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Recent experiments on type-II Weyl semimetals such as WTe2, MoTe2, MoxW1−xTe2, and WP2 reveal
remarkable transport properties in the presence of a strong magnetic field, including an extremely large
magnetoresistance and an unusual temperature dependence. Here, we investigate magnetotransport via the Kubo
formula in a minimal model of a type-II Weyl semimetal taking into account the effect of a charge density wave
(CDW) transition, which can arise even at weak coupling in the presence of a strong magnetic field because
of the special Landau level dispersion of type-II Weyl systems. Consistent with experimental measurements
we find an extremely large magnetoresistance with close to B2 scaling at particle-hole compensation, while
in the extreme quantum limit there is a transition to a qualitatively new scaling with approximately B0.75. We also
investigate the Shubnikov-de Haas effect and find that the amplitude of the resistivity quantum oscillations are
greatly enhanced below the CDW transition temperature which is accompanied by an unusual nonmonotonous
(non-Lifshitz-Kosevich) temperature dependence.
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I. INTRODUCTION

Condensed matter incarnations of Weyl fermions come in
two distinct flavours [1]: Type I, which are direct analogues
of their high-energy cousins [2], occur in true semimetals
with a point-like Fermi surface [3–8], and type II, where
the linear dispersion is so strongly tilted that Fermi pock-
ets are formed around the Weyl points [9,10]. Immediately
following their discovery, it was realized that type-I Weyl
fermions were associated with novel transport phenomena
such as the chiral anomaly [11–22]. In contrast, due to the
concealed nature of the type-II Weyl fermions it is a priori
less obvious that they would lead to interesting measurable
effects. However, transport measurements on type-II Weyl
semimetals have arguably proven even more intriguing: Most
saliently, experiments on type-II Weyl semimetals found an
extremely large magnetoresistance that did not saturate until
the highest accessible magnetic fields [23–25]. In all these ex-
periments a scaling of the magnetoresistance close to B2 was
found. Furthermore, the magnetotransport in these materials
is strongly dependent on the direction of the applied magnetic
field.

In addition, a number of experiments found an unusual
temperature dependence of transport properties [26–29]. On
one hand, these could be related to the strong temperature
dependence of the chemical potential, as expected for a low
density system when kBT and the effective Fermi energy are
of similar order of magnitude. On the other hand, it could be
a direct signature of a many-body instability, such as a field
induced excitonic insulator [30] or a density wave transition
[31]. The CDW scenario was put forward in a recent work of
ours [31] motivated by the observation that the Landau level

structure of type-II Weyl semimetals [32] shows emergent
nesting properties as illustrated in Fig. 1 (inset). At zero field,
the electron and hole pockets have different shapes. However,
a strong magnetic field leads to nested, quasi-one-dimensional
electron and hole pockets prone to a CDW instability already
for weak interactions. Such an intra-Weyl cone CDW would
have a small wave vector and the associated breaking of
translational symmetry should be observable in scattering
experiments. Here, we show that a field induced CDW leads
to a very rich phenomenology of magnetoresistance properties
in type-II Weyl semimetals.

II. THEORY

We consider a generic and minimal model of a type-II
Weyl semimetal, which can be theoretically derived as a low
energy expansion of a lattice model [32] as given in Ref. [31].
A crucial observation there was to include not only terms
linear in momentum but also the next nonzero terms (in
this case k3

z ) to account for electron and hole pockets, see
Fig. 1.

We use the general low energy theory of a type-II Weyl
semimetal with additional third-order terms in kz along the tilt
direction and concentrate on one of the Weyl cones

Ĥ eff
0 = ( − ηkz + γ k3

z

)
σ0 + (

kz + βk3
z

)
σz + kxσ

x + kyσ
y.

