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Chapter 1: Introduction 

At weaning, piglets have to cope with several stressors: the animals are weaned from the milk 

of the sow onto dry feeding and undergo social and environmental changes, all of which result 

in deficient feed consumption (Pluske et al. 1997). In addition, the immaturity of the immune 

system of young pigs contributes to an increased susceptibility to intestinal disorders (Lalles 

et al. 2004). Weaning-associated alterations in gastrointestinal morphology, such as a 

restricted villus function, are accompanied by maldigestion and malabsorption, which entails, 

among others, the proliferation of and colonization with enteropathogenic Escherichia coli (E. 

coli) (van Beers-Schreurs et al. 1992). Together with the aforementioned contributing factors, 

these enteric infections result in post-weaning diarrhea followed by impaired growth rates or 

mortalities (Fairbrother et al. 2005; Heo et al. 2013).  

Over the past few decades, the incidence of antimicrobial resistance, particularly in E. 

coli isolates related to post-weaning diarrhea, has increased, a finding that emphasizes the 

urgent need for alternative strategies to the use of antibiotics (Fairbrother et al. 2005). 

Furthermore, this poses a considerable danger for human health because of the potential 

transfer of resistant bacteria and their resistance genes (Witte 2000; Wegener 2003). This 

development led to a ban of the usage of in-feed antibiotics as antibiotic growth promoters in 

the European Union in 2006. In piglet nutrition, probiotic supplementation represents a 

promising strategic alternative to antibiotic growth promoters; however, evidence regarding its 

efficacy is often inconsistent, and underlying mechanisms are not well understood (Jensen 

1998; Heo et al. 2013; Pluske 2013). The probiotic Enterococcus faecium (E. faecium) strain 

NCIMB 10415 is authorized as a feed additive for piglet and sow nutrition in the European 

Union. Amongst other beneficial effects, feeding trials with E. faecium NCIMB 10415 have 

demonstrated its ability to reduce the incidence and duration of post-weaning diarrhea (Taras 

et al. 2006), to affect piglet’s performance positively (Zeyner and Boldt 2006), and to inhibit 

intestinal colonization with pathogenic E. coli (Scharek et al. 2005).  

Being an essential part of the innate system, immune receptors, such as NOD 

(nucleotide-binding and oligomerization domain)-like receptors (NLR) sense invading gut 

bacteria as a first-line defense mechanism. Some members of this receptor family are able to 

form multimeric complexes, called inflammasomes (Tschopp et al. 2003). In the intestinal tract, 

inflammasome-forming NLR participate in the crosstalk between intestinal epithelial cells (IEC) 

and underlying cells, including immune cells (Parlato and Yeretssian 2014). Within the latter 

cell population, dendritic cells (DC) contribute substantially to the orchestration of downstream 

immune responses (Kelsall and Leon 2005). Apart from the critical role of inflammasomes in 

host defense against enteropathogens (Chen and Nunez 2011), the inflammasome signaling 

pathway has been shown to be involved in the pathogenesis of intestinal diseases, such as 

inflammatory bowel disease (Zaki et al. 2011). Therefore, a better understanding of 

inflammasome signaling might be helpful for unraveling the coordination of immunological 

processes by intestinal immune and non-immune cells and for finding new therapeutic 

approaches for the treatment of intestinal disorders. In contrast to mice and man, 
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inflammasome research in pigs is still in its infancy. Inflammasome signaling in the context of 

post-weaning diarrhea and its contribution to probiotic effects of E. faecium NCIMB 10415 has 

not yet been investigated.  

The focus of the work presented in the current thesis was the inflammasome response 

to an enterotoxigenic E. coli (ETEC) strain with relevance for post-weaning diarrhea and to 

probiotic E. faecium NCIMB 10415. To this end, inflammasome expression was analyzed in 

porcine DC and IEC in vitro and in various porcine intestinal tissues ex vivo. A further aim was 

the establishment of an in vitro intestinal co-culture model to investigate the influence of the 

bidirectional interplay between IEC and DC on the outcome of these inflammasome analyses. 
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Chapter 2: Literature review 

2.1 The porcine intestinal immune system 

Of all mucosa-associated lymphoid tissues, the largest mucosal immune system is found in 

the gastrointestinal tract (Holmgren et al. 1992). The gut-associated lymphoid tissue (GALT) 

comprises variously arranged structures: (i) Peyer’s patches and discrete lymphoid follicles, 

(ii) diffusely distributed immune cells in the lamina propria, and (iii) intraepithelial lymphocytes 

of the villous epithelium (Nagura and Sumi 1988). Similar to those of other species of veterinary 

interest, porcine Peyer’s patches are organized as, first, numerous isolated Peyer’s patches in 

the jejunum and, second, a long continuous Peyer’s patch in the ileum; these patches differ in 

their structural und functional characteristics (Chu and Liu 1984; Binns and Licence 1985). 

Directly after birth, the intestinal mucosa of piglets is equipped with only a small number of 

immune cells, but during the following weeks, piglets acquire immune competence by 

developing specific B and T cell populations and other antigen-presenting cells (Rothkotter et 

al. 1991; Bianchi et al. 1992; Vega-Lopez et al. 1995). Since pigs have an epitheliochorial type 

of placenta, it is impermeable to macromolecules, such as antibodies and antigens, a feature 

that in turn contributes to the immunological naivety of newborn pigs (Bailey and Haverson 

2006). Moreover, in the early postnatal period, the microbiota colonizing the gut has a 

significant impact on the maturation of the intestinal immune system (Butler et al. 2000; Bailey 

et al. 2005). As for other immune organs, innate and adaptive defense mechanisms have to 

be distinguished within the gut. In the following sections, the former mechanisms will be 

addressed in more detail.  

Microorganisms invading the gut lumen carry specific conserved microbial structures 

(Janeway 1992) that are known as pathogen-associated molecular patterns (PAMP) and that 

are detected through germline-encoded pattern recognition receptors (PRR) (Medzhitov and 

Janeway 1997). In addition to PAMP, PRR also sense damage (or danger)-associated 

molecular patterns (DAMP) originating from the host (Matzinger 1994). To widen the model 

that was introduced by Charles Janeway and that allows the differentiation between “infectious 

non-self” and “non-infectious self”, Matzinger’s model proposes the consideration of signals 

derived from injured cells and tissues of the body. Furthermore, the latter model provides an 

explanation for the identification of indigenous commensals or other non-pathogenic 

microorganisms as such. In general, PRR can be classified into four main groups that differ in 

their cellular localization: (i) Toll-like receptors (TLR) (location: extracellular), (ii) C-type lectin 

receptors (extracellular), (iii) retinoic acid-inducible gene-I-like receptors (intracellular), and (iv) 

NLR (intracellular) (Takeuchi and Akira 2010). In addition to the individual receptor families, a 

complex interplay occurs, especially between TLR and NLR, with respect to, for example, 

redundant signaling pathways (Becker and O'Neill 2007). Within the intestinal immune system, 

PRR-expressing cells are not only immune cells, but also non-immune cells of the gut 

epithelium (Wells et al. 2010). Studies of the mucosal immunology of pigs have revealed high 

expression levels of porcine TLR2 and TLR9 in mesenteric lymph nodes and ileal Peyer’s 
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patches, which have been verified in newborn piglets, suggesting a role in defense 

mechanisms against bacteria in early life (Tohno et al. 2005; Tohno et al. 2006). Moreover, the 

greatest expression of NOD2 mRNA in neonatal animals has been found in mesenteric lymph 

nodes and spleen, whereas in adult pigs, the highest NOD2 levels have been detected in ileal 

Peyer’s patches (Tohno et al. 2008).  

The structure of the aforementioned NLR includes a NACHT (or NOD) domain in the 

center that is surrounded by C-terminal leucine-rich repeats (LRR) and N-terminal caspase-

recruitment (CARD) or pyrin (PYD) domains (Tschopp et al. 2003). This receptor family can 

be further divided into four subfamilies based on the phylogenetic studies of their NACHT 

domains and on functional aspects: the CIITA (major histocompatibility complex [MHC] class 

II transactivator), NOD, NLRP (NACHT, LRR and PYD domains-containing) (also abbreviated 

as NALP), and IPAF (ICE [interleukin-1β-converting enzyme]-protease activating factor) 

subfamilies (Tschopp et al. 2003).  

2.1.1 Inflammasomes 

Upon their activation, some members of the NLR family form intracellular multiprotein 

complexes with ASC (apoptosis-associated speck-like protein containing a CARD) adapter 

proteins and caspases (previously referred to as ICE), which together are then called 

inflammasomes (Martinon et al. 2002). The term inflammasome is a compound of the word 

“inflammation” describing its function and the suffix “some” that is used to name molecular 

complexes, e.g., proteasome or ribosome (Martinon et al. 2009). Various cell types have been 

ascertained to express inflammasomes, mainly myeloid cells, such as DC (Kummer et al. 2007; 

Guarda et al. 2011). In addition to immune cells, epithelial cells (Abdul-Sater et al. 2009; 

Shigeoka et al. 2010; Zaki et al. 2010), keratinocytes (Feldmeyer et al. 2007), and adipocytes 

(Stienstra et al. 2010) are equipped with functional inflammasomes. The first-discovered 

inflammasome was the NLRP1 inflammasome (Martinon et al. 2002). The most extensively 

studied of all inflammasomes in mice and humans is the NLRP3 inflammasome, also known 

as cryopyrin or NALP3 (Schroder and Tschopp 2010; Lissner and Siegmund 2011; Yeretssian 

2012), which is the subject of the following chapter. The NLRP6 inflammasome is of particular 

relevance in the intestinal tract, because here NLRP6 inflammasome signaling supports 

intestinal homeostasis and is modulated by the microbial composition (Chen et al. 2011; Elinav 

et al. 2011; Levy et al. 2015). Other examples of well-defined inflammasomes are the AIM2 

(absent in melanoma 2) inflammasome sensing cytosolic DNA (Muruve et al. 2008; 

Fernandes-Alnemri et al. 2009; Hornung et al. 2009) and the NLRC4 inflammasome 

responsive to bacterial flagellin and type 3 secretion systems (Mariathasan et al. 2004; Franchi 

et al. 2006; Miao et al. 2010; Zhao et al. 2011). 

The NLR signal is executed via caspases. Since caspases are a group of cysteine 

proteases that are initially generated in the form of inactive zymogens, they need to undergo 

proteolytic cleavage to be activated (Cohen 1997). Once activated, caspase-1 forms a tetramer 

comprising two heterodimers of the subunits p20 and p10 (Wilson et al. 1994). During 

inflammasome activation, enzymatically active caspases, primarily caspase-1, cause the 
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processing and subsequent secretion of the pro-inflammatory cytokines interleukin (IL)-1β and 

IL-18 and are therefore called inflammatory caspases (Nadiri et al. 2006). As shown in Figure 

(Fig.) 1, apart from this cytokine maturation, active caspase-1 can, at least under certain 

circumstances, lead to cell death. This caspase-1-induced inflammatory cell death, designated 

as pyroptosis or pyronecrosis, constitutes a level-dependent event (Saleh and Green 2007). 

The ASC adapter linking the NLR protein to caspase-1 is a fundamental component of the 

inflammasome, because it is necessary for caspase-1 activation, as first shown in mice 

(Mariathasan et al. 2004). As mentioned above, the primary outcome of inflammasome 

activation is the release of bioactive IL-1β and IL-18 after their maturation from precursor 

molecules (Mariathasan et al. 2006; Sutterwala et al. 2006). In particular, IL-1β acts as a key 

player in inflammation processes being an endogenous pyrogen produced at sites of infection 

and injury (Dinarello 1998). On the other hand, IL-18 is known to function as an interferon-γ 

inducer and to control T helper cell type 1 and T helper cell type 2 responses (Nakanishi et al. 

2001). 

 

 
 

Figure 1: Schematic illustration of inflammasome activation (Davis et al. 2011) 

During activation, a three-part complex consisting of the NLR, ASC, and caspase-1 is assembled. This 

multimerization in turn leads to the enzymatic conversion of pro-IL-1β and pro-IL-18 into their mature 

forms through caspase-1; they are then released. Furthermore, inflammasome activation can also 

trigger an inflammatory form of cell death, called pyroptosis or pyronecrosis. A distinction of 

inflammasome activators is drawn based on their diverse nature. One distinguishes between self- and 

environment-derived factors, summarized as sterile activators, and pathogen-derived signals originating 

from bacteria, viruses, fungi, and protozoa (Davis et al. 2011).  
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In the past few years, apart from this caspase-1-dependent canonical inflammasome 

activation, a caspase-1-independent non-canonical inflammasome activation pathway has 

been shown to be present in mice (Kayagaki et al. 2011) and humans (Casson et al. 2015; 

Vigano et al. 2015). In particular, murine caspase-11 (Kayagaki et al. 2011) and human 

caspase-4 and -5 (Casson et al. 2015; Vigano et al. 2015) mediate non-canonical 

inflammasome signaling. However, the underlying mechanisms of non-canonical 

inflammasome activation in the sense of an upstream (Broz et al. 2012; Ruhl and Broz 2015) 

or downstream mode of activation for corresponding caspases (Kayagaki et al. 2011; 

Rathinam et al. 2012) are not yet clarified. In the aforementioned studies, non-canonical 

inflammasome activation has been verified upon stimulation with Gram-negative bacteria, e.g., 

Vibrio cholerae, Citrobacter rodentium, E. coli, and Salmonella Typhimurium (Kayagaki et al. 

2011; Casson et al. 2015). In bovine cells, caspase-13 is considered as the counterpart of 

human caspase-4 (Koenig et al. 2001). To date, the non-canonical inflammasome has not 

been described in pigs. In the current thesis, caspase-13 is proposed as a promising candidate 

targeting non-canonical inflammasome activation in pigs.  

Within the classical concept of canonical inflammasome signaling, a wide variety of 

possible inflammasome activators has been determined and can be divided in two categories: 

sterile and pathogenic activators (Davis et al. 2011). In the first category, self- and 

environment-derived signals can be further discriminated (see Fig. 1). Extracellular adenosine 

triphosphate (ATP) is a well-known stimulus that drives inflammasome activation (Mariathasan 

et al. 2006; Martinon et al. 2006; Sutterwala et al. 2006; Duncan et al. 2007; Franchi et al. 

2009) via the purinergic P2X7 receptor evoking a potassium efflux (Perregaux and Gabel 

1994). Among other extrinsic activators, silica crystals (Cassel et al. 2008; Dostert et al. 2008; 

Hornung et al. 2008) and aluminum salts (Eisenbarth et al. 2008; Franchi and Nunez 2008; 

Kool et al. 2008; Li et al. 2008) represent environmental signals that are capable of inducing 

inflammasome activation. Since inflammasomes are found intracellularly, pathogens (and 

other activators) have to gain access to the cytosol before an inflammasome response is 

initiated. For example, Staphylococcus aureus (Mariathasan et al. 2006; Craven et al. 2009; 

Munoz-Planillo et al. 2009), Listeria monocytogenes (Mariathasan et al. 2006; Ozoren et al. 

2006; Warren et al. 2008), and E. coli (Brereton et al. 2011; Sander et al. 2011; Zhang et al. 

2012) have been demonstrated to affect inflammasome signaling. One of the first 

enteropathogenic bacteria for which inflammasome activation was documented in murine 

macrophages was Salmonella Typhimurium (Mariathasan et al. 2004; Franchi et al. 2006). In 

swine, Salmonella Typhimurium is a serotype of Salmonella enterica having a high prevalence 

in Europe and representing a substantial risk not only for pigs, but also for humans because 

of its zoonotic potential (Tran et al. 2018). To date, several bacterial exotoxins have been 

reported to possess the ability to mediate inflammasome assembly and activation by various 

mechanisms including pore-forming and enzymatic activity (Freche et al. 2007; Greaney et al. 

2015). The cell wall component muramyl dipeptide, a naturally occurring degradation product 

of bacterial peptidoglycan, has also been identified as a potent activator of the inflammasome 

(Martinon et al. 2004; Pan et al. 2007; Marina-Garcia et al. 2008). In addition, inflammasomes 
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have previously been shown to be responsive to bacterial and viral RNA or DNA (Kanneganti 

et al. 2006a; Kanneganti et al. 2006b; Muruve et al. 2008; Hornung et al. 2009). Moreover, 

inflammasomes have also been implicated in the immune response to protozoa and fungi, e.g., 

Candida albicans (Hise et al. 2009; Joly et al. 2009; Tomalka et al. 2011) and Aspergillus 

fumigatus (Said-Sadier et al. 2010).  

In the following, the mechanisms governing inflammasome activation will be described 

for the NLRP3 inflammasome that was of special interest for the present work. 

2.1.1.1 The NLRP3 inflammasome 

Recent research has revealed that malfunctioning NLRP3 inflammasome signaling is linked 

with an increased susceptibility to inflammatory bowel diseases, such as Crohn’s disease (Zaki 

et al. 2011; Liu et al. 2017). Further, evidence suggests the involvement of inflammasomes in 

auto-inflammatory disorders, e.g., Muckle-Wells syndrome, whose cause is a mutation within 

the NLRP3 gene (Hoffman et al. 2001). In these patients, the NLRP3 inflammasome 

assembles spontaneously resulting in an unrestricted overproduction of IL-1β (Agostini et al. 

2004). 

The activation process of the NLRP3 inflammasome is commonly regarded as a two-

step procedure containing a preceding priming step followed by a final activation step 

(Sutterwala et al. 2014). The priming signal, which can be displayed by several agents, e.g., 

lipopolysaccharide (LPS) or tumor necrosis factor α (Franchi et al. 2009), activates the nuclear 

factor NF-κB pathway (Bauernfeind et al. 2009). In response to this ubiquitous transcription 

factor, a strengthened synthesis of particular inflammasome components is provoked. 

Whereas the adapter ASC and pro-caspase-1 are considered to be constitutively expressed 

(Mariathasan and Monack 2007; Schroder et al. 2012), a transcriptional upregulation of pro-

IL-1β, pro-IL-18 (Davis et al. 2011; Lissner and Siegmund 2011), and also of NLRP3 itself 

(Bauernfeind et al. 2009) is initially required. Under steady-state conditions, the last-mentioned 

is produced in insufficient quantities for inflammasome activation (Bauernfeind et al. 2009).  

