
1Scientific Reports |         (2019) 9:10997  | https://doi.org/10.1038/s41598-019-47335-w

www.nature.com/scientificreports

ORCA-SPOT: An Automatic Killer 
Whale Sound Detection Toolkit 
Using Deep Learning
Christian Bergler1, Hendrik Schröter1, Rachael Xi Cheng2, Volker Barth3, Michael Weber3, 
Elmar Nöth1, Heribert Hofer   2,4,5 & Andreas Maier   1

Large bioacoustic archives of wild animals are an important source to identify reappearing 
communication patterns, which can then be related to recurring behavioral patterns to advance the 
current understanding of intra-specific communication of non-human animals. A main challenge 
remains that most large-scale bioacoustic archives contain only a small percentage of animal 
vocalizations and a large amount of environmental noise, which makes it extremely difficult to 
manually retrieve sufficient vocalizations for further analysis – particularly important for species 
with advanced social systems and complex vocalizations. In this study deep neural networks were 
trained on 11,509 killer whale (Orcinus orca) signals and 34,848 noise segments. The resulting toolkit 
ORCA-SPOT was tested on a large-scale bioacoustic repository – the Orchive – comprising roughly 
19,000 hours of killer whale underwater recordings. An automated segmentation of the entire Orchive 
recordings (about 2.2 years) took approximately 8 days. It achieved a time-based precision or positive-
predictive-value (PPV) of 93.2% and an area-under-the-curve (AUC) of 0.9523. This approach enables an 
automated annotation procedure of large bioacoustics databases to extract killer whale sounds, which 
are essential for subsequent identification of significant communication patterns. The code will be 
publicly available in October 2019 to support the application of deep learning to bioaoucstic research. 
ORCA-SPOT can be adapted to other animal species.

There has been a long-standing interest to understand the meaning and function of animal vocalizations as well 
as the structures which determine how animals communicate1. Studies on mixed-species groups have advanced 
the knowledge of how non-human primates decipher the meaning of alarm calls of other species2,3. Recent 
research indicates that bird calls or songs display interesting phonological, syntactic, and semantic properties4–8. 
In cetacean communication, whale songs are a sophisticated communication system9, as in humpback whales 
(Megaptera novaeangliae) whose songs were found to be only sung by males and mostly during the winter breed-
ing season10. These are believed to attract prospective female mates and/or establish dominance within male 
groups11,12. Moreover, studies on captive and temporarily captured wild bottlenose dolphins (Tursiops truncatus) 
have shown that individually distinct, stereotyped signature whistles are used by individuals when they are iso-
lated from the group13–15, in order to maintain group cohesion16.

Many different animal species have a strong ability to communicate. In this study, the killer whale was used 
as a prototype in order to confirm the importance and general feasibility of using machine-based deep learning 
methods to study animal communication.

Killer whales (Orcinus orca) are the largest members of the dolphin family and are one of several species 
with relatively well-studied and complex vocal cultures17. Recent studies on killer whale and bottlenose dolphin 
brains reveal striking and presumably adaptive features to the aquatic environment18–21. They are believed to play 
an important role in their communicative abilities and complex information processing22. Extensive research 
on killer whale acoustic behavior has taken place in the Northeast Pacific where resident fish-eating, transient 
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mammal-eating and offshore killer whales can be found, the three ecotypes of killer whales in this region. They 
differ greatly in prey preferences, vocal activity, behavior, morphology and genetics23–27. Figure 1 shows the pop-
ulation distribution and geographic ranges of killer whales in the Northeast Pacific. Resident killer whales live in 
stable matrilineal units that join together to socialize on a regular basis, forming subpods and pods28,29. Different 
pods produce distinct vocal repertoires, consisting of a mixture of unique and shared (between matrilines) dis-
crete call types, which are referred to as dialects. Ford30 and Wiles31 suggested that individuals from the same 
matriline and originating from a common ancestor most likely share similar acoustic vocal behaviors. Pods that 
have one or more discrete calls in common are classified as one acoustic clan32. The diverse vocal repertoire of 
killer whales comprises clicks, whistles, and pulsed calls33. Like other odontocetes, killer whales produce echolo-
cation clicks, used for navigation and localization, which are short pulses of variable duration (between 0.1 and 
25 ms) and a click-repetition-rate from a few pulses to over 300 per second33 (Fig. 2a). Whistles are narrow band 
tones with no or few harmonic components at frequencies typically between 1.5 and 18 kHz and durations from 
50 ms up to 12 s33 (Fig. 2b). As recently shown, whistles extend into the ultrasonic range with observed fundamen-
tal frequencies ranging up to 75 kHz in three Northeast Atlantic populations but not in the Northeast Pacific34. 
Whistles are most commonly used during close-range social interactions. There are variable and stereotyped 
whistles35–37. Pulsed calls, the most common and intensively studied vocalization of killer whales, typically show 
sudden and patterned shifts in frequency, based on the pulse repetition rate, which is usually between 250 and 
2000 Hz33 (Fig. 2c). Pulsed calls are classified into discrete, variable, and aberrant calls33. Some highly stereotyped 
whistles and pulsed calls are believed to be culturally transmitted through vocal learning36,38–41. Mammal-hunting 
killer whales in the Northeast Pacific produce echolocation clicks, pulsed calls and whistles at significantly lower 
rates than fish-eating killer whales36,42,43 because of differences in the hearing sensitivity of their respective prey 
species44. The acoustic repertoire in terms of discrete calls of Northeast Pacific killer whales is made up of calls 
with and without a separately modulated high-frequency component45. The use of discrete calls, with and without 
an overlapping high-frequency component, was also observed in southeast Kamchatka killer whales46. In the 
Norwegian killer whale population, pod-specific dialects were reported47, and a number of call types used in dif-
ferent contexts were documented47,48, though much less is known about their vocalizations and social systems49.

With the decrease of hardware costs, stationary hydrophones are increasingly deployed in the marine envi-
ronment to record animal vocalizations amidst ocean noise over an extended period of time. Bioacoustic data 
collected in this way is an important and practical source to study vocally active marine species50–53 and can 
make an important contribution to ecosystem monitoring54. One of the datasets that the current study uses is the 
Orchive55,56, containing killer whale vocalizations recorded over a period of 23 years and adding up to approx-
imately 19,000 hours. Big acoustic datasets contain a wealth of vocalizations. However, in many cases the data 
density in terms of interesting signals is not very high. Most of the large bioacoustic databases have continuously 
been collected over several years, with tens of thousands of hours usually containing only a small percentage of 
animal vocalizations and a large amount of environmental noise, which makes it extremely difficult to manually 
retrieve sufficient vocalizations for a detailed call analysis56,57. For example, so far only ≈1.6% of the Orchive was 
partially annotated by several trained researchers. This is not only time consuming and labor intensive but also 
error-prone and often results in a limited sample size, being too small for a statistical comparison of difference58, 

Figure 1.  Geographic ranges (light shading) of killer whale populations in northeastern Pacific (British 
Columbia, Canada) (Illustration recreated after Wiles31).
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and thus for the recognition of significant patterns. Both, the strong underrepresentation of valuable signals, and 
the enormous variation in the characteristics of acoustic noise are big challenges. The motivation behind our 
work is to enable a robust and machine-driven segmentation, in order to efficiently handle large data corpora and 
separate all interesting signal types from noise.

