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0. Summary 
 

Invasion biology is a relatively young sub-discipline of biology. Despite the fact that the idea 

was established in Charles Darwin’s book ‘On the origin of species’, the field was only 

founded a hundred years later with Charles Elton. Since the middle of the 1990s, the field has 

substantially grown in size. Accordingly, the number of hypotheses and concepts about 

biological invasions has substantially increased, and some of them are similar to each other, 

others are not supported by empirical evidence. The aim of this work was to develop and 

apply methods to create networks of hypotheses and concepts that visualize the field of 

invasion biology. The thesis contains four different methods and their resulting networks. Due 

to the nature of the topic, this work is interdisciplinary. The topics range from biology and its 

way to find categories (chapter 2), over social science (chapters 3 & 5) to bibliometrics 

(chapter 4). Also, this work had to overcome challenges in visualizing the emerging networks 

(see chapter 6.1). The method presented and applied in chapter 2 is a straightforward 

possibility to structure hypotheses based on their traits and characteristics. This method 

resulted in a hypothesis network with several clusters of hypotheses. For chapter 3, a survey 

approach was applied to create hypothesis networks. The participants of the survey were 

experts in the field of invasion biology. Surprisingly, the results showed that experts in 

invasion biology seem to have no consistent idea of their research field and therefore no clear, 

consistent inner map of invasion biology. With additional analyses, however, we were able to 

create networks of the best-known hypotheses and concepts in invasion biology seen by the 

participating experts. In chapter 4, we looked at co-citations of the key papers related to the 

major invasion hypotheses. This approach led to two clear maps of the field (one for each of 

the two applied analysis methods). Finally, in chapter 5, we created a hypothesis network 

based on a workshop we held in Berlin. This network emerged from a Delphi-based 

consensus approach that we developed. We also applied an advanced cluster-finding 

algorithm here that clusters links between nodes in the network instead of clustering nodes 

which is done by traditional cluster-finding algorithms. The advanced algorithm thus allows 

nodes to be in more than one cluster. This network based on the consensus approach and 

analyzed with the link-clustering algorithm has a better resolution and provides more 

information than the other networks presented in this thesis. I conclude this thesis with a 

discussion of the benefits and drawbacks of each network and its underlying approach. It 

seems that the best approaches to create a useful hypothesis network of a research field are 

those presented in chapters 4 and 5, i.e. the co-citation and consensus approaches. A co-
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citation based network reveals how a research field such as invasion biology is seen by 

scientists who work in the field and how they cite publications. But there are no strict rules for 

citation and therefore this approach is based on trust in scientifically correct citations. The risk 

of a strong bias is reduced in case of the consensus approach, as the resulting network is based 

on the combined perspective of a sizeable number of experts. This seems to be the best way to 

structure existing hypotheses of invasion biology right now. A future important step is to 

apply this and possibly other approaches in other research fields. 

 

 

0. Zusammenfassung 

 

Die Invasionsbiologie ist eine relativ junge Unterdisziplin der Biologie. Trotz der Tatsache, 

dass die Idee in Charles Darwins Buch "On the origin of species" begründet war, wurde das 

Feld erst einhundert Jahre später mit Charles Elton begründet. Seit Mitte der 1990er Jahre ist 

das Feld erheblich gewachsen. Dementsprechend hat die Anzahl der Hypothesen und 

Konzepte zu biologischen Invasionen erheblich zugenommen, und einige von ihnen ähneln 

sich, andere werden nicht durch empirische Evidenz gestützt. Ziel dieser Arbeit war es, 

Methoden zu entwickeln und anzuwenden, um Netzwerke von Hypothesen und Konzepten zu 

erstellen, die das Gebiet der Invasionsbiologie visualisieren. Die Arbeit enthält vier 

verschiedene Methoden und die daraus resultierenden Netzwerke. Aufgrund der Art des 

Themas ist diese Arbeit interdisziplinär. Die Themen reichen von der Biologie und ihrem 

Weg zur Kategorisierung (Kapitel 2) über die Sozialwissenschaften (Kapitel 3 und 5) bis hin 

zur Bibliometrie (Kapitel 4). Diese Arbeit musste auch die Herausforderungen bei der 

Visualisierung der entstehenden Netzwerke bewältigen (siehe Kapitel 6.1). Die in Kapitel 2 

vorgestellte und angewandte Methode ist eine nahe liegende Möglichkeit, Hypothesen anhand 

ihrer Merkmale und Eigenschaften zu strukturieren. Diese Methode führte zu einem 

Hypothesennetzwerk mit mehreren Hypothesenclustern. Für das 3. Kapitel wurde ein 

Erhebungsansatz angewendet, um Hypothesennetzwerke zu erstellen. Die Teilnehmer der 

Umfrage waren Experten auf dem Gebiet der Invasionsbiologie. Überraschenderweise zeigten 

die Ergebnisse, dass Experten der Invasionsbiologie offenbar keine einheitliche Vorstellung 

von ihrem Forschungsgebiet und daher keine klare, einheitliche innere Karte der 

Invasionsbiologie haben. Mit zusätzlichen Analysen konnten wir jedoch Netzwerke der 
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bekanntesten Hypothesen und Konzepte in der Invasionsbiologie erstellen, wie sie von den 

teilnehmenden Experten gesehen wurden. In Kapitel 4 haben wir uns die Ko-Zitationen der 

wichtigsten Veröffentlichungen im Zusammenhang mit den Hypothesen der 

Invasionsbiologie angesehen. Dieser Ansatz führte zu zwei übersichtlichen Karten des Feldes 

(eine für jede der beiden angewandten Analysemethoden). Schließlich haben wir in Kapitel 5 

ein Hypothesennetzwerk erstellt, das auf einem Workshop basiert, den wir in Berlin 

organisiert hatten. Dieses Netzwerk ist aus einem von uns entwickelten Delphi-basierten 

Konsensus-Ansatz hervorgegangen. Wir haben hier auch einen fortschrittlichen Cluster-

Finding-Algorithmus angewendet, der Verbindungen zwischen Knoten im Netzwerk 

gruppiert, anstatt Knoten zu gruppieren, was durch herkömmliche Cluster-Finding-

Algorithmen erfolgt. Der erweiterte Algorithmus ermöglicht es somit, dass sich Knoten in 

mehr als einem Cluster befinden. Dieses auf dem Konsensansatz basierende und mit dem 

Link-Clustering-Algorithmus analysierte Netzwerk hat eine bessere Auflösung und liefert 

mehr Informationen als die anderen in dieser Arbeit vorgestellten Netzwerke. Ich schließe 

diese Arbeit mit einer Diskussion der Vor- und Nachteile jedes Netzwerks sowie der jeweils 

zugrunde liegenden Methode. Es scheint, dass die besten Ansätze zur Schaffung eines 

nützlichen Hypothesennetzwerks auf einem Wissenschaftsgebiet die in den Kapiteln 4 und 5 

vorgestellten sind. Ein Ko-Zitation-basiertes Netzwerk (Kapitel 4) zeigt, wie ein 

Forschungsgebiet wie die Invasionsbiologie von Wissenschaftlern, die auf diesem Gebiet 

arbeiten, gesehen wird und wie sie Veröffentlichungen zitieren. Da es jedoch keine strengen 

Zitierregeln gibt, basiert diese Arbeit auf dem Vertrauen in wissenschaftlich korrekte 

Zitationen. Das Risiko einer starken Verzerrung wird im Falle des Konsensansatzes (Kapitel 

5) verringert, da das resultierende Netzwerk auf der kombinierten Perspektive einer 

beträchtlichen Anzahl von Experten basiert. Dies scheint der derzeit beste Weg zu sein, um 

die Hypothesen der Invasionsbiologie zu strukturieren. Ein nächster wichtiger Schritt ist nun 

die Anwendung dieses und möglicherweise anderer Ansätze in anderen Forschungsbereichen. 
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1. General Introduction 

 

1.1. Motivation 

 

The motivation for this work was to produce and provide a map of science and a method to 

structure research fields. The most fitting explanation was written in Enders and Jeschke 

(2018): 

It is said that before Napoleon Bonaparte went into battle, he sat in a big 

sandbox, planning all his battle moves with miniature figures in advance 

(Botham, 2006). Sure, Napoleon took it too far, but the concept of 

visualizing a battle on a map of the surroundings wasn´t that extravagant. 

This is also the idea behind networks of invasion biology: to see the bigger 

picture behind it, the connections, similarities and dissimilarities at once, to 

plan your next move – in this case regarding research or management of 

biological invasions. To see the bigger picture in the field of invasion 

biology is getting more and more important, especially when considering 

the progress of the field in the last 25 years. We have reached a point at 

which we produce more information every day but seem to have lost the 

general overview of the field. 

A way to provide an overview of research fields is urgently needed because it seems that the 

experts of many fields are in danger to lose themselves in the myriads of hypotheses and 

concepts of these fields, and this leads to a waste of money, knowledge and time (Jeschke et 

al. 2019). This is at least the case for the field of invasion biology. Using this discipline as a 

case study, this thesis aimed to develop and apply different ways of making such a 

map/network of a science field and analyze the benefits and drawbacks of each method. 

 

1.2. Invasion biology 

 

Invasion biology is a part of ecology that focuses on the introduction, establishment and 

spread of species in a new habitat (Lockwood et al. 2013). One of its goals is to find reasons 

for the success of some non-native species. It is a discipline that grew very slowly at first. In 
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the 19th century, early concepts on non-native species were mentioned, for example in Charles 

Darwin’s book “On the origin of species by means of natural selection” (Darwin 1859). 

Further concepts were introduced by the Swiss botanist Albert Thellung in the early 20th 

century (Kowarik and Pyšek 2012), and then by Charles Elton (1958) and others until the 

1950s, however there was still too little work on the topic to recognize a distinct research 

field. Possibly due to a growing consciousness for ecosystems in a changing world (Meadows 

et al. 1972) and in human responsibilities (Jonas 1979), interest in invasion biology strongly 

increased since the late 20th century (Richardson and Pyšek 2008; Gurevitch et al. 2011). It 

has also influenced other research fields; for example, concepts and hypotheses of invasion 

biology are used in restoration ecology, landscape ecology, urban ecology or risk assessments 

of genetically modified organisms (Jeschke et al. 2013). For this work, a hypothesis is defined 

as by Heger et al. (2019, p. 30): an “[a]ssumption or proposed explanation that is in principle 

testable.” 

Nowadays, concepts and hypotheses of invasion biology are used in different fields of science 

(e.g. renaturation ecology, landscape ecology) (Lowry et al. 2013). This loose usage of the 

concepts and hypotheses could lead to a blurry picture of this field of science. But besides 

this, the rich cornucopia of hypotheses includes also some rotten fruits. For example, 

hypotheses that have a low level of empirical support, such as the tens rule (Williamson and 

Brown 1986; Jeschke and Strayer 2005) are still being used. Further, some other biases have 

found their way into invasion biology like a decline effect (time bias) described by Jeschke et 

al. (2012a), which is a decline in support for a hypothesis over time; or a geographical bias 

(Lowry et al. 2013), as most studies concerning invasive species are done in North America or 

Europe; and a taxonomic and habitat bias, as most studies in the field focus on terrestrial 

plants (Pyšek et al. 2008; Jeschke and Heger 2018). For these reasons which are further 

detailed in the next sections, a map of the field is urgently needed especially when one looks 

at the consequences that biological invasions have on biodiversity.  

According to Collen et al. (2012), non-native species are, after pollution and the loss of habitats, 

the third biggest threat of biodiversity in invertebrates. In the recent report of the 

Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), 

invasive species are also listed as one of the biggest biodiversity threats (Brondizio et al. 2019; 

see also McGeoch et al. 2010), and the Convention on Biological Diversity (a Convention of 

the United Nations) sees the urge to fight non-native species (United Nations 2002) in its 

agreements. 
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Biodiversity thereby means much more than the "diversity of species". I follow the definition 

of biodiversity proposed by the Convention on Biological Diversity (CBD) in 1992 in Rio de 

Janeiro: 

"Biological diversity" means the variability among living organisms from all sources including, inter alia, 

terrestrial, marine and other aquatic ecosystems and the ecological complexes of which they are part: this 

includes diversity within species, between species and of ecosystems.” United Nations CBD (1992) 

 

1.3. Biases in invasion biology 

 

There are many biases in research focused on biological invasions. They can be structured 

into at least four different groups: (i) geographic bias, (ii) taxonomic bias, (iii) habitat bias and 

(iv) chronological bias. Other biases exist as well, for example publication biases, but I do not 

focus on them here for the sake of brevity. 

1.3.1. Geographic bias 

There is a significant imbalance between areas where invasions are taking place and areas 

where invasions are being investigated. Most of the studies are from Northern America or 

from Western Europe (Lowry et al. 2013), not where the impacts of invasions are strongest 

(Bellard and Jeschke 2016). The survey network (chapter 3) also shows this bias in the 

composition of the participants. The strong focus on North America and Western Europe 

could is likely caused by financial reasons and by the fact that most researchers are still based 

there (cf. Tydecks et al. 2018). 

1.3.2. Taxonomic bias 

Pyšek et al. (2008; Jeschke et al. 2012b; Jeschke and Heger 2018) showed that there is also a 

bias concerning the studied species. Almost half (48.3%) of the studies focus on plants. With 

36.3% come invertebrates in second place. This leads to an under-representation of other 

species and also to a bias in the hypotheses and concepts. These hypotheses and concepts are 

not necessarily robust and useable for every taxon (Jeschke and Heger 2018). 

1.3.3. Habitat bias 

Similar to the taxonomic bias, there is a habitat bias. Many hypotheses and concepts focus 

their attention on terrestrial plants (on average >80%; cf. Jeschke and Heger 2018). This 

leads, like the taxonomic bias, to an overrepresentation of studies in terrestrial habitats. 
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Therefore, the hypotheses are well tested for terrestrial plants, but this is not the case for every 

habitat or taxa. 

1.3.4. Chronological bias 

Although many hypotheses initially (shortly after being postulated) receive a great deal of 

empirical support, this level of support can decrease significantly over time (Jeschke et al., 

2012). This leads to a possible temporal data distortion or time-shifted perception: new 

hypotheses get a lot of empirical support and only over time get empirically refuted. This can 

also mean that hypotheses we still see as valid could be empirically refuted, but are still in use 

(see tens rule). 

 

1.4. Further challenges in invasion biology  

 

In addition to these biases, there are several other challenges that invasion biology has to cope 

with, particularly concerning the applied methods, concepts and the listing of invasive 

species. This section gives a short overview of such difficulties. 

1.4.1. Conceptual and methodological difficulties 

In this category falls the terminology, which means unclear terms and concepts. Unclear 

terminology can cause problems in communication with the broader public, other scientists, in 

the science itself and with decision-makers. This is a problem not only in invasion biology, 

but also in ecology in general and probably also in many other fields of science. So, for 

example, a negative connotation of some terms like “invaders”, “aliens” or “weeds” for non-

native species can lead to problems in communication with non-scientists (Hodges 2008; 

Heger et al. 2013). 

1.4.2. Imprecise hypotheses 

Invasion biology has, as shown in the following chapters, many hypotheses that are rather 

similar, but focused on different aspects or nuances of a step in the invasion process. The 

problem is that every testing of a hypothesis has a slight variation in the wording of that 

hypothesis. It can thus happen that two studies claim to test the same hypothesis, i.e. they use 

the same name of a hypothesis, but actually test different concepts, because the researchers 

carrying out the studies had different perspectives of what the hypothesis posits. As a result, 

they may offer completely different interpretations of their data: even if their results are 

qualitatively similar, one study could argue the results support the hypothesis, whereas the 
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other study could argue it questions the hypothesis (Heger et al. 2013). It is thus important to 

explicitly define a hypothesis one is testing; this is done for every chapter of this thesis. The 

hierarchy-of-hypotheses (HoH) approach (Jeschke et al. 2012a; Heger et al. 2013; Jeschke 

and Heger 2018; Heger et al. 2019) is a helpful tool in this respect. In the HoH approach, 

hypotheses are split in an inverted tree-like structure: on the top is the most general idea of 

this hypothesis and if you go deeper, it divides into different aspects. Through this approach, 

scientists could easily define which aspect of a hypothesis they are studying.  

1.4.3. Lack of data  

There is a lack of data to test hypotheses (McGeoch et al. 2010a). Invasion biology lacks 

information on failed invasions, homogeneous data at large spatial scales, long-term data and 

accidental introductions of plants and invertebrates (Heger et al. 2013). This affects many 

hypotheses in invasion biology (Jeschke 2008; Lockwood et al. 2009). Short-term effects of 

non-native species are often known, but their long term effects are hardly studied and even 

harder to predict. These effects could mean genetic, physiological or behavioral ones which 

could affect the outcome of an invasion (Strayer et al. 2006). As Strayer et al. (2006) wrote: 

“we need to include time in our thinking about invaders”.  

 

1.5. Previous works and other maps of science 

 

Science maps allow to visually explore disciplines including their biases and difficulties. One 

could say that the visualization of science was established in the 18th century, although in a 

different way than today. At this time, the maps showed more information on a ‘classical’ 

map with geographic properties, like the spread of the cholera in London. Also at this time, 

another line of mapping evolved that lacked geographic properties. Especially with the 

appearance of bibliometric studies (see below, section 1.6.), non-geographical maps were 

created. In recent times, the development of the internet and more computing power to work 

with large-scale data sets paved the way for more complex maps (c.f. Börner 2010). 

The maps created for invasion biology in this thesis are science maps because they ‘visually 

encode the structure and evolution of scholarly knowledge’ (Börner 2010), but can be 

separated by the scale they look at. On the smallest scale, there are works who look at the 

deeper structure of hypotheses and try to create an in-depth structure of a concept or 

hypothesis. Heger and Jeschke (2014) and Schulz et al. (2019) did this for the enemy release 

hypothesis (Keane and Crawley 2002) by dividing the hypothesis into different sub-
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hypotheses to show different aspects of it. These visualizations follow the HoH approach 

mentioned above (Jeschke et al. 2012; Heger et al. 2013; Jeschke and Heger 2018; Heger et 

al. 2019). In the book ‘Invasion biology: hypotheses and evidence’ (Jeschke and Heger 2018), 

13 hypotheses were split into sub-hypotheses in a hierarchical structure and combined with 

more than 1100 empirical studies testing them.  

Maps where also created for other disciplines in science, for example, chemistry (Boyack et 

al. 2007). On a higher scale, there are conceptual or structural frameworks. These frameworks 

can be done visually, like this work, or in another, non-visual, way like in Catford et al. 

(2009) or Gurevitch et al. (2011). Such frameworks aim for a way to arrange the field in a 

useful way.  

The biggest scale is a network of the field of sciences (Boyack et al. 2005). These maps are 

mostly produced by data from the science citation index and use huge amounts of data of 

citations or bibliographic coupling (cf. Börner (2010)). There are also science maps that are 

not concerned with academic science at all. For example, Klavans and Boyack (2014) studied 

domains of 125,000 non-profit organizations in the United States to cluster and show the 

structure of altruistic groups in the US. Please note that in this work the words “maps” and 

“networks” were used in a similar way: “network” is the more technical term and better 

describes how the map is methodologically constructed, whereas the term “map” focuses on 

the purpose as a navigation tool. A misconception in the use of the word map could be 

coming from the common usage of the word map for a geographical map. But this strict usage 

is outdated for at least 100 years, and the field of science maps has further evolved. 

  

1.6. Bibliometrics 

 

Bibliometrics is the field of science concerning the statistical analysis of bibliographic data, 

mainly of scientific journals. Despite early works by Lotka (1926) on the productivity of 

authors and the first citation analysis by Gross and Gross (1927), the work by Bradford (1934) 

on the distribution of articles in journals, the book ‘little science, big science’ by de Sola Price 

(1963) and the invention of the Science Citation Index (SCI) in 1961, the field of 

bibliometrics was not established before the 1970s. Bibliometrics is nowadays a fundamental 

part of recognizing and evaluating the productivity of a scientist, a journal or a field of 

science, even although such metrics can have key drawbacks (Jeschke et al. 2019). This 

process goes from simple counting of citations or papers to more complex models. Also, to 
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see citations and co-citations in a field of science bibliometrics are crucial (cf. Havemann 

(2016)). Especially the results of citation and co-citation analyses could be visualized as 

networks. The 21st century brought the advance of many methods for clustering networks 

(Fortunato 2010; Xie, Kelley, & Szymanski 2013; Amelio and Pizzuti 2014). To cluster a 

network means to use algorithms that identify groups of nodes that are more connected within 

their group than to the rest of the network. Some of these methods were also applied for topic 

identification (Börner 2015). 

 

1.7. Network analysis 

 

To structure a network, Newman and Girvan (2004) introduced so-called 'modularity' as an 

evaluation function of a graph partition. The resulting groups of nodes, i.e. clusters, should be 

more connected with their own cluster than to the rest of the network. For this clustering, 

several algorithms were introduced. These algorithms, which separate a network, can, in turn, 

be categorized into several types. The following algorithms were used in this thesis: (1) The 

Girvan and Newman (2002) algorithm as an example of divisive clustering. It recursively 

detects links with high edge betweenness and removes them from the network. The clustering 

dendrogram is cut at the partition with maximum modularity. (2) Clauset et al. (2004) 

proposed to set each node as a cluster and then merge those two subgraphs that give the 

highest gain in modularity; this is repeated until there is no gain in modularity anymore. 

Again, the clustering dendrogram is cut at the partition with maximum modularity. (3) Quite 

similar is the approach introduced by Brandes et al. (2008); it maximizes modularity applying 

an optimization algorithm from integer linear programming. (4) The Louvain algorithm 

designed by Blondel et al. (2008) which very quickly maximizes partition modularity by 

combining and separating clusters. (5) The “walk trap” algorithm suggested by Pons and 

Latapy (2005) assumes a random walker gets trapped in communities and calculates these 

“traps”. (6) The divisive spectral algorithm suggested by Newmann (2006) which also 

maximizes modularity with help of the eigenvector values. And (7) finally, the most 

sophisticated approach, the link-clustering algorithm designed by Havemann et al. (2019). 