Subsequent to the priming, a second stimulus induces the assembly of inflammasome 

components, which finally provokes the autocatalytic cleavage of caspase-1. As previously 

illustrated, these signals can be of exogenous and endogenous origins. Notably, this multitude 

of unrelated activators appears to bind not directly to NLRP3, but rather to elicit a series of 

cellular alterations (see Fig. 2). For example, NLRP3 activation is linked with various ion fluxes, 

e.g., potassium efflux (Franchi et al. 2007; Petrilli et al. 2007) or calcium influx occurring either 

from the extracellular space or the endoplasmic reticulum into the cytoplasm (Lee et al. 2012; 

Murakami et al. 2012; Rossol et al. 2012). According to Sutterwala et al. (2014), uncertainty 

remains as to whether these cation currents are mandatory for the activation of the NLRP3 

inflammasome. Other recognized mechanisms of inflammasome activation are the generation 

of reactive oxygen species (ROS) by virtually all PAMP and DAMP (Cassel et al. 2008; Dostert 

et al. 2008) and lysosomal damage attributable to the phagocytosis of crystalline and other 

particles leading to leakage of lysosomal content associated with the release of cathepsin B 

(Halle et al. 2008; Hornung et al. 2008). Moreover, the aforementioned P2X7-dependent 
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potassium channel formation induced by ATP also leads to the insertion of pannexin-1 pores 

into the membrane enabling PAMP and DAMP to enter the cell (Pelegrin and Surprenant 2006; 

Kanneganti et al. 2007; Pelegrin and Surprenant 2007). 

 

 

Figure 2: NLRP3 inflammasome activation and its underlying mechanisms (Schroder and 

Tschopp 2010). 

(1) ATP- and P2X7-induced pannexin-1 channeling, which promotes the entry of PAMP and DAMP 

acting as NLRP3-activating agonists. (2) After phagocytosis of crystalline and particulate compounds, 

lysosomal vesicles are ruptured resulting in the leakage out of, for example, cathepsin B. (3) The 

production of ROS also mediates NLRP3 inflammasome activation. Each of these proposed 

mechanisms finally entails the complex formation of the NLRP3 inflammasome. Following its 

autoactivation, caspase-1 processes the pro-inflammatory cytokines IL-1β and IL-18, which are 

subsequently liberated from the cell (Schroder and Tschopp 2010).  
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Apart from this conventional two-step model, inflammasome activation can also occur 

when both signals appear at the same time (Juliana et al. 2012; Fernandes-Alnemri et al. 2013; 

Lin et al. 2014a). Indeed, this fast type of inflammasome activation is organized by a post-

translational (therefore transcription-independent) mechanism and involves, for example, IL-1 

receptor-associated kinases (Fernandes-Alnemri et al. 2013; Lin et al. 2014a) or the myeloid 

differentiation primary response 88 pathway (Juliana et al. 2012). In this connection, recent 

research has revealed the deubiquitination of NLRP3 as an additional route relevant for the 

regulation of inflammasome activation (Juliana et al. 2012; Lopez-Castejon et al. 2013; Py et 

al. 2013). Furthermore, other studies have provided evidence for valid inflammasome 

activation attributable to bacterial infection without preceding priming (Wu et al. 2010; 

Bouwman et al. 2014). However, LPS priming increases the extent of the inflammatory reaction 

(Wu et al. 2010; Schroder et al. 2012). Despite such novel insights, many questions remain 

regarding the actual trigger mechanism of the cytosolic inflammasome sensor (Broz and Dixit 

2016; Mathur et al. 2018; Schroder et al. 2018).  

Although the majority of the knowledge about inflammasomes and related activation 

mechanisms has been obtained by using human or murine models, research into porcine 

inflammasomes is in its infancy (Kim et al. 2014). In general, porcine NLRP3 inflammasome 

activation has been demonstrated to follow similar patterns as those shown for the NLRP3 

inflammasome in humans or mice (Kim et al. 2014). Several research groups have investigated 

the way in which the inflammasome signaling pathway in pigs is affected by viruses, such as 

porcine reproductive and respiratory syndrome virus (PRRSV) (Zhang et al. 2013; Bi et al. 

2014; Koltes et al. 2015; Wang et al. 2015) and classical swine fever virus (Lin et al. 2014b; 

Fan et al. 2018a), which represent meaningful pathogenic agents in the pig industry. However, 

a detailed understanding of inflammasome signaling pathways in pigs is lacking. This seems 

incomprehensible, since the pig has been evaluated as an appropriate animal model for human 

research in various aspects including anatomical, genetic, and physiological features (Meurens 

et al. 2012; Swindle et al. 2012). Dawson et al. (2017) has recently reported greater similarities 

between the human and porcine immune-related genomes than those between the human and 

murine genetic constitutions; they have therefore declared the pig a suitable model for 

immunological investigations. In agreement with this observation, Tohno et al. (2011) have 

found a closer relationship of the porcine NLRP3 protein with the human counterpart than with 

murine NLRP3. In addition, murine and human inflammasomes each possess a different 

receptor and caspase composition and a unique manner of regulation (Schroder et al. 2018). 

Hence, corresponding verifications for porcine inflammasomes are required.  

2.1.2 The intestinal barrier and the role of resident dendritic cells 

The intestinal epithelium acts as a cross-linking agent between the GALT and the luminal 

content comprising a plethora of dietary and microbial antigens (Turner 2009). Although 

various sections of the intestine possess functional peculiarities, they have in common a 

polarized epithelial monolayer, a sealed barrier formed by tight junction proteins, a mucus layer 

covering the gut epithelium, and an interplay with resident immune cells (Rescigno 2011). In 
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addition to enterocytes, the epithelial barrier also includes mucin-producing goblet cells, 

Paneth cells generating anti-microbial peptides, and enterochromaffin cells constituting the 

major neuroendocrine cell population in the gut (Daneman and Rescigno 2009).  

Intestinal DC modulate the intestinal equilibrium state and control the mucosal defense 

and, therefore, provide a sentinel function (Johansson and Kelsall 2005; Kelsall and Leon 

2005; Bekiaris et al. 2014). In contrast to intraepithelial lymphocytes, resident DC are able to 

enter the gut lumen (Rescigno 2011). Mucosal DC cells sample antigens and bacteria that 

appear in the intestine by projecting their dendrites between IEC into the lumen (Niess et al. 

2005; Chieppa et al. 2006). Since DC open enterocytic tight junctions and express tight junction 

proteins themselves, this is achieved with no disturbance of the barrier integrity (Rescigno et 

al. 2001). Another mechanism of antigen uptake involves M cells (microfold cells), which are 

located in the follicle-associated epithelium of Peyer’s patches and which allocate antigens for 

underlying immune cells, including DC, via transcytosis across the intestinal epithelial layer 

(Bockman and Cooper 1973; Owen and Jones 1974; Wolf and Bye 1984). Subsequently, 

antigen-presenting DC undergo a maturation process and migrate to draining lymphoid 

tissues, where they initiate B and T cell responses (Banchereau and Steinman 1998). 

Recruitment sites of such migratory DC are the lamina propria, Peyer’s patches, and solitary 

intestinal lymphoid tissues (Worbs et al. 2017). In a study on the phenotype and distribution of 

mucosal DC in the porcine small intestine, DC have been detected in the subepithelial dome 

region of Peyer’s patches directly adjacent to M cells and a rare subset of lamina propria DC 

located within villi (Bimczok et al. 2006).  

Migration of DC occurs constantly, even under steady-state conditions (Pugh et al. 

1983; Liu and MacPherson 1993; Worbs et al. 2006; Wilson et al. 2008), whereas in 

inflammatory states, DC migration rates increase markedly (MacPherson et al. 1995; Yrlid et 

al. 2006; Vigl et al. 2011). In addition to foreign antigens, some DC are specialized in the 

transportation of apoptotic IEC to mesenteric lymph nodes, a specialization that probably 

preserves self-tolerance (Huang et al. 2000). Numerous studies have assigned the chemokine 

receptor CCR7 a key role in navigating DC to lymph nodes under both non-inflammatory and 

inflammatory conditions (MartIn-Fontecha et al. 2003; Ohl et al. 2004; Jang et al. 2006; Seth 

et al. 2011). In the course of maturation, CCR7 expression on DC is upregulated (Dieu et al. 

1998; Sallusto et al. 1998) and is linked with an augmented responsiveness towards the two 

chemoattracting CCR7 ligands CCL19 and CCL21 (Yoshida et al. 1997; Campbell et al. 1998; 

Yoshida et al. 1998). CCL21 is expressed by stromal cells in T cell areas of lymphatic tissues 

and by endothelial cells of peripheral lymph vessels (Gunn et al. 1998; Willimann et al. 1998). 

By contrast, CCL19 can be produced by activated DC themselves (Ngo et al. 1998). The 

presence of CCL21 and CCL19 has also been documented in porcine intestinal mucosa 

(Bourges et al. 2007).  

To shape their response patterns, IEC “condition” local DC via the liberation of soluble 

mediators (Iliev et al. 2007). Such epithelial-derived factors include the cytokine thymic stromal 

lymphopoietin (TSLP), which has been shown to direct affected human DC towards a non-

inflammatory phenotype in vitro (Rimoldi et al. 2005b; Iliev et al. 2009b). In vivo investigations 
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have confirmed the relevance of TSLP for promoting tolerance in murine DC (Zaph et al. 2007). 

Similarly, transforming growth factor (TGF)-β has been identified as an IEC-delivered 

modulating agent that induces tolerogenic DC under steady-state conditions in mice (Iliev et 

al. 2009a). Zeuthen et al. (2008) have demonstrated that human IEC release more TSLP and 

TGF-β upon stimulation with commensal bacteria indicating the involvement of the gut 

microbiota in such complex interactions. In addition to TSLP and TGF-β, IEC-derived retinoic 

acid, a vitamin A metabolite, likewise contributes to the conversion of human (Iliev et al. 2009b) 

and murine (Iliev et al. 2009a) intestinal DC into a tolerogenic phenotype. Vitamin A is crucial 

for proper DC functions, e.g., the enhancement of intestinal homing receptors on lymphocytes 

and antibody class switching to immunoglobulin (Ig) A (Coombes and Powrie 2008). 

Furthermore, prostaglandins, such as PGE2, which are inter alia produced by IEC, exert 

diverse impacts on mucosal dendritic and other immune cells (Iliev et al. 2007). Contractor et 

al. (2007) have highlighted the importance of soluble factors in the intestinal milieu and 

determined PGE2, TGF-β, and IL-10 as being regulators controlling interferon production by 

plasmacytoid DC of murine Peyer’s patches.  

In summary, IEC and intestinal DC represent two essential cell populations in the gut 

collaborating to provide an intact intestinal barrier. On the one hand, tolerance towards 

commensal microbiota has to be ensured, whereas on the other hand, invading pathogens 

must be combated through adequate immune responses. Although the crosstalk between IEC 

and underlying immune cells has almost exclusively been studied in human and murine cells, 

mechanisms supporting IEC/DC interactions in pigs are largely unknown.  

2.2 Post-weaning diarrhea and the use of probiotics  

In the pig industry, piglets are usually weaned at 3 to 5 weeks (Lalles et al. 2007b), whereas 

under natural conditions, the weaning process is prolonged until the age of 14 to 17 weeks 

(Jensen 1986). Thus, the time around weaning is a stressful period associated with a high risk 

of infectious diseases, primarily diarrhea (Pluske et al. 1997). Factors, such as the change of 

diet, the separation from the mother sow and litter mates, and the movement into new 

surroundings, cause a reduction of feed intake resulting in an impaired growth rate (Pluske et 

al. 1997). This phase of underfeeding is variable in its duration and has an impact on the 

animal’s metabolism, mainly its fat metabolism, and endocrine adaptations (Le Dividich and 

Seve 2000). In addition, the gut physiology undergoes a variety of morphological changes in 

the course of weaning, including villus atrophy and a reduced activity of brush border 

membrane enzymes (Smith 1984; Hampson 1986; Hampson and Kidder 1986). Moreover, the 

intestinal microbiota is subject to a maturation process, which implies alterations in its 

composition and diversity shaped by diet and other environmental influences (Wilbur et al. 

1960; Jensen 1998; Konstantinov et al. 2004; Inoue et al. 2005). At weaning, the lack of IgA-

containing milk from the sow and the exposure to new feed antigens constitute challenges for 

the development of the mature mucosal immune system (Bailey et al. 2005). Transient allergic 

reactions to dietary proteins (Miller et al. 1984; Wilson et al. 1989; Li et al. 1990; Bailey et al. 
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2001) and temporary increases of pro-inflammatory cytokine responses in the intestinal tract 

(Pie et al. 2004; Stokes et al. 2004) have been described.  

As a consequence of these transitions, weaning piglets show a high susceptibility to 

enteric disorders (Lalles et al. 2007a; Campbell et al. 2013). Above all, dysbiosis of the 

intestinal microbiota is a pivotal factor for the pathogenesis of post-weaning diarrhea (Lalles et 

al. 2007a; Gresse et al. 2017). In particular, weaning is followed by a decrease of lactobacilli 

and the occurrence of a less diverse and rather instable microbiota, favoring the expansion of 

potential pathogenic bacteria (Konstantinov et al. 2006; Gresse et al. 2017). Within the 

multifactorial etiology of this disease, a rapid proliferation of ETEC strains is the most common 

agent causing post-weaning diarrhea (Nagy and Fekete 1999; Madec et al. 2000; Fairbrother 

et al. 2005). The major virulence factors of such strains comprise various fimbrial antigens, 

especially F18 and F4 (K88), responsible for adhesion to the intestinal mucosa, and heat-labile 

and heat-stable enterotoxins that induce fluid and electrolyte secretion into the gut lumen 

(Fairbrother et al. 2005; Dubreuil et al. 2016; Luppi et al. 2016). From an economic perspective, 

post-weaning diarrhea represents a considerable problem in the pig industry worldwide 

(Fairbrother et al. 2005).  

Since 2006, antibiotic growth promoters have been banned within the European Union 

(EC Regulation No. 1831/2003) leading to the search for alternative approaches, such as the 

use of probiotics as feed additives (Allen et al. 2013; Ducatelle et al. 2015). In livestock farming, 

the most frequently used probiotic genera are Lactobacillus, Enterococcus, Bacillus, 

Saccharomyces, and Bifidobacterium (Gaggia et al. 2010). In pigs, the efficacy of probiotic 

dietary supplements is commonly assessed by means of the following criteria: weight increase, 

feed conversion ratio, and occurrence of diarrhea in suckling and weaning piglets (Simon et 

al. 2001). To date, studies on the beneficial effects of porcine probiotics have provided to some 

extent variable, but nevertheless promising results (Metzler et al. 2005; Roselli et al. 2005; Heo 

et al. 2013; Ducatelle et al. 2015).  

In a feeding trial in weaning piglets, Bacillus toyoi and Bacillus licheniformis strains 

have been shown to be suitable for the treatment of post-weaning diarrhea, improving each of 

the abovementioned efficacy parameters (Kyriakis et al. 1999). Alexopoulos et al. (2001) have 

observed that supplementation with Bacillus cereus spores in pregnant and lactating sows and 

their litters beneficially affects the health status of the piglets. Suckling and weaning piglets fed 

with various strains of Bifidobacterium spp. and Lactobacillus spp. have revealed an enhanced 

daily weight gain (Abe et al. 1995). Administration of a Bifidobacterium lactis strain ameliorates 

E. coli- and rotavirus-induced diarrhea in piglets, augments the feed utilization, and promotes 

protective immune reactions (Shu et al. 2001). Probiotic treatment with Lactobacillus sobrius 

DSM 16698 leads to decreased ETEC concentrations in the ileum and also to higher increases 

in the weight of challenged piglets (Konstantinov et al. 2008). Similarly, positive effects on the 

growth performance of weaning piglets have been demonstrated for the probiotic yeast 

Saccharomyces boulardii (Bontempo et al. 2006). 
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2.2.1 Probiotics 

The concept of probiotics has its origin in the early 20th century, when Metchnikoff (1907) 

observed health benefits provided by the consumption of lactobacilli-containing dairy products. 

The term probiotics was first mentioned in 1965 by Lilly and Stillwell, who determined that 

certain microorganisms are able to produce substances that encourage the growth of other 

species. The Latin (“pro”) and Greek (“bios”) sources of the word probiotic mean “for life” 

(Hamilton-Miller et al. 2003). According to guidelines of the Food and Agriculture Organization 

of the United Nations (FAO) and the World Health Organization (WHO), probiotics are now 

defined as “live microorganisms, which when administered in adequate amounts confer a 

health benefit on the host” (FAO/WHO 2001).  

According to Oelschlaeger (2010), probiotic mode of actions can be categorized into 

the following three classes: 

(i) Probiotics can modulate innate and adaptive immune responses of the host. 

(ii) Probiotics can exert a direct influence on other commensal or pathogenic 

microorganisms. 

(iii) Probiotics can interact with substances produced by microorganisms, e.g., 

toxins, or by the host, e.g., bile salts, and with nutritional components.  

Probiotic-triggered immune regulation affects epithelial cells, DC, monocytes or macrophages, 

and lymphocytes (Ng et al. 2009). On the one hand, with regard to cellular defense 

mechanisms, immunomodulation has been shown to occur, e.g., via enhanced phagocytic 

activity (Perdigon et al. 1986; Perdigon et al. 1988; Schiffrin et al. 1995). On the other hand, 

humoral immune mechanisms include the induction of IgA responses (Kaila et al. 1992; Isolauri 

et al. 1993; Majamaa et al. 1995). More recently, the involvement of NLR, e.g., NOD2, has 

been detected in immune modulation processes induced by probiotic bacteria (Macho 

Fernandez et al. 2011; Rice et al. 2016). 

The fundamental concept for the use of probiotics includes their ability to modify the 

intestinal microbiota favorably, although a changed composition of the gut microbiota is not a 

prerequisite for certain health benefits, such as the modulation of the immune responses 

(Ouwehand et al. 2002). The principle of competitive exclusion was introduced by Greenberg 

(1969), who observed an inhibition of Salmonella Typhimurium growth by gut microbiota in the 

maggots of blowflies. Probiotic bacteria not only compete for common mucosal binding sites 

and nutrients, but also impede the adhesion of enteropathogens by, e.g., biofilm formation or 

the destruction of certain receptors (Oelschlaeger 2010). Another probiotic mode of action 

against pathogenic bacteria is the production of antimicrobial substances, such as lactic acid 

and bacteriocins (Ohland and Macnaughton 2010; Bermudez-Brito et al. 2012). Moreover, 

several authors have shown that probiotic bacteria strengthen epithelial barrier functions via 

modulation of localization or expression of tight junction proteins (Resta-Lenert and Barrett 

2003; Ukena et al. 2007; Zyrek et al. 2007; Ewaschuk et al. 2008; Johnson-Henry et al. 2008). 

Among others, important selection criteria for probiotic strains are (i) their isolation from 

the same species as the host, (ii) a proven efficacy, (iii) non-pathogenic and non-toxic 
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characteristics, (iv) the ability to survive within the intestinal passage, and (v) stable 

formulations with a high cell viability (Collado et al. 2009).  

Finally, account has to be taken that probiotic effects are dose-dependent and strain-

specific (Sanders 2008; Cho et al. 2011). 