Before conducting a detailed call analysis, one needs to first isolate and extract the interesting bioacoustic 
signals. In the past decade, various researchers have used traditional signal processing and speech recognition 
techniques, such as dynamic time warping59–61, hidden Markov and Gaussian mixture models62–65, as well as 
spectrogram correlation66,67 to develop algorithms in order to detect dolphin, bowhead whale, elephant, bird, and 
killer whale vocalizations. Others have adopted techniques like discriminant function analysis68,69, random forest 
classifiers70,71, decision tree classification systems72, template-based automatic recognition73, artificial neural net-
works74–77, and support vector machines56,78 in conjunction with (handcrafted) temporal and/or spectral features 
(e.g. mel-frequency cepstrum coefficients) for bat, primate, bird, and killer whale sound detection/classification. 
Many of the aforementioned research works59–67,69,72,74,75,77,78 used much smaller datasets, both for training and 
evaluation. In addition, for many of those traditional machine-learning techniques, a set of acoustic (handcrafted) 
features or parameters needed to be manually chosen and adjusted for the comparison of similar bioacoustic 
signals. However, features derived from small data corpora usually do not reflect the entire spread of signal vari-
eties and characteristics. Moreover, traditional machine-learning algorithms often perform worse than modern 
deep learning approaches, especially if the dataset contains a comprehensive amount of (labeled) data79. Due 
to insufficient feature qualities, small training/validation data, and the traditional machine-learning algorithms 
themselves, model robustness and the ability to generalize suffer greatly while analyzing large, noise-heavy, and 
real-world (unseen) data corpora containing a variety of distinct signal characteristics. Furthermore, traditional 
machine-learning and feature engineering algorithms have problems in efficiently processing and modelling the 
complexity and non-linearity of large datasets80. Outside the bioacoustic field, deep neural network (DNN) meth-
ods have progressed tremendously because of the accessibility to large training data and increasing computational 
power by the use of graphics processing units (GPUs)81. DNNs have not only performed well in computer vision 
but also outperformed traditional methods in speech recognition as evaluated in several benchmark studies82–85. 
Such recent successes of DNNs inspired the bioacoustic community to apply state-of-the-art methods on animal 
sound detection and classification. Grill86 adopted feedforward convolutional neural networks (CNNs) trained on 
mel-scaled log-magnitude spectrograms in a bird audio detection challenge. Other researchers also implemented 
various types of deep neural network architecture for bird sound detection challenges79 and for the detection of 
koala activities87. Google AI Perception recently has successfully trained a convolutional neural network (CNN) 
to detect humpback whale calls in over 15 years of underwater recordings captured at several locations in the 
Pacific57.

This study utilizes a large amount of labeled data and state-of-the-art deep learning techniques (CNN) effec-
tively trained to tackle one main challenge in animal communication research: develop an automatic, robust, and 
reliable segmentation of useful and interesting animal signals from large bioacoustic datasets. None of the above 
mentioned previous studies focused on such an extensive evaluation in real-world-like environments, verifying 
model robustness and overall success in generalization under different test cases and providing several model 
metrics and error margins in order to prepare and derive a network model that will be able to support researchers 
in future fieldwork.

Figure 2.  Spectrograms of three characteristic killer whale sounds (sampling rate = 44.1 kHz, FFT-size = 4,096 
samples (≈100 ms), hop-size = 441 samples (≈10 ms)).
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The results from this study provide a solid cornerstone for further investigations with respect to killer whale 
communication or any other communicative animal species. Robust segmentation results enable, in a next step, 
the generation of machine-identified call types, finding possible sub-units, and detecting reoccurring commu-
nication patterns (semantic and syntactic structures). During our fieldwork, conducted in British Columbia 
(Vancouver Island) in 2017/2018, video footage on killer whale behaviour of about 89 hours was collected. The 
video material, together with the observed behavioral patterns, can be used to correlate them with the derived 
semantic and syntactic communication patterns. This is a necessary step ahead towards deriving language pat-
terns (language model) and further understanding the animals.

The well-documented steps and the source code88 will be made freely available to the bioacoustic community 
in October 2019. Other researchers can improve/modify the algorithms/software in order to use it for their own 
research questions, which in turn will implicitly advance bioacoustics research. Moreover, all segmented and 
extracted audio data of the entire Orchive will be handed over to the OrcaLab55 and Steven Ness56.

Data Material
The following section describes all datasets used for network training, validation and testing. Table 1 gives a brief 
summary of all used datasets and provides an overview on the amount of data and sample distribution of each 
partition. Each data corpus consists of already extracted and labeled killer whale and noise audio files of various 
length. In order to use the illustrated labeled data material as network input, several data preprocessing and aug-
mentation steps were processed as described in detail in the methods section. Each audio sample was transformed 
into a 2-D, decibel-scaled, and randomly augmented power spectrogram, corresponding to the final network 
input. The network converts each input sample into a 1 × 2 matrix reflecting the probability distribution of the 
binary classification problem – killer whale versus noise (any non-killer-whale sound).

Orchive annotation catalog (OAC).  The Orchive55,56 was created by Steven Ness56 and the OrcaLab55, 
including 23,511 tapes each with ≈45-minute of underwater recordings (channels: stereo, sampling rate: 
44.1 kHz) captured over 23 years in Northern British Columbia (Canada) and summing up to 18,937.5 h. The 
acoustic range of the hydrophones covers the killer whales’ main summer habitats in Johnstone Strait (British 
Columbia, Canada) by using 6 radio-transmitting, various custom-made stationary hydrophones having an over-
all frequency response of 10 Hz–15 kHz89. A two-channel audio cassette recorder (Sony Professional, Walkman 
WM-D6C or Sony TCD-D3) was used to record the mixed radio receiver output by tuning to frequencies of the 
remote transmitters89. The entire hydrophone network was continuously monitored throughout day and night 
during the months when Northern Resident killer whales generally visit this area (July – Oct./Nov.) and was 
manually started when killer whales were present. Based on the Orchive, the OrcaLab55, Steven Ness56, and several 
recruited researchers extracted 15,480 human-labeled audio files (Orchive Annotation Catalog (OAC)) through 
visual (spectrogram) and aural (audio) comparison, resulting in a total annotation time of about 12.3 h. The 
Orchive tape data, as well as the OAC corpus, is available upon request55,56. A more detailed overview about the 
recording territory of OrcaLab55 is shown in Fig. 3b. The annotations are distributed over 395 partially-annotated 
tapes of 12 years, comprising about 317.7 h (≈1.68% of the Orchive). The killer whale annotations contain various 
levels of details, from labels of only echolocation clicks, whistles, and calls to further knowledge about call type, 
pod, matriline, or individuals. The original OAC corpus contains 12,700 killer whale sounds and 2,780 noise clips. 
Of about 12,700 labeled killer whale signals only ≈230 are labeled as echolocation clicks, ≈40 as whistles, and 
≈3,200 as pulsed calls. The remaining ≈9,230 killer whale annotations are labeled very inconsistently and without 
further differentiation (e.g.“orca”, “call”) and therefore do not provide reliable information about the respective 
killer whale sound type. The annotated noise files were split into human narrations and other noise files (e.g. boat 
noise, water noise, etc.). Human voices are similar to pulsed calls considering the overlaying harmonic structures. 
For a robust segmentation of killer whale sounds human narrations were excluded. Furthermore, files that are 
corrupted, mislabeled or have bad qualities were excluded. Summing up, 11,504 labels (9,697 (84.3%) killer whale, 
1,807 (15.7%) noise) of the OAC corpus (Table 1) were used and split into 8,042 samples (69.9%) for training, 
1,711 (14.9%) for validation and 1,751 (15.2%) for testing. Audio signals from each single tape were only stored 
in either train, validation or test set.

