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II Summary 

Myelination has been evolved in the vertebrate system as an essential mechanism to 

facilitate axonal signal transduction and provide trophic support for neurons. Formation and 

maintenance of myelin sheaths are tightly regulated throughout the development by diverse cell 

metabolic pathways. Consequently, the impairment of myelin homeostasis, for instance by an 

altered metabolism of myelinating glial cells, can lead to severe axonal degeneration. Inherited 

peripheral neuropathies such as the most commonly inherited Charcot-Marie-Tooth (CMT) 

diseases are a heterogeneous group of disorders, caused by mutations in more than 80 different 

genes. The demyelinating CMT-type 4B results from loss-of-function or missense mutations in 

myotubularin-related protein 2 (MTMR2), MTMR5 or MTMR13. These proteins belong to the 

family of MTMR phosphatidylinositol (PI) phosphatases that specifically hydrolyze the 

endomembrane signaling lipids PI(3)P and PI(3,5)P2 at the D-3 position. How dysregulated 

PI(3)-phosphate conversion in myelinating Schwann cells can lead to such a severely affected 

myelin homeostasis, as observed in the absence of CMT-associated MTMRs, is still elusive. 

Here, we show that the small GTPase Rab35, a critical regulator of endomembrane 

trafficking, interacts with CMT-associated MTMR lipid phosphatases. Rab35 binds and recruits 

the pseudophosphatases MTMR13 and MTMR5, and via these, also the active phosphatase 

MTMR2. In agreement with the critical involvement of these proteins in the myelin homeostasis 

of the peripheral nervous system (PNS), Schwann cell-specific Rab35 ablation results in severe 

peripheral demyelination in mice. Sciatic nerves of these animals are characterized by 

aberrantly myelinated fibers with Tomacula and myelin outfoldings. This progressive focal 

hypermyelination is accompanied by abnormally elevated activity of mTORC1, a central cell 

signaling hub that needs to be crucially balanced for proper myelination. Inhibiting mTORC1 

activity by pharmaceutical treatment of these mice using Rapamycin leads to a partial 

amelioration of the nerve morphology. Moreover, reduced myelin segment formation and 

myelin abnormalities in Rab35-depleted Schwann cells ex vivo, in Schwann cell and dorsal root 

ganglion neuron co-cultures, are rescued by Rapamycin application. These findings strongly 

indicate that mTORC1 hyperactivity contributes to the observed impairment of myelin 

homeostasis in conditional Rab35 knockout (KO) animals. 

Furthermore, the absence of Rab35 or the active phosphatase MTMR2, or both, result 

in elevated mTORC1 activity in different cultured cell types, including primary cells of the 

nervous system. This hyperactivity is displayed independently of receptor tyrosine kinase 

(RTK) and AKT activation. Notably, physiological mTORC1 activity can be restored in 
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Rab35-depleted cells by overexpression of MTMR2, suggesting a sequential function of the 

small GTPase and active MTMR complexes in repressing mTORC1. In accordance with the 

lipid phosphatase activity of MTMR2, we further show that dysregulated PI(3)-phosphate 

levels in the absence of Rab35 are causative for the observed mTORC1 hyperactivation, and 

likely result from an impaired recruitment of MTMR complexes. Rab35-depleted cells display 

an accumulation of PI(3)P and likely its product, PI(3,5)P2. Importantly, pharmacological 

interference with VPS34-mediated PI(3)P synthesis restores physiological levels of mTORC1 

activity. We observe this mechanism in non-myelinating cells as well as in Schwann cells. 

Elevated mTORC1 activity and PI(3)P accumulation are accompanied by increased levels of 

the myelin protein P0 in differentiated Rab35 KO Schwann cells in culture. Importantly, 

P0-protein levels are reduced and comparable to WT levels upon pharmacological inhibition of 

mTORC1, VPS34, and especially the PI(3,5)P2-synthesizing enzyme PIKfyve. This suggests 

that PI(3,5)P2 is the critical lipid for mTORC1 activation in PNS myelinating glial cells and 

thus, provides a possible explanation for the crucial effect of the loss of MTMR proteins on 

myelin homeostasis. Moreover, our data indicate a similar role for Rab35 in myelinating glial 

cells of the central nervous system (CNS). 

Taken together, we could identify Rab35 as a novel critical regulator of both, myelin 

homeostasis and mTORC1 activity. We propose a mechanism in which Rab35 represses 

mTORC1 activity by the recruitment of PI(3)-phosphate-hydrolyzing MTMR complexes to 

lysosomal sites. These findings may have implications for a potential therapeutic treatment of 

CMT4B-patients by pharmaceutical mTORC1-inhibition, for instance with Rapamycin. 
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III Zusammenfassung 

Myelinisierung ist ein essenzieller Mechanismus innerhalb der evolutionären 

Entwicklung der Wirbeltiere, für die Beschleunigung der axonalen Signaltransduktion sowie 

die trophische Unterstützung von Neuronen. Formation und lebenslanger Erhalt der 

Myelinscheiden sind durch zahlreiche Zell-metabolische Stoffwechselwege streng reguliert. 

Beeinträchtigungen der Myelin Homöostase, die beispielsweise aus Abweichungen im 

Metabolismus von myelinisierenden Gliazellen resultieren, können somit zur schwerwiegenden 

Degeneration von Axonen führen. Vererbbare Neuropathien im peripheren Nervensystem 

(PNS), wie die am häufigsten vererbte Charcot-Marie-Tooth (CMT) Krankheit, sind eine 

heterogene Gruppe von Erkrankungen, die durch Mutationen in mehr als 80 verschiedenen 

Genen verursacht werden können. Der demyelinisierende CMT-Krankheitstyp 4B wird durch 

Genmutationen ausgelöst, die zum Verlust oder der Fehlfunktion von myotubularin-related 

protein 2 (MTMR2), MTMR5 oder MTMR13 führen. Diese Proteine gehören zur Gruppe der 

MTMR Phosphatidylinositol (PI) Phosphatasen, die spezifisch die endomembranen 

Signallipide PI(3)P und PI(3,5)P2 an der 3‘-Phosphatgruppe hydrolysieren. Unklar ist jedoch, 

wie sich eine Deregulation der Umsetzung der Lipide in myelinisierenden Schwann-Zellen in 

der Abwesenheit dieser MTMR Phosphatasen so schwerwiegend auf die Myelin Homöostase 

auswirken kann. 

In dieser Arbeit zeigen wir, dass Rab35, eine kleine GTPase, die in der Regulation des 

intrazellulären Membrantransports involviert ist, mit diesen CMT-assoziierten MTMR 

Lipidphosphatasen interagiert. Rab35 bindet und rekrutiert die Pseudophosphatasen MTMR13 

und MTMR5, und dadurch auch die mit ihnen im Komplex gebundene aktive Phosphatase 

MTMR2. Entsprechend der kritischen Rolle dieser Proteine in der Regulation der Myelin 

Homöostase im PNS, führt die Schwann-Zell-spezifische Ablation von Rab35 in vivo zu einer 

schweren Demyelinisierung des Ischias-Nervs in Mäusen. Die Tiere weisen 

aberrant-myelinisierte periphere Nervenfasern mit Tomacula und Myelinscheidenausfaltungen 

auf. Diese voranschreitende fokale Hypermyelinisierung ist begleitet von einer abnormal 

erhöhten Aktivität einer der zentralen Signalverschaltungskomplexe für die Regulation der 

Myelinscheidenformation, mTORC1, im Nervengewebe. Ein Entgegenwirken der mTORC1-

Hyperaktivität durch die pharmakologische Inhibierung mit Rapamyzin führt zu einer partiellen 

Verbesserung der Nervenmorphologie. Die chronische Applikation von Rapamyzin in Rab35-

depletierten Schwann-Zellen ex vivo behebt zudem die reduzierte Formation von 

Myelinsegmenten und -abberrationen in Co-Kulturen von Schwann-Zellen und dorsal root 

ganglion (DRG)-Neuronen. Dies lässt darauf schließen, dass die abnormal erhöhte mTORC1-
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Aktivität in Schwann-Zellen zu der beeinträchtigten Myelin Homöostase in den konditionellen 

Rab35 knockout (KO) Tieren beiträgt.  

Des Weiteren führt die Depletion von Rab35, der aktiven Phosphatase MTMR2, oder 

beider Proteine zu erhöhter mTORC1-Aktivität in verschiedenen kultivierten Zelltypen, unter 

anderem auch in Primärzellen des Nervensystems. Dieser Effekt ist unabhängig von der 

Stimulation der mTORC1-aktivierenden Rezeptortyrosinkinasen sowie der daraus 

resultierenden AKT-Aktivierung. Interessanterweise kann eine physiologische mTORC1-

Aktivität durch Überexpression von MTMR2 in Rab35-depletierten Zellen wiederhergestellt 

werden. Dies lässt auf einen sequenziellen Ablauf der mTORC1-Repression durch die kleine 

GTPase und aktiven MTMR Komplexen schließen. Damit übereinstimmend haben wir 

festgestellt, dass eine fehlende Regulierung von PI(3)-Phosphaten in der Abwesenheit von 

Rab35 ursächlich für die beobachtete mTORC1-Hyperaktivität ist und vermutlich aus einer 

beeinträchtigten Rekrutierung von MTMR Komplexen resultiert. Kultivierte Zellen in denen 

die Expression von Rab35 gänzlich oder größtenteils unterdrückt wird, weisen eine 

Akkumulation von PI(3)P und möglicherweise auch von PI(3,5)P2 Lipiden auf. In diesen Zellen 

kann durch pharmakologische Unterbindung der PI(3)P Synthese durch Inhibierung von VPS34 

die mTORC1-Aktivität wieder auf physiologische Level reduziert werden. Diesen 

Mechanismus sehen wir sowohl in nicht-myelinisierenden als auch in Schwann-Zellen. Neben 

der mTORC1-Hyperaktivität und der Akkumulation von PI(3)P Lipiden weisen differenzierte 

Rab35 KO Schwann-Zellen in Kultur erhöhte Myelin Protein P0-Level auf. Diese können 

bemerkenswerterweise durch die chronische Applikation der Kulturen mit Inhibitoren gegen 

mTORC1, VPS34, und insbesondere gegen das PI(3,5)P2-synthetisierende Enzym, PIKfyve, 

wieder reduziert werden. Dies legt den Schluss nahe, dass PI(3,5)P2 das entscheidende 

mTORC1-aktivierende Lipid in den myelinisierenden Gliazellen des PNS‘ ist, und bietet somit 

eine mögliche Erklärung für die Auswirkung des Verlustes von MTMR Proteinen auf die 

Myelin Homöostase. Unsere Daten weisen zudem darauf hin, dass Rab35 eine ähnliche 

Funktion in Oligodendrozyten, den myelinisierenden Zellen des zentralen Nervensystems 

übernimmt. 

Zusammenfassend identifizieren unsere Ergebnisse Rab35 als bisher unentdeckten 

Regulator der Myelinscheidenformation im PNS, sowie als Repressor von mTORC1. Wir 

vermuten, dass Rab35 die Aktivität von mTORC1 durch die Rekrutierung von MTMR 

Phosphatasen zu Lysosomen unterdrückt. Diese Ergebnisse deuten darauf hin, dass die 

therapeutische Behandlung mit mTORC1-inhibierenden Pharmaka wie Rapamyzin zu einer 

Verbesserung des Krankheitsverlaufs von CMT4B Patienten führen könnte.  
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1. Introduction 

1.1 Myelination of the vertebrate nervous system 

The electrical insulation of neuronal axons by compacted glial membrane wrapping 

appeared for the first time in evolution approximately 425 Mio years ago in placoderms. 

Myelination is one of the crucial acquisitions that underly the potential of higher organisms to 

develop large and complex nervous systems by enabling rapid and efficient nerve conduction 

in small diameter axons (Zalc, 2008; 2016). “Myelin” originates from the greek term of marrow 

(“myelos”) and was first coined by Rudolf Virchow (Virchow, 1854). The vertebrate nervous 

system is composed of the central nervous system (CNS), including spinal cord and brain, and 

the peripheral nervous system (PNS) with its nerves that connect the CNS with organs and 

limbs. The CNS is further subdivided into the grey and white matter, whereas the latter contains 

almost exclusively myelinated fibers with a dry weight myelin proportion of 50 - 60 % (Morell 

and Norton, 1980). In contrast, peripheral nerves contain bundles of small diameter, non-

myelinated and large, myelinated axons in a ratio of 4 to 1 (Voyvodic et al., 1989; Griffin and 

Thompson, 2008). The axonal diameter is a key determinant for and directly proportional to the 

signal conduction velocity (Rushton, 1951; Waxman, 1980). In invertebrates, long fibers 

require a large diameter to transmit signals with a sufficient speed (Young, 1938). Myelination 

of vertebrate axons circumvents the requirement of large fiber surfaces by preventing the loss 

of charge, reducing membrane capacitance during signal propagation, and providing trophic 

support for axonal integrity (Nave, 2010). The extent of myelination is tightly regulated and 

adapted to the axonal diameter, represented by a constant g-ratio. It is defined as the axon 

diameter divided by the total fiber diameter, and between 0.6 - 0.7 for myelinated fibers in PNS 

and CNS. The g-ratio increases slightly with age whereas significant deviations indicate 

pathological conditions (Rushton, 1951; Berthold et al., 1983; Friede and Beuche, 1985; Kidd 

et al., 2013).   

 

1.2 Myelinating glial cells  

Oligodendrocytes (OLs) and Schwann cells (SCs) myelinate axons of the CNS and PNS, 

respectively. They are presumed to be evolutionarily developed from a common progenitor that 

might descendant from the invertebrate ensheathing glial cells (Zalc et al., 2008; 2016). 

Nevertheless, their cell morphology is quite distinct, especially in the mature myelinating stage 

(Fig. 1-1). Multibranching OLs produce up to 40 myelin segments on multiple axons by the 

sequential extension of axon-contacting filopodia, followed by lamellopodial wrapping 

(Pfeiffer et al., 1993; Asou et al., 1995). In contrast, SCs form a single segment by deformation 
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of their whole cell body (Kidd et al., 2013). In addition, SCs origin from neural crest cells, 

whereas OLs are derived from neuroepithelial cells (Jessen et al., 1994; Rowitch, 2004). 

Proliferating oligodendrocyte precursor cells (OPCs) migrate to their destined localization into 

future white matter tracts of the CNS with regulatory contributions of extrinsic signals from 

neurons and other glial cells of the developing brain (Rowitch, 2004). In peripheral nerves, SC 

precursors co-migrate with growing axons and their survival and differentiation depend on 

axonal signals (Jessen & Mirsky, 2005; Nave and Salzer, 2006).   

 

In the human brain most myelin sheaths are formed during the first year, but their 

development is not completed before the age of 20 (Fields, 2008). Bipolar OPCs are already 

observed at embryonic day (E) 9.5 in the mouse telencephalon, shortly after neuronal 

specification (Timsit et al., 1995; Poncet et al., 1996; Perez-Villegas et al., 1999). SC 

precursors are generated in rodent nerves at E12-15. Immature SCs start to segregate axon 

bundles at E13-17. Postnatally, immature SCs perform axonal sorting, and eventually 

differentiate into mature pro- and thus myelinating SCs or non-myelinating Remak bundle 

forming cells (Jessen et al., 1994; Dong et al., 1995; Jessen and Mirsky, 2005). Similar to post-

mitotic mature OLs, differentiated SCs exit from the cell cycle. However, upon nerve injury 

SCs can re-enter the cell cycle by dedifferentiation of mature into immature SCs (Jessen and 

Mirsky, 2005). Maturation and differentiation within both lineages require complex 

morphogenetic changes and thus, a tight regulation of the gene expression pattern.  

OPCs are characterized by expression of the receptor tyrosine kinase PDGFRα (Platelet 

derived growth factor receptor) and the chondroitin sulphate proteoglycan NG2 (neural glial 

antigen 2), regulated by the transcription factors Olig-1 and Olig-2 (Stallcup and Beasley, 1987; 

Figure 1-1: Myelin segment formation 

in the CNS and PNS. (a) 

Oligodendrocytes in the CNS form 

internodes on different axons by several 

filopodial extensions. Perinodal 

astrocytes with so far unknown function 

contact the axon in nodal regions. (b) 

Schwann cells in the PNS form each one 

segment only and a surrounding basal 

lamina. Taken from (Poliak and Peles, 

2003). 

a 

b 
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Pringle et al., 1992; Wegner, 2008). Upon differentiation into late progenitors and pro-

myelinating OLs, O4-reactive glycoproteins and galactocerebrosides (GalC) are upregulated, 

whereas NG2- and PDGFRα-expression is lost (Bansal et al. 1992; Barateiro and Fernandes 

2014). Myelination induction in mature OLs is supposed to be controlled by the transcription 

factor MyRF (myelin regulatory factor) that binds to myelin protein and lipid synthesis genes 

(Bujalka et al., 2013). During the transition to myelinating OLs, major myelin components such 

as the myelin-associated glycoprotein (MAG), 2′,3′-cyclic nucleotide 3′-phosphodiesterase 

(CNPase), as well as myelin basic protein (MBP) and proteolipid protein (PLP) are upregulated 

(Fig. 1-2a) (McMorris, 1984; Verity and Campagnoni 1988; Miron and Kuhlmann, 2011). A 

distinct proportion of OPCs with around 5 to 8 % of all glial cells remain in the adult brain as 

precursors for myelin remodeling (Dawson et al., 2000; Young et al., 2013).  

 

Figure 1-2: Lineage progression of myelinating glial cells. (a) PDGFRα/NG2+ OPCs are derived from 

neuroepithelial cells and differentiate into O4/GalC+ immature and eventually myelinating oligodendrocytes 

(OL) that express major myelin components. Modified from (Armada-Moreira et al., 2015). (b) Schwann 

cell precursors assemble with axons via nerve CAM (N-CAM) and ErbB2/B3 paracrine signaling and 

differentiate into immature O4+ SCs. The pro-myelin stage is marked by upregulation of transcription factors 

for myelin protein- and lipid-synthesis, and downregulation of cell adhesion molecules (N-CAM). Modified 

from (Jessen and Mirsky, 2019). green – selected set of proteins expressed in each stage; italic – selected 

transcription factors that regulate the respective stage transition.  

a 

b 
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Proteins mainly expressed in immature SCs and downregulated upon differentiation, 

include the low-affinity neurotrophin receptor p75NTR, and the transcription factors c-Jun and 

Sry box protein (Sox)-2, regulated by cAMP-signaling (Scherer et al., 1994; Parkinson et al., 

2004; 2008). The EGF-like receptors, ErbB2 and -B3, and Sox10 are expressed throughout all 

lineage stages, and are required for proliferation, differentiation and myelination (Kim et al., 

1997). Cell cycle exit is mediated by the cyclin-dependent kinase inhibitor p27(Kip1), which is 

upregulated by the master transcription factor for differentiation into myelinating SCs, the zinc 

finger protein KROX20/Egr2 (Zorick et al., 1999; Parkinson et al., 2004). KROX20 is 

repressed in immature SCs by Sox-2 and transcriptionally upregulated in the pro-myelinating 

stage by POU domain transcription factors, Sox10 and NFAT (nuclear factor of activated T 

cells) (Topilko et al., 1994; Jaegle et al, 2003; Le et al., 2005; Ghislain and Charnay, 2006; Kao 

et al., 2009; Jang et al., 2010). Following differentiation initiation, myelin-associated proteins 

such as the scaffolding protein periaxin, the nuclear factor-κB, and the myelin compaction 

proteins, myelin protein 0 (P0) and MBP are expressed (Lemke and Chao, 1988; Morgan et al., 

1991; Parkinson et al., 2003; Patzig et al., 2011; Yoon et al., 2008). Lipid synthesis is induced 

by upregulation of the sterol regulatory element-binding protein (SREBP) transcription factors 

(Camargo et al., 2009). In contrast, the expression of cell adhesion molecules (CAM) is 

downregulated upon differentiation into myelinating but not in non-myelinating mature SCs 

(Jessen et al., 1987) (Fig. 1-2b).  

 

1.3 The function of myelination 

The concentrical wrapping and subsequent compaction of several layers of glial 

membrane around axons fulfills essential functions in the facilitation of nerve conductance. 

Myelin segments cover around 99 % of the axonal surface. These internodes are regularly 

spaced and separated by small gaps of around 1 µm, the nodes of Ranvier (Ranvier, 1871; Salzer 

et al., 2015). The axon is electrically insulated in internode regions and almost devoid of ion 

channels, whereas voltage-gated sodium channels (Nav1.6 and Nav1.3) are concentrated in the 

nodes (Kordeli et al., 1990; Rasband et al., 1999a). Voltage-gated potassium channels (Kv1.1 

and Kv1.3) are clustered in a region between node and paranode, the juxtaparanode, and thereby 

electrically separated from Nav-channels (Chiu and Ritchie, 1984; Rasband et al., 1999b). The 

sodium channel density is around six times higher in the nodes of myelinated fibers than on 

surfaces of non-myelinated axons (Pellegrino et al., 1984; Black et al., 1990). Thus, action 

potentials that are propagated continuously along the latter, are generated in the nodal regions 

of myelinated axons only. This saltatory conduction (latin: saltare – jump) allows for fast signal 
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propagation with up to 150 m/s compared to a maximum of 10 m/s in unmyelinated axons (; 

Ritchie, 1982; Purves et al., 2001). As concluded from theoretical models, the internode length 

is adapted to an optimal conduction velocity and correlates almost linearly with the axonal 

diameter (Waxman, 1980; Murray and Blakemore, 1980; Hildebrand et al., 1993; Simpson et 

al. 2013). In addition, the lamellae number of internodes, which corresponds to the myelin 

thickness, is strongly correlated to the axonal diameter as well (Hildebrand and Hahn, 1978). 

Notably, saltatory conduction requires less energy than continuous AP generation (Harris and 

Atwell, 2012; Waxman et al., 2006).  

The axon length is not only critical for signal transduction speed but also for the 

energy-requiring axonal transport of vesicular cargo and molecules, which maintain axonal and 

synaptic integrity (Roy et al., 2005). In agreement, the loss of myelin compaction proteins 

results in early defects in the anterograde and retrograde axonal transport in vivo (Lappe-Siefke 

et al., 2003; Edgar et al., 2004). In the CNS, monocarboxylate transporters that transfer 

pyruvate and lactate are located in myelin sheaths (MCT1) and the underlying axolemma 

(MCT2) (Rinholm et al., 2011). Downregulation of MCT1 expression results in a severe 

progressive neurodegeneration in the brain, but also in peripheral motor neurons, which is 

rescued by the addition of free lactate (Lee et al., 2012). Trophic support of axons is presumably 

also enabled by the physical protection of ensheathed axon from activated autoreactive T cells 

(Neumann et al., 2002), the secretion of stress-protective proteins (Krämer-Albers et al., 2007) 

and by the production of neurotrophic factors such as the glial cell-derived neurotrophic factor 

(GDNF) (Wilkins et al., 2003). In addition, SCs transfer mRNA and ribosomes to axons (Court 

et al. 2008; 2011a; Sotelo et al. 2013). Moreover, in contrast to CNS axons, peripheral nerve 

fibers are capable to regenerate after axon injury, greatly supported by SCs. Dedifferentiated 

SCs perform myelin breakdown to clear the injury sites and support axonal regeneration and 

neuronal survival before eventual remyelination (Allen and Barres, 2009; Arthur-Farraj et al., 

2012).  

 

1.4 Myelin structure  

In peripheral nerves, all axons are ensheathed by SCs and arranged within fascicles prior 

to myelination. This process of radial sorting is performed by pro-myelinating SCs that already 

attach to axons as precursor cells. They radially form bundles with subsequent separation and 

association in a 1:1 ratio with large-diameter axons for subsequent myelination. Alternatively, 

several small diameter, mainly sensory axons are segregated and ensheathed as ‘Remak 

bundles’ (Webster et al., 1973; Sherman and Brophy, 2005). Axons with a diameter of more 
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than 1 µm in the PNS, and minimal 0.2 µm to 0.8 µm in the CNS become myelinated (Rushton, 

1951; Waxman and Bennett, 1972; Remahl and Hildebrand, 1982; Peters et al., 1991). The 

ultrastructure and qualitative lipid composition of CNS and PNS myelin sheaths is similar 

(Werner and Nave, 2005; Chrast et al., 2011). In accordance, fibers that span through the CNS 

and PNS throughout their development get sequentially myelinated by both cell types (Zalc et 

al., 2016). Nevertheless, the protein composition of CNS and PNS myelin partially differs. 

Myelin basic protein (MBP) is one of the most abundant proteins with 8 % in both, CNS and 

PNS myelin, whereas the most abundant compaction proteins are proteolipid protein (PLP) or 

myelin protein 0 (P0), respectively, making up around 20 % of total myelin protein (Jahn et al., 

2009; Patzig et al., 2011). Interestingly, P0 is the major PNS and CNS myelin protein in fish, 

implicating that P0 was replaced by PLP in the CNS just with the amphibian evolution (Patzig 

et al., 2016; Zalc et al., 2016).  

Compacted myelin membrane layers comprise a high lipid content of at least 70 % of 

dry weight, enriched in galactosphingolipids, saturated long-chain fatty acids and especially 

cholesterol with more than 25 % of total lipid (Norton and Poduslo, 1973; Baumann and Pham-

Dinh, 2001; Saher and Simons, 2010). During radial myelin growth, the innermost myelin layer 

spirally expands around the axon underneath the previously formed membrane layers with 

simultaneous longitudinal extension to the future node of Ranvier (Bunge et al., 1989; Asou et 

al., 1995). Conversely, the compaction of the sheaths starts at the outermost layer of already 

deposited myelin. This process includes tight apposition of membrane layers and extrusion of 

the cytoplasmic content. The bilipid layers of compact myelin are interconnected by mainly 

low molecular weight proteins, characterized by a slow turn-over rate (Toyama et al., 2013). 

For instance, MBP connects the cytoplasmic leaflets of two opposing membranes by 

oligomerization into a cohesive protein meshwork (Readhead et al., 1987; Uschkureit et al., 

2000; Kidd et al., 2013). Compaction at extracellular leaflets is performed by the membrane 

residing PLP and its splice isoform DM20 or P0 protein and peripheral myelin protein 22 

(PMP22), in the CNS and PNS, respectively, through interactions between their extracellular 

domains (Stoffel et al., 1984; Filbin et al., 1990; Martini et al., 1995; Shapiro et al., 1996; 

Möbius et al., 2008). This process includes expression downregulation and extrusion of large, 

negatively charged glycoproteins from these membrane areas (Aggarwal et al., 2011; Bakhti et 

al., 2013). The directionality of compaction is mediated by compaction antagonists such as the 

CNPase, which maintains the separation of single membrane layers (Gravel et al., 1996; Yin et 

al., 1997; Snaidero et al., 2014). A function of CNPase-mediated cyclic adenosine 

monophosphate (cAMP) conversion is so far not linked to this process. These non-compacted 
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regions are required for ongoing myelin growth. Additional myelin-associated proteins such as 

MAG, MOG or PMP2, as well as Claudin-11, the depolymerization of F-actin and the 

membrane lipid composition presumably contribute to compaction and stability maintenance 

of myelin membranes (Chow et al., 2005; Majava et al., 2010; Aggarwal et al., 2011; 2013; 

Zalc et al., 2016). Interestingly, myelin proteins are distinctively synthesized and delivered to 

the nascent myelin sheath. MBP mRNA is transported and locally translated at glial-axonal 

contact sites. The synthesized protein subsequently diffuses back and starts to compact the outer 

myelin layers (Wake et al., 2011; Kidd et al., 2013). In contrast, PLP and the non-compaction 

protein MAG are synthesized in the endoplasmatic reticulum. After initial transport and 

incorporation into the OL cell body membrane, both proteins are internalized by endocytosis 

and targeted to late endosomes/lysosomes for subsequent delivery into the myelin sheaths 

(Simmons and Trajkovic, 2006; Winterstein et al., 2008; Mironova et al., 2016). 

The myelinated fiber is dual polarized, in radially and longitudinally distinct 

compartments (Fig. 1-3). Radial polarity spans from the abaxonal to the adaxonal membrane 

via the compacted myelin sheath. In Schwann cell-myelinated fibers, the abaxonal compartment 

is surrounded by a basal lamina and contains the nucleus. It is interrupted by periodic 

appositions, enriched in a periaxin-dystroglycan complex which connects cellular cytoskeleton 

and extracellular matrix (ECM) proteins (Sherman et al., 2012a). They delineate the cajal 

bands, cytoplasmic channels that contain ß1-integrins, and cytoskeletal proteins for interaction 

with the basal lamina (Court et al., 2004; 2011b). The compacted myelin region is interspaced 

by Schmidt-Lantermann-incisures (SLI) that retain cytoplasm and are coupled by gap junctions 

for intrasheath transport. Interconnected cytoplasmic pockets with active diffusion are also 

observed in CNS myelin (Velumian et al. 2011). The myelinic channel network provides a path 

for the helical transport of membrane, proteins and RNA, from the glia cytoplasm to the leading 

edge of myelin growth at the inner tongue and the lateral expansions. Most channels partially 

and gradually disappear when myelination is terminated. The lateral edges and SLIs remain 

open, presumably for postnatal myelin remodeling, trophic support of neurons and cross-

signaling with the axon (Berthold and Nilsson, 2002; Snaidero et al., 2014). The innermost, 

non-compacted myelin layer is connected to the axolemma through the periaxonal space by 

glial and axonal adhesion molecules such as CADM1-4 (Maurel et al., 2007; Spiegel et al., 

2007). In addition, glial receptors and their cognate axonal ligands interact through this space.  

The adaxonal site is longitudinally subdivided into nodal, paranodal, juxtaparanodal and 

internodal regions. Nodes of Ranvier are maintained by a meshwork of axonal and glial 

adhesion molecules (CAMs), extracellular matrix (ECM) and cytoskeletal proteins. Clusters of 
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voltage-gated channels are anchored to the axonal cytoskeleton by AnkyrinG and ß-IV spectrins 

(Kordeli et al., 1995; Davis et al., 1996; Berghs et al., 2000; Eshed et al., 2005), presumably 

promoted by perinodal astrocytes or SC microvilli which flank CNS and PNS nodal regions, 

respectively (Saito et al., 2003).The paranodal regions are composed of closely apposed glial 

membrane loops which retain cytoplasm and represent the lateral growth edges of each myelin 

layer. Each loop contacts the axon by autotypic junctional complexes of adherens, tight and gap 

junctions (Rosenbluth, 2009; Snaidero et al., 2014), and electrically separate the juxta-

paranodal region with its axonal Kv1
+-channel clusters (Chiu and Ritchie, 1984; Rasband et al., 

1999b). Formation and maintenance of these compartments is actin- and myosin-dependent 

(Trapp et al., 1989; Fernandez-Valle et al. 1997; Wang et al. 2008).  

 

1.5 Cell signaling pathways in myelination 

Several extrinsic and intrinsic factors are transduced by canonical cell signaling 

pathways in myelinating glial cells. These are partially distinct in the different lineage stages 

and regulate the transcriptional machinery during proliferation, migration and maturation, as 

well as myelination induction, maintenance and remodeling. The basal lamina is crucial for SC 

cell polarity establishment and abaxonal membrane organization (Bunge et al., 1982; 1986; 

Court et al., 2011b). Autocrine signaling between laminins or collagens with their cognate 

Figure 1-3: Ultrastructure of a myelinated PNS fiber. Radial polarization: adaxonal membrane, 

compacted sheath, abaxonal membrane; Longitudinal polarization: Node, SC microvilli, paranodal loops, 

juxtaparanode region, internode (myelin segment); (SN) - Schwann cell nucleus; (SLI) - Schmidt-

Lantermann-Inscisure. Taken from (Salzer, 2015). 
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receptors at the abaxonal membrane such as ß-integrins, activate cAMP-PKA (Protein kinase 

A) and class I phosphoinositide-3 kinase (PI3K) signaling. These pathways regulate the 

transcription of several proteins via POU-domain transcription factors and KROX20 (Howe 

and McCarthy 2000; Chernousov et al. 2008; Monk et al., 2009; Glenn and Talbot, 2013a; 

Petersen et al., 2015). In addition, downstream, the cytoskeleton-regulating proteins Rac1 and 

CDC42 are essential for axonal sorting and ensheathment (Bacon et al., 2007; Benninger et al., 

2007; Nodari et al., 2007; Chernousov et al. 2008). The formation of the basal lamina starts 

already in the pro-myelinating stage, and is likely guided by axonal signals (Bunge et al. 1982) 

In turn, axonal regeneration after injury is supported by upregulation of integrins (Salzer, 2015; 

Chang et al., 2018). In contrast to the great loss of OLs upon axonal injury, SCs ensure their 

survival by activating autocrine circuits, involving PDGF, insulin growth factor (IGF)-1 and 

neurotrophin (NT)-3 signaling (Ludwin, 1990; Jessen and Mirsky, 1999).  

Proper myelination depends to a large extent on the synergistic relationship between 

neurons and myelinating glial cells (Rushton, 1951; Matthews, 1968; Murray and Blakemore, 

1980; Waxmann, 1997). Already the maturation and proliferation of SC precursors and 

immature SCs is promoted by axonally-anchored neural cell recognition molecule-activated 

Notch1 and TGFß (transforming growth factor ß)-activated JNK (c-Jun N-terminal kinase) 

signaling with its terminal component, the transcription factor c-Jun (Hu et al., 2003; Parkinson 

et al., 2004). Both pathways are downregulated by KROX20 during myelination induction. A 

key juxtacrine signaling pathway is the activation of the adaxonal residing ErbB2/B3 homo- or 

heterodimer receptor tyrosine kinases (RTK) by the axonal transmembrane ligand NRG1-

typeIII (Brinkmann et al., 2008; Newbern and Birchmeier, 2010). In the PNS, NRG1-III 

represents the master growth factor for SC proliferation, axonal ensheathment, and myelin 

thickness (Chen et al., 1994; Morrissey et al., 1995; Michailov et al., 2004; Ogata et al., 2004; 

Taveggia et al., 2005). This multifunctional outcome is supposed to be achieved by cAMP-

mediated modulation of ErbB2/B3 signaling. Both, NRG1-III and cAMP, but not NRG1-III 

alone, are required to induce myelination in in vitro SC mono-cultures (Arthur-Farraj et al. 

2011). Axonal NRG1-III expression levels positively correlate with the myelin thickness and 

might even define the axonal fate for non- or myelinating ensheathment: Overexpression of 

NRG1-III leads to excessive myelination of large diameter axons, and even de novo myelination 

of the usually just ensheathed sympathetic axons (Michailov et al., 2004; Taveggia et al., 2005). 

Its genetic inactivation results in reduced myelin thickness and thus, hypomyelination of the 

PNS (Michailov et al. 2004; Brinkmann et al., 2008). In oligodendrocytes, expression of the 

major RTK that controls OPC proliferation PDGFRα is lost during maturation and thus, myelin 
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induction is regulated by a set of different growth factors (Raff et al., 1988; Pringle et al., 1989; 

Fruttiger et al., 2000; Hu et al., 2012). For instance, Fibroblast Growth Factor (FGF) signaling 

plays a major role in mature OLs and promotes myelination (Carson et al., 1993; Furusho et 

al., 2012). In some CNS areas, NRG-overexpression results in an increased myelin thickness 

(hypermyelination) as well. Unlike the PNS, depleting NRG1 protein levels has not an overall 

CNS hypomyelination effect (Brinkmann et al., 2008; Taveggia et al., 2008).  

Transmembrane NRG1 proteins are cleaved by metalloproteases (Falls, 2003). Its 

cleavage by the α -secretase ADAM17/TACE results in inactivation whereas cleavage by the 

ß-secretase BACE1 reveals the RTK-ligand EGF (epidermal growth factor)-like domain. Thus, 

inactivation of either enzyme in mice results in PNS hyper- or hypomyelination, respectively 

(Hu et al., 2006; Willem et al., 2006; La Marca et al., 2011). NRG1 typeI and -typeII are 

released from the membrane by BACE1-cleavage and act as paracrine signals. In contrast, the 

major PNS-neuronally expressed -typeIII remains tethered to the axonal surface and activates 

ErbB2/B3 as a juxtacrine signal (Meyer et al., 1997; Taveggia et al., 2005). FGF receptors, 

PDGFRα and ErbB2/B3 are RTKs and activate PI3K/AKT, MAPK (mitogen-activated protein 

kinases MEK and ERK) and PLCy (phospholipase C) pathways, which are involved in the 

regulation of myelination in PNS and/ or CNS (Figure 1-4). In SCs, PLCy-mediated activation 

of cytosolic NFAT proteins by calcineurin induces gene transcription for axonal sorting and 

ensheathment and promotes myelination by KROX20 activation (Kao et al., 2009). PI3K/AKT 

and MEK/ERK signaling display crosstalk, for instance on the activation of mTORC1, and 

defects in either pathway lead to profound myelin impairments in vivo, reminiscent of common 

pathological features (Newbern et al., 2011; Norrmén and Suter, 2013; Furusho et al., 2017). 

Figure 1-4: Signaling pathways that control myelination in Schwann cells. (a) Electron micrograph of a 

myelinated axon in the mouse peripheral sciatic nerve, surrounded by compacted myelin sheath and Schwann 
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cell cytoplasm. (b) Schwann cell myelination is regulated by different canonical pathways. It is activated 

upon (juxta-) paracrine signaling, either from the basal lamina or from axonal Neuregulin (NRG1) via glial 

receptor tyrosine kinases ErbB2/B3. Downstream, activation of PI3K/AKT or MAPK/ERK translates myelin 

promoting cues into the transcriptional activation of myelin synthesis. Rac1 and CDC42 regulate cytoskeletal 

adaptions. Taken from (Norrmén and Suter, 2013). 

 

1.5.1 mTORC1 is a central regulator of myelination 

Cells must adapt to different environmental conditions in order to ensure their survival 

by a tightly regulated metabolism. The serine/ threonine kinase mTOR (mechanistic target of 

rapamycin) is a key regulator in this process. External stimuli, such as mitogens, growth factors 

and amino acids are translated by different signaling cascades from the cell environment and 

converge at the mTOR complex 1 (mTORC1). In nutrient-rich environments mTORC1 is 

activated and promotes the synthesis of proteins, lipids and nucleotides and thereby cell growth. 

Under conditions of constrained nutrients, low oxygen or reduced energy levels, mTORC1 is 

inactivated and the minimal requirements for cell survival are achieved by upregulation of 

(macro-)autophagy, by which molecules from the cell interior are recycled. This pathway is 

conserved from yeast to human (Tatebe and Shiozaki, 2017). Higher eukaryotes contain one 

highly conserved gene for the kinase, which is present in two complexes, mTORC1 and 

mTORC2 (Sabatini et al., 1994). Raptor and the rapamycin-sensitive peptidyl-prolyl-isomerase 

FKBP12 are mTORC1 core components (Sabatini et al., 1994; Kim et al., 2002a; 2003a). 

mTORC2 includes Rictor and mSin1 (Sarbassov et al., 2004; Yang et al., 2006). mLST8 is a 

component of both complexes. In addition, PRAS40 and DEPTOR are mTORC-associated 

proteins (Sancak et al., 2007; Peterson et al., 2009).  

 

1.5.1.1 Canonical pathways that regulate mTORC1 activity 

Mitogens and growth factors, such as EGF, PDGF or IGF are sensed by RTKs at the 

plasma membrane (PM). Dimerization and autophosphorylation of the transmembrane 

receptors upon ligand binding, recruits phosphatidylinositol 3’-kinase class І (PI3K) which 

phosphorylates phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] at the D-3 position. The 

corresponding synthesis of PI-3,4,5-trisphosphate [PI(3,4,5)P3] leads to PM-recruitment of 

PDK1 (3-phosphoinositide-dependent kinase 1) and the AGC serine/threonine kinase AKT1 

(Ak strain transforming 1) (Stephens et al., 1998; Liu et al., 2015a). In addition, the PM-

residing mTORC2 complex is activated (Ebner et al., 2017). PDK1 and mTORC2 activate AKT 

through phosphorylation at Threonin-308 and Serine-478, respectively (Sarbassov et al., 2005). 

Simultaneously, the dual protein and lipid phosphatase and tensin homolog on chromosome 10 

(PTEN) is recruited, which terminates AKT activation by dephosphorylation of PI(3,4,5)P3 to 
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PI(4,5)P2 (Shenoy et al., 2012). Activated AKT phosphorylates, among several proteins 

involved in cellular pathways, the heterotrimeric tuberous sclerosis complex (TSC) component 

TSC2. It is associated in a complex with TSC1 and TBC1D7 and functions as a GAP (GTPase 

activating protein) for the small GTPase Rheb (Inoki et al., 2002). Phosphorylated TSCs 

subsequently dissociate from lysosomes and allow for Rheb-mediated facilitation of mTORC1 

activity (Sancak et al., 2010; Demetriades et al., 2014; Menon et al., 2014). In addition, RTK-

activation results in phosphorylation of the MAPK/ERK kinase (MEK) by the Raf kinase 

(Avruch et al., 2001; Zarich et al., 2006). Thereby activated ERK (extracellular signal-regulated 

kinase) inactivates TSC2 and Raptor by phosphorylation (Nishida and Gotoh, 1993; Ma et al., 

2005; Carriere et al., 2010). In contrast, AMP-activated protein kinase (AMPK) is activated by 

glucose deprivation or phosphorylation by LKB1 (liver kinase B1) during hypoxia or upon 

energy stress. The latter also activates REDD1 (regulated in DNA damage and development 1), 

and both, AMPK and REDD1 inhibit mTORC1 through activation of the TSC complex 

(Schneider et al., 2008; Mihaylova and Shaw, 2011; Han et al., 2015a).  

Amino acid (aa) stimulation is crucial for the recruitment of mTORC1 to late 

endosomol/ lysosomal (LE/ Lys) membranes through the heterodimer of four Ras-related 

GTPases (Rag) A to D (Sancak et al., 2010). GTP-bound RagA or -B form active complexes 

with GDP-bound RagC or –D, that directly bind the mTORC1-component Raptor (Sancak et 

al., 2008). Rags are activated by the lysosomal residing pentameric Ragulator complex that 

functions as a GEF (guanine nucleotide exchange factor) for RagA/B, and inhibited by the GAP 

complex GATOR1 (Sancak et al., 2008; 2010; Bar-Peled et al., 2012;). The availability of aa 

is translated to mTORC1 by cytosolic sensors (Sestrin2, Castor1 and Samtor) which inhibit the 

Rag-GAP complex GATOR1 at the lysosomal compartment directly or indirectly, and thereby 

enable the activation of the Rag pentamer (Bar-Peled et al., 2013; Wolfson et al., 2015; 2017; 

Chantranupong et al., 2016; Gu et al., 2017). These sensors are activated upon aa-import by 

membrane residing aa-transporters or lysosomal aa-export upon protein degradation (Taylor et 

al., 2013). In addition, the lysosomal residing amino acid exporter SLC38A9 displays a 

conformational change upon arginine sensing that results in a weaker interaction with Ragulator 

and thus, increases the GEF-activity of the latter (Zoncu et al., 2011; Bar-Peled et al., 2012; 

Wang et al., 2015; Rebsamen et al., 2015).  

 

1.5.1.2 Regulation of mTORC1 activity by PI(3)-phosphates 

The major PI(3)P synthesizing enzyme class III PI3 Kinase VPS34 (vacuolar protein 

sorting complex 34), which produces around 65 % of cellular PI(3)P (Volinia et al., 1995; 
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Devereaux et al., 2013) is strongly implicated in mTORC1 activation. Overexpression or 

siRNA-mediated depletion of VPS34 results in TSC-independent increased or reduced 

mTORC1 activity, respectively. In turn, increased VPS34 activity was observed upon amino 

acid stimulation or glucose-mediated inhibition of AMPK (Byfield et al., 2005; Nobukuni et 

al., 2005). In mouse fibroblasts (MEF) from VPS34 knockout (KO) animals, aa-stimulated 

mTORC1 activity is markedly decreased (Jaber et al., 2012). This mechanism might be 

mediated by the PI3P-dependent lysosomal translocation and activation of Phoshpolipase D 

(PLD) (Yoon et al., 2011). PLD hydrolizes phosphatidylcholine (PC) to phosphatic acid (PA). 

This is presumed to facilitate the recruitment of mTORC1 through binding of FKBP12 to PA 

(Fang et al., 2001; 2003; Xu et al., 2011; Yoon et al., 2011). In addition, the intracellular leucyl-

tRNA synthetase (LRS), which activates mTORC1 through its GAP activity towards RagC/D, 

directly binds to and activates VPS34 (Han et al., 2012; Yoon et al., 2016). VPS34 is only 

functional as a heterodimer with its myristorylated regulatory subunit p150 (VPS15), a 

threonine/serine kinase that modulates the activity of VPS34 (Panaretou et al., 1997). This 

dimer forms the core of two complexes: Autophagic VPS34 complex Ӏ (VPS34, VPS15, 

Beclin1/ATG6 , ATG14L and NRBF2) and endosomal VPS34-complex II (VPS34, VPS15, 

Beclin1 and UVRAG) (Cao et al., 2014). Under low energy conditions or upon glucose 

starvation when mTORC1 is downregulated, AMPK-mediated phosphorylation inhibits the 

endosomal VPS34-complex II as well (Kim et al., 2013a). Lysosomal PI(3)P is also reported 

as a recruitment factor for the Kinesin-1-, Protrudin- and FYCO1-machinery which mediates 

lysosomal positioning. In this process lysosomes are translocated to the cell periphery upon 

amino acid stimulation (Wullschleger et al., 2006; Korolchuk et al., 2011; Raiborg et al., 2015; 

Hong et al., 2017). PI(3,5)P2, the product of PI(3)P phosphorylation at the D-5 position by 

PI(3)-phosphate 5-kinase type III PIKfyve (Fab1 in yeast), is directly linked to mTORC1 

activation as well (Sbrissa et al., 1999; Zolov et al., 2012; Bridges et al., 2012). PIKfyve-

depleted adipocytes display decreased mTORC1 activity upon amino acid and insulin 

stimulation, but independent of AKT activation. In addition, elevated mTORC1 activity was 

observed when cells were directly supplemented with PI(3,5)P2. As causative, the authors 

identified PI(3,5)P2-mediated recruitment of Raptor (Bridges et al., 2012). This finding was 

later confirmed in yeast for the Raptor-homologue Kog1 (Jin et al., 2014). PIKfyve is associated 

in a complex with the PI(3,5)P2 D-5-phosphatase Fig4 (Vac7 in yeast), scaffolded by Vac14 

(Jin et al., 2008; McCartney et al., 2014). Disruption of the complex by removing either of the 

components results in decreased cellular PI(3,5)P2 levels (Mironova et al., 2016). This approach 

caused hypersensitivity of yeast cells towards rapamycin, a compound that selectively inhibits 
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mTORC1. In addition, the authors reported a PI(3,5)P2-dependent recruitment of the mTORC1 

target Sch9, the yeast homologue of the serine/threonine protein kinase p70 S6 Kinase 1 (S6K) 

(Jin et al., 2014). Conversely, PI(3,4)P2, synthesized by the late endosomal/ lysosomal class II 

PI3-kinase type C2ß has been shown to locally repress mTORC1 activity in response to growth 

factor starvation (Marat et al., 2017). 

 

1.5.1.3 mTORC1 controls the metabolic switch of cells  

The activation status of mTORC1 represents the main switch between anabolism and 

catabolism of the cell (Fig. 1-5). Upon activation, mTORC1 phosphorylates the eukaryotic 

translation initiating factor (eIF) 4E-binding protein 1 (4E-BP1) and S6K (Threonine-389). The 

complex thereby activates global mRNA translation, and especially translation of the highly 

eIF4E-sensitive transcripts, which encode for proliferation- and cell survival-regulatory 

proteins (Gingras et al., 1999; Holz et al., 2005; Csibi et al., 2014; Nandagopal and Roux, 

2015). The translation of 5’-terminal oligopyrimidine (TOP) mRNAs is specifically dependent 

in an all-or-none fashion on mTORC1 activity. These mRNAs encode ribosomal proteins, 

elongation factors and polypyrimidines (Jefferies et al., 1994; Avni et al., 1997; Meyuhas, 

2000). In addition, S6K phosphorylates the 40s ribosomal protein S6 (S6), which is especially 

involved in the translation of cell size-regulating genes (Fumagalli and Thomas, 2000; 

Ruvinsky et al., 2005). SREBPs are important transcription factors for lipid, fatty acid and 

cholesterol synthesis, and activated by mTORC1-dependent phosphorylation of S6K and lipin1 

(Porstmann et al., 2008; Düvel et al., 2010; Li et al., 2010; Peterson et al., 2011). mTORC1 

also promotes trafficking and maturation of SREBPs by phosphorylation of the SREBP-

inhibitor CRTC2 (Han et al., 2015b). Simultaneously, mTORC1 inhibits autophagy by 

phosphorylation of the autophagy-initiation complex ULK1/Atg13/FIP200 (Hosokawa et al., 

2009; Jung et al., 2009). Moreover, the phosphorylation of TFEB (transcription factor EB), a 

master regulator of gene expression for lysosomal and autophagosomal proteins, prevents its 

translocation to the nucleus (Settembre et al., 2011; Martina et al., 2012).  

Finally, mTORC1 elicits negative feedback loops that ensure its transient activation. 

S6K directly inhibits the mTORC2 components Rictor and mSin1 by phosphorylation (Julien 

et al., 2010; Liu et al., 2013). S6K and growth factor receptor bound protein 10 (Grb10) inhibit 

the interaction of insulin receptor substrate 1 (IRS1) with the insulin receptor (IR) upstream of 

mTORC1 (Harrington et al., 2004; Hsu et al., 2011). In contrast, S6K promotes mTORC1 

activity by phosphorylation at Serin-2448 in a positive feedback loop (Chiang and Abraham, 

2005; Copp et al., 2009; Rosner et al., 2010).  
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Figure 1-5: Regulation of mTORC1 activity. mTORC1 is recruited to lysosomes upon amino acid 

stimulation by Rag-complexes. Its activity is facilitated by growth factor stimulation via PI3K/AKT or 

MAPK/ERK. The complex promotes synthesis of lipids and proteins and thus cell growth. Under conditions 

of growth factor or amino acid deprivation, mTORC1 activity is downregulated by TSC complexes. During 

hypoxia or energy depletion, AMPK and REDD1 mediate mTORC1 inhibition and thus promote autophagy 

and lysosomal biogenesis. LE/Lys – late endosomal/ lysosomal compartment. Modified from (Kim et al., 

2013b). 

