and frequent these dynamics are for invaders (Strayer et al. 2017). In most studies in ecology,

boom-bust dynamics are characterised merely based on the observed decline from a peak value (Simberloff

and Gibbons 2004), but simulations showed that this method is prone to severe bias towards the detection of

boom bust dynamics, especially in noisy data sets (Strayer et al. 2017). 

For  the  detection  of  boom-bust  dynamics,  as  for  many  other  important  questions  in  ecology  and

evolutionary biology, long-term data are needed (Clutton-Brock and Sheldon 2010). However, long time

series of reliable data are scarce for most invasive species (Strayer et al. 2006) and often hunting bag series

are the only long-term data available (Imperio et al. 2010). Hunting bag data, on the other hand, are prone to

influences by extrinsic factors, e.g. changing hunting effort,  and may not always be a reliable proxy for

population size (Ranta et al. 2008). If harvest data are used for analysis of population dynamics, a correction

for hunting effort is recommended to reveal the underlying patterns of population change (Sandström et al.

2014).  Yet  data  on  hunting  effort  are  not  collected  in  most  countries  (Astrid  Sutor,  German  Hunting

Association (DJV), 14 December 2017, pers. comm.). For game species that are hunted for sport or food by a

majority of hunters, data on hunting licences or game firearms might be used as a proxy for hunting effort

(Blanco-Aguiar et al. 2012; Herruzo and Martinez-Jauregui 2013). The mink, however, is not commonly

hunted for recreational purposes or personal use, but mostly to mitigate negative effects on native wildlife
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and only a minority of (specialized) hunters in each country commit to the laborious trapping of this species

(Stien  and Hausner  2018).  Additionally,  hunting  laws  (e.g.  the  ban  of  certain  spring  traps  in  the  EU),

traditions and hunting methods undergo changes, and the hunting efficiency is dependent on these factors

(Little and Crowe 1993). Thus, in order to correct for hunting effort even accurate data on time spent per kill

might be insufficient. In consequence, hunting bag raw data have been mostly used without effectual control

for extrinsic influences, although the limitations of harvest data are known and a correction for hunting effort

is recommended (Hammershøj et al. 2006; Imperio et al. 2010).

Still,  harvest data are often the best  data available and despite all  disadvantages of great interest  for

ecological studies. In this study, we present a new approach to the use of hunting bag data where data on

hunting effort are not available. We identified extrinsic factors that potentially influence the hunting bag of

feral  mink populations  in  Europe and native populations in  North America,  and addressed the question

whether invasive American mink populations show boom-bust dynamics. Our specific hypotheses were as

follows:

Hypothesis H1: Extrinsic factors affect the mink hunting bag. (H1.1) Fur price influences hunting effort,

as hunters are believed to be more motivated to trap mink when furs sell for a higher price. Hence, a higher

price is supposed to lead to a higher hunting bag. An exception is Iceland where pelts of feral mink are not

sold, but there is a bounty on mink. (H1.2) Mink production (in furs produced or breeding stock on farms) is

positively correlated with the hunting bag, as more mink on farms are assumed to lead to more escapees and

consequently to a higher number of feral mink. A law in Denmark aiming to restrict mink escapes was

expected to mitigate the dependency of the hunting bag on the mink production. The lower demand for mink

furs after the German reunification was expected to have a negative impact on the hunting effort. (H1.3)

Hunting bag raw data show more fluctuations and consequently a higher number of change points than the

residuals of the best fitting models.

Hypothesis H2: Following the boom-bust concept (Simberloff and Gibbons 2004; Strayer et al. 2017),

invasive populations more frequently show a pattern of rapid growth followed by a fast decline than native

populations. Consequently, we expected more detected change points in the residuals of invasive than native

populations.
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Material and Methods

Data
We used hunting bag data  to  analyse population  dynamics  of  the  alien,  invasive American mink in

Denmark, Germany and Iceland, and of the native mink population in the USA. These countries were chosen

for the following reasons: First, long-term data on hunting bag and socio-economic factors, such as fur price

and  mink  production  were  readily  available.  Second,  invasion  history  and  population  dynamics  of  the

American mink in Denmark and Iceland are relatively well documented in the literature, providing a solid

theoretical background for model fitting. Third, the German time series was particular due to the German

reunification in 1990 and its potential consequences on hunting bag, making it an interesting candidate to

analyse the dependence on socio-economic factors. Similarly, the mink population in Denmark seems to

consist mainly of escaped mink born on farms (Hammershøj et al. 2005). In contrast, the American mink

seems to have established a true feral population in Iceland (Stefansson et al. 2016), making these countries

good candidates for comparative analyses. Finally, US-American hunting bag data were included in this

study to have a comparison with the mink’s native range.

Data were obtained from the German Hunting Association (Datenspeicher Jagd Eberswalde,  Thünen-

Institut  2017),  the  University  of  Aarhus,  Denmark,  the  Environment  Agency  of  Iceland  and  the  U.S.

Association of Fish & Wildlife Agencies. In addition, we collected data on (i) extrinsic factors that might

influence hunting effort on the American mink and (ii) the supplementation of feral mink populations with

farm mink. The length of the time period analysed for each country was determined by the parameter with

the shortest time series available, resulting in data series between 19 and 46 years per country. The majority

of mink furs in Europe are traded through Kopenhagen Fur, the world’s largest fur auction house owned by

the Danish mink breeders (Hansen 2017). Historic fur prices obtained from Kopenhagen Fur were used for

analysis of European hunting bag data; these were used in Danish Krone DKK for Denmark Iceland and

Germany, which is the currency at Kopenhagen Fur. For the analysis of the US-American hunting bag, data

on mink production and fur price (in USD) in the USA were used. These data include the number of mink

furs produced on mink farms during the marketing year and the average marketing price per fur in the USA.

For  Iceland,  where  a  bounty  system  exists,  we  calculated  the  costs  for  mink  eradication  (bounty,

compensation per working hour and driven km) as (i), costs per mink killed (ii), costs per working hour.