Automatic extracted orchive tape data (AEOTD).  OAC has an unbalanced killer whale/noise dis-
tribution. As a solution, 3-second audio segments were randomly extracted from different Orchive tapes, 
machine-labeled by an early version of ORCA-SPOT, and if applicable manually corrected. The evaluation was 

split

training validation test

samples samples samples

dataset killer whale noise sum % killer whale noise sum % killer whale noise sum %

OACb 11,504 6,829 1,213 8,042 69.9 1,425 286 1,711 14,9 1,443 308 1,751 15.2

AEOTDa 17,995 1,289 13,135 14,424 80.2 276 1,511 1,787 9.9 102 1,682 1,784 9.9

DLFD 31,928 3,391 20,500 23,891 74.8 1,241 2,884 4,125 12.9 1,108 2,804 3,912 12.3

SUM 61,427 11,509 34,848 46,357 75.5 2,942 4,681 7,623 12.4 2,653 4,794 7,447 12.1

Table 1.  Overview datasets and data distribution. aDataset available upon request55,56. bOrchive tapes available 
upon request55,56.
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done by listening to the machine-segmented underwater signals as well as verifying the respective spectrograms 
in parallel. In total this semi-automatically generated dataset (AEOTD) contains 17,995 3-second audio clips. 
AEOTD consisted of 1,667 (9.3%) killer whale and 16,328 (90.7%) noise files. During validation, very weak 
(silent) parts (no underwater noise or any noticeable signal) of the tapes as well as special noises (e.g. microphone 
noises, boat noises, etc.), which are not part of the OAC corpus, were increasingly detected as killer whales, con-
tributing to a growing false-positive-rate. Therefore, very weak (silent) audio samples were added to the training 
set only. As for OAC the 17,995 samples were split into 14,424 (80.2%) training, 1,787 (9.9%) validation and 1,784 
(9.9%) test clips (Table 1). Similarly, annotations from each single tape were only stored in one of the three sets.

DeepAL fieldwork data 2017/2018 (DLFD).  The DeepAL fieldwork data 2017/2018 (DLFD)90 were col-
lected via a 15-m research trimaran in 2017/2018 in Northern British Columbia by an interdisciplinary team 
consisting of marine biologists, computer scientists and psychologists, adhering to the requirements by the 
Department of Fisheries and Oceans in Canada. Figure 3a visualizes the area which was covered during the field-
work expedition in 2017/2018. A custom-made high sensitivity and low noise towed-array was deployed, with a 
flat frequency response of within ±2.5 dB between 10 Hz and 80 kHz. Underwater sounds were digitized with a 
sound acquisition device (MOTU 24AI) sampling at 96 kHz, recorded by PAMGuard91 and stored on hard drives 
as multichannel wav-files (5 total channels, 4 hydrophones in 2017 plus 1 additional channel for human research-
ers; 24 total channels, 8 channels towed array, 16 channels hull-mounted hydrophones in 2018). The 2017/2018 
total amount of collected audio data comprises ≈157.0 hours. Annotations on killer whale vocalizations were 
made by marine biologists through visual and aural comparison using Raven Pro 1.592 and John Ford’s30 call type 
catalog. In total the labeled 2017/2018 DeepAL fieldwork data (DLFD)90 includes 31,928 audio clips. The DLFD 
datset includes 5,740 (18.0%) killer whale and 26,188 (82.0%) noise labels. The total amount of 31,928 audio files 
was split into 23,891 (74.8%) train, 4,125 (12.9%) validation, and 3,912 (12.3%) test samples (Table 1), whereas 
samples of different channels of a single tape were only stored in one set.

Results
The results are divided into three sections. The first section investigates the best ORCA-SPOT network architec-
ture (Fig. 4). Once the architecture was chosen, ORCA-SPOT was trained, validated and tested on the dataset 
listed in Table 1. Validation accuracy was the basis for selecting the best model. First, two model versions of 
ORCA-SPOT (OS1, OS2) were verified on the test set. OS1 and OS2 utilized identical network architectures 
and network hyperparameters. Both models only differed in the number of noise samples included in the train-
ing set and the normalization technique used within the data preprocessing pipeline (dB-normalization versus 
mean/standard deviation (stdv) normalization). Due to identical network setups and an inconsistent training 
data corpus, the main intention of such a model comparison was not to directly compare two different networks, 
but rather illustrating the proportion of changing network independent parameters in order to further improve 
the overall model generalization and (unseen) noise robustness. In a second step we ran OS1 and OS2 on 238 
randomly chosen ≈45-minute Orchive tapes (≈191.5 h audio), calculating the precision. Additionally OS1 and 
OS2 were evaluated on 9 fully-annotated, ≈45-minute Orchive tapes, which were chosen based on the number of 
killer whale activities. The AUC metric was used to determine the accuracy of classification.

Network architecture.  ORCA-SPOT was developed on the basis of the well-established ResNet architec-
ture93. Two aspects were reviewed in greater detail: (1) traditional ResNet architectures with respect to their depth 
and (2) removal/preservation of the max-pooling layer in the first residual layer. The behavior of deeper ResNet 

Figure 3.  (a) (left) Expedition route and data collection range of DeepAL project 2017/2018 (b) (right) A 
network of hydrophones and the acoustic range of the OrcaLab55 (Illustration b) recreated after OrcaLab55 and 
Ness56).
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architectures in combination with the impact of the max-pooling layer (3 × 3 – kernel, stride 2) in the first resid-
ual layer were examined in a first experiment. ResNet18, ResNet34, ResNet50, and ResNet101 were used as com-
mon ResNet variants. All these traditional and well-established network architectures are described in detail in 
the work of He et al.93. Each model was trained, developed and tested on the dataset illustrated in Table 1 in order 
to handle the binary classification problem between killer whale and noise. The test set accuracy, using a threshold 
of 0.5 (killer whale/noise), was chosen as a criterion for selecting the best architecture. In three evaluation runs 
under equal conditions (identical network hyperparameters, equal training/validation/test set, and same evalu-
ation threshold) the max-pooling option was investigated together with various ResNet architectures. Random 
kernel-weight initializations and integrated on-the-fly augmentation techniques led to slight deviations with 
respect to the test accuracy of each run. For each option and respective ResNet model, the maximum, mean, and 
standard deviation of all three runs was calculated. Table 2 shows that deeper ResNet models do not necessarily 
provide significant improvements on test set accuracy. This phenomenon can be observed in cases of removing or 
keeping max-pooling. Models without max-pooling in the first residual layer displayed an improvement of ≈1% 
on average. Furthermore, the marginal enhancements of the averaged test set accuracy during the application of 
deeper ResNet architectures resulted in much longer training times on an Nvidia GTX 1080 (ResNet18 = ≈4 h, 
ResNet34 = ≈6 h, ResNet50 = ≈8 h, ResNet101 = ≈10 h). Apart from the training time, the inference time of 
deeper networks was also significantly longer. ResNet18 processed an Orchive tape of ≈45-minutes length within 
about 2 minutes. ResNet34 took about 3.5 minutes and ResNet50 lasted about 5 minutes, resulting in a real-time 
factor of 1/13 and 1/9 compared to ResNet18 with 1/25. The entire Orchive (≈19,000 hours) together with four 
prediction processes (Nvidia GTX 1050) running in parallel resulted in a computation time of eight days for 
ResNet18, 14 days for ResNet34, and 20 days for ResNet50. Compared to ResNet18, none of the deeper ResNet 
architectures led to a significant improvement in terms of mean test set accuracy. ResNet18 performed on average 
only ≈0.5 percent worse than the best architecture (ResNet50) but was more than twice as fast relating to training 
and inference times. For all other ResNet architectures, the differences in accuracy were even smaller. As the final 
network architecture, ResNet18 without max-pooling in the first residual layer was chosen, in order to maximize 
the trade-off between accuracy and training/inference times. In particular, the second aspect is very important in 
terms of using the software on the vessel in the field. Due to limited hardware and the requirement to parse the 
incoming audio data in quasi real-time (killer whale versus noise), a good network performance is of essential 
importance. ResNet18 performs well, even on a mid-range GPU.

