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Abstract

We demonstrate the excitation of dark plasmon modes with linearly polarized light

at normal incidence in self-assembled layers of gold nanoparticles. Because of field

retardation the incident light field induces plasmonic dipoles that are parallel within

each layer but antiparallel between the layers resulting in a vanishing net dipole moment.

Using micro-absorbance spectroscopy we measured a pronounced absorbance peak and

reflectance dip at 1.5 eV for bi- and trilayers of gold nanoparticles with a diameter

of 46 nm and 2 nm interparticle gap size. The excitation was identified as the dark

interlayer plasmon by finite-difference time-domain simulations. The dark plasmon

modes are predicted to evolve into standing waves when further increasing the layer
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number which leads to 90% transmittance of the incident light through the nanoparticle

film. Our approach is easy to implement and paves the way for large-area coatings with

tunable plasmon resonance.
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Noble metal nanoparticles strongly interact with light because of the collective excita-

tion of free electrons, which is known as a localized surface plasmon resonance (LSPR).1,2

Plasmon resonances offer the possibility to manipulate light on the nanoscale, which enables

nanophotonic components, novel light sources and improved photovoltaic devices.3–5 The

intense electric fields in the vicinity of the metal surface are exploited to enhance optical

processes, giving rise to phenomena like surface-enhanced Raman scattering and surface-

enhanced infrared absorption.6–9 The efficient interaction with far-field radiation, on the

other hand, leads to a radiative plasmon decay within a few femtoseconds.2,10 This radiative

damping is a drawback for applications that require high quality factors, such as chemical

or biological sensors.11

Dark plasmon modes received considerable attention in the past years because they ex-

hibit a vanishing dipole moment and do not suffer from radiative losses.12–23 Such modes can

be either multipolar modes in individual nanoparticles or a hybridization of dipole modes

in coupled nanoparticles with a vanishing total dipole moment.24,25 Various techniques were

proposed to excite dark plasmons: Dark modes were partially turned bright by making

plasmonic nanostructures asymmetric and thereby introducing a non-zero net dipole mo-

ment.13–15 The evanescent fields of local emitters and wave guides as well as magnetic fields

were used for the excitation.16–19 It was proposed to excite dark modes in plasmonic oligomers

with radial and azimuthal polarization and multipolar modes in single nanoparticles with op-

tical vortex beams.20–22 Finally, bright plasmon modes may couple to dark plasmon modes,

which gives rise to Fano resonances and a plasmonic analogue to electromagnetically in-

duced transparency.23 All these approaches have in common that either complex plasmonic

nanostructures need to be produced by demanding techniques such as electron-beam lithog-

raphy or specific light sources are required for excitation. This is a great challenge for the

systematic optimization of dark modes, their low-cost applications, and scalability.

Here we demonstrate the excitation of dark plasmons in colloidal layers of gold nanoparti-

cles by linearly-polarized light at normal incidence. Because of field retardation the incident
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light field induces dipoles that are antiparallel in the layers exciting dark interlayer plasmons

that are strongly red shifted (∼800 meV) compared to the bright plasmon in a monolayer.

Using micro-absorbance measurements and finite-difference time-domain (FDTD) simula-

tions we confirm the excitation of the dark modes in self-assembled bi- and trilayers of gold

nanoparticles with an absorption intensity of up to 50%. When further increasing the layer

number, the dark modes transform into standing waves that transmit the light through the

nanoparticle film.

Results and discussion

To introduce our concept for the excitation of a dark interlayer plasmon, we first consider a

gold nanoparticle dimer. Fig. 1a displays the plasmonic modes of the dimer that arise from

the hybridization of the dipolar modes of the individual particles.26 There are two bright

modes of dipolar character. They belong to the B3u representation of the D2h point group if

the dipoles in the two particles are parallel and along the dimer axis (x axis) and to the B2u

representation for parallel dipoles along y.27 Furthermore, there are two dark modes with

antiparallel dipole moments in both particles. They belong to the A1g representation for

dipoles along the x axis and to the B1g representation for dipoles along y. The eigenenergies

of the B3u and B1g modes are red shifted compared to the plasmon of the single particle

because the modes are of binding character. The B2u and A1g modes are blue shifted because

they are antibinding.