(1)

The parameters η = −(t1 + 2t2), β = − 1
6 and γ = − 1

6 (t1 +
8t2) are directly related to the lattice model’s hopping param-
eters, where we choose t1 = −0.8 and t2 = −0.6. Throughout
this work, for concreteness, we consider the exemplary values
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FIG. 1. Dispersion of a type-II Weyl semimetal with a magnetic
field (B = 7.5 T) induced CDW as given in (6). Energy is given in
units of eV, kz in reciprocal lattice vectors. The main panel shows the
folded dispersion in the presence of a CDW, which gaps out part of
the Landau levels, with the lower branch (b) shifted by QCDW. The
inset highlights the field induced nesting property between electron
and hole type pockets of the normal state with the CDW wave vector
QCDW. It further includes labels for the two branches a and b.

h̄vF = 4 eV Å and the lattice constant of a0 = 28 Å. Note, in
this simple tight-binding model the electron and hole pockets
extend to a large fraction of the first Brillouin zone (BZ),
whereas in typical materials they only cover a much smaller
fraction. Here the size of the BZ (the corresponding inverse
unit cell) is not important, as the size of the electron and
hole pockets defines the relevant length scales. In consequence
we chose a relatively large lattice constant for the exemplary
model in order to obtain small electron and hole pockets in
momentum space, so that they are similar to the ones in actual
materials.

For simplicity and transparency, we focus on situations
with the magnetic field directed along the tilt of the Weyl
cone, i.e., B ‖ z when the tilt direction is along kz, and
only briefly comment on the generalization to generic di-
rections in the discussion. The field B = ∇ × A is then
introduced by a minimal coupling of the vector potential,
which we consider to be A = (0, Bx, 0) in the Landau
gauge, to the crystal momentum � = h̄k − e

c
A. We define the

standard raising and lowering operators a = lB√
2h̄

(�x − i�y )

and a† = lB√
2h̄

(�x + i�y ) with [a, a†] = 1, where we in-

troduced the magnetic length lB =
√

h̄
eB

. Consequently, we
arrive at the following Hamiltonian describing the low energy
theory

H0 =
∫

d3r (�†
A(r) �

†
B (r))h̄vF

×
⎛
⎝(1 − η)kz + (γ + β )k3

z

√
2

lB
â†

√
2

lB
â −(1 + η)kz + (γ − β )k3

z

⎞
⎠

×
(

�A(r)

�B (r)

)
(2)

with the wave functions

�
†
A(r) =

∑
n,p,kz

eikzzψn,p(x, y)ĉA,n,p,kz
(3)

�
†
B (r) =

∑
n,p,kz

eikzzψn−1,p(x, y)ĉB,n,p,kz
(4)

and the normalized harmonic oscillator wave functions
ψn,p(x, y) = 1√

L
eipx (π22n(n!)2)−1/4

e− 1
2 (y+p)2

Hn(y + p) in-
cluding the Hermite polynomials Hn. Note that there is an
extra shift of the Landau level index from n to n − 1 for the B

sublattice part of the wave function.
In the braket notation we write the states as spinors in the

A/B basis and perform a rotation such that the Hamiltonian
becomes diagonal( |n, kz, p, a〉

|n − 1, kz, p, b〉

)
= U (n, kz, p)

( |n, kz, p,A〉
|n − 1, kz, p, B〉

)
, (5)

where U is a unitary transformation that is easily obtained
from (2). The energies, labeled by s ∈ a, b for |n, p, kz, s〉,
are given by

En,a/b(kz) = h̄vF

(
−ηkz + γ k3

z ±
√(

kz + βk3
z

)2 + 2

l2
B

|n|
)

(6)

for n �= 0. For n = 0, the energy of the chiral level is

E0,kz
= h̄vF

(
(1 − η)kz + (β + γ )k3

z

)
. (7)

The Landau level degeneracy becomes apparent as E does not
depend on p. Note that the chiral mode corresponds to the
(1 0)T spinor already in the original basis. Therefore, there is
no basis transformation U (n = 0) for the chiral level.