ORCA-SPOT – training/validation/test set metrics.  This section describes in detail the training, 
validation, and testing process of two different models, named ORCA-SPOT-1 (OS1) and ORCA-SPOT-2 
(OS2). Both models depend on the same modified ResNet18 architecture and used identical network hyperpa-
rameters. During the entire training and validation phase the following metrics were evaluated: classification 
accuracy (ACC), true-positive-rate (TPR, recall with respect to “killer whale”), false-positive-rate (FPR), and 
positive-predictive-value (PPV, precision with respect to “killer whale”). The AUC was used to describe the test 
set results. All metrics, calculated after every epoch, are visualized in Fig. 5. OS2 implements a dB-normalization 
(min = −100 dB, ref = +20 dB) between 0 and 1, whereas OS1 includes a mean/stdv – normalization approach. 

Figure 4.  ORCA-SPOT network architecture.

Model

ORCA-SPOT-MAX-POOL ORCA-SPOT-NO-MAX-POOL

Accuracy % Statistics % Accuracy % Statistics %

Arch run1 run2 run3 max mean stdv run1 run2 run3 max mean stdv

ResNet18 95.39 93.99 92.84 95.39 94.08 1.28 95.88 96.15 94.40 96.15 95.48 0.94

ResNet34 93.65 95.72 95.20 95.72 94.86 1.08 96.13 95.65 95.12 96.13 95.64 0.51

ResNet50 92.39 95.76 94.88 95.76 94.35 1.75 96.37 95.90 95.61 96.37 95.96 0.38

ResNet101 94.39 95.33 95.01 95.33 94.91 0.47 95.81 94.10 96.24 96.24 95.39 1.13

Table 2.  Model accuracies for common ResNet architectures by comparing architectures with and without max 
pooling (3 × 3 kernel, stride 2) in the first residual layer.
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Especially tapes without any noticeable underwater/killer whale sound activities led to extreme values regarding 
the mean/stdv – normalization due to a standard deviation close to zero causing higher false positive rates. To 
counteract this problem of very weak (silent) signals a dB-normalization was performed within a fixed range 
(0–1). OS2 was trained on the training set displayed in Table 1. The training set of OS2 differs from the training 
set of OS1 by containing 6,109 additional noise samples in the AEOTD corpus. The main motivation was to 
further improve the generalization and noise robustness of the model by adding more additional unseen noise 
samples. Those noise samples were previously represented in neither train nor validation or test set, since they are 
not included in the annotated OAC or DLFD corpus, but only occur in the Orchive. Consequently, adding such 
noise characteristics only to the training will most likely not improve the metrics on the test dataset. However, 
an improvement is expected when it comes to the evaluation of unseen Orchive tape data. The model with the 
best validation accuracy was picked to run on the test set. Figure 5 shows that OS2 performed slightly better than 
OS1. The similarities in terms of validation and test metrics between both models were expected, because those 
additional noise files were only added to the training set. Moreover, the validation/test data (Table 1) do not com-
pletely reflect the real situation of the Orchive. A considerable amount of very weak (silent) audio parts and spe-
cial/rare noise files was observed in those tapes. Slightly better results of OS2 are primarily a consequence of the 
changed normalization approach. However, additional noise files had a positive effect on the analysis of the entire, 
enormously inhomogeneous, Orchive data. Based on the 7,447 test samples (Table 1) combined with a threshold 
of ≥0.5 (killer whale/noise), OS1 achieved the following results: ACC = 94.66%, TPR = 92.70%, FPR = 4.24%, 
PPV = 92.42%, and AUC = 0.9817. OS2 accomplished the following results: ACC = 94.97%, TPR = 93.77%, 
FPR = 4.36%, PPV = 92.28%, and AUC = 0.9828. For handling the extreme variety of audio signals in the 

Figure 5.  ORCA-SPOT training, validation and test set metrics (Table 1).
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≈19,000 hours of underwater recordings, it is particularly important to have a well generalizing and robust net-
work which can reliably segment.

Orchive.  In a next step, OS1 and OS2 were applied to all 23,511 Orchive tapes. Each tape was processed using 
a sliding window approach with a window size of 2 s and a step size of 0.5 s. More detailed information about all 
different evaluation scenarios is given in the methods section. All resulting audio segments were classified by OS1 
and OS2 into “noise” or “killer whale”. The threshold for detecting “killer whale” and calculating the PPV was 
set to ≥0.85 for both models. Based on the detected killer whale time segments, annotation files were created in 
which contiguous or neighboring killer whale time segments were combined into one large segment. By having 
a small step size of 0.5 s and thus a high overlap of 1.5 s, neighboring segments in general were similar. To exploit 
this property, an additional smoothing method was introduced to deliver more robust results. Detected “noise” 
segments were assigned as “killer whale”, if they are exclusively surrounded by classified “killer whale” segments. 
Neighboring segments are segments that contain signal parts of the preceding or following overlapping time 
segments. This procedure removed single outliers in apparent homogeneous signal regions classified as “killer 
whale”. Due to the applied smoothing temporally short successive killer whale sound segments are combined 
into larger segments. Because of the extraordinary amount of data, manual evaluation was limited to 238 tapes 
(≈191.5 hours). Considering a confidence level of 95.0% with respect to 23,511 Orchive tapes corresponds to an 
error margin of about 6.0% when evaluating 238 tapes. For each year, a number of tapes was randomly selected, 
ranging from 6 to 22 per year. Every selected tape was neither included in the training nor in the validation set of 
OS1 and OS2. All extracted killer whale segments were manually verified by the project team. Each of the audio 
clips, segmented and extracted as killer whale, was listened to, and in addition visually checked by verifying the 
spectrograms. Time segments containing ≥1 killer whale signal were considered as TP, whereas time segments 
with no killer whale activation were regarded as FP. Human voice encounters were excluded from the evaluation. 
Table 3 visualizes the results of 238 verified Orchive tapes. In the first column (Y) each of the 23 years is displayed. 
The second column (T) illustrates the total numbers of processed tapes per year. The rest of the Table is separated 
into: detected killer whale segments (S) and metric (M). The killer whale segments were split into total, true and 
false killer whale segments. The extracted killer whale parts were analyzed by using two different units – samples 
and time in minutes. The PPV has been calculated for both models, also in a sample- and time-based way. The last 
row of Table 3 displays the final and overall results. The maximum clip length for OS1/OS2 was 691.0/907.5 sec-
onds. On average, the classified killer whale segments for OS1/OS2 were about 5.93/6.46 seconds. OS1 extracted 
in total 19,056 audio clips (31.39 h), of which 16,646 (28.88 h) segments were true killer whale sounds and 2,410 

Orchive tapes

S & M

detected killer whale segments metric

total segments true killer whale segments false killer whale segments PPV (%)

Y & T

samples time (min.) samples time (min.) samples time (min.) samples time (min.)