Consumer price indices (CPI) and currency rates were used to adjust the fur prices for purchasing power in

order to make historic prices comparable.
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Analysis
The analysis of mink hunting bag data was conducted in a three-step process. First, the hunting bag raw

data were analysed for change points using the Bayesian Information Criterion (BIC). For the detection of

regime shifts and unknown change points in time series, it is possible to compute the optimal segmentations

for a sequence of break points and order the outcome by a likelihood-based criterion such as BIC (Zeileis et

al. 2010). Akaike’s Information Criterion (AIC) is in this case thought to overestimate the number of breaks,

whereas BIC seems to give more accurate estimates (Bai and Perron 2003). Further, change-point detection

methods were found to perform much better than the commonly used decline-from-peak approach (Strayer et

al.  2017).  We  used  the  R-package  strucchange  (Zeileis  et  al.  2002)  to  conduct  change-point  detection

analysis for multiple change points.

Second, the hunting bag of each country was described as a linear model using socio-economic factors

that potentially influence hunting effort or the number of farm mink released into the wild. These factors

included mink production data,  fur  price,  and legislation affecting the escape rate or the hunting effort.

Model selection was based on AIC corrected for small sample size (AICc; Burnham et al. 2011, Symonds

and Moussalli 2011).

Finally, residuals of the best fitting linear models were analysed using change-point detection, and the

detected change points were compared with those detected in the hunting bag raw data.

All  analyses  were  conducted  with  the  software  R  3.2.1  (R  Core  Team  2015),  using  the  package

strucchange (Zeileis  et  al.  2002).  Several  methods used in  population dynamics analyses  take the auto-

correlative nature of reproductive populations into account (Royama 1981; Hagen et al. 2014). Some of the

populations of the American mink analysed in this study, however, were thought to be heavily influenced by

supplementation through escaped farm mink and changing hunting effort, thus dynamics were not primarily

based on reproduction. Hence, we refrained from introducing an auto-correlation term to the models.
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Results

Regime shifts and change points in raw hunting bag data
For Denmark, change points were detected in the years 1977, 1988, 1995, 2001 and 2007 (Figure 5.1a).

After a period of slow growth with stepwise increases and regimes between 6 and 11 years, the hunting bag

showed a strong upward trend starting in 1995 and doubled in the course of just three years, coming to hold

on the peak of the hunting bag series for a plateau of 6 years between 1996 and 2001. From 2002 onwards,

dynamics changed and the hunting bag declined stepwise back to similar numbers as of the last plateau

before the peak.

For Germany, change points were detected in the years 1988,  1996 and 2006 (Figure 5.1b.  After  an

increase from 1983 to 1988, there was a sharp decline to a plateau and then a stepwise increase back to the

pre-bust level.

For Iceland, change points were detected in the years 2000, 2006 and 2009 (Figure 5.1c). After a period

of slow growth from 1996 to 2003, the hunting bag reduced by half starting in 2006.

Finally for the USA, one change point was detected in the year 1988 (Figure 5.1d). The first regime in the

period 1975 to 1988 was followed by a strong decrease to the second regime from 1989 onwards.
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Figure  5.1 -  Change  points  identified  with  the  Bayesian  Information  Criterion  (BIC)  (dotted  lines,
confidence intervals in red, regimes in blue) in mink hunting bag series for (a) Denmark, (b) Germany, (c)
Iceland and (d) USA.
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Socio-economic factors affecting hunting bag data
For Denmark, the best model according to AICc includes fur price (negatively related to hunting bag) and

production of mink furs in Denmark (positively related; table 5.1). This model explains 67% of the variation

in the mink hunting bag series (adj. R² = 0.67). The second and third best models also include the change in

legislation for mink farms in the year 2002. The fur price is included in all of the four best models; all other

models have a relative AIC weight of <0.01. Therefore, the price seems to be a crucial predictor for the

hunting bag, closely followed by the production of mink furs which is included in the two best models,

possessing a combined relative AIC weight of 0.91.

Table 5.1 - Linear regression model results of the analysis of the mink hunting bag in Denmark. The table
lists all models with relative AIC weight ≥ 0.01 with decreasing AIC weight. Parameters are: Production of
mink furs in Denmark (Production), fur price at Kopenhagen Fur in DKK corrected for purchasing power
using the Danish CPI (Price) and a government order (no. 610, July 2002) to restrict mink from escaping
from fur farms (Law).

Model df AICc delta AICc weight
Price + Production 4 773.85 0.00 0.70
Price + Production + Law 5 776.28 2.42 0.21
Price + Law 4 778.20 4.35 0.08
Price 3 781.76 7.90 0.01

For Germany, the best  model  (adj.  R² = 0.35) only includes fur price,  which is  positively related to

hunting bag (table 5.2). The second best model, which has a relative AIC model weight of 0.23, additionally

includes reunification.

Table 5.2 - Linear regression model results of the analysis of the mink hunting bag in Germany. The table
lists all models with relative AIC weight ≥ 0.01 with decreasing AIC weight. Parameters are: fur price at
Kopenhagen Fur  in  DKK corrected  for  purchasing  power  using the Danish CPI (Price)  and  legislation
change following the German reunification in 1990 (Reunification).

Model df AICc delta AICc weight

Price 3 463.72 0.00 0.77
Price + Reunification 4 466.10 2.38 0.23

For Iceland,  the best  model  (adj.  R² = 0.65) includes fur price and production (negatively related to

hunting bag; Table 3) and the hunting compensation per hour (positively correlated to hunting bag). The fur

price is included in all of the eight best-fitting models.
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Table 5.3 - Linear regression model results of the analysis of the mink hunting bag in Iceland. The table lists
all models with relative AIC weight ≥ 0.01 with decreasing AIC weight. Parameters are: Number of mink on
fur farms in Iceland (Production), fur price at Kopenhagen Fur in ISK corrected for purchasing power using
the Icelandic CPI (Price), the eradication costs per mink in ISK (Costs Per Mink) and the eradication costs
per hunting hour in ISK (Costs Per Hour), each corrected for purchasing power using the Icelandic CPI.

Model df AICc delta AICc weight
Price + Production + Costs Per Hour 5 262.90 0.00 0.46
Price + Production + Costs Per Mink + Costs Per Hour 4 264.88 1.98 0.17
Price + Production 6 265.10 2.20 0.15
Price + Costs Per Hour 6 266.27 3.37 0.08
Price + Production + Costs Per Mink 5 267.08 4.18 0.06
Price + Costs Per Mink + Costs Per Hour 5 268.14 5.24 0.03
Price 7 268.87 5.97 0.02
Price + Costs Per Mink 6 270.72 7.82 0.01

Finally, for the USA, the best model (adj. R² = 0.57) includes fur price in US$ and production of mink

furs in the USA (both positively related to hunting bag; Table 4).