This algorithm clusters a network not by the nodes but by the links, which results in nodes 

that are members of more than one cluster. Of course, there are way more algorithms to 

cluster a network, but for this work only the most well-known and common were chosen (1-6) 

plus the advanced algorithm to cluster links (7). 
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1.8. Aims of this work 

 

The aims of this thesis are threefold: First, find different ways to create a network to visualize 

a field of science; in this case, the field of science is invasion biology. Second, compare the 

resulting networks. And finally, evaluate the different networks concerning their overall 

usefulness, their resolution and the question(s) they address. The thesis structure is depicted in 

Figure 1. It shows how the four chapters are connected to each other. All of these four 

chapters’ overarching aim is to find a useful, repeatable way to structure a field of science, 

and they all use hypotheses in invasion biology as a case example. 

 

 

Figure 1 Venn-diagram of the chapters in this work. 
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2. A Network of Invasion Hypotheses 

 

This chapter was published in the book Invasion Biology: Hypotheses and Evidence (Jeschke 

and Heger 2018) and was printed there as chapter 7. It was written with Prof. Dr. Jonathan 

Jeschke from Freie Universität Berlin and Leibniz-Institute of Freshwater Ecology and Inland 

Fisheries (IGB). The idea for this method of using ‘traits’ to construct a network was first 

applied in my Bachelor thesis at Ludwig-Maximilians University in the year 2012. 

 

 

Published as: Enders, M. and Jeschke, J. M. (2018). A Network of Invasion Hypotheses. 

Invasion Biology: Hypotheses and Evidence. J. M. Jeschke and T. Heger, eds. Wallingford, 

CABI: 49-59. 



 CAB International 2018. Invasion Biology: Hypotheses and Evidence 
(eds J.M. Jeschke and T. Heger)	 49

*  Corresponding author. E-mail: enders.martin@gmx.net

Abstract

Hypotheses of research disciplines are typi-
cally not isolated from each other but share 
similarities. In a broad sense as defined here, 
they form an important part of the theoreti-
cal–conceptual understanding of a given 
topic, e.g. invasion hypotheses sensu lato 
represent an important part of our under-
standing of biological invasions. Dynamic 
research disciplines such as invasion biology 
have so many hypotheses that it is even hard 
for experts to keep track, and researchers 
from other disciplines as well as policy-
makers, managers and other interested peo-
ple find it extremely complicated to get to 
grips with invasion hypotheses. To tackle 
this situation, we argue that it is useful to 
define key hypotheses and visualize their 
relationships. We define 35 of the arguably 
most common invasion hypotheses and out-
line three approaches to create hypothesis 
networks that visualize the similarities and 
dissimilarities between hypotheses: (i) the 
bibliometric approach; (ii) the survey 
approach; and (iii) the matrix approach. The 
latter approach is in the focus of this chap-
ter. It is centred around a matrix that repre-
sents the characteristics or traits of each 
hypothesis. Here we assigned such traits to 
35 invasion hypotheses based on 13 trait 
categories. We then calculated the similari-
ties between them and created a hypothesis 
network visualizing these similarities. With 
the same trait matrix, we created a smaller 

network focused on the 12 hypotheses fea-
tured in this book. This network thus illus-
trates the relationships between these 12 
hypotheses and can be used as a map for the 
following chapters.

Introduction

It is said that before Napoleon Bonaparte 
went into battle he sat in a big sandbox, 
planning all his battle moves with miniature 
figures in advance (Botham, 2006). Sure, 
Napoleon took it too far, but the concept of 
visualizing a battle on a map of the sur-
roundings wasn’t that extravagant. This is 
also the idea behind networks of invasion 
biology: to see the bigger picture behind it, 
the connections, similarities and dissimilari-
ties at once, to plan your next move – in this 
case regarding research or management of 
biological invasions. To see the bigger pic-
ture in the field of invasion biology is getting 
more and more important, especially when 
considering the progress of the field in the 
last 25 years. We have reached a point at 
which we produce more information every 
day but seem to have lost the general over-
view of the field. This is why the field of inva-
sion biology needs something to order it, for 
example a map of the field. Networks seem 
to be promising tools to create useful maps 
of this and other research fields (Jeschke, 
2014).
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There are different possible approaches 
to create networks, each of them with their 
own benefits and disadvantages. We outline 
three such approaches (this list is, of course, 
not exhaustive) and will concentrate on the 
third one of these for the remainder of this 
chapter:

1.	 Bibliometric approach: Here, the full text 
or meta-data of publications are analysed 
and used to build a network based on cita-
tions, co-citations or collaborations between 
working groups, or on content similarity by 
comparing key phrases. The nodes in such a 
network can be authors, journals or (sub-)
disciplines. See de Solla Price (1965) or 
Börner (2010) for examples of applications 
of this approach.
2.	 Survey approach: The idea here is to use 
the judgement of different experts on the 
similarities and dissimilarities of hypothe-
ses in a research field. This procedure was 
already used for the field of invasion biology 
by Enders et  al. (2018) who developed an 
online questionnaire asking experts in the 
field about similarities and dissimilarities 
between 33 common invasion hypotheses. 
Each hypothesis was defined and a short 
explanation provided (based on and extend-
ing Catford et al., 2009; a further extension 
is provided in this chapter, see Table 7.1). 
Participants were asked to choose up to 
three hypotheses that they know best. The 
survey then took the chosen hypotheses and 
randomly paired them with other hypothe-
ses; the participants were asked about their 
similarities or dissimilarities. From the 
results, different networks were created 
using different formulae for calculating 
between-hypotheses similarity.
3.	 Matrix approach: This approach com-
pares characteristics (i.e. traits) of ideas in a 
specific field. If two hypotheses share a num-
ber of characteristics beyond a certain 
threshold, they are termed ‘similar’, and a 
connection between these hypotheses is 
drawn in the network. This approach will be 
explained in detail in the next section using 
invasion hypotheses as an example.

All approaches can be applied in any field of 
research where a number of key hypotheses 
exist. It is quite surprising that such 

approaches have only been rarely applied, 
even though Naisbitt’s quote ‘we are drown-
ing in information but starved for knowl-
edge’ is over three decades old now (p. 24 in 
Naisbitt, 1982). We urgently need tools to 
synthesize the increasing amounts of infor-
mation in order to make them more accessi-
ble and usable. It is the goal of this chapter 
to contribute to the development of such 
tools by focusing on one possible approach, 
the one we termed ‘matrix approach’.

Methods

Applying the matrix approach, we first 
defined 35 common invasion hypotheses. 
This list of definitions was based on Catford 
et  al. (2009), references cited therein and 
further sources cited in Table 7.1. For Enders 
et al. (2018) we extended the list provided in 
Catford et  al. (2009); for this chapter we 
extended it once more, resulting in the list 
provided in Table 7.1. Please note, however, 
that there are further invasion hypotheses 
(see e.g. Chapter 17, this volume, and 
Ricciardi et al., 2013).

We then developed a matrix containing 
traits for each hypothesis in 13 categories 
(Table 7.2). The category ‘lag time’ describes 
the time period that the mechanism or effect 
represented by a hypothesis needs, starting 
from the introduction of a non-native spe-
cies. We differentiated very short (++), rela-
tively short (+), intermediate (+-), relatively 
long (-) and very long (- -) lag times. The 
next two categories were ‘propagule pres-
sure’ and ‘other human actions’ and are 
summarized under human interference. 
These and all following categories were clas-
sified as either very important (++), some-
what important (+) or not important (empty 
cell) for a given hypothesis. The following 
three categories describe ecosystem proper-
ties: ‘habitat modification’, caused by either 
humans, non-native or native species or abi-
otic factors; available ‘resources’ in the new 
ecosystem; and other ‘ecosystem proper-
ties’. The following three categories come 
under the header biotic interactions: ‘ene-
mies’, ‘mutualism’ and ‘competition’. They 
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Table 7.1.  List of 35 common invasion hypotheses and how we defined them.

Hypothesis Definition Key reference(s)

Adaptation (ADP) The invasion success of non-native species depends on the adaptation to the conditions in the 
exotic range before and/or after the introduction. Non-native species that are related to native 
species are more successful in this adaptation.

Duncan and Williams 
(2002)

Biotic acceptance aka ‘the rich 
get richer’ (BA)

Ecosystems tend to accommodate the establishment and coexistence of non-native species 
despite the presence and abundance of native species.

Stohlgren et al. (2006)

Biotic indirect effects (BID) Non-native species benefit from different indirect effects triggered by native species. Callaway et al. (2004)
Biotic resistance aka diversity-

invasibility hypothesis (BR)
An ecosystem with high biodiversity is more resistant against non-native species than an 

ecosystem with lower biodiversity.
Elton (1958), Levine and 

D’Antonio (1999)
Darwin’s naturalization (DN) The invasion success of non-native species is higher in areas that are poor in closely related 

species than in areas that are rich in closely related species.
Darwin (1859)

Disturbance (DS) The invasion success of non-native species is higher in highly disturbed than in relatively 
undisturbed ecosystems.

Elton (1958), Hobbs and 
Huenneke (1992)

Dynamic equilibrium model 
(DEM)

The establishment of a non-native species depends on natural fluctuations of the ecosystem, which 
influences the competition of local species.

Hutson (1979)

Empty niche (EN) The invasion success of non-native species increases with the availability of empty niches in the 
exotic range.

MacArthur (1970)

Enemy inversion (EI) Introduced enemies of non-native species are less harmful for them in the exotic than the native 
range, owing to altered biotic and abiotic conditions.

Colautti et al. (2004)

Enemy of my enemy aka 
accumulation-of-local-
pathogens hypothesis (EE)

Introduced enemies of a non-native species are less harmful to the non-native as compared to the 
native species.

Eppinga et al. (2006)

Enemy reduction (ERD) The partial release of enemies in the exotic range is a cause of invasion success. Colautti et al. (2004)
Enemy release (ER) The absence of enemies in the exotic range is a cause of invasion success. Keane and Crawley (2002)
Environmental heterogeneity 

(EVH)
The invasion success of non-native species is high if the exotic range has a highly heterogeneous 

environment. 
Melbourne et al. (2007)

Evolution of increased 
competitive ability (EICA)

After having been released from natural enemies, non-native species will allocate more energy in 
growth and/or reproduction (this re-allocation is due to genetic changes), which makes them 
more competitive.

Blossey and Nötzold (1995)

Global competition (GC) A large number of different non-native species is more successful than a small number. Colautti et al. (2006)
continued
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Table 7.1.  continued

Hypothesis Definition Key reference(s)

Habitat filtering (HF) The invasion success of non-native species in the new area is high if they are pre-adapted to this 
area.

Darwin (1859)

Human commensalism (HC) Species that are living in close proximity to humans are more successful in invading new areas than 
other species.

Jeschke and Strayer (2006)

Ideal weed (IW) The invasion success of a non-native species depends on its specific traits (e.g. life-history traits). Elton (1958), Reimánek 
and Richardson (1996)

Increased resource availability 
(IRA)

The invasion success of non-native species increases with the availability of resources. Sher and Hyatt (1999)

Increased susceptibility (IS) If a non-native species has a lower genetic diversity than the native species, there will be a low 
probability that the non-native species establishes itself.

Colautti et al. (2004)

Invasional meltdown (IM) The presence of non-native species in an ecosystem facilitates invasion by additional species, 
increasing their likelihood of survival or ecological impact.

Simberloff and Von Holle 
(1999), Sax et al. (2007)

Island susceptibility hypothesis 
(ISH)

Non-native species are more likely to become established and have major ecological impacts on 
islands than on continents.

Jeschke (2008)

Limiting similarity (LS) The invasion success of non-native species is high if they strongly differ from native species and it 
is low if they are similar to native species.

MacArthur and Levins 
(1967)

Missed mutualisms (MM) In their exotic range, non-native species suffer from missing mutualists. Mitchell et al. (2006)
New associations (NAS) New relationships between non-native and native species can positively or negatively influence the 

establishment of the non-native species.
Colautti et al. (2004)

Novel weapons (NW) In the exotic range, non-native species can have a competitive advantage against native species 
because they possess a novel weapon, i.e. a trait that is new to the resident community of native 
species and therefore affects them negatively.

Callaway and Ridenour 
(2004)
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Opportunity windows (OW) The invasion success of non-native species increases with the availability of empty niches in the 
exotic range and the availability of these niches fluctuates spatio-temporally.

Johnstone (1986)

Plasticity hypothesis (PH) Invasive species are more phenotypically plastic than non-invasive or native ones. Richards et al. (2006)
Propagule pressure (PP) A high propagule pressure (a composite measure consisting of the number of individuals 

introduced per introduction event and the frequency of introduction events) is a cause of invasion 
success.

Lonsdale (1999), Lockwood 
et al. (2013)

Reckless invader aka 
‘boom-bust’ (RI)

A non-native species that is highly successful shortly after its introduction can get reduced in its 
population or even extinct over time due to different reasons (such as competition with other 
introduced species or adaptation by native species).

Simberloff and Gibbons 
(2004)

Resource-enemy release 
(RER)

The non-native species is released from its natural enemies and can spend more energy in its 
reproduction, and invasion success increases with the availability of resources.

Blumenthal (2006)

Sampling (SP) A large number of different non-native species is more likely to become invasive than a small 
number owing to interspecific competition. Also the species identity of the locals is more 
important than the richness in terms of the invasion of an area.

Crawley et al. (1999)

Shifting defence hypothesis 
(SDH)

After having been released from natural specialist enemies, non-native species will allocate more 
energy in cheap (energy-inexpensive) defences against generalist enemies and less energy in 
expensive defences against specialist enemies (this re-allocation is due to genetic changes); the 
energy gained in this way will be invested in growth and/or reproduction, which makes the 
non-native species more competitive.

Doorduin and Vrieling 
(2011)

Specialist–generalist (SG) Non-native species are more successful in a new region if the local predators are specialists and 
local mutualists are generalists.

Callaway et al. (2004)

Tens rule (TEN) Approximately 10% of species successfully take consecutive steps of the invasion process. Williamson and Brown 
(1986), Williamson (1996)
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Table 7.2.  Matrix with traits of 35 invasion hypotheses in 13 different categories.
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describe to which degree each type of inter-
action is important for the mechanism or 
effect represented by a hypothesis. Finally, 
four categories represent different invader 
traits: ‘phylogenetic distance’ between the 
non-native and resident species; ‘functional 
novelty’ of the non-native species, e.g. based 
on the concept of eco-evolutionary experi-
ence (Saul et  al., 2013; Saul and Jeschke, 
2015); ‘evolution’ of the non-native species 
after its introduction; and ‘other invader 
traits’ (e.g. life-history traits).

We assessed the similarity of each 
hypothesis with every other hypothesis by 
calculating the percentage of shared traits. 
For this calculation, we excluded categories 
where both hypotheses had empty cells 
because an empty cell for both hypotheses 
cannot be considered a shared trait. If a 
threshold was reached, a connection was 
made. In this way, we created two networks. 
The first network includes all 35 evaluated 
hypotheses, and connections were made if 
two hypotheses shared at least 25% of their 
traits. We clustered the network using yEd’s 
(2017) natural groups algorithm (which is 
based on the edge-betweenness clustering 
method proposed by Girvan and Newman, 
2005). This resulted in four clusters, three of 
which were large and one (containing propa-
gule pressure, global competition, missed 
mutualisms and the tens rule) small. For 
clarity, we included the one small cluster in 
the closest bigger cluster. The second net-
work focused on the 12 hypotheses featured 
in the following chapters of this book – here, 
thick connections were made for a threshold 
of 25% and thin connections for a threshold 
of 15%.

Results and Discussion

Matrix network for 35 invasion 
hypotheses

The matrix network (Fig. 7.1) contains a 
total of 35 nodes (= number of hypotheses) 
and 151 edges (connections) between them. 
The average number of connections for a 
hypothesis is 8.6 ± 2.46 (SD). The three most 

connected hypotheses (with the highest 
degree centrality) are resource-enemy 
release (13 connections), environmental 
heterogeneity and new associations (both 
with 12 connections). Enemy reduction and 
enemy release are the hypotheses with the 
fewest connections (four connections).

All hypotheses in the purple group (see 
Fig. 7.1) consider human interference to be 
important or very important (‘+’ or ‘++’ in 
columns 2 or 3 in Table 7.2). Taking all 
hypotheses, most of those hypotheses that 
consider human interference to be very 
important (‘++’ in columns 2 or 3 in Table 
7.2) are in the network’s purple group: dis-
turbance, global competition, human com-
mensalism, invasional meltdown, propagule 
pressure and the tens rule; only the sam-
pling hypothesis is not in the purple group, 
yet it has as many connections to hypothe-
ses in the purple group as it has to hypothe-
ses in the red group, thus it is between these 
two groups. All of the hypotheses in the red 
cluster consider mutualism as an important 
factor: all 10 hypotheses for which this is the 
case (‘+’ in column 8 in Table 7.1) are 
included in the red group, which does not 
contain any other hypotheses. The green 
cluster includes most hypotheses that con-
sider enemies (predators or parasites) to be 
particularly important: 10 of the 13 hypoth-
eses for which this is the case (‘++’ in column 
7 in Table 7.1) are in this group. Out of the 
11 hypotheses in this group, only one 
hypothesis does not explicitly consider 
enemies to be very important. This hypo
thesis – ideal weed – is characterized by 
very  short time lags, which is also true for 
other hypotheses in the green group. Thus, 
the green cluster mainly includes hypothe-
ses with a focus on enemies, or the lack 
thereof, of non-native species and on short 
time lags.

Matrix network for the 12 hypotheses 
featured in this book

The matrix network of the 12 hypotheses 
(Fig. 7.2) contains 27 edges. Darwin’s natu-
ralization hypothesis and the phenotypic 
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plasticity hypothesis (both seven connec-
tions) are the most connected hypotheses 
(i.e. with the highest degree centrality) in 
this smaller network. In contrast, limiting 
similarity, propagule pressure and the tens 

rule are the least connected hypotheses 
with  two connections each. All of these 12 
hypotheses will be explored in detail in the 
following chapters, and we will come back to 
this network in the synthesizing Chapter 17.

Fig. 7.1  Network with all 35 hypotheses evaluated in this chapter. Connected hypotheses share at least 
25% of their traits (the exact spatial position of each hypothesis is arbitrary). Groups of hypotheses are 
represented by different colours and the size of each circle represents the degree centrality of the hypoth-
esis. Hypothesis names are abbreviated as follows: ADP = adaptation, BA = biotic acceptance, BID = biotic 
indirect effects, BR = biotic resistance, DN = Darwin’s naturalization, DS = disturbance, DEM = dynamic 
equilibrium, EN = empty niche, EI = enemy inversion, EE = enemy of my enemy, ERD = enemy reduc-
tion, ER = enemy release, EVH = environmental heterogeneity, EICA = evolution of increased competi-
tive ability, GC = global competition, HF = habitat filtering, HC = human commensalism, IW = ideal weed, 
IRA = increased resource availability, IS = increased susceptibility, IM = invasional meltdown, ISH = island 
susceptibility hypothesis, LS = limiting similarity, MM = missed mutualisms, NAS = new associations, 
NW = novel weapons, OW = opportunity windows, PH = plasticity hypothesis, PP = propagule pressure, 
RI = reckless invader, RER = resource-enemy release, SP = sampling, SDH = shifting defence hypothesis, 
SG = specialist–generalist, TEN = tens rule.
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Conclusions

The benefits of hypothesis networks are 
obvious: in addition to providing a map with 
the main hypotheses of a field, the most cen-
tral and connected hypotheses can be easily 
identified. Furthermore, they can convey, 
depending on the way they are created, 
much additional valuable information, e.g. 
hidden similarities among hypotheses, con-
tradictions between hypotheses, thematic 
groups and, if the release or ‘birth date’ of 
hypotheses is considered, developments in 
the field: when were hypotheses born, which 
branches of hypothesis networks are 

particularly thriving and which ones are 
basically dead ends?

Yet there is need for much additional 
research on approaches for creating such 
networks and on the best way to interpret 
them. For instance, one can see from the 
results presented in this chapter that it 
depends on the number of nodes which 
hypotheses are the ones with the highest 
degree centrality. Also, there are different 
methods to create hypothesis networks as 
mentioned in the Introduction section. Each 
of these methods can be specified and fitted 
depending on the specific goals one wants to 
achieve with the network, e.g. a bibliometric 

Fig. 7.2.  Network with the 12 hypotheses featured in this book. Connected hypotheses share at least 
15% of their traits, and connections are thick if they share at least 25% of their traits (otherwise as 
Fig. 7.1).
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network can be created based on simple co-
authorships or co-citations but also based 
on full publication texts. The same is true for 
the survey approach: in Enders et al. (2018), 
we used different mathematical metrics to 
create different networks based on the sur-
vey results. Also, the characteristics of the 
hypotheses given in Table 7.1 can be mathe-
matically analysed in different ways to cre-
ate yet different hypothesis networks. Thus, 
one can imagine numerous, apparently rea-
sonable approaches to create hypothesis 
networks. We have just started to explore 
this issue and hope others will join us in 
order to identify the most useful approaches 
depending on the goal one wants to achieve 
with a given network. More generally speak-
ing, hypothesis networks seem to be one 
promising tool for synthesizing the increas-
ing amounts of information in research 
fields such as invasion biology, yet they need 
to be further developed and combined with 
additional synthesis tools.
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global relational structure—or map—of these hypotheses emerges in the minds of the involved researchers
and, if so, how this map can be reliably reconstructed from the expertise of individuals. Here, we report
results of an online survey with 357 experts on invasion biology and several reconstructions of such a map.
Using the distance information between hypotheses provided in the survey, the resulting network is essen-
tially random. This finding implies that invasion biologists currently do not have a joint vision how inva-
sion hypotheses are related to each other. However, the pattern of pairwise familiarities between the
hypotheses in the survey yields joint-mentions networks with highly non-random features. These networks
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INTRODUCTION

When you visit a city such as Munich in Ger-
many for the first time in your life without a
smartphone or traditional map, you might be
able to find your way from the central train sta-
tion to the Oktoberfest. Maybe you would also
find your way to the “Marienplatz” (city center),
but you would definitely miss out some beautiful
spots. Without a traditional map or Google
Maps, visitors of a city such as Munich, Bremen,
or Berlin can quickly become lost. The only true

alternative to such an external map is an internal
mental map acquired by visiting a city’s locations
on a regular basis. This is not only true for cities
but also for research disciplines where research-
ers can become lost in a multitude of concepts
and hypotheses. This leads to the intriguing
general question: Do researchers have a clear,
detailed, and unambiguous map of their scien-
tific field in their minds?
For one specific scientific field, we here use a

questionnaire to probe the representation of such
a knowledge map in the scientific community.
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We took the discipline of invasion biology as a
case example. This discipline focuses on non-
native species and emerged in the 1990s when
the number of publications on the topic started
to massively increase (Richardson and Py�sek
2008). The first ideas, concepts, and hypotheses
about biological invasions date back to previous
centuries (Darwin 1859), and Elton’s (1958) book,
The ecology of invasions by animals and plants,
includes many ideas that are influential in the
field until today. Other concepts and hypotheses
were formulated later (Jeschke 2014), and many
of them are now populating the literature. Sev-
eral challenges have emerged with the raising
number of invasion hypotheses, for instance: (1)
it is becoming increasingly unclear what the cen-
tral concepts and hypotheses are of the field; (2)
some hypotheses have different names but repre-
sent the same, or a very similar, basic concept
(Catford et al. 2009); (3) some hypotheses com-
pletely contradict each other, and there is confu-
sion about which of these hypotheses are
empirically better supported; and (4) hypotheses
that are not empirically supported keep being
used (Jeschke et al. 2012a).