The bright modes can be excited by a plane electromagnetic wave with wave vector

perpendicular to the dimer axis, as can be seen from the calculated absorption cross sections

in Fig. 1b. The B3u(x) mode (1.66 eV, orange curve) is excited for light polarization along

the x axis and the B2u(y) mode for polarization along y (1.88 eV, blue curve). The dark

modes are usually inaccessible with far field radiation because of their vanishing net dipole

moment. However, from the absorption cross section in Fig. 1b it is apparent that the
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Figure 1: Excitation of a dark plasmon in a gold nanoparticle dimer by side illumination.
(a) Hybridization diagram for the plasmon modes of a dimer that belong to a combination of
plasmonic dipoles in both particles. The surface charges (red - positive, blue - negative) were
calculated with the boundary-elements method.28 (b) Absorption cross section simulated
with the FDTD method for different directions and polarizations of an incoming plane wave
(100 nm disk diameter, 20 nm disk height, 20 nm gap between disks, background index
n = 1.33). The absorption maximum of the dipole mode of a single particle is indicated by
a dashed line. (c) Sketch illustrating the excitation of the dark B1g mode by light that is
incident along the dimer axis. The gray arrows show the dipole moments excited in both
disks.

dark B1g mode (1.78 eV, red curve) is excited by illuminating the dimer from the side, as

illustrated in Fig. 1c. The spectral width of the dark plasmon peak is with 150 meV by a

factor of two narrower than that of the bright plasmon modes, which shows that radiative

damping is suppressed.

The activation of the dark plasmon is explained by the retardation of the incident light

field (Fig. 1c).18,29 For certain times the electric field vectors (red arrows) are antiparallel at

the two disks and therefore excite antiparallel dipole moments in both particles (gray arrows).

The effect is most pronounced when the center-to-center distance of the two disks equals half

of the light wavelength. We note that symmetry-derived selection rules fail to predict the

excitation of the dark plasmon, because the analysis assumes the light wavelength to be much

larger than the system size. While this is certainly correct for molecules and crystal unit

cells, the approximation breaks down for extended nanostructures like the plasmonic dimer

considered here. A careful choice of nanostructure geometry and experimental conditions
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may allow the observation of excitations that are generally considered to be forbidden by

selection rules.

Remarkably, the absorption peak of the bright B2u(y) mode at 1.88 eV is missing for

the side illumination geometry, although the simulation was carried out for a dimer with a

center-to-center distance of 120 nm ≈ λ/4. The maximum absorption cross section of the

dark mode is by a factor of three stronger than absorption by the bright modes. The optical

absorption by the dark plasmon is dominant as long as the dimer is large enough that field

retardation is important. For a much smaller dimer with a center-to-center distance of 24

nm, the absorption spectrum is dominated by the B2u(y) mode and the dark mode is not

excited (see Fig. S1 in the Supporting Information).

Realizing the scattering geometry of Fig. 1c experimentally requires incident light parallel

to the substrate or stacking two nanoparticles on top of each other. The latter has been real-

ized with metal-insulator-metal nanodisks, where the antisymmetric dark mode was activated

by an asymmetry of the two metal disks and field retardation.19,29–32 We now demonstrate

the excitation of an equivalent dark mode in colloidal nanoparticle bilayers. This approach

benefits from its scalability, and can be extended to multiple stacked nanoparticle layers.

Furthermore, small gap sizes of a few nm are naturally realized and lead to strongly coupled

plasmonic modes.

Fig. 2 shows the simulated absorbance and reflectance of hexagonally close-packed (hcp)

mono- and bilayers of spherical gold nanoparticles. The nanoparticle layers are illuminated

with linearly polarized light at normal incidence (Fig. 2a and b). For a monolayer of gold

nanoparticles the absorbance spectrum is dominated by gold interband transitions that set

in at 2 eV.2,33 A weak peak at 2.25 eV stems from a bright plasmon in which all dipoles are

parallel (white arrows in Fig. 2a).