 

1.5.1.4 Altered mTORC1 activity leads to impaired myelin homeostasis  

The first indications for an essential regulation of the myelin homeostasis by mTORC1 

were just reported around one decade ago. Overactivation of PI3K/AKT in OLs by expression 

of constitutively active AKT(CA) or depletion of PTEN in vivo, results in radial 

hypermyelination, thus an increase in the myelin sheath thickness in the CNS (Flores et al., 

2008; Goebbels et al., 2010). In the transgenic AKT(CA) mice, this phenotype, accompanied 

by an increase in myelin protein levels, was traced back to elevated mTORC1 activity as the 

only altered AKT-target in these mutants, and was ameliorated by Rapamycin-mediated 

mTORC1 inhibition (Narayanan et al., 2009). In turn, application of rapamycin or knockdown 

of mTOR in OL cultures leads to reduced myelination in vitro (Tyler et al., 2009). In vivo, 

Rapamycin treatment results in an altered expression of a cohort of transcripts, including 

transcription factors for differentiation, myelin lipid synthesis enzymes and major myelin 

proteins (Tyler et al., 2011). Moreover, the activity of mTORC1, detected by the S6K 
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phosphorylation site S-2448, positively correlates with the extent of CNS myelination in vivo 

(Tyler et al., 2009). In the PNS, mTORC1 activation is mainly observed downstream to 

adaxonal NRG1-ErbB2/B3 signaling (Heller et al., 2014). In contrast to the CNS, the first 

studies that investigated knockout of PTEN in SCs in vivo reported radial hypermyelination for 

small diameter (< 2 µm) fibers only (Goebbels et al., 2010; 2012). In addition, and more 

pronounced than in the CNS, aberrantly myelinated nerve fibers were observed. These fibers 

were characterized by focal sausage-like thickening of the myelin sheath (‘tomacula’) and 

myelin outfoldings at paranodal regions. These features, referred to as focal hypermyelination, 

could be rescued by rapamycin treatment as well (Goebbels et al., 2012). The authors claimed 

striking similarities of the myelin morphology to two forms of human neuropathies with focal 

hypermyelination, Charcot-Marie-Tooth (CMT) disease type 4B and Hereditary Neuropathy 

with liability to pressure palsies (HNPP). In turn, the depletion of mTOR in vivo causes 

hypomyelination in the CNS as well as in the PNS (Sherman et al., 2012b; Wahl et al., 2014). 

In three independent following studies, the crucial involvement of mTORC1 in myelination, 

with only minor contribution of mTORC2, was revealed by the specific ablation of Rictor or 

Raptor in vivo (Bercury et al., 2014; Lebrun-Julien et al., 2014; Norrmén et al., 2014). 

Transgenic mice depleted of Raptor display severe hypomyelination in CNS and PNS. 

Furthermore, lower levels of SREBPs and their targets, the fatty acid synthase, stearolyl-CoA 

desaturase-1, 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) and 

isopentenyldiphosphate delta isomerase 1(IDI1) were observed. In addition, Raptor depletion 

results in reduced levels of cholestorol, nonessential fatty acids, phosphatidylcholine, ceramide, 

sphingomyelin, glycosylceramide, phosphatidylethanolamine and phosphatidylinositol, in the 

spinal cord and sciatic nerves (Lebrun-Julien et al., 2014; Norrmén et al., 2014). These findings 

revealed mTORC1 as crucially implicated in the regulation of the myelin lipid production in 

both, the CNS and PNS (Lebrun-Julien et al., 2014; Norrmén et al., 2014). Furthermore, the 

expression of major myelin proteins is markedly downregulated in these mice. Raptor depletion 

in the CNS results in a reduction of mRNA and protein levels of MAG, MOG, PLP and CNP 

(Bercury et al., 2014; Lebrun-Julien et al., 2014). For MBP, mainly protein levels are reduced, 

suggesting a distinct effect on MBP translation. In the PNS, reduced MBP and P0 protein but 

not MAG protein levels were reported (Norrmén et al., 2014). 

Most recent studies indicate a more complex function of mTORC1 in the PNS than 

promoting myelinogenesis only. Hyperactivation of mTORC1 is observed to have dosage- and 

time-dependent effects (Beirowski et al., 2017; Figlia et al., 2017; Jiang et al., 2018). In the 

PNS, strong hyperactivation of mTORC1 in TSC2 KOSC mice results in hypo- instead of 
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hypermyelination. In contrast, TSC1 KOSC mice display an initial delay in the myelination 

onset, followed by focal hypermyelination of PNS fibers (Beirowski et al., 2017). mTORC1 

activity is more modestly increased upon TSC1 depletion, due to destabilized but not abolished 

TSC2 GAP activity (Zeng et al., 2011). Thus, this contrasting outcome was interpreted as a 

dosage-dependent effect, resulting from the promoting function of mTORC1 in the proliferation 

of precursor and immature Schwann cells. The complex inhibits the cell cycle exit in different 

cell types by the indirect repression of the cyclin dependent kinase (CdK)-inhibitor p27kip1 

(Hong et al., 2008; Ji et al., 2012; Ke et al., 2016; Beirowski et al., 2017). In agreement with a 

thus presumed time-dependent effect of mTORC1 elevation, the early ablation of TSC1 KOSC 

using a Desert hedge hoc (Dhh)-controlled Cre recombinase (Jiang et al., 2018) instead of a P0-

controlled one (Beirowski et al., 2017), expressed at E12 and E13.5, respectively, leads to 

sustained hypomyelination similar to TSC2 KOSC nerves. The authors also observed an 

upregulation of the polo-like kinase (PLK) that promotes the G2/M transition during cell cycle 

progression (Jiang et al., 2018). In addition, mTORC1 was reported to indirectly inhibit 

KROX20 through S6K and thereby the onset of myelination, thus mTORC1 activity needs to 

be repressed in promyelinating Schwann cells to allow for proper myelination (Figlia et al., 

2017). In turn, the SC-specific conditional ablation of PTEN or TSC1 in adult mice using 

tamoxifen induction, causes not only focal but also radial hypermyelination (Figlia et al., 2017; 

Jiang et al., 2018), reminiscent of the myelin promoting function of mTORC1 observed in the 

CNS. Why elevated mTORC1 activity leads to focal hypermyelination is equally unknown as 

the underlying molecular mechanisms of the formation of these aberrant myelin features. 

mTORC1-independent targets downstream to PTEN and AKT, such as PI(3,4,5)P3 or Rac1, 

respectively, are suggested to contribute to radial hypermyelination (Goebbels et al., 2012; 

Snaidero et al., 2014; Domenech-Estevez et al., 2016). In the CNS, mTORC1 activation 

mediated by MAPK/ERK signaling downstream of fibroblast growth factor receptor 2 

(FGFR2), was recently postulated to increase myelin thickness independent of the PI3K/AKT 

pathway (Ishii et al., 2013; Furusho et al., 2017). In the PNS, ERK overactivation results not 

only in mTORC1 hyperactivation and focal hypermyelination but also radial hypermyelination, 

which was partially assigned to mTORC1 independent targets of ERK (Sheean et al., 2014).  

 

1.6 Myelin in pathological conditions 

Impaired myelin homeostasis in the CNS leads to common neurodegenerative diseases 

such as Multiple Sclerosis and leukodystrophies, but also to psychiatric disorders as 

Schizophrenia or depressions (Raymond, 2017; Gibson et al., 2018). In the PNS, a plethora of 
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proteins are associated with the heterogeneous group of inherited neuropathies including 

Charcot-Marie tooth disease (CMT) (Berger et al., 2006a; Pareyson et al., 2017). CMT diseases 

result from mutations in more than 80 different genes known to date, and represent the most 

commonly inherited neuropathy with a current estimation of 10 to 28 affected individuals per 

100.000 (Skre, 1974; Saporta et al., 2014; Pareyson et al., 2017). These neuropathies mostly 

result in neuronal degeneration and are characterized by progressive muscle weakness and 

atrophy of the distal extremities, often accompanied by a sensory loss (Berger et al., 2006a; 

Saporta et al., 2014). According to the classical system, CMT disease types are categorized 

depending on the primarily affected cell type into demyelinating (type I; CMT1-like) or axonal 

(type II; CMT2-like) neuropathies, with nerve conduction velocity (NCVs) below or above 38 

m/s, respectively (Reilly et al., 2011). Autosomal dominant demyelinating CMT1 subtypes 

result from gene duplications of the myelin protein PMP22 (CMT1A), or mutations in the 

myelin compaction protein P0 (CMT1B), the transcription factor KROX20 (CMT1D) or the 

X-linked gap junction beta-1 gene/Connexin32 (GJB1; CMTX1) (Warner et al., 1998; Pareyson 

et al., 2017). The CMT4 subgroup comprises demyelinating neuropathies that are inherited in 

an autosomal recessive fashion and characterized by an early onset during childhood (Baets et 

al., 2011). These types are caused by mutations in the scaffolding protein Periaxin (CMT4F), 

the adaptor protein SH3TC2 (SH3 Domain And Tetratricopeptide Repeats 2; CMT4C), the 

CDC42-GEF Frabin/FDG4 (CMT4H) or MTMR proteins (CMT4B) (Harding and Thomas, 

1980; Baets et al., 2011; El-Abassi et al., 2014). Myelin outfoldings are a hallmark of CMT4B, 

but can also be observed in CMT4F and CMT4H, as well as in HNPP, caused by haplo-

insufficiency of PMP22 (Adlkofer et al, 1997; Guilbot et al., 2001; Azzedine et al., 2003; 

Senderek et al., 2003; Nave et al., 2007; Stendel et al., 2007; Nakhro et al. 2013). The 

appearance of myelin outfoldings is also reported from young animals as part of the developing 

sheath formation in CNS and PNS, but the underlying molecular mechanism remains elusive 

(Berthold and Nilsson, 2002; Bolino et al., 2004; Goebbels et al., 2012). Interestingly, different 

CMT-disease subtypes are caused by mutations in genes that are associated with PIs, the major 

signaling lipids of endomembrane trafficking. Mutations in the lipid-binding PH (pleckstrin 

homology) domain of the fission GTPase Dynamin-2 underly dominant intermediate CMT (DI-

CMT), and the CMT4H-related GEF Frabin also harbors PH- and FYVE-lipid binding domains 

(McNiven, 2005; Zuchner et al., 2005; Delague et al., 2007; Stendel et al., 2007). Intriguingly, 

CMT4B and CMT4J are caused by mutations in enzymes that are directly implicated in PI(3)-

phosphate lipid conversion, suggesting a significant role of the signaling lipids PI(3)P, 

PI(3,5)P2 and presumably also PI(5)P in myelination and axonal maintenance (Fig. 1-6) (Suter, 
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2007; Vaccari et al., 2011; Mironova et al., 2016). Loss of function mutations in the PI(3,5)P2 

5-phosphatase Fig4/Sac3 results primarily in axonal degeneration in both, PNS and CNS, but 

is accompanied by thinly myelinated fibers (Chow et al., 2007; Sbrissa et al., 2007). CMT4B 

comprises three disorder subtypes that are caused by mutations in myotubularin-related PI 

phosphatase (MTMR)-proteins, that specifically hydrolyze PI(3)P and PI(3,5)P2 at the D-3 

position (Senderek et al., 2003; Nakhro et al., 2013; Bolino et al., 2014).  

 

 

1.6.1 Myotubularins are crucially involved in myelination 

1.6.1.1 The family of myotubularin-related lipid phosphatases 

Myotubularin-related lipid phosphatases (MTMRs) are a conserved family of multi-domain 

proteins that dephosphorylate the phosphatidylinositol ring of PI-phosphates at the D-3 position 

with a specificity towards PI(3)P and PI(3,5)P2 in vitro (Blondeau et al., 2000; Taylor et al., 

2000; Schaletzky et al., 2003; Tronchére et al., 2004). In human, the family includes fifteen 

members: myotubularin 1 (MTM1) and MTMR1 to MTMR14. Nine of these, MTM1, MTMR1 

to -R4 and MTMR6 to -R8 as well as MTMR14/JUMPY, contain a catalytically active protein 

tyrosine phosphatase (PTP) domain, characterized by an invariant PTP active site motif C(X)5R 

(Alonso et al., 2004). MTMR5(Sbf1), -R9 and -R10 to -R13(Sbf2) are pseudophosphatases that 

contain an inactive PTP domain with substitutions of the conserved cysteine and arginine 

residues in its catalytic site (Robinson and Dixon, 2006).  

Except for MTMR14, all family members contain a PH -glucosyltransferase, Rab-like 

GTPase activator and myotubularin (PH-GRAM) domain and a coiled-coil (CC) region, N-

terminal and C-terminal to the PTP-domain, respectively (Figure 1-7). The PH-GRAM domain 

mediates binding to PI(3,5)P2 and PI(5)P in vitro (Berger et al., 2003; Schaletzky et al., 2003; 

Tsujita et al., 2004), while the CC region is required for homo- and hetero-oligomerization 

(Berger et al., 2006b; Zou et al., 2009; 2012). Additional domains are found in closely related 

MTMRs, such as a C-terminal PDZ (protein-binding PSD95, Dlg-1, Zo-1)-domain in MTM1, 

Figure 1-6: Interconversion of PI(3)P, 

PI(3,5)P2 and PI(5)P. PI(3)P is synthesized 

from PI by class II and III PI-3 Kinases. It 

serves as the only known precursor for 

PI(3,5)P2 production by PIKfyve, which is 

associated in a complex with the 5‘-

phosphatase Fig4. MTMR proteins are 3‘-

phosphatases with a preference for PI(3)P 

and PI(3,5)P2. PI – phosphatidylinositol. 

Modified from (Di Paolo and De Camilli, 

2006; Zolov et al., 2012). 
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-R1 and –R2, a FYVE (Fab1, YO1B, Vac and EEA1) in MTMR3 and -R4, or PH and DENN 

(differentially expressed in neoplastic versus normal cells) domains in MTMR5 and -R13 

(Isakoff et al., 1998; Lorenzo et al., 2005; Berger et al., 2006b). MTMR pseudophosphatases 

have a main function in the recruitment and activity modulation of active MTMR phosphatases. 

The complex formation between an inactive and an active MTMR is mediated by the CC region 

(Berger et al., 2006b), and results in increased catalytic activity, elevated substrate specificity 

and altered localization of the latter. This is reported for MTMR6, –R7, and –R8, each forming 

a complex with MTMR9 (Mochizuki and Majerus, 2003; Zou et al., 2009, 2012), MTM1 that 

oligomerizes with MTMR12 (Caldwell et al., 1991), and MTMR2 which associates with 

MTMR5 or MTMR13 (Kim et al., 2003b; Berger et al., 2006b). 

 

Figure 1-7: Myotubularin-related (MTMR) protein domain structures. PH – pleckstrin homology; 

GRAM - glycosyltransferase, Rab-like GTPase activator and myotubularin; PTP – protein tyrosine 

phosphatase; CC – coiled-coil region; PDZ-BD - PSD-95/Dlg-1/ZO1-binding domain; DENN - differentially 

expressed in neoplastic versus normal cells; FYVE - Fab1, YOTB, Vac1, EEA1 domain. Taken from (Bolis 

et al., 2007).  

 

As regulators of the signaling PI lipids which serve as hallmarks of intracellular membrane 

identities, MTMR proteins are mainly involved in endomembrane trafficking. Despite of their 

common substrate specificity towards PI(3)P and PI(3,5)P2, some members are reported to 

regulate the lipid pool on distinct compartments (Fig. 1-8). PI(3)P and PI(3,5)P2 are sequential 

key players of the endo-lysosomal pathway. PI(3)P, mainly generated by VPS34 with 

contributions of class II PI3K, is the major lipid at early or recycling endosomal membranes, 
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where endocytosed cargo is sorted, either for recycling back to the plasma membrane or into 

the lysosomal pathway for degradation (Mayinger, 2012). PI(3)P-dependent formation of and 

cargo sorting into intraluminal vesicles (ILV), as well as the partial conversion of PI(3)P into 

PI(3,5)P2 mediated by PIKfyve, is required for the maturation of endosomes into late endosomal 

multi-vesicular bodies (MVBs) and their eventual fusion with lysosomes (Raiborg et al., 2013; 

Sbrissa et al., 1999; Zolov et al., 2012). In addition, PI(3)P is synthesized on autophagosomal 

membranes and crucial for their maturation and eventual fusion with lysosomes (Taguchi-

Atarashi et al., 2010; Cebollero et al., 2012; Wu et al., 2014).  

Figure 1-8: PI(3)-phosphates and metabolizing enzymes in endomembrane trafficking. 

Schematic overview of the localization of PI(3)-phosphates (rectangle) and their converting phosphatases 

(oval) and kinases (rounded rectangle). PI(3,4,5)P3 is produced upon RTK-activation at the plasma 

membrane. Receptors or other cargo are internalized in endocytic compartments whose maturation and fusion 

with endosomes requires the conversion from plasma membranous PI(3,4)P2 into PI(3)P. Upon endosomal 

sorting, receptors are either recycled back to the PM after ligand dissociation, as the transferrin receptor 

(TfR), or directed into the lysosomal degradation pathway, as the EGF receptor (EGFR). PI(3)P is partially 

converted into PI(3,5)P2 by PIKfyve during the maturation of early into late endosomal MVBs and their 

eventual fusion with lysosomes. PI(3)P production is also required for the formation and maturation of 

autophagosomes, which eventually fuse with lysosomes, and trafficking from and to the trans-golgi network. 

MVB – multi vesicular body; CCV/ CCP – Clathrin-coated vesicle/ pit. Modified from (Marat and Haucke, 

2016) according to (Hnia et al., 2012). 
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MTM1 and MTMR4 are observed on early and recycling endosomes (Lorenzo et al., 

2006; Cao et al., 2007; Naughtin et al., 2010; Ketel et al., 2017), MTMR2 and -R5 on late 

endosomes (Berger et al., 2003; Kim et al., 2003b). MTMR14 and MTMR3 localize to 

autophagosomal structures (Vergne et al., 2009; Taguchi-Atarashi et al., 2010) and MTMR7 

partially to golgi-like granules (Mochizuki and Majerus, 2003). The complex MTMR6/-R9 acts 

in negative regulation of apoptosis by controlling PI(3,5)P2 levels, while the MTMR8/-R9 

complex is a negative regulator of autophagy by dephosphorylation of PI(3)P (Zou et al., 2009; 

2012). MTM1 and MTMR2 are observed to act sequentially in the endolysosomal system. 

MTM1 hydrolizes PI(3)P at early endosomes (Rab5-positive), MTMR2 at late endosomes 

(Rab7-positive) (Cao et al., 2007, 2008). Finally, though MTMRs are ubiquitously expressed 

(Laporte et al., 1998), a distinct tissue enrichment is observed for some family members. A 2.4 

kbp MTM1 transcript is found in muscle tissue and testis only, and its loss results in the severe 

muscle disease X-linked centronuclear myopathy (XLCNM) (Laporte et al., 1996; 1998; Tosch 

et al., 2006). MTMR2 enrichment in neurons and Schwann cells was reported, and its mutations 

result in the severe neuropathy CMT4B1 (Berger et al., 2002; Bolino et al., 2002; 2004).  

 

1.6.1.2 CMT-associated MTMRs 

Mutations in MTMR2 or its alternating complex partners MTMR13 and MTMR5 cause 

CMT4B1, -B2 or –B3, respectively. The common pathology in human patients is a severe 

demyelinating peripheral neuropathy with an early onset during childhood. It is caused by 

defects in the Schwann cell myelin homeostasis and characterized by focally folded myelin 

sheaths at paranodal regions (Senderek et al., 2003, Bolino et al., 2004; Nakhro et al., 2013). 

Death can occur already in the fourth to fifth decade mainly due to respiratory failure (Quattrone 

et al., 1996). In addition, azoospermia is found in CMT4B3 patients and one -B1 case, as well 

as in the corresponding mouse models (Firestein et al., 2002; Laporte et al., 2003; Bolino et al., 

2004; Bohlega et al., 2011), and glaucoma in 50 % of all CMT4B2 and -B3 cases (Bird, 1998; 

Hirano et al., 2004). In CMT4B3 patients, impairments of the CNS, such as cerebellar or brain 

atrophies, cognitive defects or intellectual disabilities are reported. Finally, MTMR5 mutations 

can also lead to axonal neuropathy and the fork and bracket syndrome, characterized by 

degenerated fiber bundles in facial and oculomotoric nerves (Alazami et al., 2014; Romani et 

al., 2016; Manole et al., 2017).  

MTMR proteins are highly conserved. Human and mice homologues confer sequence 

identities greater than 90 %. In accordance, MTMR2 and MTMR13 KO mice display a 

demyelinating neuropathy, though in a milder form than humans, with a late axonal loss (Bolino 
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et al., 2004; Tersar et al., 2007; Ng et al., 2013). MTMR5 KO mice are characterized by 

azoospermia only (Firestein et al., 2002). MTMR2 is the closest related to the active 

phosphatases MTMR1 and MTM1, with a sequence identity of 69.7 % and 63.4 %, 

respectively. MTMR13 and MTMR5 are most closely related with 59 % sequence identity. 

Similar to MTM1 in XLCNM, MTMR2 disease-related truncation or missense mutations are 

mainly located in evolutionary highly conserved residues in the PTP- and PH-GRAM domain, 

thus abolishing specifically the phosphatase activity and the presumed ability to bind to lipids 

(Laporte et al., 1997; 1998; Taylor et al., 2000; Berger et al., 2002; Tsujita et al., 2004; 

Goryunov et al., 2008). In accordance, disrupting the complex Fig4-Vac14-PIKfyve, which 

leads to reduced levels of PI(3,5)P2, can ameliorate the phenotype of MTMR2 loss. Fig4 

heterozygosity rescues myelin outfoldings in MTMR2 KO mouse in vivo, and PIKfyve 

depletion rescues myelin outfoldings in vitro (Vaccari et al., 2011). Reports about the 

endogeneous localization of MTMRs are rare due to the limited availability of functional 

antibodies. MTMR2 was detected in the cytosol of neurons, axons and in Schwann cell 

cytoplasm, such as the SC perinuclear region, paranodes and SLIs. Here, it is partially localized 

to punctate, presumably endo-/ lysosomal structures (Previtali et al., 2003; 2007; Ng et al., 

2013). Despite of the general lipid binding ability of MTMR2 by its PH-GRAM domain, its 

recruitment to endomembranes is rather not constitutive but regulated, for instance by complex 

formation. Upon overexpression, MTMR2 is diffusively localized in the cytoplasm, with partial 

enrichment in the perinuclear region. The latter is more frequently observed upon co-expression 

with MTMR5 or MTMR13 (Laporte et al., 2002; Berger et al., 2003; Kim et al., 2002b; 2003b; 

Robinson and Dixon, 2006). Despite both pseudophosphatases contain the additional lipid-

binding PH-domain at the C-terminus, it was shown to be dispensable for the membrane 

association of MTMR5 (Kim et al., 2003b). Instead, in membrane fractionation experiments 

the inactive PTP domain was sufficient to associate MTMR13 with membrane fractions 

(Robinson and Dixon, 2006). In addition, delocalization of MTMR2 from the cytoplasm 

towards vacuolar membranes was observed upon hypoosmotic shock in COS7 cells, a condition 

in which PI(3,5)P2 levels are increased (Berger et al., 2003). However, MTMR2 is also reported 

to regulate a late endosomal PI(3)P pool (Cao et al., 2008). In vitro experiments showed that 

complex formation with MTMR2 results in a 4.6-fold increase of its specificity towards PI(3)P 

and 3.4-fold towards PI(3,5)P2 when MTMR5 is bound (Kim et al., 2003b), or a 10-fold 

increase to PI(3)P and 25-fold to PI(3,5)P2 when MTMR13 is bound (Berger et al., 2006b). 

Furthermore, a strong interdependence between MTMR2 and MTMR13 is observed in vivo, in 

form of reduced protein levels in the absence of each other (Robinson and Dixon, 2006; Zou et 
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al., 2009; 2012; Gupta et al., 2013; Ng et al., 2013). A functional interaction of the complex 

partners was recently demonstrated in D. melanogaster. Sbf, the fly homologue of MTMR5 and 

MTMR13, recruits mtm, the single homologue of mammalian MTM1, MTMR1 and -R2, to 

regulate a class II PI-3 Kinase (PI3KC2)-dependent PI(3)P pool during endosomal trafficking 

and macrophage protrusion formation (Velichkova et al., 2010; Jean et al., 2012). The latter 

process also implies Rab21 recruitment and activation by Sbf via its N-terminal DENN domain 

(Jean et al., 2012). This interaction, as demonstrated later by the same group also in human 

cells, mediates autophagosome to lysosome fusion (Jean et al., 2015). In a screen for potential 

Rab-protein interactors in D. melanogaster, Sbf was detected in association with another small 

GTPase, Rab35 (Gillingham et al., 2014).  

In neuronal postsynapses, MTMR2 was reported to interact with PSD95 via its PDZ 

domain and represses endocytosis of the AMPA-receptor subunit GluA2 (Lee et al., 2010). In 

axons, MTMR2 interacts with the axonal neurofilament light chain (NF-L), a protein that causes 

the axonal neuropathy CMT2E (Previtali et al., 2003). Though no changes in NF-L protein 

levels could be observed in CMT4B patients, this interaction might contribute to the severe 

axonal loss in humans (Previtali et al., 2003). Electron microscopic analysis of MTMR2 and 

MTMR13 KO mice nerve fibers reveal intact adherens junctions at paranodal loops as well as 

functional axo-glial junctions between neuronal axolemma and Schwann cell membrane 

(Bolino et al., 2004; Robinson et al., 2008). MTMR2-mediated repression of membrane 

addition through its interaction with the scaffolding protein Dlg-1 (discs large homolog 1) was 

recently proposed to underly the CMT4B phenotype (Bolis et al., 2005; 2009). Dlg-1 belongs 

to the MAGUK family (membrane-associated guanylate kinase-like) and links transmembrane 

proteins with the intracellular cytoskeleton. It is located at paranodal loops and SLIs in Schwann 

cells (Bolino et al., 2004; Bolis et al., 2005; 2009). Interestingly, Dlg-1 also activates PTEN in 

SCs, which represses PI3K/AKT activity and thereby excessive myelin growth (Cotter et al., 

2010). In contrast to this indirect connection to PTEN, overexpression of MTMR2 was recently 

reported to lead to sustained AKT or ERK activation (Berger et al., 2011; Franklin et al., 2011). 

Nevertheless, MTMR2 or MTMR13 KO mice do not display altered levels of either 

phosphorylated AKT or ERK (Ng et al., 2013; Bolino et al., 2016). Despite of that, myelin 

outfoldings in the absence of MTMR2 could be ameliorated in vitro and in vivo by 

downregulation of Nrg1-III/ErbB receptor signaling through facilitation of the inactivating α-

secretase TACE (Bolino et al., 2016). However, the underlying molecular mechanism is not 

elucidated so far. 
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1.7 The small GTPase Rab35 is implicated in myelination 

Rab (Ras-related protein in brain; Touchot et al. 1987) GTPases (GTP hydrolases) make 

up the largest branch of small monomeric GTPases of the Ras superfamily, besides the Ras, 

Rho, Arf and Ran subfamilies, with 11 different proteins identified in yeast and more than 60 

Rabs that are encoded in the human genome (Klöpper et al., 2012). Similar to PIs, they represent 

essential molecular switches in intracellular membrane trafficking and vesicular transport by 

serving as a platform for effector proteins involved in membrane tethering, fusion, fission and 

cell signaling (Zerial and McBride; 2001; Rink et al., 2005; Grosshans et al., 2006). Rab 

GTPases are characterized by a prenylated C-terminal amphipathic helix, which is inserted into 

the bilipid layers of membranes upon activation (Ghomashchi et al., 1995). Inactive, guanosine 

nucleotide diphosphate (GDP)-bound Rab proteins are kept soluble in the cytosol by Rab-GDP 

dissociation inhibitors (Rab-GDIs). Their recruitment to the respective membrane compartment 

is mediated by Guanine nucleotide exchange factors (GEFs). These enzymes facilitate the 

replacement of GDP for guanosine triphosphate (GTP) in the Ras-typical globular domain, 

which induces a conformational change. Thereby, the disordered switch I and II regions become 

stabilized and highly organized, and thus, allow for interaction and recruitment of effector 

proteins (Barr and Lambright, 2010; Blümer et al., 2013). Eventually, GTPase activating 

proteins (GAPs) promote the Rab-catalytic activity to hydrolyze GTP, which results in Rab 

protein inactivation and is followed by its GDI-mediated membrane dissociation (Fig. 1-9) 

(Milburn et al., 1990; Sasaki et al., 1990; Pylypenko et al., 2006; Wu et al., 2007; Wittinghofer 

and Vetter, 2011). Rab GAPs and GEFs are characterized by TBC (Tre2/Bub2/Cdc16) and 

DENN-domains, respectively (Barr and Lambright, 2010; Yoshimura et al., 2010).  

 

Rab35, or Rab1C due to its highest sequence homology to Rab1A and B, is 

phylogenetically highly conserved throughout metazoans (Pereira et al., 2001; Klöpper et al., 

Figure 1-9: Activity cycle of small 

GTPases. Small GTPases as Rab proteins 

cycle between an active, GTP-bound and an 

inactive, GDP-bound form. GAPs facilitate 

the GTPase activity whereas GEFs mediate 

the dissociation of GDP and its exchange 

for GTP. Inactive GTPases are sequestered 

in the cytosol by GDIs. Active GTPases can 

insert their amphipathic C-terminus into 

bilipid layers of membranes, and recruit and 

activate effector proteins at these sites.  
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2012). It is reported to localize mainly at the plasma membrane, endocytic vesicles and 

endosomal membranes, but has also been detected recently on late endosomal/ lysosomal 

compartments (Hsu et al., 2010; Wheeler et al., 2015). Rab35 has an established role in the 

endosomal recycling of different receptors and cell surface proteins to the plasma membrane, 

such as cadherins, MHC (major histocompatibility complex class I and II), transferrin or T-cell 

receptors, the Ca2+-activated potassium channel KCa2.3 or the glucose transporter GLUT4 in 

adipocytes (Patino-Lopez et al., 2008; Walseng et al., 2008; Gao et al., 2010; Allaire et al., 

2010; Davey et al., 2012). In addition, depletion of Rab35 alters the endosomal trafficking of 

CI-Mannose-6-Phosphate receptors and Shiga-toxin to the TGN (Fuchs et al., 2007; Cauvin et 

al., 2016). The GEFs DENND1A-C (or Connecdenn 1,2,3) and Folliculin, and the GAPs 

TBC1D10A-C (EPI64A-C) and TBC1D13 (Chaineau et al., 2013) are upstream regulators of 

Rab35. The set of direct Rab35 effector proteins identified so far, include the PI(4,5)P2 5’-

phosphatase OCRL, the oxidoreductase MICAL1, the actin-bundling protein Fascin, the apical 

determinant Podocalyxin, and the ARF-6 GAP ACAP-2 (Zhang et al., 2009Dambournet et al., 

2011; Klinkert et al., 2016; Fremont et al., 2017). By direct interaction with these proteins 

Rab35 is implicated in a variety of cell physiological processes, such as cytokinesis, cell 

polarity, phagocytosis, cell adhesion and migration, apoptosis and cytoskeleton remodeling 

(Kouranti et al., 2006; Zhang et al., 2009; Dambournet et al., 2011; Marat et al., 2012; Chaineau 

et al., 2013; Allaire et al., 2013). In addition, Rab35 is strongly associated with cancer 

progression. A couple of recent reports implicate the small GTPase in PI3K/AKT signaling, 

though with partially contrasting results. Due to a proposed suppression of EGFR recycling or 

facilitation of EGFR degradation by Rab35, enhanced AKT activation in the absence of Rab35 

was observed in different cancer cell lines (Allaire et al., 2013; Zheng et al., 2017). In contrast, 

in somatic cancer or HEK293E cells, overexpression of the consecutive active mutant 

Rab35Q67L results in sustained AKT activation, presumably by promoting class I PI3K activity 

downstream to PDGFR internalization. Thus, the depletion of Rab35 reduced AKT activation 

in these cells (Wheeler et al., 2015).  

Consistent with its ubiquitous abundance (Zhu et al., 1994), Rab35 is also expressed in 

the nervous system (Jeong et al., 2018) and, at least for CNS cells, a couple of processes are 

reported to depend on Rab35 regulation. Among these, Rab35 is implicated in neurite 

outgrowth, but also axon elongation and even in neurodegenerative diseases associated with 

alpha-synuclein stabilization and exocytosis (Chevallier et al., 2009; Kobayashi et al., 2014a; 

b; Chiu et al., 2016; Villarroel-Campos et al., 2016; Steger et al., 2016; 2017; Bae et al., 2018). 

In addition, Rab35 is reported to function in the recycling of synaptic vesicles (SVs) in 



  1. Introduction 
 

39 
 

neuromuscular junctions (NMJs) of D. melanogaster (Fig. 1-10) (Uytterhoeven et al., 2011). 

Fly mutants with a loss of function mutation in Skywalker, a putative Rab35 GAP, display 

elevated endosomal recycling of synaptic vesicles. This phenotype is accompanied by a larger 

pool of readily releasable vesicles, increased neurotransmission and more efficient degradation 

of ubiquitinated SV proteins. An amelioration of increased neurotransmission and reduced 

endosomal SV recycling was observed by overexpression of inactive Rab35 or by the 

heterozygous deletion of Rab35 in Skywalker mutants. The authors proposed a mechanism in 

which the small GTPase promotes recycling of SVs via endosomes, which facilitates the 

degradation of dysfunctional SV proteins via the lysosomal pathway. In consequence, newly 

synthesized SV proteins would be formed with functional SV proteins only, leading to a more 

efficient neurotransmission than direct recycling. However, TBC1D24, the mammalian 

homologue of Skywalker that underlies the human DOORS (deafness, onychdystrophy, 

osteodystrophy, mental retardation, and seizures) syndrome (Campeau et al., 2014), was so far 

only identified as a GAP for ARF-6 (Falace et al., 2014; 2016) and not Rab35.  

 

In addition to its function in neurons, Rab35 has also been recently implicated in the 

myelin homeostasis of oligodendrocytes. Knockdown of the small GTPase or its GAPs 

TBC1D10A-C resulted in impaired exosome secretion in oligodendrocytic lineage cells (Oli-

neu). Exosomes are extracellular vesicles with 30-150 nm in diameter that contain mRNA, 

proteins and lipids and mediate intercellular communication (Kalra et al., 2016). They are 

released from late endosomal MVBs (LAMP-/ CD63- /TSG101-positive compartments). 

Regulated by a so far unknown mechanism, these late endosomes do not enter the degradational 

lysosomal pathway, but instead fuse with the plasma membrane and release their ILV content 

(Trajkovic et al., 2006; Frühbeis et al., 2013). OL-derived exosomes might function in the 

trophic support for neurons but also influence myelin formation (Krämer-Albers et al., 2007). 

Figure 1-10: Model of Rab35 function in SV 

recycling in D. melanogaster. In the absence of its 

putative GAP Skywalker, increased activation of Rab35 

(-GTP) directs endocytosed synaptic vesicles to recycle 

via endosomal compartments. Dysfunctional SV 

proteins are sorted into the lysosomal pathway for 

degradation. SVs with functional proteins only are 

reformed, and replenish the readily releasable pool of 

vesicles (RRP) for exocytosis. MVB – multi vesicular 

body; Lys – lysosome; ESCRT – endosomal sorting 

complex required for transport. Taken from 

(Uytterhoeven et al., 2011). 
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The exosomal release of mRNA has been implicated in both, stimulating and inhibiting myelin 

formation (Bakhti et al., 2010; Pusic et al., 2016). In Oli-neu cells, the absence of Rab35 

resulted in an intracellular accumulation of PLP in lysosomal-associated protein 1 (LAMP-1)-

positive late endosomal/lysosomal compartments (Hsu et al., 2010). The authors proposed a 

function of Rab35 in the docking of these compartments to the PM for subsequent release of 

myelin proteins. However, the consequences on myelin formation was not investigated in that 

context. Current literature suggests that MAG and PLP delivery to LE/Lys is crucial for OL 

differentiation and myelin sheath formation (Simmons and Trajkovic, 2006; Winterstein et al., 

2008; Mironova et al., 2016). In contrast, another study reported a gain of OL differentiation 

and myelin segment formation in vitro, in the oligodendroglial cell line FBD-102b and primary 

OPCs depleted of Rab35 by siRNA or shRNA-mediated knockdown, respectively (Miyamoto 

et al., 2014). The authors proposed a function of Rab35 in the repression of OL differentiation 

and myelination, mediated by the recruitment of ACAP2 and subsequent inactivation of ARF6. 

How active ARF-6 in turn promotes OL differentiation and myelination is not revealed yet.  
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1.8 Aims 

Impairments of the myelin homeostasis can lead to severe axonal degeneration and 

underly a wide range of common neurodegenerative diseases of the central and peripheral 

nervous system (PNS). Recent investigations, especially of inherited demyelinating disorders 

such as Charcot-Marie-Tooth (CMT) neuropathies, revealed a cohort of proteins crucially 

involved in the regulation of myelin formation. Despite of that, the molecular mechanisms by 

which these proteins contribute to a proper myelin homeostasis are incompletely resolved. The 

small GTPase Rab35 is linked to myelin formation in oligodendrocytes by two independent 

recent studies. However, the reported findings are slightly contrasting regarding the regulatory 

function of Rab35 in the formation and maintenance of myelin. 

We aimed to investigate how acute loss of Rab35 would affect oligodendrocytic myelin 

formation and thus, made use of a novel conditional Rab35 knockout (KO) mouse. Moreover, 

in order to reveal proteins which could mediate the function of Rab35 in this process, we 

performed an interactor screen. Thereby identified Rab35-effector proteins directed us to 

investigate PNS myelination upon acute Rab35 loss in Schwann cells by ultrastructural 

analysis, cell biological and biochemical approaches. 
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2. Material and Methods 

2.1 Material 

 

2.1.1 Chemicals and consumables 

If not otherwise indicated in the corresponding section, chemicals and consumables 

were obtained from Thermo Fisher, Sigma, Roth, Sarstedt, GE Healthcare or Merck (table 2-

18). 

 

2.1.2 Solutions, media and buffers 

Solutions and buffers were prepared using millipore-filtered water and pH-adjusted 

with HCl or NaOH. 

 
Table 2-1: Solutions for molecular biology methods. 

 

Solution Composition Solvent 

10x TBE (TRIS-Borate-EDTA)  890 mM Boric Acid 

20 mM EDTA 
890 mM TRIS 

50x TAE (TRIS-Acetate-EDTA) 100 mM glacial acetic acid  

50 mM EDTA  

→ adjusted to pH 8.2 – 8.4 

200 mM TRIS 

 

10x OrangeG loading dye 2 mg/mL OrangeG (Sigma, O-1625) 70 % (v/v) glycerin 

Antibiotic stock solutions 

(sterile filtered) 

100 mg/mL Ampicillin  

50 mg/mL Kanamycin  

34 mg/mL Chloramphenicol 

H2O 

LB (Lysogeny broth) medium 1.0 % (w/v) yeast extract  

0.5 % (w/v) tryptone  

0.5 % (w/v) NaCl  

→ adjusted to pH 7.4 

H2O 

LB plates 15 g/L LB Agar powder (Roth; X965) LB medium 

2 x YT () medium   

 

1.0 % (w/v) yeast extract   

1.6 % (w/v) tryptone  

0.5 % (w/v) NaCl  

→ adjusted to pH 7.4 

H2O 

BLB (Biopsy lysis buffer) 200 mM NaCl  

5 mM EDTA 

0.2 % (w/v) SDS 

→ adjusted to pH 8.5 

100 mM TRIS 

TLB (Tail lysis buffer) 25 mM NaOH  

0.2 mM EDTA 

→ pH 12 

H2O 

TNB (Tail neutralization buffer) 40 mM TRIS-HCl 

→ pH 5 
H2O 
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Table 2-2: Solutions and media for preparation and culturing of mammalian (primary) cells. The reagent 

supplier and corresponding ordering number is specified where necessary. 

 

Solution/ 

medium 
Composition Source 

mCCM  

(mammalian cell 

culturing medium) 

10 % (v/v) FBS (heat-inactivated for primary cells) 

1% (v/v) P/S:100 U/mL Penicillin; 100 µg/mL Streptomycin 

in DMEM (Dulbecco's modified Eagle medium;  

high glucose (4.5 g/L), + 2 mM L-glutamine)   

Biochrom, S-0115 

Thermo Fisher, 15140122 

Thermo Fisher, 11965062 

Neuronal basic 

medium 

27.8 mM D-(+)-Glucose 

2.4 mM NaHCO3  

1.3 µM Transferrin Holo, Bovine Plasma   

in MEM (Minimum Esssential Medium) 

Roth, HN06 

 

Merck Millipore, 616420 

Thermo Fisher, 51200-046 

Neuronal digestion 

solution 

137 mM NaCl  

5 mM KCl  

7 mM Na2HPO4 

in 25 mM HEPES 

→ adjusted to pH 7.2  

 

Neuronal dissociation 

solution 

12 mM MgSO4 x 7H2O 

in HBSS (-Mg2+/Ca2+) 

 

Thermo Fisher, 14175-053 

Neuronal plating 

medium 

10 % (v/v) FBS (heat-inactivated) 

2 mM L-glutamine  

25 µg/mL Insulin (in 10 mM HCl) 

1 % (v/v) P/S 

in Neuron basic medium 

Biochrom, S-0115 

 

Sigma, 91077C 

Thermo Fisher, 15140122 

 

Neuronal growth 

medium 

5 % (v/v) FBS (heat-inactivated) 

0.5 mM L-glutamine 

1x B-27 Supplement  

1 % (v/v) P/S  

in Neuron basic medium 

Biochrom, S-0115 

Thermo Fisher, 25030081 

Thermo Fisher, 17504044 

Thermo Fisher, 15140122 

10x EBSS (Earle’s 

Balanced Salt 

solution)  

stock solution 

1.16 M NaCl 

54 mM KCl 

10 mM NaH2PO4xH20 

1 % (w/v) D-(+)-Glucose 

0.005% phenol-red 

in H2O 

 

Roth, HN06 

OPC dissociation 

(Papain) buffer 

1x EBSS-stock 

1mM MgSO4  

0.46 % (w/v) D-(+)-Glucose 

2 mM EGTA  

26 mM NaHCO3 

 in H2O 

Roth, HN06 

 

10x LOS (low-

ovomucoid solution) 

20 mg/mL BSA (bovine serum albumin) 

20 mg/mL Trypsin Inhibitor (Ovomucoid) 

0.005% phenol-red 

in D-PBS (Dulbecco’s Phosphate-Buffered Saline; 

+Ca2+/Mg2+) 

--> adjust to pH7.4 

Sigma, 8806 

Worthington, LS003086 

 

Thermo Fisher, 14287-080 
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6x HOS (high-

ovomucoid solution) 

30 mg/mL BSA  

30 mg/mL Trypsin Inhibitor (Ovomucoid) 

0.005% phenol-red 

in D-PBS (+Ca2+/Mg2+) 

--> adjust to pH7.4 

Sigma, 8806 

Worthington, LS003086 

 

Thermo Fisher, 14287-080 

Immunopanning 

buffer 

0.02% BSA  

500 µg/mL insulin  

in D-PBS (+Ca2+/Mg2+) 

Sigma, A4161 

Sigma, I6634 

Thermo Fisher, 14287-080 

Sato-supplement  

100x 

150 mM BSA  

130 mM apo-Transferrin bovine  

10 mM Putrescine   

20 µM Progesterone  

23 µM Sodium Selenite  

in DMEM (4.5 g/L glucose) 

Sigma, A4161 

Sigma, T1147 

Sigma, P8783 

Sigma, S5261 

 

Thermo Fisher, 11960044 

DSM (DMEM-Sato 

based growth  

medium) 

1x Sato-supplement 

2 mM L-glutamine  

5 µg/mL Insulin (in 10 mM HCl) 

5 µg/mL N-Acetyl-cysteine  

10 ng/mL d-Biotin 

1x Trace Elements B 

1x B-27 Supplement 

1 % (v/v) P/S 

in DMEM (4.5 g/L glucose) 

 

Thermo Fisher, 25030081 

Sigma, I6634 

Sigma, A8199 

Sigma, B4639 

Thermo Fisher, 25-022-CI 

Thermo Fisher, 17504044 

Thermo Fisher, 15140122 

Thermo Fisher, 11960044 

Growth factor  

stock solutions  

(sterile filtered;  

-20 °C storage) 

10 µg/mL PDGF-AA (platelet-derived growth factor AA) 

in sterile 0.2% BSA in D-PBS (+Ca2+/Mg2+) 
PreproTech, #100-13A 

10 µg/mL NT-3 (neurotrophin-3)  

in sterile 0.2% BSA in D-PBS (+Ca2+/Mg2+) 
PreproTech, #450-03 

10 µg/mL CNTF (ciliary neurotrophic factor) 

in sterile 0.2% BSA in D-PBS (+Ca2+/Mg2+) 
PreproTech, #450-13 

10 mM Forskoline 

in DMSO  
Sigma, F6886 

4 µg/mL T3 (thyroid hormone triiodothyronine) 

in D-PBS (+Ca2+/Mg2+) 
Sigma, T6397 

10 µg/mL NRG1 (Neuregulin1) 

in sterile water 
Sigma, H7660 

5 mg/mL ascorbic acid  

in sterile water  
Sigma, A4544 

OPC proliferation 

medium 

10 ng/mL NT-3 

10 ng/mL PDGF-AA 

10 ng/mL CNTF 

10 µM Forskolin  

in DSM 

 

OPC differentiation 

medium 

10 ng/mL CNTF 

10 µM Forskolin  

40 ng/mL T3 

in DSM 

 

SC dissociation 

medium 

0.25 % (w/v) Trypsin  

0.1 % (w/v) Collagenase A  

in Leibovitz’s L-15 medium (L-15) 

Thermo Fisher, 27250018 

Sigma, 10103586001 

Thermo Fisher, 11415049 
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SC pre-differentiation 

medium 

5 % (v/v) heat-inactivated horse serum (HS) 

1 % (v/v) P/S  

in DMEM (4.5 g/l glucose, +GlutaMAX, +Pyruvate)  

Thermo Fisher, 26050088 

Thermo Fisher, 15140122 

Thermo Fisher, 31966021 

SC differentiation 

medium 

1 µM Forskolin 

20 ng/mL NRG1 

40 ng/mL T3  

50 µg/mL ascorbic acid 

in DSM 

 

2x HBS  

(HEPES buffered 

saline) buffer 

 

280 mM NaCl  

10 mM KCl  

1.5 mM Na2 HPO4   

12 mM dextrose  

in 50 mM HEPES  

→ adjusted to pH 7.05 

 

0.1x TE  

(TRIS-EDTA) buffer 

0.1 mM EDTA 

in 1 mM TRIS  

→ adjusted to pH 8.0 

 

 
 

 

Table 2-3: Buffers used for live-cell imaging and immunocytochemistry assays. 

 
Buffer Composition Solvent 

10x Imaging basic-buffer 35 mM KCl  

1.2 M NaCl  

4 mM KH2PO4  

50 mM NaHCO3  

50 mM D-(+)-glucose water free (Roth, HN06) 

12 mM Na2SO4 

→ adjusted to pH 7.4 

      200 mM TES  

1x Imaging buffer 50 mM NaCl 

1.3 mM CaCl2 

1.2 mM MgCl2 

50 µM APV (Sigma, A5282) 

10 µM CNQX (Sigma. C-239) 

→ osmolarity-adjusted to neuron cell culture medium 

with D-(+)-Mannitol (Sigma, M4125) 

 

1x Imaging basic 

buffer  

High-potassium imaging  

buffer    

 

80 mM KCl   

1.2 mM MgCl 2    

1.3 mM CaCl 2    

→ osmolarity-adjusted to neuronal culturing medium with 

D-(+)-Mannitol (Sigma, M4125) 

1x Imaging basic 

buffer 

10x PBS (Phosphate  

buffered saline) 

100 mM Na2HPO4* 2H2O  

26.8 mM KCl 

1.37 M NaCl  

17.6 mM KH2PO4  

→ adjusted to pH 6.8 

H2O 

PFA fixative (4 %) 

 

4 % (w/v) paraformaldehyde (PFA)  

4 % (w/v) sucrose  

→ adjusted to pH 7.4 

1x PBS 
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Immunocytochemistry (ICC) 

blocking solution  

0.3 % (v/v) Triton X-100 

10 % (v/v) NGS/NDS 
1x PBS 

ICC antibody solution  0.3 % (v/v) Triton X-100 

5 % (v/v) NGS/NDS 
1x PBS 

PFA fixative (2 %) 

 

2 % (w/v) paraformaldehyde (PFA)  

2 % (w/v) sucrose  

→ adjusted to pH 7.4 

1x PBS 

PIB (PIPES-based buffer) 137 mM NaCl      

2.7 mM KCl 

→ adjusted to pH 6.8 

20mM PIPES 

Lipid-ICC permeabilization 

solution   

20 µM Digitonin  

(Thermo Fisher Scientific, bn2006) 
PIB 

Lipid-ICC blocking solution   5 % (v/v) NGS (normal goat serum) 

50 mM ammonium chloride 
PIB 

Lipid-ICC antibody solution   5 % (v/v) NGS PIB 

 
 

 

 

Table 2-4: Solutions and buffers used for biochemical assays. 

 

Solution/Buffer Composition Solvent 

5x Lysis buffer stock  500 mM KCl 

10 mM MgCl2 

5 % (v/v) Triton X-100 (Sigma, 11332481001) 

→ adjusted to pH 7.4 

100 mM 

HEPES  

1x Lysis buffer working 

solution 

1x lysis buffer 

0.3 % (w/v) PIC (mammalian inhibitor cocktail; Sigma, P8340) 

1 mM PMSF (Roth, 6367) 

1 % (w/v) phosphatase inhibitor cocktail 2 (Sigma. P5726)  

1 % (w/v) phosphatase inhibitor cocktail 3 (Sigma, P0044) 

H2O 

2x Bradford solution 150 µM Brilliant Blue G250 

17 % (v/v) ortho-Phosphorsäure 

10 % (v/v) Ethanol  

H2O 

6x SDS-PAGE sample buffer 12 % (w/v) SDS 

60 % (v/v) glycerin 

30% (v/v) 2-mercaptoethanol 

0.3 % (w/v) bromophenol blue 

→ adjusted to pH 6.8 

375 mM TRIS 

4x Separating gel buffer 0.4 % (w/v) SDS 

→ adjusted to pH 8.8 
1.5 M TRIS 

4x Stacking gel buffer 0.4 % (w/v) SDS 

→ adjusted to pH 6.8 
0.5 M TRIS 

1x SDS running buffer 192 mM Glycine 

0.1 % (w/v) SDS  

→ adjusted to pH 8.3 

25 mM TRIS 

Coomassie staining solution 1 g/L Coomassie brillian blue G250 

10 % (v/v) acetic acid  

25 % (v/v) methanol 

H2O 
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Coomassie destain solution 10 % (v/v) acetic acid  

25 % (v/v) methanol 
H2O 

1x Transfer Buffer 192 mM Glycine 

10 % (v/v) Methanol 

25 mM TRIS  

 

Ponceau S staining solution 0.3 % (w/v) Ponceau S   

3 % (v/v) glacial acetic acid 
H2O 

Ponceau destain solution 1 % (v/v) glacial acetic acid H2O 

PBS-T 0.05 % (v/v) TWEEN-20 (Roth, 9127) 1x PBS 

Immunoblot blocking buffer 

(HRP-detection) 
5 % (w/v) milk (Roth, T145) 1x PBS 

Immunoblot blocking buffer 

(Fluorescence-detection) 
Odyssey® Blocking Buffer-PBS (LI-COR, LI 927) - 

Immunoblot primary antibody 

solution  

3 % (w/v) BSA  

0.02 % (w/v) NaN3   
1x PBS-T 

BioID (proximity-dependent 

biotin identification) 

- wash buffer 1 

2 % (w/v) SDS H2O 

BioID- wash buffer 2 0.1 % (w/v) sodium deoxycholate  

1 % (v/v) Triton X-100 

500 mM NaCl 

1 mM EDTA 

→ adjusted to pH 6.8 

50 mM HEPES 

BioID- wash buffer 3 250 mM Lithium chloride 

0.5 % (v/v) NP-40 

0.5 % (w/v) sodium deoxycholate 

1 mM EDTA 

→ adjusted to pH 8.1 

10 mM  

TRIS-base 

BioID- wash buffer 4 50 mM NaCl 

→ adjusted to pH 7.4 

50 mM  

TRIS-base 

 

2.1.3 Enzymes  

 

Enzymes for molecular biological methods were stored at -20 °C and used in 

concentrations as indicated in the respective method part. FastDigest restriction enzymes (not 

listed) were purchased from Thermo Fisher. Enzymes used for cell biological assays are 

specified in each method section. 