Table 5.4 - Linear regression model results of the analysis of the mink hunting bag in the USA. The table
lists all models with relative AIC weight ≥ 0.01 with decreasing AIC weight. Parameters are: Production of
mink furs in the USA (Production) and fur price in the USA in $ corrected for purchasing power using the
US-American CPI (Price).

Model df AICc delta AICc weight

Price + Production 4 965.12 0.00 1.00

Regime shifts and change points in hunting bag residuals
For hunting bag residuals, which can be considered to be corrected for socio-economic factors, change

points were detected in the years 1982, 1995, 2001 and 2007 for Denmark (Figure 5.2a). The last three of

those were also detected in the hunting bag raw data. There is a steady period between 1969 and 1982 in the

residuals, followed by a small decline to another long regime between 1983 and 1995. Starting in 1995, there

is a sharp increase in the residuals to a plateau of 6 years between 1996 and 2001. From 2002 onwards, the

residuals decline stepwise back to the mean of the values before 1996.

For Germany, one change point was detected in the year 2006 (Figure 5.2b). The first regime in the period

between 1983 and 2006 is followed by an increase in the residuals to the second regime between 2007 and

2015.
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For Iceland, only one change point in the year 2007 was detected (Figure 5.2c). It marks a regime until

2007 and a substantial decline thereafter.

For the USA, one change point was detected in the year 2005 (Figure 5.2d). The first regime in the period

between 1975 and 2005 is followed by a decrease to lower levels thereafter.

Discussion
We found support for a strong influence of socio-economic factors on American mink hunting bag data

(hypothesis  H1  in  the  Introduction).  Linear  models  including  such  factors  were  able  to  explain  high

proportions of the variation in the hunting bag data although the dynamics of the correlations were not

always as expected.

Specifically, our results suggest that fur price has a strong influence on hunting effort (H1.1). It was

included in the best regression models for all countries. In Germany and the USA, fur price was positively

related to the hunting bag. In the USA, mink are primarily hunted for their fur. In Germany, our results

suggest that the motivation for mink hunting might not be exclusively to eradicate the invasive mink but is

also driven by the sale value of mink furs. In Iceland and Denmark, however, fur price was negatively related

to the hunting bag. Underlying reasons are discussed in the respective sections of the countries below.
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Figure  5.2 -  Change  points  identified  with  the  Bayesian  Information  Criterion  (BIC)  (dotted  lines,
confidence intervals in red, regimes in blue) in the residuals of the best fitting model, i.e. the corrected data,
for (a) Denmark, (b) Germany, (c) Iceland and (d) USA.
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We found that mink production on farms seems to have a strong impact on the number of mink in the

wild (H1.2). Mink farming is an important economic factor in several European countries, with over 15

million furs per year produced in Denmark alone (Kopenhagen Fur 2016b). Mink production ended up in the

best model for all three countries where this parameter was included in model selection (Denmark, Iceland,

USA).  For  Germany,  data  on  mink  production  were  not  available.  In  Denmark  and  the  USA,  mink

production was positively related to the hunting bag. It can be assumed that the number of mink escaping

from farms increases with the number of mink kept on farms, leading to a higher supplementation of the

mink population in the wild with farm mink. This assumption rests on evidence that escaped farm animals

play a crucial role in the dynamics of feral mink populations: Denmark has the highest density of mink farms

in any country.  There,  the  feral  mink population seems to consist  of  up to  79% escaped farm animals

(Hammershøj et al. 2005). In Poland, 17% of American mink caught in the wild were identified as farm

mink,  and the number of caught  farm mink correlated with the size of the farm breeding stocks in the

districts where sampling sites were located (Zalewski et al. 2010). Our results of the positive relationship

between mink farming and hunting bag in the USA suggest  that  native American mink populations are

similarly supplemented by escaped/released farm mink. This conclusion is confirmed for the Canadian mink

population, for which a positive relationship between the change in mink harvest and ranch density was

found  (Bowman  et  al.  2007),  and  nearly  two-thirds  of  mink  sampled  were  either  farm  escapees  or

descendants  of  escapees  (Kidd et  al.  2009).  To our  knowledge,  the  positive  relationship  between mink

production and hunting bag in the USA found here has not been described in the literature before. 

Also as expected (H1.3), more change points were found in the raw hunting bag data than in the residuals

of  the  best  socio-economic  model  for  each  country.  This  finding  also  highlights  the  importance  of

considering socio-economic factors when analysing hunting bags, particularly in case of species with a clear

economic value such as the American mink. One needs to be cautious not to falsely interpret ecological

mechanisms into fluctuations of raw hunting bag data, as these might be caused by socio-economic factors.

Boom-bust dynamics do not seem to be dominant in invasive mink populations, thus hypothesis H2 was

not  supported.  No such pattern was found in Germany. In Denmark,  the feral  mink population consists

mainly of escaped farm mink, and the observed change point in 2001 and the subsequent decline may be

caused by a government order  in 2002 that  aimed to restrict  the  number  of escapees from mink farms

(Hammershøj et al. 2005). In contrast, a probably genuine decline was observed in Iceland, and also in the

USA where the mink is native. In both countries, a severe decline in the corrected hunting bag data was

evident after a change point in 2007. For this decrease, no possible socio-economic explanations are known

and thus it seems to reflect a real downward trend in mink populations – in Iceland possibly because of

climate  related  changes  cascading  through the  food chain  (Magnusdottir  et  al.  2014),  and  in  the  USA

possibly due to environmental pollution (Bursian et al. 2013).
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Denmark
Against  our expectations,  harvest  number and fur price were negatively correlated in Denmark.  This

finding might be explained by an indirect relationship of fur price and released mink. When the price is low,

enclosures at  mink farms may be less maintained and escapes more frequent,  resulting in an increasing

hunting  bag.  The  decline  in  fur  price  in  1988  is  followed  by  a  reduction  of  the  mink  production

approximately 5 years later, and in 1995 a change point detected in both residuals and hunting bag raw data

indicates  the  begin  of  a  sharp  increase  in  harvest  numbers.  There  are  signs  of  a  pork-cycle,  a  lagged

interdependence  of  price  and  production,  in  the  hunting  bag-fur  price  relationship,  as  price  trends  are

mirrored by the production numbers with a lag time. It might be speculated that, after a time lag, severe

drops of the fur prices result in the bankruptcy of small mink farmers, who in consequence close down their

farms and release their animals into the wild, but the exact reason for the negative correlation of harvest

numbers and price remains unclear.