An important task for a discipline populated
by many hypotheses is to develop synthesis tools
that provide an overview or map of existing
hypotheses. Such an overview can then be con-
nected with meta-analyses to discriminate those
hypotheses that are empirically supported from
those that are not (Jeschke and Heger 2018). It
can also be connected to a larger atlas of scientific
disciplines (B€orner 2015). There are several possi-
ble approaches to synthesize existing hypotheses,
for example, based on bibliometric analyses,
expert surveys, or conceptual meta-frameworks
(Catford et al. 2009, Gurevitch et al. 2011, Saul
et al. 2013, B€orner et al. 2015).

For this study, we developed an online ques-
tionnaire covering 33 common invasion hypothe-
ses and asking experts which invasion hypotheses
they know best and how similar these are to other
invasion hypotheses. Based on the answers, we
are addressing the three following questions: (1)
Which are the best-known and most central inva-
sion hypotheses? (2) Do invasion biologists agree
on the similarity or dissimilarity of hypotheses
and already have a joint map or network of inva-
sion hypotheses in mind (i.e., an internal map)?
(3) If this is not the case, what would be a

promising candidate for an explicit, external map,
or network of invasion hypotheses? To our
knowledge, this is the first study following such
an approach, within ecology or beyond, that cre-
ates hypothesis networks based on a survey
among experts in the field. A first, rather rudi-
mentary hypothesis network was presented by
Jeschke (2014) for invasion biology, and a second
one was created based on a matrix with character-
istics of hypotheses (Enders and Jeschke 2018).

METHODS

Survey among invasion biologists
We compiled a list of 33 common invasion

hypotheses and defined each hypothesis (Table 1).
Key references for compiling this list were as fol-
lows: Catford et al. (2009), Lamarque et al. (2011),
Jeschke et al. (2012a, b), Jeschke (2014), Lockwood
et al. (2013), Lowry et al. (2013), and references
given in Table 1. The survey was available on the
Internet site https://www.soscisurvey.de/ for a
month, from 12 November 2014 to 12 December
2014. Links to the questionnaire were sent out to
invasion biologists and ecologists by using differ-
ent mailing lists (Ecolog-L, Alien-List, ISSG-
Members-List) and was, all in all, well received
(357 participants, 102 complete surveys [i.e., also
including personal information such as continent
of residence or age]). The first question that was
asked was as follows: “Which of the following
Hypotheses in Invasion biology do you know
best?” The participants could choose a maximum
of three hypotheses out of the 33 listed ones. A def-
inition was provided for each hypothesis (see
Table 1). We programmed the survey, so that
hypotheses selected by the participants were ran-
domly paired with other hypotheses, and the par-
ticipants were asked as follows: “From your
perspective, how similar are the following two
hypotheses? [selected hypothesis] and [random
hypothesis]?” The participant could pick from a
scale from 1 “These hypotheses completely contradict
each other” through 5; “No relationship between these
hypotheses” to 9; ”These hypotheses are extremely simi-
lar to each other.” Based on the responses, we cre-
ated three different networks of invasion
hypotheses, which are further outlined below. In
the survey, participants were also asked about their
continent of residency, age (in 10-yr steps), current
academic position, and time since PhD. The

 ❖ www.esajournals.org 2 March 2018 ❖ Volume 9(3) ❖ Article e02146

ENDERS ETAL.

https://www.soscisurvey.de/


Table 1. List of 33 common invasion hypotheses and how they were defined in the survey (key references
provided here were not given in the survey in order to minimize the amount of text in the survey).

Hypothesis and key reference(s) Definition

Adaptation (ADP; Duncan and
Williams 2002)

The invasion success of non-native species depends on the adaptation to the
conditions in the exotic range before and/or after the introduction. Non-native
species that are related to native species are more successful in this adaptation

Biotic acceptance aka “the rich get
richer” (BA; Stohlgen et al. 2006)

Ecosystems tend to accommodate the establishment and coexistence of non-native
species despite the presence and abundance of native species

Biotic indirect effects (BID; Callaway
et al. 2004)

Non-native species benefit from different indirect effects triggered by native species

Biotic resistance aka diversity-
invasibility hypothesis (BR; Elton
1958, Levine and D’Antonio 1999)

An ecosystem with high biodiversity is more resistant against non-native species than
an ecosystem with lower biodiversity

Darwin’s naturalization
(DN; Darwin 1859)

The invasion success of non-native species is higher in areas that are poor in closely
related species than in areas that are rich in closely related species

Disturbance (DS; Elton 1958,
Hobbs and Huenneke 1992)

The invasion success of non-native species is higher in highly disturbed than in
relatively undisturbed ecosystems

Dynamic equilibrium (DEM;
Hutson 1979)

The establishment of a non-native species depends on natural fluctuations of the
ecosystem, which influences the competition of local species

Empty niche (EN; MacArthur 1970) The invasion success of non-native species increases with the availability of empty
niches in the exotic range

Enemy inversion (EI;
Colautti et al. 2004)

Introduced enemies of non-native species are less harmful for them in the exotic than
the native range, due to altered biotic and abiotic conditions

Enemy of my enemy aka
accumulation-of-local-pathogens
hypothesis (EE; Eppinga et al. 2006)

Introduced enemies of a non-native species are less harmful to the non-native as
compared to the native species

Enemy reduction (ERD; Colautti
et al. 2004)

The partial release of enemies in the exotic range is a cause of invasion success

Enemy release (ER; Keane and
Crawley 2002)

The absence of enemies in the exotic range is a cause of invasion success

Environmental heterogeneity
(EVH; Melbourne et al. 2007)

The invasion success of non-native species is high if the exotic range has a highly
heterogeneous environment

Evolution of increased competitive
ability (EICA; Blossey and
N€otzold 1995)

After having been released from natural enemies, non-native species will allocate
more energy in growth and/or reproduction (this re-allocation is due to genetic
changes), which makes them more competitive

Global competition (GC; Colautti
et al. 2006)

A large number of different non-native species is more successful than a small
number

Habitat filtering (HF; Darwin 1859) The invasion success of non-native species in the new area is high if they are
pre-adapted to this area

Human commensalism (HC;
Jeschke and Strayer 2006)

Species that are living in close proximity to humans are more successful in invading
new areas than other species

Ideal weed (IW; Elton 1958,
Rejm�anek and Richardson 1996)

The invasion success of a non-native species depends on its specific traits
(e.g. life-history traits)

Increased resource availability
(IRA; Sher and Hyatt 1999)

The invasion success of non-native species increases with the availability of resources

Increased susceptibility (IS; Colautti
et al. 2004)

If a non-native species has a lower genetic diversity than the native species, there will
be a low probability that the non-native species establishes itself

Invasion meltdown (IM; Simberloff
and Holle 1999, Sax et al. 2007)

The presence of non-native species in an ecosystem facilitates invasion by additional
species, increasing their likelihood of survival or ecological impact

Island susceptibility hypothesis
(ISH; Jeschke 2008)

Non-native species are more likely to become established and have major ecological
impacts on islands than on continents

Limiting similarity (LS; MacArthur
and Levins 1967)

The invasion success of non-native species is high if they highly differ from native
species, and it is low if they are similar to native species

Missed mutualisms (MM; Colautti
et al. 2004, Mitchell et al. 2006)

In their exotic range, non-native species suffer from missing mutualists

New associations (NAS; Colautti
et al. 2004)

New relationships between non-native and native species can positively or negatively
influence the establishment of the non-native species

Novel weapons (NW; Callaway and
Ridenour 2004)

In the exotic range, non-native species can have a competitive advantage against
native species because they possess a novel weapon, i.e. a trait that is new to the
resident community of native species and therefore affects them negatively

Opportunity windows (OW;
Johnstone 1986)

The invasion success of non-native species increases with the availability of
empty niches in the exotic range, and the availability of these niches
fluctuates spatio-temporally
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geographic bias we observed among survey partic-
ipants (Appendix S1: Fig. S1) was quite similar to
the results described by Py�sek et al. (2008) for pub-
lications within invasion biology. The e-mail lists
we used to send out the survey (Ecolog-L, run by
the Ecological Society of America; Aliens-L, run by
the IUCN Invasive Species Specialist Group; ISSG-
Members-List, received by members of the IUCN
Invasive Species Specialist Group) are based in
North America, Europe, and Australia/New Zeal-
and, but experts worldwide receive e-mails sent
through them. Also, these lists are arguably the
most relevant ones globally on the topic for experts
in the field of invasion biology.

Similarity–dissimilarity networks
We used the similarity between invasion hypo-

theses that the participants indicated by answer-
ing the questions, “From your perspective, how
similar are the following two hypotheses?” In the
network, we connected two hypotheses if the
mean values taken from the participants’ answers
related to these hypotheses were either below 3
(contradictory hypotheses) or above 7 (similar
hypotheses). This network is the only one of the
three networks that can discriminate between
similar and contradictory hypotheses. It is also
the only conscious network; it illustrates similari-
ties and dissimilarities between hypotheses that
the experts are readily aware of.

To address potential differences between the
academic background of participants and result-
ing hypothesis networks, we also created similar-
ity–dissimilarity networks with participants who

specified their academic position (1) as PhD can-
didate, postdoc or higher, or (2) as other (e.g.,
managers or students). Furthermore, we created
alternative networks with only positive connec-
tions (using a threshold of 7) and with thresholds
below 2 (contradictory hypotheses) and above 8
(similar hypotheses).

Joint-mentions networks A and B
We used the number of joint mentions of

hypotheses to the question which hypotheses the
experts know best as an alternative for construct-
ing networks. In other words, we say that hypo-
theses that are frequently well-known by the
same people have a higher degree of similarity
compared to hypotheses that are rarely well-
known by the same people. Such joint-mentions
networks are unconscious networks, as they are
not based on the answers to the survey questions
related to similarity and dissimilarity of hypothe-
ses. The joint-mentions networks are thus net-
works based on local information that have been
reconstructed from the co-occurrences of two
hypotheses in the data.
Let Hi denote the total number of mentions of

hypothesis i in the set of replies, and Hij the joint
mentions of hypotheses i and j. It should be
noted that sometimes a hypothesis i was given as
the sole expertise of a given survey participant,
whereas sometimes two or three hypotheses, say
i, j, and k, were given as expertise (thus contribut-
ing to three entries in the joint-mentions matrix:
Hij, Hik, and Hjk). Therefore, in general we do not
have ∑j Hij = Hi.

(Table 1. Continued)

Hypothesis and key reference(s) Definition

Propagule pressure (PP; Lockwood
et al. 2005)

A high propagule pressure (a composite measure consisting of the number of
individuals introduced per introduction event and the frequency of introduction
events) is a cause of invasion success

Reckless invader (RI; Simberloff and
Gibbons 2004)

A non-native species that is highly successful shortly after its introduction can get
reduced in its population or even extinct over time due to different reasons (such as
competition with other introduced species or adaptation by native species)

Resource-enemy release (RER;
Blumenthal 2006)

The non-native species is released from its natural enemies and can spend more
energy in its reproduction, and invasion success increases with the availability of
resources

Specialist-generalist (SG; Callaway
et al. 2004)

Non-native species are more successful in a new region if the local predators are
specialists and local mutualists are generalists

Sampling (SP; Crawley et al. 1999) A large number of different non-native species is more likely to become invasive than
a small number due to interspecific competition. Also the species identity of the
locals is more important than the richness in terms of the invasion of an area

Tens rule (TEN; Williamson and
Brown 1986, Williamson 1996)

Approximately 10% of species successfully take consecutive steps of the invasion
process
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We used two metrics for translating the co-
occurrence counts into a score and then into a
network. In the first metric which underlies joint-
mentions network A, the absolute number of co-
occurrence counts (normalized to values between
0 and 1) was used. This leads to pronounced
hubs as the dominant topological feature. Mathe-
matically, the observed number Hij of joint men-
tions of two hypotheses i and j was compared
with the maximal number of joint mentions that
could have been observed given the number of
individual mentions of each hypothesis, that is,
min(Hi,Hj). An example where such a normaliza-
tion is frequently used is in the evaluation of co-
activations of cortical areas in Computational
Neuroscience (M€uller-Linow et al. 2008). The
matrix we used for creating the joint-mentions
network A thus has the following entries:

sðAÞij ¼ Hij

minðHi;HjÞ : (1)

Using this normalization, joint-mentions net-
work A shows the connected mentions of the
hypotheses and therefore indicates which
hypotheses are used together in the minds of sci-
entists and in practical work. Appendix S1:
Fig. S2 shows a histogram of the entries sðAÞij from
Eq. 1. Zeros and diagonal elements have been
removed in order to focus on the non-trivial
entries of the matrix. In order to arrive at a (bi-
nary) adjacency matrix (and hence the joint-men-
tions network A), we need to select a binarization
threshold sT. Visual inspection of this distribution
suggests sT = 0.2, that is, the minimum after the
first dominant peak.

The second metric which underlies joint-
mentions network B compares the score with an
expected score based on randomized data. In this
case, the network’s degree distribution is not as
broad and additional topological features of
the hypotheses emerge. We use relative frequen-
cies as estimates of these probabilities; that is,
pi = Hi/∑j Hj is the probability of mentioning
hypothesis i at random. Relatedly, pij = Hij/∑kl Hkl

serves as an estimate of the probability of jointly
mentioning hypotheses i and j. We compare this
probability pij of joint mentions of two hypothe-
ses i and j with the expectation of joint mentions
based on randomly drawing pairs of hypotheses
from a pool, where a hypothesis i occurs with the

probability pi. This expectation then is pipj. In
other words, joint-mentions network B shows
the probability of hypotheses chosen together
and so the probability of hypotheses used
together in any situation. Similar normalizations
are the basis of, for example, the mutual informa-
tion used in information theory (Shannon 1948).
The matrix leading to joint-mentions network B
thus has the following entries:

sðHÞ
ij ¼ pij

pipj
(2)

Appendix S1: Fig. S3 shows a histogram of the
entries sðHÞ

ij from Eq. 2. While the first normaliza-
tion requires somewhat arbitrarily selecting a
threshold in order to determine the links in the
joint-mentions network A, in the second normal-
ization here the value 1 is a natural choice of such
a threshold, as values above 1 indicate that the
observed joint-mentions count of the two
hypotheses is higher than expected at random. It
would also have been possible to use weighted
graphs instead of a binary adjacency matrix.
However, for the latter a much richer choice of
analysis methods is available.

Identifying communities within networks
A community within a network is a set of

nodes with a large number of links among them-
selves (many intracommunity links) and only
comparatively few links to the rest of the net-
work (i.e., to other communities; few intercom-
munity links). We calculated communities within
the programming environment Mathematica. We
used a modularity-maximizing algorithm (i.e., an
iterative search for maximizing the Girvan-New-
man modularity measure; Girvan and Newman
2002) for community detection.

RESULTS

Well-known invasion hypotheses & statistics
about survey participants
The age of most participants ranged between

30 and 70 yr, where the age class 40–49 yr was
less well represented than other age classes
(Appendix S1: Fig. S1). Similarly, participants
had a range of academic positions, and time
since PhD (including no PhD yet) varied as well.
Thus, participants included students, practition-
ers, PhD candidates, postdocs, and professors.
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Some hypotheses were significantly more fre-
quently selected by survey participants than
others: The distribution of the number of times
each hypothesis was selected significantly dif-
fered from an equal distribution (Pearson’s chi-
squared test, v2 = 483.65, df = 32, P < 0.001;
Fig. 1). The three most frequently selected hypo-
theses were as follows: enemy release (ER, 150
times selected), propagule pressure (PP, 135
times), and disturbance (DS, 102 times). It is simi-
lar for survey participants who specified their aca-
demic position as PhD candidate or higher where
ER and PP were followed by BR (red columns in
Fig. 1). For participants specifying their academic
position as other (managers, students, etc.), the
three most frequently selected hypotheses were
PP, DS, and ER (blue columns in Fig. 1). There
was a strong and significant correlation between
the number of times that hypotheses were

selected by academic vs. non-academic survey
participants (Appendix S1: Fig. S7; rS = 0.78,
P < 0.001, Spearman’s rank correlation test).

Similarity–dissimilarity networks
The main similarity–dissimilarity network has

a total of 137 connections (edges) between
hypotheses which are differentiated by color and
thickness: The thickness of a line represents the
strength of a similarity (black) or contradiction
(red), respectively (Fig. 2). Despite that there
should be no difference which hypothesis is
mentioned first in the question, “From your per-
spective, how similar are the following two
hypotheses?” there were sometimes different
results for hypotheses pairs if one of the two
hypotheses was mentioned first. In such cases, the
more extreme result (stronger similarity or dissim-
ilarity) was taken. In one case (NAS-DEM),

Fig. 1. Number of times each hypothesis was selected by survey participants as those they know best (the
dashed line indicates the average across all 33 hypotheses). The red bars indicate the number of times each
hypothesis was selected by survey participants who specified their academic position as PhD candidate or
higher. The blue bars indicate the number of times each hypothesis was selected by survey participants who
specified their academic position as other (e.g., managers or students). The remaining gray part in each bar indi-
cates selections by survey participants who did not specify their academic position.
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survey participants indicated similarities as well
as dissimilarities; here, the more frequent answer
was taken. Such differences are probably due to
different interpretations of the question: “From
your perspective, how similar are the following
two hypotheses?” For example, similarity be-
tween two hypotheses could mean compliance in
the topic or a compliance in the point of view.

In general, there was a large range of answers
to the question how similar two given hypothe-
ses are. To illustrate this huge variation among
answers, we plotted the minimum value of an
answer against the maximum value for all
hypotheses pairs (Appendix S1: Fig. S4).
The three hypotheses with the highest degree

centrality (i.e., the highest number of connections)

Fig. 2. The similarity–dissimilarity network of invasion hypotheses, based on the participants’ responses how
similar hypotheses are. Line thickness indicates the level of similarity (black lines) or dissimilarity (red lines)
between hypotheses. The degree centrality of a hypothesis is indicated by the size of its circle. Since this network
is similar to a random network (see main text and Appendix S1), it cannot be reasonably divided into communi-
ties of hypotheses within the network. This was only possible for the joint-mentions networks.
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in the similarity–dissimilarity network are as fol-
lows: opportunity windows (OW), dynamic equi-
librium (DEM, both 16 connections), and island
susceptibility hypothesis (ISH, 15 connections),
but several other hypotheses also have high
degrees. The average degree centrality for a
hypothesis in this network is 8.30 � 4.09 (SD).
The most isolated hypothesis is the tens rule
which has no connections here. Surprisingly, the
network reconstructed from the quantitative
information has many features of a random graph
(see Appendix S1 and below for more informa-
tion). However, when only local information
(“Name the hypotheses from the list you are
familiar with”) is used, non-random networks
emerge, which allow us to topologically charac-
terize the role each hypothesis has in shaping the
scientific field under consideration.

We also created similarity–dissimilarity net-
works using only answers of participants who
specified their academic position: either (1) PhD
candidate or higher (academic network; App-
endix S1: Fig. S9) or (2) other (e.g., managers or
students, non-academic network; Appendix S1:
Fig. S10). In addition to the strong correlation
between the number of times that hypotheses
were selected by academic vs. non-academic
survey participants (see above), there was also a
significant correlation between the degree cen-
tralities of hypotheses in the two networks
(Appendix S1: Fig. S8; rS = 0.46, P = 0.01,
Spearman’s rank correlation test). Since many
survey participants did not indicate their aca-
demic position, these two networks are based
on fewer information than other networks gen-
erated here.

Furthermore, we created a similarity–dissimi-
larity network based on positive answers only
(Appendix S1: Fig. S11). In this network, two
hypotheses are isolated (tens rule, TEN, and
biotic acceptance, BA), and OW is the hypothesis
with the highest degree centrality (16 connec-
tions) followed by the DEM and the ISH (both 14
connections).

Finally, we applied stricter thresholds for the
similarity–dissimilarity network, using a thresh-
old of 2 for contradictory hypotheses and a
threshold of 8 for similar hypotheses (Appen-
dix S1: Fig. S12). In this network, five hypotheses
are isolated, and the overall number of edges
was low.

Joint-mentions networks A and B
The joint-mentions network A is dominated by

the three most central nodes: ER (21 connec-
tions), DS, and PP (both 19 connections; Fig. 3).
The next following hypothesis is empty niche
(EN) with 10 connections, with all other hypothe-
ses having only up to seven connections. One
hypothesis has no connection: enemy inversion
(EI). Overall, this network has 83 connections,
and the average number of connections for a
hypothesis is 5.03 � 4.95 (SD).
The last network we created was the joint-

mentions network B. It has 107 connections,
and the hypotheses with the highest degree cen-
trality are specialist–generalist (SG, 11 connec-
tions) and environmental heterogeneity (EVH,
10 connections; Fig. 4). Here, the average num-
ber of connections for a hypothesis is 6.45 �
2.28 (SD).