 
Table 2-5: Enzymes used for molecular biological applications.  

Label Producer Order number 

FastAP – alkaline phosphatase 

Thermo Fisher  

EF0654 

Phusion high fidelity DNA Polymerase F-530L 

T4 DNA ligase ELL0016 

Taq DNA Polymerase Bio&SELL BS91.711.0500 

Proteinase K NEB P8102 
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2.1.4 Kits 

Kits were stored and used according to Manufacturer’s instructions. 

 

Table 2-6: Kits, the corresponding manufacturer’s and methods they were used for. 

Type Producer Application 

NucleoBond®Xtra Plasmid Midi-EF 

Macherey-Nagel  

Preparation of plasmid 

DNA NucleoBond® PC 20 Plasmid Mini 

NucleoSpin® Gel and PCR Clean-up Purification of DNA 

Pierce BCA Protein Assay Kit Thermo Fisher 
Determination of 

protein concentration  

Profection Mammalian Transfection System- 

Calcium Phosphate E1200 
Promega 

Transfection of 

neuronal cell cultures 

 

2.1.5 Standards for gel electrophoresis  

For gel-electrophoresis, 5 µL or 0.5 µg of the DNA- or the Protein Markers were used, 

respectively. 

 

Table 2-7: Standards used as markers in gel electrophoresis. 

Marker Producer Order number 

GeneRulerTM 1 kb DNA Ladder  

Thermo Fisher  

SM0311 

GeneRulerTM 100 bp DNA Ladder  SM0241 

PageRuler Prestained Protein Ladder 26616/ -19 

Triple Color Protein Standard II Serva 39257 

 

2.1.6 DNA oligonucleotides 

DNA oligonucleotides used as primers for polymerase chain reactions (PCR), were 

obtained from BioTeZ as lyophilized powder, dissolved in nuclease-free water (Roth, T143) 

to 100 µM and stored at -20 °C. 

 

Table 2-8: Primers used in analytical PCR reactions for genotyping of mouse genomic DNA. fw - forward; 

rev - reverse. 

 

Primer         Sequence [5’-3’] Target 

TM63_ EllaCre_fw CCGGGCTGCCACGACCAA 
CAG-Cre 

TM64_EllaCre_rev GGCGCGGCAACACCATTTTT 

P0-Cre_fw A   CCACCACCTCTCCATTGCAC  
      P0-Cre  

P0-Cre_rev       GCTGGCCCAAATGTTGCTGG  

Lox5F_fw ACTGGGATACACTGTGCTTG Rab35 WT/ Rab35Fl/-/ Rab35Fl/Fl
 

Lox5R_rev GCTCCCAAGAATTCCAACTC Rab35 WT 

PL452-LoxP-Sc1R_rev  G  GAGGGACCTAATAACTTCGT Rab35Fl/-/ Rab35Fl/Fl 
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Table 2-9: Primers used in preparative PCR reactions for cloning. Overlapping regions are highlighted in 

capital letters, restriction sites in bold. fw - forward; rev – reverse; PTP- protein tyrosine phosphatase; CC – 

coiled-coil region; PH- pleckstrin homology domain 

 

Primer Sequence [5’-3’]  

GST-Rab35_EcoR1_fw atatgaattcATGGCCCGGGACTACGACCACCTCTTCAA     

GST-Rab35_Not1_rev atatgcggccgcTTAGCAGCAGCGTTTCTTTCG 

GST-Rab35ΔC_Not1_rev atatgcggccgcttaCTGCTGTTTCGCCAAGTTGTC 

BirA*-Rab35_ EcoRV _fw aagtgatatccATGGCCCGG    

BirA*-Rab35_Hindlll_rev ccttaagcttTTAGCAGCAGC      

mCherry_Rab35_EcoRI_fw atatgaattcATGGCCCGGGACTACGACCACCTCTTCAA 

mCherry_Rab35_XbaI_rev ccgctctagaTTAGCAGCAGCGTTTCTTTCG 

mCherry_Rab35Q67L_fw TGGGACACGGCAGGGttaGAGCGCTTCCGC 

mCherry_Rab35Q67L_rev GCGGAAGCGCTCtaaCCCTGCCGTGTCCCA 

mCherry_MTMR5_Agel_fw atataccggtATGGTGAGCAAGGGCGAGGAGGATAACAT 

mCherry_MTMR5_Hindlll_rev ccgcaagcttatCTTGTACAGCTCGTCCATGCC 

mCherry_MTMR13_Kpnl_fw atatggtaccATGGTGAGCAAGGGCGAGGAGGATAACAT 

mCherry_MTMR13_EcoRV_rev ccgcgatatcccCTTGTACAGCTCGTCCATG 

mCherry_MTMR13-DENN_BamHl_fw atatggatccGCCCGGCTGGCTGACTACTTCATCGTGGTAG 

mCherry_MTMR13-DENN_Notl_rev cagtgcggccgcTCAATGAGGATTTGGATTCTC 

mCherry_MTMR13-PH-GRAM_EcoRV_fw cgtagatatcTCAGAGAATACTGACATTGCC 

mCherry_MTMR13-PH-GRAM_Notl_rev cagtgcggccgcTCAATGAGGATTTGGATTCTC 

mCherry_MTMR13-PTP_BamHl _fw atatggatccGCCTCCGAGAAGTCTACAATGGAACAG 

mCherry_MTMR13-PTP_Notl_rev cagtgcggccgcTCAGCCTGTGGACAGGGTCTCTTCTATG 

mCherry_MTMR13-PTP+CC_BamHl_fw atatggatccGCCTCCGAGAAGTCTACAATGGAACAG 

mCherry_MTMR13-PTP+CC_Notl_rev cagtgcggccgcTCAGGAAGGTAGGTTGGTAGACAC 

mCherry_MTMR13-PH_BamHl_fw atatggatccAACAGGTCCTTTGAGGGAACAC 

mCherry_MTMR13-PH_Notl_rev cagtgcggccgcTCAGGCATCAGAGATACAACTCTGG 

 

2.1.7 RNA oligonucleotides 

2.1.7.1 siRNAs 

For RNA interference, small interfering RNA oligonucleotides (siRNA) were 

(re-)ordered as lyophilized powder from Sigma and dissolved to a concentration of 100 µM in 

nuclease-free water (Roth, T143). 

 

Table 2-10: siRNA sequences and references. 

siRNA 
Target 

organism 
        Sequence [5' - 3'] Source 

MTMR2  
human GAAAAUGGGUGGAAGCUAU 

Dharmacon (L-050609)  

/ Sigma (custom) 

Rab35   human AGAAGAUGCCUACAAAUUUtt  
Ambion (s95004)  

/ Sigma (custom) 

MISSION® Universal 

Negative Control #1 

(scrambled) 

-                           - Sigma (SIC001) 
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2.1.7.2 shRNAs 

pLKO.1-plasmid encoded small hairpin RNA oligonucleotides (shRNA), expressed 

under the control of a U6-promoter, were used to interfere with gene expression in primary 

cells by lentiviral transduction. The non-targeting scrambled shRNA-containing construct 

with parallel eGFP-expression (RHS6848), and the mouse (ms)MTMR2-targeting shRNA-

containing construct (TRCN0000030098), were obtained from Dharmacon. Glycerol stocks of 

transformed E. coli TOP10 were prepared, from which the plasmids were purified and 

dissolved in nuclease-free water to a concentration of 1 µg/mL for the virus production in 

HEK293T cells. 

 

Table 2-11: shRNA sequences and references. 

shRNA Target organism Sequence [5' - 3'] Source 

msMTMR2  mouse AAAGGACATGATTGGAGTAGC  

Dharmacon TRC Lentiviral negative 

Control (scrambled) 
- ACCGGACACTCGAGCACTTTTTGAATTC 

 

 

2.1.8 DNA-plasmids and expression vectors 

Expression constructs were either received from elsewhere or obtained by cloning, as 

specified in table 2-12. Vectors used as backbones for the recombinant protein expression 

were chosen regarding the desired cell type. For mammalian cell lines, pcDNA3.1-based 

vectors (Invitrogen) were routinely used that drive strong and constitutive expression of 

inserted genes under control of the cytomegalovirus (CMV) promoter (Xia et al., 2006). 

pCMV6, pEGFPC2, pcEGFP_MK or pcmCherry_MK plasmids are pcDNA3.1-derived 

vectors with fluorescent tags for N-terminal fusion on the inserted protein (MK - generated by 

Michael Krauss, FMP, Berlin). For neuron-specific expression of synaptotagmin1-pHluorin in 

primary neuronal cultures, a modified pcDNA3-based plasmid that contains a human 

synapsin1 gene promoter was used (Wienisch and Klingauf, 2006). pGEX-4T vectors were 

used as backbones for the recombinant expression of proteins in bacteria, based on the 

T7-expressionsystem (Studier und Moffatt, 1986). 

Plasmid DNA was stored in nuclease- and endotoxin-free (EF) water 

(NucleoBond®Xtra Plasmid Midi-EF kit) at -20 °C or 4 °C for long-term or short-term, 

respectively. 
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Table 2-12: Constructs for recombinant protein expression. *Plasmids were used as templates for cloning 

only. ms – mouse; hu - human 

Construct 
Insert 

species 
Vector backbone Reference 

FLAG-MTMR13* hu pcDNA3.1 gift from Gilbert Di Paolo 

FLAG-MTMR13 hu pc(HA)_MK this study 

eGFP-MTMR2 hu pcEGFP_MK cloned by Katharina Ketel 

eGFP-MTM1 hu pcEGFP_MK cloned by Katharina Ketel 

eGFP-MTMR1 ms pcEGFP_MK cloned by Katharina Ketel 

eGFP-MTMR5 hu pEGFPC2 gift from Michael Clague  

GST-Rab35 ms pGEX4T-1 this study 

GST-Rab35ΔC (aa1-180) ms pGEX4T-1 this study 

GST-Rab1A ms pGEX4T-1 

gift from Mitsunori Fukuda  

(Tohoku University, Sendai, Japan) 

GST-Rab5 hu pGEX4T-1 

GST-Rab7 hu pGEX4T-1 

GST-Rab11 hu pGEX4T-1 

mCherry-MTMR5 hu pEGFPC2 this study 

mCherry-MTMR13  

(FL_aa1-1849) 
hu pcmCherry_MK this study 

mCherry-MTMR13-DD  

(aa1-471) 
hu pcmCherry_MK this study 

mCherry-MTMR13-PH-

GRAM (aa806-1018) 
hu pcmCherry_MK this study 

mCherry-MTMR13-PTP 

(aa1100-1591) 
hu pcmCherry_MK this study 

mCherry-MTMR13-PTP+CC 

(aa1100-1697) 
hu pcmCherry_MK this study 

mCherry-MTMR13-PH 

(aa1743-1849) 
hu pcmCherry_MK this study 

mCherry-Rab35 ms pcmCherry_MK this study 

mCherry-Rab35Q67L ms pcmCherry_MK this study 

mycBirA*  E. coli pcDNA3.1 
Roux et al., 2012 (‚mycBioID') 

(addgene #35700)   

mycBirA*-Rab35 ms pcDNA3.1_mycBirA* this study 

myc-MTMR2 ms pCMV6 origene #MR215223 

Syt1-pHluorin ms 
pcDNA3.1_ 

Synapsin promoter 

gift from Markus Wienisch 

(Wienisch and Klingauf, 2006) 

YFP-Rab35mouse* ms pUAST 
Zhang et al., 2007  

(addgene # 46014) 
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2.1.9 Antibodies and probes 

2.1.9.1 Primary antibodies 

Antibodies used for immunoblotting, -cytochemistry or -histochemistry were usually 

dissolved in water to a concentration of 1 mg/mL. Most antibodies, if not explicitly advised 

against by the corresponding manufacturer, were additionally diluted one to one in 90 % 

Glycerin in 1x PBS for storage at -20 °C, in order to avoid repetitive freezing and thawing. 

The depicted working dilutions listed in table 2-13 refer to the glycerol-diluted stock 

concentrations. 

 

Table 2-13: Primary antibodies listed by the corresponding antigen. ICC – immunocytochemistry; IHC – 

immunohistochemistry; IB – immunoblotting.; rb - rabbit, ms – mouse, gp – guinea pig, ch – chicken, gt – goat; 

hu – human; AF –Alexa Fluor 

Antigen 
Host 

species 

Dilution 

Source 
Catalogue 

number 
ICC or 

[IHC] 
IB 

α-tubulin ms  1:1,000 Sigma T5168 

ß-actin ms  1:5,000 Sigma A5441 

AKT rb  1:1,000 Cell signaling 4691 

AKT (p-S473) rb  1:1,000 Cell signaling 4060 

BrdU rat 1:200  Abcam ab6326 

Caspase-3 active rb 1:200  R&D technologies AF835 

CD63-AF647 ms 1:100  BD Bioscience 561983 

CNPase ms 1:200  Sigma C5922 

EEA1 rb 1:50  Cell signaling 2411 

ERK rb  1:1,000 Cell signaling 9102 

ERK  

(p-T202/Y204) 
rb  1: 800 Cell signaling 9101 

FLAG ms 1:200 1: 1,000 Sigma F3165 

GFP ch 1:2,000  Abcam ab13970 

GFP rb 1:500 1:5,000 Abcam ab6556 

HSC70 ms  1:1,000 Thermo Fisher  MA3006 

LAMP-1 (ms) rat 1:250  BD Biosciences 553792 

LAMP-1 (hu) ms 1:200  BD pharmingen 555798 

LAMP-2 rb 1:200  Abcam ab18528 

LC3  rb  1:500 Novus Biologicals NB600-1384 

LC3 ms 1:100  MBL international M152-3 

MBP rb 1:400  Synaptic Systems 295 003 

MBP rat [1:50]  kindly provided by Dr. Virginia Lee 

MTMR2 ms  1:500 BioRad MCA3595Z 

mTOR rb  1:1,000 Cell signaling 2983 

mTOR (p-S2448) rb  1:1,000 Cell signaling 5536 

Myc rb  1:5,000 Abcam ab9106 

NF-M ch [1:500]  Covance PCK-593P 

NG2 rb 1:200  Millipore AB5320 

P0 (MPZ) rb 1:200  Abcam ab31851 

PI(4)P (IgM) ms 1:200  Echelon z-p004 
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PLP rb 1:200  Abcam ab28486 

Rab7 rb 1:50  Cell signaling 9367 

Rab35 rb  1:500 Proteintech Group 11329-2-AP 

RFP rb  1:1,000 MBL international PM005 

S6  ms 1:25 1:1,000 Cell signaling 2317 

S6– (p-S235/236) 
rb 1:200  Cell signaling 2211 

rb  1:1,000 Cell signaling 4858 

p70 S6K (p-T389) rb  1:500 Cell signaling 9234 

S6K rb  1:1,000 Cell signaling 9202 

Synapsin1 gp 1:200  Synaptic systems 106004 

Synaptophysin ms 1:500  Synaptic systems 101011 

Synaptophysin 

luminal domain 
rb 1:400  kind gift from Reinhard Jahn (“G96”) 

Synaptotagmin1 ms 1:100  Synaptic systems 105011 

Synaptotagmin1 

luminal domain  
rb 1:100  Synaptic systems 105103 

Tubulin ms  1:2,000 Sigma T4026 

Vinculin ms  1:10,000 Millipore 05-386 

 

 

2.1.9.2 Secondary antibodies 

Secondary antibodies for immunocytochemistry were Alexa Fluor (AF)-conjugated. 

Secondary antibodies used for immunoblotting were either horse radish peroxidase- (HRP) 

conjugated or coupled to a near-infrared fluorescent dye for fluorescence detection using the 

LI-COR system.  

 

Table 2-14: Secondary antibodies, their conjugation and reference. * highly x-adsorbed; ICC – 

immunocytochemistry; IHC – immunohistochemistry; IB – immunoblots.; rb - rabbit, ms – mouse, gp – guinea 

pig, ch – chicken, gt – goat; dk - donkey; AF –Alexa Fluor; HRP – horse radish peroxidase; TRITC – 

Tetramethylrhodamine; FITC - Fluorescein isothiocyanate 

Antigen 
Fluorophore 

/Conjugate 

Host 

species 

Dilution 

Source 
Catalogue 

number 
ICC 

[IHC] 
IB 

ms IgG* AF488 gt 1:400  

Thermo 

Fisher 

A11029 

ms IgG* AF568 gt 1:400  A11031 

ms IgG* AF647 gt 1:400  A21236 

rb IgG* AF488 gt 1:400  A11034 

rb IgG* AF568 gt 1:400  A11036 

rb IgG  AF647 gt 1:400  A21244 

gp IgG* AF647 gt 1:400  A21450  

rat IgG*  AF647 dk 1:400  A21247 

ms IgM  AF568 gt 1:400  A21043 

ch IgY  AF488 gt 1:400  Abcam ab150169 

rat IgG*  AF647 dk 1:400  

Jackson 

Immuno 

Research  

Labs 

712-605-153 

rat IgG  TRITC dk [1:100]  712-025-150 

ch IgGY++ 

(IgG)  
FITC dk [1:100]  703-095-155 

rb IgG  HRP gt  1:5,000 111­035­003 

ms IgG  HRP gt  1:5,000 115­035­003 

ms IgG  HRP rb  1:5,000 Dako P 0260 
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rb IgG HRP gt  1:10,000 P 0448 

rb IgG  IRDye 680RD gt  1:10,000 

LI-COR 

Biosciences 

926 ­68071 

rb IgG  IRDye 800CW gt  1:10,000 926 -32211 

ms IgG  IRDye 680RD gt  1:10,000 925 -68070 

ms IgG  IRDye 800CW gt  1:10,000 926 -32210 

ms IgG  IRDye 680LT gt  1:5,000 926-68020 

       

 

2.1.9.3 Probes 

Phalloidin probes were used equivalent to secondary antibodies in 

immunocytochemistry. DAPI was diluted to a stock concentration of 5 mg/mL and stored at 

4 °C. For application in immunocytochemistry assays the stock was further diluted to 

1 µg/mL in mounting medium. A eGFP-tagged tandem version of the PI(3)P binding domain 

of Hrs (eGFP-2xFYVE (Hrs)) was recombinantly expressed in E. coli, purified and stored in 

50 % glycerol at -80 °C (Uwe Fink, FMP, Berlin). 

 

Table 2-15: Probes used for fluorescence detection. 

Probe Conjugate Target 
Dilution 

Source 
Catalogue 

number ICC  IB 

Phalloidin AF568 F-actin 1:50  
Thermo 

Fisher 

A12380 

Phalloidin AF647 1:50  A22287 

Streptavidin HRP biotin  1:5,000 SA10001 

DAPI    - DNA 1:5,000  Sigma D9542 

eGFP-2x 

FYVE (Hrs) 
   - PI(3)P 

0.025 

µg/µL 
                        Gillooly et al., 2003 

 

 

2.1.10 Inhibitors  

Compounds used to pharmacological inhibit enzymes were dissolved in DMSO to 

indicated concentrations as stock solutions and stored at room temperature (RT) or -20 °C.  

 

Table 2-16: Compounds used for enzyme inhibition.  

 

Inhibitor Target protein 
Stock 

solution  

Storage 

temperature  
Source 

Apilimod PIKFyve 25 mM RT BioVision, B1129 

Compound-19 VPS34 10 mM RT Selleckchem, S8456 

Rapamycin  mTORC1-component 

FKBP12 

2 mM -20 Santa Cruz, sc3504 

SAR405 VPS34 10 mM RT kind gift from Sprint 

Bioscience, Huddinge, 

Sweden 

VPS34-IN1 VPS34 10 mM RT provided by Dr. James 

Hastie (MRC PPU 

Reagents, Dundee) 
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2.1.11 Mammalian cell lines 

Human embryonic kidney cells 293T (HEK) were used for biochemical experiments 

due to their high replication rate, transfection efficiency and protein expression (Wurm, 

2004). In addition, this HEK293-derived cell line (T) expresses a temperature-sensitive 

mutant version of the SV40 large T antigen that makes it especially suitable for the production 

of retrovirus (Pear et al., 1993). The epithelial cervical cancer cell line HeLa was used for 

immunocytochemistry due to its higher adherence properties compared to HEK cells (Potthoff 

et al., 2012). HEK and HeLa cell lines were obtained from ATCC. The TALEN-edited HeLa 

knock in (KI) cell line, that expresses endogeneous Rab35 N-terminally tagged with eGFP 

(eGFP-Rab35endo HeLa cells), was a kind gift of the lab of Prof. Dr. Arnaud Echard (Cauvin 

et al., 2016). Stonin-2 WT immortalized mouse embryonic fibroblasts (MEF) cells were 

kindly provided by Prof. Dr. T. Maritzen (FMP, Berlin). All mammalian cell lines were 

cultured in DMEM with 4.5 g/L glucose (Thermo Fisher) containing 10 % heat-inactivated 

FBS (Gibco) and 100 U/mL penicillin and 100 µg/mL streptomycin (Gibco) (mCCM) during 

experimental procedures and were routinely tested for mycoplasma contamination. 

 

2.1.12 Bacteria strains 

For the amplification and storage of plasmid DNA, chemically competent E. coli from 

the TOP10 strain (Invitrogen; Hanahan, 1983) were used. To express recombinant proteins, 

IPTG-induced in bacteria, the E. coli strain BL21-CodonPlus (DE3)-RP (Stratagene) was 

routinely used. For GST-Rab protein chimera, a significantly higher amount of stable proteins 

was purified upon expression in E. coli Rosetta (DE3) (Novagen), which display improved 

expression yield and a better purity of proteins due to additional eukaryotic tRNA-codons that 

are rarely used in E. coli. (Tegel et al., 2010). 

 

2.1.13 Mouse strains 

Rab35Fl/Fl mice in a C57BL/6 WT mice background, with insertions of loxP sites 

flanking exon 2 and 3 for Cre-mediated recombination, were a kind gift of and generated by 

Dr. Genaro Patiño López (formerly: NIH, Bethesda, USA), Prof. Dr. Stephen Shaw (NIH, 

Bethesda, USA) and Prof. Dr. Arnaud Echard (Institut Pasteur, Paris, France). The Cre 

recombination system, based on the Cre recombinase and the 34 bp loxP recognition sites that 

consist of two 13 bp inverted repeats separated by a spacer region of 8 bp, originates from the 

P1 phage (Sternberg & Hamilton, 1981). Cre-mediated recombination in these mice leads to 
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the excision of exons 2 and 3 from the Rab35 gene as a circular DNA molecule, and thereby 

to an early transcription termination. 

To obtain a conditional Rab35 gene knockout, Rab35Fl/Fl mice were interbred with a 

Cre-ERTM (CreER) mouse line in a C57BL/6 WT background (B6.Cg-Tg (CAG-

Cre/Esr1*)5Amc/J) that was obtained from the Jackson Laboratory. This mouse line 

ubiquitously expresses a chimera of Cre recombinase and a mutated version of the ligand-

binding domain of the estrogen receptor, with an increased affinity for tamoxifen (TMX), 

under control of the CAG-promoter, and thus allows for tamoxifen-inducible Cre 

recombination (Danielian et al.1998; Hayashi and McMahon, 2002). The resulting 

heterozygeous Rab35Fl/+ x CAG-CreER mice were crossed with homozygeous Rab35Fl/Fl 

animals to obtain homozygeous Rab35Fl/Fl with (icKO) or without CreEr (WT). Breeding and 

experiments with animals for in vitro recombined Rab35 knockout were conducted according 

to the guidelines of the “Landesamt für Gesundheit und Soziales” (LAGeSo) and with their 

permission. 

For the Schwann cell-specific Rab35 gene knockout in vivo, Rab35Fl/Fl mice were 

interbred with a P0-Cre line (B6N.FVB-Tg(Mpz-cre)26Mes/J), which starts to express the Cre 

recombinase under control of the Schwann cell-specific P0-promoter on embryonic day 

(E)13.5 (Feltri et al., 1999). This work was performed in the lab of Prof. Dr. A. Bolino 

(INSPE, Milan, Italy), conducted according to the Italian national regulations and covered by 

experimental protocols reviewed by local Institutional Animal Care and Use Committees. 

 

2.1.14 Software 

 
Table 2-17: Software products, databases and internet tools. 

 

Software Source Application 

OligoCalc http://biotools.nubic.northwestern.edu/ 

OligoCalc.htmL 

Melting point calculation of  

PCR-Primer 

Adobe Illustrator CS6 Adobe Systems Incorporated Preparation of figures 

ApE plasmid editor http://jorgensen.biology.utah.edu/ 

wayned/ape/ 

DNA analysis incl. theoretical cloning 

preparation and primer design  

GraphPad Prism 5.0 GraphPad Statistical analysis and calculations, 

graph preparations 

Image J https://imagej.nih.gov/ij/ Evaluation of microscopy images 

Intas GDS  INTAS Science Imaging Instruments  

GmbH, Goettingen, Germany 

Agarose gel documentation 

Image Lab  Bio-Rad   Semi-quantitative (HRP) immunoblot 

documentation and evaluation 



  2. Material and Methods 
 

57 
 

LI-COR LI-COR Quantitative (fluorescent) immunoblot 

documentation and evaluation 

MARS Data Analysis 

Software 

BMG LABTECH  Analysis of microplate reader data 

(protein concentration) 

MaxQuant https://maxquant.net/ Identification and quantification of 

proteins from peptides detected in mass 

spectrometry 

Micromanager v1.4.14 https://micro-manager.org/ Image acquisition on an epifluorescence 

microcope 

Microsoft Office Microsoft Figure preparation, documentations 

NCBI/Blast http://blast.ncbi.nlm.nih.gov/ Homology determination of siRNA-

targets 

PyRAT (Python Based  

Relational Animal  

Tracking) 

Scionics Computer  

Innovation GmbH 

Animal facility software, managing of 

breedings and mouse strains 

R https://www.r-project.org/ 

foundation/ 

Statistical analysis 

Scaffold (Proteome 

Software) 

http://www.proteomesoftware.com/ 

products/scaffold/ 

Identification and quantification of 

proteins from peptides detected in mass 

spectrometry 

Genesys Syngene DNA gel electrophoresis documentation 

Uniprot https://www.uniprot.org/ Gene and protein research; homology 

determination of proteins 

ZEN Zeiss Image acquisition on confocal laser-

scanning microscope (LSM) 

 

 

2.1.15 Suppliers 

 

Table 2-18: Suppliers for chemicals, consumables, devices and reagents. 

Abbreviation Company  

Abcam Abcam PLC, Cambridge, USA 

Ambion  → Thermo Fisher 

ATCC ATCC, Manassas, USA 

BD Biosciences  BD Biosciences, San Jose, USA 

Beckman Beckman-Coulter, Krefeld, Germany 

Bio&SELL Bio&SELL, Feucht, Germany 

Bio-Rad Bio-Rad LABORATORIES Inc., Hercules, USA 

BioTeZ BioTeZ Berlin Buch GmbH, Berlin, Germany 

BMG LABTECH BMG LABTECH GmbH, Ortenberg, Germany 

Cell signaling Cell signaling technologies (CST), Boston, USA 

Covance Covance Inc., Princeton, USA 

Dako Agilent Technologies, Santa Clara, USA 

Dharmacon Dharmacon Inc., Lafayette, USA 

Echelon Echelon Biosciences Inc., Salt Lake City, USA 

Eppendorf Eppendorf, Hamburg, Germany 

GE Healthcare GE Healthcare, Chicago, USA 
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Harvard Apparatus Harvard Apparatus, Holliston, USA 

Invitrogen  → Thermo Fisher 

Jackson ImmunoResearch labs  Jackson ImmunoResearch Europe Ltd., Newmarket, United Kingdom 

Jackson Laboratory The Jackson Laboratory, Bar Harbor, USA 

LGC genomics  LGC genomics GmbH, Berlin, Germany 

LI-COR LI-COR Biosciences, Lincoln, USA 

Macherey-Nagel Macherey-Nagel GmbH & Co. KG, Düren, Germany 

Merck Merck, Darmstadt, Germany 

MBL International MBL International Corporation, Woburn, USA 

Millipore Merck Millipore, Billerica, USA 

NEB  New England Bio Labs, Ipswich, USA 

Nikon Nikon Corporation, Tokyo, Japan 

Novus Biologicals Novus Biologicals LLC, Centennial, USA 

Okolab Okolab Inc., San Bruno, USA 

Preprotech PeproTech EC, Ltd, London, United Kingdom 

Promega Promega GmbH, Mannheim, Germany 

Proteintech  Proteintech Group, Manchester. United Kingdom 

Roth Carl Roth GmbH + Co. KG, Karlsruhe, Germany 

R&D technologies R&D Technologies Inc., North Kingstown, UK 

Sarstedt Sarstedt AG & Co. KG, Nümbrecht, Germany 

Semrock IDEX Health & Science, Rochester, USA 

Serva SERVA Electrophoresis GmbH, Heidelberg, Germany 

Sigma Sigma-Aldrich Chemie GmbH, Schnelldorf, Germany 

Stratagene Stratagene, La Jolla, USA 

Synaptic systems Synaptic Systems GmbH, Goettingen, Germany 

Thermo Fisher Thermo Fisher Scientific Inc., Waltham, USA 

VWR VWR International, Radnor, USA 

Zeiss Carl Zeiss GmBH, Jena, Germany 

  

 

 

2.2 Methods 

 

2.2.1 Molecular Biology Methods 

2.2.1.1 Preparative and analytical Polymerase chain reaction (PCR) 

The polymerase chain reaction (PCR) is used to amplify specific DNA sequences from 

DNA templates with thermostable DNA-polymerases, by repetitive thermo- and duration-

controlled incubation cycles. The template DNA is first denaturated from double stranded (ds) 

into single-stranded (ss)DNA by high temperature. Following this, specific DNA-

oligonucleotides can anneal to the ssDNA and serve as primers for the following DNA-

sequence synthesis. After elongation, the newly synthesized DNA strands are utilized as 

additional templates in the next cycles. This results in an exponential DNA amplification 

(Saiki et al., 1988).  

DNA fragments were amplified from plasmid or genomic DNA in a Thermocycler 



  2. Material and Methods 
 

59 
 

peqSTAR 2X (VWR). For preparative purpose, when the desired fragment or gene was 

further used for cloning, Phusion high fidelity DNA Polymerase was used. It possesses 3'- to 

5' –end exonuclease proofreading activity and therefore a low error rate. For analytical 

purpose the less precise Taq Polymerase was used to verify successful plasmid transformation 

of bacterial clones in colony PCRs, for instance. This polymerase was also used in genotyping 

PCRs of genomic DNA isolated from mouse biopsies (2.2.1.2).  

Primers were designed using the ApE-plasmid editor and the online tool Oligo Calc, 

with the following criteria to ensure efficient and specific annealing: The overlap with the 

DNA-template was 21 bp to 30 bp. The salt-adjusted melting temperature (Tm) was between 

50 °C and 65 °C with less than 5 °C difference between the two primers. In addition, the 

guanine-cytosine (GC) content was between 40 % and 50 %. The last nucleobase pair in the 

overlapping region was always a GC, as these nucleobases have a stronger bonding efficiency 

(three hydrogen bonds) than adenine- thymine. In the case of preparative PCR, restriction 

sites for subsequent ligation with the target DNA, and a random overhang of 4 bp for proper 

restriction enzyme reaction, were introduced at the 5’- end of each primer sequence. In order 

to screen clones in colony PCRs, one of the two primers was chosen to anneal at the vector 

backbone, and the other at the insert region. 

Deoxy nucleotide triphosphates (dNTPs; Thermo Fisher, R0181) were mixed in a 

stock solution with a concentration of each at 5 mM, serving as free nucleotides for DNA 

elongation. Polymerase buffer and MgCl2 solutions were supplied by the corresponding 

polymerase manufacturer. PCR samples were prepared in a usual volume of 20 µL. A loading 

dye, 1x OrangeG, was added for detection of DNA migration in the following agarose gel 

electrophoresis. The PCR sample composition is specified in Table 2-19. A positive and 

negative control for PCR performance, containing DNA with or without the desired fragment, 

respectively, as well as a sample containing water instead of DNA, were always carried along. 

The corresponding performance protocols are specified in tables 2-20 to 2-21. All 

PCRs were started cold. The annealing temperature (Ta) was calculated from the melting 

temperature of the least stable primer pair (Tm primer) and the PCR product (Tm product) according 

to Rychlik and colleagues (1990): 

 

(I)      Ta = 0.3 * Tm Primer + 0.7 * Tm Product - 14.9 

 

The elongation temperature and duration corresponded to the optimal working temperature of 

the used Polymerase and its elongation speed, respectively. 
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Table 2-19: PCR mixtures used for preparative or analytical DNA amplification. 

Component 

Final concentration 

preparative 

PCR 

analytical/ colony 

PCR 

Template  plasmid DNA 

20 ng/µL 
E. coli culture 

1/100 µL 

Forward primer 0.5 µM 

Reverse primer 0.5 µM 

Polymerase buffer 1x 

MgCl2 - 2 mM 

dNTPs 0.2 mM each 

DNA Polymerase 0.05 U/µL 0.1 U/µL 

10x OrangeG dye 1x 

H2O ad 20 µL 

 
Table 2-20: PCR performance protocol for preparative PCR. 

Process Temperature [°C] Duration 

Start 98 2 min 

30x 

Denaturation 98 10 s 

Annealing formula (I) 30 s 

Elongation 72 30 s/ kbp 

End 72 10 min 

 
Table 2-21: PCR performance protocol for analytical (colony) PCR. 

Process Temperature [°C] Duration 

Start 95 2 min 

30x 

Denaturation 95 30 s 

Annealing formula (I) 30 s 

Elongation 72 1 min/ kbp 

End 72 10 min 

 

In order to analyze the PCR products, the whole volume or 50 % of preparative or 

analytical PCR samples, respectively, were loaded onto 1 % to 2 % (w/v) agarose gels. 

 

2.2.1.2 Genotyping of transgenic mice  

Genomic DNA, isolated from biopsies of transgenic mice (2.2.1.13), was analyzed for 

the presence of the respective transgene by analytical PCR followed by agarose gel 

electrophoresis. The Rab35 locus was analyzed regarding the homogeneous insertion of a 

loxP sequence in the intron 1 region in front of exon number 2. Therefor three primers in two 

different combinations and PCRs were used: Lox5F as the forward primer that anneals in the 
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intron 1 region. Lox5R as a reverse primer, annealing in the intron 1 region in Rab35 WT 

locus only (product: 573 bp). And PL452-Loxp-Sc1R as a reverse primer that anneals within 

the inserted loxP site (product: 647 bp) in DNA from hemizygously or homozygously loxP-

positive Rab35(Fl) mice. Homozygous Rab35Fl/Fl mice were thus identified by the lack of a 

WT-PCR product. For quality reasons, WT and “Fl” PCRs were performed separately (Table 

2-22 and table 2-23).  

The presence of the CAG-CRE-ERTM transgene was verified using the primer pair 

“TM63_EllaCre” and “TM64_EllaCre” that amplified a 445 bp product (Table 2-22 and table 

2-24).  

 

Table 2-22: PCR mixtures used for analytical amplification from mouse genomic DNA. 

Component Rab35 WT/“Fl“ CAG-Cre 

genomic DNA 1 µL 

Forward primer 0.5 µM 0.375 µM 

Reverse primer 0.5 µM 0.375 µM 

Taq Polymerase buffer 1x 

MgCl2 2 mM 

dNTPs 0.2 mM each 0.15 mM each 

Taq DNA polymerase 0.1 U/µL 

10x OrangeG dye 1x 

H2O ad 20 µL 

 

Table 2-23: PCR performance protocol for amplification of genomic Rab35 WT- and Rab35Fl-

fragments. 

Process Temperature [°C] Duration 

Start 95 2 min 

35x 

Denaturation 95 30 s 

Annealing 58 50 s 

Elongation 72 40 s 

End 72 10 min 

 

Table 2-24: PCR performance protocol for amplification of the genomic Cre-fragment. 

Process Temperature [°C] Duration 

Start 95 2 min 

30x 

Denaturation 95 30 s 

Annealing 55 30 s 

Elongation 72 30 s 

End 72 10 min 
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2.2.1.3 Agarose gel electrophoresis 

DNA fragments or plasmids were separated according to their size using agarose gel 

electrophoresis Compact chambers from Biometra. Depending on the size of the analyzed 

DNA fragments or plasmids, 0.7 % to 2 % (w/v) agarose (Bio&Sell, BS10.35.10) were 

dissolved in 1x TBE or 1x TAE buffer by heating in a microwave. The UV 

absorbance-possessing DNA interchelator ethidium bromide (0.3 µg/mL; Roth, 2218) was 

subsequently added for UV-mediated detection of DNA. Gels were casted and chilled at RT 

until gelatinization. Except for ready-to-use PCR or DNA-restriction samples, lx OrangeG 

loading dye was added before loading onto the gel. As a reference 5µL 100 bp or 1 kb DNA-

Ladders (Thermo Fisher) were used. Electrophoresis was performed in TBE or TAE buffer at 

10 V/cm electrode distance for 20 min to 30 min until the 50 bps OrangeG-migration frontline 

reached the lower edge of the gel. DNA was visualized due to ethidium bromide incorporation 

by 302 nm UV light using the Gel documentation GBOX/F3 system and controlled by the 

corresponding software GeneSys from Syngene. For preparative agarose gelelectrophoresis 

DNA fragments were excised from the gel on a UV transillumination table (UVT-28 LV from 

Herolab) with a low and short UV exposure to prevent point mutations. 

 

2.2.1.4 Purification of DNA from agarose gels  

Amplificated PCR-fragments or restricted DNA fragments and plasmids were purified 

from excised agarose gel pieces using the NucleoSpin® Gel and PCR Clean-up kit 

(Macherey-Nagel) according to the manufacturer’s instructions. In brief, excised agarose gel 

pieces were dissolved in high-salt buffer, the DNA solution was loaded and purified on a 

silica membrane. Pure DNA-fragments were diluted in 15 µL, DNA-plasmids in 30 µL 

TE-buffer.  

 

2.2.1.5 DNA-restriction digest 

Each 10 µL of purified PCR-DNA fragments or 2 µg of target-DNA vectors were 

restricted in a 20 µL reaction volume. The samples were supplemented with 1 µL of each 

FastDigest restriction endonucleases (Fermentas) and 1x FastDigest Green buffer, allowing 

for subsequent loading on agarose gels. In order to prevent subsequent re-ligation of the 

restricted, linearized DNA-vectors, 1 U of FastAP thermosensitive alkaline phosphatase 

(Thermo Fisher, EF0654) was added to dephosphorylate the 5’-ends. The restriction reaction 

was performed at 37 °C for 20 min, followed by 5 min incubation at 80 °C to inactivate all 

enzymes. A DNA vector sample without restriction enzymes was carried along and served as a 
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negative control. The samples were loaded on agarose gel for subsequent separation and 

purification of the restricted DNA. 

 

2.2.1.6 Ligation 

T4-DNA ligase (Thermo Fisher, ELL0016) was used to insert the fragment into vector 

DNA after restriction. It catalyzes the re-formation of phosphodiester bounds between the 

DNA 3’- and 5’-ends. First, the DNA-concentration of the purified restriction products was 

determined. In 20 µL reaction volume, 1 Weiss Unit of ligase, 1x ligase buffer and 50 ng to 

100 ng of target vector were used, supplemented with a three- to six-fold molar excess of the 

insert. To control for undesired plasmid re-ligation, a vector sample without fragment DNA 

was used. Ligation samples were incubated for 1 h at RT and stored at -20 °C or were 

subsequently used for transformation. 

 

2.2.1.7 Transformation of chemically competent E. coli 

For transformation, 50 µL glycerol stocks of chemically competent E. coli Top10 or 

BL21DE3 in 0.1 M CaCl2 were thawed on ice and supplemented with 10 ng plasmid DNA or 

10 µL ligation products. The samples were gently mixed and incubated for 30 min at 4 °C. 

The uptake of plasmid DNA was triggered by a heat-shock for 90 s at 42 °C. This leads to 

perforation of the bacterial plasma membrane, enabled by calcium ions that counteract the 

electrostatic repulsion between membrane and DNA. After 5 min chilling on ice, the bacteria 

were directly plated on prewarmed LB agar plates with 100 µg/mL ampicillin when the 

transformed plasmid contained the resistance marker gene for the bacteriostatic antibiotic 

ampicillin. If kanamycin resistance was encoded in the transformed plasmid, bacteria were 

supplemented with 400 µL LB medium without antibiotics and cultured first for 1 h at 37 °C 

and 180 rpm, allowing for expression of the kanamycin resistance protein before exposure to 

the bacteriocidal antibiotic kanamycin. The bacteria were then pelleted from the 

antibiotic-free suspension at 700 x g for 1 min. After removal of 4/5th of supernatant volume, 

the cells were recollected in the remaining LB-medium supernatant and plated onto 

prewarmed LB agar plates containing 50 µg/mL kanamycin.  

The plates were incubated overnight at 37 °C. Newly transformed clones, picked from 

LB agar plates with sterile plastic tips, were transferred into 200 µL LB-medium (with 

corresponding antibiotics) per well of a 96 well plate and cultured for 2 h at 37 °C on a 

Heidolph Titramax 1000 plate shaker at 350 rpm. 2 µL of the suspension was directly used to 

perform colony PCR for the verification of positive clones.  
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2.2.1.8 Preparation of bacterial glycerol stocks 

Glycerol stocks were prepared for long term storage of transformed bacteria, by 

inoculating 2 mL LB medium, containing 100 µg/mL ampicillin or 50 µg/mL kanamycin, 

with the clone suspension and grown overnight at 37 °C and 180 rpm in a bacteria incubator 

shaker. The bacterial suspension was then concentrated to 750 µL by centrifugation at 4,000 x 

g for 5 min at 4 °C, diluted one to one in sterile 50 % (v/v) glycerol and stored in cryotubes 

at -80°C.  

 

2.2.1.9 Cultivation of transformed bacteria 

Transformed E. coli Top10 were picked from cryopreserved cultures or LB-Agar 

plates with a sterile pipette tip and were used for inoculation of 2 mL LB-Medium with 100 

µg/mL ampicillin or 50 µg/mL kanamycin. This preculture was incubated for 8 h at 37 °C and 

180 rpm in a bacteria incubator shaker (New Brunswick Scientific, Innova 42). For a higher 

yield of plasmid DNA, 100 mL LB-Medium with antibiotics were then inoculated with 0.1 % 

(v/v) (100 µL) of this preculture and incubated over night at 37 °C and 180 rpm. The next 

day, the bacteria were sedimented by centrifugation at 4,000 x g for 15 min at 4 °C. Bacterial 

pellets were either stored at -20 °C or immediately resuspended for isolation of plasmid DNA. 

 

2.2.1.10 Isolation of plasmid DNA 

Plasmid DNA was isolated from precultures of transformed E. coli TOP10 using the 

Plasmid Mini-Kit NucleoBond® PC20 from Macherey-Nagel. The procedure is based on a 

modified sodiumdodecylsulfate (SDS)-alkaline lysis of cells (Birnboim and Doly, 1979). In 

brief, bacterial pellets were resuspended in a TRIS-based physiological buffer containing 

EDTA, to chelate divalent metal cations. This destabilizes the cell wall and impairs the 

function of DNases. Glucose supplementation ensures iso-osmolarity of the buffer in order to 

prevent the cells from bursting, whereas RNA is hydrolyzed by supplementation of RNase. 

During subsequent lysis, the detergent SDS disrupts the cell membrane, which enables NaOH 

permeability for subsequent dsDNA-denaturation into single strands. By neutralization with a 

potassium acetate buffer, hydrogen bonds are re-established in smaller DNA fragments and 

thus, plasmid DNA is re-naturated and dissolved, while the genomic DNA precipitates 

together with SDS, cellular proteins and cell debris through hydrophobic interactions. Lysates 

were cleared from these precipitates by centrifugation and were applied to a silica column. 

The bound plasmid DNA was washed and finally eluted in nuclease-free water (Roth, T143).   
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Plasmid Midi DNA preparation was performed when higher amounts of plasmid DNA 

were required using the Macherey-Nagel NucleoBond®Xtra Midi-EF kit. Here, additional 

washing steps of the silica-bound DNA were performed that ensure an efficient removal of 

the bacterial endotoxins for the subsequent usage of plasmids in cell transfections. In addition, 

plasmid DNA was eluted from the column with an alkaline buffer, precipitated with 

2-Propanol, pelleted and dissolved in millipore-filtered, endotoxin-free (EF) water (Machery-

Nagel). The DNA-concentration and purity were determined with a BioPhotomer Plus from 

Eppendorf at a wavelength of 260 nm and adjusted to 1 µg/µL. 

 

2.2.1.11 Spectrophotometric determination of DNA concentration 

The DNA-concentration in solutions was determined in UV-transparent cuvettes using 

a BioPhotometer plus (Eppendorf). The absorption was measured at a wavelength of 260 nm 

and the concentration calculated using the Lambert-Beer law:        

(II)   𝑐𝑑𝑠𝐷𝑁𝐴 =
𝐴260 𝑛𝑚

𝑏 ∗ 𝜀𝑑𝑠𝐷𝑁𝐴 
∗ 𝑑    

cdsDNA- concentration of dsDNA; A260nm – absorption at a wavelength of 260 nm; b – pathlength: 1 cm; 

εdsDNA – molar extinction coefficient for dsDNA at 260 nm (50 mL µg-1 cm-1); d - dilution 

 

DNA solutions were considered as sufficiently pure, if a ratio of absorbances at 260 nm and 

280 nm, the absorbance maximum of proteins, between 1.7 to 2 was achieved. 

 

2.2.1.12 Sequencing of DNA 

DNA samples were sequenced by LGC genomics (Germany) using the Sanger 

method, based on the incorporation of chain-terminating 2’-3’-dideoxynucleotides by 

DNA-polymerases during in vitro replication (Sanger and Coulson, 1975). 

   

2.2.1.13 Isolation of genomic DNA  

Genomic DNA was isolated from earbiopsies of adult mice with the Proteinase K 

method according to Wang & Storm (2006). Here, the tissue was digested, and cells were 

simultaneously disrupted in 350 µL/mm2 biopsy lysis buffer (BLB) containing high salt 

concentrations, SDS-detergent and EDTA. The buffer was freshly supplemented with 1 % 

(v/v) Proteinase K, to prevent the degradation of genomic DNA during lysis by digesting 

nucleases. After 30 min to 2 h incubation at 55°C and 900 rpm in a Thermomixer (Eppendorf, 

5437,), the tissue was lysed and cell remnants were removed by centrifugation for 5 min at 

17,000 x g in a tabletop centrifuge. The DNA-containing supernatant was transferred into a 
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new tube and an equal volume of 2-Propanol was applied. The tube was gently inverted until 

genomic DNA visibly precipitated. The precipitates were subsequently sedimented by 

centrifugation at 17,000 x g for 5 min, washed in 70 (v/v) % ethanol and pelleted again. The 

DNA-pellet was dried for 5 min at 60 °C and dissolved in 50 µL millipore-filtered water.  

Genomic DNA from small tail biopsies of mouse pups was isolated with the 

HotSHOT method according to Warman and colleagues (Truett et al., 2000). It is based on 

the use of alkaline lysis, similar to the method of Birnboim and Doly (1979) (see 2.2.1.10) but 

omitting SDS or potassium acetate and thus, without DNA precipitation. The neutralization 

solution is replaced by 40 mM TRIS-HCl at pH 5 (TNB). The tissue pieces were digested for 

1 h at 95 °C in 50 µL/ 2 mm tail lysis buffer (TLB) and then chilled to RT. TNB was applied 

in a volume ratio of 1:1. For analysis by genotyping PCR, 1 µL of the DNA solutions were 

used. 

 

 

2.2.2 Cell biology methods 

2.2.2.1 Cultivation and passaging of mammalian cell lines  

Human embryonic kidney 293T (HEK), HeLa and eGFP-Rab35endo knock-in (KI) 

HeLa cell cultures were cultivated in Dulbecco's Modified Eagle Medium (DMEM) with high 

glucose (4.5 g/L) and 2 mM L-glutamine, supplemented with 10 % (v/v) fetal bovine serum 

(FBS), 100 U/mL Penicillin and 100 µg/mL Streptomycin (1% (v/v) P/S) (mammalian cell 

culturing medium, mCCM) at 37 °C under humidified conditions of 5 % CO2 in a CO2-

incubator (New Brunswick Scientific, Galaxy 170S). The cultivation of cell cultures was 

performed under sterile conditions. All solutions, buffers and reagents were filtered sterile, 

water was autoclaved before usage. Media and washing buffers were incubated in a waterbath 

to warm up to 37 °C before application. 

Confluent cells were passaged every two to five days. Therefor medium was aspirated 

and the cells were rinsed one time with Dulbecco’s Phosphate-Buffered Saline (D-

PBS -Ca2+/Mg2+; Thermo Fisher, 14190169) to remove remaining FBS, which would interfere 

with trypsinization. Cells were then dissociated from dishes by incubation in the synthetic 

trypsin substitute TrypLE Express Enzyme solution (TrypLE; Thermo Fisher, 12605036), 

used in appropriate volumes according to the manufacturer’s instructions. After 5 min at 

37 °C, dissociation was stopped by collecting the detached cells in mCCM. The cells were 

seeded in appropriate dilutions for desired confluency. Cells were cultivated and used for 

experiments until reaching a passaging number of 35. 
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For immunocytochemistry (ICC), HeLa and eGFP-Rab35endo KI HeLa cells were 

seeded on glass coverslips, coated with an extracellular matrix protein solution to ensure a 

proper attachment to the glass surface. Therefor the coverslip surface was covered with a thin 

layer of 5 % (v/v) Matrigel (Corning, 356231) in serum-reduced Opti-MEMTM (Thermo 

Fisher, 51985-042). After incubation for 1 h at RT, the solution was removed by rinsing one 

time with D-PBS -Ca2+/Mg2+, and cells were seeded. 

For long-term storage, dissociated cultures from 10 cm dishes were collected in 3 mL 

mCCM, supplemented with additional 30 % (v/v) FBS to a final concentration of 40 % (v/v), 

and 10 % (v/v) DMSO. Each 1 mL was transferred into a cryotube. The stocks were frozen 

stepwise by incubation for 2 h at -20 °C followed by 12 h incubation at -80 °C before transfer 

to and long-term storage in liquid-nitrogen tanks at -196 °C. In order to cultivate cells from 

DMSO-stocks, the cells were thawed slowly on ice, supplied with an excess of mCCM and 

pelleted at 300 x g for 5 min to remove DMSO completely, before seeding in fresh mCCM.  

 

2.2.2.2 Transfection of mammalian cell lines using JetPrime 

JetPrime (VWR, 114-75) was used to transfect HeLa cells with DNA plasmids for 

ICC, or HeLa and HEK cells with siRNA for RNAi-mediated gene knockdown. Neither the 

molecular structure nor the constitution of this reagent is published. However, the transfection 

mechanism is equivalent to another commonly used “proton-sponge” reagent polyethylenimin 

(PEI; Dateki et al., 2016; Sandbichler et al., 2013). These cationic polymer-based reagents 

interact with negatively charged siRNA or DNA to form complexes, in which the nucleic 

acids are protected from nucleases. In addition, the excess of cationic charge of these 

complexes allow for binding to the negatively charged cell membrane, more specifically, to 

surface residing heparan sulfate proteoglycans. Thereby, the complex is internalized by 

endocytosis and delivered to early endosomes (Boussif et al., 1995). The high pH-buffering 

capacity of the amino nitrogen facilitates luminal accumulation of protons and thereby 

chloride ions within these endosomes. This results in osmotic swelling and eventually vesicle 

lysis of the endosomal membrane with subsequent release of the nucleic acids (Medina-

Kauwe et al., 2005). 