Germany
Due to the German reunification and the fact that the American mink occurs in Germany mainly in the

area  of  the  former  GDR  (German  Democratic  Republic),  German  hunting  bag  data  show  certain

characteristics mirroring the change in legislation and hunting effort after 1990. These characteristics are still

visible in the residuals of the best model (Figure 5.2b).

Fur crafting has a long tradition in the eastern counties of Germany, and furs were important export

products in the GDR that could be traded to Western countries for foreign currencies. Hence, all types of

furbearer  species  were  hunted  and  their  furs  used  (Jürgen  Förster,  Obermeister  der  Kürschnerinnung

Mitteldeutschland, 26 October 2017, pers. comm.). In the GDR, mink were hunted using efficient leg-hold

traps, a trap type that  has been considered inhumane and banned in Germany since 1990. Due to these

circumstances, it can be assumed that hunting effort on the American mink was higher in the GDR than in

Germany after reunification (Astrid Sutor, German Hunting Association (DJV), 14 December 2017, pers.

comm.).

The reunification dummy did not end up in the final model. In the residuals of the best model, however,

where the hunting bag is corrected for the fur price, the effect of the so-called “Wendejahre”, the years after

the German reunification, on the hunting bag is unmasked. A period of 5 years after reunification, from 1991

to 1996, shows a decline in the harvest numbers that is not explained by the fur price. During this period, the

fur  market  collapsed  as  furs  were  no  longer  sought  after  for  export,  and  fur  agencies  and fur  crafting

workshops  were  closed  down  (Jürgen  Förster,  Obermeister  der  Kürschnerinnung  Mitteldeutschland,  26

October 2017, pers. comm.). This period is the regime with the lowest mean of the corrected hunting bag

data, an indicator for a low hunting effort during this period of political and economic distortions.
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The only change point detected both in the residuals of the best model and in the hunting bag raw data

was in the year 2006. This finding may indicate a true increase in the mink population in Germany after

2006. As the high hunting effort in the GDR and the subsequent political changes are not covered by this

model, the mink population size is likely to have been increasing at least since the 1980s.

Iceland
The American mink was first brought to Iceland in 1931 for fur farming. A law on security and hunting of

feral mink was passed already in 1937. This unusually rapid response can be explained with the risk the mink

caused for Iceland’s economy: down feathers of the common eider duck (Somateria mollissima), which are

still  collected today,  were exported as an important  source of revenue,  especially up until  the mid-20th

century (Skarphedinsson 1996), and mink predation posed a threat to eider colonies. Eiders in Iceland often

nest on coastal islands, which the only native mammalian predator, the Arctic fox (Vulpes lagopus), cannot

reach (Stefansson et al. 2016). The American mink is often able to swim to the nesting colonies and preys on

eiders  and  their  offspring,  leading  to  changes  in  breeding  distribution  and  lower  eider  down  harvests

(Skarphedinsson 1996).

Mink hunting is mostly carried out by specialized hunters, but also eider down harvesters and farmers.

The compensation for mink hunting for contract hunters consists of a bounty per mink killed, low salary per

working hour and a payment for driving expenses (per km). In Norway, where a similar program exists,

bounty payments influenced hunting efficiency positively (Stien and Hausner 2018), although in general, this

salary seems too low to be an important income on a yearly basis.

In years with low mink population density, the effort necessary to catch and kill a mink is higher than in

high-density years. In these years, the wages resulting from the working hours make up for a higher share of

the total compensation per mink than the bounty itself. Hence, the bounty alone is not a good proxy for the

hunting  effort.  In  order  to  adjust  for  mink  density  and  hunting  success  rate,  we  calculated  the  total

compensation per working hour for each year. This parameter ended up in the best model and was positively

correlated with the hunting bag. In contrast, the Icelandic mink hunting bag was negatively correlated with

fur price. Thus, fur price does not seem to act as a hunting incentive here, which is not surprising as mink in

Iceland are not hunted for their fur.

The negative association between mink farm production and hunting bag may have a rational explanation.

American mink escaped soon after introduction and reproduced in the wild less than a decade later. During

this time, the mink kept on farms were still very similar to the wild mink in North America (Stefansson et al.

2016).  In  consequence,  the  feral  population  that  developed  from  escaped  farm  mink  shared  most

characteristics with their wild ancestors. Mink farming was banned in Iceland from 1953 to 1969, but a self-

sustaining mink population had already developed and the mink had continuously colonized the rest  of
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Iceland by 1975 (Magnusdottir et al. 2014). Mink kept on farms today have been domesticated to a high

degree and are distinct  from their  wild ancestors  (Bowman et  al.  2017).  Domesticated farm mink have

significantly smaller brains, hearts and spleens than wild mink (Kruska and Schreiber 1999), and several

colour strains have been developed. Thus, interbreeding of evidently well adapted feral mink with these

highly domesticated farm mink might  have introduced genes favoured under  artificial  selection that  are

maladaptive in a natural environment (Kidd et al. 2009; Beauclerc et al. 2013) and thus lead to a lower

survival rate of hybridised mink (Bowman et al. 2007). Another possible explanation might be competition

between farm escapees and other feral mink, resulting in higher mortality of feral mink when mink farm

production was high and escapes more frequent.

The negative correlation of fur price and hunting bag may be the result of this relationship as well. Fur

price and mink production are positively correlated, as more breeding stock is kept on farms when fur price

is high. Combining this interdependence of mink production and fur price with the observations that (i) mink

in Iceland are not hunted for the value of their fur and (ii) there is a negative correlation of hunting bag and

mink production, a negative correlation between fur price and hunting bag is not surprising.

Changes in mink management may partly explain the decrease in the Icelandic hunting bag after 2008.