Comparing well-known with central hypotheses
When comparing the degree centrality of each

hypothesis with the number of times it was
selected by survey participants as the ones they
know best, there was no significant correlation in
the similarity–dissimilarity network shown in
Fig. 2 (Pearson’s correlation coefficient r = �0.14,
P = 0.40; Appendix S1: Fig. S5a). The same was
true for joint-mentions network B (r = 0.03,
P = 0.82; Appendix S1: Fig. S5c). However, the
degree centrality was significantly correlated
with the number of times a hypothesis was
selected in joint-mentions network A (r = 0.89,
P < 0.001; Appendix S1: Fig. S5b).

DISCUSSION

Well-known and central invasion hypotheses
The best-known invasion hypotheses among

the survey participants were enemy release, pro-
pagule pressure, and disturbance. As further out-
lined below, the joint-mentions network A is,
among the networks compared here, best suited
to reveal the most central hypotheses in the field.
In this network, well-known invasion hypotheses
also have a high degree centrality.
In a systematic review, Lowry et al. (2013)

demonstrated differences in the number of stud-
ies on different invasion hypotheses. Their
results cannot be easily compared to ours
because a systematic review documents the past,
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as it covers all publications until the date when
the review was done, whereas a survey as
reported here is a snapshot of the present time
when the survey was done. Also, Lowry et al.
partly used different terms and definitions for
their hypotheses, whereas we followed and
extended Catford et al. (2009) in our terminol-
ogy. Nonetheless, the most frequently selected
hypotheses in our survey are also well investi-
gated according to Lowry et al. (2013).

The three best-known hypotheses according to
our survey and the most central ones according
to the joint-mentions network A—PP, ER, and DS
—represent important aspects of biological inva-
sions: While the propagule pressure hypothesis
represents the principal importance of human
action (humans transport propagules of inva-
ders, either intentionally or unintentionally), the
enemy release and disturbance hypotheses repre-
sent the importance of classical ecological inter-
actions: ER related to interactions with other
biota and DS related to interactions with abiotic
factors.

Do invasion biologists already have a map or
network of invasion hypotheses in mind?
The similarity–dissimilarity network showed

that there is no clear joint map of the field of
invasion biology in the heads of people working
in this field. The range of the answers varied
widely (Appendix S1: Fig. S4), and the similar-
ity–dissimilarity network resulting from these
answers lacks a clear structure and shows ran-
dom features (Fig. 2). This visual impression is
supported by statistical comparisons of the simi-
larity–dissimilarity network with an Erd}os-R�enyi
(ER) random graph (Erd}os and R�enyi 1959) with
100 nodes and a connectivity of 0.1. The connec-
tivity in the ER graph is the probability of each
possible (undirected) link to be present. In this
completely random graph, where no other influ-
ences shape the topological features, the degree
essentially determines centrality, leading to a
high correlation of these features (and to a high
correlation of the two centralities). Fur-
thermore, the clustering coefficient and the
betweenness centrality are negatively correlated

Fig. 3. The joint-mentions network A of invasion hypotheses, based on the participants’ responses which
hypotheses they know best and standardized by the number of mentions of hypotheses. The degree centrality of
a hypothesis is indicated by the size of its circle, and colors indicate different hypothesis communities.
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(Appendix S1: Figs. S13–S15). Similar patterns
were observed for the similarity–dissimilarity
network (Appendix S1: Figs. S16–S18). We also
performed quantitative statistical analysis which
confirmed that both the main similarity–
dissimilarity network (Fig. 2) and the one
restricted to positive connections between hypo-
theses (Appendix S1: Fig. S11) are similar to
random networks (details are provided in App-
endix S1). These analyses were not performed for
the other similarity–dissimilarity networks due
to the lower number of participants in case of the
networks for different academic degrees and the
many isolated hypotheses as well as low number
of edges in case of the network for the thresholds
2 and 8. The comparisons to random networks
suggest that we can negate our question (2)

above: Do invasion biologists agree on the simi-
larity or dissimilarity of hypotheses and already
have a joint map or network of invasion hypo-
theses in mind (i.e., an internal map)?

What would be a promising candidate for a map
or network of invasion hypotheses?
Detailed analyses of topological properties of

the hypotheses in the two joint-mentions net-
works lead to a remarkably detailed characteri-
zation of the role of these hypotheses. These
analyses are outlined in Appendix S1 and
revealed, for instance, interesting sub-networks
or communities characterized by a higher
number of connections within than outside the
community. The question on which the joint-
mentions networks A and B were based on was

Fig. 4. The joint-mentions network B of invasion hypotheses, based on the participants’ responses which
hypotheses they know best and standardized by the expected numbers of joint mentions. The degree centrality
of a hypothesis is indicated by the size of its circle, and colors indicate different hypothesis communities.
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which hypotheses the participants know best or
work with. Hence, the probability if you work
with one of the hypotheses in a community, to
know or work with another of the same commu-
nity, is higher than for hypotheses in different
communities.

The joint-mentions network A has four com-
munities, and the four most central hypotheses
(ER, PP, DS, and EN) are these communities’ cen-
tral pillars. Furthermore, each central hypothesis
and thus each community represents different
factors that can benefit an invasion: The human
factor is represented by propagule pressure (in
purple, Fig. 3), the loss of parasites and preda-
tors is represented by enemy release (in red), and
disturbances (either anthropogenic or non-
anthropogenic, in yellow) and empty niches (in
orange) are represented by the respective
hypotheses. Within the communities, there is a
variety of different hypotheses representing dif-
ferent factors for a successful invasion.

The joint-mentions network B has three com-
munities. The first one (in red, Fig. 4) contains
the hypotheses with the highest degrees, for
example, SG, EVH, and NAS; the second com-
munity (in yellow) contains hypotheses with
intermediate numbers of connections such as dis-
turbance, limiting similarity, and biotic indirect
effects; and the third community (in blue) is char-
acterized by hypotheses with a low degree cen-
trality, for example, enemy inversion, invasion
meltdown, and the tens rule. All three communi-
ties include hypotheses focusing on biotic and
abiotic factors and unlike joint-mentions network
A are not dominated by hypotheses with a great
degree. The joint-mentions network B has a
richer, more intricate structure than joint-men-
tions network A, beyond the dominance of a few
prominent nodes.

There are other important differences among
the networks. In particular, the similarity–
dissimilarity network can discriminate between
similar and contradictory hypotheses, whereas
the joint-mentions networks do not show contra-
dictions between hypotheses. Another key differ-
ence is that the similarity–dissimilarity network
is based on the direct, conscious answers of the
survey participants how similar hypotheses are,
whereas the joint-mentions networks are based
on the unconsciously given information about
the similarity of hypotheses. We argue that the

former information could be biased due to intel-
lectual–psychological reasons or since the partici-
pants were saturated with questions when being
asked to indicate similarities between hypotheses
(these questions were asked in the middle of the
survey); being saturated or tired of questions can
lead to unreliable survey data, which could also
explain the range in the answers (Faulbaum et al.
2009). Furthermore, these questions might not
have been straightforward to answer for all sur-
vey participants. The unconsciously given infor-
mation as a response to the first survey question
does not suffer from these problems: (1) The par-
ticipants should have been more focused, as they
were not exhausted by other questions; (2) the
first question did not require any specific
knowledge of invasion hypotheses (Porst 2009).
We thus argue that the unconsciously provided
information in responding to this question is
more robust.
From this perspective, it may not surprise that

the two joint-mentions networks, which are
based on arguably more robust data, show a
clearer picture of similarities between hypotheses
than the similarity–dissimilarity network. But the
two joint-mentions networks differ: Popular
hypotheses have a higher likelihood for being
mentioned together than less popular hypothe-
ses, and the two normalizations applied for cre-
ating joint-mentions network A and B (Eqs. 1, 2
above) separate popular vs. similar hypotheses.
This separation is fully achieved for joint-
mentions network B, whereas in case of joint-
mentions network A, popular hypotheses still
have higher degree centralities than other
hypotheses as illustrated in Fig. 3 (cf. Fig. 1).
This incomplete separation of popularity vs. sim-
ilarity may, however, be useful because the cen-
tral hypotheses in such networks are like big
cities on regular maps: These are the well-known
hypotheses and landmarks that many people
will look for first when inspecting the network.
Both Eqs. 1, 2 seem reasonable and have pro-

ven useful, although in other fields and for other
purposes. Joint-mentions network B shows the
probability of hypotheses chosen together and so
the probability of hypotheses used together in
any situation. This network seems to be better sui-
ted to visualize the structure among the hypothe-
ses of the field such as sub-networks. Depending
on which feature is more important, one might
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choose joint-mentions network A or B. However,
more networks based on different approaches
(e.g., bibliometric analyses) are clearly needed
before making decisions about the best-suited net-
work(s) or map(s) for the field.

Future Perspectives
This study is an early step toward a fully func-

tional network of invasion hypotheses. Our
approach was based on a survey among experts
in the field. An alternative approach based on a
matrix with characteristics of hypotheses was
recently applied by Enders and Jeschke (2018),
and other approaches, for example, based on bib-
liometrics, should be explored as well.

Hypothesis networks could prove very useful
for invasion biology and—in extended versions
—for other disciplines, as it is a powerful syn-
thesis tool that provides an overview of the
hypotheses and thus the theory of the field
(Jeschke 2014). One of the main benefits of visu-
alizing similarities and dissimilarities between
hypotheses is to reduce redundancy in the field:
Such a network allows researchers to quickly
identify (1) hypotheses with different names that
represent the same, or a very similar, basic idea
or concept; and (2) hypotheses that contradict
each other. Connecting the network with a data-
base for meta-analytic approaches will also
allow identifying and discarding zombie
hypotheses (Fox 2001), so that the field can bet-
ter focus on those hypotheses that are actually
supported empirically. More generally, hypothe-
sis networks can serve as maps of research fields
and will benefit everyone interested in the topic,
not only scientists but also managers and deci-
sion-makers, teachers and their students, etc.
Such networks could be complemented with
other navigation tools, so that we do not get lost
in the myriad of concepts and hypotheses that
nowadays populate invasion biology and other
disciplines.
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Supplementary material 

Drawing a map of invasion biology based on a network of hypotheses 
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Figure S1. Continent of residency of the survey participants (a), age distribution (b), current 

academic position (c) and time since PhD (d). Figures indicate the number of survey participants 

ticking the respective category – these numbers are lower than the total number of survey 

participants, as not all participants chose to provide this information: n = 104 (a), n = 103 (b), n = 

102 (c), n = 129 (d). 
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Figure S2. Histogram of matrix entries 𝑠𝑖𝑗
(𝐴)

 for normalization A (joint-mentions network A). 

Zeros and diagonal elements have been removed. 

 

 

Figure S3. Histogram of matrix entries 𝑠𝑖𝑗
(𝐵)

 for normalization B (joint-mentions network B). 

Zeros and diagonal elements have been removed.  
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Figure S4. Minimum and maximum values of the survey answers to the question how similar two 

given hypotheses are. Similarity bonds in the network are indicated in gray, dissimilarity bonds in 

red and no bond in black. The size indicates the number of answers for a given hypotheses pair. 

In case of a strong congruence among the answers, the circles would lie on or be close to the 

vertical line, as minimum and maximum values should be similar. 
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Figure S5. Degree centrality of the hypotheses in the similarity-dissimilarity network based on 

thresholds 3 and 7 compared to the network based on thresholds 2 and 8 (in red). Dashed lines 

indicates the average number of connections across all 33 hypotheses. 
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Figure S6. Comparisons between the number of times each hypothesis was selected by 

participants as those they know best and the degree centrality of this hypothesis in (a) the 

similarity-dissimilarity network (r = -0.12, p = 0.49), (b) the joint-mentions network A (r = 0.89, 

p = <0.001) and (c) the joint-mentions network B (r = 0.03, p =0.82). The two hypotheses that 

were most frequently selected are enemy release and propagule pressure (cf. Fig. 1).  



6 

 

 

Figure S7. Correlation between the number of times that hypotheses were selected as those they 

know best by survey participants who specified their academic position as “Other” (y-axis) and 

those who indicated to be a PhD candidate or higher (x-axis). 
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Figure S8. Correlation between the degree centrality of hypotheses in the similarity-dissimilarity 

networks based on answers by survey participants who specified their academic position as 

“Other” (y-axis) and those who indicated to be a PhD candidate or higher (x-axis).  
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Figure S9. The similarity-dissimilarity network based on answers from participants who specified 

their academic status as PhD candidate, postdoc or higher (i.e., participants who specified their 

status as “Other” or who did not specify it were excluded here). 
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Figure S10. The similarity-dissimilarity network based on answers of participants who specified 

their academic status as “Other”. 
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Figure S11. The similarity-dissimilarity network based on only positive answers. 
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Figure S12. The similarity-dissimilarity network using a threshold for 2 for contradictory 

hypotheses and a threshold of 8 for similar hypotheses. 
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Statistical analyses of networks 

Given the three network representations derived from the survey results, two key questions need 

to be addressed: (1) Do certain hypotheses stand out topologically? Can they be characterized on 

the basis of their topological features such that the roles of the hypotheses within the scientific 

discipline can be better understood? (2) Are the topological features of these networks rather 

random or do they possess clear non-random properties? These questions are addressed in the 

statistical analyses. 

In order to characterize each node i in a network (question 1), we will use the degree ki, the 

betweenness centrality bi, the clustering coefficient ci and the eigenvector centrality ei. While the 

degree of a node is simply the number of neighbors, the betweenness centrality bi of a node i is the 

percentage of shortest paths from any node to any other node in the graph, which pass through this 

node i (Freeman 1977). The clustering coefficient ci of node i is the percentage of links among the 

neighbors of node i (Watts and Strogatz 1998). In contrast to the betweenness centrality, where all 

nodes contribute equally (via their shortest paths) to the computation of a node’s centrality, in the 

case of the eigenvector centrality a link of a node to a high-score neighbor is more relevant than a 

link to a low-score neighbor. Google’s PageRank is a variant of this eigenvector centrality (Brin 

and Page 1998). These centralities are of particular importance for dynamical processes on graphs, 

as they can be associated to the node visiting probabilities of a random walk on the graph. 

Technically, the quantities ei form the eigenvector of the graph’s adjacency matrix belonging to the 

largest eigenvalue, i.e. the Perron-Frobenius eigenvector (Newman 2003). 

To address whether the topological features of the networks are rather random (question 2), we 

computed the correlation coefficient r for each pair of topological quantities discussed above 

(degree with betweenness centrality, D–BC; eigenvector centrality with betweenness centrality, 

EC–BC; clustering coefficient with betweenness centrality, CC–BC). We then generated large sets 

of Erdős-Rényi (ER) random graphs (null model NM1), each with the same number of nodes and 

edges as the hypotheses network under consideration. For these graphs, we computed the average 

correlation coefficient ˂r˃, as well as its standard deviation σr, yielding a z-score, zr = (r – <r>) / 

σr. A z-score between –1 and +1 indicates that the correlation coefficient r between the topological 

quantities observed in the hypothesis networks cannot be distinguished from random graphs. A z-

score with 1 < |z| < 2 can be interpreted as a correlation coefficient close to those in random graphs 

(less than two standard deviations away). Larger values of |z| suggest significant deviations from 
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random graphs. Furthermore, we performed the same numerical experiment using a large set of 

switch-randomized graphs (null model NM 2; see e.g. Milo et al. (2002), Fretter et al. (2012)), thus 

not only conserving the total number of nodes and edges, but also the degree sequence of the graph 

(i.e. the degree of each nodes). 

 

 

Erdős-Rényi (ER) random network 

 

Figure S13. Betweenness centrality vs. degree for the nodes of the random ER network. 
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Figure S14. Betweenness centrality vs. clustering coeffcient for the nodes of the random ER 

network. 

 

Figure S15. Betweenness centrality vs. eigenvector centrality for the nodes of the random ER 

network. 
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Statistical analysis of the similarity-dissimilarity networks 

Figure S16 shows the node’s betweenness centrality against the node degree for all nodes 

(hypotheses) in the main similarity-dissimilarity network shown in Fig. 2 in the manuscript. In 

Figure S17, the betweenness centrality is shown against the clustering coefficient, while Figure 

S18 compares the two centralities, the eigenvector centrality and the betweenness centrality. 

In order to assess the similarity to a random network, which is suggested by these scatter plots 

(compare with Figures S13-15), we performed the numerical experiments described above. Tables 

S1 and S2 show the correlation coefficients, as well as the z-scores with respect to both null models 

for the three pairs of topological quantities for the main similarity-dissimilarity network (Fig. 2 in 

the paper, using values 1-3 and 7-9) and the modified similarity-dissimilarity network based on 

positives values only (using values 7-9; Fig. S11). The z-scores in Table S1 indicate that the latter 

similarity-dissimilarity network indeed shows no significant deviations from random graphs. For 

the main similarity-dissimilarity network (Table S2), the correlation between the clustering 

coefficient and the betweenness centrality shows a deviation from each of the sets of random 

graphs, but all other z-scores confirm the random features of this network. The weaker negative 

correlation of the lustering coefficient and the betweenness centrality could be due to the slightly 

higher modularity of the similarity-dissimilarity network (Girvan-Newman index of 0.201; see 

Girvan and Newman (2002) for the definition of the index) compared to random graphs. 
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Figure S16. Betweenness centrality vs. degree for the nodes of the similarity-dissimilarity 

network. 

 

Figure S17. Betweenness centrality vs. clustering coeffcient for the nodes of the similarity-

dissimilarity network.  
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Figure S18. Betweenness centrality vs. eigenvector centrality for the nodes of the similarity-

dissimilarity network. 

 

Table S1. Correlation coefficients between topological properties for the similarity-dissimilarity 

network based on scores 7-9, together with the z-scores derived from ER graphs (null model NM 

1) and from switch-randomized graphs (null model NM 2). For each null model, z-scores are 

based on 1000 graphs. D: degree, BC: betweenness centrality, EC: eigenvector centrality, CC: 

clustering coefficient. 

Property  Correlation  z-score (NM 1)  z-score (NM 2) 

D–BC  0:871148 –0.0361625  0.133177 

EC–BC  0.750786 –0.327436  –0.824518 

CC–BC  –0.517281 –1.03688  –1.02059 
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Table S2: Same as Table S1, but for the main similarity-dissimilarity network based on scores 1-

3 and 7-9. 

Property  Correlation z-score (NM 1)  z-score (NM 2) 

D–BC   0.854399 –0.645742  0.17137 

EC–BC 0.743479 –0.755784  –0.297047 

CC–BC  –0.656414 –2.35288  –3.33159 

 

Statistical analysis of the joint-mentions network A 

Figure S19 shows the node’s betweenness centrality against the node degree for all nodes 

(hypotheses) in the joint-mentions network A. In Figure S20, the betweenness centrality is shown 

against the clustering coefficient, while Figure S21 compares the two centralities, the eigenvector 

centrality and the betweenness centrality. The joint-mentions network A is dominated by four 

hypotheses that clamp the network. For a better view on the structure each figure is also zoomed 

in on the rest of the hypotheses without the four dominating hypotheses. Regarding the potential 

similarity to a random network, all z-scores indicate a moderate but systematic deviation from 

randomness across all topological indicators (Table S3). 
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Figure S19. Betweenness centrality vs. degree vs. for the nodes of the joint-mentions-network A. 

For a better view on the structure each figure is also zoomed in on the rest of the hypotheses 

without the four outliners (below). 
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Figure S20. Betweenness centrality vs. clustering coefficient for the nodes of the joint-mentions 

network A. For a better view on the structure each figure is also zoomed in on the rest of the 

hypotheses without the four outliners (below). 
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Figure S21. Betweenness centrality vs. eigenvector centrality for the nodes of the joint-mentions 

network B. For a better view on the structure each figure is also zoomed in on the rest of the 

hypotheses without the four outliners (below). 
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Table S3. As Table S1, but for joint-mentions network A. 

Property  Correlation  z-score (NM 1)  z-score (NM 2) 

D–BC   0.959959 1.58967  –1.04517 

EC–BC  0.867749 1.64308  –2.89482 

CC–BC  –0.773808 –1.93993  –3.35674 

 

 

 

Statistical analysis of the joint-mentions network B 

Figure S22 shows the node’s betweenness centrality against the node degree for all nodes 

(hypotheses) in the joint-mentions network B. In Figure S23, the betweenness centrality is shown 

against the clustering coefficient, while Figure S24 compares the two centralities, the eigenvector 

centrality and the betweenness centrality. Visually inspecting these figures, we find evidence for 

hidden integrators with a comparatively low or intermediate degree, but a high betweenness 

centrality (for example BR and PP), organizers of cohesive groups with a low betweenness 

centrality, but a high clustering coefficient (for example RI), as well as structural integrators with 

a high betweenness centrality but intermediate eigenvector centrality (like BR and PP) vs. 

dynamical integrators with a high eigenvector centrality but intermediate betweenness centrality 

(like SG, EVH and NAS). In general, the community structure of a network is an interesting 

topological characterization, as it suggests relevant sub-networks that may be discussed 

individually. For the hypotheses networks discussed here, this is of particular relevance, as a strong 

modularity may be indicative of the existence of different scientific ’schools’, with a stronger 

dissemination and exchange within than with other ’schools’. 

The joint-mentions network B shows a drastic deviation from random graphs in almost all 

topological indicators, except for the correlation between clustering coefficient and betweenness 

centrality (see Table S4). As indicated above, this quantity could be affected by the modularity of 

the networks (Girvan-Newman index of 0.34). 
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Figure S22. Betweenness centrality vs. degree for the nodes of the joint-mentions network B. 

 

 

Figure S23. Betweenness centrality vs. clustering coefficient for the nodes of the joint-mentions 

network B. 
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Figure S24. Betweenness centrality vs. eigenvector centrality for the nodes of the joint-mentions 

network B. 

 

Table S4. As Table S1, but for the joint-mentions network B. 