Cells with a confluency of 60 % to 80 % were transfected according to the 

manufacturer’s instructions, by mixing 2 µg DNA or 100 pmol siRNA per 6-well with 200 µL 

1x JetPrime buffer. JetPrime reagent was then added in a ratio of 2:1 (v/w) with the nucleic 

acids. After incubation of 10 min at RT, the transfection solution was applied to the cells. For 

co-transfections with more than one plasmid, a 1:1 amount of substance ratio was used with a 
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total amount of 2 µg. After 4 h incubation, cells were rinsed with phosphate buffered saline 

(PBS) and supplied with new mCCM. The cells were fixed 24 h post-transfection. For reverse 

transfection with siRNA, the transfection solution was applied to the diluted cell suspension 

during passaging prior to the seeding onto 6-well plates. After 12 h, when cells were settled, 

wells were rinsed with PBS and fresh mCCM was applied. For biochemical analysis, siRNA-

transfected HEK cells were harvested 96 h post-transfection. For rescue experiments, plasmid 

DNA encoding the siRNA-resistant gene was introduced 48 h post-transfection using calcium 

phosphate. siRNA-transfected HeLa cells were passaged to coverslips for ICC after 48 h and 

fixed 96 h post-transfection.  

 

2.2.2.3 Transfection of mammalian cell lines using calcium phosphate 

To introduce DNA-plasmids into eGFP-Rab35endo KI HeLa or HEK cells for affinity 

purifications of proteins or lentiviral production, calcium phosphate transfection was 

performed. Its effect is based on the spontaneous precipitation of calcium ions together with 

phosphates, in which DNA and siRNA is incorporated if present during precipitate formation. 

The precipitate adheres to cell surfaces and thereby facilitates the endocytic uptake of DNA 

and siRNA into the cells (Graham and van der Eb, 1973). 

 For affinity purifications assays, cells with a confluency of 60 % to 80 % were 

transfected 12 h to 24 h after passaging. Appropriate amounts of DNA, depending on the 

culture size as specified in table 2-25, were incubated for 5 min at RT in 0.24 M CaCl2 in 0.1x 

TE. This solution was added dropwise to 2x HBS buffer in a volume ratio of 1:1, under gentle 

vortexing. After 20 min incubation at RT, the precipitate solution was added to the cells and 

incubated overnight. The cells were then rinsed and supplied with fresh mCCM. Experiments 

were performed 24 h to 48 h post-transfection. 

 

Table 2-25: Calcium phosphate transfection mixture for different cell culture dishes. 

 

Cell culture dishes 

[cm] 

 

Plasmid DNA 

[µg] 

 

2x HBS 

[µL] 

 

0.24 M CaCl2 in 0.1x TE 

 [µL] 

6 6 250 250 

10 15 500 500 

15 30 1,250 1,250 

 

2.2.2.4 Production of lentiviral particles 

The production of lentiviral particles and transduction of mammalian cells was done in 

accordance with the S2 guidelines (LAGESO). In primary cell cultures, siRNA-transfection 
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usually result in a low transfection rate. Thus, lentiviral particles are produced in order to 

deliver shRNA with a high efficiency by transduction. The lentivirus is a modified HI virus, 

able to introduce RNA and DNA into non-dividing cells but unable to replicate (Naldini et al., 

1996). For virus production, a 2nd generation lentiviral packaging system from Dharmacon 

was used. Here, HEK cells are transfected with three plasmids, of which each contains a 

component of the virus and thus, start to generate the virus upon co-expression only. The 

lentiviral packaging plasmid psPAX2 (addgene, #12260) contains the pol, gag, rev and tat 

viral genes and the rev-response element (RRE). The envelope plasmid pMD2.G (addgene, 

#12259) encodes the G protein of the Vesicular Stomatitis Virus (VSV-G) envelope for a 

broad host infectivity. The transfer plasmid contains the transgene, here, shRNAs under 

control of a U6 promoter for transcription by the RNA Polymerase III. The shRNA is encoded 

between the Long Terminal Repeats (LTRs). The plasmid also contains the psi packaging 

sequence as a recognition site for packaging of the shRNA into viral particles. As transfer 

plasmids, pLKO.1 vectors were used, encoding either for mouse (ms)MTMR2 targeting 

shRNA (Dharmacon, TRCN0000030098), or non-targeting shRNA (scrambled) as a control 

(pLKO.1_scrambled shRNA; Dharmacon, RHS6848). The latter additionally encoded eGFP 

under control of a CMV promoter.  

For lentiviral production, 15 cm dishes of HEK cells were transfected using calcium 

phosphate, 12 h after seeding and with a high confluency of 80 % to 90 %, in order to 

compensate for decreased cell proliferation and increased cell death during virus production. 

Cells, cultivated in 15 cm dishes, were co-transfected overnight with 30 µg of 

shRNA-encoding plasmids, 21 µg of pMD2.G and 9 µg psPAX2, thus, in a ratio of 1.5 : 1.05: 

0.45 and in a total volume of 2.5 mL transfection solution. The cells were treated as S2 

cultures from that point on. The next morning, the cells were washed once with D-PBS. Fresh 

mCCM was applied in a reduced volume of 60 % to increase the virus titer. Two consecutive 

rounds of virus harvest were performed after 24 h and 48 h. The virus-containing medium was 

collected and HEK cells were supplied with fresh mCCM. Mammalian cell debris was 

subsequently removed from the collected medium by centrifugation at 200 x g for 5 min at 

RT. The viral particle-containing supernatant was stored at 4 °C. Supernatants from both 

harvest rounds were pooled and filtered using a 0.45 µm falcon filter in order to remove 

remaining cell debris. The viral particles were then concentrated 100 x to high-titer viral 

supernatants by centrifugation in an Amicon Ultra-15 100 kDa filter column (Merck, 

Z740210) at 5,000 x g and 4 °C for 15 min per 15 mL supernatant. Aliquots with each 20 % 
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of concentrated viral supernatant from a 15 cm dish were stored at -80 °C. Thawed aliquots 

for transduction were stored up to two weeks at 4 °C if not emptied at once. 

For calculation of the achieved infection units per mL, the virus titer, HEK cells were 

seeded in defined cell numbers in 24-well plates and transduced with different titrations of the 

concentrated viral supernatant, from 10 % to 0.001 % (v/v) volume per well. After three days, 

cells were trypsinized and the proportion of eGFP-positive cells was determined using a 

Neubauer cell counting chamber. The titer was then calculated as follows:   

(III) 𝑡𝑖𝑡𝑒𝑟 [
𝑈

𝑚𝐿
] =

n
cells𝑡0 ∗

% 𝐺𝐹𝑃+

100

viral supernatant [mL]
 

 

𝐧𝐜𝐞𝐥𝐥𝐬𝒕𝟎- seeded cell number; % eGFP+- proportion of eGFP-positive = transduced cells 

 

The usual titer of concentrated viral supernatant was around 1*108 to 1*109 U/mL. For 

pLKO.1_msMTMR2 shRNA-plasmids, which did not contain an eGFP-encoding gene, the 

production of lentiviral particles was done side by side with the control plasmid to achieve a 

comparable titer. 

 

2.2.2.5 Preparation of primary cell cultures from mice 

All primary cell cultures were obtained from postnatal mice after decapitation 

according to the guidelines of the Landesamt für Gesundheit und Soziales (LAGeSo) Berlin. 

For isolation of the different cell types, mice of distinct age (postnatal day; p) were used 

according to the literature and published protocols to achieve a maximum in cell number and 

culture quality. The isolation of the respective brain regions or nerves was done in a 

semi-sterile hood, all following steps under a sterile hood. All solutions, buffers and reagents 

for preparation and cultivation of primary cell cultures were filtered sterile. Millipore-filtered 

water was autoclaved before usage. If not otherwise indicated, cells were cultivated in cell 

culture dishes or on coverslips in well plates in CO2 incubators (New Brunswick Scientific, 

Galaxy 170S) at 5 % CO2 and 37 °C under humidified conditions. Cell media were 

equilibrated in CO2 incubators, washing buffers were warmed up to 37 °C by water bath 

incubation before application. For cell counting, samples of cell suspensions were diluted 1:1 

with Trypan blue. This dye enters the cytoplasm of dead cells through their porous cell 

membrane. Thus, only alive cells were counted, under non-sterile conditions, using a 

Neubauer chamber and an Olympus CKX-31 phase contrast microscope. 

In order to improve the polypeptide coating and thereby the cell adhesion to the glass 

surface, all coverslips used for the seeding of neuronal, oligodendrocytic or Schwann cell 
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cultures were cleaned before usage. Cleaning was performed in 1 N HCl for 24 h, with 

subsequent washes in Aceton and 70 % Ethanol, each for 24 h. The coverslips were then 

stored in 96 % Ethanol. On the day of preparation, coverslips were first dried under sterile 

conditions, transferred to well plates and then coated as specified in the corresponding 

preparation sections. 

 

2.2.2.5.1 Primary neuronal cultures 

Primary neuronal cultures for life cell imaging or ICC were prepared by isolating 

hippocampi from mice at postnatal days one to four (P1 to P4). After decapitation of the mice, 

brains were transferred into a 3.5 cm cell culture dish containing ice-cold Hanks' balanced salt 

solution (HBSS -Mg2+/Ca2+; Thermo Fisher, 14175-053) supplemented with 20 % (v/v) FBS 

and 1 % (v/v) P/S. Under a binocular stereo microscope, the hemispheres were first isolated 

from the middle brain and the brainstem, the meninges then removed from the cortex surface 

and finally hippocampi were separated from the entorhinal cortex. After removal of remaining 

blood vessels, isolated hippocampi from up to six animals were pooled in HBSS with 20 % 

(v/v) FBS and 1% (v/v) P/S in a new dish and cut into equally sized pieces of around 1 mm3 

to 2 mm3. The tissue pieces were transferred into a 15 mL falcon tube containing 5 mL of 

HBSS with 20 % FBS and 1% (v/v) P/S. When cells were settled down, the supernatant was 

aspirated. After two additional washing steps with 5 mL of the same solution, the tissue was 

rinsed twice with 5 mL HBSS with P/S only, in order to remove the serum before digestion. 

Following this, 2 mL neuronal digestion solution with 5 mg/mL Trypsin (Sigma, T1005) and 

375 U/mL DNase I (Sigma, D5025), in order to prevent tissue clumping by free-floating DNA 

fragments, were applied for 15 min at 37 °C. The digestion was stopped by rinsing twice with 

5 mL FBS-supplemented, and twice with FBS-omitted HBSS. The tissue was mechanically 

dissociated in 2 mL neuronal dissociation solution with 375 U/mL Units DNase I, using a 

siliconized glass Pasteur pipette with a fire-induced narrow opening at the tip. The tissue 

solution was triturated up to eight times until a homogeneous cell solution was obtained. 2 mL 

FBS-supplemented HBSS were added and the cells were sedimented by centrifugation for 

8 min at 400 x g and 4 °C. The cell pellet was resuspended in a small volume of neuronal 

plating medium (50 µL/ hippocampus), cells were counted, and the solution was adjusted to a 

cell concentration of 1,600 cells/µL before seeding. To ensure cell attachment, coverslips 

were first coated with Poly-L-lysine hydrobromide in water (PLL; Biochrom, L7240) for 2 h 

at RT, rinsed twice with water and were finally dried, before a drop of cell solution with a 
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defined number of cells (2-26) was applied. After 1 hr incubation at 37 °C and 5 % CO2, 

when cells were attached to the coverslips, equilibrated neuronal plating medium was added. 

 

Table 2-26: Numbers of seeded neurons and corresponding medium volumes for differently sized 

coverslips. 

 

Coverslip diameter 

[mm] 

PLL volume  

[µL] 

Cell number 

[x 103] 

Medium volume 

[mL] 

24 200 80 2 

18 120 50 1.5 

12 80 30 1 

 

The cultures were fed on the first day in vitro (DIV1) by replacing 50 % of the 

culturing medium with neuronal growth medium, supplemented with 2 µM Cytosine β-D-

arabinofuranoside hydrochloride (Ara-C; Sigma, C6645). In addition, the cells were 

supplemented with 0.4 µM Tamoxifen (TMX; Sigma, T5648, (Z)-4-hydroxytamoxifen) 

dissolved in Ethanol, to induce expression of the CRE recombinase and thereby the gene 

knockout in Rab35 icKO cells. On DIV2 another half of culture medium was exchanged for 

neuronal growth medium containing TMX and 4 µM Ara-C. Thus, from DIV2 on, the 

cultures were kept in the presence of 3 µM Ara-C, a nucleoside analogue which inhibits 

proliferation and thereby allows to restrict the number of glial cells, mainly astrocytes, within 

these cultures. Experiments were performed on DIV14. 

 

2.2.2.5.2 Primary astrocytic cultures 

Cortices were isolated from mice at postnatal days two to five (P2-P5), equivalent to the 

preparation primary neuronal cultures (2.2.2.5.1) but with the following modifications: The 

hippocampus was removed and discarded during dissection. The cortex’ tissue pieces were 

washed in a 15 mL falcon tube three times with 5 mL HBSS (-Ca2+/Mg2+) and digested for 

15 min at 37 °C in 5 mL of the synthetic trypsin substitute TrypLE Express Enzyme solution 

(TrypLE; Thermo Fisher, 12605036) supplemented with 375 U/mL DNase I. After additional 

three washing steps with HBSS, the cells were dissociated with siliconized Pasteur pipettes as 

described, but in 2 mL mCCM supplemented with 375 U/mL DNase I. The homogeneous cell 

suspension was filled up to 15 mL with mCCM and centrifuged. Sedimented cells were 

collected in 5 mL or 3 mL mCCM per Rab35 WT or icKO cortex, respectively. The 

suspension was filtered through a 70 µM Nylon cell strainer (Sigma, 431751), and each 10 

mL were plated per 10 cm cell culture dish.  
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On DIV1 the dishes were rinsed with D-PBS (-Ca2+/Mg2+; Thermo Fisher, 14190169) and 

supplied with 10 mL fresh mCCM containing 0.4 µM TMX. The cultures were grown until 

confluency and then passaged on DIV7 to DIV8 to smaller cell culture dishes or coverslips. In 

brief, 10 cm cell culture dishes were rinsed once with D-PBS, before trypsinization in 0.5 mL 

TrypLE for 5 to 8 min in a CO2-incubator at 37 °C. Trypsinization was stopped by adding 

4.5 mL mCCM and the cell suspension was transferred to 15 mL falcons. The cell 

concentration was determined by cell counting and adjusted with mCCM to the desired 

seeding density (2-27). Cells were seeded on plastic cell culture dishes or wells for 

biochemical assays. For ICC, PLL-coated glass coverslips (see 2.2.2.5.1) were used. To 

achieve a comparable confluency on the day of experiment, Rab35 icKO cells were seeded 

with an increased density compared to WT cells. The medium was exchanged every three to 

four days and experiments were performed on DIV20 to DIV22. For serum-starvation, cells 

were washed one time with D-PBS and cultured in mCCM without FBS for 12 h prior to 

harvest. Control (serum-fed) cells were supplied with fresh FBS-containing medium instead. 

 

Table 2-27: Seeded cell numbers and medium volumes of astrocytic cultures after passaging. 

Dish/ well/ coverslip 
Cell number [x 103] Medium volume 

[mL] WT Rab35 icKO 

6 cm cell culture dish 360 900 5 

6-well 120 300 
2 

24 mm coverslip 30 80 

 

2.2.2.5.3 Primary oligodendrocytic (precursor) cell cultures 

Primary oligodendrocytic precursor cell (OPC) cultures were prepared using 

immunopanning-mediated purification from mouse cortices according to the protocol of 

Emery and Dugas (2013). Mature myelinating oligodendrocytes were obtained by 

differentiation induction of OPCs in culture. 

In brief, cortices from P6 to P8 mouse pups were isolated as described (2.2.2.5.1) and 

collected in 3.5 cm cell culture dishes containing 2 mL ice-cold D-PBS -Ca2+/Mg2+. After 

dissection of all cortices, each two were transferred to 100 µL D-PBS -Ca2+/Mg2+ in another 

3.5 cm dish and cut into pieces of around 1 mm3. The absence of calcium and magnesium is 

crucial to promote the subsequent enzymatic digestion. For this, 20 U/mL Papain 

(Worthington Biochemical, LS003126) were dissolved in equilibrated Papain buffer by 

incubation at 37 °C for 15 min. In contrast to the serine protease trypsin, papain is a cysteine 

protease and less damaging during tissue digestion. This leads to a comparably high amount 
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of morphologically intact cells, particularly important for immunopanning. The enzyme was 

activated by the addition of 0.2 mg/mL L-cysteine (Sigma-Aldrich C-7477) and supplemented 

with 250 U/mL DNAse I (Worthington Biochemical, LS002007).  

The cortex tissue was supplied with each 3 mL of sterile filtered papain-containing 

digestion solution per dish and incubated for 90 min at 37 °C in a 5 % CO2-incubator. The 

tissue suspension of each three dishes was pooled and transferred into a 15 mL falcon. After 

the tissue had settled down, the supernatant was aspirated and washed with 2 mL of 

equilibrated low-ovomucoid solution (LOS), supplemented with 125 U/mL DNAse I, to stop 

the papain activity. The tissue was dissociated mechanically to single cells by gentle 

trituration in 3 mL LOS for eight times with a 1 mL plastic tip pipette. When the remaining 

tissue pieces were settled down, 1 mL of cell suspension supernatant was transferred into a 

new tube and 1 mL of fresh LOS was added to the remaining tissue for another round of 

trituration. This procedure was repeated six times until the tissue was fully dissociated and 

entirely transferred as a homogeneous suspension to the new tube. The cells were pelleted by 

centrifugation for 15 min at RT and 400 x g and washed in 6 mL equilibrated high-ovomucoid 

solution (HOS) for full papain inactivation. After another round of centrifugation, the cells 

were collected in 15 mL immunopanning buffer, filtered through a 70 µM Nylon cell strainer 

(Sigma, 431751) and applied to the prepared immunopanning dishes. 

In three consecutive rounds of immunopanning, the cells were first two times 

negatively selected for microglia with an antibody against the Griffonia (Bandeiraea) 

Simplicifolia Lectin 1 (BSL1), followed by a positive selection for OPCs against the 

platelet-derived growth factor receptor α (PDGFRα). For each negative selection, one 15 cm 

cell culture dish was coated with 20 mL of 1 µg/mL BSL1 (Vector Laboratories, L1100) in D-

PBS +Ca2+/Mg2+ (Thermo Fisher, 14287080) for 2 h at RT. The dishes were rinsed three 

times carefully with D-PBS +Ca2+/Mg2+, before the cells were applied for each 15 min. For 

the positive selection of OPCs, 10 cm cell culture dishes were first coated with 10 mL of 

3 µg/mL goat-α-rat antibody (Jackson ImmunoResearch, 112-005-167) in 50 mM TRIS-HCl 

pH 9.5 overnight at 4 °C. The primary antibody solution was then applied for 2 h at RT, 

containing 1.6 µg/mL rat-α-PDGFRα antibody (BD Pharmingen, 558774) in 0.2 % BSA 

(Sigma, A4161) in D-PBS +Ca2+/Mg2+. The cell suspension was applied for 45 min with 

slight agitation of the dishes every 15 min. The supernatant was discarded, and the dishes 

were rinsed carefully six times with D-PBS +Ca2+/Mg2+ to remove all non-attached cells. 

After another wash with 10 % CO2-equilibrated Earle’s Balanced Salt solution (EBSS; 

Thermo Fisher, 14155063), 4 mL of  5 x 103 U/mL Trypsin (Sigma, T9935) in EBSS were 
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applied for 6 min to 8 min at 37 °C in a 5 % CO2-incubator. The detached OPCs were 

collected from the immunopanning dishes in 10 mL D-PBS +Ca2+/Mg2+ with 30 % (v/v) heat-

inactivated FBS to stop the enzyme reaction. The cell solution was transferred to a 15 mL 

falcon-tube for centrifugation at 400 x g for 15 min at RT. After resuspension of the cell pellet 

in 25 µL DMEM-Sato growth medium (DSM) per cortex, the cells were counted and the cell 

concentration was adjusted. OPCs were seeded in 25 µL drops with a number of 20 x 103 

cells. Cleaned 12 mm glass coverslips were used, coated overnight at 4 °C with 80 µL of 10 

µg/mL Poly-D-Lysine (PDL; Sigma, P6407) in 1.5 mM boric acid pH 8.4. After cell 

attachment (1 hr at 37 °C and 10 % CO2) 500 µL equilibrated DSM was supplemented with 

10 µM Forskolin and each 10 ng/mL of ciliary neurotrophic factor (CNTF) platelet-derived 

growth factor AA (PDGF-AA) and neurotrophin-3 (NT-3) (OPC proliferation medium) , and 

added. Cells were cultivated in 10 % CO2-incubators according to standard protocols. On 

DIV1, the coverslips were rinsed with D-PBS -Ca2+/Mg2+ before fresh medium was applied, 

supplemented with 0.4 µM TMX. For experiments with oligodendrocytic cultures, OPC 

differentiation medium was used from DIV1 on. Here, Forskolin and CNTF to raise cAMP 

levels and ensure cell survival, respectively, were added to DSM. The mitogens for OPC 

proliferation, PDGF-AA and NT-3, were replaced by 40 ng/mL thyroid hormone 

triiodothyronine (T3) to induce the differentiation into mature oligodendrocytes.  

DSM was prepared freshly every week and stored at 4 °C. The cultures were fed by 

exchanging half of culturing medium volume every two to three days and fixed on DIV7 to 

DIV8. Cultures were transduced or inhibitors were applied at DIV3 with ongoing application 

during medium exchange. 

 

2.2.2.5.4 Primary Schwann cell mono-cultures 

The preparation of Schwann cell mono-cultures was performed according to Jessen 

and Mirsky (Arthur-Farraj et al., 2011), representing an adaption of the Brockes method for 

the preparation and purification of Schwann cells from mice (Brockes et al., 1979). In brief, 

Schwann cells were purified from the sciatic nerve and the brachial plexus, isolated from P4 

to P6 mice after decapitation. For dissection of the sciatic nerve, the dorsal skin was removed 

at the level of the hindlimbs. The nerve was exposed by cutting along the gluteus maximus, 

and isolated from its origin at the spinal cord, at the head of the thigh-bone, until its allocation 

into smaller cords at the knee joint. The brachial plexus was dissected by first removing the 

ventral skin at the upper limbs from the armpit to the elbow. By cutting along the Biceps 
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brachii muscles, the nerve cords were revealed underneath and then isolated from the axilla to 

their distal branching points at the elbow joint. 

Nerves of each mouse were collected in one 3.5 cm cell culture dish containing 2 mL 

ice-cold Leibovitz’s L-15 medium (L-15; Thermo Fisher, 11415049) and freed from 

remaining connective tissue and endoneurium. For digestion, clean nerves were transferred 

into a new dish with 3 mL L-15 supplemented with 0.1 % (w/v) Collagenase A (Sigma, 

10103586001) and 0.25 % (w/v) Trypsin (Thermo Fisher, 27250018) for 1 hr at 37 °C and 

5 % CO2. After dissociation of the nerve tissue by trituration with a 200 µL Gilson pipette, the 

tissue solutions of each three dishes were pooled in a 50 mL falcon-tube and SC 

pre-differentiation medium was added in a volume ratio of 1:1. The cells were pelleted by 

centrifugation at RT with 400 x g for 10 min and collected in 2 mL fresh SC pre-

differentiation medium for each four nerves. Prior to plating, each one 6-well per nerves from 

one mouse was first coated with 1 mL of 50 µg/mL PLL diluted in water (Sigma, P1274) for 

3 h at RT. PLL was then aspirated and replaced by 750 µL of 100 µg/mL Laminin (Sigma, 

L2020) diluted in DMEM. After 1 h incubation at 37 °C the cell suspension was added. 

Schwann cells were cultured in SC pre-differentiation medium with Ara-C until DIV3, 

when the number of fibroblasts was sufficiently reduced. The cells were then passaged to 24 

mm cleaned glass coverslips, sequentially coated with 60 µL of 50 µg/mL PLL and 50 µL of 

50 µg/mL Laminin. After removing the cell medium and rinsing with D-PBS -Ca2+/Mg2+, the 

cells were detached by incubating each well with 200 µL TryPLE for 5 min at 37°C and 

5% CO2. Schwann cells were collected in each 2 mL DMEM with 0.5 % (v/v) horse serum 

(HS) and 1 % (v/v) P/S, and pelleted by centrifugation at 400 x g at RT. The cell pellet was 

resuspended in 30 µL DSM per 6-well, counted and the cell concentration was adjusted. On 

each 24 mm coverslip, cells were seeded at a density of 15 x 103 cells in 15 µL. After 

incubation for 1 h at 37 °C in a 5 % CO2-incubator, 500 µL equilibrated SC differentiation 

medium, adapted from (Jessen et al., 1994; Emery and Dugas, 2013), was added to each well. 

Here, DSM was supplemented with 20 ng/mL Neuregulin1 (NRG1), 1 µM Forskolin, 40 

ng/mL T3 and 50 µg/mL ascorbic acid for differentiation and myelination induction (Eldridge 

et al., 1987; Arthur-Farraj et al., 2011), and 0.4 µM TMX. Half of the medium was 

exchanged every 2-3 days. Inhibitors were applied from DIV5 on. The cells were fixed at 

DIV11.  

 

 

 



  2. Material and Methods 
 

77 
 

2.2.2.6 Calcium phosphate transfection of primary neuronal cultures  

Primary neuronal cell cultures were transfected at DIV7 using the Calcium phosphate 

transfection kit from Promega. The transfection mechanism is based on the calcium phosphate 

assay (see 2.2.2.3) (Graham and van der Eb, 1973). According to the manufacturer’s 

instructions, plasmid DNA was first mixed with calcium chloride and then diluted in 

nuclease-free water (table 2-28). The mixture was applied to an equal volume of 2x 

phosphate-buffer (HB) under slight vortexing for the generation of calcium-phosphate-DNA-

precipitates, and subsequently incubated for 20 min in the dark. Neurobasal medium A (NBA; 

Invitrogen, 21103) was adjusted to the osmolarity of the culturing medium using D-(+)-

Mannitol. Neuronal cultures were then incubated in 1 mL/well equilibrated NBA for 20 min 

at 37 °C and 5 % CO2. The transfection solution was applied in a volume of 200 µL/well and 

the cultures were incubated for 30 min at 37 °C and 5 % CO2 until the precipitates were 

visibly settled onto the cells. The coverslips were washed twice with 2 mL osmolarity-

adjusted and equilibrated HBSS (-Mg2+/Ca2+) and transferred back to the culture medium.  

 

Table 2-28: Transfection reaction solution for neuronal cultures on 24 mm coverslips. 

Component Amount/well 

Plasmid DNA 6 µg 

2 M Calcium chloride (Promega)  125 mM 

Nuclease-free H2O (Promega) ad 100 µL 

2x Phosphate-buffer HB, pH 7.1 (Promega) 1x 

 

2. 2. 2. 7 Viral transduction of cell cultures 

Viral transduction of astrocytic cultures was performed with a multiplicity of infection 

(MOI) of 20. Cells were transduced in fresh medium in two consecutive rounds, at DIV11-12 

and DIV16-17, before harvest at DIV20-22. The day before harvest, cells were supplied with 

fresh medium. Similarly, MEF cells were transduced in two rounds for each three days. 

Oligodendrocytic cultures were transduced with a MOI of 50 in fresh medium on DIV3 and 

DIV6 and fixed on DIV8. 

 

2.2.2.8 BrdU treatment 

Bromodeoxyuridine (BrdU) is a nucleoside analogue for thymidine that incorporates 

into the S-phase of the cell cycle (Miller and Nowakowski, 1988; Cavanagh et al., 2011). 

BrdU (Abcam, ab142567) was dissolved to a 10 mM stock solution in DMSO and diluted to a 

working solution of 10 µM in cell culture medium prior to application. The cell medium was 
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replaced by sterile filtered BrdU-containing medium for 36 h. The cultures were then fixed 

and immunolabelled using a BrdU-targeting antibody (see 2.2.2.9).  

 

2.2.2.9 Inhibitor treatments 

All compounds were dissolved in DMSO to indicated concentrations as stock 

solutions (see table 2-16). The used working concentrations are indicated for each experiment. 

For acute application, cells were treated for 1 h with indicated concentrations. For chronical 

treatments, Schwann cells were supplemented with inhibitors from DIV5 to DIV11. Control 

cells were supplemented with an equal volume of DMSO.  

 

2.2.2.10 Immunocytochemistry (ICC) 

Cell cultures, grown on coverslips, were rinsed with 1x PBS and fixed with 4 % (w/v) 

paraformaldehyde (PFA) with 4 % (w/v) sucrose in millipore-filtered water in defined 

volumes (table 2-29) for 15 min at RT. After three washes with PBS to remove remaining 

PFA, the cells were simultaneously permeabilized, to perforate the cell membrane, and 

blocked, to prevent unspecific antibody binding, for 1 h in PBS with 0.3 % (v/v) Triton X-100 

and 10 % (v/v) normal goat serum (NGS) (ICC blocking solution). If secondary antibodies 

raised in donkey were used additionally, the incubation time with the NGS-containing ICC 

blocking solution was shortened to 30 min, and another 30 min incubation was performed 

with 10 % (v/v) normal donkey serum (NDS) in ICC blocking solution. Antibodies were 

specifically diluted (table 2-13) in PBS with 0.3 % (v/v) Triton X-100 and 5 % (v/v) NGS 

(ICC antibody solution). The coverslips were placed upside down into a drop of antibody 

solution on parafilm in a dark humidified chamber. After 1 h incubation at RT with primary 

antibodies, the coverslips were washed three times in PBS, and incubated in secondary ICC 

antibody solution. Where indicated, the solution was supplemented with 6 U/mL Alexa-

fluorophore-conjugated Phalloidin, a high affinity F-actin probe to label the cell cytoskeleton. 

Excess of unbound antibodies was removed by rinsing another three times with PBS, before 

the coverslips were mounted on microscope slides in Immu-Mount (Thermo Fisher, 9990402) 

supplemented with 1 µg/mL 4',6-Diamidino-2-phenylindol (DAPI). The slides were stored at 

4 °C and imaged soon after embedding. 
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Table 2-29: Immunocytochemistry solution volumes. 

 

Solution 

Volume per coverslip [µL] 

6-well:  

Ø 24 mm 

12-well:  

Ø 18 mm 

24-well:  

Ø 12 mm 

PFA; ICC blocking solution 1,000 750 500 

ICC antibody solution 50 25 12.5 

 

In order to label surface-residing proteins only, the detergent Triton-X100 was omitted 

from the ICC blocking and primary antibody solutions. The cells were then post-fixed for 

15 min at RT with 2 % (w/v) paraformaldehyde (PFA) and 2 % (w/v) sucrose, and finally 

incubated with detergent-containing solutions, according to the standard protocol, for 

subsequent immunolabeling of corresponding total protein levels using distinct primary and 

secondary antibodies.  

Intracellular membrane lipids were immunolabelled using either a specific primary 

antibody (PI(4)P) or the recombinantly expressed and purified lipid-binding domain chimera 

eGFP-2xFYVE (Hrs) (Gillooly et al., 2003) which is subsequently targeted using a 

GFP-recognizing antibody. Therefor a modified ICC protocol was performed according to 

Hammond and colleagues (2009) to ensure preservation of endomembranes. The cells were 

fixed with low concentrations of 2 % PFA fixative to prevent osmotic swelling. After three 

times wash with PBS, a non-phosphate-containing PIPES-based buffer (PIB) was used for all 

subsequent steps, as free phosphates would otherwise compete with the phosphor-lipids for 

probe binding. The cells were permeabilized in PIB for 5 min at RT with 20 µM Digitonin, a 

cholesterol-selective detergent which perforates the cholesterol-rich plasma membrane 

(Lange, 1991) while internal membranes stay intact. This was followed by three thorough 

washes with PIB to get rid of remaining Digitonin, which would affect the efficiency of lipid 

staining during longer exposure. The cells were simultaneously blocked and labelled for 45 

min with 0.025 µg/µL eGFP-2xFYVE (Hrs) in PIB supplemented with 5 % (v/v) NGS. In 

addition, the solution was supplemented with 50 mM ammonium chloride, in order to quench 

the remaining free aldehyde groups from the PFA fixation with amines and thus, prevent 

non-specific binding and autofluorescence. After washing in PIB according to the published 

protocol, primary and secondary antibodies were applied in 5 % (v/v) NGS in PIB for 1 h and 

45 min, respectively. The volume of antibody solutions was increased by 20 % compared to 

the detergent-based solutions (table 2-29) to compensate for the increased surface tension and 

thus, ensure antibody decoration of the whole coverslip. The coverslips were then post-fixed 
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for 5 min with 2 % PFA fixative, and washed with PBS, three times with 50 mM ammonium 

chloride, and once without. Mounting was performed as described above. 

Autophagosomes were visualized by immunodetection of the transiently autophagosomal-

associated protein LC3 (Kaminskyy et al., 2011; Kabeya et al., 2000). Here, the fixation 

duration was prolonged to 30 min. Triton X-100 was omitted from the PBS-based solutions 

and permeabilization was performed equivalent to the lipid staining protocol by using 

Digitonin, to preserve the autophagosomal membranes.  

For immunolabelling of BrdU, the cells were washed twice with 1x PBS and three times 

with 1x PBS for 2 min each, before fixation with 4 % PFA-fixative for 15 min at RT. After 

another three washes with PBS for each 2 min, first 0.1 % (v/v) Triton X-100 in PBS for 20 

min, then 2 N HCl for 30 min was added. The coverslips were then washed another three 

times with PBS. ICC blocking and antibody solutions were applied according to the standard 

protocol (table 2-29). 

 

2.2.2.11 Confocal microscopy and immunocytochemistry analysis  

Immunolabelled or fluorescently tagged proteins in fixed cultures were imaged using a 

Zeiss laser scanning microscope (LSM710) with a 63x 1.4 NA (numerical aperture) oil 

objective routinely, or a 40 x 1.3 NA oil objective for neuronal cultures. Excitation was 

performed with an Argon laser at 488 nm, a DPSS laser at 561 nm and a Helium Neon laser at 

633 nm for Alexa-Fluor488/eGFP, Alexa 568/mCherry and Alexa 647, respectively. 

Corresponding emission was detected between 503-553 nm, 581-626 nm and 649-700 nm, 

respectively. Images were acquired with the Digital microscope camera AxioCam (Zeiss), 

controlled by the Imaging-Software ZEN (Zeiss), and analyzed using ImageJ software. Single 

cell masks were routinely generated using Phalloidin signals and transferred to the channel of 

interest to measure mean fluorescence intensity per cell in the case of diffuse 

immunolabeling. For synaptic stainings, a synapsin-based bouton mask was used to measure 

mean fluorescence intensities in presynapses only. For rare punctate staining in cells, or if 

background subtraction was required, the sum intensities of ROIs (region of interest = 

fluorescent signal minus background signals) was measured and divided by the cell area. For 

LC3, background subtraction of diffuse cytoplasmic staining, representing LC3-I signals, was 

performed to reveal autophagosomal membrane associated LC3-II -positive puncta only. For 

eGFP-FYVE(Hrs) signals, a background threshold was determined in samples, acutely treated 

with the PI(3)P-synthesizing VPS34 inhibitor VPS34-IN1. HeLa cells or astrocytes 

immunolabeled for lipids were imaged using a z-stack series of usually seven slices with 
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0.5 µm intervals. Prior to fluorescence intensity analysis, the slices were summed up using the 

ImageJ ‘z-projection’ tool with ‘max intensity’. P0-protein immunostainings in Schwann cell 

mono-cultures were imaged with a 10x 0.3 NA air objective. Here, sum intensities per image 

(10 images per condition and experiment) were normalized by the number of DAPI-positive 

cell nuclei per image.  

For all immunostainings, at least 10 images per condition were acquired, evaluated 

and averaged for each experiment. Statistical analysis with the mean values of independent 

experiments. 

 

2.2.2.12 Live-cell imaging and electrical field stimulation of primary neuronal cultures 

Live-cell imaging was performed on DIV14 using a pHluorin-based assay 

(Miesenböck et al., 1998), around 7 days post-transfection with the pHluorin-construct. The 

construct encoded for a pH-dependent eGFP (pHluorin), with a pKa of 7.1, excitation at 

455-485 nm and emission at 510–555 nm (Sankaranarayanan et al., 2000), coupled to the 

luminal terminus of the presynaptic vesicle protein Syt1. During electrical field stimulation, 

neuronal depolarization and thus, Ca2+ influx in the presynapse triggers exocytosis of synaptic 

vesicles (SVs), i.e SV fusion with the plasma membrane. Thereby, pHluorin is exposed to the 

physiological pH of the extracellular buffer solution and de-quenched. Subsequent endocytic 

retrieval of SVs, and therefore Syt1-pHluorin from the plasma membrane results in a 

re-quench due to subsequent reacidification of the vesicular lumen (3 - 4 s; Atluri and Ryan, 

2006). Therefore, fluorescence measurements using a GFP-filter setup allow to monitor 

recycling of synaptic vesicle (proteins) and endocytic retrieval kinetics. 

The neuronal cultures on coverslips were stimulated in a stimulation quick change 

chamber (Warner Instruments, RC-47FSLP) in 500 µL imaging buffer at 37 °C. The imaging 

buffer provided essential ions like Na+, K+ and Mg2+ on the one hand, and contained the 

glutamate receptor antagonists APV (NMDA receptors) and CNQX (AMPA receptors) on the 

other, to prevent postsynaptic responses and recurrent network excitation. Stimulation was 

performed with the MultiStim SYSTEM-D330 (Harvard Apparatus) by applying electric field 

pulses of 5 Hz for 40 s at 100 mA, with a pulse duration of 1 ms. Imaging was performed 

using a Nikon Eclipse Ti microscope, equipped with an incubator for temperature control 

(Okolab), a 200 Watt mercury lamp (Lumen 200, Prior), the eGFP filter set (Semrock, F36-

526), and operated by ImageJ-based MicroManager 4.11 software. The samples were 

illuminated with 100 ms exposure time. Recording were done using a 40x oil-immersion 

objective and the PerfectFocus Autofocus system (Nikon). Images were acquired with a 
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sCMOS camera (Neo, Andor) controlled by the ImageJ plugin “Time Series Analyzer” at a 

frame rate of 0.5 Hz for 2 min, starting 10 s prior to stimulation. Evaluation of time-series 

fluorescence intensities from hand-masked boutons was performed using Image J. The 

fluorescence intensity course over time of around 50 boutons per image-series were averaged, 

background subtracted and corrected for bleaching. The bleaching factor was calculated from 

the mono-exponential decay of the fluorescence intensity trend prior to stimulation. For 

analysis of the relative fluorescence increase upon stimulation, representing the apparent SV 

release, the peak of fluorescence upon stimulation (Fmax) was normalized to the mean initial 

fluorescence (F0) prior to stimulation (Fmax/F0). In order to determine the endocytic time 

constant (τ), the initial fluorescence F0 was subtracted from the fluorescence F at each time-

point (t) to obtain the absolute change in fluorescence ΔF(t) (F-F0). ΔF was then normalized 

to ΔFmax (ΔF/ΔFmax) to obtain relative values for the fluorescence time course scaled between 

1 (Fmax) and 0 (F0). This allowed for a mono-exponential fit of the decay using GraphPad 

Prism 5 software to calculate τ: 

(IV)   (ΔF/ΔFmax)(𝑡) = y0 + A ∗ e(
−t

τ
)
 

 

(𝚫𝐅/𝚫𝐅𝐦𝐚𝐱)(𝐭)- Normalized fluorescence intensity course over time; y0- extreme value approached at tmax;  

A = F(t)max (= 1); τ – endocytic time constant (t at F(t) = 1/e) 

 

The mean data from 5 to 7 image-series per experiment were averaged, and statistic was 

performed on the mean curves from independent experiments. 

 

2.2.2.13 Ultrastructural analysis of HRP-uptake in neuronal cultures by electron microscopy 

Horse-radish peroxidase (HRP) is a glycoprotein and was used in this assay as a fluid 

phase marker, uptaken from the extracellular medium by synapses during endocytosis 

(Clayton et al., 2008). HRP can be detected by oxidation of diamino-benzidine with hydrogen 

peroxide (Graham and Karnovsky, 1966). Oxidized diamino-benzidine-precipitates are 

converted to an electron-dense product (osmium-black) in the presence of Tetraosmium 

(OsO4) (Johansson and Backman, 1983).  

Cultured hippocampal neurons grown on coverslips were preincubated with 10 mg/mL 

Type VI HRP (Sigma, P8375) in 1x imaging buffer for 5 min and then stimulated with high-

potassium imaging buffer including HRP for 90s. Following stimulation, cultures were 

washed with imaging buffer for 5 minutes and fixed with 2% (w/v) glutaraldehyde in 1x PBS 

for 40 minutes. 
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Electron microscopy was performed by Dr. Dmytro Puchkov from the EM facility at 

Leibniz Research Institute for Molecular Pharmacology (FMP, Berlin). Following fixation 

and one wash with PBS, neurons were incubated for 20 min in 0.1 M glycine in PBS to 

quench remainder of glutaraldehyde. HRP was visualized by incubating the fixed cultures for 

25 min in 3,3′-diaminobenzidine tetrahydrochloride (DAB; 0.75 mg/mL) in 0.05 M TRIS-

HCl, pH 7.6, containing 0.01 % (w/v) hydrogen peroxide. Neurons were washed in PBS, post-

fixed with 1% (w/v) OsO4 for 1 h, washed with distilled water, dehydrated, and embedded 

into Epoxy resin. Coverslips were cracked away by liquid nitrogen and sections of 60 nm 

thickness were viewed with a Zeiss EM900 transmission electron microscope. Morphometric 

analysis of synaptic boutons terminals was performed using ImageJ software. Vesicles were 

considered as HRP-positive if the intensity of DAB labeling in the vesicle lumen was at least 

three times higher than background labeling. Excitatory synapses were taken for analysis. 80 

synapses per genotype were analyzed. Regular shaped vesicles smaller than 50 nm in 

diameter and 2,000 nm2 in cross-section area were counted as synaptic vesicles. All other 

larger vesicles observed in synaptic terminals were classified as endosomes of different sizes. 

 

 

2.2.3 Biochemical methods  

2.2.3.1 Harvest of mammalian cells 

Mammalian cells were harvested with a non-ionic and therefor non-denaturating 

detergent-based buffer. It lyses the cell membrane and releases the cytoplasmic proteins, 

which are kept in solution due to the physiological pH and the stabilizing salt and metal ions 

provided by the buffer. All steps of cell lysis were performed on ice in order to prohibit 

protease activity and therefor protein degradation within the cell lysates. In addition, 

mammalian protease inhibitor cocktail (PIC), and the serin- and cysteine protease inhibitor 

phenylmethylsulfonyl fluoride (PMSF), with a half-life of 30 min in water, were always 

added freshly to the lysis buffer prior to use. The phosphatase inhibitor cocktails 2 and 3 

(Sigma, P5726, P0044) were applied when the phosphorylation status of lysate proteins was 

meant to be analyzed, to inhibit effects from massive dephosphorylation during lysis. The 

lysis buffer was applied in defined volumes for the different confluent cell cultures (table 

2-30), depending on the cell type, the surface area of the culture dish and the required 

minimal protein concentration for the corresponding experiment. Cultures were grown on 6 

cm dishes or 6-well plates for lysate protein analysis by SDS-PAGE and Western Blot. For 

affinity purification assays, 10 cm or 15 cm culture dishes were used to achieve high protein 
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amounts and a protein concentration of around 5 µg/µL with the corresponding lysis buffer 

volumes (table 2-30).  

Mammalian cell cultures were rinsed once with ice-cold autoclaved 1x PBS before 1x 

cell lysis buffer was applied. The cells were collected in buffer with a cell scraper and the 

suspension was transferred to an Eppendorf tube. Lysis was performed by incubation for 

20 min on ice with gentle inversions every 5 min. Remaining intact cells were pelleted 

together with the membrane fraction by centrifugation at 17,000 x g for 5 min at 4 °C in a 

tabletop cooling centrifuge (Eppendorf). For general analysis of protein content by 

SDS-PAGE and Western Blot, the protein concentration of the supernatant was directly 

determined by Bradford Assay, adjusted to the desired protein concentration of 1 µg/µL to 

2 µg/µL with lysis buffer and prepared for SDS-PAGE. 

For affinity purification assays, the lysates were further cleared from potentially 

interfering smaller membrane pieces. Therefore, ultracentrifugation at 180,000 x g for 15 min 

at 4 °C in a TLA110 rotor (Sorvall) was performed. The supernatants were then freshly 

supplied with 1 mM PMSF. After determination and adjustment of the protein concentration, 

the samples were used as “inputs” in the corresponding assays. 

  

Table 2-30: Volumes of lysis buffer used for different cell cultures. 

 

Cell culture 

dish 

Lysis buffer volume [µL] 

Astrocytes HEK cells 
eGFP-Rab35endo 

KI HeLa cells 

6-wells 40 200  

6 cm 80 350  

10 cm  300  

15 cm   300 

 

2.2.3.2 Determination of protein concentration 

The protein concentration of cell lysates was determined using the Bradford protein 

assay. It is based on an equilibrium shift of Coomassie brillant Blue G250 upon protein 

binding, from a stable double protonated red into a stable unprotonated blue form with an 

absorbance maximum of 595 nm (Bradford, 1976). In this assay, 1 µL of cell lysate was 

added to 1 mL of 1x Bradford solution diluted in millipore-filtered water. Each three 

replicates were analyzed per sample. The mixtures were incubated for 5 min at RT in the 

dark. The absorbance at 595 nm was measured using a photometer (BioPhotometer Plus, 

Eppendorf). Samples were blanked with 1 µL lysate buffer in Bradford solution. A BSA 

(bovine serum albumin) standard curve, i.e. the extinction of samples with known BSA 
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concentrations from 1 µg to 10 µg, served as a reference. The lysate protein concentration was 

calculated using the parameters from the linear regression of the standard curve. 

Alternatively, samples were measured in a 96-well plate in 250 µL 1x Bradford solution using 

the SPECTROstarNano microplate reader (BMG LABTECH) and evaluated using MARS Data 

Analysis Software (BMG LABTECH) 

 

2.2.3.3 SDS-PAGE  

The discontinuous Sodium dodecyl sulfate - Polyacrylamide gel electrophoresis (SDS-

PAGE) was performed according to Laemmli (1970), in order to analyze the protein levels of 

cell lysates or other samples by protein fractionating according to their molecular weight. All 

reagents, including the SDS-running buffer, SDS-sample buffer and the gel components were 

prepared according to the Laemmli buffer system. The gel electrophoresis chamber Mini 

Protean Tetra Cell System (Bio-Rad), and corresponding plates, combs and pouring stations 

were used for gel preparation (table 2-31) with 1 mm thickness, and a polyacrylamide 

concentration according to the molecular weight of the proteins of interest. To ensure a 

straight passage between stacking and separating gel, a layer of 2-Propanol was added on top 

of the separating gel during polymerization incubation, and washed off twice with water 

before the stacking gel was poured.  

 

Table 2-31: SDS-PAGE gel preparation. 
 

Components 
Separating gels 

Stacking gel 
8 % 10 % 12 % 

1x buffer Separating gel buffer; pH 8.8 Stacking gel buffer; pH 6.8 

Acrylamide/Methylen  

bisacrylamide - 37.5:1 (v/v) 
8 % 10 % 12 % 3 % 

TEMED (v/v) 0,1 % 
APS (w/v) 0,1 % 

 

 

The samples with desired protein amounts (20 µg to 40 µg) were mixed with 6x SDS-

sample buffer and boiled for 5 min at 95 °C in a heating block. This step results in protein 

denaturation, mediated by the disulfide bond-reducing reagent 2-Mercaptoethanol and the 

anionic detergent SDS. The latter binds to proteins in a ratio of around 1.4 g per 1 g protein, 

and thereby leads to an equal negative charge of all proteins. Thus, the protein mobility 

through the gel from cathode to anode is dependent on their molecular weight only. After 

centrifugation at 17,000 x g, samples were loaded into the equilibrated gel pockets in volumes 

of 20 to 40 µL. Gels were run in electrophoresis chambers filled with 1x SDS-running buffer. 
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As a reference, 0.5 µg of a protein marker was used. To achieve approximately equal sample 

volumes per gel, 1x sample-buffer was added to empty pockets as well as to pockets 

containing the low volume of protein marker. Electrophoresis was started with 90 V 

corresponding to a current of around 10 mA/gel, until the migration front accumulated at the 

edge between stacking and separating gel. With the passage of the samples to the separating 

gel, the voltage was increased to 130 V. The electrophoresis was stopped as soon as the 

bromophenol blue frontline of the sample buffer reached the bottom of the gel. For detection 

of proteins the gels were stained with Coomassie or further processed by immunoblotting. 

 

2.2.3.4 Coomassie staining of SDS-gels 

SDS-polyacrylamide gels were incubated in Coomassie staining solution for 2 h at RT, 

to visualize the fractionated proteins by its electrostatic interaction with Coomassie blue 

G-250 dye. Background staining of the gel was removed by two consecutive incubation 

rounds in Coomassie destain solution, first overnight and then for 2 h at RT.  

  

2.2.3.5 Immunoblotting  

For the selective detection of proteins, immunoblots (Western Blots) were performed. 

First, the separated and negatively charged proteins were transferred from SDS-

polyacrylamide gels to nitrocellulose membranes (Amersham Protran 0.2 NC; GE Healthcare) 

by application of an electric current, using the tank electroblotting Mini Trans-Blot system 

(Bio-Rad). The SDS-polyacrylamide gel, the membrane and four sheets of Whatman paper 

(Grade GB003; Sigma, WHA10427826), all equally sized, were equilibrated in 1x Transfer 

buffer containing 10 % Methanol. They were subsequently arranged in a stack between two 

sponges, starting with two Whatman papers followed by the membrane, the gel and two 

Whatman papers on top. After removing air bubbles between the layers, the stack was placed 

into the blotting chamber with the gel at the side of the cathode and the membrane towards the 

anode. Transfer was performed at 4 °C for 2 h by applying a constant voltage of 110 V for 

90 min. In order to verify transfer performance and equal protein loading among the samples, 

the membrane was reversibly stained with the protein binding Ponceau S-staining solution for 

20 min and subsequent removal of background staining by three washes with Ponceau 

destaining solution. The membrane was imaged and, if necessary, cut at distinct molecular 

weights for the parallel detection of differently sized proteins. Ponceau S staining, which 

would interfere with antibody detection, was removed by several washes with PBS. All 

subsequent incubations were performed on a lab shaker.  
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For qualitative protein analysis or the detection of weak antibody signals, 

chemiluminescence detection was used. The membrane was blocked with 5 % (w/v) milk in 

PBS for 1 h, to prevent unspecific antibody-binding. Primary antibody solution was applied 

for 2 h at RT or overnight at 4 °C. After four times wash for 5 min with PBS-T, horseradish 

peroxidase (HRP)-conjugated secondary antibodies were applied in blocking buffer for 1 h. 

The membrane was rinsed two times for 5 min with PBS-T and another two times with PBS. 

An enhanced chemiluminescent substrate (Amersham ECL; GE Healthcare, RPN223) for 

detection of the secondary antibody-coupled HRP was used. This solution contains luminol 

and becomes oxidized and therefore chemiluminescent by HRP-mediated catalysis. The 

chemiluminescence reaction was detected with the Bio-Rad ChemiDoc™-System and 

recorded with Image Lab software (Bio-Rad).  