Following the financial crisis of 2008, which had great impact on Iceland’s economy (Goddard et al. 2009;

Raza et al. 2018), some of the municipalities cut the budget of mink management by restricting the number

of bounties  paid.  Anecdotal  evidence from interviews with mink hunters  suggests  that  this  arrangement

might have led to a lower hunting effort in the following years in a few areas, although the effect is hard to

quantify as bounty quota are not available (Stefansson et al. 2016). The hunters also agree that they have

experienced a severe reduction in mink density after  the first  few years  of the  21st  century.  Therefore,

circumstantial evidence suggests that the reduction in the management budget can only explain a minor part

of the decrease found in the corrected data after the change point in 2007, but the decline of the mink hunting

bag in Iceland is more likely to mainly reflect actual changes in mink population size (Magnusdottir et al.

2014; Stefansson et al. 2016).

USA
In the USA, a positive relationship between fur price and hunting bag was found. This was expected, as

mink are hunted in the USA primarily for their fur. A severe decline in the corrected hunting bag data was

evident after a change point in 2007. For this decrease, no socio-economic explanations are known, thus it

seems to reflect a real downward trend of the American mink population. The American mink is sensitive to

environmental contaminants like mercury (Bursian et al. 2013), polychlorinated biphenyls (PCBs) and other

dioxin-like compounds (Zwiernik et al. 2008). Due to this sensitivity, the use of mink as “sentinel species”

has been proposed, a model organism for the measure of environmental pollution (Basu et al. 2007). It is not

really  clear,  however,  if  this  sensitivity  is  the  reason for  the  mink’s  decline in  the  USA.  Several  other
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explanations have been proposed for this decline, from hybridisation with domesticated mink (Bowman et al.

2007, 2017), to habitat loss and the Aleutian disease (Nituch et al. 2011), but although some may apply

locally, it is unlikely that one of these factors has caused the nationwide decline observed in the mink hunting

bag.

Conclusions
Although limitations of hunting bag data are known and approaches to correct for biases resulting from

inconsistent  reporting and changing hunting effort  are  discussed in  the  literature  (Cattadori  et  al.  2003;

Schmidt  et  al.  2015),  the  influence  of  socio-economic  factors  on  harvest  data  has  not  been  addressed

sufficiently. The American mink is one of the most destructive alien invasive species in Europe and affects at

least 47 native species negatively (Genovesi et al. 2012). In order to monitor the development, impact and

spreading  of  invasive  populations,  reliable  data  are  essential.  We  found  that  socio-economic  factors

massively influence hunting bag data of the American mink. In Denmark, where mink farms produce more

than 15 million furs per year, 67% of the variation in the hunting bag data was explained by mink production

on farms and the fur price. This finding supports the assumption that the feral mink in Denmark is constantly

supplemented with escaped farm mink (Pertoldi et al. 2014). The same is assumed for most other countries

with mink farms, although the density of mink farms is unusual in Denmark. It has been shown that the

large-scale removal of feral mink is possible where geographical circumstances are suitable, albeit with the

concentrated effort of a large number of volunteers (Moore et al. 2003; Bryce et al. 2011; Robertson et al.

2016). Our findings show that monetary rewards might be a useful tool to increase the number of hunters

engaging in mink trapping, especially when intrinsic motivation is low (Stien and Hausner 2018). However,

all eradication programs are in vain without restricting escapees from mink farms.

Long-term data on invasive species are scarce (Strayer et al.  2006) and furbearer species are hard to

census (Bowman et al. 2007). Due to their secret life style, counting mink by sight is hardly ever suitable.

Count data based on field signs, however, were shown to be entirely unreliable (Harrington et al. 2010). The

best method for mink surveys, the operation of floating rafts with a tracking medium to record footprints

(Reynolds et al. 2004; Harrington et al. 2008), is very laborious and probably difficult to operate in coastal

areas. Hence, hunting bag series are often the best data available. However, as for most mammals (Imperio et

al. 2010), there are no comparative studies to assess the validity of hunting bag data of the American mink

and biases  caused  by  external  factors  are  likely.  Our  findings  suggest  that  hunting  bag  data  should be

thoroughly controlled for socio-economic factors, particularly for animals with a socio-economic value such

as the American mink.
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Appendix E
Supplement to: Of mink and men: socio-economic factors influence the hunting bag of American mink in

Europe and North America, Stille et al.: Hunting bag, fur price and fur production of the American mink

(Neovison vison), and legislation changes regarding this species in Denmark, Germany, Iceland and the USA

Denmark

177

Figure E.1 - Mink hunting bag series in Denmark from 1968 to 2013 (black). Parameters used for model
fitting: annual production of mink furs in Denmark (green), fur price at Kopenhagen Fur in DKK corrected
for purchasing power using the Danish CPI (red), and a government order (no. 610, July 2002) to restrict
mink from escaping from fur farms (dotted line)
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Figure E.2 - Mink hunting bag series in Germany from 1983 to 2015 (black). Parameters used for model
fitting: fur price at Kopenhagen Fur in DKK corrected for purchasing power using the Danish CPI (red) and
legislation change following the German reunification in 1990 (dotted line).
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Figure E.3 - Mink hunting bag series in Iceland from 1996 to 2014 (black). Parameters used for model fitting:
Production of mink furs in Iceland (green), fur price at Kopenhagen Fur in DKK corrected for purchasing
power using the Icelandic CPI (red), the eradication costs per mink in ISK (blue) and the eradication costs per
hunting hour in ISK (torquoise).



APPENDIX CHAPTER 5

USA

180

Figure E.4 - Mink hunting bag series in the USA from 1975 to 2014 (black). Parameters used for model
fitting: Production of mink furs in the USA (green) and fur price in the USA in $ corrected for purchasing
power using the US-American CPI (red)
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General Discussion
Behavioural change has been recognized to be a principal component of animals coping with HIREC (Sih

2013). Research on these changes has been mostly focused on particular systems or ecological situations,

though: species' behaviour in urban environments (Sol et al. 2013), non-native species' behaviour aiding its

invasion (Harms and Turingan 2012; Brodin and Drotz 2014) or native species' behavioural responses to

invasion (Berthon 2015).  The types of behaviour analysed were also not  representative,  as most  studies

focused on either feeding innovation (Ducatez et al. 2014) or problem-solving (Griffin and Guez 2014) as

proxies for intelligence. Finally, there is strong taxonomical bias in comparative analyses of behavioural

changes in biological invasions or innovation studies, mostly focusing on birds (Lefebvre et al. 2016) or

primates (Vale et al.  2017), other mammals (Benson-Amram et al.  2016). Only when using all  available

information across taxa and types of interaction between species can we make informed statements about

which behaviours will change in non-native or native species and with which consequences.