Property  Correlation  z-score (NM 1)  z-score (NM 2) 

D–BC   0.656206  -5.19909   -17.2986 

EC–BC  0.476911  -4.36896   -9.10713 

CC–BC  -0.608896  -1.58043   -0.790375 
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4. A citation-based map of concepts in invasion biology 

 

This paper was a collaboration with Dr. Frank Havemann from Humboldt-Universität zu 

Berlin and Prof. Dr. Jonathan Jeschke from Freie Universität Berlin and Leibniz-Institute of 

Freshwater Ecology and Inland Fisheries (IGB) and was published in NeoBiota (2019). 
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Introduction

When you are visiting a city, you can usually find some important places by yourself, 
for example the central station, a supermarket, and maybe even a few touristic high-
lights. A better way, however, would be that a friend draws you a map with the places 
in the city you are interested in. Then you would also find the small French café, the 
little arthouse cinema, and the restaurant serving delicious oriental food. But this map 
will be limited by your friend’s knowledge of her district. What if you want to visit an-
other part of the city? You will find yourself in the same position as before. Therefore, 
an even better way is to ask several people who live in different areas of the city. In this 
way, you can get a detailed picture of the whole city and, if you are lucky, even find the 
best brewed coffee in the city.

The same is true when you start in a new research field. Enders et al. (2018) showed 
that the field of invasion biology can be seen as such a big city in which many of its in-
habitants, i.e. invasion biologists, have no clear picture of the whole city; their knowl-
edge seems to be limited to their immediate field of interest within invasion biology. 
What is the solution for a problem like this? Suppose you have no good tourist guide 
at hand, then you need to observe where other tourists go to and follow them. For a 
research field, this would be an analysis of citations made by specialists.

Authors of a scholarly paper cite publications and other sources they assume to 
be relevant for the topic of their paper. Thus, scholarly papers form a huge network, a 
view already propagated by one of the fathers of bibliometrics (de Solla Price 1965). 
The identification of topics in bibliographies is an old problem in bibliometrics. Start-
ing with co-citation analysis (Marshakova 1973; Small 1973; Small and Sweeny 1985), 
important recent developments include hybrid approaches that combine citation-
based and term-based techniques (Glenisson et al. 2005; Glänzel and Thijs 2017), and 
term-based probabilistic methods (topic modelling, Yau et al. 2014). The 21st century 
brought the advance of many methods for clustering in networks (Fortunato 2010; 
Xie et al. 2013; Amelio and Pizzuti 2014). Some of these methods were also applied 
to citation networks (Gläser et al. 2017; Velden et al. 2017), and topic identification is 
often accompanied by visualization of the topic landscape (Börner 2015).

For this publication, we analysed co-citations of invasion hypotheses in research 
papers of the last two decades. Co-citation analysis was independently introduced by 
Irina Marshakova (1973) and Henry Small (1973) (see also Havemann 2016). Because 
there are no strict rules for citing, they had to solve the problem of noise in co-citation 
data. Irina Marshakova compared the observed absolute co-citation numbers with ex-
pected numbers in a null model of independent random citing and only accepted co-
citation links between cited sources that are more frequently co-cited than in 95% of 
random trials in the null model. In other words, she assumed binomial distributions of 
co-citation numbers and chose a significance level of 95%. Henry Small, on the other 
hand, reduced noise by using thresholds of relative co-citation measures (Jaccard and 
Salton index). Also, other relative measures of co-citation strengths were used (Gmür 
2003; Egghe and Leydesdorff 2009; Boyack and Klavans 2010). In a recent study, Tru-
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jillo and Long (2018) used absolute co-citation numbers as a similarity measure and 
created a sequence of nested co-citation networks by setting different thresholds for 
this measure. In invasion biology or related research fields, however, no citation-based 
map of major concepts and hypotheses does, to our knowledge, currently exist.

Invasion biology is a discipline that grew very slowly at first. In the 19th century, 
early concepts on non-native species were mentioned (Cadotte 2006), for example in 
Darwin’s (1859) book “On the origin of species by means of natural selection”. Further 
concepts were introduced by the Swiss botanist Albert Thellung (Kowarik and Pyšek 
2012), Elton (1958) and others until the 1950s; however, there was still too little work 
on the topic to recognize a distinct research field. Possibly due to a growing conscious-
ness for ecosystems in a changing world (Meadows et al. 1972) and in human respon-
sibilities (Jonas 1979), interest in invasion biology strongly increased since the late 20th 
century (Richardson and Pyšek 2008). It has also influenced other research fields; for 
example, concepts and hypotheses of invasion biology are used in restoration ecology, 
landscape ecology, urban ecology, or risk assessments of genetically modified organisms 
(Jeschke et al. 2013; Lowry et al. 2013).

Our study aims were twofold. First, we wanted to find a suitable map of the field 
of invasion biology based on co-citation analysis. Second, we aimed to compare this 
map to those created with two other approaches: a map based on an assessment of the 
characteristics (“traits”) of hypotheses (Enders and Jeschke 2018), and one based on an 
online survey (Enders et al. 2018).

Methods

We defined 35 common concepts and hypotheses in invasion biology and their rep-
resenting key publications (Table 1). This list is based on Enders and Jeschke (2018) 
and Enders et al. (2018), which are in turn based on Catford et al. (2009). For clarity, 
we only give one key publication per hypothesis. One paper is the key publication for 
four hypotheses (EI, ERD, IS, NAS), and another paper for two hypotheses (SG, BID) 
(Table 1). Thus, Table 1 includes 31 key publications.

A first hint about relationships between our key publications can be obtained from 
their direct citation links, but this approach is limited by the small sample size of 
publications. As there is some randomness in the act of citation, a larger sample size 
is useful. Using bibliographic coupling relations between key papers, i.e., analysing to 
which degree their reference lists overlap, has the same drawback.

An alternative approach, which we applied here, is co-citation analysis, where joint 
citations of key papers are analysed, using all publications of the field. This approach 
can thus draw from a much larger dataset.

We downloaded all 10,430 records citing any of our key publications from the 
Web of Science (WoS, as licensed for Freie Universität Berlin, March 2017). Vari-
ants of referencing key papers were identified semi-automatically with the help of an 
R-script provided by Felix Mattes. For example, missing or wrong author initials or 
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wrong page numbers were corrected in this way. Then we determined the yearly cita-
tion and co-citation numbers of all key publications. We expect higher numbers of key 
papers cited in review papers which diminishes the weight of each co-citation. There-
fore, we excluded reviews from the analysis.

Key invasion papers are also cited outside of invasion biology. We excluded such 
outside-of-the-field papers from co-citation analysis, as invasion hypotheses are pri-
marily applied in invasion biology and we expect that peculiarities of their relation-
ships are discussed within the field, whereas joint citations by publications outside of 
the field are less reliable for assessing such relationships. We defined papers belonging 
to the field as those that are returned by the term search proposed by Vaz et al. (2017):

“Ecological invasion*” or “Biological invasion*” or “Invasion biology” or “Invasion 
ecology” or “Invasive species” or “Alien species” or “Introduced species” or “Non-native spe-
cies” or “Nonnative species” or “Nonindigenous species” or “Non-indigenous species” or “Al-
lochthonous species” or “Exotic species”.

Using this term search on 28.08.2017 in the WoS returned 30,731 records. After 
excluding 1,769 review papers, 28,962 papers remained in the sample. These are mainly 
primary research communications (28,295) and have mainly been published after 1990 
(28,841; i.e. 99.6%). Figure 1 displays the time distribution of the sample of these 28,841 
invasion biology papers in the WoS. In the 1990s, the number of papers in the field has 
remained small. We therefore restricted our analysis to the time period 1999–2017. Thus, 
we ended up with a sample of 1,518 invasion biology papers that cite at least two of our 
key publications listed in Table 1. The sample includes 1501 research articles, mainly in 
journals but also 39 in conference proceedings and five in books. In addition, we have eight 
letters and nine editorials. The time distribution of the sample is displayed in Figure 2.

Salton’s cosine

In the n-dimensional vector space with one dimension per citing paper, each cited 
source i can be represented by a vector vik (k = 1, ..., n) with vik = 1 if paper k cites source 
i and vik = 0 otherwise. The Salton index S(i, j) of two sources is a similarity measure 
defined as the cosine of the angle between the two source vectors (Hamers et al. 1989). 
Translated into the language of set theory, it can be calculated as:

S i j
c c

c c

i j

i j

( , )
·

�
�

,	 (1)

where ci is the set of papers citing source publication i. Salton’s cosine gives values in 
the interval [0, 1]. Co-citations are usually determined within reference lists of citing 
publications ci published during a given year. Due to heavily fluctuating citation num-
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Figure 2. Number of publications per year that cite at least two of the key papers given in Table 1. This 
sample of 1518 publications was analysed in detail here; it is a subset of the publications shown in Figure 1.

Figure 1. Numbers of publications in invasion biology, using the same search term as Vaz et al. (2017) 
in the Web of Science. The number of publications in 2017 is relatively low because the search was per-
formed within this year, on 28 August 2017.
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bers, we combined several years to get broader citation windows. Due to this change, 
a challenge was that two key papers i and j published within the citation window in 
different years yi < yj have different chances to be cited: older papers have more oppor-
tunities to be cited than younger papers. We made their chances to be cited as equal as 
possible by reducing the set ci to citing papers published from year yj on.
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Table 1. List of 35 common invasion hypotheses and how we defined them (cf. Catford et al. 2009; End-
ers and Jeschke 2018; Enders et al. 2018).

Hypothesis Description Key reference

ADP Adaptation The invasion success of non-native species depends on the 
adaptation to the conditions in the exotic range before and/or 

after the introduction. Non-native species that are related to native 
species are more successful in this adaptation.

Duncan and Williams (2002)

BA Biotic acceptance aka 
“the rich get richer”

Ecosystems tend to accommodate the establishment and coexistence 
of non-native species despite the presence and abundance of native 

species.

Stohlgren et al. (2006)

BID Biotic indirect effects Non-native species benefit from different indirect effects triggered 
by native species.

Callaway et al. (2004)

BR Biotic resistance aka 
diversity-invasibility 
hypothesis

An ecosystem with high biodiversity is more resistant against non-
native species than an ecosystem with lower biodiversity.

Levine and D’Antonio (1999)

DEM Dynamic equilibrium 
model

The establishment of a non-native species depends on natural 
fluctuations of the ecosystem, which influences the competition of 

local species.

Huston (1979)

DN Darwin’s naturalization The invasion success of non-native species is higher in areas that are 
poor in closely related species than in areas that are rich in closely 

related species.

Daehler (2001)

DS Disturbance The invasion success of non-native species is higher in highly 
disturbed than in relatively undisturbed ecosystems.

Hobbs and Huenneke (1992)

EE Enemy of my enemy 
aka accumulation-
of-local-pathogens 
hypothesis

Introduced enemies of a non-native species are less harmful to the 
non-native as compared to the native species.

Eppinga et al. (2006)

EI Enemy inversion Introduced enemies of non-native species are less harmful for them 
in the exotic than the native range, due to altered biotic and abiotic 

conditions.

Colautti et al. (2004)

EICA Evolution of increased 
competitive ability

After having been released from natural enemies, non-native species 
will allocate more energy in growth and/or reproduction (this 

re-allocation is due to genetic changes), which makes them more 
competitive.

Blossey and Nötzold (1995)

EN Empty niche The invasion success of non-native species increases with the 
availability of empty niches in the exotic range.

MacArthur (1970) 

ER Enemy release The absence of enemies in the exotic range is a cause of invasion 
success.

Keane and Crawley (2002)

ERD Enemy reduction The partial release of enemies in the exotic range is a cause of 
invasion success.

Colautti et al. (2004)

EVH Environmental 
heterogeneity

The invasion success of non-native species is high if the exotic range 
has a highly heterogeneous environment.

Melbourne et al. (2007)

GC Global competition A large number of different non-native species is more successful 
than a small number.

Colautti et al. (2006)

HC Human commensalism Species that are living in close proximity to humans are more 
successful in invading new areas than other species.

Jeschke and Strayer (2006)

HF Habitat filtering The invasion success of non-native species in the new area is high if 
they are pre-adapted to this area.

Weiher and Keddy (1995)

IM Invasional meltdown The presence of non-native species in an ecosystem facilitates 
invasion by additional species, increasing their likelihood of survival 

or ecological impact.

Simberloff and Von Holle 
(1999) 

IRA Increased resource 
availability

The invasion success of non-native species increases with the 
availability of resources.

Sher and Hyatt (1999)

IS Increased susceptibility If a non-native species has a lower genetic diversity than the native 
species, there will be a low probability that the non-native species 

establishes itself.

Colautti et al. (2004)

ISH Island susceptibility 
hypothesis

Non-native species are more likely to become established and have 
major ecological impacts on islands than on continents.

Jeschke (2008)

IW Ideal weed The invasion success of a non-native species depends on its specific 
traits (e.g. life-history traits).

Rejmánek and Richardson 
(1996)
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Hypothesis Description Key reference

LS Limiting similarity The invasion success of non-native species is high if they strongly 
differ from native species, and it is low if they are similar to native 

species.

MacArthur and Levins (1967)

MM Missed mutualisms In their exotic range, non-native species suffer from missing 
mutualists.

Mitchell et al. (2006)

NAS New associations New relationships between non-native and native species can 
positively or negatively influence the establishment of the non-

native species.

Colautti et al. (2006)

NW Novel weapons In the exotic range, non-native species can have a competitive 
advantage against native species because they possess a novel 

weapon, i.e. a trait that is new to the resident community of native 
species and therefore affects them negatively.

Callaway and Ridenour 
(2004)

OW Opportunity windows The invasion success of non-native species increases with the 
availability of empty niches in the exotic range, and the availability 

of these niches fluctuates spatio-temporally.

Johnstone (1986)

PH Plasticity hypothesis Invasive species are more phenotypically plastic than non-invasive 
or native ones.

Richards et al. (2006)

PP Propagule pressure A high propagule pressure (a composite measure consisting of the 
number of individuals introduced per introduction event and the 
frequency of introduction events) is a cause of invasion success.

Lockwood et al. (2005)

RER Resource-enemy release The non-native species is released from its natural enemies and 
can spend more energy in its reproduction, and invasion success 

increases with the availability of resources.

Blumenthal (2006)

RI Reckless invader aka 
“boom-bust”

A non-native species that is highly successful shortly after its 
introduction can get reduced in its population or even extinct 

over time due to different reasons (such as competition with other 
introduced species or adaptation by native species).

Simberloff and Gibbons 
(2004)

SDH Shifting defence 
hypothesis

After having been released from natural specialist enemies, 
non-native species will allocate more energy in cheap (energy-

inexpensive) defenses against generalist enemies and less energy 
in expensive defenses against specialist enemies (this re-allocation 
is due to genetic changes); the energy gained in this way will be 
invested in growth and/or reproduction, which makes the non-

native species more competitive.

Doorduin andVrieling (2011)

SG Specialist-generalist Non-native species are more successful in a new region if the local 
predators are specialists and local mutualists are generalists.

Callaway et al. (2004)

SP Sampling A large number of different non-native species is more likely 
to become invasive than a small number due to interspecific 
competition. Also, the species identity of the locals is more 

important than the richness in terms of the invasion of an area.

Crawley et al. (1999)

TEN Tens rule Approximately 10% of species successfully take consecutive steps of 
the invasion process.

Williamson and Brown 
(1986)

Communities in networks

Clusters of highly cited sources containing often co-cited sources are assumed to rep-
resent knowledge bases of current research fronts (Small and Sweeny 1985). Such 
clusters are particularly useful for constructing conceptual maps that should serve as 
navigation tools for research fields, as they group similar concepts and hypotheses in 
one cluster. Especially in the last two decades, several clustering methods have been 
developed in network science (see Fortunato (2010) for a review). Clusters (also called 
modules or communities) of nodes in networks should have many internal links and 
comparatively few external links. In the case of weighted networks, not the number 
of external and internal links is compared but the sum of their weights. Identifying 
clusters in a network is a way of investigating its inner structure.
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For the case of disjoint communities, Newman and Girvan (2004) introduced 
“modularity” as an evaluation function of a graph partition. It compares the actual 
number of internal edges of each community with the number expected in a null 
model without community structure. In the usual null model, each vertex is expected 
to have the same degree as in the original graph.

We compared the results of different algorithms for community detection from the 
packages SNA (Handcock et al. 2003) and igraph (Csardi and Nepusz 2006) in R (R 
Development Core Team 2008), which can be categorized into several types. (1) The 
Girvan and Newman (2002) algorithm is an example of divisive clustering (igraph func-
tion cluster_edge_betweenness). It recursively detects links with high edge betweenness 
and removes them from the network. The clustering dendrogram is cut at the partition 
with maximum modularity. (2) Clauset et al. (2004) proposed to set each node as a 
cluster and then merge those two subgraphs that give the highest gain in modularity; 
this is repeated until there is no gain in modularity anymore (igraph function cluster_
fast_greedy). Again, the clustering dendrogram is cut at the partition with maximum 
modularity. (3) Quite similar is the approach introduced by Brandes et al. (2008) (igraph 
function cluster_optimal). It maximizes modularity applying an optimization algorithm 
from integer linear programming. (4) We also applied the Louvain algorithm designed by 
Blondel et al. (2008) that very quickly maximizes partition modularity (igraph function 
cluster_louvain), (5) the “walk trap” algorithm suggested by Pons and Latapy (2005) that 
assumes a random walker gets trapped in communities and calculates these “traps” (ig-
raph function cluster_walktrap), and (6) a divisive spectral algorithm suggested by New-
mann (2006) which also maximizes modularity (igraph function cluster_leading_eigen).

Beside global evaluation functions like modularity, there are also functions that 
evaluate cohesion and separation of each community. A community C is well separated 
from the rest of the network if the escape probability of a random walker is small (For-
tunato 2010). It is given by the ratio of the sum of external degrees of a community’s 
nodes to the sum of their total degrees:

P C
k C
k Cesc
out( )
( )

( )
= .	 (2)

The weak definition of a community after Radicchi et al. (2004) is fulfilled when 
the total internal degree is greater than the total external degree. The requirements are 
fulfilled if Pesc < 0.5. The strong community definition requires that every node has a 
stronger internal than external connection.

Results

We analysed different time periods (time steps of 1–5 years), but the results varied too 
much to get a clear picture. This means that the edges between the nodes varied from pe-
riod to period. Obviously, in different years relationships between different concepts and 
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hypotheses were discussed in the literature. We decided to accumulate the data from 1999 
to 2017 to get a clearer, cumulative picture of relationships between invasion hypotheses.

We constructed two co-citation networks of our 31 key papers. Network M is 
based on Marshakova (1973) where accepted links are weighted by co-citation num-
bers (Fig. 3). Following Small and Sweeny (1985) in network S, we weighted all links 
with Salton’s cosine and omitted links with a cosine below a threshold of 0.1 (Fig. 4). 
This threshold was chosen to receive a clearer picture of the graph and to have no un-
connected nodes.

We compared the results obtained with different clustering algorithms (Table 2). 
In both networks, maximum modularity was achieved by a partition with four clusters. 
The partitions in M and S differ only in the membership of the plasticity hypothesis 
(PH), which switches between two clusters. We named the four clusters obtained in 
both networks by the most prominent principle of their hypotheses (Figs 3, 4; Ta-
ble 3): Darwin’s cluster, resistance cluster, propagule cluster and enemy cluster.

Figure 3. Partition of co-citation network M with maximum modularity q = 0.520. Links are weighted 
with significant co-citation numbers of hypothesis papers (significance level 95%, cf. text). For acronyms 
of hypotheses see Table 1.
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Table 2. Partitions of co-citation networks M and S obtained by different algorithms maximizing modularity.

Algorithm Number of clusters Modularity
M-network S-network M-network S-network

Cluster_optimal 4 4 0.520 0.463
Fast_greedy 4 4 0.520 0.463
Louvain 4 4 0.520 0.463
Leading_eigen 6 4 0.502 0.441
Edge_betweenness 3 5 0.464 0.428
Walktrap 4 5 0.520 0.430
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Figure 4. Partition of co-citation network S with maximum modularity q = 0.463. Links are weighted 
with Salton’s cosine of co-citation numbers of hypothesis papers above a minimum threshold of 0.1 (cf. 
text). For acronyms of hypotheses see Table 1.

The plasticity hypothesis (PH) switches between the enemy and the propagule 
cluster. In the M-network, PH has no links to the propagule cluster because the num-
bers of co-citations with papers of the cluster are not significant on the 95%-level.

The best partition of network M has modularity 0.520 (see Fig. 3) and its clusters are 
communities in the weak and strong sense. The best partition of network S (Fig. 4) has 
modularity 0.463 and its clusters are communities in the weak sense, two of them also in 
the strong sense (Darwin’s and enemy cluster). Since the key papers for IW (ideal weed) 



Citation-based map of invasion biology 33

Table 3. Partitions of co-citation networks M and S with maximum modularity. The key papers (see Ta-
ble 1 for details) are ranked in their clusters by internal strength. Also, escape probability Pesc is displayed 
for each cluster (cf. Figs 3, 4).