For the quantitative analysis of protein levels, IRDye-conjugated secondary antibodies 

were used. To not interfere with the fluorescence detection, the commercial Odyssey blocking 

buffer from LI-COR was used instead of milk, undiluted for blocking or 1:1 diluted in PBS-T 

as a secondary antibody solution. Fluorescent signals were detected with the LI-COR 

Odyssey® Fc Imaging system and recorded and evaluated with Image Studio Lite software 

(LI-COR). 

 

2.2.3.6 Affinity purification using nucleotide-loaded GST-recombinant Rab proteins 

2.2.3.6.1 Recombinant protein expression in bacteria 

For the expression of recombinant GST-fusion proteins, based on the T7-

expressionsystem (Studier und Moffatt, 1986) in E. coli BL21(DE3), 50 mL LB-medium with 

100 µg/mL ampicillin was inoculated with glycerol stocks of the corresponding pGEX4-T 

constructs and cultivated overnight as described above. The next morning, 500 mL 2x yeast 

extract tryptone (2x YT) medium with 100 µg/mL ampicillin were inoculated with 10 % of 

the pre-culture. The bacteria suspension was grown at 37 °C in a bacteria flask shaker for 

around 1 h to 1.5 h until a density of OD600 of 0.5 to 0.7 was reached. Recombinant protein 

expression was then induced by applying 500 µM Isopropyl-β-D-thiogalactopyranosid (IPTG) 

for 3 h at 30 °C.  

For the less soluble GST-Rab fusion proteins, E. coli Rosetta (DE3) strains with 

additional eukaryotic tRNA-codons rarely used in E. coli (Tegel et al., 2010) were used. This 

strain expresses an additional antibiotic resistance gene and was therefore cultivated in the 

presence of 68 µg/mL chloramphenicol in addition to ampicillin. For protein expression, 100 

µM IPTG in combination with a low temperature incubation of 20 °C were used. These 
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slow-expressing conditions were chosen to avoid the accumulation of instable or denaturated 

protein within inclusion bodies. To still achieve a sufficient amount of stable proteins in the 

bacterial cytoplasm, the incubation duration was prolonged to 20 h.  

The bacteria were then pelleted via centrifugation at 4,000 x g for 15 min at 4 °C and 

resuspended in volume of 5 mL to 20 mL ice-cold PBS, depending on the expected yield. 

Dissolved pellets were stored at -20 °C as 5 mL aliquots for one-shot thawing prior to use. 

 

2.2.3.6.2 Nucleotide-free affinity purification of recombinant GST-fusion Rab proteins from 

bacterial lysates 

For nucleotide-mediated affinity purification assays, GST-coupled Rab proteins were 

extracted nucleotide-free from bacterial lysates by the presence of EDTA during cell lysis. 

This chelator complexes Mg2+, the essential co-factor of nucleotide-binding to GTPases, and 

thus, increases the off rate of already bound nucleotides on the one hand, while inhibiting de 

novo binding of GTP on the other (Burstein and Macara, 1992). Nucleotide-free Rab proteins 

were purified using a glutathione-sepharose assay, in which the tripeptide Glutathione 

(Glutamine-Cysteine-Glycine) is immobilized by its sulfhydryl group to cross-linked beaded 

agarose. This sepharose serves as a specific substrate for the glutathione S-transferase (GST). 

Thus GST-fusion proteins are specifically captured by this enzyme-substrate binding reaction. 

For the purification of around 1 mg recombinant protein, one aliquot of bacterial pellet 

was thawed on ice and filled up to a volume of 25 mL with PBS, freshly supplemented with 2 

mM EDTA, 50 U CyanaseTM Nuklease (Serva, 18542), 0.5 mg/mL Lysozyme (Roth, 8259), 1 

mM PMSF and one tablet per 50 mL of EDTA-free Protease Inhibitor Cocktail (Sigma, 

11873580001). In order to increase the stability of the recombinant Rab-proteins, 150 mM 

NaCl was added. The samples were incubated for 15 min at 4 °C on a tube rotator (VWR), 

followed by sonification in order to break the cell wall. Sonification was performed in two 

cycles of each 2 min with 30 % power every 2nd minute (Branson digital sonifier 450). For 

perforation of the cell membrane, 1 % (v/v) TritonX-100 was added and the lysates were 

incubated for another 15 min rotating at 4 °C. The lysates were cleared from cell debris by 

centrifugation in a SS-34 rotor (Sorvall) at 35,000 x g and 4 °C for 15 min. Glutathione-

sepharose beads were equilibrated by adding 10 mL ice-cold PBS to 300 µL of a 50 % (w/v) 

GST-bind resin slurry (Millipore, 70541). The beads were pelleted at 3,000 x g for 3 min at 

4 °C, PBS was aspirated, and the lysate supernatant was applied. GST-fusion proteins were 

coupled to the beads by an incubation for 2 hr at 4 °C on a tube rotator. The beads were 

washed three times with ice-cold PBS as described above, and stored under phosphate-free 
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conditions in 500 µL of 20 mM HEPES pH 7.5 with 5 mM EDTA at 4°C until usage for 15 h 

maximum.  

The protein concentration of the bead-suspension was estimated from a 1:10 dilution 

using the Bradford assay. As this method is often inaccurate for proteins immobilized on 

agarose beads, the samples were additionally analyzed by SDS-PAGE and subsequent 

Coomassie-staining. Therefor volumes with estimated protein concentrations of 2, 4 and 8 µg 

were loaded. The integrated density of each GST-fusion protein was determined by 

Coomassie-staining using the Image Lab software (Bio-Rad). The calculated protein 

concentration was then adjusted according to the GST-control in order to use equal amounts 

of recombinant proteins in the subsequent affinity purification assay. 

 

2.2.3.6.3 Affinity purification using nucleotide-loaded GST-fusion proteins 

For GST-mediated pulldown assays, each 100 µg of bead-coupled GST-fusion 

proteins was first washed three times in ice-cold 500 µL lysis buffer, supplemented with 

5 mM EDTA and without MgCl2. Therefor the beads were pelleted at 3,000 x g for 2 min at 

4 °C, the washing solution was aspirated, and fresh buffer was applied. Immobilized GST-

Rab proteins were then loaded with either 1 mM GTPyS (Sigma, G8634), a non-hydrolyzable 

GTP-analogue, or GDP (Sigma, G7127) in 50 µL lysis buffer (without MgCl2) for 15 min at 

30 °C with slight agitation on a Thermomixer 5437 (Eppendorf). GST-control beads were 

instead incubated with 5 mM EDTA as a control. Afterwards, MgCl2 was added to a final 

concentration of 10 mM, in order to activate and strengthen the nucleotide binding. After 

incubation of 10 min at 4 °C lysate inputs were applied.  

HEK cells were harvested as described (2.2.3.1), 24 h post-transfection with calcium 

phosphate. Cleared and concentration-adjusted lysate inputs, supplemented with fresh PMSF, 

were distributed each on GTP-loaded-Rab, GDP-loaded-Rab- and pure GST-coupled beads. 

GTPyS or GDP were added to a final concentration of 1 mM. GST-control beads were 

supplied with 5 mM EDTA. Around 5 % of the total protein amount of each sample served as 

the input reference and was kept separately on ice during the assay. For affinity purification, 

the lysate inputs were incubated with immobilized GST-fusion proteins for 90 min on a tube 

rotator at 4 °C. The beads were pelleted and, after discarding the supernatant, washed three 

times by rotation for 10 min. Therefor lysis buffer with reduced concentrations of 50 mM KCl 

and 0.5 (v/v) % TritonX-100 was used, in order to remove unspecifically bound proteins. A 

final wash was performed without detergent. In order to avoid the disengagement of bound 

nucleotides, the washing buffers were additionally supplemented with either 0.1 mM GTPyS 
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or GDP to achieve an excess of free nucleotides in the solutions. After complete removal of 

buffer using a Hamilton pipette, the proteins were eluted in 30 µL of 1x SDS-sample buffer at 

95 °C for 5 min. The beads were then pelleted by centrifugation at 17,000 x g, and the 

protein-containing supernatant was analyzed by SDS-PAGE and immunoblotting.  

 

2.2.3.7 Affinity purification using magnetic agarose beads 

For (co-)immunoprecipitation of eGFP-fusion proteins, GFP-Trap®_MA beads 

(Chromotek, gtma) were used. These types of magnetic agarose beads are coupled to a single 

variable domain (VHH), which binds GFP with a high affinity. The domains are known as 

nanobodies and derived from Alpaca single heavy chain antibodies. A magnetic rack is used 

for sedimentation of the beads. 

Lysates were prepared from eGFP-Rab35endo KI HeLa cell as described (2.2.3.1), 24 h 

post-transfection with calcium phosphate, and applied to 20 µL of lysis buffer-equilibrated 

GFP-Trap® MA beads. The protein concentration of the lysate input has been again adjusted 

to around 5 µg/µL and a small sample volume was kept separately as the input reference. The 

lysates were incubated with the beads for 90 min rotating at 4 °C before the supernatant was 

discarded. Beads were then washed three times with lysis buffer with 50 mM KCl and 0.5 % 

TritonX-100, and once without detergent. Proteins were eluted from the beads in 30 µL 1x 

SDS-sample buffer at 95 °C for 5 min. The beads were finally sedimented by centrifugation at 

17,000 x g for 5 min and the supernatant was analyzed by SDS-PAGE and immunoblotting.  

 

2.2.3.8 Proximity-dependent biotin identification (BioID) 

2.2.3.8.1 BioID in HEK cells 

In order to identify potential interaction partners of a protein of interest (POI), 

proximity-dependent biotin identification (BioID) was performed according to Roux et. al. 

(2012). This assay is based on the prokaryotic biotin protein ligase BirA from E. coli, which 

biotinylates specific substrate peptides. The enzyme first combines biotin and ATP to form 

biotinoyl-5’-AMP (bioAMP), which is then added to a specific lysine residue within the 

biotin acceptor tag, a minimal recognition sequence of the substrate. For the BioID assay, a 

promiscuous form of BirA, BirA*, with a low affinity to bioAMP is used. It releases the 

generated bioAMP into the cell environment. Free bioAMP will readily react with primary 

amines and thereby unspecifically biotinylates proteins within the proximity of BirA*. In this 

assay, a POI is fused C-terminally to BirA* and introduced into mammalian cells, which are 

supplemented with biotin-containing culturing medium. Subsequently, proteins within the 
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proximity of the expressed BirA*-POI chimera get biotinylated. These proteins can be 

captured from lysates using immobilized streptavidin, a biotin binding protein with a high 

affinity (Kd= 10 – 15 mM). As a control for POI-independent biotinylation, lysates from cells 

that express the construct encoding for BirA* only are used. Overexpression of BirA* on its 

own results in a random biotinylation, especially of proteins involved in the process of 

translation or other biosynthetic pathways, which can be thus excluded as POI-relevant. 

In brief, 6 cm dishes of HEK cells were transfected using JetPrime with a construct 

containing either mycBirA*-POI (Rab35) or myc-BirA* alone. The medium was exchanged 

after 4 h for fresh mCCM, supplemented with 50 µM biotin (Sigma, B4639). 24 h post-

transfection, lysate inputs were prepared as described. Streptavidin-coupled agarose beads 

(Millipore, 69203) were equilibrated by washing 200 µL bead-slurry (50 % (w/v)) with 500 

µL lysis buffer for three times. Cell lysate, adjusted to a protein concentration of 3 to 4 µg 

protein/µL, was applied in a volume of 250 µL and affinity binding was performed at 4 °C 

overnight on a rotating shaker.  

The next morning, the beads were collected and extensively washed in six consecutive 

rounds for each 8 min rotating at RT. Four different denaturating washing buffers were used 

to remove unspecifically bound proteins thoroughly, without impairing the high affinity 

streptavidin-biotin interaction. A SDS-containing buffer (BioID- wash buffer 1) was applied 

first for two times, followed by a high-salt buffer (BioID- wash buffer 2) and a lithium 

chloride buffer (BioID- wash buffer 3), supplemented with the detergents TritonX-100 and 

NP-40, respectively. The physiological BioID- wash buffer 4 was applied twice in order to 

remove detergents and lithium chloride remnants, before the specifically bound protein 

fraction was eluted by incubation in 60 µL 1x SDS-sample buffer at 95 °C for 5 min. The 

sample buffer has been supplemented with an excess of biotin (30 mM), to facilitate the 

release of biotinylated proteins by the free biotin competing for the streptavidin binding sites.  

After pelleting the beads at 17,000 x g for 5 min, the supernatant was collected and 

50 % of the volume was loaded on a 4-15 % gradient Mini-PROTEAN® TGX™ Precast 

Protein Gel (Bio-Rad, #4561086) for SDS-PAGE. The gels were then either processed for 

immunoblot detection of proteins, or for Coomassie staining and further protein analysis by 

mass spectrometry.  

 

2.2.3.8.2 Label-free quantification of BioID samples by mass spectrometry (LC-MS/MS)  

Mass spectrometry was performed by Heike Stephanowitz from the Eberhard Krause 

laboratory, the mass spectrometry facility at Leibniz Research Institute for Molecular 
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Pharmacology (FMP, Berlin). For liquid chromatography (LC)–mass spectrometry (MS)/MS 

analysis, Coomassie-stained lanes of label free BioID samples (BirA*Rab35 vs. BirA*) were 

cut into each 15 gel pieces per sample and digested in-gel by trypsinization, essentially as 

described (Lange et al., 2010). Peptides were analyzed by a reversed-phase capillary liquid 

chromatography system (Ultimate 3000 nanoLC system, Thermo Fisher) connected to an 

Orbitrap Elite mass spectrometer (Thermo Fisher). Identification and quantification of 

proteins were performed using MaxQuant (version 1.5.2.8) software, searched against the 

HUMANswiss database (april, 2014) and summarized with the software Scaffold (Proteome 

Software). The mass tolerance of precursor and sequence ions was set to 10 ppm and 0.35 Da, 

respectively.  Methionine oxidation and the acrylamide modification of cysteines were used as 

variable modifications. Proteins with at least two detected peptide sequences (razor unique 

peptides) with a minimum length of 7 amino acids were counted as biotinylated and 

specifically bound. False discovery rates were estimated to be less than 1%, based on matches 

to reversed sequences in the concatenated target-decoy database. Enrichment of proteins in 

the Rab35-BioID sample was calculated as follows: The label free quantification (LFQ)-

intensity for each protein (defined by the number and abundance of detected peptides) was 

compared between the Rab35-BioID- and the control BioID-sample (BirA*). Proteins were 

considered as enriched, if the LFQ-intensity ratio of Rab35-BioID/BioID was greater than 5, 

or if exclusively detected in the Rab35-BioID sample.  

 

 

2.2.4 Schwann cell-specific Rab35 ablation 

All work was performed by Prof. Dr. A. Bolino and her team (F. Grandi, M. 

Mignanelli and R. Di Guardio) from the INSPE in Milan, Italy. 

 

2.2.4.1 In vivo analysis of Schwann cell-specific Rab35 knockout (cKOSC) mice 

Rab35 cKOSC with conditional ablation of Rab35 in Schwann cells (Rab35Fl/Fl x P0-

Cre) were always compared with phenotypically normal control mice (Rab35Fl/Fl or 

Rab35Fl/+). Semithin section and ultrastructural analyses of sciatic nerves were performed as 

described previously (Wrabetz et al., 2000). Morphometric analysis was performed on 

digitalized images of cross sections obtained from sciatic nerves with a 100x objective and a 

Leica DFC300F digital camera (Milan, Italy). At least five images per animal were analyzed 

using the Leica QWin software (Leica Microsystem) to calculate the g-ratio (axon diameter 

over fiber (myelin + axon) diameter), while aberrant-myelinated fibers (tomacula, 
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outfoldings, degenerations) were excluded. To estimate the percentage of myelinated fibers 

that carried alterations, the entire nerve section was reconstructed, and the total number of 

myelinated fibers was assessed. For morphometric analysis on ultrastructural sections, 20-40 

images per animal were taken using TALOS L120C transmission electron microscope 

(Thermo Fisher) at 120 kV and a 3,400x objective (for P20). 

Sciatic nerve lysates were prepared for immunoblot analysis using a lysis buffer 

containing 2% (w/v) SDS, 50 mM TRIS buffer pH 8.0, 150 mM NaCl, 10 mM NaF, 1 mM 

NaVO3, complete protease and phosphatase inhibitors (Roche). Protein quantification was 

performed using a BCA assay (Pierce, Thermo Fisher). Rapamycin (LC Laboratories) was 

dissolved in Ethanol and administered once daily by intraperitoneal injection 5 days a week at 

a final concentration of 10 mg/kg in a vehicle solution containing 5% (w/v) Polyethylene 

glycol 400 (PEG 400), 5% (v/v) TWEEN-80 and 0.9% (w/v) NaCl as reported (Goebbels et 

al., 2012). 

 

2.2.4.2 Ex vivo analysis of Schwann cell-specific Rab35 knockout (cKOSC) mice 

Myelin-forming Schwann cell (SC)/DRG neuron co-culture explants were established 

from E13.5 mouse embryos (Taveggia and Bolino, 2018). Organotypic explants were kept in 

Neurobasal (NB) medium supplemented with 50 ng/mL NGF-2.5S and B27 for 8-9 days prior 

to induce myelination in C-media supplemented with 50 µg/mL ascorbic acid for additional 

15 days (Sigma). For immunohistochemistry, co-culture explants were fixed for 15 min in 4 

% (w/v) paraformaldehyde, permeabilized for 5 min in ice-cold methanol at -20°C, and then 

blocked for 20 min with 10 % (v/v) NGS and 1% (w/v) BSA. Anti-MBP primary antibody 

was applied for 1 hour at room temperature in 1x PBS and Anti-NF-M antibody overnight in 

5 % (w/v) BSA, 1 % (v/v) NGS and 0.6% (v/v) TritonX-100 in 1x PBS at 4 °C. Coverslips 

were washed and incubated for 30 min with secondary antibodies prior to another wash and 

mounting. A fluorescence microscope was used to quantify the number of MBP-positive 

myelinated segments in at least 5-10 random fields per coverslip. The mean of each coverslip 

was used as "n" for statistical analysis. To quantify the myelinated fibers that carried 

abnormalities, at least 300 MBP-positive myelinated fibers were evaluated, from "n" different 

SC/DRG explant coverslips using a TCS SP5 laser-scanning confocal microscope (Leica).  
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2.2.5 Statistical analysis  

All data are represented as mean ± standard deviation (SD) for n = 2 independent 

experiments or mean ± standard error of the mean (SEM) for n > 2 independent experiments 

and are normalized where indicated. In in vivo experiments the number of animals is given. 

GraphPad Prism 5 and ‘R‘ software were used to perform statistical analysis. If not otherwise 

indicated, normalized data were analyzed using a one-sample two-tailed student’s t-tests, with 

prior testing of a Gaussian distribution using the Kolmogorov-Smirnov (KS) test (Smirnov, 

1944). For data sets from more than two different genotypes, depicted p-values were corrected 

for multiple testing using Holm’s multiple comparison test (Holm, 1979). Level of 

significances are depicted in each graph: *p < 0.05, **p < 0.01, ***p < 0.001, ****p<0.0001. 

Exact p-values are provided in the respective figure legends for p > 0.05.  
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3. Results 

Myelination, the glial membrane ensheathment of axons, not only facilitates axonal 

conductance by electrical insulation but is also important for maintaining axonal integrity and 

providing trophic support for neurons (Fünfschilling et al., 2012; Nave and Werner, 2014). In 

consequence, pathological conditions in which myelin homeostasis is impaired often lead to 

severe axonal degeneration (Bjartmar et al., 1999; Reilly et al., 2011). Myelin homeostasis is 

tightly regulated by a cohort of extrinsic and intrinsic factors and proteins. So far, at least 80 

different mutated genes have been identified to cause the heterogeneous, most commonly 

inherited peripheral neuropathy group of CMT diseases (Rossor et al., 2013; Saporta et al., 

2014; Pareyson et al., 2017). Among these, proteins that have been primarily associated with 

demyelination are essential myelin components, but also regulators of endomembrane 

trafficking or cell signaling pathways, such as phosphatidylinositides (PI) –catalyzing 

or -binding proteins (Suter, 2007; Rossor et al., 2013). Interestingly, the Ras-related GTPase 

Rab35 has been recently linked to myelin formation by oligodendrocytes. Rab35 is reported to 

negatively regulate oligodendrocyte differentiation and myelination via an ACAP2-ARF6 

dependent, but otherwise still elusive mechanism (Miyamoto et al., 2014). On the other hand, 

Rab35 and its GAPs TBC1D10A-C were observed to mediate secretion of myelin proteins from 

late endosomal MVBs (Hsu et al., 2010). However, effector proteins downstream of Rab35 and 

the consequence of Rab35 depletion on myelin formation were not further investigated in that 

context. In this study, we aimed to unravel the function of Rab35 in myelin regulation, using a 

novel mouse model that allows for acute depletion of protein levels. 

 

3.1 Rab35 represses myelin formation and interacts with CMT-associated 

MTMR-complexes 

3.1.1 Generation of tamoxifen-inducible conditional Rab35 knockout mice 

In order to elucidate the role of Rab35 in myelin regulation, we aimed to acutely deplete 

its protein levels using a knockout (KO) approach. We took advantage from a “floxed” Rab35 

(Rab35Fl/Fl) mouse, generated and kindly provided by Prof. Dr. Arnaud Echard (Institut Pasteur, 

Paris, France), Dr. Genaro Patiño López (formerly: NIH, Bethesda, USA) and Prof. Dr. Stephen 

Shaw (formerly: NIH, Bethesda, USA). In these mice, Rab35 exons number 2 and 3 are flanked 

by loxP insertions, specific recognition and targeting sites of Cre-recombinases. Cre-mediated 

recombination in these mouse cells results in the deletion of the 2nd and 3rd Rab35 exon from 

the genome, and finally in an early termination of Rab35 gene transcription. Ubiquitous 

knockout of Rab35 in vivo, by breeding Rab35Fl/Fl mice with a Cre recombinase under the 
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control of a ß-actin promoter, results in early embryonic lethality of mice (unpublished, with 

courtesy of Dr. Genaro Patiño López). Therefore, we generated tamoxifen-inducible 

conditional Rab35 knockout (icKO) mice by crossing Rab35Fl/Fl mice with the transgenic Cre-

ERTM -mouse line (Danielian et al.1998; Hayashi and McMahon, 2002). These mice encode for 

a chimera of the Cre recombinase and a mutant, tamoxifen-responsive form of the estrogen 

receptor ligand-binding domain (LBD-ERTM), ubiquitously expressed under the control of a 

CAG-promoter (Fig. 3-1a). Upon tamoxifen binding, the cytoplasmically sequestered Cre-

LBD-ERTM (CreER) is released from the chaperone protein Hsp90, translocates to the nucleus 

and introduces the gene knockout (Fig. 3-1b). Primary cell cultures were prepared from 

Rab35Fl/Fl or Rab35Fl/Fl x CAG-CreER littermates, cultured in the presence of tamoxifen and 

referred to as wild type (WT) or icKO cultures, respectively. Sufficient Rab35 depletion, for 

instance in primary astrocytic cultures, was achieved by constant tamoxifen application (0.4 

µM) starting at DIV1 (Fig. 3-1d).  

Figure 3-1: Generation of conditional Rab35 knockout mice for tamoxifen-inducible Rab35 depletion 

in vitro. (a) Tamoxifen-inducible conditional Rab35 knockout (icKO) mice were generated by crossing 

Rab35Fl/Fl mice with CAG-CreER mice, which express Cre-ERTM (CreER) recombinase under CAG promoter 

control. Littermates from backcrossed F2-generation were used to prepare primary cultures of Rab35 wildtype 

(WT) and inducible conditional knockout (icKO) cells from Rab35Fl/Fl and Rab35Fl/Fl x CAG-CreER mice, 

respectively. Both cultures were supplemented with tamoxifen. CRE+LBD-ER – Chimera of CRE and the 

ligand-binding domain of estrogen receptor. (b) Tamoxifen application induces Rab35 depletion in Rab35 

icKO cultures only. Cytoplasmically sequestered CreER can translocate to the nucleus upon tamoxifen 

binding to its LBD-ER. Cre-mediated recombination results in an early transcriptional termination of Rab35. 

(c) PCR-amplification products from mouse biopsy DNA to reveal the genotypes for further breeding and 

primary cell culture preparation. From the left: Amplified DNA-fragment from Rab35 without (-) or with (+) 

inserted loxP-sites, and from CreER-locus in Cre-positive animals. (d) Primary cultures of astrocytes were 
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supplemented with tamoxifen from DIV1 on, and lysed at DIV7, 10, 14 and 20. Acute depletion of Rab35 at 

DIV14 and DIV20 was confirmed by immunoblotting. ß-tubulin served as a loading control. 

 

3.1.2 Rab35 depletion does not impair synaptic vesicle recycling in neuronal cultures 

Rab35 is reported to direct SVs to an endosomal recycling route upon endocytosis in 

NMJs of D. melanogaster, which promotes the formation of endosomal-like compartments in 

presynapses and eventually increases neurotransmitter release (Uytterhoeven et al., 2011). We 

investigated the synaptic vesicle recycling in primary cultures of hippocampal neurons from 

Rab35 icKO mice in order to unveil a function of the small GTPase in presynapses of 

mammalian cells. We analyzed the presynaptic steady-state surface and total levels of two SV 

proteins, synaptotagmin1 (Syt1) and synaptophysin (Syph), by immunocytochemistry (Fig. 

S1a-e), and the endocytic retrieval of Syt1-pHluorin upon neuronal activity (Fig. S1f-h). 

However, we did not detect any alterations in neuronal cultures depleted of Rab35. In addition, 

we analyzed the abundance of endocytic compartments in presynapses after neuronal 

stimulation by ultrastructural analysis, performed by Dr. Dmytro Puchkov (FMP Berlin), for a 

potential increase in the formation of endosomes (Fig. S1i,j). However, neither the number of 

SVs nor of endosomal-like vesicles (ELVs) was different in the absence of Rab35. These data 

indicate, that Rab35 is not essential for proper SV recycling in mammalian neuronal cultures.  

 

3.1.3 Characterization of Rab35 icKO oligodendrocytic cultures 

Rab35 has been reported to promote the secretion of myelin proteins on the one hand 

but to repress OL differentiation and myelination on the other (Miyamoto et al., 2014). We 

made use of primary Rab35 icKO oligodendrocytic mono-cultures in order to investigate in 

vitro myelination upon acute Rab35 depletion by gene knockout. Mono-cultures of 

oligodendrocytes are described to form in vitro ‘myelin sheets’ that resemble in vivo sheaths in 

their molecular composition, even in the absence of neuronal co-culturing (Aggarwal et al., 

2011). 

Cultures of myelinating oligodendrocytes were obtained by the differentiation of 

oligodendrocytic precursor cells (OPCs), isolated from Rab35 icKO and WT mice by 

immunopanning. OPC cultures were supplemented with tamoxifen for knockout induction and 

first kept under proliferating conditions by the presence of mitogens. Rab35-depleted 

NG2-positive OPCs displayed an increased cell size (Fig. 3-2d,e). In addition, a strongly 

reduced cell number was observed in Rab35 icKO cultures. In order to dissect if the latter was 

resulting from either reduced proliferation or increased cell death, we supplemented the cultures 

for 36 h with BrdU. As an analogue of the nucleoside thymidine, BrdU is incorporated into 
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replicating DNA and can be visualized by immunolabelling. In Rab35 icKO cultures only 38 % 

of cells were positively stained for BrdU whereas a cell fraction of 85 % was actively 

proliferating in WT cultures in the considered time window (Fig. 3-2a,b). Moreover, 65 % of 

cells depleted of Rab35 showed positive signals for cleavage-activated Caspase-3, a major 

apoptotic effector protease that serves as an indicator for apoptotic cell death activation (Kaiser 

et al., 2008). In Rab35 WT cultures 15 % of the cells were apoptotic only (Fig. 3-2a,c). All cells 

in these cultures were either labeled for BrdU or Caspase-3, or both. Considering the 

overlapping fraction of BrdU- and Caspase-3- positive cells with none or only 3 % in Rab35 

WT and icKO cultures, respectively, could suggest that impaired proliferation in Rab35-

depleted OPCs might underlie the increased apoptotic induction. On the other hand, a direct 

involvement of Rab35 in the suppression of apoptosis or apoptotic degradation was recently 

reported (Wheeler et al., 2015; Haley et al., 2018).  

Figure 3-2: Primary Rab35 icKO OPCs display less proliferation, more apoptotic induction and an 

increased cell area. (a-c) Immunostainings of oligodendrocytic precursor cells (OPCs) from Rab35 icKO 

and WT mice, cultured in the presence of tamoxifen and mitogens. Proliferating OPCs, supplemented with 

BrdU for 36 h, and subsequently immunostained for BrdU (magenta) and cleavage-activated Caspase-3 

(green). Rab35 icKO OPC cultures display less proliferation and more apoptotic induction than Rab35 WT 

cells; (n = 3 independent experiments). (a) Representative confocal images. Phalloidin (red) and DAPI (blue) 

labelled the total cell fraction; Scale bars, 30 µm. (b,c) Calculated cell fractions positively labelled for (b) 

BrdU or (c) Caspase-3; (mean ± SEM; two-tailed paired student’s t-test; *p < 0.05). (d-g) Rab35 icKO cells 

have an increased cell area. (d) Proliferating OPCs, immunolabelled for the OPC marker NG2 (green) and 

Phalloidin-AlexaFluor568 (red). Scale bars, 30 µm (e) The NG2-masked cell area is threefold increased in 

Rab35 icKO OPCs compared to WT cells (100 %); (n = 3 independent experiments; p = 0.1). (f) Primary 

oligodendrocytes (OLs), differentiated in culture, and immunolabelled for OPC marker NG2 (green) and 

oligodendrocytic marker CNPase (red); Scale bars: 30 µm. (g) The CNP-masked somata of Rab35 icKO OLs 
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are larger than of WT cells (100 %); (mean ± SEM; n = 3 independent experiments; one sample two-tailed 

student’s t-test with a theoretical mean of 100; **p < 0.01). 

 

 

Since we aimed to investigate cultures with a sufficient number of myelinating 

oligodendrocytes, we induced differentiation of primary OPCs already at DIV1 in parallel to 

knockout induction, to circumvent proliferating and hence, survival defects upon Rab35 

depletion. At DIV8, differentiated oligodendrocytes (OLs) could be identified in both cultures 

by loss of NG2- and gain of CNPase expression. Similar to OPCs, Rab35 icKO OLs were 

marked by an increased cell soma area (Fig. 3-2f,g). To investigate the in vitro myelin sheet 

formation, OL cultures were immunolabelled for the myelin compaction protein MBP. 

Strikingly, Rab35 icKO cultures displayed an increased MBP-positive area per cell compared 

to WT oligodendrocytes (Fig 3-3 a,b). In addition, mean fluorescence intensities of the myelin 

compaction protein, PLP, and two proteins associated with non-compacted myelin, MAG and 

CNPase, were significantly increased upon Rab35 depletion (Fig 3-3 c,d). Hence, by acute 

Rab35 depletion upon differentiation induction, we could confirm a negative regulatory 

function for the small GTPase in myelin sheet formation.  

 

 

 

 

Figure 3-3: Elevated in vitro myelination in Rab35 icKO oligodendrocytic cultures. Differentiated 

oligodendrocytes (OLs) immunostained for myelin proteins. (a, b) Rab35 icKO oligodendrocytic cultures 

produce an increased area of MBP-positive myelin sheets in vitro. (a) Representative confocal images with 

lower (left) and higher (right) magnification of primary OLs immunolabelled for myelin compaction protein 

MBP (green) and oligodendrocytic marker protein CNPase (magenta); Scale bars: 30 µm. (b) Quantification 

of the MBP-positive area normalized to the number of cells per image, and WT cultures (100 %) in n = 3 

independent experiments. (c, d) Increased fluorescence intensity of myelin marker proteins PLP, MAG and 

CNPase in OLs depleted of Rab35. (c) Confocal images of primary OLs immunolabelled for PLP (left) and 

MAG (right), shown in green; Scale bars: 30 µm. (d) Mean fluorescence intensities in Phalloidin-based cell 

masks and normalized to WT cultures (100 %); (mean ± SEM; n = 4 (PLP, MAG) or 3 (CNPase) independent 

experiments; one sample two-tailed student’s t-test with a theoretical mean of 100; *p < 0.05, **p < 0.01). 
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3.1.4 Active Rab35 interacts with MTMR pseudophosphatases  

Rab35 is implicated in the regulation of diverse cell physiological pathways. However, 

only a few effector proteins have been identified so far (Chaineau et al., 2013). The function of 

Rab35 in myelination is proposed to be either mediated by a still elusive mechanism involving 

ACAP2 and ARF6 (Miyamoto et al., 2014), or via exosome secretion with not yet identified 

effector proteins (Hsu et al., 2010). We asked if additional, so far unknown Rab35-interaction 

partners could reveal more insight into the mechanism of myelin-regulation by Rab35. For this 

purpose, we performed an unbiased proteomic screen using a BioID assay according to Roux 

and colleagues (2012). Rab35 was C-terminally fused to the mutant biotin protein ligase BirA*, 

which promiscuously biotinylates proteins in its close proximity, and was overexpressed in 

HEK cells. First, by immunoblot detection we analyzed the biotinylated protein fraction, 

captured by Streptavidin-mediated affinity purification from lysates of BirA*-Rab35-

expressing cells, and compared to BirA* or mock-transfected ones. This confirmed functional 

biotinylation by the Rab35 chimera, when cells were cultured in the presence of biotin for 24 h 

before lysis (Fig. 3-4a). Using mass spectrometry (LC-MS/MS), performed by the lab of Dr. 

Eberhard Krause (FMP, Berlin), we analyzed the biotinylated protein fractions from BirA*-

Rab35- (Rab35-BioID sample) compared to BirA*- expressing cells (BioID) by label-free 

quantification (LFQ) (Fig. 3-4b). Potential Rab35-interacting proteins were determined by 

dividing the LFQ-intensity of each protein in the Rab35-BioID fraction by its intensity in the 

BioID-fraction. We could identify 150 proteins enriched in the Rab35-BioID sample (Suppl. 

table S1, S2). Among those were two members from the same small protein family, which are 

both strongly associated with myelin homeostasis. MTMR5 and MTMR13, two 

pseudophosphatases from the myotubularin-related phosphatidylinositol (MTMR) phosphatase 

family, were 30-fold enriched or detected selectively in the Rab35-BioID sample, respectively 

(Fig. 3-4c). Interestingly, the fly homologue of both proteins, Sbf, has been detected in a 

previous study in the Rab35-affinity purified fraction from fly lysates (Gillingham et al., 2014). 

 Since missense mutations in either of these proteins result in the demyelinating 

peripheral neuropathy Charcot-Marie-Tooth disease type 4B in humans (Senderek et al., 2003; 

Nakhro et al., 2013), we hypothesized that Rab35 by interacting with these CMT-associated 

MTMR proteins might be involved in PNS myelin homeostasis as well. To investigate this 

hypothesis, we first further analyzed this potential interaction.  
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Figure 3-4: BioID-screen in HEK cells reveals novel interactors for Rab35. (a) mycBirA*Rab35 displays 

functional biotinylation in HEK cells. Streptavidin-mediated affinity capture and –HRP-immunoblot analysis 

reveals biotinylated proteins in lysates from BirA* or BirA*Rab35 but not mock-transfected cells, and upon 

biotin supplementation only. (b) Coomassie blue-stained SDS-PAGE gel of streptavidin-captured 

biotinylated protein fractions prior to analysis via mass spectrometry. (c) MTMR5 and MTMR13 are 

specifically associated with BirA*Rab35. The protein-specific ratio of label free quantification (LFQ)-

intensity detected in BirA*Rab35-, divided by the BirA*-sample, was used to express the enrichment of 

proteins in n = 2 independent experiments (mean ± SD). MTMR13 was detected in association with 

BirA*Rab35 only. All Rab35-enriched proteins are listed in table S1 and S2. 

 

MTMR13 and its closest relative MTMR5 are multi-domain proteins. Their N-terminal 

DENN domain is a typical motif for GEFs that promote GDP to GTP exchange of Rab proteins. 

Rab21 and Rab28 are already identified for being regulated by this MTMR-DENN domain 

(Yoshimura et al., 2010; Jean et al., 2012). In order to reveal if the pseudophosphatases function 

as GEFs for Rab35 as well, we performed affinity purification with recombinantly expressed 

GST-Rab35, either activated or inactivated by loading with GTPyS or GDP, respectively. Due 

to a lack of an antibody for endogeneous detection, we used lysates from HEK cells that 

overexpressed FLAG-MTMR13 as a bait. First, we could confirm the association of MTMR13 

with Rab35. Interestingly, the relative amount of bound MTMR13 was five-fold higher in 

Rab35^GTPyS than in ^GDP (Fig. 3-5a,b). As GEFs bind Rabs in their GDP-bound form, this 

finding excluded the possibility of MTMR13 to function as a GEF for Rab35, in line with the 

interaction of their fly homologue proteins (Gillingham et al., 2014). In addition, we made use 
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of a Rab35 deletion mutant that lacks 20 amino acids at the C-terminus and is presumed to form 

more stable complexes with GEF proteins in vitro (Wu et al., 2011). In contrast, MTMR13 

bound to GST-Rab35(ΔC) with an even higher relative binding preference of more than ten 

times for GTPyS- over the GDP-loaded form (Fig. 3-5b). Despite of the observed lower overall 

binding affinity of MTMR13 to GST-Rab35(ΔC), we used the latter in all following assays to 

better discriminate nucleotide-dependent and hence, specific binding for other proteins as well. 

First, using different GST-chimera of other prominent intracellular trafficking Rab proteins 

side-by-side, we could confirm that binding of MTMR13 is specific to Rab35 only. Neither 

GST- Rab1A, -Rab5, -Rab7 nor -Rab11 could capture overexpressed MTMR13 (Fig. 3-5c,d).  

 

Next, we performed this assay including MTMR5 and a set of eGFP-fused active 

MTM(R) phosphatases. MTMR5 displayed a similar binding preference to 

GST-Rab35^GTPyS over ^GDP as observed for MTMR13, though with a lower enrichment 

considering the high expression levels (Fig. 3-6). However, neither MTM1, MTMR1 nor 

Figure 3-5: MTMR13 specifically interacts with active Rab35. (a, b) FLAG-MTMR13 was affinity 

captured from HEK cell lysates using GST-chimera of Rab35 and Rab35ΔC (-20 aa) loaded with GTPyS (T) 

or GDP (D). (a) Representative immunoblot of MTMR13-detection using a FLAG-antibody, and HSC70 as 

a negative binding control. Input: 5 % of total protein. (b) Bound MTMR13 fraction, normalized to 

GTPyS-loaded GST-Rab35, (mean ± SD) from n = 2 independent experiments. MTMR13 binds 

preferentially to GTPyS- over GDP-loaded Rab35 (GTPys/GDP: Rab35 - 5x, Rab35ΔC - 12x). (c, d) 

MTMR13 binds selectively to Rab35 but not Rab1A, Rab5, Rab7 or Rab11. Affinity chromatography as in 

(a,b) using different GST-Rab chimera as a prey. (c) Representative blotting membrane of affinity captured 

protein fractions, visualized by Poinceau-S staining, verifies comparable protein amounts of GST-Rab 

chimera. (d) Representative immunoblot from n = 6 independent experiments for MTMR13 detection. ß-actin 

served as negative binding control; 5 % Input; T – GTPyS, D – GDP. 
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MTMR2 could be eluted from any Rab35-bound fraction, indicating a specific interaction of 

Rab35 with the MTMR pseudophosphatases. 

 

In contrast to small GTPases which mainly interact with other proteins via their 

conserved globular G-domain (Milburn et al., 1990; Wittinghofer and Vetter, 2011), MTMR13 

and -R5 are large multi-domain proteins. Besides the N-terminal GEF domain they harbor two 

lipid-binding domains, PH-GRAM and PH, the inactive protein tyrosine phosphatase domain 

(iPTP) with unknown function, and a coiled-coil (CC) region for oligomerization (Fig. 3-7a) 

(Goryunov et al., 2008). In order to further dissect the nature of interaction between Rab35 and 

these closely homologous pseudophosphatases, we aimed to map the MTMR-domain which 

confers binding to Rab35. Due to the close domain homology of both pseudophospatases, we 

focused on MTMR13 which possessed the stronger binding affinity to Rab35 in our previous 

assays. We generated constructs encoding for mCherry-fused single domains of MTMR13, with 

the exception of the coiled coil region that was not soluble on its own, and therefore expressed 

in conjunction with the inactive PTP domain. The constructs were introduced into a 

TALEN-edited HeLa knock-in (KI) cell line which expresses endogeneous Rab35 with an N-

terminal eGFP-tag (eGFP-Rab35endo), generated in the lab of Arnaud Echard (Cauvin et al., 

2016). eGFP-Rab35endo protein was captured from lysates using GFP-nanotrap magnetic beads. 

Bound fractions were then analyzed for overexpressed MTMR13 full-length or single domains 

by immunoblotting for mCherry. Importantly, full-length MTMR13 also bound to the 

Figure 3-6: Rab35 interacts specifically with the pseudophosphatases MTMR13 and MTMR5. Affinity 

purification of lysates from HEK cells overexpressing eGFP- MTM1, MTMR1, MTMR2, MTMR5, or 

FLAG-MTMR13 using GST-Rab35^GTPyS (T) or ^GDP (D). (a) Representative Ponceau S stained blotting 

membrane shows comparable protein amounts of applied GST-Rab35^GTPyS, ^GDP and GST. (b) 

Representative immunoblots. MTM(R)-detection with antibodies against GFP- or FLAG-epitope. 

Overexpressed eGFP served as a negative control (ctrl); 5 % Input. (c) Bound protein fractions (depicted 

relative to the input) show specific binding of MTMR5 and MTMR13 to Rab35-GTPyS, but not MTM1, 

MTMR1 or MTMR2; (mean ± SEM from MTM1: n = 4, MTMR1:  n = 5,  MTMR2: n = 7, MTMR5:  n = 4, 

and MTMR13: n = 10 independent experiments; two-tailed paired student’s t-test; *p < 0.05, **p < 0.01). 
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endogeneously expressed Rab35 (Fig. 3-7b). From the single MTMR13-domains, the iPTP 

domain was detected in the Rab35-bound fraction only. Surprisingly, the conjunction peptide 

of iPTP and CC region could not be captured. This might result from sterical interference by 

the CC region in this construct. Nevertheless, selective binding to the inactive PTP domain 

provides a possible explanation for the observed pseudophosphatase-specific MTMR protein 

association of Rab35. 

 

3.1.5 Rab35 can recruit MTMR phosphatase complexes 

The GTP-loading state of Rab GTPases represents their active form. Accordingly, we 

could also observe MTMR13-binding to a constitutively active mutant Rab35Q67L (CA), upon 

co-overexpression and affinity purification using nanotrap beads against the epitope-tag of the 

latter (Fig. 3-8b). In their active state, Rab proteins can either interact with effector proteins 

downstream or with their regulatory Rab GTPase activating proteins (GAPs) upstream (Pfeffer 

and Aivazian, 2004; Blümer et al., 2013). However, Rab GAPs are usually characterized by 

TBC domains that mediate their binding to Rab proteins (Barr and Lambright, 2010). Our 

finding that Rab35 binds to the inactive PTP domain of MTMR13, and the fact that a TBC 

sequence has not been identified so far in MTMR5 or MTMR13 let us suggest a potentially 

upstream regulatory function of Rab35 in this interaction. In order to confirm this hypothesis, 

we aimed to dissect the influence of active Rab35 on the cellular localization pattern of 

MTMR13 by confocal microscopy. Localization studies of MTMRs are rare. MTMR13 and 

MTMR5 are mainly described as complex interaction partners for MTMR2 (Berger et al., 2003; 

Kim et al., 2003b; Robinson and Dixon, 2006), that is assigned to function at late endosomes 

(Cao et al., 2008). As Rab35 was recently identified on LAMP-positive late endosomal/ 

Figure 3-7: Rab35 binds to the inactive PTP domain of MTMR13. (a) Schematic presentation of the full-

length multi-domain protein MTMR13, adapted from Goryunov et al., (2008). (b) eGFP-Rab35endo knock in 

(KI) HeLa cells, expressing mCherry-tagged MTMR13 full-length (FL) or single domains, were lysed and 

subjected to affinity capture using GFP-nanotrap magnetic beads. Representative immunoblot shows binding 

of mCherry-MTMR13 FL and -PTP domain to affinity captured endogeneously expressed Rab35. (5 %) Input 

(I) and bound (B) protein fractions were analyzed using antibodies against GFP, RFP, or ß-actin as a control. 
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lysosomal membranes as well (Hsu et al., 2010; Wheeler et al., 2015), we made use of LAMP-1 

co-immunostaining to identify these compartments (Johansson et al., 2005; Schröder et al., 

2007). First, we analyzed the localization of endogeneously expressed Rab35 in 

eGFP-Rab35endo KI HeLa cells by probing the eGFP-epitope. We could observe signals at the 

plasma membrane and at perinuclear puncta that partially overlapped with LAMP-1 (Fig. 3-

8a). In addition, overexpression of the GTP-locked mutant Rab35CA in HeLa cells resulted in 

a similar localization pattern (Fig. 3-8c). Co-expression of Rab35 with MTMR13 did not alter 

the localization of the small GTPase, but interestingly the pseudophosphatase was translocated. 

Overexpression of FLAG-MTMR13 on its own resulted in a diffuse cytoplasmic localization 

pattern (Fig. 3-8d), consistent with earlier observations (Robinson and Dixon, 2006). In 

contrast, in the presence of Rab35CA we detected FLAG-positive fluorescent signals at the 

plasma membrane, and discrete perinuclear puncta (Fig. 3-8e) that partially co-localized with 

LAMP-1 (Fig. 3-8f). These data strongly suggest that Rab35 acts upstream in this interaction 

and can recruit MTMR13 to late endosomal/ lysosomal compartments. 

Complex formation between an active and an inactive MTMR phosphatase by 

heterodimerization is accompanied by changes in their localization, lipid specificity and 

phosphatase activity. This has led to the assumption that pseudophosphatase members of the 

MTMR family act as recruitment factors for their respective active partner and thereby mediate 

their specific function (Caldwell et al., 1991; Kim et al., 2003b; Mochizuki and Majerus, 2003; 

Berger et al., 2006b; Zou et al., 2009, 2012). MTMR5 and MTMR13 form both active 

complexes with MTMR2, which increases the phosphatase activity of the latter towards PI(3)P 

and PI(3,5)P2 in vitro (Kim et al., 2003b; Berger et al., 2006b). Moreover, missense or nonsense 

mutations in one of these pseudophosphatases largely phenocopy loss of function mutations of 

MTMR2 in humans (Azzedine et al., 2003; Senderek et al., 2003; Nakhro et al., 2013). In order 

to unveil if these complexes are still formed when MTMR5 or MTMR13 are bound to Rab35, 

we performed GST-Rab35-mediated affinity purification from HEK cells that co-express 

MTMR2 with MTMR13 or MTMR5. Indeed, in the presence of MTMR13 or MTMR5, but not 

their epitope-tags alone as a control, MTMR2 was detected in the bound fraction of 

Rab35^GTPyS (Fig. 3-9, 3-10). Next, we replaced the active phosphatase MTMR2 by its 

closest homologues MTMR1 and MTM1. Surprisingly, also MTMR1 specifically bound to 

Rab35^GTPyS upon co-expression with MTMR13, whereas MTM1 did not (Fig. 3-9c,d). Thus, 

MTMR1 is as an additional, so far unknown complex partner of MTMR13. In sum, these data 

reveal that Rab35 can bind and recruit MTMR pseudophosphatases and via these also active 

MTMR phosphatases. 
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Figure 3-8: Active Rab35 recruits MTMR13. (a) Immunostaining of eGFP-Rab35endo HeLa KI cells for 

GFP (green) and LAMP-1 (red) shows partial overlap; Scale bars: 30 µm (upper), 5 µm (lower). (b) 

MTMR13 binds to Rab35CA. Lysates from HeLa cells that co-expressed FLAG-MTMR13 and constitutively 

active eGFP-Rab35 (Rab35CA) were affinity purified using GFP-nanotrap magnetic beads. Representative 

immunoblot with (5 %) Input (I) and bound protein fractions (B) analyzed by immunoblotting using 

antibodies for the eGFP- and FLAG-epitope. (c-f) Confocal images of HeLa cells expressing constitutively 

active eGFP-Rab35 (Rab35CA) or FLAG-MTMR13, or both. Cells were immunostained for GFP, LAMP1 

and FLAG. Arrows mark examples of co-localizing puncta. White squares in upper panels are shown in 

inserts in lower panels; Scale bars: 30 µm (top), 5 µm (bottom). (c) eGFP-Rab35 (Rab35CA) (green) localizes 

to perinuclear LAMP1 overlapping (red)-positive puncta. (d) FLAG-MTMR13 is diffusively localized to the 

cytoplasm when co-expressed with mCherry as a control protein (red). (e, f) Co-localization of MTMR13 

(green) with (d) Rab35CA (red) at the plasma membrane (top-1) and in perinuclear puncta (bottom-2), that 

(f) contained LAMP-1 (red). 
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Figure 3-9: Active Rab35 interacts with MTMR1 and MTMR2 via MTMR13. Lysates from HEK cells 

co-expressing eGFP- MTM1, -MTMR1 or -MTMR2 with FLAG-MTMR13 or FLAG (as a control) were 

incubated with nucleotide-loaded GST-Rab35. The bound fraction was analyzed by immunoblotting with 

antibodies against GFP, FLAG, and ß-actin. (a) Representative immunoblot. 5 % Input; T – GTPyS, D – 

GDP. (b-d) Quantification of the bound protein fraction relative to the input (mean ± SEM) shows specific 

association for (b) MTMR2 (n = 3) and (c) MTMR1 (n = 4) to GTPyS-loaded Rab35 when co-expressed 

with FLAG-MTMR13, but not (d) MTM1 (n = 4 independent experiments).  

 

 

 

Figure 3-10: MTMR2 binds to active Rab35 via MTMR5 as well. eGFP- MTM1 or -MTMR2 were co-

expressed with mCherry-MTMR5 or mCherry (as a control) in HEK cells. Lysates were incubated with 

nucleotide-loaded GST-Rab35 and analyzed by immunoblotting with antibodies against GFP, RFP, and ß-

actin. (a) Representative immunoblot. 5 % Input; T – GTPyS, D – GDP. (b, c) Quantification of the bound 

protein fraction relative to the input (mean ± SEM) shows specific association of (b) MTMR2 (n = 3), but 

not (c) MTM1 (n = 4 independent experiments) to GTPyS-loaded Rab35, when co-expressed with mCherry-

MTMR5.  
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3.1.6 Loss of MTMR2 phenocopies Rab35 depletion in oligodendrocytic cultures 

So far, we could show a novel interaction between Rab35 and CMT-associated MTMR 

proteins that have been strongly associated with myelin homeostasis regulation in the PNS. 

Nevertheless, MTMR proteins including MTMR2, are ubiquitously expressed and also in CNS 

cells (Laporte et al., 1998; Berger et al., 2002; Bolino et al., 2002) (and see below). We were 

interested, if the observed increase in myelin protein expression in Rab35-depleted cells in vitro 

could result from an impaired recruitment of active MTMR complexes. To address this 

question, we made use of lentiviral transduction with shRNA to deplete the active phosphatase 

MTMR2 in differentiated oligodendrocytes in culture. Due to the lack of a functional antibody 

for immunocytochemistry, successful knockdown of mouse MTMR2 with this approach was 

confirmed in mouse embryonic fibroblast (MEF) cultures by immunoblotting (Fig. 3-11a). 