In this thesis, I framed cases of behavioural change in invasions conceptually, made predictions on new

meta-parameters and studied three systems in detail. I started with compiling cases of behavioural change in

invasions  and  used  these  broad  data  to  test  hypotheses  in  invasion  ecology.  This  interaction-focused

framework was extended in Chapter 3 and has implications for the case studies of the aquatic over-invasion

by a clonal crayfish in Germany (Chapter 3) and the American mink in Europe (Chapter 5) with special

emphasis on Iceland (Chapter 4). This thesis is - to the best of my knowledge - the broadest approach to

study  behavioural  innovation  in  non-human  animals  and  the  significance  of  behavioural  changes  in

invasions. The results can be summarized as follows:

Chapter  1  showed  that  two  advantages  of  non-native  species  over  natives  come  from  the  type  of

behaviour  under change and the underlying mechanism. First,  anti-predator  behaviour,  which was more

commonly observed to change in native species, changed more slowly than feeding behaviour. Second, non-

native species were more often pre-disposed to the new behaviour, which allowed for faster change than

through learning or genetic adaptation.

Chapter 2 showed how the clonal marbled crayfish were more active in a laboratory setting when they

came  from  lab  populations  (this  species  originated  in  captivitiy,  hence  does  not  have  a  native  wild

population).  Also,  the  threat  response  was  more  commonly  neither  fight  nor  flight,  but  a  "freezing"

behaviour in reaction to the human hand. Both can be interpreted as coping strategies with human presence.

Additionally, marbled crayfish were more aggressive and more often victorious in agonistic interactions with

the older non-native species, the spiny-cheek crayfish.

In Chapter 3 we found how the degree of innovation in native species' behavioural changes (innovation

gradient - IG) is related to the degree of novelty of the non-native species in the action - described by eco-
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evolutionary experience of the native species with the non-native species (EEE). The more novel the invader

is, the bigger the behavioural change has to be and the worse the consequences for the native species on a

population level. This is true for the birds in our data, but it has to be further explored how these parameters

relate in other taxa.

Chapter  4  shows how the behavioural  response of  native common eider  in  Iceland suffice  to  buffer

adverse population effects from the return of the native arctic fox. The arrival of the American mink into the

system, however, did have negative population effects on the eider in the region, despite an appropriate nest

site  relocation.  This  is  an  example  of  how eco-evolutionary  experiences  shape  the  outcome of  species

interactions and gives guidance for conservation efforts towards the American mink in West Iceland.

In Chapter 5 the population dynamics of this non-native predator are studied in detail, showing how they

differ between European countries and the USA as its native range. Hunting bag data was shown to be

mostly dependent on economic factors like fur price and production in the respective country and legislation.

We propose a new method to account for these drivers and get a more precise estimate of the underlying

population dynamics.

Studying behavioural change with an interaction-focused approach
The  study  of  behavioural  changes  in  biological  invasions  faces  complex  challenges.  There  are

observations that are in conflict, a non-native species - naive to the invaded ecosystem - can still outperform

natives in its invaded range, something that may be explained through community assembly theory (Pearson

et al. 2018). The work in this thesis therefore generally focuses on the interaction between species. It has

been shown that the interactions with native species can limit species spread more than climatic suitability

(Sax 2001), and these interactions change the functioning of the whole ecosystem through trophic cascades

(Schmitz et al. 2004). If the interactions can be predicted by proxies (Morales-Castilla et al. 2015), it would

be  most  useful  to  develop  a  framework  where  population  dynamics  outcomes  of  interactions  can  be

predicted.

I agree with the statement in Tebbich et al. (2016), that there is a need for "a framework for animal

innovation that describes the interactions between mechanism, fitness benefit and evolutionary significance".

Their framework provides excellent guidance for behavioural assays in experimental studies. However, I

found their concept of innovation too detailed to apply in comparative literature studies, especially when

using studies from settings where innovation was not the main focus (i.e. studies on biological invasion).

Therefore, in Chapter 3 we defined the observation of an innovation on the population level along the lines

of the technical/object distinction of earlier comparative analyses (Overington et al. 2009). I will elaborate on

this and contrast my approach to other existing studies.
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Towards an inclusive concept of animal innovation
While animal innovation studies have recently received more attention and often have an interdisciplinary

approach (Reader et  al.  2016),  the diversity of behaviour they study is generally limited. In non-human

animals the focus is mostly on resource-acquisition tasks in experiments (Sterelny 2016) or generally feeding

innovations in correlational studies (Ducatez et al. 2014). In this thesis, however, I was able to show that - at

least in an invasion context - changes in feeding behaviour only made up ~40% of the behavioural changes

(Chapter 1). These studies are also restricted taxonomically, mostly focusing on mammals (Benson-Amram

et al. 2016, Vale et al. 2017) or birds (Ten Cate et al. 2017). I argue here that several general questions about

the relationships between innovation, intelligence, dispersal and diversification cannot be answered with the

data currently available.

The relationship between intelligence and innovation seems to be context-specific. While there is clear

evidence for a positive relationship in primates (Reader and Laland 2002), using innovation data from a

broad range of behavioural contexts as foraging, mating or aggression (Reader and Laland 2001), this pattern

was not observed in an experimental study on meerkats where perseverance was a better predictor of success

than cognitive  faculties in  a  novel  food-extraction task (Thornton and Samson 2012).  In  a  comparative

foraging innovation study on seven bird species, motor diversity was shown to be the best predictor for

innovation, but the evolutionary link to cognitive flexibility remains untested (Diquelou et al. 2016).

With the data and models at hand, it remains hard to describe the relationship between innovation and

group size.  Evidence in humans points at  a positive relationship between group size and the number of

innovations, both in models (Muthukrishna and Henrich 2016) and experiments (Derex et al. 2013, but see

Vaesen 2012 and Henrich et al. 2016 for the controversy). There were difficulties, however, to put these

assumptions into decision making models of individuals in populations and see if social learning would be

the evolutionary stable strategy (ESS). The assumptions about facilitating and inhibiting effects of group

members  drive  the  optimal  group  size  for  innovation  (Griffin  and  Guez  2015).  The  initial  modelling

solutions showed Roger's paradox, by which social learning does not have a benefit over individual learning

at the equilibrium state (Rogers 1988). Critical social learning - in contrast to the random model choice

assumed in Rogers (1988) - can solve the paradox (Enquist et al. 2007), as do mixed learning strategies

(Aoki and Feldman 2014).