Network M Network S
Hypothesis-paper Internal strength Hypothesis-paper Internal strength

Darwin´s cluster 
Pesc(C) = 0.27 Pesc(C) = 0.24
Adaptation (ADP 2002) 54 Darwin‘s naturalization (DN 2001) 0.77
Darwin‘s naturalization (DN 2001) 53 Adaptation (ADP 2002) 0.76
Limiting similarity (LS 1967) 19 Limiting similarity (LS 1967) 0.57
Habitat filtering (HF 1995) 6 Habitat filtering (HF 1995) 0.32

Niche cluster
Pesc(C) = 0.02 Pesc(C) = 0.25
Biotic resistance (BR 1999) 243 Biotic resistance (BR 1999) 1.75
Disturbance (DS 1992) 163 Disturbance (DS 1992) 1.28
Sampling (SP 1999) 63 Sampling (SP 1999) 0.57
Invasional meltdown (IM 1999) 44 Biotic acceptance (BA 2006) 0.45
Increased resource availability (IRA 1999) 38 Dynamic equilibrium model (DEM 

1979) 
0.41

Opportunity windows (OW 1986) 37 Empty niche (EN 1970) 0.35
Biotic acceptance (BA 2006) 36 Invasional meltdown (IM 1999) 0.34
Empty niche (EN 1970) 33 Opportunity windows (OW 1986) 0.34
Dynamic equilibrium model (DEM 1979) 31 Increased resource availability (IRA 1999) 0.29
Environmental heterogeneity (EVH 2007) 24 Environmental heterogeneity (EVH 

2007)
0.20

Propagule cluster
Pesc(C) = 0.01 Pesc(C) = 0.38
Propagule pressure (PP 2005) 186 Propagule pressure (PP 2005) 1.28
Global competition (GC 2006) 141 Global competition (GC 2006) 0.78
Human commensalism (HC 2006) 38 Ideal weed (IW 1996) 0.66
Tens rule (TEN 1986) 28 Tens rule (TEN 1986) 0.54
Island susceptibility hypothesis (ISH 2008) 11 Island susceptibility hypothesis (ISH 

2008) 
0.50

Ideal weed (IW1996) 10 Human commensalism (HC 2006) 0.46
Plasticity hypothesis (PH 2006) 0.40

Enemy cluster
Pesc(C) = 0.02 Pesc(C) = 0.14
Enemy release (ER 2002) 652 Enemy release (ER 2002) 2.41
Evolution of increased competitive ability 
(EICA 1995)

465 Evolution of increased competitive ability 
(EICA 1995)

1.98

Enemy inversion, Enemy reduction, 
Increased susceptibility, New associations

357 Enemy inversion, Enemy reduction, 
Increased susceptibility, New associations 
(EI; ERD; IS; NAS 2004)

1.58

Missed mutualism 196 Missed mutualism (MM2006) 1.37
Novel weapons 192 Novel weapons (NW 2004) 1.30
Resource-enemy  release (RER 2006) 81 Specialist-generalist, Biotic indirect effects 

(SG; BID 2004)
1.04

Specialist-generalist, Biotic indirect effects 
(SG; BID 2004)

67 Enemy of my enemy aka accumulation-
of-local-pathogens hypothesis (EE 2006)

0.69

Enemy of my enemy aka accumulation-of-
local-pathogens hypothesis (EE 2006)

60 Resource-enemy release (RER 2006) 0.62

Plasticity hypothesis (PH 2006) 41 Shifting defence hypothesis (SDH 2011) 0.58
Shifting defence hypothesis (SDH 2011) 35 Reckless invader aka “boom-bust” (RI 

2004)
0.24

Reckless invader aka “boom-bust” (RI 2004) 20
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and IM (invasional meltdown) have stronger external than internal connections, the niche 
and propagule cluster do not meet the strong definition here. In general, the centrality of 
a node in an unweighted graph can be measured by its degree. The analogy in weighted 
networks is called the strength of the node and is defined as the sum of weights of its links. 
The centrality within a subgraph is then the sum of weights of the node’s internal links and 
can be called its internal strength which we use for ranking papers in Table 3.

Discussion

The clusters of networks M and S are remarkably similar. Two of the four clusters in 
each network are even identical, namely the concept clusters focused on eco-evolution-
ary and phylogenetic relationships between non-native and resident species (Darwin’s 
cluster) and the concept cluster focused on biotic resistance of ecosystems against non-
native species (resistance cluster). Comparing these two networks further, one can see 
that the other two concept clusters differ just in the membership of PH, the plasticity 
hypothesis. In one case (M-network), PH is in the concept cluster focused on species 
relationships (enemy cluster). In the other case (S-network), PH is a member of the 
concept cluster focused on introduction and species traits (propagule cluster).

What are the implications from the networks?

The networks visualize how invasion biologists have seen their research field during 
the last two decades. Essentially, the networks suggest four broad themes that are 
represented by the four clusters. One core idea comes from evolutionary biology; 
it highlights the importance of eco-evolutionary relationships between non-native 
and resident species, and the capability of species to adapt to new environments 
(evolutionary perspective, Darwin’s cluster). A second core idea is the possibility that 
ecosystems can be resistant, or not, against non-native species based on their char-
acteristics (ecosystem perspective, resistance cluster). A third core idea is that species 
interactions such as host-parasite or predator-prey interactions (including the loss of 
such interactions in the exotic environment, i.e., enemy release) are very important 
for understanding biological invasions (species-interactions perspective, enemy clus-
ter). Finally, the most recent core idea is that human action is principally influencing 
biological invasions, which can thus only be understood by studies bridging different 
research fields (Richardson and Pyšek 2008; Kueffer 2017) (interdisciplinary per-
spective; propagule cluster). Following this line of thought, the discipline of invasion 
biology is now sometimes called invasion science, reflecting that it is not simply a 
biological subdiscipline but stretches towards other disciplines including social sci-
ences and economics (Richardson and Ricciardi 2013).



Citation-based map of invasion biology 35

Strongly connected hypothesis pairs

Some of the hypotheses in our networks are particularly strongly connected. In this 
section, we highlight one strongly connected hypothesis pair for each of the four clus-
ters, and outline whether these connections are reasonable.

In Darwin’s cluster, the two hypotheses adaptation (ADP) and Darwin’s naturali-
zation hypothesis (DN) are very strongly connected. The two key publications for 
these hypotheses included in Table 1 were published at roughly the same time (2001 
and 2002). However, DN has its origin in the mid-19th century in what is probably 
biology’s most famous publication of all times (Darwin 1859). As Darwin’s book is 
mainly cited for other reasons than DN, we used another publication as the key paper 
for DN. The main reason for the strong connection between the hypotheses DN and 
ADP based on their co-citation in so many papers might be that both hypotheses are 
contradicting each other (Table 1) and are jointly called Darwin’s naturalization conun-
drum (Diez et al. 2008).

In the resistance cluster, there is a particularly strong connection between biotic 
resistance (BR) and the disturbance hypothesis (DS). These two hypotheses are in 
fact logically linked. According to DS, the invasion success of non-native species is 
higher in highly disturbed than in relatively undisturbed ecosystems (Table 1). In other 
terms, highly disturbed ecosystems show lower resistance against non-native species 
than relatively undisturbed ecosystems. Thus, both hypotheses focus on the resistance 
of ecosystems against non-native species; BR does so with a focus on biodiversity, and 
DS with a focus on disturbance (Jeschke and Heger 2018). Another link between the 
two hypotheses is that disturbance can reduce biodiversity.

In the propagule cluster, the propagule pressure hypothesis (PP) is very strongly 
connected to global competition (GC). The latter hypothesis is actually based on PP 
(Catford et al. 2009), which explains that these concepts are often jointly cited.

Finally in the enemy cluster, the enemy release hypothesis (ER) and EICA hypoth-
esis are particularly strongly connected. This can also be easily explained, as EICA uses 
enemy release as an underlying assumption (Table 1).

Which network is the better map?

Although the clusters of the two networks are very similar, the better map is in our 
opinion the M-network. This is due to the following two reasons. First, the M-network 
has 25% less edges compared to the S-network which results in a clearer picture. Sec-
ond, the clusters in the M-network are better separated from each other than in the 
S-network; all clusters in the M-network are communities in the strong sense, but this 
is only true for two clusters in the S-network.
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Comparing the network to previous works

In comparison to the other two networks published by Enders and Jeschke (2018) 
and Enders et al. (2018), the networks of this publication are way clearer. Com-
pared with the similarity-dissimilarity network in Enders et al. (2018), which was 
created based on an online survey, the M- and S-networks have fewer connections 
and clearer, distinct clusters. Apparently, the survey participants had different views 
on the relationships between invasion hypotheses, possibly because invasion biology 
has so many hypotheses now that it is hard for researchers to know them all; the 
similarity-dissimilarity network in Enders et al. (2018) used direct responses given 
by the survey participants when being asked for hypothesis pairs how similar they 
are. If participants often simply guessed the similarity of hypothesis pairs, one would 
expect a random network to emerge from the answers, and this is what Enders et al. 
(2018) found. This problem was circumvented for two other networks in Enders et 
al. (2018), joint-mentions networks A and B, which are only based on hypotheses 
that the survey participants indicated to know best. These networks are clearer than 
the similarity-dissimilarity network; however, they do not seem to be as useful maps 
as the networks M and S presented here. They are not as clear, there clusters have a 
lower modularity (ca 0.25 for both networks; Enders et al. 2018), and their clusters 
are not communities in the strong sense.

The network in Enders and Jeschke (2018), which was created by traits of the con-
cepts and hypotheses, has three clusters consisting of concepts with a focus on (i) human 
interference, (ii) mutualisms, and (iii) enemies (predators or parasites). The modularity is 
relatively high (ca 0.4) but still lower than for the two networks shown here. Also, the clus-
ters are not communities in the strong sense. This network also seems to be less suitable 
to serve as a map of the field than the networks shown here, particularly the M-network.

Conclusions and outlook

The co-citation approach has proven useful to construct conceptual maps of the field 
of invasion biology. These maps, particularly the M-network, are clearer than previ-
ous maps created with other approaches. Efforts to create such conceptual maps that 
highlight relationships between major concepts within a research field are currently 
limited. In fact, we are unaware of other attempts to create such maps. This lack of 
conceptual maps means that researchers lack navigation tools which would help them 
identify where their work is located within a given research field such as invasion biol-
ogy. The results of a recent online survey among >350 invasion biologists suggest that 
the participants lack a “joint vision how invasion hypotheses are related to each other” 
(Enders et al. 2018). This resembles the situation that invasion biologists lack a com-
mon map of the field, which also implies that they do not know where their own work 
is located in comparison to other studies in the field. The utility of conceptual maps 
and other navigation tools for research fields thus seems obvious, and it is of course not 
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restricted to invasion biology. Such maps can be provided as interactive visualization 
tools (https://www.hi-knowledge.org, Jeschke et al. 2018).

But the conceptual maps constructed for this study are early steps on the way 
towards advanced navigation tools. An important next step would be to allow for con-
cepts and hypotheses to be included in more than one cluster, so that they can take the 
role of cluster-connecting concepts. To take this next step, a cluster-finding-algorithm 
that allows overlapping communities should be considered. Furthermore, we have thus 
far applied three different approaches to create conceptual maps. Other approaches 
can be imagined as well, for example based on a Delphi-approach in which a group of 
experts follows multiple iterative steps to create a consensus map. Further work should 
also involve the expansion of the network to include maps of related fields. In this way, 
a larger map, or atlas of science (see also Börner 2010, 2015; Kitcher 2011) can be 
generated that highlights linkages between fields by way of shared broader concepts, 
such as diversity, stability or the ecological niche (Jeschke 2014). Such a larger atlas of 
science will undoubtedly foster inter- and transdisciplinary collaboration.
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Abstract 

Background and Aims 

Since its emergence in the mid-20th century, invasion biology has matured into a productive 

research field addressing questions of fundamental and applied importance. Not only has the 

number of empirical studies increased through time, but so has the number of competing, 

overlapping and, in some cases, contradictory hypotheses about biological invasions. To make 

these contradictions and redundancies explicit, and to gain insight into the field’s current 

theoretical structure, we applied a Delphi approach to create a consensus network of 39 existing 

invasion hypotheses. 

Results 

The resulting network was analyzed with a link-clustering algorithm that revealed five concept 

clusters (Resource availability, Biotic interaction, Propagule, Trait, and Darwin’s cluster) 

representing complementary areas in the theory of invasion biology. The network also displays 

hypotheses that link two or more clusters, called connecting hypotheses, which are important in 

determining network structure. The network indicates hypotheses that are logically linked either 

positively (77 connections of support) or negatively (that is, they contradict each other; 6 

connections). 

Significance 

The network visually synthesizes how invasion biology’s predominant hypotheses are 

conceptually related to each other and thus reveals an emergent structure – a conceptual map – 

that can serve as a navigation tool for scholars, practitioners and students, both inside and outside 

of the field of invasion biology, and guide the development of a more coherent foundation of 

theory. Additionally, the outlined approach can be more widely applied to create a conceptual 

map for the larger fields of ecology and biogeography. 

 

Keywords: biological invasions, concepts, consensus map, Delphi method, invasion science, 

invasion theory, navigation tools, network analysis 
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Introduction 

The first author’s grandfather was a master electrician working for the city of Munich, Germany, 

whose daily work consisted of repairing streetlights and other electrical devices for public use. 

One of his most impressive skills was his ability to intimately recall the details of every place in 

his district. By combining his knowledge with that of co-workers familiar with other districts, one 

could have created a complete map of the city that would allow anyone to confidently navigate its 

streets. In many ways a research field is quite similar to a city where its major questions and 

hypotheses represent subunits comparable to city districts. Such subunits can be represented on a 

map, whether of a city or a research field, the latter allowing scientists inside and outside of the 

field to better orient themselves and navigate their own research interests. Such a map would also 

be useful for students, teachers, policy-makers and managers, as it would allow them to 

efficiently identify the elements of science most pertinent to their interests and goals. 

Some previous conceptual maps of science take the form of networks, and cover multiple 

disciplines; that is, they chart science as a whole and show how different disciplines relate to each 

other (Börner, 2010, 2015). These maps usually do not focus on the theory of any one discipline 

and thus do not represent the myriads of hypotheses and concepts of each research field. Given 

that concepts and hypotheses form the backbone of scientific inquiry, we posit that it is useful to 

simultaneously create conceptual maps within research disciplines to visualize the relationships 

among key hypotheses (Jeschke, 2014). Consensus maps identify the degree to which hypotheses 

are similar, competing or contradictory, and use this information to aggregate them into broader 

clusters. 

Consensus maps in the form of networks can be particularly useful for disciplines with many 

hypotheses, where even researchers within the field tend to be restricted to specific research silos 

and thereby increasingly unaware of similar hypotheses in the field. An example for such a 

discipline is invasion biology. Since the emergence of the field with the publication of Charles 

Elton’s book in 1958 and sustained research programs developed in the 1990s (Richardson & 

Pyšek, 2008), it has accumulated an impressive number of hypotheses and concepts until today 

(summarized in e.g. Catford et al. (2009); Jeschke & Heger (2018); Schulz et al. (2019)). A 

recent online survey indicated that many invasion biologists appear to be knowledgeable about 
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hypotheses and concepts they are directly working with, but do not demonstrate a consistent 

understanding of the relationship among these and other concepts in the field (Enders et al., 

2018). A network of concepts, representing a conceptual map of invasion biology, would thus 

provide much-needed orientation and navigation. Because maps can take the form of networks, 

we use both terms in a similar way: network is the more technical term and better describes how 

the map is methodologically constructed, whereas the term map focuses on the purpose as a 

navigation tool. 

Several approaches have previously been used to visualize a network of invasion hypotheses, 

though they have some limitations. These attempts build on past work that highlighted 

commonalities among invasion hypotheses, though did not visualize them (Catford et al., 2009). 

First, Enders et al. (2018) created a network by asking researchers which hypotheses they knew 

best. This approach assumes that if many researchers state that they know a given pair of 

hypotheses very well, these hypotheses probably have something in common, and can thus be 

connected in a network. This is a “black box” approach, as it is unclear why researchers often 

know a certain pair of hypotheses well and what this connection means. 

Second, Enders & Jeschke (2018) assessed the conceptual similarity of hypotheses by 

classifying which factors are highlighted as most important for the invasion success of non-native 

species. The resulting table characterizing the hypotheses (based on 7) was then used to create a 

network showing conceptual overlaps. A weakness of this approach is that the classification was 

based on the assessments of very few experts, namely the authors of Catford et al. 2009 (n = 3) 

and Enders and Jeschke 2018 (n = 2). 

Finally, Enders et al. (2019) applied a bibliometric approach to create a network of invasion 

hypotheses. In their network, two hypotheses are connected if key publications featuring these 

hypotheses are frequently cited together. Co-citation analysis was recently also applied by 

Trujillo and Long (2018) who created a sequence of nested co-citation networks (these are not 

hypothesis networks, though). The application of co-citation analysis for creating hypothesis 

networks has three main limitations: (i) a publication may be cited for reasons other than the 

hypothesis that it refers to; (ii) it is not possible to discriminate among hypotheses that support 

one another and those that contradict one another; and (iii) especially in large, complex fields, 

research areas that are logically connected are not always bibliographically connected (Swanson, 

1986). 
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To overcome the limitations of these approaches, we here present a novel consensus approach 

based on the Delphi method to create a network of invasion hypotheses that capitalizes on the 

expertise of a group of invasion biologists who work on different topics and various taxonomic 

groups and habitats. The approach can be generally applied to any research field, thus invasion 

biology is used as a case example here. In a Delphi method, the opinions of a group of experts 

converge towards a consensus in several steps during which the experts revise their opinion based 

on an anonymized summary of all experts’ opinions (Häder & Häder, 2000). In the resulting 

consensus network, we identified hypothesis clusters by applying a state-of-the-art link-clustering 

algorithm. 

 

Methods 

Consensus approach 

Our approach to creating a consensus network of invasion hypotheses consists of nine steps 

(Steps 4 to 8 represent the Delphi approach; Figure 1). In Step 1, a group of 29 experts in 

invasion biology were assembled to ensure a breadth of experience, wide taxonomic knowledge 

and geographic scope. Given the high level of expertise needed for the task, of the 29 experts, 15 

were senior scientists (52%), 10 postdocs or on a similar level (34%), and four were PhD students 

(14%). Gender representation was roughly equal with 14 male (48%) and 15 female (52%) group 

members. Of the 29 experts, 19 were based in Europe (66%), four in North America (14%), three 

in Africa (10%) and three in Australasia (10%). Eighteen of these 29 invasion biologists plus 

Frank Havemann, an expert on network analysis, met in Berlin on 12–13th February 2018. The 

European location of the meeting (and associated logistical constraints) resulted in the over-

representation of European researchers. Follow-up communications with all participants were 

done via e-mail. 

In Step 2, the moderators (ME, FR and JMJ) compiled a list of 39 hypotheses and concepts 

related to the invasion stages of introduction, establishment and spread, with reference to the 

respective original publication author/s and year (Table 1). This list, which expanded the 33 

hypotheses listed by Enders et al. (2018) by six additional hypotheses considered to be influential 

by the experts, is to our knowledge the most extensive list of invasion hypotheses compiled to 

date. 
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In Step 3, we asked the experts to build their own version of the network. Each of the 29 

experts was given the option of following one of two approaches: (a) to draw a network of the 39 

hypotheses, with similar hypotheses connected by a black line, contradictory hypotheses 

connected by a red line, and other hypotheses (which are not logically linked) unconnected; or (b) 

to assess the similarity of hypotheses in a matrix by giving a value of 1 for a pair of similar 

hypotheses, a value of −1 for contradictory hypotheses, and 0 for hypotheses that are not 

logically linked, not even in a contradictory way. Hypothesis pairs could be left aside and 

indicated with ‘NA’ if an expert felt uncomfortable making a decision about the similarity of 

these hypotheses. However, this option was rarely chosen by the participants (0.53%). Each 

expert then individually sent their network or matrix to the moderators. 

A key aspect of Step 3 is that researchers may have a different interpretation of the terms 

“similar” and “contradictory”. We collectively agreed that both terms mean two hypotheses are 

logically linked; we call them “similar” if they are positively linked, and “contradictory” if they 

are negatively linked. Beyond this definition, participants were free to decide what a “logical 

link” means. This freedom allowed us to capture the diverse backgrounds and perspectives of 

individuals in the group. Most participants evaluated a logical link primarily based on the 

ecological mechanisms described in the hypotheses (e.g. hypotheses are logically linked if they 

both consider a certain type of biotic interaction), whereas some respondents included the level of 

organization (genotype, individual, population, community) or the indirect effects of an invasion 

in their link evaluation. Others considered which hypothesis gave rise to, or were cited by, 

another hypothesis; or to which degree the knowledge of one hypothesis substantially informs 

our understanding of another (e.g. understanding the enemy release hypothesis can be seen as 

fundamental for understanding the enemy reduction hypothesis), especially if the outcomes of 

both hypotheses go in the same direction (e.g. lack of enemies increases invasion success). 

In Step 4, the moderators received the individual assessments and calculated the percentage of 

respondents who indicated hypotheses that are logically linked either positively (+1, i.e. similar 

hypotheses) or negatively (-1, i.e. contradictory hypotheses). For this calculation, NA scores were 

excluded. For example, given the entries for a hypothesis pair are: 0, 0, 1, −1, 1, −1, NA, 0, 1,1, 

NA, 1, the percentage of +1 or −1 values compared to zeros for this response set would be 7/10 = 

0.7 (2×NA, 3×0, 5×1, 2×−1). We then determined the sign of the connection (positive or 

negative) based on the majority of individual entries. In the example before, there are 5 entries 
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with +1 and 2 entries with −1, thus the overall sign of the connection is positive. The overall 

score for this hypothesis pair would thus be +0.7. We never found that the number of negative 

and positive signs were the same; in such a case, we would have asked the experts to re-assess the 

connection. The final action in Step 4 was to discriminate (i) hypothesis pairs for which most 

participants agreed that the hypotheses are either similar (overall value >0.65), contradictory 

(<−0.65) or not logically linked (value between −0.35 and 0.35) from (ii) hypothesis pairs for 

which the entries were inconclusive (value close to ±0.5: between −0.65 and −0.35, or between 

0.35 and 0.65). The value of ±0.65 as a decision rule was set by the group. 

In Step 5, all participants were asked to re-inspect hypothesis pairs with inconclusive entries 

(that was the case for 52 hypothesis pairs) and to individually send their revised network or 

matrix to the moderators. 

In Step 6, the moderators calculated an overall hypothesis network based on the links among 

hypotheses, using the R statistical environment version 3.1.0 (R core development Team 2018) 

and packages ‘sna’ (Handcock et al., 2003), ‘reshape2’ (Wickham, 2007) and ‘igraph’ (Csardi & 

Nepusz, 2006) (see below for details) and shared it with all participants. 

In Step 7, the participants inspected the overall network, and those who disagreed with any 

element explained their reason for this disagreement by sending an individual e-mail to the 

moderators who then shared the collected and anonymized feedback with the group. 

In Step 8, participants inspected their assessments again based on this feedback and sent their 

final network or matrix to the moderators if any changes were made. All individual networks are 

provided in Table S1. 

In Step 9, the moderators calculated final values for the link between each pair of hypotheses 

(Table S1) and constructed the final hypothesis network. 

 

Clustering approach 

To reveal the inner structure of a network, it is helpful to group the nodes (in our case: the 

hypotheses) of the network into clusters. A common way of doing so is node clustering, for 

which various algorithms exist (Fortunato, 2010). We applied four established node-clustering 

algorithms which, however, led to different network clusters (see Appendix, Figure S1). These 

inconsistencies were largely due to the fact that some hypotheses did not seem to be part of any 

single cluster, but were instead bridging clusters. We therefore decided to apply a link-clustering 
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method instead (Ahn et al., 2010; Evans & Lambiotte, 2009), an approach that allows for nodes 

to be members of multiple clusters. Link clustering is thus more flexible than node clustering 

where each node can only be in one cluster (see the Appendix for details). 