2.2.1.1 The probiotic strain Enterococcus faecium NCIMB 10415 

The commensal bacterium E. faecium has a high prevalence in the porcine gut (Devriese et 

al. 1994). Initially, its probiotic effects on the rates and severity of diarrhea in pigs was 

described under its former name Streptococcus faecium (Underdahl et al. 1982; Underdahl 

1983; Ushe and Nagy 1985). The probiotic strain E. faecium NCIMB 10415, also referred to 

as E. faecium SF68, is an EU-authorized probiotic for piglet rearing, and its impact on post-

weaning diarrhea has previously been assessed in a number of studies.  

Taras et al. (2006) demonstrated the reduction of diarrhea incidence and duration in 

piglets, as previously reported by Manner and Spieler (1997), and a lower occurrence of 

pathogenicity genes in E. coli isolates of fecal samples of pigs supplemented with E. faecium 

NCIMB 10415. Similar findings were obtained in the study of Zeyner and Boldt (2006) in which 

piglets benefitted from supplementation with E. faecium NCIMB 10415 during the period from 

birth to weaning and exhibited an improved growth performance. In contrast, a feeding trial by 

Broom et al. (2006) provided no evidence for an ameliorated post-weaning piglet performance 

after an E. faecium NCIMB 10415-containing weaning diet had been fed to piglets.  

Scharek et al. (2005) determined lower levels of cytotoxic T lymphocytes in the jejunum 

epithelium of probiotic-fed piglets; the authors attributed these lower levels to a diminished 

colonization with pathogenic E. coli serovars. An immunostimulatory effect of E. faecium 

NCIMB 10415 was observed by Szabo et al. (2009), who detected higher antibody titers 

against Salmonella Typhimurium in infected weaning piglets; however, in this study, the 

bacterial burden and clinical symptoms were likewise enhanced. In agreement with these 

findings, E. faecium NCIMB 10415 did not evoke protective immune responses to Salmonella 

Typhimurium, increased the bacterial load in tonsils, and therefore, exerted no advantageous 

effects during experimental infection of weaning piglets (Kreuzer et al. 2012). In another study, 

Pollmann et al. (2005) reported a reduced transfer of Chlamydia spp. from infected sows 

occupying carrier status to their offspring following oral administration of E. faecium NCIMB 

10415. According to Jin et al. (2000), E. faecium is capable of inhibiting the attachment of 

enteropathogens, such as ETEC K88, probably via steric hindrance.  

Microbiological investigations concerning the effects of E. faecium NCIMB 10415-

application to sows and their litters on the distribution of other Enterococcus species in the 

gastrointestinal tract of piglets revealed an attenuating influence on the frequency of 

Enterococcus faecalis, but not on total numbers of E. faecium (Vahjen et al. 2007). Since the 

microbial composition of maternal feces was the same before and after probiotic feeding, these 

modifications were suggested to occur in the piglet’s intestine (Vahjen et al. 2007). Starke et 

al. (2013) postulated individual reactions of mother sows to the feeding of E. faecium 10415, 
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with the altered fecal microbial composition found in responding sows being transferred to their 

offspring during the suckling period.  

Furthermore, Lodemann et al. (2006) have examined epithelial transport processes in 

the jejunum of piglets ex vivo and reported elevated glucose absorption as a result of 

supplementation with E. faecium NCIMB 10415, which in turn might ameliorate diarrhea 

because of the greater absorption of water. In addition to an increased absorptive capacity, 

the improved secretory and barrier properties displayed by an enhanced PGE2-induced 

chloride secretion and the reduced mannitol flux rates across the jejunal epithelia have been 

determined in E. faecium NCIMB 10415-fed piglets (Klingspor et al. 2013). During an ex vivo 

ETEC challenge, prefeeding with E. faecium NCIMB 10415 did not markedly affect the 

response of the piglet’s jejunum, except for the prevented decrease of claudin-4 expression, 

the latter being a sealing (barrier-enhancing) tight junction protein; this indicates possible 

barrier-protective effects of the probiotic (Lodemann et al. 2017).  

In addition to the aforementioned animal studies, in vitro studies with porcine IEC (cell 

line IPEC-J2) revealed alleviated pro-inflammatory immune response patterns upon ETEC 

application via pre- or coincubation with E. faecium NCIMB 10415 (Klingspor et al. 2015; Kern 

et al. 2017). In these studies, probiotic treatment also provided protection from impairments of 

epithelial barrier integrity, as measured by the transepithelial electrical resistance (TEER) of 

IPEC-J2 cells (Klingspor et al. 2015; Kern et al. 2017). Antiviral capacities of E. faecium NCIMB 

10415 have been identified in a porcine macrophage cell line in response to swine influenza 

virus, as indicated by suppressed virus replication and altered cytokine expression at distinct 

time points post-infection (Wang et al. 2013). However, apart from this, relatively few data are 

available addressing in vitro effects of E. faecium NCIMB 10415.  
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Chapter 3: Aims and objectives of this thesis 

In recent years, in vivo and in vitro studies have provided insights into the new research area 

of inflammasome signaling. Evidence for inflammasome involvement in various disease 

patterns, e.g., inflammatory bowel disease, suggests that inflammasomes constitute a 

potential therapeutic target for the treatment of intestinal pathologies. However, inflammasome 

signaling pathways and mechanisms governing their activation in pigs are mostly unknown.  

The main aim proposed as the basis for the work described in the present thesis was 

to elucidate inflammasome signaling pathways implicated in the immune response to bacterial 

infection in porcine cells and tissues. The objective was to test the capacity of ETEC IMT4818 

and E. faecium NCIMB 10415 to provoke inflammasome activation in porcine DC and IEC in 

vitro and in porcine intestinal tissues ex vivo. Another crucial goal was to evaluate the impact 

of the aforementioned bacterial agents on the functions and interactions of IEC and immune 

cells.  

In the first series of the in vitro investigations, challenge experiments were carried out 

on porcine DC derived from blood monocytes. The main objective of this first part was the 

characterization of inflammasome components and inflammasome-related responses upon 

stimulation with E. faecium NCIMB 10415 or ETEC IMT4818 in porcine monocyte-derived DC 

(MoDC). The following special issues were further addressed: (i) whether probiotic 

preincubation changes the inflammasome response during an ETEC challenge and (ii) to what 

extent LPS priming affects inflammasome reactions in porcine MoDC.  

In the second experimental series, the purpose was to establish a porcine intestinal co-

culture model consisting of IEC (cell line IPEC-J2) and the abovementioned MoDC in vitro for 

subsequent bacterial incubation experiments. The central aim was to unravel to which extent 

the inflammatory response patterns of IEC and DC to the two different types of bacteria were 

affected by their mutual interplay. Specific issues were: (i) in what way inflammasome or IL-8 

reactions are altered in IPEC-J2 cells or MoDC upon co-cultivation, (ii) whether humoral 

factors, such as TGF-β and TSLP, mediate the communication between IPEC-J2 cells and 

MoDC, and (iii) whether porcine caspase-13, as a potential candidate targeting non-canonical 

inflammasome signaling, is modulated in these cell types.  

In addition to the in vitro studies, the third part of the project involved expression 

analyses of inflammasome components in small and large intestinal tissues of 29- and 70-day-

old pigs by using the Ussing chamber technique. In addition to this systematic screening 

approach, a further aim was to investigate whether the inflammasome signaling pathway 

contributes to possible protective effects of E. faecium ex vivo. Moreover, the subsequent 

questions were considered: (i) to which extent inflammasome expression in the porcine gut 

varies in dependence of location and age, (ii) as to whether probiotic E. faecium 

supplementation alters inflammasome expression levels in 29-day-old animals in a feeding 

trial, and (iii) whether probiotic preincubation prior to a pathogenic ETEC challenge influences 

inflammasome activation in porcine jejunum in ex vivo experiments. 
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The gut epithelium constitutes an interface between the intestinal contents and the underlying gut-associated lymphoid tissue
(GALT) including dendritic cells (DC). Interactions of intestinal epithelial cells (IEC) and resident DC are characterized by
bidirectional crosstalk mediated by various factors, such as transforming growth factor-β (TGF-β) and thymic stromal
lymphopoietin (TSLP). In the present study, we aimed (1) to model the interplay of both cell types in a porcine in vitro
coculture consisting of IEC (cell line IPEC-J2) and monocyte-derived DC (MoDC) and (2) to assess whether immune responses
to bacteria are altered because of the interplay between IPEC-J2 cells and MoDC. With regard to the latter, we focused on the
inflammasome pathway. Here, we propose caspase-13 as a promising candidate for the noncanonical inflammasome activation
in pigs. We conducted challenge experiments with enterotoxigenic Escherichia coli (ETEC) and probiotic Enterococcus faecium
(E. faecium) NCIMB 10415. As potential mediators of IEC/DC interactions, TGF-β and TSLP were selected for analyses.
Cocultured MoDC showed attenuated ETEC-induced inflammasome-related and proinflammatory interleukin (IL)-8 reactions
compared with MoDC monocultures. Caspase-13 was more strongly expressed in IPEC-J2 cells cocultured with MoDC and
upon ETEC incubation. We found that IPEC-J2 cells and MoDC were capable of releasing TSLP. The latter cells secreted greater
amounts of TSLP when cocultured with IPEC-J2 cells. TGF-β was not modulated under the present experimental conditions in
either cell types. We conclude that, in the presence of IPEC-J2 cells, porcine MoDC exhibited a more tolerogenic phenotype,
which might be partially regulated by autocrine TSLP production. Noncanonical inflammasome signaling appeared to be
modulated in IPEC-J2 cells. Our results indicate that the reciprocal interplay of the intestinal epithelium and GALT is essential
for promoting balanced immune responses.

1. Introduction

Intestinal epithelial cells lining the intestinal mucosa are con-
tinuously exposed to a variety of potentially harmful antigens
and build a physical interface that separates the luminal con-
tent from the host milieu [1]. In the gut, DC are found in the
lamina propria, in the subepithelial dome region of Peyer’s

patches, and in solitary lymph nodes such as the mesenteric
lymph nodes [2–4]. Within the dynamic communication sys-
tem between enterocytes and mucosal immune cells, IEC
direct the function of resident DC by releasing immune
mediators, such as the regulatory cytokine TGF-β and TSLP
[5, 6]. Intestinal DC and IEC are both pivotal for maintaining
normal barrier function as they support the discrimination
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between inflammatory and tolerogenic immune responses [7,
8]. Therefore, functional properties of the intestinal epithe-
lium cannot be fully understood by using in vitro models in
which epithelial cells are solely grown as monocultures [7].
Our objective was to reconstruct the intestinal environment
in vitro by implementing the presence of MoDC in the sube-
pithelial compartment of a porcine jejunum epithelial cell
line grown on cell culture inserts of Transwell systems.

Since luminal microbiota also participate in the crosstalk
[9, 10], we hypothesized that the inflammatory response
patterns of IEC and immune cells to the different types of
bacteria are influenced by the mutual interplay of these
cells. Therefore, a pathogenic ETEC strain frequently caus-
ing postweaning diarrhea in piglets [11, 12] and an apatho-
genic E. faecium strain were included in the study design.
In pigs, the probiotic E. faecium NCIMB 10415, which is
used as a feed additive for sows and piglets, has previously
been demonstrated to exert diverse favorable effects on the
immune system and performance parameters both in vitro
[13–15] and in vivo [16–19], especially during the post-
weaning period.

We aimed to unravel variations in the inflammatory
responses of IEC and DC under coculture conditions with
a focus on the signaling via the inflammasome pathway.
Nucleotide oligomerization domain (NOD)-like receptors
(NLR) represent a class of intracellular pattern recognition
receptors (PRR), some of which are able to form inflamma-
somes [20]. A well-known member of this inflammasome-
forming receptor family is NLRP3 (NLR family, pyrin
domain containing 3) [21]. Among other stimuli, the NLRP3
inflammasome can be activated through bacterial infection
[22]. Canonical and noncanonical inflammasome activations
can be distinguished with regard to the characterization of
inflammasome signaling [23]. Upon canonical inflamma-
some activation, the effector caspase-1 leads to the produc-
tion and secretion of the proinflammatory cytokines IL-1β
and IL-18 [24]. In contrast, noncanonical inflammasome
activation requires species-specific inflammatory caspases
other than caspase-1, particularly caspase-11 in mice [25]
and caspase-4 and -5 in humans [26, 27]. Bovine caspase-
13 is presumed to represent the ortholog of human caspase-
4 [28]. Based on these findings, we propose that caspase-13
exerts a similar function in pigs. Noncanonical inflamma-
some activation has been demonstrated for various Gram-
negative bacteria, such as Vibrio cholerae, Escherichia coli
(E. coli), and Salmonella Typhimurium [25, 29]. Most of
the inflammasome studies have been carried out in human
or mouse models, but a deeper understanding of porcine
inflammasome pathways is lacking. In particular, no studies
exist regarding noncanonical inflammasome activation in
pigs. A further hypothesis tested in the present study was that
porcine caspase-13 is involved in noncanonical inflamma-
some activation in pigs.

2. Material and Methods

2.1. Porcine Intestinal Epithelial Cells. The cell line IPEC-J2
was used as a porcine intestinal epithelial model. The cell line
was originally derived from the jejunum of a newborn piglet

and was kindly provided by Professor Dr. Anthony Blikslager
(North Carolina State University, USA). Cells were cultivated
as described elsewhere [15]. Medium was changed 3 times
per week. Every 7 days, cells were split at a ratio of 1 : 3. Pas-
sages between 73 and 80 were included in the experiments.
IPEC-J2 cells were seeded on the top surface of collagenized
cell culture inserts of 12-well Transwell systems (12mm
diameter, 1.12 cm2 growth surface area, 0.4μm pore size,
Costar, Corning BV, Schiphol-Rijk, The Netherlands) at a
density of 1× 105 cells per cell culture insert. Cells were culti-
vated under a humidified atmosphere of 5% CO2 at 37

°C for
14 to 21 days until reaching confluency.

2.2. Generation of Monocyte-Derived Dendritic Cells. Blood
was taken from conventionally reared Danbred×Pietrain
pigs (10 to 12 weeks of age) kept at the Institute of Animal
Nutrition (Freie Universität Berlin, Germany) or from clini-
cally healthy pigs at a slaughterhouse in Brandenburg,
Germany. The blood sample collection procedure was con-
ducted in accordance with the guidelines for animal welfare
and was approved by the ethics committee for animal welfare,
namely, “Landesamt für Gesundheit und Soziales” (LaGeSo
Berlin, no. T0264/15). Blood samples were collected in 9ml
ethylenediamine tetra-acetic acid (EDTA)-coated blood
tubes (S-Monovette®, SARSTEDT, Nümbrecht, Germany).

Peripheral blood mononuclear cells (PBMC) were puri-
fied by density gradient centrifugation as described by Loss
et al. [30] by using Ficoll-Paque™ PLUS (1.077 g/l, GE
Healthcare, Uppsala, Sweden). Monocytes were subsequently
enriched by magnetic labeling based on their CD14 expres-
sion and subsequent cell sorting in a MidiMACS separator
and LS separation columns (both from Miltenyi Biotec,
Bergisch Gladbach, Germany). CD14+ monocytes were
diluted in RPMI-1640 (Biochrom, Berlin, Germany) supple-
mented with 10% fetal calf serum (FCS, Biochrom), 100U/
ml penicillin, and 100μg/ml streptomycin (Sigma-Aldrich
Chemie GmbH). Cells were seeded at a density of 1.44× 106
cells/ml and 1ml per well in 12-well cell culture plates
(TPP, Faust Lab, Klettgau, Germany or Eppendorf GmbH,
Hamburg, Germany). To differentiate monocytes into
MoDC, cells were supplemented with recombinant porcine
(rp) granulocyte-macrophage colony-stimulating factor
(GM-CSF, 20ng/ml) and rp IL-4 (50 ng/ml; both from
R&D Systems, Minneapolis, MN, USA). Cells were grown
at 37°C under a humidified atmosphere of 5% CO2 for 6 days.
After 3 days, cells were fed with another 1ml of fresh differ-
entiation medium. On day 6, adherent immature MoDC
were used for the experiments. In order to ensure successful
differentiation, the morphological and phenotypical features
of the cells were examined by phase contrast microscopy
(Leica DMI 6000 series, Leica Microsystems, Heidelberg,
Germany) and flow cytometry. Flow cytometric phenotypical
characterization was performed as described elsewhere [30].
Briefly, the monoclonal antibodies anti-human CD14 (clone
REA599, isotype IgG1, Miltenyi Biotec), anti-pig CD16
(clone G7, isotype IgG1, Bio-Rad Laboratories GmbH,
Munich, Germany), anti-pig CD1 (clone 76-7-4, isotype
IgG2ακ, SouthernBiotech, Cambridge, United Kingdom),
and anti-pig swine leukocyte antigen (SLA) II (clone
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K274.3G8, isotype IgG1, major histocompatibility complex
[MHC] II, Bio-Rad Laboratories GmbH) were used. Success-
ful differentiation was considered to have occurred when the
cells showed a characteristic DC morphology and were tested
as being CD14+ CD16+ CD1+ SLA+.

2.3. Bacterial Strains. Two different bacterial strains were
used for the experiments: the probiotic strain E. faecium
NCIMB 10415 (Cylactin®, DSM, Kaiseraugst, Switzerland)
and enterotoxigenic E. coli IMT4818 (isolated from a two-
week-old piglet with diarrhea, O149:K91:K88 [F4]). E. faecium
and ETEC were grown on BHI (brain-heart infusion) and
LB (Luria-Bertani) agar plates, respectively. After overnight
incubation, E. faecium was grown in BHI broth (OXOID
GmbH, Wesel, Germany) and ETEC in LB medium contain-
ing 10 g/l tryptone, 5 g/l yeast extract, and 10 g/l NaCl, at pH
7.0 (Roth, Karlsruhe, Germany). Each bacterial strain was
cultivated at 37°C until the midlog phase was reached. Bacte-
ria were then centrifuged and washed twice with cold PBS.
Prior to addition to IPEC-J2 cells, bacteria were diluted in
serum- and antibiotic-free IPEC-J2 cell culture medium at a
concentration of approximately 108 colony-forming units
(CFU)/ml. For their application into the MoDC compart-
ment, RPMI-1640 was used for the resuspension of bacterial
cells to give a concentration of approximately 107CFU/ml. In
order to quantify bacterial concentrations, the optical density
(OD) was measured at a wavelength of 600nm in a Helios™
Epsilon spectrophotometer (Thermo Scientific, Rockford,
IL). Additionally, dilution series were made with a subse-
quent CFU count on LB agar plates.

2.4. Coculture Model and Experimental Design (Figure 1). In
the present study, a coculture model comprising IPEC-J2
cells and porcine MoDC was utilized as illustrated in
Figures 1(c) and 1(d). To this end, Transwell inserts with
confluent IPEC-J2 monolayers grown on their top surface
were transferred to the 12-well culture plates containing
adherent MoDC on the bottom. On the day prior to the
experiments, each cell type was fed with the appropriate cell
culture medium. After 24 h in coculture, the cells were chal-
lenged with the aforementioned bacterial strains.