Following our recent work Ref. [31], we take into account
the effect of an interaction induced CDW. Due to the multi-
band nature of the Landau level dispersion it is sufficient
to restrict the analysis of the weak coupling instability to
the simplest form of a contact interaction. This interaction,
projected onto the Landau level bands, is given by

Hint = U

2

∑
n1, n2, n3, n4,

p1, p2, kz, k
′
z,

qx , qy , qz

eiqy (p1−p2−qx )Jn4,n1 (q)Jn3,n2 (−q)

×
∑

α,β=A,B

c
†
α,n1,p1,kz

× c
†
β,n2,p2,k′

z
cβ,n3,p2+qx ,k′

z+qz
cα,n4,p1−qx ,kz−qz

. (8)

Details of the matrix elements J (q ) and useful analytic sim-
plifications of them are given in Appendix for our choice of a
unidirectional CDW with qx = qy = 0.

At strong magnetic fields, even weak interactions lead
to CDW transitions because of the quasinesting between
the electron and hole pockets, En,a (kz) ≈ −En,b(kz + QCDW)
(see Fig. 1). In a mean-field framework, as presented in
Ref. [31], the quartic interactions are decoupled, leading to
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an effective CDW Hamiltonian

HMF,n(kz) = (
a
†
n,kz

b
†
n,kz−Q

)
×

(
Ea (n, kz) P (kz)

P (kz)∗ Eb(n, kz − Q)

)(
an,kz

bn,kz−Q

)
.

(9)

The analytical form of the off-diagonal matrix elements P is
derived from the contact interaction projected to the Landau
level band structure and given in Ref. [31] and Appendix.

A. Kubo formula of the conductivity

We concentrate on the transport properties perpendicular
to the magnetic field, which are obtained from the in-plane
conductivity σαα with α = x, y. We apply the standard Kubo
formula for conductivity, which is given by [33,34]:

σαβ (ω) = ih̄

2πl2
B

∑
ζ,ζ ′

f (Eζ ′ ) − f (Eζ )

Eζ − Eζ ′

× 〈ζ | ĵα | ζ ′〉〈ζ ′ | ĵβ | ζ 〉
h̄ω + Eζ ′ − Eζ + ih̄/(2τ )

(10)

using the short-hand notation ζ = {n, kz, a/b}, f (E) for the
Fermi function, and τ is a scattering-induced lifetime. The
summation over p is already executed and accounts for the
Landau level degeneracy factor 1

2πl2
B

. We assume a constant
time τ due to impurity scattering. Note, this simplifying
assumption is motivated from the very weak frequency de-
pendence of the density of states (DOS) of a type-II Weyl
semimetal with finite electron and hole pockets. For example
in Weyl type-I systems with a vanishing DOS a more elaborate
calculation of the scattering time is necessary [18].

To evaluate the Kubo formula we calculate the current
operators as

ĵα = ev̂α = e

h̄

∂Ĥ

∂�α

(11)

with the Hamiltonian matrix, Eq. (2), in the form

H = h̄vF

(
(1 − η)kz+(γ + β )k3

z
1
h̄

(�x + i�y )
1
h̄

(�x − i�y ) −(1 + η)kz+(γ − β )k3
z

)
,

(12)

so

ĵx = evF σx (13)

ĵy = −evF σy. (14)

From this, we obtain the relevant matrix elements in the basis
of Eq. (2)

〈n, kz | ĵx | n′, k′
z〉A/B

= 〈n, kz |
(

0 δn,n′−1

δn−1,n′ 0

)
| n′, k′

z〉A/B . (15)

These current operators are then transformed with two sub-
sequent unitary transformations, first with Eq. (5) and sec-

ond with the one that diagonalizes the CDW Hamiltonian
Eq. (9) with the mean-field energies Eζ appearing in the Kubo
formula.