Clusters of links induce node communities whereby the membership grade of each node to 

community L is given by the portion of its internal links 
𝑘𝑖

𝑖𝑛(𝐿)

𝑘𝑖
 (see below for details). Because we 

assumed that pairs of similar hypotheses identified in one region of the network are independent 

of hypothesis pairs in other regions, we chose a local approach to link clustering, where each link 

set L is evaluated independently from the rest of the network  . Local link clustering allows for 

communities not only to overlap in boundary nodes but also in inner nodes. One measure for 

evaluating link clusters is the escape probability of the link-node-link random walker. This 

random walker — introduced by Evans & Lambiotte  — is the translation of the ordinary random 

walker into the world of link clustering. The walker starts from a link, goes randomly to one of its 

nodes, and then to one of the links of this node. If the escape probability is low, then L is a link 

set that is well separated from the rest of the network (Havemann et al., 2017). The escape 

probability of a link-node-link random walker is given by: 

Pesc(L) = 
𝜎(𝐿)

𝑘𝑖𝑛(𝐿)
     (eq. 1) 

with 

σ(L) = ∑
𝑘𝑖

𝑖𝑛(𝐿)𝑘𝑖
𝑜𝑢𝑡(𝐿)

𝑘𝑖

𝑛
𝑖=1     (eq. 2) 

and 

kin(L) = ∑ 𝑘𝑖
𝑖𝑛(𝐿)𝑛

𝑖=1      (eq. 3) 

(Havemann et al., 2017); 𝑘𝑖
𝑖𝑛(𝐿) and 𝑘𝑖

𝑜𝑢𝑡(𝐿) are the internal and external degrees of node i with 

respect to link set L. Their sum is the node’s total degree 

𝑘𝑖 = 𝑘𝑖
𝑖𝑛(𝐿) + 𝑘𝑖

𝑜𝑢𝑡(𝐿)   (eq. 4). 

Since our hypothesis network is small, and the disjoint clusters are already very suggestive, we 

were able to avoid the random components in the evolutionary approach of Havemann et al. 

(2017) and only made local searches in the cost landscape of Pesc starting from the five disjoint 

clusters as seed link sets. Local searches go on the steepest path to the next local minimum in the 

cost landscape. In each step of a local search, we added this link to the set that resulted in the 

minimum cost. After reaching a local minimum, we continued the search, because cost 
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landscapes are rough, and we did not want to get trapped in a local minimum that is only a few 

steps away from a deeper one. After expanding link sets, we excluded links until we found the 

final hypothesis clusters with the lowest escape probability. Further information on this approach 

is provided in Havemann et al. (2017). 

 

Results 

The resulting consensus network included (a) five clusters covering 32 of the 39 hypotheses, (b) 

six connecting hypotheses acting as bridges between clusters (human commensalism, HC, 

connecting three clusters; and resource-enemy release, RER, increased resource availability, IRA, 

reckless invader, RI, biotic indirect effects, BID, and empty niche, EN, each connecting two 

clusters) and (c) one hypothesis not connected with any other hypothesis in the network 

(increased susceptibility, IS, with the closest connection with polyploidy hypothesis, PO; link = 

0.48; Table S1) (Fig. 2). 

We named the five clusters the (i) “Biotic interaction cluster” accounting for 9 full-member 

hypotheses (i.e. without connecting hypotheses), (ii) “Darwin’s cluster” (7 full-member 

hypotheses), (iii) “Trait cluster” (6 full-member hypotheses) (iv) “Propagule cluster” (6 full-

member hypotheses) and (v) “Resource availability cluster” (4 full-member hypotheses) (Fig. 2). 

The Trait cluster is actually nested in Darwin’s cluster (cf. Fig. S2), hence one could also 

consider Darwin’s cluster to include 13 full-member hypotheses that are further separated into 

two sub-clusters. For simplicity, though, and because none of the other clusters include sub-

clusters, we do not usually discriminate between first- and second-level clusters here. 
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Discussion 

Hypothesis clusters 

Each of the five clusters we identified encapsulates a main explanation for the invasion success of 

non-native species. The commonality among the hypotheses in the Biotic interaction cluster is the 

role of interspecific (mostly negative) interactions in species invasion success. Most hypotheses 

in this cluster assume that natural enemies (i.e. predators, herbivores, parasites and pathogens) 

control species populations, so when a species is introduced to a new area, populations thrive 

because enemies are left behind. Similarly, Schulz et al. (2019) recently offered a framework of 

hypotheses focusing on how enemies/antagonists affect invasion success. The lack of specific 

enemies in the recipient location gives an advantage to non-native over native species (enemy 

release, ER) despite generalist enemies also reducing their success. Some hypotheses in this 

cluster posit that enemy release allows non-native individuals to reallocate resources from 

defenses against natural enemies towards growth, fitness and competitive ability (evolution of 

increased competitive ability, EICA; shifting defense hypothesis, SDH). Mutualistic interactions 

with native species (e.g. pollinators, seed dispersers, mycorrhiza) also increase invasion success 

(Richardson et al., 2000), whereas interspecific competition with the native species (reckless 

invader, RI) or a lack of mutualists (i.e. those missing compared to the invader’s home range) 

impede it (missed mutualism, MM). 

The hypotheses in the Resource availability cluster associate invasion success with invader 

access to resources, which is affected by abiotic and biotic conditions and their interaction 

(Catford et al. 2009 and references therein). The first three hypotheses (increased resource 

availability, IRA; disturbance, DS; opportunity windows, OW) center on temporary increases in 

resource availability, which can result from a decline in resource uptake in the community and/or 

an increase in supply. Increased resource availability (IRA) and disturbance (DS) focus on 

fluctuations through time, whereas opportunity-windows (OW) considers fluctuations in both 

space and time. High resource availability, even if only temporary, enables invader populations to 

become established, from which point they can continue to grow and spread. The dynamic 

equilibrium model (DEM) centers on interactions between disturbance and productivity, which 

collectively affect resource availability and strength of resource competition, and thus 

opportunities for invasion. While the underlying mechanism is arguably the same (sufficient 
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resource availability), environmental heterogeneity (EVH) is phenomenological and pattern-

based, unlike the first four process-based hypotheses. EVH essentially attributes invasion success 

to incomplete resource uptake by the resident community. This is because communities in 

ecosystems with high environmental heterogeneity are less likely to be saturated, such that 

associated resources remain unused (or under-used). These available resources provide ripe 

opportunities for (effectively competition-free) invasion by species having the appropriate niche. 

Environmental heterogeneity (EVH) is strongly linked with the empty niche hypothesis (EN; 

which follows Elton’s rather than Hutchinson’s niche concept, cf. Pulliam (Pulliam, 2000)), a 

connecting concept between the Resource availability cluster and Darwin’s cluster (Fig. 2). 

Many of the hypotheses in Darwin’s cluster have an eco-evolutionary perspective on 

biological invasions, which highlights the importance of the species’ evolutionary legacy in 

shaping the outcome of biotic interactions that result from species introductions. This is true for 

the ecological imbalance (EIM) hypothesis which focuses on the evolutionary characteristics of 

both the recipient region and potential donor regions. Another example is ecological naivety 

(ENA), which is also known as evolutionary naivety. Ecological niches are shaped 

evolutionarily, and many hypotheses in this cluster are related to species’ niches, either that of the 

non-native species arriving in an ecosystem or that of the species assemblage composing the 

native community. Indeed, several of these hypotheses propose that non-native species could 

only establish and potentially become invasive if they can occupy niches different from those of 

the native species, a theoretical concept developed by Shea and Chesson (Shea & Chesson, 

2002). In practice, niche similarity or divergence has been characterized by species’ functional 

traits, given their link to resource acquisition, evolutionary fitness and ecosystem processes 

(Divíšek et al., 2018; Vidal-Garcia & Keogh, 2017; Wang et al., 2018), or by species relatedness, 

assuming that species niches are conserved in phylogenies (Prinzing et al., 2001; Thuiller et al., 

2010). In other words, invasion success and impacts are, according to these hypotheses, related to 

dissimilarities in the non-native species characteristics with respect to the recipient community 

and thus, associated with their resource use in the new environment. Furthermore, the relation 

between species evolution, niche space and species traits explains why we found the Trait cluster 

to be nested in Darwin’s cluster. 

The Trait cluster includes six hypotheses related to how traits differ between successful and 

unsuccessful non-native species. This is a topic of long-standing interest within invasion biology, 
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from its very onset, as it is thought that certain species traits are associated with invasiveness 

(H.G.  Baker, 1974 ; Capellini et al., 2015; Mahoney et al., 2015; Pyšek & Richardson, 2007; van 

Kleunen et al., 2010). The hypotheses included within this cluster consider traits that can help 

non-native species to generally become invasive (ideal weed, IW), to compete with native species 

(novel weapons, NW), or to adapt to the novel conditions found in their introduced ranges (also 

in the cluster is adaption, ADP; polyploidy hypothesis, PO; plasticity hypothesis, PH; habitat 

filtering, HF). 

Finally, the hypotheses in the Propagule cluster relate the numbers of introduced non-native 

species or individuals to the probability that they will establish self-sustaining populations or 

expand their geographical ranges in the invaded region. The propagule pressure hypothesis (PP) 

operates at the population level and suggests that the likelihood of a non-native population being 

able to establish increases with the number of individuals of that species being introduced. 

Several potential mechanisms underpin the propagule pressure hypothesis, all of which invoke 

the ability of larger numbers of individuals to overcome random, stochastic forces to ensure 

population persistence. The other five hypotheses operate at the community level and suggest that 

greater numbers of species are likely to establish and spread if greater numbers of species are 

introduced (colonization pressure, CP, (Lockwood et al., 2005). Similar to the propagule pressure 

hypothesis, these hypotheses assume that the chance of some species experiencing favorable 

ecological conditions increases with greater numbers of species introductions. 

 

Connecting hypotheses 

While clusters of hypotheses can reflect fertile areas of similar research questions, connecting 

hypotheses are nodes that apparently overlap with, or logically connect, two or more clusters. 

Thus, these nodes offer logical links between major areas of research within the field. For 

example, the increased resource availability (IRA) hypothesis connects the Resource availability 

and Biotic interaction clusters. The former cluster is concerned with changing conditions and 

opportunities, such as shifts in resource uptake and supply, whereas the latter cluster emphasizes 

the importance of a favorable biotic context in which enemies no longer constrain the population 

growth of the invader. In particular, non-native species must often co-opt limiting resources from 

native competitors in order to reproduce sustainably; thus, the IRA hypothesis is linked to the 

Biotic interaction cluster. Similarly, the human commensalism hypothesis (HC) logically 
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connects to the Trait cluster by recognizing the importance of trait plasticity and pre-adaptation 

for surviving human-mediated disturbances and land-use (e.g. agriculture), and for exploiting 

human transportation systems. Human commensalism also implies greater opportunities for 

propagule dispersal, hence the link to the Propagule cluster. Finally, human commensalism 

reflects the ability of successful invaders to opportunistically exploit human-mediated 

disturbance events – which promote enemy release and resource release via the loss of resident 

predators and competitors. 

 

Comparison with previous hypothesis networks in invasion biology 

Some papers previously categorized hypotheses and concepts in invasion biology (e.g. Catford et 

al. (2009); Gurevitch et al. (2011); Schulz et al. (2019)) or visualized them in the form of 

networks (Enders et al., 2019; Enders et al., 2018; Enders & Jeschke, 2018). As already 

mentioned, although useful for providing a first overview, these previous approaches to create 

hypothesis networks in invasion biology had several limitations that were overcome by our 

consensus approach. In particular, here a fairly large and diverse group of experts constructing 

the consensus network were offered the opportunity to discuss why they consider hypotheses to 

be logically linked, and they could differentiate between positive linkages, negative linkages or 

unlinked hypotheses. Another advantage is that the consensus approach, unlike quantitative 

bibliometric approaches, does not depend on a large literature database. Finally, the consensus 

approach relates to how the concepts are being currently used in practice, and presently perceived 

and interpreted by experts working in the field. This is in contrast to the bibliometric approach 

which is based on historic citation patterns. 

The networks resulting from the consensus approach used in this paper and those from 

previous bibliometric approaches (see Enders et al., 2019) are quite similar; however, due to the 

outlined benefits of the consensus approach, we recommend the latter to create networks of 

hypotheses and concepts in a research field.   

 

Conclusions  

Our hypothesis network visualizes the conceptual structure of the research field of invasion 

biology. It displays relationships among invasion hypotheses that can in turn be tested with 
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empirical studies. A next step should be to offer both the network and empirical studies as 

interactive tools online. This would be an opportunity to (a) bridge the gap between theoretical-

conceptual and empirical work, and (b) offer a visual and user-friendly interface to explore the 

knowledge of the field. In this way, it would be immediately visible which hypotheses are 

empirically supported under which circumstances, particularly when dividing the 39 hypotheses 

into more specific sub-hypotheses following the hierarchy-of-hypotheses approach (Jeschke & 

Heger, 2018). A first step in this direction is available at the website www.hi-knowledge.org. 

The clusters in the network provide a clear, simplified summary of the main mechanisms that, 

according to current theory, govern the introduction, establishment and spread of invasive 

species. The clustering highlights that the field is currently dominated by attention to antagonistic 

interactions between invaders and natives; it recognizes the probabilistic nature of invasions 

through spatiotemporal variation in biotic and abiotic conditions (Resource availability cluster), 

as well as in propagule supply and filtering (Propagule cluster); and part of the foundation of the 

field is built upon venerable hypotheses arising from Darwin and Elton (cf. Table 1). This 

method could also be used to identify temporal trends in the concepts, i.e. when hypotheses were 

proposed and coined, and when they experienced most empirical examination. One might see 

moving waves of research effort through the network as research fashions and techniques change. 

Further, a hypothesis network such as the one constructed here can guide a researcher working 

on one hypothesis to explore potentially relevant ideas and literature concerning hypotheses that 

are nearby in the cluster, and to highlight important co-variables that should be used in analyses 

that might otherwise be overlooked. The researcher will also be pointed to critical research and 

knowledge gaps. 

Finally, a hypothesis network avoids the formulation of additional repetitive hypotheses. 

Anyone who wants to propose a new hypothesis or mechanism to the field can consult the 

network to see where the new contribution would be located and if it overlaps with existing ones. 

The consensus approach outlined here can be applied to any research field. We strongly 

encourage its application particularly in disciplines where, as in invasion biology, there are so 

many hypotheses and concepts that it is hard to gain an overview without a navigation tool like a 

hypothesis network. Connecting an increasing number of hypothesis networks could facilitate 

cross-disciplinary research by revealing overlaps and joint ideas, enhancing the understanding of 

basic ideas and transfer of knowledge. A resulting growing atlas of knowledge could thus help 

http://www.hi-knowledge.org/
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address complex problems like multi-causality in biodiversity change (Sala et al., 2000; Settele et 

al., 2005), and to build a solid basis for tackling the current environmental crisis. Such an atlas 

would also reveal hypotheses and concepts that connect disciplines, helping researchers to find 

out if colleagues from another discipline have already come up with concepts and ideas to 

potentially solve challenges in their own field. Therefore, we call on researchers across scientific 

disciplines to create conceptual maps for their fields. Let’s then connect these maps to jointly 

build an atlas of knowledge. 
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Table 1. List of 39 common invasion hypotheses and how they were defined for this study [adapted from Catford et al. (2009) and 1 

Enders et al. (2018)]. 2 

Hypothesis 
Description Key reference(s) 

ADP Adaptation The invasion success of non-native species depends on the adaptation to 

the conditions in the exotic range before and/or after the introduction. 

Non-native species that are related to native species are more successful 

in this adaptation. 

Duncan & 

Williams (2002) 

BA Biotic acceptance aka 

“the rich get richer” 

Ecosystems tend to accommodate the establishment and coexistence of 

non-native species despite the presence and abundance of native species. 

Stohlgren et al. 

(2006) 

BID Biotic indirect effects  Non-native species benefit from different indirect effects triggered by 

native species. 

Callaway et al. 

(2004) 

BR Biotic resistance aka 

diversity-invasibility 

hypothesis 

An ecosystem with high biodiversity is more resistant against non-native 

species than an ecosystem with lower biodiversity. 

Elton (1958); 

Levine & 

D'Antonio (1999) 

CP Colonization pressure  Colonization pressure is defined as the number of species introduced to a 

given location. As colonization pressure increases, the number of 

established or invasive non-native species in that location is predicted to 

increase. 

Lockwood et al. 

(2009) 

DEM Dynamic equilibrium 

model 

The establishment of a non-native species depends on natural fluctuations 

of the ecosystem, which influences the competition of local species. 

Huston (1979) 
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DN Darwin’s naturalization The invasion success of non-native species is higher in areas that are poor 

in closely related species than in areas that are rich in closely related 

species. 

Daehler (2001); 

Darwin (1859) 

DS Disturbance The invasion success of non-native species is higher in highly disturbed 

than in relatively undisturbed ecosystems. 

Elton (1958); 

Hobbs & 

Huenneke (1992) 

EIM Ecological imbalance Invasion patterns are a function of the evolutionary characteristics of both 

the recipient region and potential donor regions. Species from regions 

with highly diverse evolutionary lineages are more likely to become 

successful invaders in less diverse regions. 

Fridley & Sax 

(2014) 

ENA Ecological naivety aka 

evolutionary naivety 

The impact of a non-native species on biodiversity is influenced by the 

evolutionary experience of the invaded community. Thus, the largest 

impacts are caused by species (e.g. predators, herbivores, pathogens) 

invading systems where no phylogenetically or functionally similar 

species exist. 

Diamond & Case 

(1986); Ricciardi 

& Atkinson 

(2004) 

EE Enemy of my enemy 

aka accumulation-of-

local-pathogens 

hypothesis 

Introduced enemies of a non-native species are less harmful to the non-

native than to the native species. 

Eppinga et al. 

(2006) 

EI Enemy inversion Introduced enemies of non-native species are less harmful for them in the 

exotic than the native range, due to altered biotic and abiotic conditions. 

(Colautti et al., 

2004) 
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EICA Evolution of increased 

competitive ability 

After having been released from natural enemies, non-native species will 

allocate more energy in growth and/or reproduction (this re-allocation is 

due to genetic changes), which makes them more competitive. 

Blossey & 

Nötzold (1995) 

EN Empty niche The invasion success of non-native species increases with the availability 

of empty niches in the exotic range. 

MacArthur (1970) 

ER Enemy release The absence of enemies in the exotic range is a cause of invasion success. Keane & Crawley 

(2002) 

ERD Enemy reduction The partial release of enemies in the exotic range is a cause of invasion 

success. 

Colautti et al. 

(2004) 

EVH Environmental 

heterogeneity 

The invasion success of non-native species is high if the exotic range has 

a highly heterogeneous environment. 

Melbourne et al. 

(2007) 

GC Global competition A large number of different non-native species is more successful than a 

small number. 

Colautti et al. 

(2006) 

HC Human commensalism Species that live in close proximity to humans are more successful in 

invading new areas than other species. 

Jeschke & Strayer 

(2006) 

HF Habitat filtering The invasion success of non-native species in the new area is high if they 

are pre-adapted to this area. 

Weiher & Keddy 

(1995) 

IM Invasional meltdown The presence of non-native species in an ecosystem facilitates invasion by 

additional species, increasing their likelihood of survival or ecological 

impact. 

Simberloff & von 

Holle (1999) 

IRA Increased resource 

availability 

The invasion success of non-native species increases with the availability 

of resources. 

Sher & Hyatt 

(1999) 
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IS Increased susceptibility If a non-native species has a lower genetic diversity than the native 

species, there will be a low probability that the non-native species 

establishes itself. 

Colautti et al. 

(2004) 

ISH Island susceptibility 

hypothesis 

Non-native species are more likely to become established and have major 

ecological impacts on islands than on continents. 

Jeschke (2008) 

IW Ideal weed The invasion success of a non-native species depends on its specific traits 

(e.g. life-history traits). 

H. G.  Baker 

(1965); Rejmánek 

& Richardson 

(1996) 

LS Limiting similarity The invasion success of non-native species is high if they strongly differ 

from native species, and low if they are similar to native species. 

MacArthur & 

Levins (1967) 

MM Missed mutualisms In their exotic range, non-native species suffer from missing mutualists. Mitchell et al. 

(2006) 

NAS New associations New relationships between non-native and native species can positively or 

negatively influence the establishment of the non-native species. 

Colautti et al. 

(2006) 

NW Novel weapons In the exotic range, non-native species can have a competitive advantage 

against native species because they possess a novel weapon, i.e. a trait 

that is new to the resident community of native species and therefore 

affects them negatively. 

Callaway & 

Ridenour (2004) 

OW Opportunity windows The invasion success of non-native species increases with the availability 

of empty niches in the exotic range, and the availability of these niches 

fluctuates spatio-temporally. 

Johnstone (1986) 
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PH Plasticity hypothesis Invasive species are more phenotypically plastic than non-invasive or 

native ones. 

Richards et al. 

(2006) 

PO Polyploidy hypothesis Polyploid organisms, particularly plants, are predicted to have an 

increased invasion success, since polyploidy can lead to higher fitness 

during the establishment phase and/or increased potential for subsequent 

adaptation. 

te Beest et al. 

(2012) 

PP Propagule pressure A high propagule pressure (a composite measure consisting of the number 

of individuals introduced per introduction event and the frequency of 

introduction events) is a cause of invasion success. 

Lockwood et al. 

(2005) 

RER Resource-enemy 

release 

The non-native species is released from its natural enemies and can spend 

more energy in its reproduction, and invasion success increases with the 

availability of resources. 

Blumenthal 

(2006) 

RI Reckless invader aka 

“boom-bust” 

A population of a non-native species that is highly successful shortly after 

its introduction can decline or disappear over time due to different reasons 

(such as competition with other introduced species or adaptation by native 

species). 

D. Simberloff & 

Gibbons (2004) 

SDH Shifting defence 

hypothesis 

After having been released from natural specialist enemies, non-native 

species will allocate more energy in cheap (energy-inexpensive) defenses 

against generalist enemies and less energy in expensive defenses against 

specialist enemies (this re-allocation is due to genetic changes); the 

energy gained in this way will be invested in growth and/or reproduction, 

which makes the non-native species more competitive. 