The spectrum changes dramatically for a bilayer of gold nanoparticles (Fig. 2d). A

pronounced absorbance peak appears in the spectrum at 1.44 eV, which is absent for the

monolayer. To identify the plasmon mode we extract the sign and magnitude of the electrical
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Figure 2: Optical response of colloidal gold nanosphere mono- and bilayers simulated by
FDTD. (a) Sketch illustrating the excitation of a bright dipole plasmon in a nanoparticle
monolayer by normal incidence of linearly polarized light with wave vector k and polarization
E. The plasmonic dipole moments are indicated by white arrows. (b) Sketch illustrating
the excitation of a dark interlayer plasmon in a nanoparticle bilayer. (c) Absorbance and
reflectance spectra of a monolayer and (d) a bilayer of gold nanospheres (diameter d = 46
nm) that are hexagonally close packed with gaps of 2 nm. The background medium has
a refractive index of n = 1.4. The spectral range that is relevant for the excitation of
the dark interlayer plasmon is shaded gray. (e) Magnitude of the electrical current in the
nanoparticles of the bilayer as a function of excitation energy. The component that is parallel
to the polarization E is plotted at a phase shift of 3π/2 to the incident light field.

current in both nanoparticle layers from the FDTD simulations (Fig. 2e). The current in

both layers contains a peak at the same excitation energy as the absorbance and remains

close to zero for all other excitation energies. The current flows in opposite directions in the

two nanoparticle layers (compare solid and dashed curves in Fig. 2e). This clearly shows

that the plasmon mode corresponds to a hybridization of antiparallel dipole moments in the

two layers as shown by the white arrows in Fig. 2b. Because of the vanishing net dipole

moment this is a dark plasmon, similar to the B1g mode of the nanoparticle dimer.

The resonance energy 1.44 eV of the antiparallel dark mode is strongly red shifted from

the bright plasmon in a monolayer at 2.25 eV because of the bonding interaction between

the two layers. We also note that the reduced radiative damping of the dark plasmon leads

to a FWHM of 180 meV that is by a factor of three smaller than for the bright excitation
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as we calculated with a silver structure (Fig. S2). In the case of gold the bright plasmon is

no longer visible in the bilayer spectrum, Fig. 2d, because damping by interband transitions

is much stronger than for the monolayer due to the blueshift of the antibonding layer-layer

mode.

b

a

Figure 3: (a) Transmission electron microscopy (TEM) image of a colloidal gold nanoparticle
monolayer (left) and bilayer (right). A Moiré pattern indicates a small twist angle between
the two layers. (b) Experimental set-up for the micro-absorbance measurements. The light
of a supercontinuum laser (red) passes through a linear polarizer (LP) and is guided into an
inverted microscope (dashed box). The laser beam is focused by an objective onto the gold
nanoparticle film on the TEM grid; see sketch in the inset. The TEM grid is mounted on
a motorized xy translation stage. The transmitted light is collected by a second objective
and coupled into a fiber that is connected to a spectrometer. The reflected light is guided
by beam splitters (BS) to a microscope camera and via a fiber to a spectrometer. The light
propagation direction is indicated by red arrows.

We now turn to an experimental verification of the suggested theoretical concept using

self-assembled gold nanoparticle films. Fig. 3a shows a monolayer of hexagonally close-packed

nanoparticles on the left and a bilayer to the right. The Moiré pattern indicates that the two
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layers overlap with a small twist angle. From TEM images we deduced a particle diameter

of 46±3 nm and an average interparticle gap size of ∼2 nm. To measure the absorbance

of the nanoparticle layers, we used a home-built micro-absorbance spectrometer (Fig. 3b).

The set-up was integrated into an optical microscope which enabled us to simultaneously

measure reflectance and transmittance at specific positions that were imaged with a TEM

afterwards.

We measured the transmittance and reflectance at numerous mono- and bilayers of gold

nanoparticles on different TEM grids and obtained reproducibly the same spectra. In Fig. 4,

we plot the reflectance and absorbance spectra of two places. The corresponding transmit-

tance spectra and TEM images of the two places are given in Figs. S3-S5 in the Supporting

Information. The spectra of a monolayer in Fig. 4a nicely resemble the simulated spectra

in Fig. 2c. The absorption edge sets in for excitation energies larger than 2 eV, which is

attributed to interband transitions.2,33 A peak from the bright plasmon is hardly visible at

2.25 eV. The spectra of the nanoparticle bilayers are dominated by a pronounced reflectance

dip at 1.48 eV and an absorbance peak at 1.53 eV (see Figs. 4b and c, gray shaded area)

in excellent agreement with the predictions. From a comparison to the simulated spectra in

Fig. 2 the absorbance peak is unambiguously assigned to the excitation of the dark interlayer

plasmon mode.