Prior to bacterial infection, FCS- and penicillin-
streptomycin-supplemented media were removed from the cell
cultures and replaced by serum- and antibiotic-free IPEC-J2 or
MoDC cell culture medium, respectively, after the appropri-
ate cells had been washed with the aforementioned media.

For the experiments, cells were incubated with either the
probiotic E. faecium strain or the pathogenic ETEC strain.
The number of bacteria differed depending on the cell type
infected. IPEC-J2/MoDC cocultures were incubated with
bacteria by adding either 1× 106CFU per insert to the
IPEC-J2 compartment of the cultures or 5.4× 104CFU per
well to the MoDC compartment (Figures 1(c) and 1(d)).
The appropriateness of the applied bacterial concentrations
was evaluated in preliminary experiments.

In addition to the IPEC-J2/MoDC cocultures, mono-
cultures of IPEC-J2 cells or MoDCwere also included as con-
trols to assess the influence of cocultivation on the reactivity
of each cell type (Figures 1(a) and 1(b)).

For the sake of completeness, we examined the immune
responses after direct incubation with the bacterial strains

Culture
insert

IPEC-J2

IPEC-J2 monoculture

Bacteria

(a)

MoDC

MoDC monoculture

Bacteria

(b)

Coculture
IPEC-J2 challenged

Culture
insert MoDC

IPEC-J2Bacteria

(c)

Coculture
MoDC challenged

Culture
insert

IPEC-J2

MoDC

Bacteria

(d)

Figure 1: Schematic illustration of experimental design. (a) IPEC-J2 monocultures were grown as a monolayer on the top surface of Transwell
cell culture inserts. Bacteria were added to the IPEC-J2 compartment. (b) MoDC monocultures were cultivated in 12-well cell culture plates.
Bacteria were added to the MoDC compartment. (c)–(d) Cocultures of IPEC-J2 cells grown on Transwell inserts and adherent MoDC located
in the bottom compartment. In separate approaches, bacteria were added either (c) to the IPEC-J2 compartment or (d) to the MoDC
compartment. The lightning flash indicates the localization of the bacterial challenge with either E. faecium or ETEC.
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(comparison of mono- vs. coculture), as well as after indirect
bacterial incubation. In these assays, we additionally assessed
the inflammatory responses of cocultured IPEC-J2 cells when
MoDC had been challenged and vice versa. Thus, an in vivo-
like situation discriminating between the apical or basolateral
occurrence of individual bacteria was simulated. The
expected higher bacterial load in the lumen compared with
the subepithelial space was also modeled as described above;
this has to be taken into account when interpreting the
results of the indirect challenge.

In order to prevent bacterial overgrowth, cells were
washed with gentamicin-containing medium (150μg/ml,
Biochrom) after 2 h of bacterial incubation. The medium
was then replaced with medium supplemented with gentami-
cin at a final concentration of 50μg/ml. After this medium
change, cells were incubated for further 4 h.

2.5. Transepithelial Electrical Resistance (TEER)
Measurements. The transepithelial electrical resistance (TEER)
across the IPEC-J2 monolayers was measured in the Trans-
well systems by using a Millicell-ERS (Electrical Resistance
System, Millipore GmbH, Schwalbach, Germany). During
the experiments, the TEER was measured every two hours
(before bacterial addition and at 2 h, 4 h, and 6h of incuba-
tion). TEER values were corrected against their blank control
(cell-free cell culture insert with medium) and against the
membrane area. For each experimental condition, three wells
were used. Results are reported as [Ω× cm2].

2.6. Real-Time Quantitative Polymerase Chain Reaction
(RT-qPCR). To perform mRNA expression analyses, samples
for RT-qPCR were collected 6 h after bacterial addition.
MoDC and IPEC-J2 cells were washed with cold PBS, har-
vested by scraping, and stored in RNAlater RNA stabiliza-
tion reagent (Qiagen GmbH, Hilden, Germany) at −20°C.
Isolation of RNA and its quantitative and qualitative analyses
were performed as described by Kern et al. [14]. Samples
were used when the RNA integrity number was higher than
or equal to 8. An aliquot of 100ng total RNA was reverse-
transcribed into cDNA in a Mastercycler™ Nexus Gradient
(Eppendorf GmbH) by using the iScript™ cDNA Synthesis
Kit (Bio-Rad Laboratories GmbH). All primers for RT-
qPCR were synthesized by Eurofins MWG Synthesis GmbH
(Ebersberg, Germany). In preliminary experiments, various
reference genes were validated for each cell line by using
ge-Norm® software. Three reference genes were selected for
normalization (MoDC: TATA-binding protein [TBP], tyro-
sine 3-monooxygenase/tryptophan 5-monooxygenase acti-
vation protein zeta [YWHAZ], and beta-2-microglobulin
[B2M]; IPEC-J2: TBP, YWHAZ, and glyceraldehyde-3-
phosphate dehydrogenase [GAPDH]). Primer information
regarding the target and reference genes is given in Table 1.
RT-qPCR was conducted in an iCycler iQ™ Real-Time PCR
Detection System (Bio-Rad Laboratories GmbH) by using
SYBR Green I detection. Samples were run in triplicate.
The final volume of the reaction (20μl) was composed of
iQ SYBR Green Supermix (Bio-Rad Laboratories GmbH),
primers (0.38μl of 20 pmol/μl each), and 5μl cDNA. An
inter-run calibration sample was used to correct for run-to-

run variations. To check for possible genomic DNA contam-
ination, minus-reverse transcriptase controls were included
in the experiments. The software iQ5 (Bio-Rad Laboratories
GmbH) was utilized to calculate the relative expression of
target genes by using the ΔΔCt method.

2.7. Enzyme-Linked Immunosorbent Assay (ELISA). For the
analysis of cytokine release from MoDC or IPEC-J2 cells,
cell-free cell culture supernatants were collected 6 h after bac-
terial addition, centrifuged (6000 rpm for 5min), and stored
at −80°C until used. IL-1β, IL-8, TGF-β, and TSLP concen-
trations were determined by using the following ELISA kits
according to the manufacturer’s instructions: porcine IL-1β
ELISA (Quantikine ELISA, Porcine IL-1β/IL-1F2 Immuno-
assay, R&D Systems), porcine IL-8 ELISA (Invitrogen ELISA
Kit, Swine IL-8, Invitrogen Life Technologies GmbH), por-
cine TGF-β ELISA (Quantikine ELISA, Porcine TGF-β1
Immunoassay, R&D Systems), and porcine TSLP ELISA
(Porcine TSLP ELISA kit, BlueGene, Shanghai, China). A
microplate reader (EnSpire Multimode Plate Reader, Perkin
Elmer, Rodgau, Germany) was employed to measure the
absorbance values and to calculate the OD-specific sample
concentrations from a standard curve by using a four-
parameter logistic curve fit. Results are reported as (pg/ml).

2.8. Statistical Analysis. Statistical analyses and the creation
of graphs were performed by using SigmaPlot 11.0 for Win-
dows (Systat Software Inc., San Jose, CA, USA). Statistical
significance of differences between the various treatment
groups was assessed by two-way repeated measures analysis
of variance (ANOVA) for the factors “bacteria” (“control”,
“E. faecium”, and “ETEC”) and “culture” (“IPEC-J2 mono-
culture”/“MoDC monoculture”, “coculture - IPEC-J2 chal-
lenged”, and “coculture - MoDC challenged”). In addition
to the analysis of these two main effects, we also tested
for possible interactions between the two factors. If interac-
tions occurred, comparisons among the different treatment
groups of the factor “bacteria” were made for each “culture”
condition and vice versa. Findings were considered to be
significant when P ≤ 0 05. When overall analysis of the data
of each cell type and a certain parameter (TEER, mRNA, or
protein expression) showed a statistical difference between
treatment groups (including interactions), the Fisher least
significant difference post hoc test was carried out. In the
figures, results are presented as means± standard error of
the means (SEM).

3. Results

3.1. TEER. During the course of experiments, TEER values of
the IPEC-J2 monolayers were measured at four time points
in order to monitor the barrier integrity (Figure 2). In addi-
tion to the cocultures, TEER was also determined in corre-
sponding IPEC-J2 monocultures. As shown in Figure 2(a),
initial TEER values of the cocultures did not differ from those
of IPEC-J2 monocultures before the bacterial challenge.

In IPEC-J2 monocultures, ETEC significantly reduced
the TEER after 2 h (P ≤ 0 05) (Figure 2(b)) and after 4 h
(P ≤ 0 05) of incubation (Figure 2(c)). In cocultures with
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challenged IPEC-J2 cells, this ETEC effect was only present
at 2 h after bacterial infection (P ≤ 0 05) (Figure 2(b)).
Bacterial infection of cocultured MoDC revealed no ETEC-
induced drop of TEER of IPEC-J2 monolayers at each con-
sidered time point. Unlike ETEC, E. faecium treatment led
to no modifications in the TEER throughout the experimen-
tal period in each experimental setup.

3.2. Expression of Inflammation-Related Genes in IPEC-J2
Cells. The mRNA expression of various inflammation-
related genes was analyzed in IPEC-J2 cells (and porcine
MoDC—see next section) after 6 h of bacterial stimulation.
Cells were incubated with either probiotic E. faecium or path-
ogenic ETEC. Samples were obtained from cocultures or
from the corresponding monocultures.

To gain insight into the potential involvement of the
inflammasome pathway, IL-1β, IL-18, and NLRP3 were
selected for the analysis of the inflammasome response to

the applied bacterial strains. As shown in Figure 3(a), mRNA
expression levels of IL-1β in IPEC-J2 cells remained rather
stable independent of the cultivation method (cocultures or
monocultures) and the bacterial challenge. However, the
IL-18 mRNA expression of IPEC-J2 cells was generally
higher in the coculture setup when MoDC had been chal-
lenged compared with IPEC-J2 monocultures (P ≤ 0 05)
(Figure 3(b)). This effect was, as a trend, mainly based on
greater values in cocultures challenged with ETEC. Incuba-
tion with the pathogenic ETEC strain also provoked an
upregulation of NLRP3 mRNA expression in IPEC-J2 cells
in comparison with the control and the E. faecium group
(P ≤ 0 05) (Figure 3(c)).

We hypothesized that caspase-13 would be a promising
candidate targeting noncanonical inflammasome activation
in pigs. As indicated in Figure 3(d), caspase-13 mRNA
expression was strongly enhanced in ETEC-infected IPEC-
J2 cells under either cultivation methods (P ≤ 0 05). Notably,

Table 1: Oligonucleotide primers and amplicon length of PCR products.

Gene information Primer sequence
Amplicon
length

Accession
number

Reference

IL1B1 (interleukin-1, beta 1, Sus scrofa)
(S) 5′- CCT CCT CCC AGG CCT TCT GT -3′

(AS) 5′- GGG CCA GCC AGCA CTA GAG A -3′ 178 bp [31]

IL-18 (interleukin-18, Sus scrofa)
(S) 5′- ACG ATG AAG ACC TGG AAT CG -3′

(AS) 5′- GCC AGA CCT CTA GTG AGG CTA -3′ 205 bp AF191088.1

NLRP3 (NLR family, pyrin domain
containing 3, Sus scrofa)

(S) 5′- AGC AGA TTC CAG TGC ATC AAA G -3′
(AS) 5′- CCT GGT GAA GCG TTT GTT GAG-3′ 75 bp NM_001256770.2 [32]

NLRC4 (NLR family, CARD domain
containing 4, Sus scrofa)

(S) 5′- TGC TCT GAA ACA CCT TGC AT -3′
(AS) 5′- GCA TAG ATT CCT GCC TCC AG -3′ 92 bp XM_013987922.1

CASP13 (caspase-13, apoptosis-related
cysteine peptidase, Sus scrofa)

(S) 5′- GTG CTA CAG AAA CGC CAT GA -3′
(AS) 5′- AGG GCA AAG CTT GAG GGT AT-3′ 150 bp XM_003129812.6

CASP1 (caspase-1, apoptosis-related
cysteine peptidase, Sus scrofa)

(S) 5′- CTC TCC ACA GGT TCA CAA TC -3′
(AS) 5′- GAA GAC GCA GGC TTA ACT GG -3′ 116 bp NM_214162 [33]

ASC (LOC100522011) (apoptosis-
associated speck-like protein containing
a CARD, Sus scrofa)

(S) 5′- CCG ACG AGC TCA AGA AGT TT -3′
(AS) 5′- AGC TCA GCG CTG TAC TCC TC -3′ 154 bp XM_003124468.4

IL-8 (interleukin-8, Sus scrofa)
(S) 5′- GGC AGT TTT CCT GCT TTC T -3′

(AS) 5′- CAG TGG GGT CCA CTC TCA AT -3′ 154 bp X61151 [34]

TLR4 (toll-like receptor 4, Sus scrofa)
(S) 5′- AGA ACT GCA GGT GCT GGA TT -3′
(AS) 5′- AGG TTT GTC TCA ACG GCA AC -3′ 180 bp AB188301

TGF-β (transforming growth factor beta,
Sus scrofa)

(S) 5′- TGA CCC GCA GAG AGG CTA TA -3′
(AS) 5′- CAT GAG GAG CAG GAA GGG C -3′ 164 bp NM_214015.2

TBP (TATA box binding protein,
Sus scrofa)

(S) 5′- GAT GGA CGT TCG GTT TAG G -3′
(AS) 5′- AGC AGC ACA GTA CGA GCA A -3′ 124 bp DQ178129 [35]

YWHAZ (tyrosine 3-monooxygenase/
tryptophan 5-monooxygenase activation
protein, zeta polypeptide, Sus scrofa)

(S) 5′- ATG CAA CCA ACA CAT CCT ATC -3′
(AS) 5′- GCA TTA TTA GCG TGC TGT CTT -3′ 178 bp DQ178130 [35]

B2M (beta-2-microglobulin, Sus scrofa)
(S) 5′- AAA CGG AAA GCC AAA TTA CC -3′
(AS) 5′- ATC CAC AGC GTT AGG AGT GA -3′ 178 bp DQ178123 [35]

GAPDH (glyceraldehyde-3-phosphate
dehydrogenase, Sus scrofa)

(S) 5′- ACT CAC TCT TCTACCTTTGATGCT -3′
(AS) 5′- TGT TGC TGT AGC CAA ATT CA -3′ 100 bp DQ178124 [35]
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the observed upregulation was more evident in cocultured
IPEC-J2 cells than in IPEC-J2 monocultures (P ≤ 0 05). An
interesting additional finding was that the cocultivation of
IPEC-J2 with MoDC (irrespective of infection) was followed
by a higher caspase-13 mRNA expression in IPEC-J2 cells
(P ≤ 0 05).

To further illuminate the noncanonical inflammasome
signaling pathway in IPEC-J2 cells, we additionally included

the following genes in our analyses: inflammasome-forming
NLRC4 (NLR family, CARD domain containing 4), the
adapter ASC (apoptosis-associated speck-like protein con-
taining a CARD), caspase-1, and toll-like receptor (TLR) 4
(Supplementary Tables 6 and 7). We found a lack of NLRC4
mRNA in IPEC-J2 cells (Supplementary Table 6). Whilst
ASC mRNA expression was not regulated, caspase-1 mRNA
expression was upregulated in cocultured IPEC-J2 cells
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Figure 2: Transepithelial electrical resistance (TEER, in Ω× cm2) of IPEC-J2 monolayers after stimulation with either E. faecium (Ecf) or
ETEC. In IPEC-J2/MoDC cocultures, Ecf or ETEC was added either to the apical side of IPEC-J2 cells or to the MoDC compartment. In
IPEC-J2 monocultures, the bacteria were added to the apical compartment. TEER values were measured at 0 h, 2 h, 4 h, and 6 h (a)-(d).
Data are expressed as means± SEM. N = 6 independent experiments per bar. Results of the ANOVA are indicated below each graph.
Results of post hoc tests are presented in Supplementary Table 1.
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(P ≤ 0 05). TLR4 mRNA levels were higher in the ETEC-
incubated treatment groups (P ≤ 0 05).

The mRNA expression of the proinflammatory chemo-
kine IL-8 in IPEC-J2 cells was markedly augmented by incu-
bation with ETEC under each culture condition (P ≤ 0 05)
(Figure 3(e)). As with caspase-13, IPEC-J2 cells from the set-
ting in which cocultured MoDC was treated with the bacteria
exhibited the largest ETEC response (P ≤ 0 05).

In contrast, E. faecium treatment did not alter the mRNA
expression of the considered genes within the experimental

design and showed expression levels similar to those of the
unchallenged controls.

As a regulatory cytokine, we also investigated the
expression of TGF-β, which was affected neither by the
cultivation method nor by bacterial incubation in IPEC-J2
cells (Figure 3(f)).

3.3. Expression of Inflammation-Related Genes in Porcine
MoDC. Similarly, mRNA expression was studied in por-
cine MoDC. Expression levels were compared between
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Figure 3: mRNA expression of (a) IL-1β, (b) IL-18, (c) NLRP3, (d) caspase-13, (e) IL-8, and (f) TGF-β in IPEC-J2 cells after stimulation with
either E. faecium (Ecf) or ETEC. In IPEC-J2/MoDC cocultures, Ecf or ETEC was added either to the apical side of IPEC-J2 cells or to the
MoDC compartment. In IPEC-J2 monocultures, the bacteria were added to the apical compartment. Samples were taken at 6 h after
addition of bacteria (means± SEM). N = 4 independent experiments per bar. Normalized fold expression was calculated by the ΔΔCt
method. Results of the ANOVA are indicated below each graph. Results of post hoc tests are presented in Supplementary Table 2.
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cocultured MoDC (challenged with bacteria directly or
indirectly by infection of IPEC-J2 cells) and MoDC origi-
nating from monocultures.

The analysis of inflammasome-linked genes (IL-1β,
IL-18, and NLRP3) revealed an upregulation by ETEC in
MoDC cultivated alone (P ≤ 0 05) (Figures 4(a)–4(c)). To a
significantly lesser extent, ETEC enhanced the mRNA
expression of IL-1β, IL-18, and NLRP3 in the challenged
MoDC of the cocultures (P ≤ 0 05). In addition, cocultured

MoDC remained relatively unaffected by the bacterial chal-
lenge of IPEC-J2 cells. Likewise, ETEC caused an enlarged
caspase-13 transcription when MoDC were challenged in
mono- and cocultures (P ≤ 0 05) (Figure 4(d)). In contrast
to genes associated with canonical inflammasome activation,
the induced caspase-13 mRNA increase in cocultured MoDC
was as great as in MoDC monocultures.