OS1 OS2 OS1 OS2 OS1 OS2 OS1 OS2 OS1 OS2 OS1 OS2 OS1 OS2 OS1 OS2

1985 20 1,923 2,072 243.94 279.80 1,835 1,966 240.08 272.78 88 106 3.86 7.02 95.42 94.88 98.42 97.49

1986 7 568 492 43.44 39.40 462 478 38.54 38.84 106 14 4.90 0.56 81.34 97.16 88.72 98.58

1987 9 782 911 63.10 79.70 761 900 61.77 79.28 21 11 1.33 0.42 97.31 98.79 97.90 99.47

1988 10 690 838 66.44 90.93 631 752 63.81 84.26 59 86 2.63 6.67 91.45 89.74 96.05 92.67

1989 9 418 486 35.54 39.80 369 471 32.85 39.06 49 15 2.69 0.74 88.28 96.91 92.43 98.14

1990 10 619 585 67.41 67.18 544 577 63.08 66.89 75 8 4.33 0.29 87.88 98.63 93.57 99.57

1991 10 552 544 41.29 44.16 459 504 35.13 42.22 93 40 6.16 1.94 83.15 92.65 85.09 95.60

1992 10 680 625 58.79 58.89 591 620 54.28 58.67 89 5 4.51 0.22 86.91 99.20 92.32 99.62

1993 9 607 579 93.72 98.58 578 568 92.39 98.13 29 11 1.33 0.45 95.22 98.10 98.59 99.54

1994 9 891 899 89.50 98.13 846 870 87.79 96.83 45 29 1.71 1.30 94.95 96.77 98.09 98.68

1995 8 289 753 18.37 75.23 241 381 16.12 40.30 48 372 2.25 34.93 83.39 50.60 87.75 53.56

1996 9 516 787 48.79 62.88 374 524 30.83 42.57 142 263 17.96 20.31 72.48 66.58 63.19 67.70

1998 10 735 739 90.03 95.37 675 732 87.20 95.11 60 7 2.83 0.26 91.84 99.05 96.86 99.73

1999 10 695 763 66.86 81.47 518 548 56.91 65.53 177 215 9.95 15.94 74.53 71.82 85.12 80.43

2000 6 430 436 46.10 47.53 423 432 45.68 47.35 7 4 0.42 0.18 98.37 99.08 99.10 99.63

2001 13 1,164 1,157 109.41 117.60 1,067 1,138 102.78 116.62 97 19 6.63 0.98 91.67 98.36 93.94 99.16

2002 8 831 808 95.25 106.58 752 786 91.07 105.55 79 22 4.18 1.03 90.49 97.28 95.61 99.03

2003 10 669 710 56.94 59.88 605 697 53.68 58.98 64 13 3.26 0.90 90.43 98.17 94.26 98.50

2004 10 1,132 1,193 110.14 129.52 1,072 1,064 107.43 120.00 60 129 2.71 9.52 94.70 89.19 97.53 92.65

2005 9 1,098 1,254 106.98 147.33 975 1,032 100.98 118.87 123 222 6.00 28.46 88.80 82.30 94.39 80.68

2006 8 1,450 1,240 156.58 134.08 1,046 1,141 127.25 129.39 404 99 29.33 4.69 72.14 92.02 81.27 96.50

2009 12 1,248 1,122 106.22 104.10 955 1,060 86.68 100.63 293 62 19.54 3.47 76.52 94.49 81.60 96.67

2010 22 1,069 218 68.74 10.24 867 210 56.60 9.88 202 8 12.14 0.36 81.10 96.33 82.34 96.42

SUM 238 19,056 19,211 1,883.58 2,068.38 16,646 17,451 1,732.93 1,927.74 2,410 1,760 150.65 140.64 87.35 90.84 92.00 93.20

Table 3.  ORCA-SPOT segmentation results based on 238 tapes (≈191.5 hours) distributed over 23 years.
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(2.51 h) clips were wrongly classified. This led to a final sample- and time-based PPV of 87.35% and 92.00%. OS2 
extracted in total 19,211 audio clips (34.47 h), of which 17,451 (32.13 h) segments were true killer whale sounds 
and 1,760 (2.34 h) segments were wrongly classified. This led to a final sample- and time-based PPV of 90.84% 
and 93.20%. As already expected, OS2 generalized better on the very heterogeneous Orchive data. Overall, with 
almost the same number of total detected segments, about 3.08 h (155 clips) less audio was found by OS1. A seg-
ment difference between OS1 and OS2 resulted in 805 TP and a time distinction of 3.25 h. In case of the FP, 650 
different segments led to a total time disparity of 0.17 h. OS2 reduced the ≈191.5 h (238 Orchive tapes) underwa-
ter recordings to 34.47 h of killer whale events, which means roughly 18.0% of the audio data contains interesting 
killer whale events with an actual time of 32.13 h true killer whale sounds and 2.34 h false alarms. Extrapolating 
these values to the entire 18,937.5 hours of Orchive recordings, one could estimate that the entire Orchive con-
tains roughly 3,408.75 hours of interesting killer whale signals.

ROC results orchive tapes.  In a final step, both models were analyzed on 9 fully-annotated Orchive tapes 
(in total ≈7.2 h). The classification accuracy of both models, per tape and in total, was given via the AUC. The 9 
tapes were chosen out of the previously selected 238 tapes based on the number of killer whale activities. Three 
tapes were selected with high, medium, and low number of killer whale actions. Due to our chosen sequence 
length of 2 seconds, combined with the selected step size of 0.5 seconds, the network classified 5,756 segments 
per tape. Human voice encounters were excluded from the evaluation. Human voices are spectrally similar to 
the killer whale pulsed calls (fundamental frequency and overlaying harmonics). Consequently the network seg-
mented human speech as potential killer whale signals within those noise-heavy underwater recordings. Usually 
those sounds are not present in underwater recordings. Due to the fact that such problems are technically pre-
ventable, segmented human narrations were considered neither wrong nor correct, and were excluded from the 
evaluation. During manual listening of the extracted segments of the 238 tapes, all human narrations were stored 
in extra folders, not affecting the final result. The same was done for evaluating the fully annotated tapes. With a 
segment-wise comparison, all segments containing human speech were removed and discarded. The following 
number of killer whale events were encountered by the annotators: 2006 341A (high): 277, 1988 061A (high): 
313, 2005 739B (high): 276, 1989 120A (medium): 202, 1991 292B (medium): 91, 2009 104A (medium): 77, 
1988 068B (low): 6, 1993 163B (low): 11, 1998 412A (low): 14. On average, the tapes with high, medium, and low 
killer whale activities had 6.09, 2.60 and 0.22 annotations per minute. In addition to segment-wise comparison 
(OS1, OS2) a smoothed variant, based on the previously mentioned smoothing technique, was realized for both 
models (OS1-S, OS2-S). Figure 6 visualizes the results by presenting ROC curves and AUCs for each of the 9 
tapes and also an entire ROC curve based on accumulated results of all 9 tapes. In this case, we added up the 
threshold-specific confusion matrices to calculate TPR and FPR. Please note that the overall ROC curve can 
deviate strongly from the ROC curve of the individual tapes, since the killer whale activities per tape varies by a 
factor of up to 95 (≈17 s versus ≈27 min per ≈45 min tape). In summary, the model OS2/OS2-S performed better, 
especially on noisier data considering the AUC of 0.9428/0.9523. With respect to the overall ROC curve for OS2-S 
(0.9523), the killer whale segmentation successfully reduced the total duration of all 9 tapes (≈7.2 h) to interesting 
signal parts. By extracting 93.0%, 96.0%, or 99.0% of all valid killer whale sound events the entire 7.2 hours of 
underwater recordings were reduced to 2.14 h, 2.91 h and 4.75 h. FPR values of 5.0%, 10.0% and 15.0% resulted in 
81.9%, 88.3% and 91.9% true killer whale detections and consequently reduced the total duration to 1.30 h, 1.68 h 
and 2.02 h. Considering the 9 selected tapes as a representative sample of the ≈19,000.0 hours of Orchive data 
led to the following results: finding 96.0% of all killer whale activities reduce the Orchive to 7,653.9 h (0.87 years) 
whereas 5.0% false alarms and 81.9% killer whale detection shrinks the Orchive down to 3,419.3 h (0.39 years). 
OS2-S, based on the 9 tapes, and FPR values of 5.0%, 10.0% and 15.0% achieved accuracies of ACC = 92.82% 
ACC = 89.75% and ACC = 86.26%.