The absorbance peaks and reflectance dips in Figs. 4b and c are with a FWHM of ∼ 360

meV by a factor of two broader than in the simulated spectra in Fig. 2d. We attribute this

to variations of the nanoparticle size and gaps as visible in the TEM images; see Fig. 3a

and images with higher magnification in the Supporting Information. We found by FDTD

simulations that the gap size between the nanoparticles within the two layers strongly affects

the spectral position of the absorbance peak. An increase in gap size of 0.5 nm blue shifts

the peak by 70 meV (Fig. S6). Taking this into account we averaged the simulated spectra

with varying gap size, Fig. 4d, and obtained excellent agreement with experiment. This

shows that the width in the experimental spectra is given by inhomogeneous broadening
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Figure 4: Micro-absorbance and reflectance spectra of (a) a colloidal gold nanoparticle mono-
layer and (b) and (c) gold nanoparticle bilayers. A pronounced absorbance peak and re-
flectance dip is visible in the near infrared in the spectra of the bilayers and absent in the
spectra of the monolayer (gray shaded area). This peak is attributed to the excitation of a
dark interlayer plasmon. (d) FDTD simulation of the reflectance and absorbance of a gold
nanoparticle bilayer calculated as the average of the spectra for three gap sizes of 1.5 nm, 2
nm and 2.5 nm. All other parameters are similar to those in Fig. 2. The dotted lines are
simulated spectra for the stacking where the nanoparticle layers are aligned.

due to a dispersion in gap size and not the radiative decay rate. We did not observe any

further broadening of the line width when measuring with laser spot sizes much larger than

the diffraction limit, i.e. using a 20× objective with a numerical aperture of 0.25 (Fig. S7).

The variations in interparticle gap sizes therefore occur on length scales smaller than the

wavelength of the incident light. Since the interparticle distance can be experimentally ad-

justed during synthesis, it offers the possibility to tune the spectral position of the plasmonic

resonance.34

The TEM images in Figs. 3a, S4a and S5a show that the two nanoparticle layers do not

align hexagonally close-packed (hcp) as was assumed in the simulations but with a varying

twist angle. To test the role of stacking, we simulated the absorbance and reflectance spectra

for two gold nanoparticle layers that are aligned on top of each other (dotted lines in Fig.

4d). The absorbance peak of the dark plasmon is red shifted by 50 meV compared to

the spectral position for hcp stacking. Besides the small shift, the spectral features in the
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absorbance and reflectance spectra remain unchanged. We conclude that the exact stacking

is negligible for the spectral position and intensity of the dark mode. Close-packed layers of

gold nanoparticles can be synthesized with grain sizes of several hundreds of µm2.35 Stacking

two monolayers will enable large-area coatings with tunable plasmonic resonances.

a b c

ed

Figure 5: Excitation of a dark plasmon in a gold nanoparticle trilayer. (a) Experimental
micro-absorbance and reflectance spectra. (b) Simulated absorbance and reflectance with
FDTD for a trilayer with hcp stacking, 46 nm sphere diameter, gaps of 2 nm and a back-
ground medium with a refractive index of n = 1.4. (c) Magnitude of the electrical current
in the three layers as a function of excitation energy. The component that is parallel to the
polarization E is plotted at a phase shift of 3π/2 to the incident light field. Layer 1 faces
the incident light. (d) TEM image showing a gold nanoparticle monolayer (1L), bilayer (2L)
and the trilayer (3L) where the spectra were recorded. (e) Hybridization diagram of the
dark modes in the nanoparticle trilayer by a symmetric and antisymmetric combination of
the dark mode in the bilayer. The mode at 1.55 eV is shaded dark gray and the mode at
1.20 eV light gray in the spectra.

Finally, we demonstrate that the concept of dark mode excitation in a nanoparticle bilayer

can be extended to more than two layers giving rise to a rich variety of dark interlayer
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plasmons. In Fig. 5a we show the absorbance and reflectance spectrum measured on a

nanoparticle trilayer. Similar to the bilayer the spectrum is dominated by a pronounced

absorbance peak at 1.57 eV which is with a FWHM of 220 meV, 40% narrower than for the

bilayer. The onset of a second peak below 1.2 eV is visible, which is outside our measurement

range. The two peaks are clearly identified from a simulated spectrum for a trilayer of hcp

stacked gold nanoparticles (Fig. 5b). From the electrical current distribution inside the

nanoparticles, Fig. 5c, the two peaks are both assigned to dark interlayer plasmons with a

vanishing net dipole moment. The two modes can be explained by a symmetric (1.2 eV) and