Expression patterns of IL-8 resembled those of IL-1β and
NLRP3 (Figure 4(e)). The highest response to ETEC was
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Figure 4: mRNA expression of (a) IL-1β, (b) IL-18, (c) NLRP3, (d) caspase-13, (e) IL-8, and (f) TGF-β in porcine MoDC after stimulation
with either E. faecium (Ecf) or ETEC. In IPEC-J2/MoDC cocultures, Ecf or ETEC was added either to the apical side of IPEC-J2 cells or to the
MoDC compartment. In MoDC monocultures, the bacteria were added to the basolateral compartment. Samples were taken at 6 h after
addition of bacteria (means± SEM). N = 4 independent experiments per bar. Normalized fold expression was calculated by the ΔΔCt
method. Results of the ANOVA are indicated below each graph. Results of post hoc tests are presented in Supplementary Table 3.
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detected in MoDC monocultures, whereas a weaker ETEC-
triggered amplification of IL-8 mRNA occurred in cocultured
MoDC (P ≤ 0 05).

Exposure to the probiotic E. faecium strain resulted in
only a slight increase of IL-18 mRNA expression in MoDC
that were cultivated alone (P ≤ 0 05) (Figure 4(b)). Similar
tendencies were recognized for IL-1β, NLRP3, and IL-8
mRNA expressions without reaching statistical significance
(Figures 4(a), 4(c), and 4(e)).

Similar to that of IPEC-J2 cells, the mRNA expression
of anti-inflammatory TGF-β in MoDC showed no clear
effects in the context of bacterial treatment or the cultiva-
tion technique (Figure 4(f)). On average, the smallest
expression level was detected in IPEC-J2/MoDC cocultures
in which IPEC-J2 cells had been bacterially challenged
(P ≤ 0 05); this was attributable to a numerical ETEC-
induced decrease.

3.4. Cytokine Secretion by IPEC-J2 Cells. The protein
secretion of IL-8, IL-1β, TGF-β, and TSLP into cell cul-
ture supernatants of IPEC-J2 cells and porcine MoDC
(see next section) was determined by ELISA. For the analysis
of the selected cytokines, samples were collected 6 h after
bacterial addition.

In challenged IPEC-J2 cells of mono- and cocultures, a
strong secretion of IL-8 attributable to ETEC infection could
be observed (P ≤ 0 05) (Figure 5(a)). These results corre-
sponded with those of the qPCR analysis. Interestingly, the
results after bacterial addition to the MoDC compartment
varied considerably from the mRNA to the protein level.

The high upregulation of IL-8 mRNA expression could not
be verified at the protein level.

IPEC-J2 cells secreted TSLP, which we proposed as being
a promising candidate mediating the interactive IEC/DC
crosstalk in addition to TGF-β, at levels of around 300pg/
ml, but the detected levels did not show significant variations
attributable to different cultivation variants and bacterial
stimulation (Figure 5(b)).

IL-1β and TGF-β concentrations in the tested IPEC-J2
supernatant samples were mostly below the minimum
detection level of the ELISA kits used (6.7 and 4.6 pg/ml,
respectively; data not shown).

3.5. Cytokine Secretion by Porcine MoDC. In supernatants of
mono- and cocultured MoDC, direct ETEC incubation
caused an IL-1β accumulation (P ≤ 0 05) with a tendency of
lower IL-1β concentrations in the presence of IPEC-J2 cells
(Figure 6(a)).

The IL-8 release of ETEC-infected MoDC was greater in
MoDC monocultures than in cocultures with IPEC-J2 cells
(P ≤ 0 05) (Figure 6(b)). This was in agreement with results
obtained at the mRNA level. Furthermore, incubation with
probiotic E. faecium also elicited a higher IL-8 protein level
in directly challenged MoDC monocultures (compared with
E. faecium responses under the remaining culture condi-
tions), but this was lower than the ETEC-induced increases
(P ≤ 0 05) (Figure 6(b)).

Porcine MoDC secreted low amounts of TGF-β into
the respective supernatants, which tended to be increased
in E. faecium-incubated cells (P = 0 052) (Figure 6(c)).
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Figure 5: Protein expression (in pg/ml) of (a) IL-8 and (b) TSLP detected by ELISA in supernatants of IPEC-J2 cells after stimulation with
either E. faecium (Ecf) or ETEC. In IPEC-J2/MoDC cocultures, Ecf or ETEC was added either to the apical side of IPEC-J2 cells or to the
MoDC compartment. In IPEC-J2 monocultures, the bacteria were added to the apical compartment. Samples were taken at 6 h after
addition of bacteria (means± SEM). N = 3 independent experiments per bar. Results of the ANOVA are indicated below each graph.
Results of post hoc tests are presented in Supplementary Table 4.
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Surprisingly, we also detected TSLP expression at the protein
level in MoDC samples (Figure 6(d)). The quantities of
MoDC-derived TSLP were comparable with those measured
in IPEC-J2 cells. The supernatant of MoDC cultivated in
the presence of IPEC-J2 cells contained more TSLP than
that of monocultures, regardless of the bacterial treatment
(P ≤ 0 05).

4. Discussion

In the present study, the main objective was to determine
whether the inflammatory response to a bacterial challenge
in porcineMoDCand IPEC-J2 cells is changedby theirmutual
interference in an in vitro coculture model. As encountered
enteric bacteria can be of different types, we conducted
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Figure 6: Protein expression (in pg/ml) of (a) IL-1β, (b) IL-8, (c) TGF-β, and (d) TSLP detected by ELISA in supernatants of porcine MoDC
after stimulation with either E. faecium (Ecf) or ETEC. In IPEC-J2/MoDC cocultures, Ecf or ETEC was added either to the apical side of IPEC-
J2 cells or to the MoDC compartment. In MoDCmonocultures, the bacteria were added to the basolateral compartment. Samples were taken
at 6 h after addition of bacteria (means± SEM). N = 3 − 4 independent experiments per bar. Results of the ANOVA are indicated below each
graph. Results of post hoc tests are presented in Supplementary Table 5.
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challenge experiments with an apathogenic E. faecium strain
and a pathogenic E. coli strain, the latter having disease rele-
vance for pigs, especially in the postweaning period.

4.1. TEER. The analysis of TEER values of IPEC-J2/MoDC
cocultures and their corresponding IPEC-J2 monocultures
revealed that the cocultivation of IPEC-J2 cells with MoDC
per se did not have an effect on the TEER of IPEC-J2 mono-
layers. Similar findings were achieved with human intestinal
models consisting of human IEC and MoDC [36, 37].

Previous studies have shown that ETEC is capable
of altering the barrier function of apically infected IPEC-J2
monolayers adversely in a dose- and time-dependent man-
ner [15, 38–40]. In the present study, ETEC effects on the
barrier integrity were predominantly detectable after 2 h of
incubation. Apically challenged IPEC-J2 monocultures
showed a significantly lowered TEER even after 4 h, suggest-
ing that IPEC-J2 monocultures were slightly more sensitive
to ETEC-induced impairments of the epithelial barrier
function than cocultures. Surprisingly, basolateral bacterial
infection had no influence on TEER at any time point. The
latter might be attributable to the lower number of patho-
genic bacteria added to cocultured MoDC on the basolateral
side of IPEC-J2 cells resulting in a lower bacteria : IPEC-J2
cell ratio. When adding the same bacterial concentration,
other research groups have shown that the basolateral infec-
tion of human IEC (cell line T84) monocultures with patho-
genic bacteria, such as adherent-invasive E. coli [41] or
Campylobacter jejuni [42], resulted in a considerable TEER
drop, which was greater after basolateral application com-
pared with apical application. Nonetheless, the lower number
of ETEC applied to the basolateral compartment of IPEC-J2
cells in the current study induced an evident proinflamma-
tory response (see next section).

4.2. The Inflammatory Response in IPEC-J2 Cells. In the pres-
ent study, we provide evidence that inflammasome activation
following a pathogenic ETEC challenge occurred in both
cell types examined. In IPEC-J2 cells, this was particularly
validated by an upregulation of NLRP3mRNA expression. In
addition to the main cell wall component lipopolysaccha-
ride (LPS), other inflammasome-stimulating components
of pathogenic E. coli include toxins, such as enterohemoly-
sin and heat-labile enterotoxin [43, 44], or bacterial RNA
[45, 46]. The role of NLRP3 in intestinal inflammation and
homeostasis is controversial [47–49]. Lissner and Siegmund
[50] have underlined that the outcome depends on the
affected cell type. Within the epithelium, NLRP3 performs
regulatory functions, e.g., by promoting enterocyte prolifera-
tion, whereas disproportionate NLRP3 activation by lamina
propria immune cells provokes detrimental effects [50]. A
protective role of the NLRP3 inflammasome in IEC has been
postulated by Song-Zhao et al. [51] and Zaki et al. [52]. In a
recent study, Fan et al. [53] addressed inflammasome activa-
tion in IPEC-J2 cells upon stimulation with the mycotoxin
zearalenone and reported evidence supporting regulatory
functions of the NLRP3 inflammasome within the gut [53].

We further studied NLRC4 mRNA expression in IPEC-
J2 cells as the NRLC4 inflammasome is another well-

characterized inflammasome beyond NLRP3. We found no
NLRC4 mRNA in these cells. We and others had previously
reported similar findings for different porcine cells and tis-
sues, suggesting that a functional NLRC4 gene is missing
in pigs [30, 54, 55].

Whilst IEC are the main source for IL-18 being espe-
cially important for epithelial regeneration [52, 56, 57],
the ability of IEC to produce IL-1β is a matter of debate
[58]. Based on our results, IL-1β played a negligible role
in IPEC-J2 cells, whereas IL-18 mRNA expression tended
to follow similar expression patterns as determined for cas-
pase-13, indicating that there might be a correlation between
caspase-13 and IL-18.

Based on the assumption that caspase-13 is the porcine
counterpart to murine caspase-11, the striking upregulation
of caspase-13 mRNA expression in IPEC-J2 cells upon
ETEC exposure suggests that ETEC could primarily trigger
noncanonical inflammasome activation in IPEC-J2 cells. In
addition, the caspase-13 induction as a result of the path-
ogenic ETEC challenge was more evident in cocultured
IPEC-J2 cells than in IPEC-J2 monocultures. In human and
murine IEC, Knodler et al. [59] have observed noncanonical
inflammasome activation via caspase-4 and caspase-11,
respectively, in response to enteropathogens. Recent research
has assigned the murine ortholog caspase-11 guard func-
tions within the gastrointestinal tract in inflammatory states
[60–62]. For example, caspase-11-deficient mice revealed a
hypersensitivity to dextran sulfate sodium-induced colitis
associated with an impeded IL-18 production [60, 61], sug-
gesting an ameliorating effect of caspase-11 during intestinal
inflammation [63]. To date, it is unknown how inflamma-
some signaling by IEC is cross-linked with other defense
mechanisms that ultimately coordinate the recruitment of
neighboring immune cells [58].

Some authors have demonstrated that caspase-11 acti-
vation acts upstream of caspase-1-dependent canonical
inflammasome formation [64, 65], whereas others have
reported that caspase-11 forms a noncanonical inflamma-
some complex itself [25, 66]. Caspase-1, in contrast to cas-
pase-4, -5, and -11, is capable of processing interleukins
[67]. Analysis of caspase-1 mRNA expression in IPEC-J2
cells revealed an increase upon cocultivation, which had like-
wise been detected at the level of caspase-13 in IPEC-J2 cells,
indicating a possible link between caspase-13 and caspase-1.
Resembling results have been obtained in murine cocultures
consisting of preadipocytes and muscle cells or fibroblasts, in
which the mRNA expression of certain caspases (caspase-3,
-7, and -9) was in some cases enhanced as an effect of cocul-
turing [68, 69]. To our knowledge, similar investigations for
caspases associated with noncanonical inflammasome signal-
ing have not yet been carried out.

Furthermore, several authors have shown that the sig-
naling pathway for caspase-11 activation includes TLR4
(and the TLR adapter TRIF [TIR domain containing adaptor
inducing interferon-β]), which senses extracellular LPS [66,
70]. In IPEC-J2 cells, we could verify ETEC-associated upre-
gulations of TLR4 mRNA expression, which might indicate
that this signal cascade is likewise involved in porcine nonca-
nonical inflammasome activation.
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The transcriptional control differs between the caspases
of different species, e.g., it has been established for murine
caspase-11 but not for human caspase-4, which is consti-
tutively expressed [71]. Summarizing the observations of
the current study, it was suggested that the porcine ortholog
caspase-13 responds similarly to the murine counterpart. In
this respect, the verification in future studies as to whether
caspase-13 constitutes the porcine equivalent to the afore-
mentioned caspases of the noncanonical inflammasome
pathway would be intriguing. Collectively, we can con-
clude that the DC-driven regulation of neighboring IPEC-
J2 cells was mainly evidenced by caspase-13 modulation.
This caspase-13 modulation might be one possible expla-
nation for the altered TEER response observed after apical
ETEC infection of IPEC-J2 mono- vs. cocultures and for the
lack of a TEER response after basolateral ETEC infection of
IPEC-J2 cells.

4.3. The Inflammatory Response in Porcine MoDC. Investiga-
tions into the inflammatory response in porcine MoDC
revealed that MoDC from IPEC-J2/MoDC cocultures reacted
more moderately to the pathogenic ETEC challenge than did
monocultured MoDC; the expression of IL-1β, IL-18, and
NLRP3 was attenuated at the mRNA level and of IL-1β, as
a trend, also at the protein level. For the proinflammatory
cytokine IL-8, a similar pattern was noted at both the mRNA
and protein levels. In contrast to IEC, DC are known to
express NLRP3 abundantly and to generate high IL-1β levels
[72]. An exaggerated production of cytokines, such as IL-1β
and IL-8, can lead to the development of intestinal patholo-
gies linked with a disruption of the intestinal barrier, such
as inflammatory bowel disease [73, 74]. Hence, our find-
ings concerning inflammasome and IL-8 reactions support
the hypothesis that IEC act beneficially to adapt the proin-
flammatory responsiveness of MoDC to invading entero-
pathogens. We propose an inflammation-restricting effect
of adjacent IPEC-J2 cells on porcine MoDC in the present
study. Other research groups have provided evidence that
IEC are able to suppress proinflammatory responses of
cocultured immune cells [37, 75]. In a human model of the
intestinal epithelium, DC cultivated in direct contact with
IEC were less sensitive to LPS and exhibited a reduced proin-
flammatory response [37].

Of note, the caspase-13 mRNA expression in MoDC did
not appear to be influenced following cocultivation with
IPEC-J2 cells; and the ETEC-induced caspase-13 upregulation
was reduced compared with those detected in IPEC-J2 cells.
We presume that the transcriptional induction of caspase-13
plays a rather minor role in porcine MoDC, at least, within
our experimental design. This underlines the observation that
different cell types fulfil a unique contribution to the develop-
ment of immune responses, particularly in the gut [58].

The apathogenic E. faecium strain used in this study had
only a minor impact on certain proinflammatory markers
(IL-18, IL-1β, and IL-8) in MoDC monocultures. Compara-
ble proinflammatory responses to different E. faecium strains
have been documented by several working groups that
recorded a strain-specific and dose-dependent induction of,
for example, IL-1β, IL-8, IL-6, and tumor necrosis factor-α,

in human DC or murine macrophages [76–79]. TGF-β was
suggested to contribute to probiotic-triggered immunoregu-
latory mechanisms [80–82]. Accordingly, a tendency for an
E. faecium-induced increase of TGF-β secretion by MoDC
was also noted in our experiments.

4.4. Potential Mediators of Crosstalk between IPEC-J2 Cells
and Porcine MoDC. As porcine MoDC revealed an attenu-
ated inflammatory ETEC response when cocultured with
IPEC-J2 cells, we aimed to look more closely at underlying
IPEC-J2/MoDC interactions. In our experimental design,
MoDC had no direct contact with neighboring IPEC-J2 cells.
Hence, the modulation of the immune cells was assumed to
occur through cell-derived humoral signals capable of cross-
ing the filter membrane. In our analyses, we included TSLP
and TGF-β, which we considered as potential mediators in
this bidirectional crosstalk.

Consistent with the idea that soluble factors are likely to be
responsible for the regulation of DC responses, Rimoldi et al.
[8] demonstrated that human DC conditioned by superna-
tants of IEC displayed a downregulated IL-1β secretion after
Salmonella infection. In their study, IEC-derived TSLP was
identified as the controlling agent [8]. Although TSLP is com-
monly regarded as an epithelial-derived cytokine, it has previ-
ously been detected in murine [83] and human DC [84, 85],
where it was released in an autocrine manner in response to
pathogenic and allergenic agents. In the present study, we
observed TSLP expression by both IPEC-J2 and porcine DC.
Unexpectedly, MoDC-derived TSLP appeared to contribute
to an autocrine regulation under coculture conditions.

An autocrine regulation mechanism of MoDC has like-
wise been proposed on the basis of TGF-β secretion [37].
Butler et al. [37] observed a higher TGF-β release by human
DC cocultured in direct contact with IEC; this was accompa-
nied by weaker inflammatory reactions to pathogenic stimuli,
as stated earlier. However, this effect was absent in a separated
coculture setup that was more similar to our IPEC-J2/MoDC
cocultures [37]. According to our results, no clear impact of
cocultivation on TGF-β expression in porcine MoDC was
present, either at the mRNA or at the protein level.

Since it is unclear whether IPEC-J2 cells are capable of
producing TGF-β [86], we measured TGF-β at the mRNA
level. We verified TGF-β mRNA expression in IPEC-J2 cells
but which was, however, not regulated in the different treat-
ment groups. Consistent with our data, Butler et al. [37]
detected only very small amounts of TGF-β liberated by
IEC, so that TGF-β could not be identified as a modulating
IEC-derived mediator in the present experimental design.

Future studies are needed to obtain knowledge as to the
extent to which results may be different when a cocultivation
technique is used that allows direct contact between the
cocultured cell types. Here, we provide evidence supporting
a possible involvement of TSLP derived by porcine MoDC
in the communication between IPEC-J2 cells and MoDC.