Discussion
In the current study, a CNN-based pipeline was developed, in order to examine audio signals regarding cer-
tain valuable, user-specific bioacoustic events. Generalizing the pipeline makes it possible to also apply this 
approach to other animal species. The illustrated segmentation process is equivalent to a pre-filtering of rele-
vant and desired acoustic events from uninteresting and superfluous signals. To improve the segmentation it is 
important to model the huge variety of noise. Various augmentation techniques and additional noise files were 
used to tackle this problem and a dB-normalization was used for OS2 in order to also handle very weak signals. 
Mel-spectrograms as a network input led to an excessive loss of resolution in higher frequency bands, which was 
a big problem considering the high-frequency pulsed calls and whistles. In addition to the selection of a suitable 
network architecture (Table 2), the distribution of training data is also of crucial importance. The Orchive con-
tains much more noise than killer whale activities. It must be ensured that the training/validation dataset matches 
the unseen testing environment best. In order to avoid misclassifications due to an unbalanced dataset, OS2 was 
trained on additional noise files (5,655 very weak (silent) and 454 special/rare noises), in order to better represent 
the spread of noise characteristics within the Orchive. Adding those files led to a killer whale/noise ratio of 1:3 
(Table 1) in the training set.

During network training/evaluation several challenges were observed. One challenge is a robust detection 
of echolocation clicks. Echolocation clicks resemble many of the noise files and are very hard to distinguish 
from noise, even for human hearing (Fig. 7). The chosen FFT-size of 4,096 led to an excessive loss of accu-
racy in time. Smaller FFT-sizes result in large frequency resolution losses, which drastically affect the detec-
tion accuracy of pulsed calls and whistles. Another challenge is stationary boat (engine) noise. Such signals are 
reflected in spectrograms as stationary frequency bands. Typically, these stationary frequency bands were within 
the frequency ranges (1.5 kHz–18 kHz) of killer whale pulsed calls and whistles (Fig. 7). Due to the confusion 
between overlaying killer whale harmonics and stationary boat noises at certain frequencies such signals were 
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often misinterpreted. However, the indicated problem did not relate exclusively to stationary boat noises. There 
were several encounters of other special noises (e.g. “beeps”), caused by the recording devices, which have a sim-
ilar impact. Another problem observed during evaluation of the 238 tapes was a considerable amount of noise 
before, between, and after extracted killer whale segments. Some segments also contain overlapping vocalizations 
of different animals or multiple types of killer whale vocalizations.

We wanted to discuss the model results in two different ways: First, compare OS1 with OS2 according to the 
conducted experiments and results achieved within this work. Second, compare our best model with other bio-
acoustics research results. The latter, in terms of comparing the general approach and resulting metrics one-to-one 
with other bioacoustic studies, was not possible. To the best of our knowledge, there are no comparable published 
results on any known data corpus. The methodical differences between previously published individual studies 
which made a comparison of our results with them impossible were among others: (1) other animal species, (2) 
size of the dataset, (3) different methodologies, and (4) varying evaluation metrics. Therefore, our discussion of 
previously published studies is not a direct comparison to other work, but more or less an overview of similar 
studies in bioacoustics in order to show that the way of proceeding is reasonable and valid.

Figure 6.  ORCA-SPOT ROC results (AUC) based on 9 (3 high, 3 mid, and 3 low killer whale activity) fully 
annotated Orchive tapes.
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Figure 5 shows that training and validation metrics of both models behave similarly during training. OS1, hav-
ing an AUC of 0.9817, and OS2, with an AUC of 0.9828, almost had identical results on the test set (Table 1). For 
both models, differing in training sample size and normalization, there are no indications of over-/underfitting 
(see training/validation accuracy and test set AUC in Fig. 5). Table 3 shows that OS2 outperformed OS1 on the 
238 verified tapes. OS2 had fewer FP than OS1. Moreover, the detection rate of OS2 regarding the TP segments 
was significantly higher as well. A more robust detection of noise segments resulted in fewer misclassifications 
and in a more accurate detection of true noise/killer whale segments. Usually FP were single outliers surrounded 
by noisy signal parts. Therefore, such signal pieces normally have a much shorter duration per clip and conse-
quently were not affected by smoothing due to isolation by adjacent noisy signal segments. Thus, a considerable 
difference in the number of segments only led to a very small difference in useful vocalization of killer whales 
time. Additionally trained noise files led to a significant reduction of such outliers. Moreover, the misclassifica-
tions regarding FN dropped as well. Detected killer whale segments were often affected by smoothing. Typically, 
killer whale signals are not just single events within a noisy environment. Thus, the detection of a killer whale 
sound, previously classified as FN, in conjunction with the smoothing technique of ORCA-SPOT, tends to result 
in larger segments, such as an outlying FP. Table 3 also visualizes that OS2 does not consistently perform better 
on all 23 years. There were outliers, such as the years 1995 and 1996, where the network performance was signifi-
cantly worse. Such incidents need to be examined in order to improve network performance.

Figure 6 also demonstrated that OS2 generalized better on unseen data. The AUC deviations in Fig. 6 were 
considered under two different aspects: (1) AUC variations between the models (OS1 and OS2), and (2) AUC 
differences over the tapes. In general, the AUC deviations of OS1 and OS2 depend on the network robust-
ness with respect to noise and consequently the ability of the model to generalize. Furthermore, the utilized 
dB-normalization of OS2 also had a positive impact with respect to very weak (silent) signals and potential false 
alarms. Both model types (OS1/OS2 and OS1-S/OS2-S) performed similar on the tapes with high killer whale 
activity. This was expected to some extent, since, with an increase of killer whale activity and a decrease of noise, 
it is primarily important to detect killer whale signals with correspondingly high accuracy rather than noise 
segments and vice versa. Significant differences were observed in noisier data. OS1 is trained with less noise 
than OS2. Consequently the killer whale/noise ratio of the training set (Table 1) of OS1 is larger and thus the 
model is less capable of correctly recognizing noise, resulting in more false alarms. Considering the medium 
tapes, OS1/OS2 delivered significantly different results. Since, in these tapes neither the killer whale nor the noise 
components were overrepresented, it is particularly important to consider a well-specified trade-off between 
killer whale/noise representations. Due to the similarities regarding the noise and killer whale distribution, such 
tapes reflect the actual difference between the models particularly well, as they are considered to be representa-
tive without preferring one of the two classes. A so-called representative tape depends on the desired intention 
(many killer whale detections versus few misclassifications). The variation in AUC over different tapes was mainly 
caused by (unseen) noise data, noise data superficially similar to killer whale vocalizations (e.g. high-frequent 
electric boat noise, different microphone settings or artefacts, noise similar to echolocation clicks, etc.) and by 
the total number of killer whale sounds per tape, highly affecting the impact of potential false positives (FPR) and 
hence the AUC. Figure 7 shows spectrograms of examples of noises superficially similar to killer whale vocaliza-
tions which were segmented as killer whale sounds. These different types of noise spectrograms reflect many of 
the detected false positives. The spectral envelope of those examples is undoubtedly very similar to potential killer 
whale sounds. Figure 7a,d are very similar to a killer whale whistle (narrow band tone without harmonics). The 
spectral content of 7c and 7f is very similar to the spectral content of echolocation clicks. The signal structures of 
Fig. 7b,e,g show some activity within the lower frequency regions that could be associated with some potential 
killer whale call activities. During the evaluation and detailed analysis of the false alarms, another phenomenon 
was discovered. Many of them had stationary frequency bands within higher frequency parts, like Fig. 7a,c,e,g. 
Such a signal characteristic was often confused with the superimposed high-frequency harmonics of pulsed calls 
or considered as whistles.