Indeed, shRNA-mediated knockdown of MTMR2 in WT oligodendrocytic cultures caused an 

increase of MAG and PLP-fluorescence intensities compared to WT cells transduced with non-

targeting (scrambled) shRNA. Moreover, for both proteins the increase in protein levels was 

comparable to the mean increase observed in Rab35 icKO cells transduced with control shRNA 

(Fig. 3-11b,c,d). MTMR2 knockdown in Rab35 icKO oligodendrocytes resulted in partially 

elevated protein levels compared to the single depletion of either Rab35 or MTMR2. These 

results might implicate that the involvement of Rab35 in oligodendrocytic myelination is 

mediated by active MTMR complexes. 

Figure 3-11: MTMR2 depletion phenocopies loss of Rab35 with increased in vitro myelination in 

oligodendrocytic cultures. (a) Transduction with shRNA depletes MTMR2 protein levels in mouse cells. 

Mouse embryonic fibroblast (MEF) cell cultures were transduced with non-targeting scrambled or 

MTMR2-targeting shRNA using a lentiviral system. Representative immunoblot of MEF lysates probed for 

MTMR2 and ß-actin as a loading control. (b-d) Oligodendrocytic (OL) cultures were transduced at DIV3 

with lentiviral non-targeting scrambled or MTMR2-targeting shRNA and fixed at DIV7. (b) Representative 

confocal images of immunolabelling for MAG (upper) and PLP (lower) (grey); Scale bars: 30 µm. (c,d) Mean 
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fluorescence intensities, normalized to WT + scr (100%), of (c) MAG and (d) PLP, are elevated upon 

shRNA-mediated knockdown of MTMR2 in Rab35 WT and icKO cells; (mean ± SEM; n = 4 independent 

experiments; one sample two-tailed student’s t-test for each genotype compared to control (Rab35 WT + scr) 

with a theoretical mean of 100, followed by p-value correction for multiple testing using Holm’s Multiple 

Comparison Test; *p < 0.05, **p < 0.01, PLP: WT + scr vs. WT + shMTMR2: p = 0.1013).  

 

 

3.2 Rab35 represses mTORC1 via MTMR-mediated lipid regulation, and controls 

PNS myelination in vivo and in vitro 

3.2.1 Focal hypermyelination upon loss of Rab35 in Schwann cells in vivo 

We could identify Rab35 as a potential regulator of active MTMR complexes and 

observed that depletion of MTMR2 mimics the effect of Rab35 loss on in vitro myelination of 

oligodendrocytes. However, distinct MTMR family proteins are strongly associated with the 

regulation of PNS myelination. Loss of function or missense mutations in either MTMR2, -R5 

or -R13 cause the peripheral demyelinating neuropathy CMT4B (Senderek et al., 2003; Bolino 

et al., 2004; Nakhro et al., 2013). Thus, we hypothesized that the small GTPase could regulate 

PNS myelination as well. Therefore, in collaboration with Prof. Dr. A. Bolino (INSPE, Milan, 

Italy), we generated a conditional Rab35 knockout mouse that is specifically depleted of Rab35 

in Schwann cells. The “floxed” Rab35 mice (Rab35Fl/Fl) were bred with a mouse line that 

expresses a Cre-recombinase under control of the myelin protein 0 (P0)-promoter (P0-Cre) as 

early as embryonic day E13.5 (Feltri et al., 1999) (Fig. 3-12a). Successful recombination in 

vivo was confirmed by a mean reduction in Rab35 protein levels of 75 % in sciatic nerve (SN) 

lysates of Rab35 cKOSC (Rab35Fl/Fl x P0-Cre) compared to Ctrl animals (Rab35Fl/Fl) (Fig. 3-

12b,c). As the detected residual protein amount of 25 % only, is presumably representing levels 

in SN axons and fibroblasts, Rab35 is comparably high abundant in Schwann cells. Importantly, 

Rab35 cKOSC sciatic nerves from mice of different postnatal days (P), investigated by semi-

thin section analysis, displayed striking myelin alterations in form of tomacula, outfoldings and 

myelin degeneration, that were not observed in Ctrl mice of any age. In contrast, in Rab35 

cKOSC nerves, these forms of abnormal myelin morphologies were observed already at P20, of 

progressive worsening with ageing, and resulted in a mean fraction of around 30 % altered 

myelinated fibers in 3 month old mice (Fig. 3-12d,e,f). The number of myelin layers wrapped 

around an axon per internode is tightly regulated and highly correlated to the axon diameter as 

expressed by a relatively constant g-ratio for healthy myelinated fibers between 0.6 and 0.7, 

slightly increasing with the axonal diameter and the age of the animal (Rushton, 1951; Berthold 

et al., 1983; Friede and Beuche, 1985).  
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Figure 3-12: Loss of Rab35 in Schwann cells causes focal hypermyelination in vivo. Performed by the 

laboratory of Prof. Dr. A. Bolino (INSPE, Milan, Italy):  (a) Schwann cell-specific Rab35 knockout (cKOSC) 

mice were generated by crossing Rab35Fl/Fl mice with transgenic mice that encode a Cre recombinase under 

control of the Schwann cell-specific P0-promotor (P0-Cre). Rab35 Ctrl – Rab35Fl/Fl; Rab35 cKOSC - 

Rab35Fl/Fl x P0-Cre. (b, c) Reduced Rab35 protein expression in sciatic nerve lysates from Rab35 cKOSC 

mice at postnatal day (P) 30. (b) Representative immunoblot for Rab35. Tubulin was used as a loading 

control.  (c) Rab35 protein levels, normalized to Tubulin and Ctrl levels (= 100 %), were reduced to 25 % in 

Rab35 cKOSC sciatic nerve lysates; (mean ± SEM; n = 5 independent experiments; one sample two-tailed 

student’s t-test with a theoretical mean of 100; ***p < 0.001). (d) Semithin section analysis of Rab35 cKOSC 

sciatic nerves at P20, P30 and P90 revealed myelinated fibers carrying myelin degenerations (green arrows), 

tomacula (red asterisks) and myelin outfoldings (yellow arrows); Scale bar: 20 µm. (e) Quantification of the 

fraction of aberrant myelinated fibers (% of total) in Rab35 cKOSC sciatic nerves at P20, P30, P70 and P90, 

reveals increasing abundance of alterations in aged animals. Ctrl fibers were 0 % aberrantly myelinated; 

(mean; n = 5 (P20) and 4 (P30, P70, P90) animals per genotype). (f) Example images of ultrastructural 
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analysis of Rab35 Ctrl and cKOSC sciatic nerves depicting myelin outfoldings (yellow arrows), myelin 

degeneration (green arrows) and a tomaculum (red asterisk); Scale bar: 5 µm. (g, h) Quantification of the g-

ratio by ultrastructural analysis, as a function of axonal diameter in sciatic nerves at (g) P20 (n=5 animals per 

genotype) or (h) P90 (n= 4 animals per genotype). No significant differences in Rab35 cKOSC compared to 

Ctrl at P20 or P90, except for fibers larger than 5 µm at P90 which displayed a significantly increased g-ratio 

(two-tailed nonparametric Mann-Whitney test; **p < 0.01). 

 

The g-ratio is calculated by dividing the axonal diameter by the fiber (axon + myelin) 

diameter. By analyzing the remaining fraction of non-altered fibers in Rab35 cKOSC sciatic 

nerves, no change in the number of myelinated axons and largely unaltered g-ratios were 

observed at P20 and P90 (Fig. 3-12g,h). At P90 only, fibers with an axonal diameter greater 

than 5 µm displayed reduced myelin thickness, represented by an increase in the g-ratio 

compared to Ctrl nerves (Fig. 3-12h). In sum, these data reveal that loss of Rab35 in Schwann 

cells results in focal hypermyelination in form of redundant-focally folded myelin sheaths 

including myelin outfoldings, reminiscent to MTMR2 KO and MTMR13 KO mice (Bolino et 

al., 2004; Robinson et al., 2008; Tersar et al., 2007; Ng et al., 2013). Notably, signs of 

hypomyelination in aged animals have also been observed in MTMR13 KO mice (Robinson et 

al., 2008; Ng et al., 2013). 

 

3.2.2 Depletion of Rab35 and/ or MTMR2 results in mTORC1 hyperactivity  

We aimed to investigate the underlying molecular mechanism by which Rab35 and 

active MTMR complexes could regulate myelination. Interestingly, focal hypermyelination in 

peripheral nerves is also a hallmark in transgenic mice with overactivated PI3K/AKT/mTOR 

signaling in Schwann cells (Goebbels et al., 2012; Beirowski et al., 2017). Rab35 has been 

implicated in AKT activation, though with contrasting findings from different cell types 

(Allaire et al., 2013; Wheeler et al., 2015; Zheng et al., 2017). In addition, overexpression of 

MTMR2 is reported to result in sustained AKT activation (Berger et al., 2011), though CMT4B 

mouse models do not display altered AKT activity (Ng et al., 2013; Bolino et al., 2016). 

In order to analyze if depletion of Rab35 and/ or the active phosphatase MTMR2 affects 

PI3K/AKT/mTOR signaling, we first made use of a mammalian cell line as an easily genetically 

manipulatable system. We performed siRNA-mediated depletion of Rab35 and its indirect 

interaction partner, the active phosphatase MTMR2, in HEK cells, which sufficiently reduced 

the levels of each protein to less than 20 % (Fig. 3-13a,b,c). The cell lysates were analyzed by 

immunoblotting for activation of the main signaling pathway-components AKT and mTOR, 

displayed by the ratio of phosphorylated over total protein levels (Fig. 3-13a). In neither of the 

knockdown conditions, Rab35, MTMR2, or both, we could observe alteration in AKT 
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activation (Fig. 3-13d). In contrast, activation of the kinase complex mTORC1, downstream to 

and indirectly regulated by AKT upon mitogen and growth factor stimulation (Inoki et al., 

2002), is elevated in Rab35- and MTMR2-depleted cells. In both conditions, the ratio of the 

phosphorylated mTORC1-target p70 S6 Kinase 1 (p-S6K) to total S6K levels is increased by 

twofold (Fig. 3-13e). Cells depleted of Rab35 and MTMR2 display an even higher increase in 

the ratio of p-S6K/ S6K. Additionally, the levels of S2448-phosphosporylated mTOR, a specific 

mTORC1-phosphorylation site for S6K in a presumable positive feedback-loop (Chiang and 

Abraham, 2005; Copp et al., 2009; Rosner et al., 2010), display a similar tendency as depicted 

by the ratio of p-mTOR/ mTOR protein levels (Fig. 3-13f). This suggests that both, Rab35 and 

MTMR2 repress mTORC1 activity, independent of the PI3K/AKT axis in mammalian cells. 

Figure 3-13: Depletion of Rab35 and/ or MTMR2 in HEK cells results in mTORC1 hyperactivation. 

Lysates of HEK cells depleted of Rab35, MTMR2, or both by siRNA-mediated knockdown were analyzed 

for proteins of the PI3K/AKT/mTOR pathway by immunoblotting. Scrambled siRNA (scr) transfected cells 

were used as controls. (a) Representative immunoblot for S473-phospho AKT (p-AKT), total AKT, T389-

phospho p70 S6 Kinase (p-S6K), total p70 S6K (S6K), S2448-phospho mTOR (p-mTOR), total mTOR, 

Rab35 and MTMR2. ß-actin served as a loading control. (b-f) Quantification from n = 5 independent 

experiments. (b) Rab35 and (c) MTMR2 are efficiently depleted upon siRNA-mediated knockdown. (d) p-

AKT/ AKT ratio normalized to scrambled siRNA (scr) (=1) is not altered in any condition; (siRNA: Rab35, 

p = 0.93502; MTMR2, p = 0.9073; Rab35 + MTMR2, p = 0.18496). (e) p-S6K/ total S6K ratio normalized 

to scrambled siRNA (scr) control (=1) as a readout for mTORC1 activity, is significantly increased upon 

depletion of MTMR2 or Rab35, or both. (f) p-mTOR / total mTOR ratio normalized to scrambled siRNA 

(scr) control is elevated in all knockdown conditions (p = 0.0688); (mean ± SEM; one sample two-tailed 

student’s t-test with a theoretical mean of 100 (b,c) or 1 (d-f), for all conditions normalized to scr, followed 

by p-value correction for multiple testing using Holm’s Multiple Comparison Test; *p < 0.05, **p < 0.01; 

****p < 0.0001). 
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3.2.3 Rab35 represses mTORC1 activity via MTMR2 

Since hyperactivation of mTORC1 in myelinating glial cells of the CNS and PNS causes 

a strong impairment of myelin homeostasis in vivo (Narayanan et al., 2009; Goebbels et al., 

2010; 2012; Beirowski et al., 2017; Figlia et al., 2017), we aimed to test if the observed 

repression of mTORC1 activity by Rab35 and MTMR2 is also displayed in cells of the nervous 

system. To that end, we made use of primary astrocytic cultures, proliferating CNS-derived 

cultures that provide a sufficient number of cells for lysate protein level analysis by 

immunoblotting. Indeed, in Rab35 icKO cultures we could detect a mean increase of 50 % for 

p-S6K/ S6K protein levels at steady state (+ FBS) (Fig. 3-14a,b). Serum starvation, the 

withdrawal of the major source for growth factors and mitogens, down-regulates PI3K class I- 

and thereby AKT- signaling. When cultures were serum-starved for 12 h before lysis (- FBS), 

hyperactivation of mTORC1 is still observed in Rab35 icKO compared to WT cultures (Fig. 3-

14a,b), indicating that altered mTORC1 regulation is independent of AKT activation. 

Accordingly, p-AKT protein levels are not increased in Rab35 icKO cultures (Fig. 3-14c,d). In 

contrast, a robust decrease of p-AKT/ AKT protein levels is detected upon acute Rab35 

knockout. This result is consistent with a previous study that claims a promoting function of 

Rab35 in PI3K-mediated AKT activation (Wheeler et al., 2015). In sum, our data confirm a 

negative regulatory role for Rab35 in mTORC1 activation in cells of the nervous system, 

independent of the PI3K/AKT axis. 

As a signaling hub at which external and internal cues such as nutrient, energy and oxygen 

availability are integrated, mTORC1 is an important master regulator in the control of the cell 

anabolic versus metabolic state. Upon activation in favorable environmental conditions, for 

instance by nutrient or energy availability, this complex promotes protein and lipid synthesis, 

thus cell growth, and simultaneously downregulates autophagy and lysosome biogenesis 

(Laplante and Sabatini, 2012). Similar to primary Rab35 icKO OPCs and oligodendrocytes, 

and consistent with the established function of mTORC1 activity in the regulation of cell size 

in different eukaryotic cell types (Fingar et al., 2002; Laplante and Sabatini, 2012), we could 

detect a significant enlargement of Rab35 icKO astrocytes in cultures (Fig. 3-15a,b).  
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Next, we probed astrocytic lysates for the autophagic marker protein LC3/ATG8 by 

immunoblotting. In Rab35 icKO lysates, we observed a significant reduction of protein levels 

for both, the cleaved cytosolic form LC3-I and the phosphatidylethanolamine-conjugated LC3-

II that is associated to autophagosomal membranes (Kabeya et al., 2000), to 60 % and 80 % of 

WT levels, respectively (Fig. 3-15c,d). In contrast, the ratio of the autophagosome-associated 

LC3-II over cytosolic LC3-I levels is increased upon Rab35 depletion, at steady state (+ FBS) 

by 40 % and upon serum-starvation (-FBS) by 200 % (Fig. 3-15c,e). This implicates that 

autophagy is starvation-induced with a higher rate in Rab35 icKO than WT cultures, with 4- 

and 2.5-fold, respectively (Fig. 3-15e). Moreover, comparable results were obtained by 

immunolabelling for LC3, using short-term digitonin permeabilization to preserve 

autophagosomal membranes (Kaminskyy et al., 2011). Background subtraction of diffuse 

cytoplasmic (LC3-I) signals revealed a significantly increased intensity of LC3-II punctate 

signals, representing autophagosomal structures (Kabeya et al., 2000; Kaminskyy et al., 2011), 

in Rab35 icKO astrocytic cultures at steady state and under starvation conditions (Fig. 3-15f,g). 

These might indicate increased formation or impaired maturation and thus, degradation of 

autophagosomes. In agreement, a function of Rab35 in the maturation of autophagosomes is 

reported (Minowa-Nozawa et al., 2017). In contrast, the prominent down-regulation of LC3 

protein levels is likely caused by hyperactivation of mTORC1. The complex inhibits the nuclear 

translocation of TFEB, a master transcription factor for LC3 and lysosomal biogenesis 

(Settembre et al., 2011; Martina et al., 2012). Despite of that, we could not detect any overt 

Figure 3-14: mTORC1 hyperactivation in primary Rab35 icKO cells is independent of AKT. (a, b) 

mTORC1 hyperactivity in Rab35 icKO astrocytes independent of growth factor stimulation. Astrocytic 

cultures were either serum-fed (+ FBS) or serum-starved (- FBS) for 12 h before lysis. (a) Representative 

immunoblot probed with antibodies against p-S6K1, total S6K1, and ß-actin used as a loading control. (b) p-

S6K/ total S6K ratio as a readout for mTORC1 activity, normalized by setting WT + FBS to 1, is increased 

in Rab35 icKO cells under both conditions (n = 9 independent experiments). (c, d) mTORC1 hyperactivity 

in Rab35 icKO astrocytes is independent of p-AKT. (c) Representative immunoblot of WT and Rab35 icKO 

astrocytes for p-S6K, total S6K, p-AKT and total AKT, and for Rab35 and ß-actin as controls. (d) p-AKT/ 

AKT is decreased in Rab35 icKO astrocytes compared to WT (set to 1); (mean ± SEM; n= 12 independent 

experiments; one sample two-tailed student’s t-test with a theoretical mean of 1; *p < 0.05; **p < 0.05). 
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alterations in compartments of the endo-/lysosomal system. EEA1-positive early endosomal, 

Rab7-positive late endosomal, LAMP-1-positive late endosomal/lysosomal and LAMP2-

positive lysosomal compartments appeared normal in shape and abundance in Rab35 icKO 

astrocytes (Fig. 3-16).   

 

 

 

Figure 3-15: Rab35 icKO astrocytes in culture have an increased cell area and elevated autophagosome 

levels. (a, b) The cell area of cultured astrocytes was visualized using Phalloidin-AlexaFluor568 (grey) and 

analyzed by confocal imaging. (a) Representative confocal images with DAPI (blue) to visualize cell nuclei, 

Scale bar: 30 µm. (b) Quantitative determination of the cell area, using Phalloidin as a mask and normalized 

to WT (100 %). (n = 10 independent experiments) (c-e) Reduced steady-state levels of LC3 are accompanied 

by an increased ratio of LC3-II/-I in Rab35 icKO astrocytes. (c) Representative immunoblot of lysates from 

Rab35 WT and icKO cultures, supplemented with (+FBS) or without serum (-FBS) for 12 h before lysis, 

probed for cytosolic LC3-I and autophagosomal membrane-associated LC3-II, and ß-actin as loading control. 

(d) Quantification of steady state (+ FBS) LC3-I and LC3-II levels presented in c), normalized to the loading 

control and WT levels (100 %); (n = 13 (I) and 12 (II) independent experiments) (e) LC3-II/ LC3-I protein 

ratio, normalized to Rab35 WT +FBS (=1) as a readout for autophagosome formation. Note the differently 

scaled y-axes for ‘+FBS’ (left) and ‘-FBS’ (right); (n = 12 independent experiments). (f, g) More 

autophagosomes in Rab35 icKO cells. Astrocytic cultures were supplemented with or without FBS for 12 h 

before fixation and immunolabelled for LC3. (f) Representative confocal images with LC3-II (green) and 

DAPI-visualized cell nuclei (blue). Scale bar: 30 µm. (g) The mean LC3-II fluorescence intensity in 

Phalloidin-labelled cells, normalized to Rab35 WT +FBS (100 %), is significantly increased in Rab35 icKO 

cultures under both conditions; (n = 12 independent experiments). (mean ± SEM; one sample two-tailed 

student’s t-test with a theoretical mean of 100 (b, d, g) or 1 (e), comparing genotypes in each condition; *p < 

0.05, **p < 0.01; ***p < 0.001; ****p < 0.0001). 
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To corroborate the results obtained from HEK cells, we aimed to investigate if 

downregulation of MTMR2 elevates mTORC1 activity in cells of the nervous system as well. 

First, we confirmed the expression of MTMR2 in lysates of primary astrocytic cultures (Fig. 3-

17a). Surprisingly, we could detect significantly reduced MTMR2 levels of 25 % on average in 

Rab35 icKO compared to WT cells (Fig. 3-17b). A reduction in MTMR2 is also reported in 

tissue from MTMR13 KO mice and vice versa, MTMR2 KO mice display reduced protein levels 

of MTMR13 (Robinson et al., 2008; Ng et al., 2013). This is presumed to reflect a decreased 

protein stability in the absence of the MTMR complex partner and thus, a strong 

interdependence, which was also observed for other complex-forming MTMRs (Robinson et 

al., 2008; Zou et al., 2009, 2012; Gupta et al., 2013; Ng et al., 2013). 

Figure 3-17: Interdependence of Rab35 and MTMR2 protein levels. (a, b) MTMR2 protein levels are 

reduced in Rab35 icKO astrocytic cultures. (a) Representative immunoblot of MTMR2 and Rab35 detection. 

ß-actin was used as a loading control. (b) Quantification of MTMR2 protein levels in Rab35 icKO astrocytes, 

normalized to the loading control and depicted as a fraction of WT levels (100 %); (n = 8 independent 

experiments). (c, d) Performed by the laboratory of Prof. Dr. A. Bolino (INSPE, Milan, Italy): Rab35 protein 

levels are reduced in MTMR2 KO mice. Sciatic nerves from MTMR2 WT (MTMR2+/+) and KO (MTMR2-/-) 

mice were lysed and analyzed by immunoblotting. (c) Representative immunoblot for Rab35, and tubulin as 

Figure 3-16: Rab35 loss does not cause major alterations in the endo-/lysosomal system. Representative 

confocal images and quantitative analysis of steady-state levels of (a, b) early endosomal antigen 1 (EEA1), 

(c, d) late endosomal Rab7, (e, f) late endosomal/ lysosomal LAMP-1, and (g, h) the lysosomal marker 

LAMP-2 (green) in Rab35 WT and icKO astrocytic cultures. Sum intensities were normalized to the 

Phalloidin-labelled cell area and depicted as a fraction of Rab35 icKO to WT signals (100 %); Scale bars: 30 

µm; (mean ± SEM; n = 3 (EEA1), 4 (Rab7), 7 (LAMP-1) and 3 (LAMP-2) independent experiments; one 

sample two-tailed student’s t-test with a theoretical mean of 100; EEA1: p = 0.4956, Rab7: p = 0.5061, 

LAMP-1: p = 0.1104, LAMP-2: p = 0.9769). 
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a loading control. (d) Quantification of Rab35 level in MTMR2 KO mice, with MTMR2 WT levels set to 100 

%; (n = 4 animals/ genotype); (mean ± SEM; one sample two-tailed student’s t-test with a theoretical mean 

of 100; d: p = 0.079; **p < 0.01). 

 

Therefore, our data might indicate an interdependence of Rab35 and MTMR2 protein 

levels. Notably, this hypothesis was further strengthened by the observation, in collaboration 

with Prof. Dr. A. Bolino (INSPE, Milan, Italy), that vice versa Rab35 protein levels are reduced 

in tissue from MTMR2 KO mice (Fig. 3-17c,d).  

Next, we analyzed mTORC1-activation upon MTMR2 depletion in astrocytic cultures. By 

lentiviral transduction with MTMR2-targeting shRNA, protein levels were sufficiently reduced 

in these cells as well (Fig. 3-18a,b). Quantification of the p-S6K/ S6K ratio, as a readout for 

mTORC1 activation, revealed a 50 % mean increase in MTMR2 shRNA- compared to 

scrambled shRNA- transduced WT cultures. This increase was comparable to Rab35-depleted 

cultures, transduced with scrambled shRNA. In three out of six experiments, an further increase 

of p-S6K was observed in astrocytes depleted of both, MTMR2 and Rab35 (Fig. 3-18a,d). 

Nevertheless, AKT activation was notably unaffected by MTMR2 knockdown in both, Rab35 

WT and icKO cells (Fig. 3-18c).  

In sum, these data confirm that MTMR2 represses mTORC1 activity independent of AKT 

activation in cells of the nervous system as well, similar to Rab35.  

Figure 3-18: Loss of MTMR2 results in mTORC1 hyperactivity in primary astrocytic cultures. Lysates 

from lentiviral-transduced Rab35 WT or icKO astrocytes with shRNA targeting MTMR2 or non-targeting 

scrambled (scr) control shRNA were analyzed by immunoblotting; (n = 6 independent experiments). (a) 

Representative immunoblot probed with antibodies for p-S6K, total S6K, p-AKT, total AKT, MTMR2 and 

ß-actin (loading control). (b) Efficacy of MTMR2 knockdown. MTMR2 levels are normalized to ß-actin and 

WT + scr control (100 %). (c) p-AKT/ AKT ratio, normalized to WT + scr control (= 1), is not altered upon 

MTMR2 knockdown (WT + MTMR2 shRNA: p = 0.8170). (d) pS6K/ total S6K ratio, normalized to WT + 

scr (= 1) as a readout for mTORC1 activity, is significantly increased upon MTMR2 knockdown in WT cells, 

comparable to the level in Rab35 icKO (+scr) lysates. Double depletion of MTMR2 and Rab35 partially 

elevates mTORC1 activity; (mean ± SEM; one sample two-tailed student’s t-test with a theoretical mean of 

100 (b) or 1 (c,d), followed by p-value correction for multiple testing using Holm’s Multiple Comparison 

Test; *p < 0.05, **p < 0.01; ***p < 0.001). 
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Next, in order to dissect whether increased mTORC1 activity in vivo is underlying the 

striking phenotype of focal hypermyelination in Rab35 cKOSC mice, sciatic nerves were lysed 

at postnatal day (P)30, after the peak of PNS myelination (P10-P21), and analyzed by 

immunoblotting. In Rab35 cKOSC nerves, both, phosphorylated S6K and its target the 

ribosomal protein S6 were increased by a mean of 50 % and 250 %, respectively (Fig. 3-19a,b). 

As expected from our in vitro data, the ratio of p-AKT/ AKT levels was unaltered (Fig. 3-19c). 

In addition, activation of the MAPK pathway component ERK, an alternative upstream 

activator of mTORC1 that is also implicated in myelin regulation (Ma et al., 2005; Newbern et 

al., 2011; ; Sheean et al., 2014; Furusho et al., 2017), was unchanged upon Rab35 depletion as 

well (Fig. 3-19b). These data confirm that Rab35 depletion in the PNS results in mTORC1 

hyperactivity in vivo, independent of PI3K/AKT- and MAPK/ERK-dependent mTORC1 

regulation.  

Next, we aimed to test the hypothesis that repression of mTORC1 activity is mediated 

by Rab35-dependent recruitment of active MTMR phosphatases. To that end, we analyzed 

mTORC1 activation upon overexpression of MTMR2 in cells depleted of MTMR2 or Rab35. 

Indeed, introducing an excess of siRNA-resistant mouse MTMR2 caused reduced 

hyperactivation of mTORC1 in form of ameliorated p-S6K/ S6K protein levels in MTMR2 and 

notably also Rab35 knockdown cells (Fig. 3-20a,b). These results indicate that Rab35 represses 

mTORC1 activity by the recruitment of active MTMR complexes.  

Figure 3-19: mTORC1 is hyperactivated in vivo in sciatic nerves from Rab35 cKOSC mice. Performed 

by the laboratory of Prof. Dr. A. Bolino (INSPE, Milan, Italy): Sciatic nerves from P30 Rab35 Ctrl and 

cKOSC mice were lysed and analyzed by immunoblotting. (a) Representative immunoblot for p-S6K, total 

S6K, p-S6 and total S6 as a readout for mTORC1 activity. Vinculin and Tubulin were used as loading 

controls. (b) Mean ratio of p-S6K/ S6K and p-S6/S6 in Rab35 cKOSC sciatic nerves, normalized to Ctrl (= 

1), is 1.5-fold and 2.5-fold increased, respectively; (mean ± SEM; one sample two-tailed student’s t-test with 

a theoretical mean of 1; p-S6K/ S6K: n = 6 animals/genotype, p=0.0706; p-S6/ S6: n = 4 animals/genotype, 
*p < 0.01). (c) Immunoblot for p-AKT, total AKT, T202/Y204-phosphorylated ERK1/2 (p-ERK) and total 

ERK in sciatic nerve lysates. No alterations were observed. Vinculin was used as a loading control.  
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3.2.4 Accumulation of PI(3)-phosphates causes mTORC1 hyperactivity in the absence of 

Rab35 

Active MTMR phosphatases possess specificity to dephosphorylate PI(3)P and 

PI(3,5)P2 in complex with their pseudophosphatase partners (Caldwell et al., 1991; Kim et al., 

2003b; Berger et al., 2006b; Zou et al., 2012). Thus, we hypothesized that impaired recruitment 

of MTMR phosphatases by Rab35 depletion could conceivably lead to imbalanced levels of 

these phosphatidylinositol (PI) species. As no functional probes for quantitative monitoring of 

PI(3,5)P2 in eukaryotic cells are available so far (Hammond et al., 2015), we focused on PI(3)P. 

This lipid is detectable by the use of a PI(3)P-binding FYVE-tandem domain of Hrs, fused to 

eGFP (eGFP-2xFYVE) (Gillooly et al., 2003). Additionally, PI(3)P levels can also reflect 

imbalanced PI(3,5)P2 abundance, as it serves as the only known precursor for its synthesis by 

PIKfyve (Sbrissa et al., 1999; Zolov et al., 2012). We used HeLa cells as a more convenient 

cell type for confocal microscopy than HEK cells, due to a better adhesion and shape 

preservation during immunocytochemistry. Importantly, siRNA-mediated depletion of Rab35 

resulted in increased p-S6K level in HeLa cells as well (Fig. 3-21a). Next, we probed HeLa 

cells depleted of MTMR2 and Rab35 after fixation with recombinantly expressed 

eGFP--2xFYVE and subsequently immunolabelled the cultures with an antibody recognizing 

the eGFP-epitope (Hammond et al., 2009). As expected due to the knockdown of MTMR2, 

significantly increased PI(3)P levels were observed (Fig. 3-21b,c). We identified these puncta 

as PI(3)P-specific by acute inhibition of the main PI(3)P-synthesizing enzyme VPS34 using 

Figure 3-20: MTMR2 re-expression rescues mTORC1 hyperactivity caused by Rab35 reduction. 

Lysates of HEK cells depleted of Rab35 or MTMR2 by siRNA-mediated knockdown were transfected with 

plasmids encoding either eGFP (ctrl) or siRNA-resistant mouse MTMR2 (msMTMR2) and analyzed by 

immunoblotting. (a) Representative immunoblot for p-S6K, total S6K, Rab35 and MTMR2. ß-actin was used 

as loading control. (b) p-S6K/ total S6K, normalized to scr + ctrl (=1), is significantly increased for Rab35 

and MTMR2 in ctrl- but not msMTMR2-overexpressing cells; (mean ± SEM; n = 5 independent experiments; 

one sample two-tailed student’s t-test with a theoretical mean of 1 for targeting siRNA samples compared 

with scr within each overexpression condition, followed by p-value correction for multiple testing using 

Holm’s Multiple Comparison Test; *p < 0.05). 
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10 µM VPS34-IN1 for 1 h prior to fixation, which completely abrogated the signal, in line with 

previous work (Bago et al., 2014). Strikingly, an increase in PI(3)P puncta was also observed 

in Rab35 icKO primary astrocytic and oligodendrocytic cultures without simultaneous 

depletion of MTMR2 (Fig. 3-22). This indicates that the absence of Rab35 indeed causes an 

accumulation of PI(3)P, and maybe PI(3,5)P2, which likely results from the impaired 

recruitment of 3’-phosphatases such as MTMR2.  

Figure 3-22: PI(3)P accumulation in primary Rab35 icKO cells. Primary Rab35 icKO cells were fixed 

and immunolabelled for PI(3)P (green) using recombinant eGFP-2xFYVE and F-actin (red). Representative 

confocal images of primary (a) astrocytic and (c) oligodendrocytic cultures; Scale bars: 30 µm. 

Quantification of mean PI(3)P fluorescence intensity, normalized to the cell area and WT cells (= 100 %) for 

(b) astrocytic cultures (n = 4 independent experiments) and (d) oligodendrocytic cultures (n = 3 independent 

Figure 3-21: Elevated PI(3)P levels in HeLa cells depleted of Rab35 and MTMR2. (a) Immunoblot for 

Rab35, p-S6K and total S6K protein levels confirms upregulation of mTORC1 activity in HeLa cells depleted 

of Rab35 using siRNA-transfection. (b, c) HeLa cells were treated with non-targeting scrambled (scr) control 

siRNA or siRNAs specific for Rab35 and MTMR2, and immunolabelled for PI(3)P using recombinant eGFP-

2xFYVE as a probe. As a control for specific labeling, 10 µM VPS34-IN1 was acutely applied to scr 1 h 

before fixation for acute VPS34 inhibition. (b) Representative confocal images of siRNA transfected HeLa 

cells stained for PI(3)P (green) and F-actin by fluorescently-labelled phalloidin (red);  Scale bars: 30 µm. (c) 

Quantification of PI(3)P levels as the sum intensity of eGFP-2xFYVE-positive puncta normalized to the cell 

area and scr + DMSO control conditions (100 %). (d) Depleted HeLa cells tend to an increased cell area. 

Quantification of Phalloidin-masked cell area in Rab35- and MTMR2- co-depleted cells and normalized to 

scr. (mean ± SEM; n = 5 independent experiments; two-tailed paired student’s t-test with a theoretical mean 

of 100; d: p = 0.2340; *p < 0.05). 
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experiments). Acute VPS34 inhibition (10 µM VPS34-IN1) completely abrograted eGFP-2xFYVE puncta 

(n = 1 experiment each); (mean ± SEM; one sample two-tailed student’s t-test with a theoretical mean of 100; 
*p < 0.05). 

 

MTMR2 is presumed to act on lipid levels at late endosomal/ lysosomal compartments 

(Cao et al., 2008). In addition, we had observed recruitment of the MTMR2-complex partner 

MTMR13 to these organelles by Rab35. Hence, we further investigated the PI(3)P levels 

specifically at these late endo-/ lysosomal sites by co-immunolabelling of HeLa cells for PI(3)P 

and the late endosomal marker protein CD63 (Kobayashi et al., 2000). Interestingly, PI(3)P 

levels at CD63-positive late endosomal compartments were significantly increased by around 

25 % upon knockdown of either Rab35, MTMR2, or both (Fig. 3-23).   

 

 

Given the fact that mTORC1 is recruited to and activated at late endosomal/ lysosomal 

organelles (Sancak et al., 2008; 2010), and both lipid substrates of the MTMR2 phosphatase, 

Figure 3-23: Depletion of Rab35 and/ or MTMR2 causes PI(3)P accumulation on late endosomes/ 

lysosomes. HeLa cells depleted of Rab35, MTMR2, or both, by siRNA-mediated knockdown, were 

immunolabelled for PI(3)P and the late endosomal/ lysosomal marker protein CD63, and analyzed by 

confocal imaging. (a) Representative confocal images of HeLa cells immunostained for PI(3)P (red) and 

CD63 (green). Cell nuclei were visualized with DAPI (blue). White arrows indicate examples of co-

localization. Scale bars: 10 µm (left), 5 µm (right). (b) The mean intensity of PI(3)P in CD63-positive 

(CD63+) compartments is depicted as a fraction of control cells (scr ; 100 %); (mean ± SEM; n = 5 

independent experiments; one-way ANOVA followed by Dunnett’s Multiple Comparison Test; *p < 0.05; **p 

< 0.05). 
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PI(3)P and PI(3,5)P2, are reported signaling lipids in PI3K/AKT-independent activation of 

mTORC1 (Byfield et al., 2005; Nobukuni et al., 2005; Jaber et al., 2011; Bridges et al., 2012; 

Jin et al., 2014; Mohan et al., 2016; Yoon et al., 2016; Hong et al., 2017), we hypothesized that 

hyperactivation of mTORC1 in MTMR2- and Rab35-depleted cells is due to the observed 

imbalance of PI(3)P levels. According to this hypothesis, normal activation of mTORC1 should 

be re-stored by interfering with the cellular PI(3)P production. To test this, we first depleted 

PI(3)P levels in Rab35 WT and icKO astrocytic cultures using acute inhibition of VPS34 by 

treatment with 5 µM or 10 µM VPS34-IN1 for 1 h and analyzed mTORC1 activation. 

Strikingly, the significant increase in p-S6K/ S6K protein levels in Rab35 icKO compared to 

WT lysates in control conditions was completely abrogated upon treatment with VPS34-IN1 

(Fig. 3-24a,b). The same effect was observed upon treatment of cultures with two other specific 

VPS34 inhibitors, SAR405 (Ronan et al., 2014) or Compound-19 (Bilanges et al., 2017) (Fig. 

3-24a). Moreover, WT-comparable mTORC1 activity was also re-stored by acutely treating 

Rab35 icKO astrocytic cultures with VPS34-IN1, which were simultaneously depleted of 

MTMR2, (Fig. 3-24c,d). This finding indicates that the accumulation of PI(3)-phosphates in 

the absence Rab35 and MTMR2 could be the underlying cause for mTORC1 hyperactivity. 

Figure 3-24: Pharmacological inhibition of PI(3)-phosphate synthesis rescues mTORC1 hyperactivity 

upon Rab35- and MTMR2-depletion. (a,b) Inhibition of VPS34-dependent PI(3)-phosphate synthesis 

rescues mTORC1 hyperactivity in Rab35 icKO astrocytes. Astrocytic cultures were treated with indicated 

concentrations of the selective VPS34 inhibitors VPS34-IN1, SAR405, or Compound-19 (Cmp-19) or with 

DMSO for 1 h prior to lysis. (a) Lysates were analyzed by immunoblotting for Rab35, total S6K and pS6K 

as a readout for mTORC1 activity. ß-actin was used as a loading control. (b) The significant increase in the 

ratio of p-S6K to total S6K, normalized to WT cells (= 1) in Rab35 icKO cells is ameliorated upon inhibitor 
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treatments; (n = 6 (10 µM VPS34-IN1) and 3 (5 µM VPS34-IN1) independent experiments). (c, d) VPS34 

inhibition rescues mTORC1 hyperactivation in Rab35- and MTMR2-depleted primary astrocytes. Astrocytic 

cultures were transduced with lentiviruses containing non-targeting scrambled (scr) control shRNA (co-

expressing eGFP) or shRNA targeting MTMR2, treated with DMSO or 10 µM VPS34-IN1 for 1 h before 

lysis, and analyzed by immunoblotting. (c) Representative immunoblots for p-S6K, S6K, eGFP (scr), 

MTMR2 and Rab35. (g) Quantification of p-S6K/ S6K, normalized to control (WT + scr + DMSO = 1); (n 

= 5 independent experiments); (mean ± SEM; one sample two-tailed student’s t-test with a theoretical mean 

of 1, comparing the genotypes in each treatment condition; *p < 0.05; **p < 0.01). 

 

 

So far, our data reveal a novel physiological pathway in which Rab35-mediated 

recruitment of active MTMR complexes to lysosomes limits mTORC1 activity by 

dephosphorylating PI(3)P, and likely PI(3,5)P2, which serve as a platform for the recruitment 

and activation of the cell signaling complex. 

 

3.2.5 Counteracting mTORC1 hyperactivity ameliorates myelin abnormalities upon 

Rab35 depletion  

mTORC1 has a dual role in Schwann cells. It inhibits the cell cycle exit and is reported 

to repress KROX20 on the one hand, and promotes myelin lipid synthesis and myelin protein 

expression on the other (Norrmén et al., 2014; Beirowski et al., 2017; Figlia et al., 2017; Jiang 

et al., 2018). Thus, mTORC1 activity in Schwann cells must be physiologically tightly 

regulated and alterations result in time- and dosage-dependent effects (Figlia et al., 2018).  

To corroborate the hypothesis that mTORC1 activity is causative for the observed focal 

hypermyelination in Rab35 cKOSC mice, our collaboration partners (Prof. Dr. A. Bolino, 

INSPE, Italy) prepared embryonic explants of myelin-forming Schwann cell/dorsal root 

ganglion (DRG) neuron co-cultures, and analyzed axonal myelination in the absence of Rab35 

ex vivo. Surprisingly, the number of MBP-positive myelin segment was reduced to 40 % in 

Rab35 cKOSC explants (Fig. 3-25c,d). Furthermore, more than 50 % of the MBP-positive fibers 

possessed structural myelin abnormalities in Rab35 cKOSC co-cultures (Fig. 3-25e,f), 

reminiscent of in vitro myelin outfoldings in MTMR2 and MTMR13 KO explants (Bolis et al., 

2009; Robinson et al., 2018). Importantly, when co-cultures were treated with Rapamycin, a 

specific mTORC1-component FKBP12 inhibitor (Sehgal et al., 1975; Sabatini et al., 1994), the 

reduced abundance of myelin segments was fully rescued and aberrant myelin formation 

strikingly ameliorated (Fig. 3-25d,f). This confirms that increased mTORC1 underlies the 

altered myelin homeostasis in Rab35 cKOSC explants. 
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Figure 3-25: Repression of mTORC1 hyperactivity ameliorates aberrant myelination in the absence of 

Rab35 ex vivo and in vivo. Performed by the laboratory of Prof. Dr. A. Bolino (INSPE, Milan, Italy): 

Schwann cell/ DRG neuron co-culture explants were prepared from Rab35 Ctrl and cKOSC mouse embryos. 

(a, b) Loss of Rab35 in co-culture explants. (a) Representative immunoblot for Rab35 and Tubulin as control 
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protein. (b) Rab35 protein levels, normalized to Tubulin and WT levels (= 100 %); (mean ± SEM; n = 6 

coverslips/DRG explants; one sample two-tailed student’s t-test with theoretical means of 100; **p < 0.01). 

(c, d) Rab35 WT and cKOSC mouse explants were fixed and immunolabelled. (c) Representative confocal 

images of Myelin-forming Schwann cell/ DRG neuron co-culture explants, with axonal marker Nf-M (green), 

myelin segment marker MBP (red) and DAPI (blue) to visualize Schwann cell nuclei. Scale bar: 7 µm (d) 

The number of MBP-positive myelin segments is reduced by 40 % in untreated (NT) Rab35 cKOSC co-culture 

explants compared to WT cultures. Rapamycin treatment (Rapa) of Rab35 cKOSC co-cultures rescued the 

number of myelin segments; (mean ± SEM; n = 12 (WT), 10 (cKOSC – NT) and 8 (cKOSC +Rapa) 

coverslips/DRG explants; two-tailed paired student’s t-test; *p < 0.05, **p < 0.01). (e, f) Myelin abnormalities 

in Rab35 cKOSC are ameliorated by treatment with Rapamycin. (e) Higher magnification images of MBP 

staining in untreated and Rapamycin-treated Rab35 cKOSC cells. Asterisks mark myelin abnormality 

examples. Scale bars: 4 µm (f) The fraction of MBP-positive fibers carrying myelin abnormalities, with a 

mean of 50 % in Rab35 cKOSC –NT cultures, was reduced to 30 % in cKOSC +Rapa; (mean ± SEM; n = 6 

coverslips/DRG explants; two-tailed paired student’s t-test; ***p < 0.001). (g, h) Focal hypermyelination in 

Rab35 cKOSC sciatic nerves is ameliorated upon Rapamycin treatment in vivo. (g) Repressed mTORC1 

activation by Rapamycin treatment in sciatic nerves. Immunoblot for p-S6 in sciatic nerve lysates from Rab35 

cKOSC mice treated with vehicle (Veh) or Rapamycin (Rapa). (h) Semithin section analysis of sciatic nerves 

from Rab35 cKOSC mice (P70) following vehicle or Rapamycin treatment and quantification of the 

percentage of fibers carrying myelin degenerations, tomacula or myelin outfoldings; (mean ± SEM; n=7 

animals from each genotype; two-tailed non-parametric Mann-Whitney test; *p < 0.05, **p < 0.01). (i-k) 

Ultrastructural analysis of sciatic nerves at P5. (i) Representative image of Rab35 cKOSC sciatic nerves with 

myelin degenerations (green arrows) and myelin outfoldings (yellow arrows) already at P5; Scale bar: 4 µm. 

(j) Rab35 cKOSC sciatic nerves contain an increased fraction of abnormal fibers; (mean ± SEM; n = 5 animals/ 

genotype; two-tailed Mann-Whitney t-test; **p < 0.01). (k) The fraction of myelinated fibers is not altered; 

(n = 5 animals /genotype; two-tailed Mann-Whitney t-test; p = 0.84).  

 

 

In order to substantiate these findings in vivo, Rab35 cKOSC animals were treated with 

10 mg Rapamycin per kg of body weight. Treatment was started at P12, the earliest time point, 

when animals were yet able to tolerate the long-term drug application. Ultrastructural analysis 

of sciatic nerves from Rab35 cKOSC at P70 revealed an amelioration of focal hypermyelination, 

particularly a significantly reduced proportion of fibers displaying tomacula and myelin 

degeneration (Fig. 3-25g,h). In contrast to the in vitro observation, myelin outfoldings were 

unchanged in nerves of Rapamycin-treated Rab35 cKOSC mice. Crucially, the analysis of sciatic 

nerves at P5 revealed an early onset of focal hypermyelination upon loss of Rab35 (Fig. 3-

25i,j). As Rapamycin was applied from P12 on only, manifestation of the phenotype at that 

early age might be an explanation for incompletely restored myelin homeostasis in Rapamycin-

treated Rab35 cKOSC mice. Earlier treatment with this inhibitor at the used dose was so far 

lethal. Interestingly, in vivo, the number of myelinated fibers in was unaltered between the 

genotypes (Fig. 3-25g,h). 

  Nevertheless, these data reveal Rab35 as an important regulator of PNS 

myelination, and, in agreement with our findings from other cell types in vitro, show that loss 

of Rab35 results in elevated mTORC1 activity in Schwann cells. In addition, mTORC1 
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hyperactivity contributes to the observed impairment of myelin homeostasis in form of focal 

hypermyelination in Rab35 cKOSC sciatic nerves in vivo and aberrant myelination ex vivo.  

 

 

3.2.6 Interfering with PI(3)-phosphate synthesis rescues mTORC1 hyperactivity and 

abnormal myelin protein expression in primary cultures of Rab35 icKO Schwann cells  

Focal hypermyelination, as seen in the absence of Rab35 in vivo is not only a 

phenotypical hallmark in sciatic nerves from adult mice with mTORC1 hyperactivation 

(Goebbels et al., 2012; Beirowski et al., 2017; Figlia et al., 2017) but also from MTMR2 KO or 

MTMR13 KO animals (Tersar et al., 2007; Robinson et al., 2008; Bolino et al., 2004; Ng et al., 

2013). Moreover, myelin outfoldings are observed in organotypic explants of both, MTMR2 

and MTMR13 KO animals (Bolis et al., 2009; Robinson et al., 2018). In agreement with our 

data from several cell types in vitro, we presumed that impaired recruitment of active MTMR 

phosphatase complexes contributes to the observed impairment of the myelin homeostasis in 

the absence of Rab35. To test this hypothesis, we made use of primary Schwann cells from 

Rab35 icKO mice, induced for knockout and differentiation with tamoxifen and ascorbic acid, 

respectively. Due to the limited amount of material in these cultures, we analyzed mTORC1 

activation by immunolabelling for p-S6 and S6 protein levels. This approach revealed the 

expected increase in the ratio of p-S6 over S6 protein levels as a readout for mTORC1 activity 

in primary Schwann cells from Rab35 icKO animals (Fig. 3-26a,b), as also recapitulated in 

primary astrocytic cultures (Fig. 3-26c,d). Accordingly, chronical inhibition of mTORC1 by 

application of 15 nM Rapamycin for six days sufficiently diminished p-S6 protein levels in 

Rab35 WT and icKO Schwann cells (Fig. 3-26a,b). In addition, immunolabelling using eGFP-

2xFYVE(Hrs) probe revealed increased PI(3)P levels in Rab35 icKO Schwann cells, indicating 

an impaired PI(3)-phosphatase function in these cells as well (Fig. 3-27a,b). In contrast, PI(4)P 

levels were not altered (Fig. 3-27c,d). 
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Figure 3-26: Repression of mTORC1 hyperactivity by interfering with PI(3)-phosphate synthesis in 

Rab35-depleted primary Schwann cells. (a,b) Primary Schwann cell cultures, prepared from tamoxifen-

inducible Rab35 icKO (Rab35Fl/Fl x CreER) and WT (Rab35Fl/Fl) mice, were induced for knockout and 

differentiation at DIV3, and chronically supplemented with DMSO, 1 µM VPS34-IN1, 2.5 µM Cmp-19, 50 

nM Apilimod or 15 nM Rapamycin (Rapa) from DIV5 until fixation and subsequent immunolabelling at 

DIV11. (a) Representative confocal images of Schwann cells supplemented with DMSO or inhibitors, and 

immunolabelled for ribosomal p-S6 (green) and S6 (red) protein. Areas marked by white squares in upper 

images (scale bars: 30 µm) are shown as insets below (scale bars: 10 µm). (b) Quantification of mTORC1 

activity by the ratio of p-S6 to S6 mean intensity in SC somata, normalized to WT + DMSO control (=1). 

Significantly increased mTORC1 activity in Rab35 icKO Schwann cells is rescued in all inhibitor conditions; 

(n = 6 (DMSO), 4 (Cmp-19, Apilimod) and 3 (VPS34-IN1, Rapa) independent experiments). (c, d) Increased 

p-S6/ S6 protein levels in Rab35 icKO astrocytes as a readout for mTORC1 hyperactivity. (c) Confocal 

images of Rab35 WT and icKO astrocytes immunostained for p-S6 (green) and total S6 (red); Scale bar, 30 

µm. (d) p-S6/ S6 ratio in Phalloidin-masked cells normalized to WT (100 %), is increased in Rab35 icKO 

cells; (n= 3 independent experiments). (mean ± SEM;; one sample two-tailed student’s t-test with a 

theoretical mean of 1, comparing the genotypes in each condition; *p < 0.05). 

 

Our data so far indicated that accumulation of the MTMR substrate PI(3)P could be the 

underlying cause of increased mTORC1 activation in the absence of Rab35 and MTMR2. In 

order to finally test this hypothesis in Schwann cells we chronically treated Rab35 WT and 
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icKO cultures with VPS34-IN1 or Compound-19 to interfere with PI(3)P and eventually 

PI(3,5)P2 synthesis (Ikonomov et al., 2015). In addition, we made use of chronical treatment 

with the specific PIKfyve-inhibitor Apilimod to selectively block the PI(3,5)P2 production 

(Gayle et al., 2017). In agreement with our previous findings, VPS34-inhibitors evidently 

abrogated PI(3)P levels (Fig. 3-27b) and reduced mTORC1 activity to WT levels in Rab35 

icKO Schwann cells as well (Fig. 3-26b). Inhibition of PIKfyve caused an elevation of PI(3)P 

levels in both, Rab35 WT and icKO Schwann cells (Fig. 3-27b), in agreement with the role of 

this lipid as a precursor for PI(3,5)P2. In contrast, mTORC1 activity was also restored to WT 

levels in Rab35 icKO SC cultures treated with Apilimod (Fig. 3-26b). These data indicate that 

mTORC1 hyperactivity upon Rab35 depletion is rather not elicited by the observed 

accumulation of PI(3)P but instead by simultaneously elevated PI(3,5)P2 levels in Schwann 

cells. 