antisymmetric (1.55 eV) hybridization of the dark bilayer mode at 1.44 eV (Fig. 5e). The

peak at 1.2 eV is the analog to the dark interlayer plasmon of the bilayer, where the dipoles

in the nanoparticles of the outer layers are antiparallel. The plasmon resonance at 1.55 eV

corresponds to antiparallel dipoles in all neighboring layers. It has a simulated FWHM of

only 80 meV which corresponds to a Q factor of Q = ω/∆ω = 19.4. Its activation may

be explained by a coupling to the magnetic component of the incident light field, similar to

transverse magnetic modes in metal-insulator-metal stacks.18,36

The trend of activating additional dark interlayer plasmons continues when further in-

creasing the layer number. In Fig. 6a we plot the simulated absorbance spectra for two to

five hcp stacked gold nanoparticle layers. With each additional layer a new peak appears

in the spectrum, which corresponds to a mode where the plasmonic dipoles in all neighbor-

ing layers are antiparallel (Fig. 6a, inset and Fig. S9). All other peaks are red shifted and

broadened upon increasing the layer number. The electrical currents in the top and bottom

layers always have the same magnitude.

The absorbance of the lowest-energy mode nearly vanishes in the pentalayer because

90% of the light is transmitted through the stack; the reflectance drops to zero (Fig. 6b).

This is remarkable as, e.g., the pentalayer is a 200 nm thick layer that consists of 70%

gold. For comparison, the transmittance through a 140 nm thick gold film is 10−4% at 0.8

eV.37 A similar behavior was reported for three-dimensional gold nanorod crystals where
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Figure 6: Dark interlayer plasmons in colloidal gold nanoparticle stacks with different layer
number; from bilayer (bottom) to pentalayer (top). (a) Absorbance spectra and (b) re-
flectance and transmittance spectra of the gold nanoparticle layers simulated with FDTD.
Hcp stacking, 46 nm sphere diameters, 2 nm gaps and a background medium with a refractive
index of n = 1.4 were assumed. The plasmonic modes (inset) were assigned via the current
distribution inside the nanoparticles; the dipole moments in the particles of each layer are
indicated by white arrows. Dashed lines connect similar modes.

light penetrated deep into the crystal and formed standing waves.38 Fig. 6 shows that the

absorptive dark interlayer plasmons transform into such standing waves with increasing layer

number. Both the plasmonic modes and the standing wave patterns are accompanied by

strong electromagnetic field enhancement between the spheres which can be exploited for

sampling large volumes of bioanalytes, e.g., with surface-enhanced Raman scattering.38–41

In summary, we demonstrated the direct excitation of a dark plasmons by linearly po-

larized light, which is generally considered forbidden by selection rules. Because of the

finite wavelength of light, antiparallel dipoles are excited in nanoparticles that are stacked

along the light path. We demonstrate this concept experimentally using bi- and trilayers
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of self-assembled gold nanoparticles. We show by experiment and simulation that particle

diameters of 46 nm are sufficient to observe a pronounced (50%) absorption peak in the near

infrared that stems from the excitation of dark interlayer plasmons with antiparallel dipoles

between the layers. The dark plasmon modes gradually turn into standing waves as the layer

number is further increased, which leads to almost perfect transmittance of light through

the nanoparticle film. Generally, n − 1 modes are excited in a film with n nanoparticle

layers. Our approach is scalable and easy to implement opening the route to the large-scale

exploitation of dark modes in spectroscopy and energy applications.

Methods

FDTD simulations

We used the commercial software package Lumerical FDTD Solutions for the finite-difference

time-domain simulations. A total-field scattered-field source was used for simulating the

absorption cross-section of the nanodimer. The nanoparticle layers were implemented by

constructing the lattice unit cell and using periodic boundary conditions. A plane-wave

source was used for excitation. The transmittance T was measured with a monitor behind

the nanoparticle layers and the reflectance R by a monitor behind the source. The absorbance

A was calculated as A = 1 − T − R. The materials were modeled by fitting experimental

data of the dielectric function from Johnson and Christy for gold42 and Palik for silver.43

We used mesh-override regions of 2 nm for the nanodimer and 0.25 nm for the nanoparticle

layers to accurately model the interparticle gaps. The simulated spectra were tested for

convergence by changing the mesh sizes. The electrical currents were calculated by averaging

the values from seven electrical current monitors that were placed symmetrically in each of

the nanoparticle layers. The complex electrical currents were corrected for the phase shift

to the incident light that changes with excitation energy.
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Synthesis of colloidal gold nanoparticle layers