Figure 7.  Spectrograms of noise segments classified by OS2 as potential killer whale sounds (false positives) 
(sampling rate = 44.1 kHz, FFT-size = 4,096 samples (≈100 ms), hop-size = 441 samples (≈10 ms), frequency 
range: 0–13 kHz).
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Significant differences between both models were observed especially for the tape 1998 412A. This tape con-
tains only a few, weak, isolated, short and noisy killer whale sounds, which were really hard to identify. In addi-
tion, false positives had a very high impact on the AUC due to very few killer whale sounds in total. However, the 
trained noise representation and different normalization technique of OS2 generalized much better.

In summary OS2 generalizes significantly better on unseen data and is therefore much more appropriate to 
handle the large signal variety of ≈19,000 h underwater signals. The 9 tapes were additionally evaluated with 
the best ResNet50 model (Table 2). With an overall AUC of 0.9413 and 0.9519 (non-smoothed/smoothed) 
ResNet50 achieved almost identical results as ResNet18, which is another reason to use the much faster ResNet18 
architecture.

As already mentioned, a comparison to previous research work is not so easy because there is no similar work 
with respect to the utilized data, methods and results. In order to emphasize the value of the work and our best 
network model (OS2), similar bioacoustic works were named without any direct comparison. Ness56 built a clas-
sifier to segment between killer whale sounds, noise and human voices. He used a dataset containing 11,041 man-
ually labeled audio files from the Orchive tapes, sampled at 44.1 kHz. A support vector machine (SVM) using a 
radial basis function kernel resulted in an ACC of 92.12% using cross-validation. Grill et al.86 used CNNs for bird 
audio detection. The model consists of 4 convolutional/pooling-layers plus 3 fully-connected layers. It was trained 
on mel-scaled log-magnitude spectrograms and integrates several augmentation techniques. Grill et al.86 won the 
bird audio detection challenge 2018 (see Stowell et al.79) achieving an AUC of 0.9750 by using cross-validation 
and a final submission AUC of 0.8870 on the hidden test set. Himawan et al.87 used CNN and convolutional 
recurrent neural network (CRNN) detecting koala sounds in real-life environment. Both models have 3 convolu-
tional/pooling-layers plus 2 fully-connected layers87. The CRNN includes an additional LSTM-layer between the 
convolutions and dense layers87. Himawan et al.87 trained on 2,181 koala and 4,337 non-koala log-scale spectro-
grams, sampled at 22.05 kHz. CNN (AUC = 0.9908) and CRNN (AUC = 0.9909) achieved similar results using 
cross-validation. Furthermore Himawan et al.87 applied both models to bird audio detection achieving AUCs of 
0.8357 (CNN) and 0.8746 (CRNN). In a recent work of Google, Harvey et al.57 trained a CNN in order to detect 
humpback whale audio events in 15 years of underwater recordings. Harvey et al.57 used ResNet50, trained on 
0.2% of the entire dataset. The model was evaluated by identifying whether a 75-second audio clip contains 
humpback calls. Harvey et al.57 indicated a precision over 90% together with a TPR of 90%.

This is the first study using deep learning in order to verify the general feasibility of creating a robust, reliable, 
machine-driven, and animal sound independent segmentation toolkit by taking the killer whale as a prototype 
and extensively evaluating the models on a 19,000 hour large killer whale data repository – the Orchive55.

During this research study, several interesting and also necessary future aspects for work have emerged. First 
of all, it is necessary to examine wrong classifications (see common false positives in Fig. 7) and outlying tapes 
in order to detect potential problems or challenges and use the cleaned data for re-training of ORCA-SPOT to 
ensure an iterative improvement and better generalization. Unsupervised machine-learning techniques are used 
to identify such common and characteristic noise misclassifications. Subsequently samples of machine-clustered 
noise classes are selected in order to add them to the training and/or design auxiliary preprocessing steps or 
slightly different model architectures to better handle such critical noise signals. In addition, it has to be consid-
ered to what extent individual calls can be extracted from the segments containing multiple calls, how to remove 
the remaining noise in the segments, and how to deal with overlapping calls. Consequently, fine tuning of the 
already existing segments is a very important aspect. In order to further reduce remaining/surrounding noise 
within pre-segmented killer whale segments or to split up segments containing multiple killer whale sounds into 
single-sound segments, an iterative segmentation approach (shorter sequence length and step size) is a possi-
ble solution to create finer structures. Nevertheless, overlapping calls will still be included in one segment. It is 
important to first identify and encapsulate all these segments in a post-process, e.g. via unsupervised clustering, 
in order to avoid any negative impact of such segments regarding potential call type classification training. A 
call type classifier trained on machine-identified and clustered killer whale call types, by using the large amount 
of pre-segmented signals, is a possible method to identify potential call types in such overlapping structures 
in order to separate them somehow. While this study focuses on a pure segmentation between potential killer 
whale sounds and various noises (binary classification problem), first and prelimnary experiments/results on call 
type classification have already been carried out94. A ResNet18-based classifier was trained on a small dataset in 
order to classify 12 different classes of vocalizations (9 call types, whistles, echolocation clicks, and noise). The 
resulting call type classifier achieved a mean test set accuracy of 87.0% on a 12-class problem94. In addition, the 
extracted segments from 19,000 hours of underwater recordings provide a very powerful basis for various auto-
matic, fully unsupervised machine-learning approaches, e.g. representation learning followed by clustering to 
derive machine-identified killer whale call types. At the same time, many other advantages would also arise here: 
(1) no data annotation required, (2) eliminating human errors (e.g. labeling based on human perception, misclas-
sifications, etc.), (3) analysis of large data corpora possible, and (4) deriving potential unknown killer whale call 
type structures, e.g. sub-call types.

In future work, we will also have to evaluate whether it is better to train the echolocations in a separate net-
work. In addition, the scope of future research will be broadened to include experiments on different and opti-
mized network architectures. There should be also investigations in the field of CRNN in order to tackle problems 
of how to differentiate between stationary and varying frequency characteristics (e.g. caused by electric boat 
noise). Both problems become particularly clear in Fig. 7. Furthermore, it is useful to investigate ResNet50 and 
its detection accuracy. Further detailed call analyses, combined with the collected video recordings and behav-
ioral descriptions, accumulated in the project DeepAL by various biologists, offer possibilities to gain a deeper 
understanding of killer whale communication. Considering all the above-mentioned future work, the mainte-
nance of the current pipeline needs to be ensured, in order to present a stand-alone system, which can be adapted 
to a variety of bioacoustical data corpora, together with the corresponding training data. Last but by no means 
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least, ORCA-SPOT will subsequently be prepared to be deployed in July 2019 in British Columbia as a quasi 
real-time killer whale detection system during the fieldwork. Further evaluation regarding the extent to which 
ORCA-SPOT can be able to assist the search of the animals efficiently and purposefully will be conducted on the 
field mission in July 2019.

To summarize, ORCA-SPOT allows a robust pre-segmentation of large bioacoustic datasets into relevant and 
irrelevant signal parts. Researchers can concentrate on those sub-data containing only interesting bioacoustic 
events. According to the OS2-S overall ROC curve and the results based on the 238 evaluated 45-minute tapes, 
80% of all killer whale activations and 5% misclassifications reduced the whole Orchive by about 80% to 0.4 years.