5. Conclusions

In the present study, we established a porcine intestinal
model consisting of IPEC-J2 cells and MoDC. We
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investigated inflammatory reactions to selected bacterial
agents and found a more tolerogenic phenotype of
MoDC cocultured with IEC. This conclusion was sup-
ported by a downregulation of inflammasome-related
and other proinflammatory cytokines in comparison with
MoDC cultivated alone. We further provide the first evidence
that porcine caspase-13 is regulated in IPEC-J2 cells and por-
cine MoDC in response to bacterial infection. In IPEC-J2
cells, the possibly related noncanonical inflammasome path-
way appeared to be induced not only by ETEC infection but
also by the presence of MoDC. Finally, we demonstrated
the ability of IPEC-J2 cells and MoDC to secrete TSLP,
whereby an autocrine adaptation of cocultured MoDC was
indicated. Our results suggest that the control of inflamma-
tory responses by IEC is of critical importance to prevent
unrestricted cytokine production by resident immune cells.
More research is needed to unravel further the soluble fac-
tors that are implicated in IEC/DC interactions and to verify
the functional aspects of porcine caspase-13 in noncanonical
inflammasome signaling. We suggest the presented in vitro
coculture model is a promising tool for studying such
interactions in future.
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Chapter 7: Discussion 

Enterotoxigenic E. coli and the NLRP3 inflammasome response 

Inflammasomes are recognized as an integral part of defense mechanisms against intestinal 

pathogens (Chen and Nunez 2011; Opipari and Franchi 2015). Other than Salmonella 

Typhimurium, leading causes of diarrhea in pigs are pathogenic E. coli bacteria, predominantly 

ETEC (Dubreuil et al. 2016; Sun and Kim 2017). At the time around weaning, certain 

circumstances, such as the withdrawal of the sow’s milk, permit an augmented replication and 

colonization of toxin-producing E. coli bacteria in the piglet’s intestine (van Beers-Schreurs et 

al. 1992). As outlined in the Literature review (Chapter 2), inflammasome research in pigs is 

still in its infancy. In a recent review, Vrentas et al. (2018) have outlined current developments 

in this young field of research in species of veterinary interest, highlighting the discrepancies 

seen in these species compared with our understanding of inflammasomes in humans and 

rodents. In the present thesis, the focus of the investigation was on the impact of a pathogenic 

ETEC strain frequently causing post-weaning diarrhea in piglets on inflammasome responses 

and other inflammation parameters in porcine cells and tissues. 

The aim of the first study of the present thesis (Chapter 4) was to characterize 

inflammasome activation in porcine MoDC. To assess whether LPS priming is required for 

inflammasome activation upon bacterial stimulation or to what extent it alters the respective 

reactions in pigs, inflammasome responses were evaluated in primed and unprimed cells. As 

a priming signal, E. coli-derived LPS and a priming period of 3 h were used. Upon LPS 

incubation, qPCR analyses revealed increased mRNA expression levels of several 

inflammasome components, in particular NLRP3, IL-1β, IL-18, and caspase-1. As described 

in the Literature review (Chapter 2), an amplified transcription of NLRP3, IL-1β, and IL-18 is 

an expected outcome of LPS priming in mice and man. Given the results, LPS appeared to 

elicit comparable effects in porcine cells. Regarding the necessity of caspase-1 upregulation 

for inflammasome activation, evidence obtained in murine or rat macrophages is contradictory 

(Bauernfeind et al. 2011; Xie et al. 2014; Luo et al. 2017). In the study of Bauernfeind et al. 

(2011), inflammasome activation in murine macrophages was provoked without requiring a 

prior induction of caspase-1 synthesis.  

Corresponding to the elevated IL-1β mRNA expression measured in primed MoDC, the 

protein secretion of IL-1β was also increased by LPS priming. This is in line with findings 

achieved in human MoDC, in which LPS addition also elicited IL-1β liberation (Aiba et al. 2003). 

According to the present results, NLRP3 inflammasome activation upon ETEC infection 

occurred in primed and unprimed MoDC with earlier responses being detected in LPS-

preincubated cells. At the mRNA level, the stimulatory ETEC effect was mainly evidenced by 

augmented NLRP3 and IL-1β expression levels with a variable extent over time, whereas such 

effects on IL-18 mRNA expression were only clearly recognizable in unprimed MoDC. In a 

study of Zhang et al. (2013), the authors verified NLRP3 inflammasome activation by PRRSV 

infection in the presence and absence of LPS priming and reported a lower extent of 
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inflammasome responses without LPS pretreatment compared with that of primed 

macrophages. In human macrophages, mucosa-associated E. coli from patients with 

inflammatory bowel disease promoted NLRP3 inflammasome activation without additional 

preconditioning (De la Fuente et al. 2014). As previously elucidated in the Literature review 

(Chapter 2), bacterial stimulation can trigger both steps of inflammasome activation 

independently, and therefore, a preceding priming signal appears to be dispensable. 

Similar to the uncertainty concerning caspase-1 inducibility via priming, the effects on 

caspase-1 mRNA expression upon ETEC exposure were inconclusive in both primed and 

unprimed MoDC. Since Xue et al. (2017) determined caspase-1 upregulation by Shiga toxin-

producing E. coli O157:H7 at the protein level, such verification should also have been carried 

out in the present study. However, under the given circumstances, caspase-1 appeared to be 

sufficiently available to initiate a subsequent ETEC-triggered IL-1β protein release, even 

without a previous transcriptional amplification of caspase-1.  

In agreement with our own gene expression analyses, the ETEC-induced protein 

secretion of pro-inflammatory IL-1β was provoked at later stages in unprimed MoDC than in 

LPS-primed cells. With regard to possible modes of action, the aforementioned E. coli serotype 

O157:H7 has been demonstrated to promote inflammasome-dependent IL-1β liberation by 

human macrophages, mainly via its pore-forming toxin enterohemolysin (Zhang et al. 2012). 

In murine macrophages, E. coli-derived heat-labile enterotoxin has been identified as the agent 

responsible for IL-1β release associated with NLRP3 inflammasome activation (Li et al. 2014). 

Apart from these exotoxins, E. coli RNA (Kanneganti et al. 2006b; Eigenbrod and Dalpke 2015; 

Wang et al. 2016) and ROS generated upon E. coli infection (Xue et al. 2017) are also relevant 

for inflammasome activation. Furthermore, Gram-negative bacteria, such as E. coli, contain 

LPS in their outer membrane, which also drives inflammasome activation. It has to be taken 

into account that inflammasome activation processes are strain-specific and dependent on the 

host species, as previously shown for murine and human macrophages infected with 

uropathogenic E. coli strains (Schaale et al. 2016). As in this study, most of the insights into 

inflammasome activation mechanisms have been gained by using immune cells; however, Yen 

et al. (2016) have also considered it important to evaluate such E. coli-associated modes of 

action in IEC. 

In the second study of the thesis (Chapter 5), inflammasome responses were 

investigated in an in vitro co-culture model consisting of porcine IEC (cell line IPEC-J2) and 

MoDC. By using such an intestinal co-culture model, the study aimed to simulate the natural 

co-existence of both cell types. An assessment was made as to whether inflammatory 

response patterns of IPEC-J2 cells and porcine MoDC to a bacterial challenge were altered by 

the interplay between these cells.  

The extent to which the detected inflammasome responses were modified by co-

cultivation will be discussed in one of the following paragraphs. In general, the pathogenic 

ETEC challenge induced inflammasome activation in porcine MoDC, as previously reported in 

the first study (Chapter 4). Interestingly, IL-18 mRNA expression in porcine MoDC was less 

highly regulated in response to bacterial stimulation than IL-1β mRNA expression. In 
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agreement with this, some authors have stated that IL-18, in contrast to IL-1β, is constitutively 

expressed, and that, thus, an amplification of its transcription is not mandatory for valid 

inflammasome activation (Ghonime et al. 2014; Sutterwala et al. 2014). Moreover, the applied 

ETEC strain was also capable of triggering an inflammasome response in the jejunal epithelial 

cell line IPEC-J2, as primarily evidenced by an increased NLRP3 mRNA expression. The 

inflammasome pathway in IPEC-J2 cells has recently been examined by Fan et al. (2018b), 

who stimulated cells with the mycotoxin zearalenone and found elevated mRNA levels of 

caspase-1, the ASC adapter, IL-1β, and IL-18, indicating inflammasome activation. Other than 

these data, no studies exist regarding inflammasome activation in IPEC-J2 cells. To date, the 

significance of the NLRP3 inflammasome in the inflammatory and homeostatic conditions of 

the intestine remains a matter of debate (Sellin et al. 2015; Pellegrini et al. 2017; Rathinam 

and Chan 2018). According to Lissner and Siegmund (2011), the specific cell type determines 

whether inflammasome signaling acts in a regulatory or disruptive manner. The former is 

postulated for inflammasome activation in epithelial cells where it induces a renewal of the 

epithelial layer, whereas in gut-associated immune cells, inflammasome responses represent 

potentially harmful events (Lissner and Siegmund 2011). The use of murine models of 

inflammatory bowel disease confirmed that the NLRP3 inflammasome of the intestinal 

epithelium participates in gut homeostasis (Zaki et al. 2010; Song-Zhao et al. 2014). Based on 

this understanding, the role of IL-18 is likewise considered as two-sided, possessing a guard 

function within IEC and having an inflammation-promoting effect within mononuclear cells of 

the lamina propria (Siegmund 2010).  

To examine ex vivo effects of ETEC on inflammasome signaling, challenge 

experiments were performed by using porcine jejunal tissue from 80-day-old animals (Chapter 

6). For this purpose, the jejunal epithelia were incubated with pathogenic ETEC bacteria for 3 

h by applying the Ussing chamber technique. At the protein level, ETEC induced IL-1β 

liberation into the incubation medium, whereas IL-1β mRNA expression (and the mRNA 

expression of other inflammasome-related genes) remained unaffected. This observation 

indicated that a preceding transcription of IL-1β was not necessarily required for the assembly 

of inflammasome components and an associated IL-1β release. Barada et al. (2015) have 

investigated the time course of IL-1 responses upon electrocautery-induced colitis in rats and 

found time-dependent IL-1 transcription and secretion in small intestinal tissues, implying a 

biphasic IL-1 protein response. Likewise, time-dependent inflammasome responses of 

variable degrees have been documented by Wu et al. (2015) who monitored E. coli-triggered 

IL-1β, IL-18, NLRP3, caspase-1, and ASC expression levels up to 24 h post-infection in a 

bovine mastitis model. Thus, the sampling time is likely to have an impact on the outcome of 

such analyses.  

Probiotic Enterococcus faecium NCIMB 10415 and the NLRP3 inflammasome response 

Strong evidence suggests that probiotic species are capable of modulating inflammasome 

signaling pathways (Llewellyn and Foey 2017). In porcine GALT, probiotic Lactobacillus 

delbrueckii subsp. bulgaricus and Lactobacillus gasseri have been demonstrated to induce 
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NLRP3 mRNA expression in neonatal and adult pigs (Tohno et al. 2011). In the present work, 

probiotic E. faecium NCIMB 10415 was selected for its well-known positive effects on enteric 

infections in piglets (Scharek et al. 2005; Taras et al. 2006; Zeyner and Boldt 2006). The aim 

was to verify the ability of this probiotic strain to evoke inflammasome activation in the various 

cell types and intestinal tissues of porcine origin and to test the hypothesis that inflammasome 

signaling is involved in the probiotic effects of E. faecium NCIMB 10415.  

In the first study (Chapter 4), the influence of E. faecium NCIMB 10415 on the 

inflammasome signaling pathway in porcine MoDC was analyzed in vitro. In both primed and 

unprimed MoDC, probiotic incubation provoked no variations in inflammasome expression 

levels, either at the mRNA level or at the protein level. With regard to caspase-1 mRNA 

expression, a slight increase in primed MoDC upon E. faecium treatment could be observed. 

Similarly, caspase-1 activation by Enterococcus faecalis was found in a human macrophage 

cell line, in which the probiotic bacterium in turn caused caspase-1-induced IL-1β transcription 

and secretion (Yang et al. 2014). Conversely, the latter finding could not be confirmed in the 

present study. However, in the second study described in the current thesis (Chapter 5), E. 

faecium NCIMB 10415 had a weak impact on the inflammasome-linked cytokines IL-18 and 

IL-1β in MoDC monocultures at both the transcriptomic and the protein levels. The 

immunomodulatory capacity of various E. faecium strains has been documented in former 

studies in which strain- and dose-dependent IL-1β responses were measured in murine 

macrophages (Choi et al. 2012; Li et al. 2012) and human MoDC (Mansour et al. 2014).  

The first study described in the present thesis further aimed at testing whether 

preincubation with the probiotic strain altered the inflammasome response upon the 

subsequent ETEC challenge in porcine MoDC (Chapter 4). To this end, MoDC were pretreated 

with E. faecium for 1 h prior to the ETEC incubation. As indicated above, E. faecium 

monoincubation did not affect or only marginally influenced the NLRP3 inflammasome 

signaling pathway in these cells. In agreement with this finding, probiotic preincubation did not 

modify the ETEC response. The synthesis and release of the considered inflammasome 

components (NLRP3, IL-1β, and IL-18) were equally enhanced in the coincubation setup and 

after ETEC monoincubation. Hence, no NLRP3 inflammasome-dependent ameliorating effects 

by the probiotic on ETEC infection could be detected. In contrast to these results, Okada et al. 

(2009) demonstrated that Bifidobacterium species reduced E. coli LPS-induced IL-1β mRNA 

upregulation in a murine macrophage cell line. Likewise, probiotic Lactobacillus rhamnosus 

GR-1 revealed its protective potential during an E. coli O111:K58 challenge in bovine 

mammary epithelial cells attributable to a diminished NLRP3 inflammasome activation (Wu et 

al. 2015). As a possible mechanism for inflammasome activation by Gram-positive (and Gram-

negative) bacteria, the cell wall component muramyl dipeptide has been identified (Martinon 

et al. 2004). In human monocytic cells (cell line THP-1), Lactobacillus plantarum lipoteichoic 

acid alleviated IL-1β responses induced by peptidoglycan derived from Shigella flexneri (Kim 

et al. 2011). The ambiguous results achieved in these different studies emphasize the 

functional inhomogeneity of probiotic agents. 
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Referring to one central hypothesis of the present thesis, the observations obtained in 

the two different experimental designs do not support the assumption that the beneficial effects 

of E. faecium involve the NLRP3 inflammasome signaling pathway in porcine DC.  

In the second study detailed in the present thesis (Chapter 5), the capacity of the 

applied E. faecium strain to elicit inflammasome activation in IPEC-J2 cells was likewise 

investigated, with the result that the probiotic did not affect inflammasome expression in IPEC-

J2 cells, either in the mono- or in the co-culture systems. In contrast, probiotic E. coli Nissle 

1917 has been demonstrated to stimulate the NLRP3 inflammasome in human IEC (Caco-2) 

(Becker et al. 2014). Moreover, previous studies have revealed that probiotic bacterial strains 

and their products are capable of suppressing pathogen-driven pro-inflammatory responses in 

IEC (Roselli et al. 2006; Finamore et al. 2014; Ksonzekova et al. 2016). For example, 

Lactobacillus reuteri-derived exopolysaccharides have been shown to attenuate the ETEC-

triggered IL-1β response in IPEC-1 cells after preincubation (Ksonzekova et al. 2016). In the 

human intestinal cell line Caco-2, probiotic species, such as Lactobacillus amylovorus and 

Lactobacillus rhamnosus, were able to inhibit the IL-1β and IL-8 reactions caused by ETEC 

K88 when the probiotic bacteria or their cell-free supernatants were added simultaneously with 

the enteropathogen (Roselli et al. 2006; Finamore et al. 2014). Since a coincubation of the 

probiotic and the pathogenic strain was not included in the present study design, no statement 

regarding E. faecium-associated modifications during a pathogenic ETEC challenge in IPEC-

J2 cells can be made. However, preliminary experiments revealed no inflammasome-related 

beneficial potential of E. faecium upon ETEC infection in IPEC-J2 cells (unpublished data). 

Apart from this signaling pathway, our working group has previously found evidence for the 

capacity of E. faecium NCIMB 10415 to protect IPEC-J2 cells against ETEC-induced pro-

inflammatory alterations, such as the reduction of heat-shock-protein stress and the IL-8 

response (Klingspor et al. 2015) or the prevention of barrier disruption in IPEC-J2 monolayers 

(Kern et al. 2017).  

The impact of E. faecium NCIMB 10415 was also investigated in porcine jejunum ex 

vivo, and, additionally, the influence of probiotic preincubation followed by ETEC application 

was addressed (Chapter 6). In the coincubation setup, jejunal tissues were preincubated with 

E. faecium for 1 h as in the in vitro co-cultures and subsequently challenged with ETEC for 3 

h. The duration of monoincubations was 3 h in this experimental design. Interestingly, the 

results obtained in this ex vivo approach differed markedly from those achieved in vitro. In 

particular, the pretreatment of jejunal epithelia with probiotic E. faecium abolished the ETEC-

triggered IL-1β protein release. In contrast to the in vitro results (Chapter 4), this indicates that 

E. faecium is capable of modifying inflammasome signaling. Similarly, in a feeding trial, 

Lactobacillus plantarum strains reduced the expression levels of genes linked to 

inflammasome signaling in the small intestine of diabetic rats (Vilahur et al. 2015).  

In that third study (Chapter 6), a further focus was on the effects of probiotic E. faecium 

supplementation to 29-day-old piglets on the mRNA expression of various inflammasome 

components. The main finding of this feeding trial was a stimulatory effect of E. faecium on the 

ASC expression in the jejunum and ileum in comparison with the control group. However, the 
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expression profiles of IL-1β, IL-18, NLRP3, and caspase-1 were unchanged by probiotic 

supplementation. The latter findings were in agreement with those achieved in probiotic-fed 

dogs, in which E. faecium had no influence on the expression of IL-1β, IL-18, and NLRP3 in 

the duodenum and colon (Schmitz et al. 2015).  

In summary, the observations concerning the probiotic effects of E. faecium are to some 

extent contradictory in the present studies and differ between ex vivo and in vitro approaches. 

As illustrated earlier, probiotic effects are often related to a specific strain and dependent on a 

certain dose. In the various studies described in the current thesis, the applied doses of E. 

faecium and ETEC varied depending on the experimental design, considering the 

appropriateness of the bacterial concentrations for the employed cells and tissues. In 

particular, whole intestinal tissues were less vulnerable than the used cell cultures. In a recent 

review of the beneficial effects of probiotic bacteria on ETEC-induced diarrhea in pigs, Dubreuil 

(2017) has underlined the high variability of results from cell culture versus animal studies 

addressing such probiotic effects. Thus, in vitro intestinal co-culture models probably do not 

fully allow the modeling of the complexity of whole tissues. The suitability of the various models 

applied in the present work will be discussed in one of the following sections.  

Non-canonical inflammasome activation  

One hypothesis examined in the current thesis was that porcine caspase-13 represents a 

promising candidate mediating non-canonical inflammasome signaling in pigs (Chapter 5). 

Caspase-13 mRNA levels increased upon ETEC incubation in porcine MoDC and more clearly 

in IPEC-J2 cells. These results indicate that ETEC drives non-canonical inflammasome 

activation in these cells. As outlined in the Literature review (Chapter 2), non-canonical 

inflammasome activation is regulated by caspase-4 in human and by caspase-11 in murine 

cells. An amplified transcription upon stimulation has been reported for murine caspase-11, 

whereas human caspase-4 is constitutively expressed (Russo et al. 2018). In this regard, 

porcine caspase-13 appeared to share similar characteristics as murine caspase-11. 