Doorduin & 

Vrieling (2011) 
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SG Specialist-generalist Non-native species are more successful in a new region if the local 

predators are specialists and local mutualists are generalists. 

Callaway et al. 

(2004) 

SP Sampling A large number of different non-native species is more likely to become 

invasive than a small number due to interspecific competition. Also, the 

species identity of the locals is more important than the richness in terms 

of the invasion of an area. 

Crawley et al. 

(1999) 

TEN Tens rule Approximately 10% of species successfully take consecutive steps of the 

invasion process. 

Williamson & 

Brown (1986) 
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Figure 1. Description of the consecutive steps to create a consensus network of hypotheses 

and concepts. While we applied this approach for the field of invasion biology, it can be 

easily applied for other research fields as well.  
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Figure 2. Network of 39 common hypotheses in invasion biology, clusters calculated with the 

local link-clustering algorithm (hypothesis names are abbreviated as in Table 1 where details 

on each hypothesis are provided). Colors indicate membership of hypotheses to concept 

clusters. The representation is simplified in that, for example, the node empty niche (EN) 

appears to be split into two equal parts, while it actually belongs slightly more in Darwin’s 

cluster (6/11 = 55%) than in the Resource availability cluster (5/11 = 45%); see Fig. S2 for 

details. Similar hypotheses are connected with black lines, whereas contradictory hypotheses 

are connected with red lines. 
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5.1. Appendix  

 

Submitted to Global Ecology and Biogeography as: Enders M, Havemann F, Ruland F, 

Bernard-Verdier M, Catford J, Gomez-Aparicio L, Haider S, Heger T, Kueffer C, Kühn IM, 

L. A., Musseau C, Novoa A, Ricciardi A, Sagouis A, Schittko C, Strayer DL, Montserrat V, 

Essel F, Hulme P, van Kleuen M, Kumschick S, Lockwood JL, Mabey AL, McGeoch M, 

Palma E, Pyšek P, Saul W-C, Yannelli FA, Jeschke JM (submitted) A conceptual map of 

invasion biology: integrating hypotheses into a consensus network.  
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Supplementary Material to Enders et al.: A conceptual map of invasion biology: integrating 

hypotheses into a consensus network 

 

 

Classical clustering approach: node clustering 

A classical clustering approach for network analysis is node clustering where nodes are 

clustered rather than their links (the alternative link-clustering approach that we used for Figure 

2 clusters links rather than nodes). We tested the utility of node clustering for our hypothesis 

network, applying four algorithms commonly used to detect network structures: (i) the Girvan 

and Newman (2002) algorithm (igraph function ‘cluster_edge_betweenness’); (ii) an algorithm 

proposed by Clauset et al. (2004) (igraph function ‘cluster_fast_greedy’); (iii) the “Walktrap” 

algorithm suggested by Pons and Latapy (2005) (igraph function ‘cluster_walktrap’); and (iv) 

an algorithm suggested by Newmann (2006) (igraph function ‘cluster_leading_eigen’). 

The clusters returned by these four established algorithms were inconsistent (Fig. S1). These 

inconsistencies were largely due to the fact that some hypotheses did not seem to be part of any 

single cluster but were instead bridging clusters. For example, the human commensalism 

hypothesis (HC) seems to connect three clusters, but each algorithm assigned it to a different 

single cluster, as these ordinary algorithms are unable to split nodes into several clusters. 

One possible solution to overcome these inconsistencies is to inspect the results of these 

different algorithms and combine them manually by identifying (a) stable clusters, i.e. those 

groups of nodes that are assigned to the same cluster by all algorithms, and (b) nodes that are 

assigned to different clusters (connecting concepts). However, link clustering has become 

available as an alternative and more elegant approach for identifying stable clusters and 

connecting concepts, so we used it in this study. 
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Additional supplementary figures 

 

 

 

Figure S1. Results of four established algorithms to find node clusters in the network of 39 

invasion hypotheses. The algorithms achieved similar levels of modularity: (A) 0.599 (edge 

betweenness), (B) 0.611 (fast greedy), (C) 0.613 (leading eigen), (D) 0.612 (Walktrap). 

Similar hypotheses are connected with grey lines, whereas contradictory hypotheses are 

connected with red lines. See Table 1 in the main article for a description of the hypotheses. 
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Figure S2. Link clusters of the local link-clustering algorithm. Red lines connect the 

hypotheses in the following clusters: (A) Propagule cluster, (B) Darwin’s cluster and Trait 

cluster, (C) Resource availability cluster, (D) Biotic interaction cluster and (E) Trait cluster. 
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6. Discussion 

 

Invasion biology grew hugely over the last three decades. The number of hypotheses and 

concepts exploded and so did the biases in the field and the problems with these concepts and 

hypotheses (Pyšek et al. 2008). There is now a lot of confusion over existing concepts in the 

field, and thus a strong need for a navigation tool. One of the main tasks of this thesis was to 

find the best-suited network to map a field of science, but it seems there is no easy answer to 

this question (see chapter 6.1.). Each method has its own benefits and flaws. In a way, one can 

see every network as a survey, with the surveys having a different number of participants 

from two (chapter 2, Enders and Jeschke (2018)) to 1518 (chapter 4, Enders et al. (2018)). But 

network quality does not simply and linearly increase with the number of participants – it is 

more complicated. 

 

6.1. The problem with maps 

 

When drawing a map of a research field, one is faced with similar problems than when 

drawing a map of the globe. In both cases, one tries to project a multidimensional original into 

a two-dimensional map. In the case of a world map, one will face different problems and will 

distort the projection in at least 2 of 3 ways (Lapaine et al. 2017): 

• Sizes of regions appear larger or smaller than on the globe. 

• Distances between points are shown as longer or shorter than on the globe. 

• Direct routes between points are not shown as straight lines  

This also means that every world map is wrong in the sense that it is not an exact 

representation of the globe; it is a mathematical projection. The same is true for maps of 

science where a multidimensional vector room is plotted in two dimensions. With this 

transformation, some information gets lost. But does that mean that every network 

represented in this work is wrong? Yes and no. Besides the epistemological problems 

concerning knowledge in general, a network of a field of science is a projection of the field in 

two dimensions, according to the method that created the network. Every method to create a 

network has its benefits and flaws. Networks can be right depending on the chosen method 

and the underlying question. Sometimes this means that it needs additional analyses like in 

chapter 4 where the resulting survey network did not show specific patterns, but was random 
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and useless as a map of the field. With the additional analyses, the networks Joint-mentions A 

and B answer a different question. Figure 2 demonstrates this; using this figure 2, one will 

find different options and depending on your starting point a suggestion for the resulting 

network. These decisions depend on man- or brainpower, financial possibilities and 

computing-power.  

 

Figure 2 Different methods applied in this thesis to build hypothesis networks, sources of the data and 

the resulting networks. 
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6.2. The trait network 

 

The first network that was created for this theses was the trait network in Enders and Jeschke 

(2018). The network was an important step toward a map of invasion biology, but also shows 

some flaws. Evidently, it is quite ham-fisted and lacks a deeper insight into the field. With 

only 3 big clusters, the resolution of the network is very low. With this network, the field is 

separated in reasonable sub-fields but lacks a clearer separation. On the other hand, it is based 

on an easily applicable approach to create a network of this research field. It can also be done 

with a few numbers of scientists and can at least be a stand-in for a more detailed and more 

sophisticated network.  

Despite the flaws of this network, there are also benefits. First, this easily applicable method 

gives first insights into a field which may not be complete, but still useful. Also, it shows and 

sharpens the perspective of the experts on their view of the field of science. Third, it can be 

done easily by a small group of experts. And fourth, it makes transparent why certain 

hypothesis pairs are connected and others not: this information is explicit in the trait matrix 

summarizing the characteristics of each hypothesis. 

 

6.3. The survey network 

 

In the survey network (Enders et al. 2018), we could show that there is no internalized map of 

the field of invasion biology. The study also shows that many scientists have a personal map 

of hypotheses and concepts they are working with. One can argue that the results could be 

biased due to intellectual-psychological reasons or since the participants were saturated with 

questions when being asked to indicate similarities between hypotheses (these questions were 

asked in the middle of the survey); being saturated or tired of questions can lead to unreliable 

survey data, which could also explain the range in the answers (Faulbaum et al. 2009). This 

insight is very interesting for the field, but the resulting networks are useless for the task of 

building a map for the field. Also, this ‘black box’ approach seems to be useless for a clear 

network of similarities. There are many factors that cannot be defined and therefore the 

repeatability could suffer from it. Nevertheless, the results of the Joint-mentions networks 

give an interesting insight into the work of invasion biology. But also, the survey network still 

has some benefits. Compared with the other networks (bibliometric and consensus), it also is 
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easier to replicate. The survey could be sent out in an annual rhythm and the changes in the 

field of science could be seen on a broader time scale. This would have two benefits: First, it 

would show the influence of the other networks. One could expect that after some years the 

survey networks would come close to the other networks or show important differences with 

them. Second, it would show if there is a trend in invasion biology over the years. One 

concept or hypothesis could raise in popularity and scientists would see more or fewer 

connections to other hypotheses. 

 

6.4. The bibliometric network 

 

Two networks were produced with the bibliometric approach, the M-network and the S-

network (Enders et al. 2019). Both networks were created from the same literature and differ 

only in the underlying method: The M-network was built after Marshakova (1973) where 

accepted links (over 95% significant to a null-model) are weighted by co-citation numbers (cf. 

Havemann 2016). And the S-network following Small and Sweeney (1985) weighted all links 

with Salton’s cosine of co-citation numbers and omitted links with a cosine below a threshold 

of 0.1. The best partition of network M has modularity 0.520. The best partition of network S 

has modularity 0.463. Both networks stick out because they show well separated and distinct 

clusters. But bibliometrics has some dangers, which should be considered before evaluation of 

the networks (see below). There is, without a full-text analysis, no way to see why two 

hypotheses are connected. For example, the hypotheses biotic resistance and biotic acceptance 

are connected in both networks. The likely reason is that, they contradict each other and are 

therefore cited together. So, this link probably shows disagreement rather than similarity 

between the two hypotheses. Another point to be aware of are the clusters presented in the 

networks. In the M- and S-network, the partitions with the highest modularity where chosen. 

And after inspection the clusters are useful. This method is recommendable to get an insight 

into a field of science. The whole analysis depends on the search inquiry, which sets the 

search-area, and therefore these terms should be rechecked and may be revisited. With a new 

search term, the analysis could be done in a smaller time range. So, directions in the field of 

science could be detected. 
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6.5. Comparing trait and survey networks with the bibliometric 

network 

 

In comparison to the two networks published by Enders and Jeschke (2018) and Enders et al. 

(2018), the bibliometric networks of Enders et al. (2019) are way clearer. Compared with the 

similarity-dissimilarity network in Enders et al. (2018), which was created based on an online 

survey, the bibliometric network is much clearer with fewer connections and distinct clusters. 

Apparently, the survey participants had different views on the relationships between invasion 

hypotheses, possibly because invasion biology has so many hypotheses now that it is hard for 

researchers to know them all: the similarity-dissimilarity network in Enders et al. (2018) used 

direct responses given by the survey participants when being asked for hypothesis pairs how 

similar they are. If participants often simply guessed the similarity of hypothesis pairs, one 

would expect a random network to emerge from the answers, and this is what Enders et al. 

(2018) found. This problem was circumvented for two other networks in Enders et al. (2018) 

– Joint-mentions networks A and B – which are only based on hypotheses that the survey 

participants indicated to know best. These networks are clearer than the similarity-

dissimilarity network, however, they do not seem to be as useful maps as the networks M and 

S presented in Enders et al. (2019). They are not as clear, their clusters have lower modularity 

(ca. 0.25 for both networks, cf. Enders et al. 2018), and their clusters are not communities in 

the strong sense. The strong community definition requires that every node has a stronger 

internal than external connection. 

The network in Enders and Jeschke (2018), which was created by traits of the concepts and 

hypotheses, has three clusters consisting of concepts with a focus on (i) human interference, 

(ii) mutualisms and (iii) enemies (predators or parasites). The modularity is relatively high 

(ca. 0.4) but still lower than for the two networks shown in Enders et al. (2019). Also, the 

clusters are not communities in the strong sense.  

 

6.6. The consensus network 

 

The consensus (Enders et al. submitted) and bibliometric (Enders et al. 2019) networks are 

quite similar but still different. First, the consensus network has more nodes (hypotheses) 

building up the network because each hypothesis was reviewed by its own. In the bibliometric 
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network, the hypotheses EI; enemy inversion, ERD; enemy reduction, IS; increased 

susceptibility and NAS; new associations were represented by one paper (Colautti et al. 2004) 

and SG; specialist generalist and BID; biotic indirect effects were represented by one paper 

(Callaway et al. 2004). Second, there are five new hypotheses considered in the consensus 

network (PO; polyploidy hypothesis, PH; plasticity hypothesis, CP; colonization pressure, 

ENA; ecological naivety and EIM; ecological imbalance). The clusters were also renamed to 

better fit the idea of each cluster. The consensus network also avoids the bibliometric flaws 

(see below) and with the repetition of the integrated Delphi-process, there should be no strong 

influence of one person during the process. 

The biggest difference between the two networks probably is that there was a new algorithm 

used to cluster the consensus network. This algorithm clusters links instead of nodes, which 

leads to nodes that are members of two or more clusters. Due to this algorithm, the network 

could be clustered finer and the clusters themselves can be more focused. In practice, different 

aspects of a hypothesis can be used in different fields, and the new algorithm and the resulting 

clusters represent that way of thinking. Sadly, due to this algorithm there are no advanced 

ways to measure this network and compare it to the others. Measurements like modularity 

need strictly distinct clusters. 

The consensus process also takes a lot of resources. For two days, a sizable number of 

academic experts were occupied in the workshop plus they had to travel to and from Berlin, 

several of them over large distances. The individual work done by each expert beforehand and 

afterwards was time-consuming, too, and of course, I and other members of the core team of 

this study had to invest much additional time. Also, the algorithm used for this network 

designed by Havemann et al. (2019) needed a lot of computing power and time. But 

nevertheless, the resulting map of invasion biology seems to be the most useful one that 

currently exists. If there is enough financial and brainpower, this method should always be 

considered. 

 

6.7. Problems in visualization  

 

Visualization of knowledge brings many benefits, but should also be seen with a grain of salt. 

There are some problems with the creation of science maps, and these can be categorized into 

three different groups: bibliometric problems, technical limitations and human flaws. 
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6.7.1. Bibliometric problems 

As outlined above, many large-scale science maps that try to create a picture of connected 

fields of science are based on bibliometric methods. This leads to two problems: (i) research 

areas that are logically connected are not always bibliographically connected (Swanson 1986) 

and (ii) an expert is still needed to interpret the bibliometric results. Because there is no way 

to see why there is a bibliometric link. So, the reason for a link could not be seen or could 

have different reasons than a “logical connection”.  

6.7.2. Technical limitations 

The creation of a map out of a large data set still requires a lot of time and computing power. 

The same is true for the clustering of a big network, even with a simple algorithm it could 

take many hours to compute. A similar problem emerges in the section of topic finding. The 

algorithms can only work with a pre-determined set of words. The longer that list is, the 

longer it takes the computer to calculate it. Also, computers cannot handle mistakes well. If a 

human had done a mistake in filling a table or form, e.g. mixing up letters, the computer 

cannot recognize the entries as the same. The same is true for understanding words as 

synonyms of other words. These tasks, simple for human brains, are still hard for a computer. 

Maybe with more developed machine-learning, these problems can be solved in the future. 

Until then, humans will be required to double-check the data that computers and algorithms 

have produced. 

6.7.3. Human flaws 

This is a tricky point because of two reasons. First, humans, in general, tend to make mistakes 

with repetitive tasks. So, misspellings can occur in data-sets and bibliometric data. Second, 

human brains are made to recognize patterns in everything. That means that many clusters can 

be seen as valid. 

 

6.8. Conclusions 

 

To evaluate this work, we must have a look at the aims: 

(i) Find different ways to create a network to visualize a field of science; in this case, 

the field of science is invasion biology. 

This work presented four different ways to create a network to visualize the scientific field of 

invasion biology (chapter 2-5). These methods are useful for visualizing a field of science and 

could be used for many other different fields of science. Depending on the source of data, 
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there are different ways to create a network (see suggestion Figure 2). The previous sub-

chapters (see above) also showed that not every network is useful for every aim. So, 

depending on what the network should represent (e.g. How key papers are connected by 

citation, how experts see the field or how your workgroup sees the field), different methods 

are more useful than others. 

(ii) Compare the resulting networks. 

This was done both in the chapters and here in the Discussion. Measures from the networks 

were compared (like modularity, degree centrality) and the clusters were visually compared as 

well. Other comparisons are possible and indeed needed in the future, but the important part 

here is that the networks are compared as networks, not as strings of numbers. Therefore, 

mixing up the network would not give different results. The Ipsen-Mikhailov distance seems 

promising for future quantitative comparisons (cf. Jurman et al. (2011)). This metric compares 

the networks and gives a distance measure between them. For this task, it would be ideal to 

have the same number of nodes in a network. 

(iii) Evaluate the different networks concerning their overall usefulness, their 

resolution and the question they address. 

As outlined above (chapter 6.1.) the utility of a map or network depends on the question that 

was asked. Like with maps of the globe, hypothesis networks can be a reasonable 

representation but not a complete representation of the field. Under the aspect of usefulness 

for decision makers, students and experts in the field, the bibliometric (chapter 4) and the 

consensus network (chapter 5) provide good overviews of the field. For a view, how experts 

see the field and which hypotheses they know best, the survey network and the Joint-mentions 

networks (chapter 3) are a good way to go. And to get an overview of the field as seen by the 

own working group, the trait network (chapter 2) is the best and fastest way. 

I use the term “resolution” here to describe how easy a global structure can be seen on a map, 

and how easy it is to get information out of it. This goes with a decrease in the number of 

links in the network and clustering in well distinct groups. The resolution of the clustering of 

the maps is increasing from the trait network (chapter 2), over the survey network (chapter 3) 

to the bibliometric and consensus networks (chapter 4 and 5). An exception is the Joint-

mentions networks that have a higher resolution than the survey network itself, but do not 

show the relations between the hypotheses as seen and reported by the experts in the field.  
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6.9. Further work 

 

Even though this work is a step forward in visualizing a field of science, there are many more 

things to do. For example, the survey in chapter 4 should be revisited, maybe shortened and 

done in regular temporal intervals, and the results should be compared with each other. Also, 

the consensus network should be done at regular intervals to see shifts in the field and maybe 

figure out new trends. In addition, there should be more research on comparing the different 

networks and possibly combining them. Combining the networks could be a way to create a 

network that shows different benefits of different networks. 

Lastly, a combination of empirical studies with a useful network should be done. The website 

www.hi-knowledge.org (Jeschke et al. 2018) is a good way in this direction. It shows a 

network of hypotheses (simplified from Enders and Jeschke 2018, i.e. the trait network) and 

links it with the hierarchy-of-hypotheses approach. Thanks to this linkage, this network also 

shows how empirically supported these hypotheses are and how they could be separated in 

different, more precise sub-hypotheses. As a next step, the bibliometric or consensus network 

should be combined with the data of the HoH approach (Heger et al. 2013; Jeschke and Heger 

2018) and shown to a broader audience on the website http://www.hi-knowledge.org (Jeschke 

et al. 2018). When doing so, the hypotheses should initially be shown as clusters rather than 

individual hypothesis in order to improve clarity. This thematic map would put an additional 

layer in the network. After this, connections should be made with other sub-disciplines of 

biology. In a last step, biology should be connected with other disciplines of science. For this 

last step, existing maps of science should be evaluated like the map that was done by Klavans 

and Boyack (2009). After these steps, there would be a complete, multidimensional map of 

science and for each dimension, another map could be the best fitting one. So, the aim is a 

zoomable map of science that shows the connections from a paper level, over a hypotheses 

level, to a clustered concept level, to a sub-discipline level, to finally a complete map of 

academic knowledge.  

Also, a map of topics or ideas should be possible. There are works on this topic to extract 

topics from the text (e.g. Velden et al. (2017)), but there is still a long way ahead because of 

the reliability of the algorithms. So, the found topics don’t have to be all actual topics, but the 

algorithm is not capable of detecting more. Another aspect of this work was that it produced 

http://www.hi-knowledge.org/
http://www.hi-knowledge.org/
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in the table of 39 invasion hypotheses probably the most complete table of its kind. For 

further work, this table should be revised and updated. 

Finally, more work should be put into the comparisons of the network (see above). There are 

several metrics to compare networks with each other, but not all metrics suit. Also, the 

networks have to be made equal in size. This means that they need to have the same number 

of nodes to be compared with currently available methods. 

 

6.10. Coda 

 

Visualization of knowledge or maps of science has proven useful for the corresponding fields 

of science. The aim of a future map should be that its structure is built in-time by an algorithm 

and accessible via the internet. For the creation of this web-based map, a bibliometric 

approach seems to be the best way forward. Maps of science have proven to be very useful, 

but there are still some alarming problems. The main benefit of computing these maps is to 

compute large data sets, way too big for human calculations. But nowadays, computers are 

still too slow and network analysis still needs too much human attention to be seen as useful 

without an intense check by experts. Therefore, there is still research to do until everyone can 

use a web-based map.This future advance in technology demands also a self-critical reflection 

in the work of experts. They have to be aware of the problematic flaws (see above) and should 

avoid them. As said before, the consensus method (chapter 5) should always be considered as 

a way to create a map of a research field, but which approach to choose also depends on 

factors like manpower, brainpower or financial possibilities. The consensus method is the 

most expensive method of all of them and also needs the most manpower. If one of these or 

both are not given, the bibliometric method (see chapter 4) is the second-best way to create a 

map of a field of science. For a “quick & dirty” overview of the field, maybe only for the own 

working group, the trait method (chapter 2) is useful. If the aim is to see how as many experts 

as possible see their own field of science, the survey approach (chapter 3) is useful (for a 

quick overview of the different methods, see Figure 2). As said above, the aim of a map 

should lead the decision for a method to create it.  
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