Methods
This section describes network architectures, methods, and algorithms used for training and implementation of 
ORCA-SPOT. Besides a brief overview about the ORCA-SPOT architecture, data preprocessing, network train-
ing, network evaluation and testing is explained.

Convolutional neural network (CNN).  Convolutional Neural Network (CNN) is an end-to-end deep 
neural network architecture in machine learning that is able to efficiently handle the complexity of 2-dimensional 
input data (e.g. spectrograms)95. CNNs are built on the principle of pattern recognition and consist of a feature 
extraction/learning component and a classification part95,96. The convolutional layers are responsible for feature 
learning/extraction and are characterized by three significant architectural concepts: local receptive fields, shared 
weights and spatial or temporal subsampling (pooling)95. Convolving the kernel over the entire input by a defined 
shifting size (stride), covering a certain receptive field, results in multiple (hidden) units, all sharing the same 
weights and combined together in one single feature map95. Usually a convolutional layer consists of multiple 
feature maps (channels) in order to learn multiple features for the same position95. CNN architectures include 
pooling layers to reduce the resolution of a feature map by calculating a localized statistic. Convolutional layers 
only calculate linear operations. Thus, a non-linear layer using an activation function, usually the Rectified Linear 
Unit (ReLU)97 function, is added. Furthermore, a normalization layer (e.g. batch normalization98) is added to 
ensure a stabilized distribution of the activation values98. The extracted and learned features based on several, 
repetitive and configurable sequences of convolutional, normalization, activation, and pooling layer, are now 
projected onto the corresponding output classes using one or more fully connected layers. Consequently, the fully 
connected layers are responsible for the classification.

ORCA-SPOT architecture.  A network consisting of concatenated residual layers (see He et al.93) is called residual 
network (ResNet). In practice there exist different and approved ResNet architectures (see He et al.93), based on 
the number of concatenated layers. A detailed description about deep residual learning in general can be found 
in the work of He et al.93. Figure 4 visualizes the proposed ORCA-SPOT architecture corresponding to the estab-
lished ResNet1893 architecture, except that in the first residual layer the max-pooling layer was removed. The 
main intention was to process the data with a preferably high resolution as long as possible. This max-pooling 
layer in combination with a stride of 2 leads to a big loss of resolution already at the initial stage. This is a disad-
vantage regarding high-frequency subtle killer whale signals. After the last residual layer, global average pooling 
is performed on the bottleneck training features, consisting of 512 feature maps with 16 × 8 hidden units. These 
results are now connected to a 512-D fully connected layer, projecting its output onto two output classes: “killer 
whale” and “noise”.

Data preprocessing and training.  ORCA-SPOT converts every audio clip into a 44.1 kHz mono 
wav-signal. The remaining signal was transformed to a power spectrogram using a fast Fourier transform (FFT) 
using a FFT-size of 4,096 samples (≈100 ms) and a hop-size of 441 samples (≈10 ms). In a next step the power 
spectrogram was converted to decibel (dB) scale. Based on the chosen sampling rate and FFT-size each training 
file was represented by a 2,049 × T feature matrix, where T represents the time dimensionality of the input. 
In order to obtain the largest possible variety of training variants and to simultaneously handle available disk 
space, the augmentation was performed in an embedded way rather than generating augmented samples on 
the hard disk. The augmentation used the previously decibel-converted power spectrogram as input. All aug-
mentation techniques were processed on-the-fly. The augmentation was computationally very expensive because 
of various random sampling/scaling operations. Consequently, this was implemented using PyTorch99 multi-
processing in order to process the entire pre-processing on the CPU in parallel, whereas the network training 
utilized the GPU. In a first step intensity, pitch, and time augmentation were conducted. Random scalings based 
on a uniform distribution were performed within predefined ranges: amplitudes/intensity (−6 dB–+3 dB), pitch 
factor (0.5–1.5), and time factor (0.5–2.0). The frequency dimensionality of the augmented spectral result was 
compressed by using a linear frequency compression (nearest neighbor, fmin = 500 Hz, fmax = 10 kHz). The 
number of frequency bins was reduced to 256, resulting in a final spectral shape of 256 × T. In a second aug-
mentation step noise augmentation was carried out. A pitch- and time-augmented frequency-compressed noise 
spectrogram from the training set was added to the spectrogram using a random-scaled (uniformly distributed) 
signal-to-noise ratio (SNR) between −3 and +12 dB. Longer noise files were cut and shorter noise signals were 
self-concatenated in order to match the time dimensionality of the training spectrogram. The noise augmenta-
tion is followed by a dB-normalization (min = −100 dB, ref = +20 dB) between 0 and 1. For a successful training 
process, it is essential to have equally-sized (frequency and time dimensionality) training data. Consequently, the 
current spectral shape of 256 × T requires a constant time domain. This was solved by randomly subsampling or 
padding the resulting training spectrogram (256 × T) being longer or shorter than 1.28 s in order to derive a final 
trainable spectral shape of 256 × 128.
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In summary, the following data preprocessing/augmentation pipeline, implemented in PyTorch99, was real-
ized by ORCA-SPOT: convert audio to mono, resampling to 44.1 kHz, power spectrum, dB-conversion, inten-
sity augmentation, pitch augmentation, time augmentation, linear frequency compression, noise augmentation, 
dB-normalization, and accidental subsampling/padding to get a trainable clip for the ORCA-SPOT network. In 
order to be able to compare the validation/test set to multiple models, shorter/longer validation and test signals 
than 1.28 s were always centered and not randomly extracted/padded. The model was trained and implemented 
using PyTorch99. ORCA-SPOT uses an Adam optimizer with an initial learning rate of 10−5, β1 = 0.5, β2 = 0.999 
and a batch-size of 32. After four epochs and no improvements concerning the validation set, the learning rate 
decayed by a factor of 1/2. The training stopped if the validation accuracy did not improve within 10 epochs. 
Finally, the model with the best validation accuracy was selected. The test set was only used to evaluate the final 
model performance and was neither involved in the training nor in the validation.

Evaluation and testing.  ORCA-SPOT was verified on two different test scenarios. On the one hand, the 
model was evaluated on the test data described in Table 1, and on the other hand ORCA-SPOT was applied to the 
23,511 Orchive tapes (≈18,937.5 hours). In the first case there were already labeled test audio clips as a bench-
mark, provided as input to the model using a centered 1.28 s window. In the second case, the raw Orchive tapes 
were evaluated. Audio clips of a given configurable sequence length (2 s) and step size (0.5 s) were extracted and 
fed in its entirety (without centering) to the network. Each of the audio clips resulted in a 1 × 2 probability matrix 
that the given signal segment was a killer whale or noise. Consecutive killer whale/noise predictions were con-
catenated to one audio slice of multiple calls or noise segments. It is of great importance that the network is able 
to process the ≈2.2 years of audio in finite time. The prediction time of the network was adapted and optimized 
in combination with a mid-range GPU (Nvidia GTX 1050). For calculating the area-under-the-curve (AUC) 
and other metrics (accuracy (ACC), true-positive-rate (TPR), false-positive-rate (FPR), positive-predictive-value 
(PPV)) we used Scikit-learn100, an open-source machine-learning library in Python.

Data Availability
The Orchive data and the Orchive annotation catalog (OAC) used in this study are available upon request only in 
agreement with the OrcaLab55 and Steven Ness56. Following the open science principles, the source code and the 
DeepAL fieldwork data 2017/2018 (DLFD) are planned to be made freely available88,90 to the research community 
and citizen scientists in October 2019 after the current pilot study concludes. Furthermore, all segmented and 
extracted audio samples, which result from this study, will be handed over to the OrcaLab55 and Steven Ness56.
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