Interestingly, IEC-related caspase-11 has been observed to possess protective functions 

during experimental colitis in mice, as verified by a hypersensitivity to dextran-sulfate-sodium-

induced intestinal inflammation in caspase-11-deficient mice associated with impeded IL-18 

production (Oficjalska et al. 2015; Williams et al. 2015). Furthermore, non-canonical 

inflammasome activation has been postulated in human IEC via Salmonella Typhimurium and 

enteropathogenic E. coli mediated by human caspase-4 (Kobayashi et al. 2013; Knodler et al. 

2014). With regard to underlying modes of action, TLR4-dependent TIR-domain-containing 

adaptor-inducing interferon-β has been identified to regulate caspase-11 expression and 

activation by mediating type I interferon signaling in response to Gram-negative bacteria, such 

as enteropathogenic E. coli (Broz et al. 2012; Gurung et al. 2012; Rathinam et al. 2012). Since 

caspase-13 expression was considerably changed in IPEC-J2 cells, TLR4 mRNA expression 

levels were studied in these cells. The detected ETEC-induced upregulation indicated an 

involvement of TLR4 in the signaling pathway for caspase-13 activation in IPEC-J2 cells. Shi 

et al. (2014) have further verified that, during non-canonical inflammasome activation, murine 
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caspase-11 and human caspase-4/-5 directly bind to LPS. In a murine model, Lupfer et al. 

(2014) have demonstrated that ROS drive caspase-11-linked non-canonical inflammasome 

signaling in mice infected with enteropathogenic Citrobacter rodentium. Likewise, bacterial 

secretion systems have been shown to contribute to caspase-11 activation in murine 

macrophages (Casson et al. 2013). As the non-canonical inflammasome pathway has not yet 

been described in pigs, such investigations are lacking in this species.  

Analysis of the caspase-13 mRNA expression in porcine MoDC indicated that the 

impact of ETEC on caspase-13 expression was weaker compared with that found in IPEC-J2 

cells. Moreover, caspase-4 and -11 have been found to be abundantly expressed in IEC and 

intestinal tissues, underlining the significance of non-canonical inflammasome signaling for the 

epithelial host defense in the intestine (Kang et al. 2004; Demon et al. 2014; Knodler et al. 

2014). Therefore, the transcriptional control of caspase-13 in porcine MoDC is assumed to be 

of minor importance, at least under the given experimental conditions. Future studies are 

required to verify whether caspase-13 constitutes the porcine functional equivalent to the 

aforementioned caspases of the non-canonical inflammasome pathway.  

The NLRP6 and NLRC4 inflammasome 

In addition to the NLRP3 inflammasome, the NLRP6 and NLRC4 inflammasomes represent 

two well-characterized inflammasomes. The first study presented in the current thesis 

(Chapter 4) not only investigated NLRP3 inflammasome signaling in porcine DC, but also 

aimed at screening other members of the inflammasome-forming NLR receptor family in these 

cells. In the second study (Chapter 5), the NLRC4 gene was included in the expression 

analyses in IPEC-J2 cells. In the third study (Chapter 6), tissue-specific NLRP6 mRNA 

expression levels were further examined in the jejunum, ileum, and colon of piglets of different 

ages (29 and 70 days).  

In porcine MoDC, NLRP6 mRNA could not be detected, whereas NLRP6 expression 

was found in variable quantities in porcine intestinal tissues from different locations, 

corresponding to the assumption that NLRP6 is primarily present in cells of the intestinal 

epithelium (Levy et al. 2017). In the intestinal segments, the amount of NLRP6 mRNA differed 

in dependence on location and age, with declining expression levels from the jejunum to the 

colon. With regard to the age of the tested animals, it was observed that the detected 

differences became smaller with increasing age. In terms of these expression patterns, the 

porcine intestinal mucosa appeared to be more similar to the human counterpart in which 

NLRP6 is more strongly expressed in the small intestine than in the colon (Gremel et al. 2015). 

In the murine gut, high NLRP6 expression is found in the epithelial cells of the small and large 

intestine (Elinav et al. 2011; Normand et al. 2011). Therefore, pigs have been suggested to be 

a suitable model for such immunological studies on inflammasome signaling pathways in 

preference to mice. As previously mentioned, the NLRP6 inflammasome is mainly involved in 

inflammasome signaling in the intestinal epithelium, but in addition to IEC, murine immune 

cells, including DC, have also been shown to express NLRP6 (Normand et al. 2011). Although 

Dawson et al. (2017) have stated that the structure of NLRP6 is similar in humans, mice, and 
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pigs, the findings of the present studies appear to show inconsistencies with regard to the 

porcine counterparts, e.g., concerning the lack of NLRP6 in porcine MoDC.  

NLRC4 mRNA expression was also addressed in porcine MoDC (Chapter 4) and 

IPEC-J2 cells (Chapter 5). In the applied experimental designs, porcine MoDC and IPEC-J2 

cells were both negative for NLRC4 mRNA. In agreement with this finding, Sakuma et al. 

(2017) and Dawson et al. (2017) also ascertained no NLRC4 gene expression in pigs, a result 

that implies the absence of a functional NLRC4 inflammasome in this species. Interestingly, 

Ahn et al. (2018) have recently reported that the well-known NLRC4 trigger flagellin induces 

IL-1β secretion by porcine peripheral blood mononuclear cells (PBMC), leading to the 

conclusion that the NLRC4 inflammasome works properly in these cells. In the comparative 

study of Dawson et al. (2017), the authors emphasize that alternatives to the NLRC4 

inflammasome pathway are probably involved in the immune response to flagellin and type 3 

secretion systems derived from E. coli in pigs. In murine macrophages, redundant roles are 

thought to account for the NLRP3 and NLRC4 inflammasomes in responses against 

Salmonella Typhimurium (Broz et al. 2010). In this regard, Ahn et al. (2018) have declared that 

they doubt whether their determined IL-1β release was evoked by the activation of the NLRC4 

inflammasome or by the stimulation of other inflammasomes, such as NLRP3.  

The inflammatory response in an in vitro co-culture model of porcine intestinal and 

dendritic cells 

In the second study described in the present thesis (Chapter 5), pro-inflammatory 

inflammasome and cytokine responses of IPEC-J2 cells and porcine MoDC were revealed to 

be influenced by their mutual interplay to different extents.  

Porcine MoDC displayed a more tolerogenic phenotype in the presence of IPEC-J2 

cells. Compared with MoDC monocultures, the response of co-cultured MoDC to the 

pathogenic ETEC challenge was attenuated with a lower upregulation of IL-1β, IL-18, and 

NLRP3 at the mRNA level and, as a trend, of IL-1β at the protein level. Similarly, pro-

inflammatory IL-8 reactions were also lower at the mRNA and protein levels in MoDC from 

IPEC-J2/MoDC co-cultures.  

Immune cells, such as DC, have been shown to express NLRP3 abundantly; this 

enables a large production of IL-1β (Kummer et al. 2007). However, in patients suffering from 

inflammatory bowel disease, the generation of pro-inflammatory cytokines including IL-1β and 

IL-8 occurs in an unrestricted and destructive manner (Nakamura et al. 1992; Grimm et al. 

1996). In the current study, porcine IEC appeared to alleviate enteropathogen-associated pro-

inflammatory reactions in neighboring MoDC. In previous studies, similar beneficial effects of 

human and murine IEC on the pro-inflammatory responsiveness of adjacent immune cells 

have been documented (Butler et al. 2006; Chen et al. 2006). In the study of Butler et al. 

(2006), the pro-inflammatory LPS response of human MoDC was downregulated when they 

were co-cultivated in direct contact with human IEC (cell line Caco-2). Likewise, murine Peyer’s 

patch lymphocytes have been shown to secrete smaller quantities of pro-inflammatory IL-6 

upon LPS challenge in the presence of IEC (Chen et al. 2006). 
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In contrast to porcine MoDC, the modifications in IPEC-J2 cells attributable to 

interactions with MoDC were less intense and primarily reflected by caspase-13 expression. 

As mentioned above, ETEC application induced an upregulation of caspase-13 at the mRNA 

level. This induction was more pronounced in IPEC-J2 cells co-cultured with porcine MoDC 

than in IPEC-J2 monocultures. In addition, it was observed that caspase-13 expression in 

IPEC-J2 cells was also augmented merely as a result of the co-cultivation with MoDC (without 

any bacterial treatment). To illuminate this finding further, caspase-1 expression was examined 

in IPEC-J2 cells, and an increase of caspase-1 mRNA was likewise detected in co-cultured 

IPEC-J2 cells. These similarities indicate a correlation between caspase-13 and caspase-1 

expression. In murine co-cultures containing preadipocytes and muscle cells or fibroblasts, the 

mRNA expression levels of caspase-3, -7 or -9 were in some cases upregulated as an effect 

of co-culturing (Pandurangan et al. 2012; Subramaniyan et al. 2016). To date, comparable 

studies on caspases targeting non-canonical inflammasome activation are lacking. Unlike 

caspase-4, -5, and -11, caspase-1 is able to process interleukins (Ding and Shao 2017). IEC 

are recognized as the main source of IL-18, which has a pivotal role in the regeneration of the 

intestinal epithelium (Zaki et al. 2010; Harrison et al. 2015), whereas uncertainty persists 

regarding the ability of IEC to produce IL-1β (Crowley et al. 2017). Our own observations 

confirmed the minor production of IL-1β in IPEC-J2 cells. Since IPEC-J2-related IL-18 mRNA 

expression patterns tended to resemble those found for caspase-13, this indicates a link 

between caspase-13 and IL-18. Underlying mechanisms of non-canonical inflammasome 

activation are as yet incompletely understood; however, this signaling pathway appears to 

reveal differences between IEC and myeloid cells (Crowley et al. 2017). Contrary to the 

previous assumption that inflammasome signaling is restricted to cells of myeloid origin, recent 

research has indicated that non-canonical inflammasome signaling in IEC, in particular, plays 

a key role in immune defenses against enteropathogens (Knodler et al. 2014; Crowley et al. 

2017). In conclusion, the obtained results indicate that non-canonical inflammasome signaling 

prevailing under co-culture conditions is modulated in IPEC-J2 cells. 

A further aim was to elucidate the underlying mechanisms of the bidirectional crosstalk 

between IPEC-J2 cells and MoDC (Chapter 5). In the applied Transwell co-culture systems, 

the two cell types had no direct contact with each other. Consequently, cell-delivered humoral 

signals, which were able to pass through the filter membrane, were suggested as being 

involved in IPEC-J2/MoDC interactions. As potential candidates, TSLP and TGF-β were 

included in the analyses.  

In the present study, IPEC-J2 cells and porcine MoDC were both found to be capable 

of releasing TSLP. TSLP is considered to be an epithelial-derived cytokine, but it can also be 

produced by immune cells such as DC (Kashyap et al. 2011; Elder et al. 2013; Elder et al. 

2016). In these former studies, an autocrine TSLP secretion by DC was demonstrated upon 

pathogenic or allergenic exposure (Kashyap et al. 2011; Elder et al. 2013; Elder et al. 2016).  

Rimoldi et al. (2005b) conditioned human DC with cell-free supernatants of IEC 

followed by a Salmonella challenge in order to establish that soluble factors mediate IEC/DC 

interactions. Pretreated DC secreted lower amounts of pro-inflammatory cytokines, e.g., IL-1β, 
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which the authors attributed to conditioning by IEC-delivered TSLP (Rimoldi et al. 2005b). The 

present data suggest an autocrine regulation mechanism in co-cultured MoDC, as indicated 

by the elevated TSLP secretion in the presence of IPEC-J2 cells.  

With respect to TGF-β, its expression was detectable in both cell types (mRNA and 

protein levels) under the present experimental conditions, and the expression levels were 

unaffected by the various treatments. In the aforementioned human intestinal model of Butler 

et al. (2006), the TGF-β release by IEC was measured and found to be very low in these cells; 

therefore, TGF-β could not be pinpointed as the IEC-derived modulating agent in their study. 

Similar to TSLP, TGF-β secretion by human DC appeared to follow autocrine reaction patterns 

with higher TGF-β levels being detected in DC co-cultured in a direct contact system with 

Caco-2 cells (Butler et al. 2006). Notably, this observation could not be verified in a second 

separated co-culture setup (Butler et al. 2006), which resembled the present IPEC-J2/MoDC 

co-cultures.  

In future studies, the utilization of co-culture systems that allow direct contacts between 

the co-cultured cell types should broaden previous insights. Moreover, other soluble mediators 

should be addressed to further our understanding of the communication between IEC and 

underlying immune cells.  

Screening of inflammasome expression in porcine small and large intestinal tissues  

The third study of the current thesis focused on a functional screening of inflammasome 

expression along the gut, whereby intestinal tissues were systematically analyzed for various 

inflammasome components (NLRP3, IL-1β, IL-18, caspase-1, and ASC) (Chapter 6). The 

expression levels between the following intestinal regions were compared: jejunum, ileum, and 

colon. No data concerning the longitudinal distribution of inflammasomes in porcine intestinal 

tissues had been previously available. In addition to location effects, two different age groups 

were included in the experimental design: 29-day-old piglets and 70-day-old growing pigs.  

Evaluation of caspase-1 and ASC revealed decreasing mRNA expression levels from 

the jejunum to the ileum to the colon. This tendency could not be verified with regard to IL-1β. 

However, in the control group of the feeding trial with E. faecium (Chapter 6), a trend for 

decreasing IL-1β mRNA expression levels was noted along the various intestinal tissues of 29-

day-old piglets. In a similar study, regional differences of immune genes were investigated in 

porcine intestinal tissues of piglets of the same age under steady-state conditions (Collado-

Romero et al. 2010). In that study, the authors detected higher IL-1β mRNA expression in the 

ileum than in the colon (Collado-Romero et al. 2010). IL-18 mRNA expression exhibited no 

clear region-dependent differences in the present study. In comparison, Munoz et al. (2015) 

determined higher IL-18 expression in murine duodenum compared with jejunum and ileum, 

whereas no marked differences between the latter two locations were observed.  

Apart from that, differences in the distribution of caspase-1 and ASC along the gut were 

more pronounced in 29-day-old piglets compared with 70-day-old growing pigs. During the 

development of the porcine immune system, the number and dissemination of intestinal 

immune cells changed with a greater number of immune cells in the jejunum of 25-day-old 
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piglets than in the ileum, whereas this gap narrowed in older animals, possibly because of, for 

example, the increased number of CD2+ cells in the ileum (Brown et al. 2006). Since 

inflammasomes are expressed in immune cells and also in epithelial cells (see Literature 

review, Chapter 2), the levels of inflammasome-associated genes might be affected by the 

number of these cell types. However, no age-related effects were noted with regard to IL-1β 

and IL-18 mRNA expression in the present study. In agreement with this, a comparison 

between two age groups revealed no age-dependent variations in the IL-1β mRNA level of 

human ileum (Man et al. 2015).  

Models for microbial investigations  

In the current work, various bacterial challenge experiments were carried out by employing in 

vitro and ex vivo techniques. In the first study, immunological analyses were performed in in 

vitro monocultures of porcine MoDC (Chapter 4), whereas in the second part, this approach 

was broadened by establishing an in vitro co-culture model consisting of porcine IEC and 

MoDC (Chapter 5). To draw further comparisons, diverse porcine intestinal tissues were 

studied ex vivo by means of the Ussing chamber technique (Chapter 6).  

Since knowledge concerning inflammasome pathways in pigs is sparce, the first focus 

was on analyses of inflammasome responses to bacterial incubation in porcine immune cells. 

DC were selected as this cell type represents a unique immune cell population crucial for the 

control of appropriate immune responses in the gut (see Literature review, Chapter 2). The 

generation of blood-derived DC is a widely used technique in various species. Prior to the 

bacterial challenge experiments, the utilized protocol for the generation of porcine MoDC was 

established in our laboratory. After the isolation of PBMC by density gradient centrifugation, 

porcine CD14+ monocytes can be purified by using antibodies against CD14 followed by 

magnetic-activated cell sorting (MACS) (Wang et al. 2007; Park et al. 2008). Like their human 

and murine counterparts, porcine MoDC can be differentiated from blood monocytes by the 

addition of the cytokines IL-4 and granulocyte-macrophage colony-stimulating factor (GM-

CSF) (Carrasco et al. 2001; Paillot et al. 2001). The advantages of this procedure are, for 

example, the ready availability of blood samples and the possibility of repeated blood 

samplings without the killing of pigs (Summerfield and McCullough 2009). However, this 

method requires a large number of PBMC (Nedumpun et al. 2016), but this was not limiting in 

the current studies. Porcine DC are well-characterized and have been shown to be valuable 

for immunological investigations, e.g., upon pathogenic exposure (McCullough et al. 2009; 

Summerfield and McCullough 2009; Facci et al. 2010). Moreover, DC are well suited for such 

studies because of their ability to produce a large quantity of cytokines upon stimulation 

(Kleiveland 2015). In the present studies (Chapters 4 and 5), flow cytometric analyses were 

performed to confirm the successful generation of porcine MoDC. The surface markers CD14, 

CD16, CD1, and swine leukocyte antigen (SLA) II were examined before and after 

differentiation (day 0 and day 6). Determination of CD14 expression allowed the effectiveness 

of the separation technique after the positive selection of CD14+ cells to be assessed. In 

addition, viability was monitored during the differentiation process by using propidium iodide 

Chapter 7: Discussion



Chapter 7: Discussion 

 

74 
 

as a viability dye. Flow cytometric phenotypical characterization revealed a high purity of 

MACS-separated CD14+ monocytes. Following differentiation, the cells were considered as 

porcine MoDC when tested as being CD14+ CD16+ CD1+ SLA+ cells. 

As initially reviewed (Chapter 2), gut-associated DC maintain close contact with the 

intestinal epithelium. The interplay between porcine MoDC and porcine IEC was the key focus 

of the second study of the current thesis (Chapter 5). To this end, the non-cancerous and non-

transformed continuous cell line IPEC-J2 was selected as a porcine small intestinal epithelial 

model. This cell line is valued as a useful tool for microbiological examination, which may also 

deliver results transferable to human intestinal infections (Schierack et al. 2006; Brosnahan 

and Brown 2012). However, in vitro intestinal models including IEC merely as monocultures 

do not adequately reflect the in vivo characteristics of functional intestinal epithelia (Bermudez-

Brito et al. 2013). Therefore, the aim was to model the intestinal environment in vitro by 

reconstructing the presence of MoDC in the subepithelial compartment of IPEC-J2 cells grown 

on culture inserts of Transwell systems. The inclusion of IEC into the study design allowed 

barrier integrity during bacterial challenges to be monitored by TEER measurements, which 

represent an important readout for the possible pathogen-associated impairment of the 

epithelial barrier. In a number of differently designed studies, Transwell co-culture systems of 

human IEC and immune cells were utilized to model inflammatory states of the gut and to 

assess the impact of various apathogenic and pathogenic bacteria (Haller et al. 2000; Parlesak 

et al. 2004; Nurmi et al. 2005; Rimoldi et al. 2005a; Mileti et al. 2009; Fang et al. 2010; Pozo-

Rubio et al. 2011; Bermudez-Brito et al. 2015). Only a few studies have been carried out in 

porcine IEC/immune cell co-cultures, in which the focus was on the immunomodulatory 

capacity of probiotic Lactobacilli strains (Nissen et al. 2009; Hosoya et al. 2011; Suda et al. 