Figure 3-27: Elevated PI(3)P levels in Schwann cells depleted for Rab35. (a,b) Primary Schwann cell 

cultures were treated chronically with DMSO or 50 nM Apilimod for six days, or acutely (1 h) with 10 µM 

VPS34-IN1 or 10 µM Cmp-19 prior to fixation with subsequent immunolabelling for PI(3)P. (a) 

Representative confocal images of differentiated Schwann cells, immunolabelled for PI(3)P using eGFP-

2xFYVE (green) and cell bodies using fluorescent phalloidin (red). Areas marked by white squares in upper 

images (scale bars: 30 µm) are shown as insets below (scale bars: 10 µm). (b) Quantification of PI(3)P sum 

intensity, normalized to the somata area and WT + DMSO control (100 %); (n = 4 (DMSO) and 3 (Apilimod) 

independent experiments). (c, d) Rab35 depletion does not alter the levels of PI(4)P in Schwann cells. (c) 

Representative confocal images of Schwann cells in culture, immunostained with an antibody against PI(4)P 

(red). Cell bodies were labelled using fluorescent phalloidin (green); Scale bars: 30 µm (upper), 10 µm (lower 

images). (d) The sum intensity of PI(4)P-positive puncta in Rab35 icKO Schwann cell somata, normalized 

to the somata area and Rab35 WT cells (100 %), is unaltered (p = 0.3854); (n = 3 independent experiments). 

(mean ± SEM; one sample two-tailed student’s t-test with a theoretical mean of 100, comparing the genotypes 

in each condition; *p < 0.05). 
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So far, we could observe hypomyelination in Rab35 icKO coculture explants with early, 

embryonically induction of Rab35 depletion. These results would be in line with the dual role 

of mTORC1 in repressing differentiation induction on the one hand, and promoting myelin lipid 

and protein synthesis on the other (Norrmen et al., 2017; Beirowski et al., 2017; Figlia et al., 

2017). Thus, we aimed to reveal the effect of late Rab35 knockout induction on myelin protein 

levels in Schwann cells upon simultaneous induction of differentiation and Cre-recombination. 

Mono-cultures of Schwann cells usually express low amounts of myelin proteins as they are 

not able to form “in vitro” myelin sheets as cultured oligodendrocytes (Arthur-Farraj et al., 

2011; Liu et al., 2015b). In agreement, we observed low levels of fluorescent signals in WT SC 

cultures immunolabelled for myelin protein 0 (P0), one of the major myelin components in the 

PNS (Shy et al., 2006) (Fig. 3-28). Interestingly, in Rab35 icKO cultures a high proportion of 

cells with strikingly elevated P0 protein levels were observed. Upon chronical treatment with 

Rapamycin, the mean P0 levels were indeed reduced to WT levels in Rab35 icKO cells. 

Importantly, this effect was also rescued by interfering with PI(3)-phosphate synthesis using 

VPS34-IN1, Cmp-19 or Apilimod (Fig. 3-28b), presumably by the indirect repression of 

mTORC1 activation as observed under these conditions. In sum, these data indicate that Rab35 

depletion in differentiated Schwann cells causes an increase in myelin protein levels in vitro, 

consistent with the myelin promoting function of mTORC1, once differentiation is induced 

(Beirowsky et al., 2017; Figlia et al., 2017). It additionally suggests that the observed reduction 

of mTORC1 repression in these cells is mainly due to an accumulation of the MTMR-

phosphatase substrate PI(3,5)P2. 



3. Results 
 

130 
 

 

Figure 3-28: Increased myelin protein expression in Rab35 icKO Schwann cell cultures is rescued by 

inhibition of mTORC1, VPS34 or PIKfyve. Primary Schwann cell cultures, induced for knockout and 

differentiation, were treated chronically with DMSO, 1 µM VPS34-IN1, 2.5 µM Cmp-19, 50 nM Apilimod 

or 15 nM Rapamycin (Rapa) for six days. Cells were fixed and immunostained. (a) Representative confocal 

images of Rab35 WT and icKO cells immunolabelled for P0 (green). The total number of cells was visualized 

using DAPI (magenta). Areas marked by white squares in upper images (scale bars: 100 µm) are shown as 

insets below (scale bars: 30 µm). (b) Quantification of the sum P0 fluorescence intensity divided by the cell 

number, and normalized to WT + DMSO controls (100 %); (mean ± SEM; n = 7 (DMSO), 5 (Cmp-19, 

Apilimod), 4 (VPS34-IN1) and 3 (Rapa) independent experiments; one sample two-tailed student’s t-test 

with theoretical means of 100 comparing WT and KO in each treatment condition; **p < 0.01). 

 

 

Collectively, our data identify Rab35 as a novel regulator of PNS myelination and reveal 

that elevated mTORC1 activity contributes to the impaired PNS myelin homeostasis upon loss 

of Rab35 in vivo, ex vivo and in vitro. Furthermore, repression of mTORC1 activity by Rab35 

is likely mediated by PI(3)-phosphate regulation through the recruitment of active MTMR 

phosphatases complexes. 
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4. Discussion 

This work unravels a novel function of Rab35 in the control of PNS myelin 

homeostasis. We demonstrate that loss of the small GTPase leads to a crucial impairment of 

Schwann cell myelination in vivo and in vitro. Furthermore, we identified Rab35 as a 

repressor of mTORC1 activity, which contributes to the regulation of myelin homeostasis. 

This action is mediated by the conversion of PI(3)-phosphates through Rab35-dependent 

recruitment of MTMR lipid phosphatase complexes. We observed this mechanism in different 

cell types, including primary cell cultures of the nervous system. Specifically in cultured 

Schwann cells, interfering with PI(3,5)P2 synthesis ameliorates not only mTORC1 

hyperactivation upon loss of Rab35 but also aberrant myelin protein levels. These data reveal 

insights how dysregulated PI(3)-phosphate conversion can lead to severe demyelination as 

displayed in CMT-disease types 4B, and thus might have therapeutic implications for the 

treatment of peripheral neuropathies. 

 

4.1 Rab35 is a novel repressor of mTORC1 and controls PNS myelin homeostasis 

4.1.1 mTORC1 hyperactivity in the absence of Rab35 affects PNS myelin homeostasis 

Perturbances in the regulation of mTORC1 and thus dysregulation of cell metabolism 

is the underlying cause for several diseases, including cancer and neurodegeneration 

(Laplante and Sabatini, 2012; Tatebe and Shiozaki, 2017). In peripheral nerves, mTORC1 

promotes proliferation of Schwann cell (SC) precursors, radial sorting of axons by immature 

SCs and myelin growth (Norrmén et al., 2014; Figlia et al., 2017). In SCs, mTORC1 is 

mainly activated via MAPK/ERK and PI3K/AKT signaling downstream of axonal NRG1-

ligand binding to Schwann cell ErbB2/B3 receptors (Goebbels et al., 2012; Heller et al., 

2014; Belin et al., 2018). Expression levels of ErbB3, ERK and AKT are downregulated 

during the maturation of nerves, from the first to the second postnatal week in mice when 

myelin growth reaches a plateau (Sheean et al., 2014). Similarly, mTORC1 activity declines 

during that time and remains at relatively low levels throughout further development (Heller 

et al., 2014; Figlia et al., 2017; Beirowski et al., 2017) (Figure 4-1). This mechanism seems to 

ensure proper axonal myelination by limiting further myelin growth. In accordance, 

abnormally high mTORC1 activity during adulthood results in excessive myelin growth with 

focal hypermyelination (Goebbels et al., 2012; Beirowski et al., 2017; Figlia et al., 2017; 

Jiang et al., 2018). Interestingly, in disease mouse models with insufficient myelin formation, 

hypomyelination is ameliorated by overexpression of ErbB-activating NRG1-III or 

pharmacological suppression of the NRG1-III-inactivating ß-secretase ADAM17/TACE 



4. Discussion 
 

132 
 

(Scapin et al., 2018; Belin et al., 2018). In turn, focal hypermyelination in mouse models of 

Charcot-Marie-Tooth (CMT) disease type 4B1 or Hereditary Neuropathy with liability to 

pressure palsies (HNPP) is rescued by pharmacological TACE activation (Bolino et al., 

2016). Rab35 cKOSC mice display not only progressive focal hypermyelination (Figure 3-12), 

but also mTORC1 hyperactivation in vivo (Figure 3-19a,b). Interfering with mTORC1 

activity in these mice by rapamycin treatment partially ameliorated the abundance of 

aberrantly myelinated fibers (Figure 3-25g,h). In agreement, the SC-specific ablation of 

PTEN, a negative regulator of mTORC1 activation, results in focal hypermyelination, and is 

ameliorated by rapamycin treatment (Goebbels et al., 2012). Similarly, tomacula and myelin 

outfoldings are observed upon genetic inactivation of TSC1 in Schwann cells (Beirowski et 

al., 2017). Moreover, elevated MAPK/ERK signaling in SCs results in mTORC1 

hyperactivity, focal hypermyelination and an increase in the myelin thickness, whereas the 

latter is partially mediated by mTORC1-independent ERK-targets (Sheean et al., 2014). As 

neither AKT- nor ERK-activity was elevated in Rab35 cKOSC mice (Figure 3-19c), our data 

further strengthen previous suggestions that increased mTORC1 activation is the underlying 

cause for focal hypermyelination in transgenic mice with upregulated MAPK/ERK- or 

PI3K/AKT-signaling in SCs. Excessive myelin growth due to elevated mTORC1 activity can 

be explained by its regulatory function in the synthesis of lipids. mTORC1 promotes the 

activation, trafficking and maturation of SREBP transcription factors and thus, regulates the 

expression of enzymes involved in the lipid, fatty acid and cholesterol synthesis in different 

cell types (Porstmann et al., 2008; Düvel et al., 2010; Li et al., 2010; Peterson et al., 2011; 

Han et al., 2015b), as well as in Schwann cells (Norrmén et al., 2014). The potential 

upregulation of these enzymes remains to be investigated in Rab35 cKOSC mice. However, g-

ratios are mainly unaltered in Rab35 cKOSC sciatic nerves and thus, do not indicate an 

increase in the overall myelin thickness (radial hypermyelination) which is displayed, at least 

for small diameter fibers (< 2 µm), in other transgenic mice with mTORC1 hyperactivation 

(Goebbels et al., 2010; 2012; Beirowski et al., 2017). This might be a dosage-dependent 

effect of mTORC1 activity (see below). On the other hand, the underlying molecular 

mechanisms that mediate the formation of these common pathological features and thus, how 

they result from elevated mTORC1 activity, are still elusive. Interestingly, genetic ablation of 

different myelin proteins leads to focal hypermyelination as well (Sander et al., 2006; Fabrizi 

et al., 2000). This is observed in HNPP, caused by haploinsufficency of the compaction 

protein PMP22 (Adlkofer et al, 1997). Similarly, MAG-deficient mice display myelin 

outfoldings that eventually result in the formation of tomacula (Cai et al., 2002). In addition, 
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focal hypermyelination is caused by different mutations in P0 (Fabrizi et al., 2000; Kochański 

et al., 2003; Iida et al., 2012), whereas other mutations in the same gene result in 

hypomyelination as displayed in CMT1B patients (D’Antonio et al., 2013). The phenotypical 

rescue in a CMT1B mouse model by overexpression of NRG1-III is suggested to result from 

an improvement in the stoichiometry of myelin lipid and protein synthesis (Scapin et al., 

2018). Accordingly, these animals display elevated AKT- and ERK-signaling, and, 

presumably due to increased mTORC1 activation, an upregulation in the lipid synthesis. In 

turn, the balanced upregulation of myelin lipid synthesis and myelin protein expression might 

underly radial hypermyelination, whereas focal hypermyelination could result from an 

imbalanced myelin formation. An increase in mTORC1-mediated myelin lipid synthesis 

accompanied by physiological levels of myelin protein expression or an impaired myelin 

protein incorporation into the nascent sheath, as discussed below, might account for the 

formation of focal but not radial hypermyelination in Rab35 cKOSC mice in vivo. 

Distinct Cre-recombinases used for conditional ablations of negative upstream 

regulators of mTORC1 partially account for observed differences in the extent of hypo- and 

hypermyelination upon mTORC1 hyperactivation in vivo (Figlia et al., 2018). Whereas strong 

hypomyelination results from Cre-expression controlled by the Dhh-promoter from E12 on, 

an initial hypomyelination followed by focal hypermyelination is observed in conditional 

TSC1 cKOSC animals using a Cre recombinase expressed at E13.5 under control of the 

P0-promoter (Beirowski et al., 2017; Jiang et al., 2018). Similarly, the conditional ablation of 

Rab35 was controlled by a P0-Cre (Figure 3-12a). These mice do not display 

hypomyelination in sciatic nerves at early stages of development, but Rab35 depletion ex vivo 

leads to a striking reduction in myelin segment formation in SC/DRG organotypic explants 

(Figure 3-25a-d). This might reflect the postulated time-dependent effect on myelination by 

altered mTORC1 activation (Beirowski et al., 2017; Figlia et al., 2017). The cause for such a 

difference in myelin formation in vivo and ex vivo, which is not reported so far in other 

transgenic mouse models with mTORC1 hyperactivity, remains to be investigated (Beirowski 

et al., 2017; Figlia et al., 2017; Jiang et al., 2018). Despite of that, myelin segment formation 

was restored in Rab35 cKOSC explants to WT levels by rapamycin treatment, suggesting that 

mTORC1 hyperactivity is indeed causative (Figure 3-25d). Importantly, a significant number 

of myelin segments ex vivo displayed abnormal structures, resembling of focal 

hypermyelination in vivo or myelin outfoldings in explants from CMT4B mouse models, and 

could be rescued by rapamycin (Figure 3-25e,f). Thus, mTORC1 hyperactivation in Rab35 

cKOSC explants is causative for impaired myelin formation. 
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The observed initial hypomyelination upon mTORC1 hyperactivation in vivo is 

attributed to an elevated proliferation of immature SCs on the one hand (Beirowski et al., 

2017; Jiang et al., 2018), and repression of the myelination-initiating transcription factor 

KROX20 by the mTORC1-target S6K on the other (Figlia et al., 2017). Notably, 

hyperproliferation of Schwann cells correlates with the extent of mTORC1 hyperactivity and 

thus, the impairment in myelination onset. In agreement with the fact that mTORC1 

hyperactivation is more pronounced upon TSC2 than TSC1 depletion (Zeng et al., 2011), 

TSC2Fl/Fl x P0-Cre mice display persistent hypomyelination into adulthood (Beirowski et al., 

2017). However, both, mTORC1 and Rheb are implicated in repression of the cell cycle exit 

by regulating the cyclin dependent kinase (CdK)-inhibitor p27kip1 for instance (Hong et al., 

2008; Lacher et al., 2010; Ji et al., 2012; Ke et al., 2016; Jiang et al., 2018). Thus, the 

observed hyperproliferation of TSC-depleted Schwann cells also results from mTORC1-

independent regulation of p27kip1 by Rheb (Beirowski et al., 2017). In conclusion, more 

moderate activity elevation of mTORC1 and Rheb in TSC1Fl/Fl x P0-Cre than in TSC2 cKOSC 

mice results in modest hyperproliferation and slightly delays the onset of myelination only 

(Beirowski et al., 2017; Jiang et al., 2018). The latter is represented by a reduced number of 

myelinated fibers in the first weeks postnatally, which indicates a lack of differentiated 

Schwann cells. However, in Rab35 cKOSC mice the number of myelinated fibers was 

comparable to control sciatic nerves already at P5 (Figure 3-25k). In addition, focal 

hypermyelination could be observed even at that young age. This difference to other mouse 

models with mTORC1 hyperactivity might be caused by additive effects. First, in contrast to 

TSC knockout animals, Rab35 cKOSC presumably do not display Rheb hyperactivity as 

neither AKT nor ERK are upregulated. Thus, less hyperproliferation than in TSC knockout 

animals can be expected. Second, in sciatic nerves of TSC1Fl/Fl x P0-Cre animals at P28, 

phosphorylated S6 protein levels are more than five times increased over WT levels 

(Beirowski et al., 2017). In contrast, sciatic nerves of Rab35 cKOSC mice displayed a more 

moderate 2- to 3-fold increase in p-S6/ S6 levels (Figure 3-19b). Thus, lower mTORC1 

hyperactivation might account for the lack of a delayed SC differentiation in these animals. 

Moreover, Rab35 is a known regulator of cytokinesis, due to its relevance in the cytokinetic 

abscission (Kouranti et al., 2006; Dambournet et al., 2011; Chesneau et al., 2012; Fremont et 

al., 2017). Accordingly, the rate of proliferation was markedly reduced in Rab35 icKO OPC 

cultures and slowed down by more than 50 % in Rab35 icKO astrocytes in culture (data not 

shown). A slower cytokinesis might counteract the increased proliferation induction upon 

mTORC1 hyperactivation. In sum, mTORC1 hyperactivity does not lead to hyperproliferation 
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or a delayed myelination onset in Rab35 icKO mice and thus, not to early hypomyelination in 

vivo.  

Interestingly, if mTORC1 hyperactivity is induced in mice upon adulthood, focal 

hypermyelination is accompanied by radial hypermyelination of large diameter fibers as well 

(Goebbels et al., 2012; Beirowski et al., 2017; Figlia et al., 2017; Jiang et al., 2018). This 

might indicate that mTORC1 activation upon myelin induction can cause an upregulated 

homeostatic wrapping of myelin layers by promoting myelin lipid as well as myelin protein 

synthesis. KROX20 regulates myelin protein translation during myelin induction (Jang et al., 

2010), and is suppressed by mTORC1. However, KROX20-independent upregulation of 

myelin protein expression is also reported, for instance upon NRG1 overexpression and 

presumably mTORC1 hyperactivation (Scapin et al., 2018). In addition, an upregulation of 

myelin protein levels is observed upon SC-specific overexpression of hyperactive AKT in 

vivo, whereas KROX20 levels are even reduced (Domenech-Estevez et al., 2016). 

Interestingly, in the CNS, cholesterol is critical for myelin protein synthesis (Smolders et al., 

2010; Mathews et al., 2014), and mTORC1 was recently identified as a key player in the 

cholesterol-mediated regulation of myelin protein expression (Mathews and Appel, 2016). 

When we made use of tamoxifen-inducible Rab35 knockout in differentiated Schwann cell 

mono-cultures, we could observe a large fraction of cells with abnormally high P0-protein 

expression in vitro (Figure 3-28). P0-signals in these cultures could be reduced to WT-levels 

by Rapamycin application, indicating that mTORC1 hyperactivity is indeed causative. 

Interestingly, Raptor depletion in Schwann cells in vivo results in lower protein levels of P0 

and MBP, but not MAG, suggesting that mTORC1 does not control PNS myelin protein 

synthesis in general but rather the expression of distinct proteins only (Norrmén et al., 2014). 

In contrast, in the CNS, mRNA and protein levels of almost all major myelin proteins are 

downregulated upon Raptor depletion, whereas MBP mRNA levels are less affected (Bercury 

et al., 2014; Lebrun-Julien et al., 2014). From these data, mTORC1 has been suggested to 

control translation but not transcription of MBP (Figlia et al., 2018). Our data, together with 

earlier findings (Norrmén et al., 2014), indicate that P0-protein levels are also regulated by 

mTORC1. Interestingly, the exit of newly synthesized P0-protein from the endoplasmatic 

reticulum is cholesterol-dependent (Saher et al., 2009), providing a mechanism by which 

mTORC1 activation could specifically promote P0-protein synthesis. Thus, inducing 

mTORC1 hyperactivity after KROX20-mediated P0- and MBP-transcription initiation could 

result in a more balanced upregulation of myelin lipid and protein synthesis and thus, to radial 

hypermyelination as well. To confirm this hypothesis, the levels of other myelin proteins in 
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Rab35-depleted SCs need to be analyzed. In addition, ultrathin sections of sciatic nerves from 

Rab35 cKOSC mice could be analyzed by immunogold labelling for the abundance and 

incorporation of myelin proteins into aberrantly myelinated sheaths in vivo.  

 

 

 Figure 4-1: Regulation of myelin homeostasis by mTORC1 in CNS and PNS. mTORC1 is proposed to 

delay the myelination onset in Schwann cells by S6K-mediated repression of KROX20 transcription and 

inhibition of the cell cycle exit. In the CNS, differentiation of OLs is presumed to be potentiated by 

mTORC1. After onset of myelination, mTORC1 promotes myelin growth by transcriptional upregulation 

of lipid- and cholesterol synthesizing enzymes via SREBPs, and presumably by promoting myelin protein 

synthesis. In the PNS, mTORC1 activity declines in pro-myelinating Schwann cells, and remains at low 

levels in mature myelinating Schwann cells. Modified from (Figlia et al., 2018). 

 

So far, myelin degeneration has not been reported as a frequent morphological feature 

that accompanies focal hypermyelination. However, myelin degeneration in Rab35 cKOSC 

was slightly ameliorated by Rapamycin treatment, indicating a link to mTORC1 

hyperactivation. Re-activation of mTORC1 is observed upon nerve injury and critical for 

MBP  
(P0) 
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proper myelin clearance, SC dedifferentiation and re-myelination (Norrmén et al., 2018). In 

turn, abnormally increased mTORC1 activity might induce myelin breakdown and thus, 

myelin degeneration even in the absence of a nerve damage. On the other hand, autophagy is 

required for proper myelin clearance (Gomez-Sanchez et al., 2015). Our data from astrocytic 

cultures and recent studies (De Leo et al., 2016; Minowa-Nozawa et al., 2017) indicate that 

autophagy might be impaired in the absence of Rab35. Thus, defective debris clearance could 

contribute to the progressive abundance of this pathological feature in Rab35 cKOSC sciatic 

nerves.  

Finally, despite of the significant rescue of myelin segment formation ex vivo and P0-

protein levels in vitro by mTORC1 inhibition in Rab35-depleted SCs, aberrant myelination in 

vivo is only partially ameliorated. Tomacula displayed the strongest reduction upon 

Rapamycin treatment, in accordance with the major role of mTORC1 in bulk membrane 

formation (Goebbels et al., 2012; Beirowski et al., 2017; Jiang et al., 2018). Myelin 

degeneration and outfoldings are less efficiently rescued, which might be explained by the 

early onset of the phenotype and the comparably late Rapamycin application. These features, 

but not tomacula, are already observed at P5 with a strikingly high abundance compared to 

Control animals (Figure 3-25j). In contrast, Rapamycin treatment was performed from P12 

on, as earlier application affected the survival of the mice. This problem might be 

circumvented by a 50 % reduction of the Rapamycin dosage, which is reported to be well 

tolerated by young mice already at P3 (Lebrun et al., 2014; Figlia et al., 2017). In addition, 

other processes independent of mTORC1 but regulated by Rab35 and required for the 

maintenance of myelin homeostasis might contribute to the demyelination in Rab35 cKOSC 

animals as further discussed in section 4.4. 

 

4.1.2 Rab35 represses mTORC1 activity independent of growth factor stimulation  

mTORC1 is a conserved and central signaling hub for the switch of cellular anabolism 

and catabolism, controlled by a cohort of extrinsic and intrinsic mechanisms to regulate cell 

growth and survival. In this study, we observed elevated mTORC1 activity upon depletion of 

Rab35 in several cell types. siRNA-mediated knockdown of Rab35 in HEK (Figure 3-13e,f) 

or HeLa cells (Figure 3-21a), or its acute depletion in primary astrocytic cultures (Figures 3-

14a,b; 3-26c,d) or Schwann cells, in vitro (Figure 3-26a,b) as well as in vivo (Figure 3-19a,b), 

resulted in hyperactivation of mTORC1. Rab35 has been implicated in regulation of the 

mTORC1-upstream activator AKT in different tissues. Its absence is reported to cause 

elevated EGFR recycling to the surface instead of degradation and thus, increased AKT 
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activation in different cancer cell lines (Allaire et al., 2013; Duan et al., 2016; Zheng et al., 

2017; Ye et al., 2018). In contrast, Rab35 is also presumed to facilitate PI3K activity and 

eventually AKT phosphorylation in somatic cancer or HEK cells, as well as upon ROS 

(reactive oxygen species) production in a breast cancer cell line (Wheeler et al., 2015; Deng et 

al., 2016). In these studies, less AKT activation was reported in the absence of Rab35, 

whereas overexpression of the constitutively active mutant Rab35Q67L enhanced AKT 

phosphorylation. In accordance, we observed reduced AKT phosphorylation upon acute 

depletion in Rab35 icKO primary astrocytes in culture (Figure 3-14c,d). Simultaneously, 

these cells display an upregulation in mTORC1 activity. This indicates an additional role of 

Rab35 in the repression of mTORC1, independent of its function in the activation of AKT. 

This hypothesis is corroborated by the fact that downregulation of RTK-mediated PI3K/AKT 

signaling by serum-starvation leads to reduced mTORC1 activity but does not compensate the 

significant hyperactivity in Rab35 icKO compared to control cells (Figure 3-14b). 

Furthermore, elevated mTORC1 activity in vivo, in sciatic nerve tissue of Rab35 icKOSC mice 

is not caused by RTK-overactivation as neither AKT- nor ERK-phosphorylation is increased 

(Figure 3-19c,d). Thus, we conclude that Rab35 represses mTORC1 independent of growth 

factor receptor signaling.  

mTORC1 promotes cell growth on the one hand and represses autophagy on the other 

(Laplante and Sabatini, 2012). In agreement, cultured cells depleted of Rab35 display an 

increased cell area (Figures 3-15a,b; 3-21d). Despite of the established function of mTORC1 

in the transcriptional repression of lysosomal and autophagic biogenesis via TFEB (Settembre 

et al., 2011; Martina et al., 2012), the abundance of lysosomal compartments is not altered in 

Rab35 icKO astrocytic cultures (Figure 3-16e-h). Notably, recent studies revealed, that 

inactivation of mTORC1 does not necessarily result in an increased number of lysosomes, as 

represented by unaltered LAMP-1 and LAMP-2 levels. Instead, enhanced lysosomal function 

by an increased lysosomal pH and TFEB-mediated upregulation of hydrolytic lysosomal 

enzymes was observed (Zhou et al., 2013; Puertollano et al., 2014). Thus, investigating the 

lysosomal functionality could reveal more insight into the effect of mTOR1 hyperactivity on 

protein degradation in our cells. On the other hand, LC3-levels are reduced as expected 

(Figure 3-15c,d). In contrast to the conserved role of mTORC1 in the downregulation of 

autophagy (Hosokawa et al., 2009; Jung et al., 2009), we observed an increased number of 

autophagosomes in the absence of Rab35 (Figure 3-15c-g). This might reflect a block in 

autophagosome maturation or clearance, for instance due to impaired fusion with lysosomes. 

Interestingly, a similar phenotype has been recently observed in Rab35 knockout HeLa cells 
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and was assigned to a function of Rab35 in mediating NDP52‐dependent autophagosome 

maturation (Minowa-Nozawa et al., 2017). In addition, the Rab35 effector protein, OCRL, 

has been implicated in autophagosome-lysosome fusion (De Leo et al., 2016). Measuring the 

autophagic flux would reveal if impaired autophagosome maturation or clearance is indeed a 

consequence in Rab35 cKO primary astrocytes. On the other hand, VPS34-complex I -

mediated PI(3)P production is a crucial promoter for autophagosome formation (Vergne et al., 

2009; Jaber et al., 2012; Ronan et al., 2014), and we could observe increased VPS34-

synthesized PI(3)P-levels in the absence of Rab35 (Figures 3-22; 3-27a,b). The complex 

should be at least partially inhibited by mTORC1 activity (Martina et al., 2012; Yuan et al., 

2013), but an impairment in PI(3)P hydrolysis due to a loss of different MTMR phosphatases, 

such as MTMR14, -R3, -R9 and -R8, indeed results in enhanced autophagy initiation (Vergne 

et al., 2009; Taguchi-Atarashi et al., 2010; Cebollero et al., 2012; Zou et al., 2012). It would 

be thus worth to investigate, if the loss of Rab35 increases PI(3)P-levels at autophagosomal 

membranes as well.  

In sum, catabolic pathways are not dramatically downregulated in the absence of 

Rab35 despite of mTORC1 hyperactivity. mTORC1-independent targets of Rab35, as well as 

proteins that mediate the repression of mTORC1 by Rab35 might counteract the effect of 

mTORC1 hyperactivity on autophagy. 

 

 

4.2 Rab35-dependent repression of mTORC1 is mediated by PI(3)P- and 

PI(3,5)P2-hydrolyzing MTMR proteins 

Several reports indicate that mTORC1 recruitment to or activation at late endosomes/ 

lysosomes is mediated by PI(3)P and/ or PI(3,5)P2, independent of AKT or ERK regulation 

(Byfield et al., 2005; Nobukuni et al., 2005; Han et al., 2012; Yoon et al., 2016; Fang et al., 

2001; 2003; Xu et al., 2011; Yoon et al., 2011; Bridges et al., 2012; Jin et al., 2014). By 

genetic manipulations, a set of PI(3)-phosphate kinases have been identified to thereby 

mediate mTORC1 activation, including the PI(3)P-generating enzymes, VPS34 and class II 

PI3K C2α (Jaber et al., 2011; Bridges et al., 2012), and the PI(3,5)P2-synthesizing PIKfyve in 

a complex with Fig4 and Vac14 (Bridges et al., 2012; Jin et al., 2014). In contrast, not much 

is known about the negative regulation of mTORC1 by PI(3)P- or PI(3,5)P2- 

dephosphorylation.  
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4.2.1 MTMR proteins are novel effectors of Rab35 

Active Rab35 specifically interacts with the pseudophosphatases MTMR5 and 

MTMR13 (Figures 3-5; 3-6), and via these also with their complex partner, the active 

phosphatase MTMR2 (Figures 3-9; 3-10). In addition, we identified MTMR1 as a novel 

complex partner of MTMR13 (Figure 3-9), and presumably also MTMR5 (data not shown). 

Rab35 recruits MTMR13 to LAMP-positive late endosomal/ lysosomal (LE/ Lys) membranes 

(Figure 3-8d-f). These compartments display PI(3,5)P2- and PI(3)P-identity, the preferred 

substrates of MTMR2 (Cao et al., 2008) in a complex with MTMR13 (Berger et al. 2006b) or 

MTMR5 (Kim et al., 2003b). Active Rab35 and MTMR13 also colocalized at defined plasma 

membrane sites. This in agreement with the known localization of Rab35 (Li et al., 2014), 

whereas a function of MTMRs at the plasma membrane remains to be investigated. 

Interestingly, lysosomal positioning towards the plasma membrane in response to amino acid 

stimulation is mediated by PI(3)P-binding proteins (Hong et al., 2017). In addition, a plasma 

membrane pool of PI(3)P and PI(3,5)P2 is also reported to mediate mTORC1 activation via 

TSC complex regulation (Bridges et al., 2012; Hirsch et al., 2014; Mohan et al., 2016).  

Furthermore, Rab35-depleted cells display accumulation of PI(3)P, which strongly 

indicates that PI(3)-phosphate regulating enzymes are dysregulated (Figures 3-22; 3-27a,b). 

The only so far known Rab35 effector that regulates PI-metabolism is the 5’-phosphatase 

OCRL. This enzyme preferentially dephosphorylates PI(4,5)P2, which is for instance required 

for the uncoating of clathrin-coated vesicles upon endocytosis, and their eventual fusion with 

endosomes (Cauvin et al., 2016). The subsequent conversion from PI(4)P to endosomal 

PI(3)P is incompletely resolved, but might be realized by class II PI3K C2α-mediated 

generation of PI(3,4)P2 from PI(4)P, which is eventually converted into PI(3)P by INPP4B 

(Posor et al., 2013). Thus, an impaired recruitment of OCRL in the absence of Rab35 would 

thereby not result in the observed accumulation of PI(3)P. In addition, Rab35 icKO Schwann 

cells do not display altered PI(4)P levels (Figure 3-27c,d). Interestingly, overexpression of 

MTMR2 decreases PI(3)P levels in cultured cells (Lorenzo et al., 2006). Thus, we propose 

that the loss of Rab35 impairs the recruitment of the PI(3)P phosphatase complexes 

MTMR13/-R2, MTMR5/-R2, MTMR13/-R1 to lysosomal membranes and thereby causes an 

accumulation of PI(3)P. This hypothesis is corroborated by the finding that PI(3)P levels are 

increased at late endosomal/lysosomal (LE/Lys)-compartments upon depletion of Rab35, 

MTMR2, or both (Figure 3-23). An accumulation of PI(3,5)P2 is also likely, though we could 

not investigate this directly, due to the lack of a functional probe (Hammond et al., 2015). 

Furthermore, we observed reduced MTMR2 levels in Rab35 icKO primary astrocytic cultures 
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(Figures 3-17a,b; 3-18b). In turn, sciatic nerve tissue from MTMR2 KO mice also harbor 

reduced Rab35 levels (Figure 3-17c,d). A regulation of these proteins in the translational 

process of each other could explain this finding but a function in protein translation is neither 

reported for Rab35 nor MTMR2 so far. We observed that either loss of Rab35 or MTMR2 in 

HEK cells or primary astrocytes in culture results in increased activity of mTORC1 (Figures 

3-13e,f; 3-18d). Thus, both proteins act in the repression of the core kinase complex. 

Moreover, simultaneous depletion of both proteins partially results in an even more severe 

upregulation of steady state mTORC1 activity. This argues against a genetic compensation by 

the reduction of MTMR2 or Rab35 in the absence of its partner protein. Intriguingly, a 

reduction in MTMR2 protein levels is also observed in MTMR13 KO mice, while MTMR13 

protein levels are reduced in MTMR2 KO mice as well (Ng et al., 2013). In addition, higher 

protein levels than expected from single overexpression of MTMR2 and -R13 are reported 

upon their co-expression in cell cultures (Robinson and Dixon, 2006). The same 

interdependence of protein levels is observed for other MTMR complex-forming members 

(Zou et al., 2009; 2012; Gupta et al., 2013), and likely reflects an increased or decreased 

protein stability in the presence or absence of a complex partner, respectively. Thus, the 

observed interdependence of Rab35 and MTMR2 strongly suggests a functional interaction, 

presumably by complex formation for the repression of mTORC1 activity. This hypothesis is 

corroborated by the finding that overexpression of MTMR2 not only ameliorates mTORC1 

hyperactivation in MTMR2-depleted HEK cells, but also in cells with markedly decreased 

levels of Rab35 upon siRNA-mediated knockdown (Figure 3-20). Furthermore, increased 

mTORC1 activity in the absence of MTMR2 is also not attributed to elevated AKT activation 

(Figures 3-13d; 3-18c). In a recent study, overexpression of MTMR3 has been reported to 

interfere with mTORC1 activation, though independent of its phosphatase activity and by 

direct binding (Hao et al., 2016). If such an interaction is also true for other MTMRs should 

be therefore investigated, for instance in an affinity purification assay. Despite, our data rather 

suggest a lipid-mediated regulation by MTMR2, as mTORC1 hyperactivation is rescued by 

pharmacological interference with PI(3)P synthesis in Rab35 icKO cells (Figure 3-24a,b), and 

in cells additionally depleted of MTMR2 (Figure 3-24c,d). However, lipid-mediated 

regulation of mTORC1 by MTMR2 remains to be ultimately confirmed, for instance by 

showing that overexpression of a phosphatase-deficient MTMR2 mutant does not rescue 

mTORC1 hyperactivation in MTMR2-depleted cells. So far, our findings indicate a sequential 

action of Rab35 and MTMR2 in repressing mTORC1 by PI(3)P- and PI(3,5)P2-hydrolysis at 

lysosomal sites.  
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4.2.2 Rab35-dependent recruitment of MTMR phosphatase complexes 

Despite of the fact that MTMR2 and its closest homologues MTM1 and MTMR1 

harbor a lipid-binding domain, their association with membranes is only occasionally 

observed upon overexpression, and the localization pattern remains mainly cytosolic 

(Robinson and Dixon, 2006; Cao et al., 2007; 2008). Furthermore, these phosphatases convert 

PI(3)P (Cao et al., 2007; 2008; Ketel et al., 2016; this study), whereas their PH-GRAM 

domain preferentially binds to PI(3,5)P2 and PI(5)P (Berger et al., 2003; Schaletzky et al., 

2003; Tsujita et al., 2004). This indicates their membrane association might be mediated by 

additional factors or other proteins. For instance, constricted conditions such as a 

hypoosmotic shock, which increases PI(3,5)P2 concentration, facilitate MTMR2 membrane 

association (Berger et al., 2003). A report about ERK-mediated MTMR2-dephosphorylation 

and its eventual dissociation from early endosomal membranes (Franklin et al., 2011; 2013) 

contrasts earlier findings of EGF-stimulated MTMR2 translocation to late endosomal 

membranes (Cao et al., 2008). In the latter study, a direct interaction between VPS34 and 

MTM1 or MTMR2, controlled by early endosomal Rab5 or late endosomal Rab7, 

respectively, was proposed to mediate their recruitment (Cao et al., 2007; 2008). However, 

these Rab GTPases activate VPS34 by disrupting the kinase-phosphatase interaction. Thus, 

how MTM1 and MTMR2 bind to the respective PI(3)P-positive membranes remains elusive. 

Interestingly, a recent study reported that Rab11 is activated by an endosomal PI(3)P pool and 

mediates the recruitment of MTM1 (Campa et al., 2018). Here, we propose that Rab35 

recruits MTMR2 and -R1 in a complex with MTMR5 or -R13. This is conceivable, as 

complex formation with these pseudophosphatases by oligomerization through their coiled-

coil regions is known to regulate the membrane association of MTMR2 (Laporte et al., 2002; 

Berger et al., 2003; 2006b; Kim et al., 2002b; 2003b; Robinson and Dixon, 2006). For 

instance, its localization to endomembranes is disrupted when the coiled-coil region is 

mutated (Kim et al., 2002b). In turn, overexpressed MTMR2 translocates from the cytosol to 

punctate, perinuclear puncta when MTMR5 is co-expressed (Kim et al., 2003b). Furthermore, 

the association of MTMR2 with MTMR5 or -R13 results in strikingly increased catalytic 

activity towards PI(3)P and PI(3,5)P2 in vitro (Kim et al., 2003b; Berger et al., 2006b). Thus, 

these pseudophosphatases not only recruit but also stimulate phosphatase activity of MTMR2.  

We propose that membrane association of these pseudophosphatases is regulated by 

recruitment through Rab35, as overexpressed MTMR13 remains mainly cytosolic (Robinson 

and Dixon, 2005) but is translocated by active Rab35 (Figure 3-8d-f). This hypothesis is 

corroborated by the fact that the partial localization of MTMR13 to membrane fractions is 
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independent of its two lipid-binding domains, PH or PH-GRAM, whereas the inactive PTP 

domain alone is sufficient (Robinson and Dixon, 2006). Intriguingly, we could map the 

binding site of Rab35 to the PTP domain of MTMR13 (Figure 3-7). Interaction at this site can 

explain the specific binding of Rab35 to these pseudophosphatases, but also raises the 

question if other inactive MTMR members might be recruited as well. In contrast, the inactive 

PTP domain of MTMR13 displays the largest sequence identity with MTMR5 (57,5 %) and 

MTMR2 (30.1 %). Thus, the PTP domains of other MTMR pseudophosphatases have less 

overlap with MTMR13 than MTMR2 and are therefore similarly not expected to bind to 

Rab35. Furthermore, neither our interactor screen in HEK cells (Figure 3-4) nor the screen 

performed with D. melanogaster proteins (Gillingham et al., 2014) indicate comparable 

association of other MTMR pseudophospatases with Rab35. Interestingly, the PTP domain 

displayed a lower binding affinity to Rab35 than full-length MTMR13. Thus, binding of 

Rab35 to the PTP domain could be additionally promoted by other domains of MTMR13 in 

its native conformation. Though, we observed reduced binding of the PTP domain to Rab35 

when expressed in conjunction with the coiled-coil region, steric interference by the latter 

could also be an artefact of the recombinant peptide. In consequence, we propose a model in 

which Rab35 binds to the inactive PTP domain of MTMR13, and presumably also MTMR5. 

The active phosphatases MTMR2 or -R1 hetero-oligomerize with these pseudophosphatases 

via their coiled-coil (CC) regions, and thereby active MTMR complexes can be recruited by 

the small GTPase (Figure 4-2). The hypothesis that these complexes are still active when 

Rab35 is bound remains to be confirmed. For instance, an in vitro phosphatase assay with 

MTMRs, affinity-purified from HEK cell lysates using GST-Rab35^GTPyS as a bait, could 

reveal their functional activity. Alternatively, recombinantly expressed and purified MTMR1 

and -R2 from E. coli can be used. In contrast, the large multi-domain proteins MTMR13 

or -R5 are not soluble in E. coli (data not shown). In addition, localization studies within cells 

were so far limited as endogeneous levels of Rab35 are obviously not sufficient to recruit 

overexpressed MTMR13. Furthermore, the overexpression of all three interacting proteins 

impaired cell morphology and survival (data not shown). Thus, antibodies are required to 

detect their endogeneous localization. Alternatively, if an increased phosphatase activity upon 

co-overexpression of Rab35 with MTMR complexes is responsible for the lethal effect, the 

use of a phosphatase-inactive mutant of MTMR2 might solve this problem.  

Finally, we could not yet reveal how Rab35 is recruited to lysosomal sites. In a recent 

study, overexpression of the long non-coding mRNA HOTAIR increased the co-locolization 

of Rab35 with CD63-positive LE/Lys (Yang et al., 2019). In oligodendrocytes, the function 
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of Rab35 at LAMP-positive late endosomal MVBs during exosome secretion is negatively 

regulated by the GAPs TBC1D10A-C (Hsu et al., 2010). Another candidate could be 

Folliculin, which possesses GEF activity towards Rab35 (Nookala et al., 2012; Zheng et al., 

2017), is identified at lysosomal sites and regulates mTORC1 activity (Baba et al., 2006; 

Hasumi et al., 2009; 2014; Petit et al., 2013; Tsun et al., 2013; Meng and Ferguson, 2018). In 

addition, the Rab35-GEF DENND1A (Connecdenn1) possesses the highest binding affinity 

among all PI-species towards PI(3)P, and insignificantly less to PI(3,5)P2 (Allaire et al., 

2010). Analyzing PI(3)P levels or mTORC1 activation in the absence of these GEFs and 

GAPs in primary Schwann cells could reveal their potential involvement in mediating the 

recruitment and regulation of Rab35 at LE/Lys.  

 

Figure 4-2: Model of interaction between Rab35 and MTMR complexes. Rab35 binds MTMR13, and 

presumably MTMR5 at their inactive PTP domains, and via these, to the active phosphatases MTMR2/ -

R1. CC - coiled-coil region; PTP – phosphotyrosine phosphatase 

 

4.2.3 PI(3)-phosphates in the regulation of Schwann cell myelin homeostasis 

The regulation of PI signaling is strongly correlated to SC myelin homeostasis. Four 

CMT-disease types are caused by loss of function or missense mutations in PI(3)-phosphate 

catabolizing enzymes: CMT4J by Fig4, and CMT4B1, -B2 and -B3 by MTMR2, -R13 and -

R5, respectively (Suter, 2007). In CMT4B1, mostly truncating or missense mutations within 

the highly conserved residues of the catalytic PTP- and the PH-GRAM domain of MTMR2 

are causative (Berger et al., 2012). CMT4J mainly results from mutations in the catalytic SAC 

domain of Fig4, or within its interaction domains with the scaffolding protein Vac14 (Chow 

et al., 2007). While CMT4B is marked by redundant myelin formation, CMT4J patients 

display hypomyelination. The interaction of MTMR2 with Dlg-1 has been recently proposed 

to inhibit the delivery of membrane via vesicular structures at paranodal loops and thereby 

account for the occurrence of myelin outfoldings in CMT4B1 mouse models (Bolis et al., 

2009). Accordingly, depletion of the fusion promoter Sec8 slightly ameliorated myelin 

outfoldings in MTMR2 KO cultures in vitro (Bolis et al., 2009), but inactivation of Dlg-1 in 

MTMR2 KO mice did not alter the phenotype in vivo (Cotter et al., 2010). In addition, how 
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the phosphatase activity of MTMR2 could contribute in this mechanism is not revealed. 

Interestingly, heterozygousity of Fig4, which conversely results in reduced PI(3,5)P2 levels 

due to the physical interdependence with PIKfyve (Vaccari et al., 2011), ameliorates the 

phenotype of MTMR2 KO mice in vivo. Also in vitro, the depletion of PIKfyve ameliorates 

myelin abnormalities in MTMR2 KO cultures. These data indicate a striking dependency of 

myelin homeostasis on the phosphatase activity of MTMR2 towards PI(3,5)P2.  

Reminiscent of CMT4B mouse models (Bolino et al., 2004; Robinson et al., 2008; Ng 

et al., 2013), sciatic nerves from Rab35 cKOSC are marked by focal hypermyelination with 

abundant myelin outfoldings (Figure 3-12d-f). In addition, adult mice display a reduction in 

the myelin thickness of large diameter nerve fibers (Figure 3-12h), which is also observed in 

aged MTMR13 KO mice (Ng et al., 2013; Robinson et al., 2008). Moreover, in agreement 

with the identification of Rab35 as an upstream regulator of MTMR2, we observed increased 

PI(3)P levels in Rab35 icKO Schwann cells in culture (Figure 3-27a,b). Furthermore, though 

a positive regulation of AKT (Berger et al., 2011) or negative regulation of ERK (Franklin et 

al., 2011) signaling was presumed from MTMR2 overexpression assays in cell lines, neither 

MTMR2 KO nor -R13 KO mice display altered AKT- or ERK- activation, whereas mTORC1 

activity has not been investigated yet in CMT4B mouse models (Bolino et al., 2016; Ng et al., 

2013). Consistent with the fact, that late endosomal/ lysosomal PI(3)P activates mTORC1 

activity (Byfield et al., 2005; Nobukuni et al., 2005; Jaber et al., 2011), we observed an 

amelioration of mTORC1 hyperactivity in SC mono-cultures upon pharmacological 

interference with the main PI(3)P-synthesizing enzyme VPS34 (Figure 3-26a,b). We could 

not directly probe for PI(3,5)P2 levels (Hammond et al., 2015), but PI(3)P is the only known 

precursor of PI(3,5)P2 and depletion of VPS34 lowers PI(3,5)P2 levels by about 65% (Sbrissa 

et al., 1999; Zolov et al., 2012; Ikonomov et al., 2015). In agreement, we observed a strong 

increase of PI(3)P levels upon pharmacological interference with PIKfyve using Apilimod. 

Despite of that, this condition also rescued the hyperactivation of mTORC1 and, importantly, 

elevated P0-protein levels in Rab35-depleted Schwann cells (Figure 3-28). This suggests that 

PI(3,5)P2 levels, and not PI(3)P, are the main driver for mTORC1 activity in Schwann cells, 

and thus, presumably for myelin regulation.  

Surprisingly, in a recent study, an amelioration of myelin outfoldings in MTMR13 KO 

mice has not been observed upon simultaneous knockout of either VPS34 or PI3KC2ß 

(Robinson et al., 2018). Astonishingly, additive effects in these double knockout mice were 

also not reported, though VPS34 cKOSC animals display a severe hypomyelination in vivo 

(Logan et al., 2017). The lack of both, amelioration and exacerbation, could hint to a 
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compensation of class II and class III PI3K in the absence of each other, similar to the 

observed PI3KC2ß upregulation in the absence of -C2α in HeLa cells and fibroblasts (Tiosano 

et al., 2019). In addition, in contrast to the presented morphometric analysis from 2- and 8-

month-old MTMR13 KO x PI3KC2ß cKOSC animals, adult MTMR13 KO x VPS34 cKOSC 

mice have not been investigated (P3 and P18 only). The authors proposed an 

MTMR2-independent phenotype of MTMR13, which is contrasted by the strong phenocopy 

in MTMR13- and -R2 KO mouse nerves (Bolino et al., 2004; Ng et al., 2013). In addition, 

MTMR2 re-expression in MTMR13 KO SC/ DRG organotypic explants did ameliorate myelin 

outfoldings (Robinson et al., 2018). Our data, together with recent findings (Vaccari et al., 

2011), indicate that an alternative cross breeding of MTMR13 KO animals with Fig4 

heterozygeous mice might be a better strategy to compensate focal hypermyelination. Finally, 

also a reduction in PI(5)P levels due to impaired PI(3,5)P2 dephosphorylation by MTMR2 

could contribute to defective myelin formation. However, its role in myelination and 

membrane trafficking is less well investigated. PI(5)P is a known allosteric activator of the 

PH-GRAM domain (Schaletzki et al., 2003), and can be converted to the PM-lipid PI(4,5)P2 

by type II PI(5)P 4-hydroxy kinase (PI5P 4K) (Rameh et al., 1997; McCartney et al., 2014). 

This might be a crucial step for the fusion of late endosomal/ lysosomal compartments with 

the plasma membrane, for instance during exosome secretion (see section 4.4).  

We identified MTMR1 as a novel active phosphatase that interacts with MTMR13 

(Figure 3-9) and most likely also with MTMR5 (data not shown). Interestingly, the pathology 

and onset of CMT4B1 patients is more severe than displayed in CMT4B2 patients (Pareyson 

et al., 2019). A partial redundancy of MTMR13 and -R5 in the recruitment of MTMR2 in 

Schwann cells is thus highly suggestive. Could MTMR1 likewise compensate the absence of 

the active phosphatase MTMR2? MTMR1 has been recently implicated in muscular atrophy 

(Zanoteli et al., 2005), and its knockdown in HeLa cells partially phenocopies MTM1 

depletion with mislocalized transferrin receptors (Ketel et al., 2016). However, MTMR1 is 

more closely related to MTMR2 than MTM1 with a sequence identity in humans of 69.7 % 

and 58.3 %, respectively. In addition, we could not detect any interaction between MTM1 and 

MTMR13 or -R5. If MTMR1 can functionally compensate the loss of MTMR2 could be 

investigated by analyzing PI(3)P accumulation and mTORC1 activity in the absence of both 

phosphatases in Schwann cells. More insight could be also revealed by comparing the 

modulation of MTMR2 and -R1 phosphatase activity in the presence of MTMR5 or -R13 in 

an in vitro phosphatase assay. Thus, so far, compensation of MTMR1 for -R2 can only be 

speculated and might also be cell type-specific.  
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In conclusion, we propose that impaired MTMR complex recruitment leads to an 

accumulation of PI(3,5)P2, which in turn results in dysregulated mTORC1 repression, and 

thus, contributes to myelin abnormalities in Rab35-depleted Schwann cells (Figure 4-3). Our 

data indicate that increased mTORC1 activity might also contribute to the observed focal 

hypermyelination in CMT4B patients. The finding that Rab35 can potentially recruit different 

MTMR complexes can explain why Rab35 cKOSC mice display stronger focal 

hypermyelination including tomacula, which were recently suggested to represent a late form 

of myelin outfoldings (Cai et al., 2002), and an earlier onset of demyelination compared to 

MTMR2 KO mice, in which nerve fiber abnormalities are not observed before P19 (Bolino et 

al., 2004).  