These  assumptions  about  the  interplay  between  individual  and  social  learning  across  animal  groups

inspired the Cultural Intelligence Hypothesis (van Schaik and Burkart 2011). The underlying idea is that

animals  should  learn  vital  cultural  skills  exclusively,  and  routine  skills  faster,  through  social  learning,

provided they actually use social learning preferentially (van Schaik and Burkart 2011). This is supported

from correlational analyses on primates (Navarrete et al. 2016), again using a broad range of behavioural

contexts  for  innovation.  In  a  cross-taxonomic  study on  problem-solving  and brain  size  in  39  mammal
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species, however, such a correlation was not found (Benson-Amram et al. 2016). The reason for this may in

fact not be the taxonomic differences, but the differences in data gathered, as innovation is dependent on

behavioural  context  (Perry  et  al.  2017).  Reversal  learning,  technical  innovation  or  innovative  problem

solving are psychologically distinct processes and controlled by different neural mechanisms (Audet and

Lefebvre 2017). To be able to study this wide range of processes, research has to happen on different types of

innovation across diverse taxa (Griffin 2016).

Behavioural changes and evolution
Species invasions offer a perfect setting to look at these mechanism of behavioural change and explore

their evolutionary implications: We have information about the mechanism behind the behavioural changes

in many non-native species.  In  a  next  step,  the  environmental  variability  in  the  home range should be

quantified  using  different  indicators  (seasonal  climatic  variability,  stochastic  climatic  variability,  biotic

variability,  …).  Quantitatively  comparing  the  distribution  of  variability  indices  between mechanisms of

behavioural change can answer the question if these different mechanisms evolve in the respective species

shaped by their  environment.  Theory predicts  that  environments with low variability will  foster  genetic

adaptation, while individual learning particularly evolves in very variable environments. In environments

with intermediate variability, social learning is most favourable (Brown 2012). We conducted such a study

with data  from the  study in  Chapter  1  and found preliminary evidence  for  this  pattern  with stochastic

temporal temperature variability as a predictor (Ruland, Wiedenroth et al., in prep.).

This dataset can be expanded for a clearer picture by gathering more instances of behavioural change for

a subset of species. That means ideally more than one instance of behavioural change in one species in its

native and its invaded range, with evidence for the mechanisms involved. Then the environmental variability

of the invaded range – better: ranges – will be quantified in the same way. Now all cross-comparisons are

possible: the species might, for example, have evolved through genetic adaptation to a variable home range

and use learning as a mechanism of behavioural change in its invaded ranges – evidence for the innovation-

precedes-invasion hypothesis.  Or it  originates from a less variable home range where it  shows no clear

pattern in mechanisms of behavioural change while it then genetically adapts to very variable invaded ranges

– evidence for the selection-for-innovation hypothesis.

The types of behaviour under change are valuable information about potential speciation in the native or

non-native species. Drawing from the framework of Duckworth (2009), there are explicit predictions about

what kind of evolutionary change is expected for which change in behaviour, covering some, but not all

types of behaviour classified in Chapter 1: what we defined as locomotion is called "migratory patterns or

habitat selection that causes an organism to move to a novel environment" in Duckworth’s framework and

predicted to affect diversification rates (Phillimore et al. 2006). Mating as well as resource use ("feeding")

are predicted to result in sympatric speciation (Dieckmann and Doebeli 1999). The behavioural change to
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cope with abiotic stress like different  temperature and salinity in  the environment,  defined as "climate-

related" in Chapter 1, is predicted to inhibit evolutionary change (Huey et al. 2003). What is missing in these

predictions are changes in competitive or anti-predator behaviour, which are common behavioural changes

and  not  included  in  the  framework  by  Duckworth  (2009).  I  predict  behavioural  changes  to  cope  with

competition  to  inhibit  speciation  in  a  similar  way  as  behavioural  adaptation  to  thermoregulation  limits

selection. The same will be true for successful behavioural change to cope with predation which will directly

reduce selective pressure. Chapter 2 on behavioural change in marbled crayfish showed that these crayfish

can  be  successful  in  competitive  interactions  with  invasive  spiny-cheek  crayfish  without  any  genetic

variation. However, most schemes on invasion success do not consider evolutionary change in the invader

and the recipient community (Whitney and Gabler 2008). The growing database that I created for the studies

compiled in this thesis will aid to answer these questions in the future.

The behavioural  changes observed in  the  studies  compiled in  this  thesis  support  the  hypothesis  that

species thriving in association with humans in their native range are more likely successful invaders (Strubbe

et al. 2015), as supported by the evidence that urban ecosystems serve as hotspots and hubs for non-native

species (Von Der Lippe and Kowarik 2008). Marbled crayfish that came from laboratories showed a different

behavioural response to the human hand as a threat. While life in captivity is more monotonous (Mason et al.

2013), it is also safer and possibly the marbled crayfish show the appropriate "freezing" response to human

approach, which corresponds to ignoring. This could reduce stress level in crayfish and decrease non-lethal

predation effects - missed opportunity costs in foraging - similar to the decreased flushing distance in birds

populations in touristic places (Jiménez et al. 2013). If the human hand is seen as a novel predation threat,

the observation is inverse to the prediction by Sih et al. (2010), whereby the non-consumptive effects of

predation are smaller the more novel the predator is. In this case, marbled crayfish may have learned to

ignore the hand in contrast to the spiny-cheek crayfish, which show a generalized fight or flight response

towards it. In the end, it is not clear, however, if the freezing response will be adaptive or maladaptive in

frequently  visited  lakes  like  Krumme  Lanke.  While  few  humans  will  intentionally  seek  to  predate  on

marbled crayfish there, freezing may increase the chance of getting accidentally stepped on.