2014). In none of these human and porcine intestinal co-culture models have inflammasome 

signaling pathways been addressed. The outcome of the present co-culture study indicates 

that the reactivity patterns of DC are strongly affected by the interplay with co-existing IEC. 

The results demonstrate that inflammasome and other inflammatory responses are modified 

by co-culture. Those co-culture systems are advantageous as they allow the examination of 

interactions between IEC and underlying immune cells, although they are time-consuming 

(Kleiveland 2015). Moreover, the systems are cultured under static conditions and, therefore, 

the experiments are restricted in their duration (Benam et al. 2015). Our own preliminary 

experiments have revealed that the limiting factors are (i) the increasingly detrimental effects 

of the bacteria over time, a problem that requires the adjustment of bacterial concentrations 

depending on the experimental setup, and (ii) the negative influence of repeated rinsing 

resulting in enhanced cell detachment.  

To expand the findings achieved in vitro, an ex vivo study was conducted that enabled 

to capture the entire complexity of the intestinal mucosa (Chapter 6). On the one hand, the 

expression levels of the various inflammasome components were determined in three different 

segments of the gut (jejunum, ileum, and colon). The data were compared between 29-day- 

and 70-day-old animals, and in addition, the effect of probiotic supplementation with E. faecium 

NCIMB 10415 was analyzed. On the other hand, Ussing chamber experiments were performed 
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with jejunal tissues from 80-day-old piglets. In these ex vivo experiments, the epithelia were 

directly incubated with the probiotic E. faecium and/or the pathogenic ETEC strain.  

The Ussing chamber technique, named after Hans Ussing who introduced this method 

to study ion transport processes across the epithelium of frog skin (Ussing and Zerahn 1951), 

involves epithelial tissues (or epithelial cell monolayers grown on permeable cell culture 

inserts) being mounted in a chamber such that they separate the chamber into an apical and 

a basolateral compartment; thus, the differentiation between the mucosal and serosal side is 

allowed. Each half of the system contains buffer solution, which is constantly perfused with 

gas (95% O2 and 5% CO2, also known as carbogen). The Ussing chamber technique has been 

applied not only to intestinal epithelial tissues, but also, for example, to epithelia originating 

from the reproductive or respiratory tract, the epithelia of the exocrine and endocrine glands, 

the choroid plexus, and the eye (Clarke 2009). A major benefit compared with the 

aforementioned in vitro approaches is that whole tissues and not mere single cell types can be 

evaluated. By using the Ussing chamber method, mucosal permeability can be assessed, in 

addition to transport and barrier properties and immune responses being analyzed with regard 

to regional differences along the gut. Consequently, more information is provided compared 

with investigations involving in vitro cell cultures. However, similar to the Transwell co-culture 

systems, the throughput of this method is limited (Westerhout et al. 2015). The disadvantages 

of the Ussing chamber technique are the restricted viability of the tissue samples and the often 

great variations between individual animals (Westerhout et al. 2015). Moreover, mechanical 

effects attributable to intestinal peristalsis cannot be considered in the analysis of 

enteropathogen-associated alterations (Benam et al. 2015).  

In summary, the work of the current thesis, which was divided into three parts in order 

to carry out inflammasome-related investigations at various experimental levels, provides 

insights into porcine inflammasome signaling pathways, which is still a largely unexplored area 

of research. The effects observed after probiotic E. faecium and pathogenic ETEC treatment 

vary partially between in vitro and ex vivo experiments, underlining the urgent need for 

verification at both levels.   
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Conclusion 

The inflammasome pathway represents a relatively newly discovered immune signaling 

pathway responding to bacteria appearing in the gastrointestinal tract. In the three studies 

described in the current thesis, inflammasome responses to various bacterial agents were 

examined in porcine in vitro cell culture models and in ex vivo experiments with diverse 

intestinal tissues of pigs.  

The bacterial challenge with diarrhea-causing ETEC IMT4818 stimulated the NLRP3 

inflammasome in vitro and ex vivo, whereas probiotic E. faecium NCIMB 10415 did not 

promote inflammasome activation. Given the in vitro results, E. faecium appeared not to exert 

its beneficial effects during ETEC infection through NLRP3 inflammasome signaling in porcine 

DC and the porcine jejunal cell line IPEC-J2. In contrast, during an ex vivo ETEC challenge, 

the probiotic E. faecium strain was able to abolish ETEC-induced IL-1β protein liberation from 

jejunal epithelia, indicating an inflammasome-dependent protective effect of E. faecium. With 

regard to caspase-13, first indications were obtained suggesting its involvement in the non-

canonical inflammasome signaling pathway in porcine cells; however, functional 

considerations require further clarification. The systematic analysis of inflammasome 

expression in porcine intestinal tissues (jejunum, ileum, and colon) revealed decreasing levels 

of distinct inflammasome components (NLRP6, ASC, and caspase-1) in an oral to aboral 

direction resembling the human counterparts. 

Furthermore, a porcine in vitro co-culture model of IPEC-J2 cells and MoDC was 

established. Using this intestinal model, a more tolerogenic phenotype of MoDC was 

determined in response to ETEC when IEC were present. Although the evidence suggests 

TSLP as a potential mediator between both cell types, mechanisms ensuring the IPEC-

J2/MoDC crosstalk should be elucidated in future studies.  

The results detailed in the current thesis emphasize the pig as a suitable model for 

immunological investigations involving inflammasome pathways. Since the findings regarding 

the positive effects of E. faecium are ambiguous, the assessment of such scientific issues at 

various experimental levels has emerged as being of particular importance. In addition, the 

porcine intestinal co-culture model appears to be a valuable tool for investigating IEC/immune 

cell interactions in vitro. 
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Chapter 8: Summary 

Summary of the PhD thesis: 

 

Inflammasomes as potential mediators of probiotic effects in porcine intestinal immune 

and epithelial cells  

 

Post-weaning diarrhea is a widespread problem in pig rearing. Common causative agents are 

enterotoxigenic E. coli bacteria. Since post-weaning diarrhea is associated with a high 

morbidity and mortality rate, innovative prevention and therapy strategies are required. The 

probiotic strain E. faecium NCIMB 10415 has been demonstrated to be a promising tool to 

counter this disease. With regard to immunological events, host-pathogen interactions include 

recognition via innate immune receptors, such as NLR, some of which form inflammasomes. 

These multiprotein complexes license caspase-1 to process the pro-inflammatory cytokines 

IL-1β and IL-18. Little is known about the involvement of inflammasome signaling pathways in 

post-weaning diarrhea in piglets or about the role of the NLRP3 inflammasome in promoting 

probiotic effects.  

The objective of the present work was to analyze inflammasome responses to 

pathogenic ETEC IMT4818 with relevance for post-weaning diarrhea and probiotic E. faecium 

NCIMB 10415, an authorized feed additive for sows and piglets, in in vitro and ex vivo 

experiments in various porcine cells and tissues. Since myeloid cells are well suited for 

investigations into the functions of inflammasomes, the first study of the current thesis was 

carried out on porcine DC derived from blood monocytes. To determine whether 

inflammasome signaling contributes to probiotic effects of E. faecium NCIMB 10415, porcine 

MoDC were pretreated with the probiotic prior to a pathogenic ETEC challenge. Moreover, 

inflammasome activation processes were further monitored in the presence and absence of a 

priming signal displayed by LPS. LPS priming induced the transcription of inflammasome 

components, a characteristic of the first step of inflammasome activation. Inflammasome 

stimulation occurred upon incubation with ETEC, but not with E. faecium. As compared with 

LPS-preincubated cells, the observed ETEC effects appeared at later time points when the 

MoDC were left unprimed. In the applied experimental setup, preincubation with probiotic E. 

faecium did not mediate protective effects during a pathogenic ETEC challenge via the NLRP3 

inflammasome in porcine DC.  

In the second study, a porcine intestinal co-culture model consisting of IEC (cell line 

IPEC-J2) and immune cells (MoDC) was established in order to mimic the bidirectional 

interplay between these two cell types. The aim was to unravel any alterations in the immune 

response patterns of IPEC-J2 cells and DC to the added bacteria attributable to mutual 

IEC/immune cell interactions. In addition, the question was addressed as to which soluble 

factors mediate this communication. Furthermore, the expression of caspase-13 was 

analyzed, as it has been suggested as a potential candidate driving non-canonical 
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inflammasome activation in pigs. MoDC revealed a more tolerogenic phenotype in the 

presence of IPEC-J2 cells showing attenuated inflammasome and IL-8 responses. Porcine 

caspase-13 was affected by bacterial incubation in each cell type. In the cell line IPEC-J2, non-

canonical inflammasome signaling appeared to be initiated by ETEC infection and by co-

cultivation with DC. With regard to possible mediators of IPEC-J2/MoDC crosstalk, evidence 

was found for TSLP secretion by IPEC-J2 cells and MoDC. The detected tolerogenic activity 

of co-cultured MoDC might be partly explained by an autocrine TSLP regulation in these cells.  

The third part of the present thesis comprises a systematic investigation in which 

inflammasome components have been examined in tissues from the small and large intestine 

of pigs at two different ages. A feeding trial was aimed at testing the impact of probiotic E. 

faecium on inflammasome expression in piglets. To verify the results obtained in vitro, porcine 

jejunal epithelia were incubated ex vivo with the aforementioned bacterial strains in mono- and 

coincubation setups (probiotic preincubation and a subsequent challenge with ETEC) 

employing the Ussing chamber technique. The systematic analysis showed that, similar to their 

human counterparts, the expression of certain inflammasome components (particularly 

NLRP6, ASC, and caspase-1) decreased gradually from the jejunum to the colon. Probiotic 

supplementation had only a weak impact on inflammasome expression levels. However, E. 

faecium was capable of reducing ETEC-triggered IL-1β protein liberation in the experiments 

challenging jejunal tissues. In contrast to the in vitro results, this indicated the involvement of 

the inflammasome pathway in probiotic effects of E. faecium NCIMB 10415. 

In conclusion, infection with ETEC IMT4818 caused inflammasome activation in vitro 

and ex vivo. The results of probiotic treatment with E. faecium NCIMB 10415 varied between 

in vitro and ex vivo approaches, with inflammasome-related advantageous effects being 

detected solely in the ex vivo study involving the ETEC challenge of porcine jejunum. In the 

established IPEC-J2/MoDC co-culture model, the presence of IPEC-J2 cells induced a 

tolerogenic phenotype in co-cultured MoDC indicating that reciprocal interactions between IEC 

and underlying immune cells orchestrate immunological responses.  
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Zusammenfassung der Dissertation: 

 

Das Inflammasom als potentieller Vermittler probiotischer Effekte in porzinen 

Darmimmun- und Darmepithelzellen 

 

Durchfallerkrankungen beim Absatzferkel sind ein weitverbreitetes Problem in der 

Schweineaufzucht. Häufige verursachende Erreger sind enterotoxische E. coli-Bakterien. Da 

Durchfallerkrankungen beim Absatzferkel mit einer hohen Morbiditäts- und Mortalitätsrate 

assoziiert ist, sind innovative Präventions- und Therapiestrategien erforderlich. Es wurde 

gezeigt, dass der probiotische Stamm E. faecium NCIMB 10415 ein vielversprechendes 

Werkzeug darstellt, diesem Erkrankungskomplex zu begegnen. Hinsichtlich der 

immunologischen Vorgänge kommt es im Zuge der Wechselwirkungen zwischen Wirt und 

Pathogen zur Erkennung durch angeborene Immunrezeptoren, wie NLR, von denen einige 

Inflammasome bilden. Diese Multiproteinkomplexe ermöglichen, dass Caspase-1 die pro-

inflammatorischen Zytokine IL-1β und IL-18 prozessiert. Es ist wenig über die Beteiligung von 

Inflammasom-Signalwegen bei Durchfallerkrankungen der Absatzferkel sowie über die Rolle 

des NLRP3-Inflammasoms bei der Vermittlung probiotischer Effekte bekannt.  

Ziel der vorliegenden Arbeit war es, in in-vitro- und ex-vivo-Versuchen mit 

verschiedenen porzinen Zellen und Geweben die Inflammasom-Antworten auf den 

pathogenen Stamm ETEC IMT4818, der bei Durchfallerkrankungen der Absatzferkel eine 

Rolle spielt, und das Probiotikum E. faecium NCIMB 10415, welches als Futterzusatzstoff für 

Sauen und Ferkel zugelassen ist, zu analysieren. Aufgrund dessen, dass sich myeloide Zellen 

sehr gut dazu eignen, Funktionen des Inflammasoms zu untersuchen, wurden in der ersten 

Studie der vorliegenden Dissertation porzine dendritische Zellen verwendet, die aus 

Blutmonozyten differenziert wurden. Um zu bestimmen, ob der Inflammasom-Signalweg zu 

den probiotischen Effekten von E. faecium NCIMB 10415 beiträgt, wurden porzine Monozyten-

abgeleitete dendritische Zellen (MoDC) vor der pathogenen ETEC-Challenge mit dem 

Probiotikum vorbehandelt. Zudem wurde die Aktivierung des Inflammasoms in der An- und 

Abwesenheit eines Priming-Signals, welches durch LPS vermittelt wurde, betrachtet. Das 

Priming mittels LPS induzierte die Transkription von Inflammasom-Komponenten, was den 

ersten Schritt der Inflammasom-Aktivierung darstellt. Als Folge einer Inkubation mit ETEC, 

nicht aber durch E. faecium, kam es zur Aktivierung des Inflammasoms. Im Vergleich zu mit 

LPS vorbehandelten Zellen traten die beobachteten ETEC-Effekte zu späteren Zeitpunkten 

auf, wenn die MoDC keinem Priming unterzogen wurden. In porzinen dendritischen Zellen 

vermittelte die Präinkubation mit probiotischen E. faecium-Bakterien im Rahmen der 

pathogenen ETEC-Challenge keine protektiven Effekte über das NLRP3-Inflammasom.  

In der zweiten Studie wurde ein porzines intestinales Kokultur-Modell aus intestinalen 

Epithelzellen (Zelllinie IPEC-J2) und Immunzellen (MoDC) etabliert, um das bidirektionale 

Wechselspiel zwischen diesen beiden Zelltypen nachzuahmen. Das Ziel war es, 

Veränderungen der immunologischen Reaktionsmuster von IPEC-J2- und dendritischen 
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Zellen auf die zugegebenen Bakterien aufzudecken, zu denen es infolge der gegenseitigen 

Beeinflussung kam. Zusätzlich wurde der Fragestellung nachgegangen, welche löslichen 

Faktoren diese Kommunikation vermitteln. Weiterhin wurde die Expression von Caspase-13 

untersucht, welche als potentieller Kandidat für die Steuerung der nicht-kanonischen 

Inflammasom-Aktivierung im Schwein vorgeschlagen wurde. In Anwesenheit von IPEC-J2-

Zellen zeigten die MoDC einen toleranteren Phänotyp, indem sie abgeschwächte 

Inflammasom- und IL-8-Reaktionen aufwiesen. In beiden Zelltypen wurde die porzine 

Caspase-13 durch die bakterielle Inkubation beeinflusst. In der Zelllinie IPEC-J2 schien der 

nicht-kanonische Inflammasom-Signalweg sowohl durch eine Infektion mit ETEC, als auch 

durch die Kokultivierung mit dendritischen Zellen angestoßen zu werden. In Bezug auf 

mögliche Mediatoren der Kommunikation zwischen IPEC-J2-Zellen und MoDC wurden 

Hinweise für eine TSLP-Sekretion durch beide Zelltypen gefunden. Dabei könnte die 

Toleranzinduktion der kokultivierten MoDC zum Teil auf eine autokrine TSLP-Regulation in 

diesen Zellen zurückzuführen sein. 

Im dritten Teil der vorliegenden Arbeit wurde eine systematische Untersuchung von 

Inflammasom-Komponenten in Geweben des Dünn- und Dickdarms von Schweinen 

unterschiedlichen Alters durchgeführt. Ein Fütterungsversuch zielte darauf, den Einfluss des 

Probiotikums E. faecium auf die Inflammasom-Expression in Ferkeln zu prüfen. Um die in-

vitro-Ergebnisse zu verifizieren, wurden porzine jejunale Epithelien ex vivo unter Verwendung 

der Ussing-Kammer-Technik mit den zuvor genannten Bakterienstämmen in Mono- und 

Koinkubationsansätzen (Präinkubation mit dem Probiotikum und anschließende ETEC-

Challenge) inkubiert. Die systematische Analyse ergab, dass die Expression bestimmter 

Inflammasom-Komponenten (namentlich NLRP6, ASC und Caspase-1) ähnlich zu ihren 

humanen Pendants schrittweise vom Jejunum zum Kolon sank. Die Supplementierung mit 

dem Probiotikum hatte nur einen geringen Einfluss auf das Inflammasom-assoziierte 

Expressionsniveau. Jedoch waren die E. faecium-Bakterien im Rahmen der Challenge-

Versuche mit Jejunumgeweben in der Lage, die ETEC-induzierte IL-1β-Proteinsekretion zu 

reduzieren. Im Gegensatz zu den in-vitro-Ergebnissen deutete dies an, dass der 

Inflammasom-Signalweg an den probiotischen Effekten von E. faecium NCIMB 10415 beteiligt 

ist.  

Als Schlussfolgerung ergab sich, dass die Infektion mit ETEC IMT4818 sowohl in vitro 

als auch ex vivo zur Inflammasom-Aktivierung führte. Die Resultate der probiotischen 

Behandlung mit E. faecium NCIMB 10415 variierten zwischen in-vitro- und ex-vivo-Ansätzen 

insofern, dass vorteilhafte Effekte in Verbindung mit dem Inflammasom-Weg ausschließlich in 

der ex-vivo-Studie gezeigt werden konnten, bei der porzines Jejunum einer ETEC-Challenge 

unterzogen wurde. Im entwickelten Kokultur-Modell aus IPEC-J2-Zellen und MoDC zeigte 

sich, dass die Anwesenheit von IPEC-J2-Zellen einen toleranten Phänotyp in kokultivierten 

MoDC hervorrief, was andeutete, dass reziproke Wechselwirkungen zwischen Darmepithel- 

und darunter liegenden Immunzellen immunologische Antworten orchestrieren.  
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