 

Figure 4-3: Proposed model of Rab35-dependent mTORC1 repression in Schwann cells mediated by 

the recruitment of PI(3,5)P2-hydrolyzing MTMR complexes to LE/Lys. PI(3,5)P2, generated by 

PIKfyve from PI(3)P, enables Raptor-binding and thereby promotes mTORC1 recruitment to the late 

endosomal/ lysosomal (LE/Lys) membrane. In turn, active MTMR complexes are recruited to LE/Lys by 

Rab35. MTMR2 (or -R1) mediated dephosphorylation of PI(3,5)P2 facilitates the dissociation of mTORC1 

from LE/Lys and thus, inactivation of the kinase complex. Thereby, sustained mTORC1 activity and 

consequently excessive aberrant myelin growth is repressed. 

 

4.3 Altered myelin homeostasis in Rab35-depleted oligodendrocytes 

In oligodendrocytes, shRNA-mediated depletion of Rab35 has been reported to result 

in impaired secretion of major myelin proteins on the one hand (Hsu et al., 2010), and a gain 

in differentiation and myelination on the other (Miyamoto et al., 2013). We could confirm the 

latter, as acute knockout of Rab35 in primary cultures of differentiated OLs resulted in 

increased in vitro myelin sheet formation and myelin protein abundance (Figure 3-3). Could a 

loss of mTORC1 repression in these cells be a causative factor? Indeed, elevated mTORC1 
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activation upon OL-specific upregulation of PI3K/AKT or MAPK/ERK signaling leads to 

radial hypermyelination in the CNS (Flores et al., 2008; Narayanan et al., 2009; Goebbels et 

al., 2010; Ishii et al., 2013; Sheean et al., 2014; Furusho et al., 2017), whereas features of 

focal hypermyelination are of lower abundance than in the PNS (Goebbels et al., 2010). This 

difference could reflect the presumed positive effect of mTORC1 activity on myelin induction 

in OLs, though the underlying mechanism is not revealed yet (Figlia et al., 2018; Figure 4-1). 

The early ablation or increased activity of Rheb in OPCs delays or prematures myelination 

onset, respectively (Zou et al., 2014). In addition, Rapamycin treatment delays in vitro 

myelination and downregulates the transcription of myelin lipid synthesizing enzymes and 

major myelin proteins (Tyler et al., 2009; 2011). Though mTORC1 has not yet been 

identified as a direct regulator of myelin protein synthesis, OL-specific Raptor depletion 

results in a reduction of mRNA and protein levels of major myelin proteins as well (Bercury 

et al., 2014; Lebrun-Julien et al., 2014). Similarly, downregulation of the cholesterol 

synthesis in oligodendrocytes results in decreased myelin gene expression in vitro (Smolders 

et al., 2010) and in vivo (Mathews et al., 2014). mTORC1 not only promotes cholesterol 

synthesis but has also been recently identified as a key player in cholesterol-regulated myelin 

protein expression in the CNS (Mathews and Appel, 2016). Thus, promoting myelin lipid 

synthesis as well as protein synthesis in OLs can account for the balanced increase in myelin 

growth and thus, radial hypermyelination in the CNS when mTORC1 activity is elevated. So 

far, we have not investigated mTORC1 activation in Rab35-depleted oligodendrocytes. 

Despite, our data could hint to a similar regulation of mTORC1 by Rab35 in CNS myelinating 

glial cells as in Schwann cells. First, as indicated from above-mentioned studies, a loss of 

mTORC1 repression can indeed result in hypermyelination as observed in vitro in Rab35 

icKO OL cultures. Second, these cells also accumulate PI(3)P (Figure 3-22c,d), suggesting an 

important role of Rab35 in PI(3)-phosphate conversion in oligodendrocytes as well. In 

addition, this regulation might also be mediated by MTMR complexes in OLs, as short-term 

depletion of MTMR2 phenocopies the loss of Rab35 in form of elevated myelin protein levels 

(Figure 3-11). MTMR2 is also expressed in other CNS cells such as neurons (Lee et al., 2010) 

and astrocytes (this study). Despite of that, defects of the central nervous system have not 

been reported so far in CMT4B1, but CMT4B3 patients only (Alazami et al., 2014; Romani et 

al., 2016; Manole et al., 2017). One explanation for that discrepancy could be a functional 

compensation of MTMR2 loss in OLs in vivo, for instance by MTMR1. Thus, Rab35 might 

also regulate MTMR complexes and mTORC1 activity in OLs.  
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Rab35 is reported to recruit the ARF6-GAP ACAP2 and thereby represses ARF6 

activity and eventually OL differentiation (Miyamoto et al., 2013). How ARF6 finally 

promotes the latter remains enigmatic. Alternatively, elevated mTORC1 activity could be the 

underlying cause. A gain in differentiation might even directly contribute to the observed in 

vitro hypermyelination in our cultures, though our setting did not allow us to analyze this in 

Rab35 icKO cultures directly. Mono-cultures of Rab35-depleted OPCs displayed markedly 

reduced proliferation and increased cell death, and thus, were not sufficiently confluent for a 

comprehensive OL analysis upon early tamoxifen application (Figure 3-2a-c). The defects in 

proliferation might result from altered recycling and signaling of the main receptor for OPC 

proliferation, PDGFRα, as suggested from HEK cell experiments (Wheeler et al., 2015). 

Interestingly, increased apoptosis of OPCs is also reported upon elevated mTORC1 activity in 

conditional TSC1 knockout mice (Jiang et al., 2016). However, this could also result from 

mTORC1-independent regulation by TSC1 (Figlia et al., 2017). Interestingly, lower 

proliferation rates accompanied by increased apoptotic cell death have been observed for SC 

precursors depleted of MTMR2 in mono-cultures (Chojnowski et al., 2007), though this effect 

was never reported upon co-culturing with neurons (Bolis et al., 2009). Thus, our data could 

rather reflect the hypersensitivity of OPCs in mono-cultures, than predicting a great loss of 

Rab35-depleted OPCs in vivo.  

Rab35 is presumed to mediate docking of MVBs to the plasma membrane and thus to 

promote the secretion of exosomes in oligodendrocytes (Hsu et al., 2010). In the absence of 

the small GTPase, impaired exosome secretion is observed in vitro, accompanied by 

intracellular accumulation of PLP in LAMP-positive compartments. A function of Rab35 in 

the secretion of exosomes is also reported from non-myelinating cells (Novo et al., 2018; 

Yang et al., 2019). Intriguingly, the accumulation of MAG in LAMP-positive compartments 

is observed in cultured oligodendrocytes from Fig4-/- mice as well, which display reduced 

PI(3,5)P2 levels (Mironova et al, 2016). Thus, defects in MVB fusion with the plasma 

membrane in the absence of Rab35 could be caused by dysregulateded PI(3)-phosphate 

conversion. However, the consequence of impaired exosome release on myelin formation in 

Rab35-depleted oligodendrocytes was not investigated so far (Hsu et al., 2010). Recent 

publications indicate a crucial requirement of MAG- and PLP-release by LE/Lys in the 

formation of myelin sheaths (Simmons and Trajkovic, 2006; Winterstein et al., 2008; 

Mironova et al., 2016). Accordingly, PLP-containing MVBs located to non-compacted 

myelin regions, in paranodal loops and cytoplasmic channels, the presumed sites of myelin 

growth (Hsu et al., 2010). The limited cell number in primary OL cultures did not allow us to 
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directly address this question by purification and thus, analysis of secreted exosomes. 

However, Rab35 icKO oligodendrocytes form myelin sheets in vitro, even in excess, and 

without obvious intracellular accumulation of myelin proteins (Figure 3-3). Thus, how 

impaired exosome secretion in the absence of Rab35 can contribute to the observed gain of 

myelin formation in vitro (Miyamoto et al., 2013; this study) remains elusive at this point. 

In consequence, Rab35 is strongly implicated in myelin homeostasis of the CNS and 

our data might indicate that the regulation of PI(3)-phosphates and mTORC1 contributes to 

the observed effects upon Rab35 loss in vitro. However, in vivo analysis of CNS myelination 

in OL-specific Rab35 knockout animals will reveal its physiological requirement. If myelin 

proteins are indeed accumulated intracellularly in vivo, could be investigated then by 

purification of the myelin exosomal fraction from these brains with subsequent analysis by 

mass spectrometry.  

 

4.4 Rab35-dependent mechanisms which might contribute to the control of 

myelin homeostasis 

Rapamycin treatment rescued myelination defects in the absence of Rab35 ex vivo and 

in vitro. However, impaired PNS myelin homeostasis in vivo is only partially ameliorated by 

mTORC1 inhibition. As already mentioned, this can be attributed to the treatment timing on 

the one hand. On the other, it could also indicate that other processes downstream of Rab35 

and independent of mTORC1 contribute to PNS myelin homeostasis. 

Rab35 is implicated in the regulation of the actin cytoskeleton via its effector protein 

fascin, the GEF DENND1C, as well as CDC42 and Rac1, in the formation of actin-rich 

protrusions during phagocytosis, filopodium and lamellipodium formation, as well as in 

neurite outgrowth (Shim et al., 2010; Chevallier et al., 2009). The regulation of the actin 

cytoskeleton is important in SC-mediated radial sorting of axons, and the axonal 

ensheathment by OLs and SCs (Bacon et al., 2007; Benninger et al., 2007; Nodari et al., 

2007; Chernousov et al. 2008). Despite, Rab35 cKOSC nerves did not display an obvious 

impairment or delay of axonal sorting and ensheathment. Alternatively, a loss of OCRL 

recruitment by Rab35 could contribute to aberrant myelination. PI(4,5)P2 is the major PI in 

the plasma membrane (Deshmukh et al., 1980) as well as in myelin layers, in which MBP 

binds to this lipid (Musse et al., 2006). Interestingly, a myelination defect in the white matter 

was observed by MRI (magnetic resonance imaging) in some Lowe-Oculo-Cerebro-Renal 

syndrome patients, caused by mutations in OCRL (Carvalho-Neto et al., 2009). This could 

implicate Rab35 in CNS myelination in vivo through regulation of OCRL as well.  
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In addition, the interaction between Rab35 and MTMR complexes could also regulate 

other mechanisms besides mTORC1 repression. Rab35 is involved in the recycling of 

different transmembrane receptors (Jean et al., 2012; Xhabija et al., 2011). In accordance, our 

screen for Rab35-associated proteins revealed a couple of receptors, including ErbB2 (Suppl-

table 1). Interestingly, MTMR2 is involved in the recycling of AMPA receptors in spines (Lee 

et al., 2010). Moreover, Schwann cell-specific knockout of VPS34, which causes severe 

hypomyelination in vivo, results in altered ErbB2/B3 recycling (Logan et al., 2017). In 

addition, both, Rab35 and MTMR2 have been linked to the degradation of EGFR receptors 

(Allaire et al., 2013; Cao et al., 2008; Duan et al., 2016; Zheng et al., 2017; Ye et al., 2018). 

ErbB2/B3 and EGFR (ErbB1) are closely related, internalized upon ligand binding and 

degraded in lysosomes. In contrast, we did not detect any gross changes in endomembrane 

organelles, including LE/Lys (Figure 3-16). However, loss of the PI(3)P- or PI(3,5)P2-

synthesizing enzymes, VPS34 or PIKfyve, but not of PI(3)-phosphatases have been reported 

to cause enlarged endosomal or lysosomal compartments (Bonangelino et al., 2002; 

Ikonomov et al., 2003; Dong et al., 2010; Vaccari et al., 2011; Carpentier et al., 2013; 

Munson et al., 2015; Jaber et al., 2012; 2016). In agreement, altered endosomal or lysosomal 

morphology is not observed upon MTMR2 or -R13 depletion in Schwann cells or MEF cells 

(Ng et al., 2013). A recent review proposes that ErbB receptor recycling could link the 

function of several CMT-associated proteins (Lee et al., 2017). In contrast, neither ERK nor 

AKT activation downstream of ErbB receptors is altered in MTMR2 KO or Rab35 cKOSC 

sciatic nerves (Bolino et al., 2016; this study). Nevertheless, the potential involvement of 

Rab35 in ErbBR-recycling could be more directly addressed, for instance by the use of 

fluorescently labelled NRG1-III, or by analyzing the levels of phosphorylated, and thus 

activated receptors vs. total levels in Rab35 cKO Schwann cells. 

Finally, Rab35 might also function in exosome secretion in Schwann cells. Vesicular 

structures have been observed at cytoplasmic sites of the myelin sheath (Court et al. 2008; 

2011a; Sotelo et al. 2013) and cytoplasmic paranodal loops are the presumed sites of 

membrane addition as well as the origin of focal hypermyelinaton (Berthold and Nilsson, 

2002; Bolino et al., 2004; Goebbels et al., 2012). In a recent study the proteome of Schwann 

cell-derived exosomes has been analyzed. In contrast to OL-derived exosomes, myelin 

proteins were not identified (Wei et al., 2019). However, cholesterol is released by exosome 

secretion as well, presumably for disposal (Canfran-Duque et al., 2013). Thus, impaired 

cholesterol disposal together with mTORC1-mediated elevated cholesterol synthesis might 

lead to excessive and aberrant myelin growth. Notably, not only defective synthesis of 
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PI(3,5)P2 but also elevated mTORC1 activity is linked to impaired exosome secretion in 

MEFs, HEK and HeLa cells (Zou et al., 2018). In turn, rapamycin application or serum-

starvation results in increased exosome release. Moreover, the loss of ARF6 causes 

hypomyelination of the PNS in vivo, and is accompanied by reduced mTORC1-, though also, 

MAPK/ERK- and PI3K/AKT- activation (Torii et al., 2015). Notably, ARF6 has never been 

linked to PI(3,5)P2 conversion, but was recently implicated in the regulation of mTORC1 

activity at lysosomal sites by activating PLD (Knizhnik et al., 2012). Furthermore, ARF6 is 

linked to MVB/exosome biogenesis by controlling the internalization of ILVs through its 

effector PLD2 (Ghossoub et al., 2014). ARF6 acts also upstream of Rab35 by activating the 

Rab35-GAP TC1D10B (Chesneau et al., 2012). Thus, the mutual regulation between Rab35 

and ARF6 might function (mTORC1-dependent) in PNS myelination as well. ARF6 could 

link mTORC1 activation to exosome biogenesis, whereas Rab35 could couple mTORC1 

inactivation via PI(3,5)P2 dephosphorylation to exosome secretion. Exosomes are usually 

isolated from high-confluent cultures, and thus, the low yield of Schwann cells that are 

achieved from mouse nerves, limited the investigation of SC-derived exosomes from 

genetically modified mice so far. A recently published protocol circumvents these problems 

(Shojapour et al., 2018). Here, exosomes are purified from a high yield of primary Schwann 

cells obtained through the degeneration of nerves from adult mice prior to SC isolation. This 

method could enable the analysis of SC-derived exosomes from Rab35 cKOSC mice. 

 

4.5 The role of Rab35 in SV recycling  

Rab35 is linked to the facilitation of synaptic vesicle recycling on an endosomal route 

in D. melanogaster (Uytterhoeven et al., 2011). In the absence of its putative GAP Skywalker 

in fly NMJs, an increased abundance of endosomal compartments is reported to result from 

the upregulation of active Rab35. An accompanied elevation in SV protein degradation is 

presumed to lead to the observed increase in neurotransmitter release from these synapses. In 

contrast, in the absence of Rab35 we could not observe reduced formation of endosomal-like 

compartments in synapses of mammalian primary neurons (Figure S1i,j). In addition, SV 

endocytosis/ acidification of synaptotagmin1-pHluorin in these Rab35 icKO neuronal cultures 

is unaffected (Figure S1f-h). Furthermore, surface and total protein pools of the SV proteins 

synaptotagmin1 and synaptophysin are not altered upon Rab35 depletion (Figure S1a-e). In 

parallel to our study, Waites and colleagues have investigated a potential function of Rab35 in 

the degradation of SV proteins in mammalian synapses (Sheehan et al., 2016; Vaz-Silva et 

al., 2018). In that study, elevated degradation of SV2 and VAMP2 upon neuronal activity or 
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overexpression of Rab35 has been observed. In turn, the depletion of Rab35 by shRNA-

mediated knockdown led to decreased degradation (Sheehan et al., 2016). The authors 

proposed a function of Rab35 in the endosomal sorting of distinct SV proteins for degradation 

into late endosomal MVBs. If and how degradation of SV proteins, of which only a subset is 

observed to depend on neuronal activity or Rab35 (Sheehan et al., 2016), is achieved on the 

one hand, and impacts the recycling kinetics of SVs at mammalian synapses on the other, 

remains to be clarified. Our data show, that acute long-term depletion of Rab35 does not 

result in an overt defect in mammalian SV recycling in vitro. However, we cannot exclude a 

genetic compensation which is frequently observed in response to gene knockouts (El-

Brolosy and Stainier, 2017). For instance, in D. melanogaster, Rab10 also controls PI(4,5)P2 

and ACAP-mediated ARF-6 regulation (Shi et al., 2012). In addition, overlapping roles with 

Rab35 in the endosomal sorting of endocytosed cargo are displayed by Rab4, Rab5 and 

Rab11 (Pavlos et al., 2010; Pavlos and Jahn, 2011). 

Would altered SV recycling be expected due to the loss of lipid-regulated mTORC1 

repression in the absence of Rab35? mTORC1 and PI(3,5)P2-regulating enzymes are indeed 

implicated in synaptic functions, but so far, at postsynaptic compartments only. Presynaptic 

inactivity induces AMPA receptor-mediated mTORC1 activation at the postsynapse. This 

initiates presynaptic compensation by mTORC1-dependent translation of BDNF (brain-

derived neurotrophic factor) (Henry et al., 2018). MTMR2 is reported to function in the 

endocytic internalization of the AMPA receptor subunit GluA2 at postsynapses (Lee et al., 

2010). In addition, Vac14 or Fig4 depletion results in increased surface levels of GluA2 

(Zhang et al., 2012; McCartney et al., 2014). Thus, a disturbance of synaptic plasticity might 

be an expectable outcome upon loss of Rab35. However, the application of inhibitors for 

AMPA and NMDA receptors in our system did not allow us to detect feedback loop-mediated 

effects from postsynaptic sites. In sum, we did not observe a direct effect of acute Rab35 

depletion on SV recycling in primary neuronal cultures. 

 

 

 

 

 

 

 



4. Discussion 
 

154 
 

4.6 Future directions  

This work unveils Rab35 as a novel regulator of myelin homeostasis in the PNS and a 

recruiter of MTMR lipid phosphatase complexes that dephosphorylate PI(3)P and PI(3,5)P2 at 

late endosomal/ lysosomal membranes to suppress mTORC1 activity. This regulation might 

be required to tightly adapt the activity of the essential kinase complex to the availability of 

nutrients and axonal signals, and thus, contributes to Schwann cell survival and myelination 

adjustment to axonal parameters. These findings provide a deeper insight into a mechanism 

that might underlie common pathologies in demyelinating diseases but also raise new 

questions for future research.  

Our data as well as recent studies implicate Rab35 in the control of oligodendrocytic 

myelin formation as well. If this regulation is also mediated by Rab35-dependent repression 

of mTORC1 activity should be further investigated. Furthermore, the sequential action of 

Rab35, PI(3)-phosphate regulation and mTORC1 activity could be implicated in controlling 

exosome secretion in OLs. Interestingly, PI(3)P and PI(3,5)P2 synthesis at late endosomes/ 

MVBs is required for both, the fusion with lysosomes but also for exosome secretion (Cao et 

al., 2007; 2008; Mironova et al, 2016). How the fate of LE/Lys is determined to either of 

these endomembrane trafficking routes is still elusive. Nevertheless, how impaired secretion 

of major myelin proteins in the absence of Rab35 impacts myelin formation remains to be 

investigated and complicates a prediction of how loss of Rab35 will affect CNS myelination 

in vivo. According to our data, hypermyelination can be well expected.  

Furthermore, despite of decades since the pathological features of focal 

hypermyelination have been first observed in demyelinating diseases (Madrid and Bradley 

1975), the underlying molecular mechanisms that lead to their formation remain elusive. 

Similarly, how upregulated mTORC1 activity can induce these features is not resolved yet 

(Goebbels et al., 2012; Beirowski et al., 2017). Interestingly, tomacula and myelin 

outfoldings are also observed upon genetic defects in major myelin proteins (Sander et al., 

2000). As discussed, Rab35, PI(3)-phosphate lipid-conversion and mTORC1 might be linked 

at the level of cholesterol and myelin protein secretion as well. Thus, in addition to a 

transcriptional upregulation of myelin lipid synthesis by hyperactive mTORC1 in adult 

animals, impaired membrane addition, imbalanced myelin protein levels and/ or incorporation 

into nascent sheaths could account for the formation of aberrant myelin structures in Rab35 

cKOSC animals. In accordance, the lack of myelin-residing proteins has been suggested to 

disrupt paranodal junctions and thereby contribute to focal hypermyelination (Guo et al., 
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2014; Hu et al., 2016). Thus, the analysis of structural components within these regions might 

another conceivable approach in Rab35 cKOSC organotypic explants.  

We could observe an accumulation of PI(3)P as well as increased mTORC1 activity in the 

absence of Rab35, in agreement with the reported activation of mTORC1 by PI(3)-phosphates 

in different cell types. Thus, Rab35-dependent repression of mTORC1 activity by recruiting 

MTMR lipid phosphatase complexes might be an ubiquitous mechanism. Our data reveal a 

crucial involvement of PI(3,5)P2 in mTORC1 activation in Schwann cells. However, in other 

cell types mTORC1 activation might be dominated by PI(3)P, hydrolyzed by MTMR2 as 

well. Thus, why do MTMR2 and MTMR13 mutations almost exclusively affect Schwann 

cells? A possible explanation could be the association of active MTMR phosphatases with 

different pseudophosphatases in distinct tissues, such as MTMR5 and -R13 with MTMR2, 

which modulate their specificity towards PI(3)-phosphates. Vice versa, the loss or impairment 

of MTMR2 could be tissue-dependent compensated by another active MTMR phosphatase. 

Interestingly, overexpression of MTMR2 in myoblasts, which is usually expressed in these 

cells but presumably at low levels, can even rescue muscle defects in MTM1 KO animals 

(Raess et al., 2017). Our data reveal that pseudophosphatase complex partners of MTMR2 

also associate with MTMR1. Thus, Rab35 can potentially control at least four different 

complexes. A cell type-specific redundancy of MTMR complexes could therefor account for 

varying sensitivities to the loss of distinct MTMR proteins. This might well explain the more 

severe focal hypermyelination in Rab35 cKOSC sciatic nerves compared to CMT4B-mouse 

models. Similarly, CMT4B2 results in a milder phenotype than CMT4B1 (Pareyson et al., 

2019), presumably due to the functional replacement of MTMR13 by MTMR5. However, if 

and in which context MTMR1 can substitute MTMR2 still needs to be investigated, in vitro 

and in vivo. 

Finally, our findings implicate that mTORC1 activity might be dysregulated in 

CMT4B patients. Though this hypothesis remains to be confirmed, it is corroborated by the 

rescue effect of Niaspan: The downregulation of NRG-ErbBR and thus, AKT signaling in 

MTMR2 KO nerve fibers ameliorates myelin outfoldings (Bolino et al., 2016). Nevertheless, 

Niaspan might also exert additional effects on several targets downstream of NRG-ErbBR. 

This could be circumvented by the potential use of Rapamycin and thus the direct tackling of 

mTORC1 activity in CMT4B patients. 
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6 Appendix 

6.1 List of Abbreviations 

Ø diameter 

4E-BP1 eIF 4E-binding protein 1 

α (y-α-x) “anti”: antibody, raised in species y and targets protein x  

aa amino acid 

ACAP2 Arf-GAP with coiled-coil, ANK repeat and PH domain-containing protein 2 

ADAM17 A disintegrin and metalloproteinase domain 17 

AKT Ak strain transforming 1 

AKT(CA) constitutively active AKT (“DD” - T308D and S473D) 

AMP adenosine monophosphate 

AMPA(R) α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (receptor) 

AMPK AMP-activated protein kinase 

AP action potential 

APS ammoniumpersulfat 

APV DL-2-Amino-5-phosphonopentanoic acid 

Ara-C cytosine β-D-arabinofuranoside 

ARF-6 ADP-ribosylation factor 6 

ATG autophagy related 

ATP adenosine triphosphate 

BACE β-site of APP cleaving enzyme 

BDNF brain-derived neurotrophic factor 

bioAMP biotinoyl-5’-AMP 

BioID proximity-dependent biotin identification 

BirA(*) protein biotin ligase from E. coli (promiscuous mutant) 

BLB biopsy lysis buffer 

bp base pair 

BrdU bromodeoxyuridine 

BSA bovine serum albumin 

BSL1 Griffonia (Bandeiraea) Simplicifolia lectin 1  

CA constitutively active 

CADM cell adhesion molecule 

CAG CMV early enhancer element 

CAM cell adhesion molecules 

cAMP cyclic adenosine monophosphate 

CC coiled-coil 

CCP clathrin-coated pit 

CCV clathrin-coated vesicle 

Cdc42 cell division cycle 42 

CdK cycline dependent kinase 

C. elegans Caenorhabditis elegans 

ch chicken 

c-Jun leucine-zipper zinc-finger transcription factor 

cKOSC Schwann cell-specific conditional knockout 

CMT Charcot-Marie-Tooth 

CMV cytomegalovirus 

CNPase 2′,3′-cyclic nucleotide 3′-phosphodiesterase 

CNS central nervous system 

CNTF ciliary neurotrophic factor 

CNQX 6-cyano-7-nitroquinoxaline-2,3-dione  

Cre Cre recombinase 
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CreER Chimera of Cre recombinase and LBD-ERTM 

CRTC2 cAMP response element-binding protein (CREB) regulated transcription coactivator2 

Ctrl control 

Da dalton [g/mol] 

DAB 3,3′-diaminobenzidine tetrahydrochloride 

DAPI 4',6-Diamidino-2-phenylindol 

DENN differentially expressed in neoplastic versus normal cells 

DEPTOR DEP domain containing mTOR-interacting protein 

Dhh Desert hedge hoc 

DIV day(s) in vitro 

dk donkey 

Dlg-1  discs large homolog 1 

D. melanogaster Drosophila melanogaster 

DMEM Dulbecco's modified Eagle medium 

DMSO dimethyl sulfoxide 

DNA deoxyribonucleic acid 

DNase deoxyribonuclease 

dNTP 2´-desoxynucleoside-5´-triphosphates 

D-PBS                             

(+/- Ca2+/Mg2+) 

Dulbecco’s Phosphate-Buffered Saline                                                                                              

(with/ without calcium and magnesium ions) 

DPSS diode pumped solid state 

DRG Dorsal root ganglion 

DSM DMEM-Sato based growth medium 

E(number) embryonic day number x 

EBSS Earle’s balanced salt solution 

ECL enhanced chemiluminescence 

E. coli Escherichia coli 

EDTA ethylene diamine tetraacetic acid 

EEA1 early endosomal antigen 1 

EF endotoxin-free 

eGFP enhanced green fluorescent protein 

eGFP-2xFYVE 

(Hrs) 
eGFP-tagged tandem version of the PI(3)P binding FYVE domain of Hrs 

EGFR epidermal growth factor receptor 

EGTA ethylene glycol-bis(ß-aminoethyl ether)-N,N,N'N'-tetraacetic acid 

eIF eukaryotic translation initiation factor  

ELV endosomal-like vacuole 

ERK extracellular signal–regulated kinase 

ESCRT endosomal sorting complexes required for transport 

F0 initial fluorescence intensity 

F-actin filamenteous actin 

FastAP alkaline phosphatase 

FBS fetal bovine serum 

FGF2 fibroblast growth factor 2 

Fig. (Sx) figure (supplementary figure number x) 

FKBP12 FK506 binding protein 12 kDa 

FL full-length 

Fl „floxed“ = loxP sites inserted 

Fmax Peak fluorescence intensity 

fw forward 

FYVE  Fab1, YOTB, Vac1, EEA1  

GalC galactocerebroside 
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GAP GTPase-activating protein 

GC guanine-cytosine 

GDI Rab-GDP dissociation inhibitor 

GDNF glial cell line-derived neurotrophic factor 

GDP guanosine nucleotide diphosphate 

GEF guanine nucleotide exchange factor 

GFP green fluorescent protein 

GLUT4 glucose transporter 4 

gp guinea pig 

GRAM glycosyltransferase, Rab-like GTPase activator and myotubularin 

Grb growth factor receptor bound protein 

GST glutathione sepharose tag 

gt goat 

GTP (yS) guanosine triphosphate (non-hydrolyzable) 

GTPase GTP hydrolase  

h hour(s) 

HBS HEPES buffered saline 

HBSS Hanks' balanced salt solution 

HCl hydrochloride 

HEK human embryonic kidney cells strain 293T 

HEPES 4-(2-hydroxyethyl) piperazine-1-ethanesulfonic acid  
HNPP Hereditary Neuropathy with liability to pressure palsies 

HOS high-ovomucoid solution 

HRP horseradish peroxidase 

HS horse serum 

HSC70 heat shock cognate 70 

hu human 

ICC immunocytochemistry 

icKO tamoxifen-inducible conditional knockout 

Ig immunoglobulin 

IGF1 insulin-like growth factor 1 

IHC immunohistochemistry 

ILV intraluminal vesicle  

INPP4B Inositol polyphosphate-4-phosphatase type II 

IPTG isopropyl β-D-1-thiogalactopyranosid 

JNK c-Jun N-terminal kinase 

KD knockdown 

kDa kilodalton 

KI knock in 

KO knockout 

Kv voltage-gated potassium channels 

L-15 Leibovitz’s L-15 medium 

LAGeSo Landesamt für Gesundheit und Soziales 

LAMP(-1/2) lysosomal-associated membrane protein 1 

LB(-agar/-medium) lysogeny broth 

LBD-ERTM ligand binding domain of estrogen receptor (tamoxifen-responsive) 

LC3 microtubule-associated protein 1 light chain 3 

LC3-I cytosolic LC3 

LC3-II phosphatidylethanolamine-conjugated LC3 at autophagosomal membranes 

LC-MS/MS liquid chromatography - tandem mass spectrometry 

LE/Lys late endosomal/ lysosomal compartment 

LFQ label-free quantification 
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LKB1 liver kinase B1 

LOS low-ovomucoid solution 

MAG myelin-associated glycoprotein 

MAPK mitogen-activated protein kinase 

MBP myelin basic protein 

mCCM  mammalian cell culturing medium 

MEF mouse embryonic fibroblast 

MEK MAPK/ERK kinase 

MEK(CA) Constitutively active MEK (S218D; S222D) 

MEM minimum essential medium  

MICAL1 molecules interacting with casL 1 

min minute(s) 

MOG myelin oligodendrocyte glycoprotein 

MOI multiplicity of infection 

ms mouse 

MS mass spectrometry 

mRNA messenger RNA 

mSin1 mammalian stress-activated protein kinase-interacting protein 1 

MTM(R) myotubularin-related lipid phosphatase 

mTOR mechanistic target of rapamycin 

mTORC mTOR complex 

MVB multi vesicular body 

myc myelocytomatose 

NA numerical aperture 

NaOH sodium hydroxide 

Nav voltage-gated sodium channel 

NBA neurobasal medium A 

N-CAM nerve CAM 

NCV nerve conduction velocity 

NDP52 nuclear dot protein 52 kDa 

NDS normal donkey serum 

NFAT nuclear factor of activated T cells 

NF-L/M Neurofilament- low/ medium molecular weight 

NG2 neural glial antigen 2 

NGS normal goat serum 

NMDA(R) N-methyl-D-aspartate (receptor) 

NMJ neuromuscular junction 

norm. normalized 

Notch neurogenic locus notch homolog protein 

NRG1(-III) neuregulin1 (type III) 

n.s. not significant 

NT-3 neurotrophin-3 

OCRL oculocerebrorenal syndrome of Lowe 

OL(s) oligodendrocyte(s) 

OPC(s) oligodendrocyte precursor cell(s) 

p-(S/T/Y x)y phosphorylated protein y (at Serine/Threonine/ Tyrosine number x) 

P0 myelin protein 0 

P(number) postnatal day number x 

PA phosphatic acid 

PBS phosphate buffered saline 

PBS-T PBS with 0.05 % (v/v) TWEEN-20 

PC phosphatidylcholine 
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PCR polymerase chain reaction 

PDGF platelet-derived growth factor 

PDGFR platelet-derived growth factor receptor 

PDK1 3-phosphoinositide-dependent kinase 1 

PDL poly-D-lysine hydrobromide 

PDZ PSD-95/Dlg-1/ZO1 

PFA paraformaldehyde 

PH pleckstrin homology 

pH potential hydrogen 

pHluorin pH-sensitive GFP variant 

PI phoshatidylinositol 

PI(3)P phosphatidylinositol-3-phosphate 

PI(4)P phosphatidylinositol-4-phosphate 

PI(5)P phosphatidylinositol-5-phosphate 

PI(3,4)P2 phosphatidylinositol-3,4-bisphosphate 

PI(3,5)P2 phosphatidylinositol-3,5-bisphosphate 

PI(4,5)P2 phosphatidylinositol-4,5-bisphosphate 

PI(3,4,5)P3 phosphatidylinositol-3,4,5-trisphosphate 

PI3K/(C2) phosphatidylinositol 3-kinase class I/ class II 

PI5P 4K type II PI(5)P 4-hydroxy kinases 

PiB PIPES-based buffer 

PIC mammalian protease inhibitor cocktail 

PIKfyve PI(3)-phosphate 5-kinase type III, FYVE finger-containing 

PIPES piperazine-N,N'-bis-2-ethanesulfonic acid 

PLC phospholipase C 

PLD Phoshpolipase D 

PLL poly-L-lysine hydrobromide 

PLP proteolipid protein 

PM plasma membrane 

PMP peripheral myelin protein 

PMSF phenylmethylsulfonyl fluoride  

PNS peripheral nervous system 

POI protein of interest 

POU Pit-Oct-Unc 

PRAS40 proline-rich Akt substrate of 40 kDa 

P/S penicillin/ streptomycin  

PTEN dual protein and lipid phosphatase and tensin homolog on chromosome 10 

PTP(i) phosphotyrosine phosphatase (inactive) 

Rab Ras-related in brain  

Rab35Fl/+ mice with heterozygously „floxed“ Rab35 gene/ one allele with loxP site insertion 

Rab35Fl/Fl mice with homozygously „floxed“ Rab35 gene/ both alleles with loxP site insertion 

Rab35^GTPys/GDP nucleotide-loaded Rab35 (with GTPys or GDP) 

Rac1 Ras-related C3 botulinum toxin substrate 1 

Rag Ras-related GTPases 

Rapa Rapamycin 

Raptor regulatory-associated protein of mTOR 

Ras rat sarcoma 

rb rabbit 

REDD1 regulated in DNA damage and development 1 

rev reverse 

Rheb Ras homolog enriched in brain  

Rho Ras homolog gene family 
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Rictor Raptor-independent companion of mTOR 

RNA ribonucleic acid 

RNase ribonuclease 

ROI region of interest 

rpm rounds per minute  

RT room temperature 

RTK receptor tyrosine kinase 

S6 40s ribosomal protein S6 

S6K p70 S6 Kinase 1 

Sbf SET-binding factor 

SC(s) Schwann cell(s) 

scr scrambled (non-targeting [negative control] si/shRNA) 

SD standard deviation 

SDS(-PAGE) sodiumdodecylsulfate (- polyacrylamide gel electrophoresis) 

SEM standard error of the mean 

SF surface 

shRNA small hairpin RNA 

siRNA small interfering RNA 

SLI(s) Schmidt-Lantermann-incisure(s) 

SN sciatic nerve (N. sciaticus) 

Sox SRY (sex determining region Y)-box 

SREBP sterol regulatory element-binding protein 

Suppl. supplementary 

SV(s) synaptic vesicle(s) 

SV2 synaptic vesicle protein 2 

Syph synaptophysin 

Syt1 synaptotagmin1 

Syt1-pH chimera of synaptotagmin1 and pHluorin 

τ endocytic time constant 

T3 thyroid hormone triiodothyronine 

table Sx supplementary table number x 

TACE tumor necrosis factor (TNFα) converting enzyme 

TAE TRIS-acetate-EDTA 

TBC Tre2/Bub2/Cdc16 

TBE TRIS-borate-EDTA 

TBS TRIS-buffered saline 

TE TRIS-EDTA 

TEMED N,N,N',N'-Tetramethylethylenediamin 

TES N-tris(hydroxymethyl)methyl-2-aminoethane sulfonic acid 

TFEB transcription factor EB 

TfR transferrin receptor 

TGFβ transforming growth factor ß 

TLB tail lysis buffer 

TMX tamoxifen ((Z)-4-hydroxytamoxifen) 

TNB tail neutralization buffer 

TRIS Tris-(hydroxymethyl)-aminomethan  

TSC tuberous sclerosis complex 

TWEEN polyethyleneglycolsorbitanmonolaurate 

ULK1/Atg13/FIP200 
unc-51-like kinase 1/mammalian autophagy-related gene 13/focal adhesion kinase 

family-interacting protein of 200kDa 

UV ultraviolet 

Vac vacuole-related protein  
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VAMP vesicle associated membrane protein 

Veh vehicle 

VPS vacuolar protein sorting 

VSV-G vesicular stomatits virus G protein 

v/v volume per volume 

WT  wild type 

w/v weight per volume 

x g multiplicity of acceleration of gravity 

XLCNM X-linked centronuclear myopathy 

YT yeast extract tryptone 
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6.2 Supplement 

 

6.2.1 Mass spectrometry results of the Rab35-BioID 

Table S1: Proteins, selectively enriched in Rab35-BioID samples. bold – linked to Rab35 by literature 

Gene  Protein 

ABCC1 Multidrug resistance-associated protein 1 

ABCC5 Multidrug resistance-associated protein 5 

ADCY9 Adenylate cyclase type 9 

AGPAT9 Glycerol-3-phosphate acyltransferase 3 

AKT2 RAC-beta serine/threonine-protein kinase 

ALCAM CD166 antigen 

ANKS6 Ankyrin repeat and SAM domain-containing protein 6 

ATP6AP2 Renin receptor 

ATP7A Copper-transporting ATPase 1 

ATP7B Copper-transporting ATPase 2;WND/140 kDa 

BASP1 Brain acid soluble protein 1 

CAMLG Calcium signal-modulating cyclophilin ligand 

CCDC8 Coiled-coil domain-containing protein 8 

CDC42EP1 Cdc42 effector protein 1 

CDC42EP4 Cdc42 effector protein 4 

CHM Rab proteins geranylgeranyltransferase component A 1 

CHMP6 Charged multivesicular body protein 6 

COL1A1 Collagen alpha-1(I) chain 

CXADR Coxsackievirus and adenovirus receptor 

DAG1 Dystroglycan; Alpha-dystroglycan; Beta-dystroglycan 

DENND5B DENN domain-containing protein 5B 

DENR Density-regulated protein 

DHRS7 Dehydrogenase/reductase SDR family member 7 

DOCK8 Dedicator of cytokinesis protein 8 

DOCK9 Dedicator of cytokinesis protein 9 

DSC3 Desmocollin-3 

EFNB1 Ephrin-B1 

EFNB3 Ephrin-B3 

EGFR Epidermal growth factor receptor 

EPHA2 Ephrin type-A receptor 2 

EPHA7 Ephrin type-A receptor 7 

ERBB2 Receptor tyrosine-protein kinase erbB-2 

EWSR1 RNA-binding protein EWS 

FAM171B Protein FAM171B 

FAM207A Protein FAM207A 

FLOT2 Flotillin-2 

FLRT3 Leucine-rich repeat transmembrane protein FLRT3 

FLVCR1 Feline leukemia virus subgroup C receptor-related protein 1 

GTF2B Transcription initiation factor IIB 



  6. Appendix 
 

195 
 

GULP1 PTB domain-containing engulfment adapter protein 1 

HM13 Minor histocompatibility antigen H13 

HMGCR 3-hydroxy-3-methylglutaryl-coenzyme A reductase 

HMOX2 Heme oxygenase 2 

IFNGR1 Interferon gamma receptor 1 

IGF1R Insulin-like growth factor 1 receptor 

IGHA1; IGHA2 Ig alpha-1 chain C region;Ig alpha-2 chain C region 

IGSF3 Immunoglobulin superfamily member 3 

INSR Insulin receptor 

ITGA6 Integrin alpha-6 

ITGB1 Integrin beta-1 

JAM3 Junctional adhesion molecule C 

KIAA0319L Dyslexia-associated protein KIAA0319-like protein 

KIAA0355 Uncharacterized protein KIAA0355 

KIRREL Kin of IRRE-like protein 1 

KLRG2 Killer cell lectin-like receptor subfamily G member 2 

LNPEP Leucyl-cystinyl aminopeptidase, pregnancy serum form 

LPHN2 Latrophilin-2 

LRP2 Low-density lipoprotein receptor-related protein 2 

MARCKSL1 MARCKS-related protein 

MCAM Cell surface glycoprotein MUC18 

MINA 
Bifunctional lysine-specific demethylase and histidyl-hydroxylase 

MINA 

MINK1 Misshapen-like kinase 1 

MPP6 MAGUK p55 subfamily member 6 

MPZL1 Myelin protein zero-like protein 1 

MYBBP1A Myb-binding protein 1A 

NCAM1 Neural cell adhesion molecule 1 

NDC1 Nucleoporin NDC1 

NDRG3 Protein NDRG3 

NF2 Merlin 

NUCB1 Nucleobindin-1 

OCLN Occludin 

PALM Paralemmin-1 

PCDH19 Protocadherin-19 

PCDH9 Protocadherin-9 

PHF6 PHD finger protein 6 

PHLDB2 Pleckstrin homology-like domain family B member 2 

PIK3R2 Phosphatidylinositol 3-kinase regulatory subunit beta 

PIP5K1C Phosphatidylinositol 4-phosphate 5-kinase type-1 gamma 

PLXNA1 Plexin-A1 

PREB Prolactin regulatory element-binding protein 

PTK7 Inactive tyrosine-protein kinase 7 

PTPLAD1 
Very-long-chain (3R)-3-hydroxyacyl-[acyl-carrier protein] 

dehydratase 3 

PTPRJ Receptor-type tyrosine-protein phosphatase eta 
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PVRL3 Poliovirus receptor-related protein 3 

RAB23 Ras-related protein Rab-23 

RALBP1 RalA-binding protein 1 

RCC1 Regulator of chromosome condensation 

RELL1 RELT-like protein 1 

ROBO1 Roundabout homolog 1 

ROR2 Tyrosine-protein kinase transmembrane receptor ROR2 

RPL18 60S ribosomal protein L18 

RPS19 40S ribosomal protein S19 

RRAGC; 

RRAGD 

Ras-related GTP-binding protein C; 

Ras-related GTP-binding protein D 

SAFB; SAFB2 Scaffold attachment factor B1; Scaffold attachment factor B2 

SBF2 Myotubularin-related protein 13 

SCAMP1 Secretory carrier-associated membrane protein 1 

SEMA4C Semaphorin-4C 

SEMA6A Semaphorin-6A 

SH3GL3 Endophilin-A3 

SLC12A7 Solute carrier family 12 member 7 

SLC19A1 Folate transporter 1 

SLC1A3 Excitatory amino acid transporter 1 

SLC20A1 Sodium-dependent phosphate transporter 1 

SLC20A2 Sodium-dependent phosphate transporter 2 

SLC25A22; SLC25A18 Mitochondrial glutamate carrier 1+ 2 

SLC27A4 Long-chain fatty acid transport protein 4 

SLC29A1 Equilibrative nucleoside transporter 1 

SLC30A1 Zinc transporter 1 

SLC38A1 Sodium-coupled neutral amino acid transporter 1 

SLC38A2 Sodium-coupled neutral amino acid transporter 2 

SLC39A10 Zinc transporter ZIP10 

SLC39A14 Zinc transporter ZIP14 

SLC39A6 Zinc transporter ZIP6 

SLC4A2 Anion exchange protein 2 

SLC6A8 Sodium- and chloride-dependent creatine transporter 1 

SLC7A2 Low affinity cationic amino acid transporter 2 

SLC7A5 Large neutral amino acids transporter small subunit 1 

SLC9A3R2 Na(+)/H(+) exchange regulatory cofactor NHE-RF2 

SNAP47 Synaptosomal-associated protein 47 

SNX30 Sorting nexin-30 

SPTLC1 Serine palmitoyltransferase 1 

SRC Proto-oncogene tyrosine-protein kinase Src 

SSR1 Translocon-associated protein subunit alpha 

STBD1 Starch-binding domain-containing protein 1 

STEAP3 Metalloreductase STEAP3 

STIM2 Stromal interaction molecule 2 

STK11IP Serine/threonine-protein kinase 11-interacting protein 

STX18 Syntaxin-18 
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STX3 Syntaxin-3 

STX4 Syntaxin-4 

STX7 Syntaxin-7 

SUSD5 Sushi domain-containing protein 5 

SYTL4 Synaptotagmin-like protein 4 

TADA3 Transcriptional adapter 3 

TAPT1 Transmembrane anterior posterior transformation protein 1 homolog 

TBC1D13 TBC1 domain family member 13 

TC2N Tandem C2 domains nuclear protein 

TLDC1 TLD domain-containing protein 1 

TMEM2 Transmembrane protein 2 

TMX1 Thioredoxin-related transmembrane protein 1 

TRUB1 Probable tRNA pseudouridine synthase 1 

TULP3 Tubby-related protein 3 

UBXN6 UBX domain-containing protein 6 

UNC5B Netrin receptor UNC5B 

UNC5C Netrin receptor UNC5C 

VANGL1 Vang-like protein 1 

VAT1 Synaptic vesicle membrane protein VAT-1 homolog 

ZDHHC5 Palmitoyltransferase ZDHHC5 

 

 

Table S2: Proteins, more than fivefold enriched (LFQ-intensity BirA*Rab35/BirA*) in Rab35-BioID 

samples in n = 2 independent experiments. Enrichment: mean ± SD; bold -– linked to Rab35 by literature 

Rank Gene  Protein 

Fold 

enrichment 

1 RAB35 Ras-related protein Rab-35 745.72 ± 347.31 

2 TFRC Transferrin receptor protein 1 45.86 ± 48.09 

3 SLC3A2 4F2 cell-surface antigen heavy chain 44.72 ± 35.72 

4 LSR Lipolysis-stimulated lipoprotein receptor 36.04 ± 11.34 

5 SLC12A2 Solute carrier family 12 member 2 36.00 ± 5.00 

6 STX12 Syntaxin-12 35.95 ± 38.94 

7 CACHD1 VWFA and cache domain-containing protein 1 34.44 ± 39.70 

8 SBF1 Myotubularin-related protein 5 28.92 ± 1.45 

9 CHML Rab proteins geranylgeranyltransferase component A 2 23.35 ± 16.53 

10 SLC1A5 Neutral amino acid transporter B(0) 22.19 ± 5.44 

11 CNNM3 Metal transporter CNNM3 21.10 ± 18.18 

12 ATP2B1 Plasma membrane calcium-transporting ATPase 1 13.35 ± 4.94 

13 UACA 
Uveal autoantigen with coiled-coil domains and ankyrin 

repeats 
10.90 ± 6.91 

14 IGF2R Cation-independent mannose-6-phosphate receptor 8.17 ± 1.84 

15 SLC4A7 Sodium bicarbonate cotransporter 3 7.01 ± 1.09 

16 MARCKS Myristoylated alanine-rich C-kinase substrate 6.65 ± 0.02 

17 
VAMP2; 

VAMP3 
Vesicle-associated membrane protein 2 

6.53 ± 2.11 
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6.2.2 SV recycling in Rab35 icKO primary neuronal cultures  
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Figure S1: No major alterations in the synaptic vesicle recycling of Rab35 icKO primary neuronal 

cultures. Primary cultures of hippocampal neurons were prepared from tamoxifen-inducible Rab35 

icKO (Rab35Fl/Fl x CreER) and WT (Rab35Fl/Fl) animals and cultured in the presence of 0.4 µM tamoxifen 

until DIV14. (a-e) Surface levels of two major transmembrane synaptic vesicle (SV) proteins are not 

altered. Cells were fixed and immunolabelled for the plasma membrane-residing surface (SF) pool of 

SV proteins, under non-permeabilizing conditions using antibodies targeting their luminal domain. Total 

protein levels were revealed by subsequent immunolabelling with an antibody recognizing the 

corresponding cytoplasmic domain under permeabilizing conditions. Immunostaining for synapsin was 

performed to mark synaptic areas. No significant changes were observed for any protein pool in Rab35 

icKO compared to WT synapses. (a) Representative confocal images of synaptotagmin1 (Syt1) surface 

(SF; red) and total levels (green). Synapses are depicted by synapsin (magenta); Scale bars: 10 µm. (b) 

Quantification of surface over total Syt1 mean intensities in synapsin-positive areas, in Rab35 icKO 

normalized to WT cells (=1); (mean ± SEM; n = 3 independent experiments; one sample two-tailed 

student’s t-test with a theoretical mean of 1; p = 0.3899). (c) Quantification of synapsin mean intensities 

in Rab35 icKO normalized to WT cells (100 %), reveals no change upon loss of Rab35; (mean ± SEM; 

n = 3 independent experiments; one sample two-tailed student’s t-test with a theoretical mean of 100; p 

= 0.4781). (d) Representative confocal images of synaptophysin (Syph) surface (SF; red), total levels 

(green) and synapsin (magenta). Scale bars: 10 µm. (e) Quantification of surface over total 

synaptophysin mean intensities in synapsin-positive areas, in Rab35 icKO normalized to WT cells (= 

1); (mean ± SEM; n = 3 independent experiments; one sample two-tailed student’s t-test with a 

theoretical mean of 1; p = 0.5515). (f-h) Synaptic vesicle recycling of synaptotagmin1-pHluorin is 

unaltered in Rab35 icKO neurons. Primary hippocampal cultures were transfected at DIV7 with a 

plasmid encoding for synaptotagmin1-pHluorin (Syt1-pH) under control of a synapsin-promoter. 

Live-cell imaging according to a pHluorin-based assay (Miesenböck et al., 1998) was performed at 

DIV14. Neuronal activity in the cultures was elicited by electrical field stimulation with 200 action 

potentials (AP) at 5 Hz and SV recycling kinetics were analyzed from n = 5 independent experiments. 

(f) Relative fluorescence intensity course (ΔF/ΔFmax) of Syt1-pH over time of Rab35 WT and icKO 

cells, used to calculate the endocytic decay. (g) Quantification of the endocytic decay, depicted by the 

decay time constant (τ), revealed no significant change of endocytic uptake/ re-acidification in Rab35 

icKO neurons; (two-tailed paired student’s t-test; p = 0.1079). (h) Quantification of the relative peak 

fluorescence intensity upon stimulation (Fmax/F0) depicted normalized to WT cells (mean = 100 %). The 

amplitude of peak fluorescence is unaltered in Rab35 icKO neurons; (two-tailed paired student’s t-test; 

p = 0.4240). (i, j) Rab35 depletion does not alter the number of endocytical-derived synaptic or 

endosome-like vesicles in synapses. Primary neuronal cultures were chemically stimulated with 80 mM 

potassium chloride for 1 min in the presence of horse-radish peroxidase (HRP) in order to label newly 

endocytosed vesicles. Cells were fixed 5 min post-stimulation. HRP was visualized by 3,3'-

diaminobenzidine (DAB)-mediated chromogenic detection and the number of HRP-positive synaptic 

vesicles (SVs) and endosome-like vesicles (ELVs) in presynapses was ultrastructurally analysed by 

electron microscopy (EM), performed by Dr. Dmytro Puchkov (FMP, Berlin). (i) Representative 

ultrastructural images of Rab35 WT and icKO synapses. Arrows indicate HRP-containing organelles in 

presynapses. PSD – postsynaptic density; Scale bar: 300 µm. (j) Quantification of the number of 

HRP-containing SVs and ELVs in Rab35 WT and KO presynapses reveals no major difference in n = 1 

experiment. 
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