Materials: Tetrachloroauric(III) acid (≥99.9% trace metals basis), oleylamine (98%), toluene

and ethanol (denat.) were purchased from Sigma-Aldrich (USA). Trisodium citrate and

diethylene glycol (DEG) were from Merck (Germany). Thiolated polystyrene (PSSH5k:

Mn = 5300 g/mol, Mw = 5800 g/mol) was from Polymer Source (Canada). All reagents

were analytical grade and used without further treatment. For gold nanoparticle (AuNP)

synthesis ultrapure water (18.2 Ω) was used.

AuNP synthesis: Quasispherical citrate stabilized gold nanoparticles (AuNP@Citrate)

with a diameter of 46 nm were synthesized based on the seeded-growth protocol.44 AuNP

concentrations were determined based on their absorbance at 450 nm.45

Functionalization with polystyrene (PSSH5k): The AuNP@Citrate were functionalized

with the PSSH5k ligand based on the phase transfer ligand exchange protocol described

recently.35 PSSH (0.16 mM) and oleylamine (1 mM) in toluene (6 ml) were mixed with

the aqueous AuNP@Citrate (6 ml) and ethanol (6 ml) under rapid stirring. The stirring

was stopped after 30 minutes and after complete phase separation, the organic phase was

carefully extracted and concentrated and purified by centrifugation (12 min × 2,000 g in 1

ml aliquots). The final concentration of the AuNP@PSSH5k was 2.1 nM.

Self-assembly of AuNP@PSSH at the liquid-liquid interface: AuNP@PSSH5k mono-

and bilayer films were prepared by self-assembly at the liquid-liquid interface.35 300 µL

AuNP@PSSH5k solution (2.1 nM) in toluene was pipetted onto 300 µL DEG in a Teflon

well. The well was covered with a glass slide and left undisturbed at room temperature until

the solvent was evaporated and a golden film had formed. The waiting time was at least 24

h.

Set-up for micro-absorbance measurements

The optical set-up for micro-absorbance measurements is depicted in Fig. 3b. A super-

continuum laser (Fianium, SC-400-4) that emits light over a broad spectral range (450 nm
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- 2400 nm) was used as a light source. We either reduced the spectral emission to 450

nm - 950 nm by using a spectral splitter (Fianium) or to 700 nm - 1200 nm by using a

combination of long- and shortpass filters. The light was guided through a linear polarizer

and a beam splitter (Thorlabs, BSW26R) into an inverted microscope (Olympus, IX71). We

used a Leica HCX PL Fluotar 100× objective with a numerical aperture (NA) of 0.9 to focus

the light onto the sample with a laser power below 100 µW. We confirmed experimentally

that the large numerical aperture of the microscope objective has no effect on the measured

spectra (see Fig. S7). The gold nanoparticle film was deposited on a TEM grid with a 10

nm amorphous carbon film as support. This amorphous carbon layer does not affect the

excitation of the dark interlayer plasmon (Fig. S8). The sample was mounted to a motorized

xy-translation stage. The position of the laser spot on the sample was visible through a

microscope camera. The transmitted light was collected with an Olympus Mplan FL N BD

100× objective with an NA of 0.9 and guided by a fiber (Ocean Optics, QP600-2-UV-BX for

450 nm - 950 nm and BIF600-VIS-NIR for 700 nm - 1200 nm) to a spectrometer (Avantes,

Avaspec 3648). The reflected light was separated from the incoming light with a second beam

splitter (Thorlabs, BSW26R) and detected by a spectrometer (same fibers and spectrometer

as for the transmitted light).

Transmission-electron microscopy (TEM)

TEM measurements were performed using a Jeol JEM-1011 instrument operating at 100

kV. Samples of self-assembled AuNP@PSSH5k films were carefully skimmed off with carbon

coated copper grids held by a tweezer. To increase the probability of bilayer-formation the

procedure was repeated with some grids. The grids were then dried on filter paper for at

least 24 h. To identify the regions of interest on the grids, optical microscopy images were

compared with the same grids under low magnification in the TEM. In this way it was pos-

sible to identify the exact mesh and region on the grids where the absorption measurements

had been performed.
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