We found evidence for a behavioural  syndrome in marbled crayfish between aggression and activity

(Chapter 2). This could limit the potential for behavioural change, as the change in one trait will always be

associated with a -  potentially  maladaptive -  change.  The aggression that  is  rendering individuals  more

successful at obtaining resources from hetero- and conspecific competitors is predicted to be a positive trait

at  low  densities,  but  not  at  high  densities  (Hudina  et  al.  2014).  Behavioural  syndromes  may  be  less

pronounced in the wild, though, with increased predation pressure (Niemelä et al. 2012). However, the high

observed rate of cannibalism of own offspring in marbled crayfish in the lab (Stefan Linzmaier, pers. comm.)

may limit densities in invaded lakes.
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Human association of non-native species and sustained disturbance
The relationship with humans is paramount for the success of an invasion and direct predation by humans

is not necessarily a disadvantage. While the marbled crayfish is mostly used as an ornamental aquarium

species in Europe, it  is  intentionally spread across rice fields in Madagascar to be harvested for human

consumption (Andriantsoa et al. 2019). This is in many cases the most important factor determining spread

rate and establishment success: the intentional transport by humans. The marbled crayfish possesses perfect

invader traits (Jones et al. 2009; Havel et al. 2015), but its spread across Europe is considerably slower than

across  Madagascar  due  to  the  difference  in  vectors.  This  is  due  to  its  intentional  spread  by  humans

(propagule  pressure  in  uninvaded  regions)  and  its  ability  to  thrive  in  human  affiliation  (the  deliberate

stocking of crayfish in rice fields). These two factors were found to be most important for freshwater fish,

mammal and bird species invasion success in Europe and North America (Jeschke and Strayer 2006). The

breeding for fur was also the vector how the American mink arrived in Europe, and releases and escapees

still restock the feral mink populations in several countries (Hammershøj et al. 2005).

The excellent dataset on breeding eider in Breiðafjörður only exists due to the harvesting of down by the

island owners  (Jónsson et  al.  2013).  This  commercial  interest  also makes island owners  take action  to

facilitate breeding by building shelters and controlling nest predators (Jónsson et al. 2013). There is reason to

assume that these methods vary among islands, depending on owners' activity and over time. Therefore, the

data on eider nest numbers had to be treated as a careful proxy of total eider individual numbers in the area.

A study to correct the nest numbers for human activity - gathered through qualitative data from interviews

with island owners -  will  allow for a better  estimation of actual  eider numbers (Ruland et al.,  in prep.,

interviews started in 2017). Also, eiders can - depending on resource availability - decide when to breed or if

to  breed  at  all.  An  agent-based  model  to  predict  individual  eiders'  choice  according  to  environmental

condition will give a better estimate of the number of non-breeders in the area (a corresponding Master thesis

project started 2019).

Conservation implications
We have seen that behavioural shifts do happen, but are often insufficient to buffer adverse effects of non-

native species (Carthey and Banks 2014, Chapter 4). Anti-predator behaviour is subjected to slower change

than feeding (Chapter 1). The incorporation of novel food was shown to be less cognitively challenging

(Ducatez et al. 2014) which is also reflected in relative brain size of predator-prey species pairs across fish

species (Kondoh 2010). Theory predicts that species which do not develop behavioural mechanisms to cope

with  the  new interaction  go  extinct  when  selective  pressure  is  high  (Strauss  et  al.  2006).  While  some

observations  of  rapid  genetic  evolutionary  responses  to  invasions  have  been  met  with  great  optimism

(Carroll  2007),  especially  fast  life-history  trait  invertebrates,  adaptation  commonly  is  too  slow to  save

natives or curb invader effects (Hudgens and Garcelon 2011; Tuomainen and Candolin 2011). Examples of
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appropriate acquired behavioural response to predators after the invasion are rare and often generalized with

high sub-lethal predation effects (e.g. missed opportunity cost, see for example Saxon-Mills et al. 2018).

Conservation efforts, therefore, have to be directed towards decreasing non-native species' negative impacts

by decreasing propagule pressure and population numbers, as well as training native species for appropriate

behavioural responses (Moseby et al. 2012) or even eradication (Robertson et al. 2014) where possible.

It has been observed that non-native species adjust their behaviour to control measures (Diquelou and

Griffin 2019), which is one of the problems in fighting invasion after the introduction (Leung et al. 2002).

Our analyses of population dynamics show, however, how legislation could effectively decrease the number

of feral mink in Denmark without costly control, a trend that can be continued by decreased production and

increased  security  measures  (Chapter  5).  The  EU-regulation  No  1143/2014  is  a  good  example  for  a

transnational agreement to curb the spread of non-native species. Internationally, free trade agreements like

the North American Free Trade Agreement (NAFTA) are criticized to increase trafficking of non-native

species  across  borders  (Margolis  et  al.  2005,  Ricciardi  et  al.  2017).  International  action against  climate

change is also necessary, as there is evidence for a positive relationship between invasion and climate change

(Engel et al. 2011; Côté and Green 2012).

Conclusions
With  this  interdisciplinary  thesis,  I  illustrated  how  biological  invasions  are  good  sources  to  study

biological changes and evolutionary dynamics. They pose large natural experiments and the information I

presented has in turn implications for management decisions. The datasets gathered in chapters 1 and 3 were

submitted along with the manuscripts and are meant to be extended and applied in the future. The population

dynamics of the common eider in West Iceland are as predicted and show that control efforts should be

concentrated on the mink (Chapter 4).  The numbers of feral  mink in Europe can best  be controlled by

banning mink farms or curbing the release and escape of mink by legislation (Chapter 5). Chapter 1 also

demonstrated the importance of the  mechanisms behind behavioural  changes to define the speed of  the

change. Chapter 2 demonstrated that the marbled crayfish changed its behaviour after being released into

central European lakes within a few generations despite having no genetic variation. I expect to find more

innovation in non-human animals and across a broader range of behaviours when using the IG scheme

presented in Chapter 3, thereby broadening our understanding of what innovative behaviour is and how it

appears across contexts (Griffin 2016). It has to be stressed, however, that despite being in some cases a

functional  "first  line  of  defence",  behavioural  shifts  do  not  allow  effective  responses  against  all

anthropogenic rapid changes in the environment. The work compiled in this thesis supports the claim that the

complex issue of novel ecosystems demands a transdisciplinary science of engagement for societal change

(Collier  2015).  Political  and  economical  action  has  to  be  undertaken  to  limit  climate  change,  habitat

destruction and species transport.
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