III. RESULTS

The magnetoresistance is usually given in % and defined
as

MR(B ) = ρ(B ) − ρ(0)

ρ(0)
. (16)

There is no CDW at zero magnetic field, therefore ρ(0) in
our treatment is equal in the cases with and without inter-
actions. We are mainly interested in the qualitative behavior
of the magnetoresistance and not in exact quantitative values,
which would require a detailed microscopic description of a
specific material. Hence, we concentrate on the behavior of
the resistivity ρ(B ), which is qualitatively equivalent to the
magnetoresistance. We consider the case with zero chemical
potential where the dispersion relation is particle-hole sym-
metric.

A hypothetical imbalance between particle and hole pock-
ets leads quickly to a saturation of MR in the semiclassical
picture. We verified that this prediction holds also for the
quantum mechanical computation for the noninteracting case
with a constant scattering time. An extension to the CDW case
would require further adaptations to the mean-field calcula-
tions beyond the scope of the present work.

A. Magnetoresistance

In the compensated situation considered here, the Hall
conductivity σxy vanishes and σxx = σyy because of the ro-
tational symmetry. Hence, the resistivity along the in-plane x

direction can be directly calculated from the corresponding
conductivity

ρxx = σxx

σ 2
xx + σ 2

xy

= 1

σxx

. (17)

First, we discuss the case without interactions and hence
without CDW. The full temperature dependence as calculated
from the Kubo formula Eq. (10) is shown in Fig. 2. For
small fields, our results agree well with a semiclassical model
of two bands with perfectly compensated particle and hole
pockets [35] predicting a scaling of the resistivity as ∼B2.
Note that the numerical fit of the data yields powers of B

slightly smaller than 2 because the oscillations at higher
field are not symmetric around the expected B2 background.
Therefore, a numerical fit will weakly depend on the range
of magnetic fields considered. At the same time we note that
several experiments [23–25] experimentally found a scaling
with powers between 1.8 and 2, similar to our results.

The semiclassical prediction obviously neglects the quan-
tum oscillations due to the discreteness of the Landau levels,
which become more pronounced at higher magnetic fields and
lower temperature. We define the magnetic field strength BQ

as the minimum field at which the lowest Landau level reaches
the Fermi energy. Beyond this quantum limit B > BQ only the
chiral mode contributes to the density of states at zero energy.
In addition to the semiclassical quadratic scaling for B 
 BQ
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FIG. 2. Transversal resistivity ρxx (arbitrary units) vs magnetic
field (in Tesla) for different temperatures T . The top panel shows
clearly the crossover around BQ � 31 T and additionally pronounced
quantum oscillations (at low temperatures and B < BQ). The bottom
panel displays the T = 1 K data of the top panel on a log-log scale.
The dashed lines show least-squares fits for different regimes of B.
The corresponding exponents for the fitted power law behavior are
indicated.

we observe a crossover to a different scaling ρ ∼ B0.75 above
the quantum limit, see Fig. 2 (bottom panel).

The magnetic field strength associated with the crossover
to the quantum limit is BQ � 31 T for our exemplary tight-
binding model. This magnetic field strength BQ depends
strongly on the size of the electron and hole pockets. We
denote the size of the pocket with kP . The corresponding
length scale is given by 1/kP . As the magnetic length lBQ

at
the quantum limit is proportional to that length scale 1/kP , we
find BQ ∝ k2

P .
Next, we include the effect of a low temperature CDW

transition. We will use the same exemplary parameters as
in our previous work [31]. There, we observed that at low
temperatures a constant fraction (�0.5) of the Landau levels
crossing the Fermi energy is gapped out by the CDW, re-
gardless of the magnetic field. This statement is only valid in
the regime B 
 BQ studied in Ref. [31], where the fraction
is nearly a continuous number, due to the large number of
Landau levels, while for higher fields we expect this fraction
to vary due to the discrete number of Landau levels. In the
quantum limit there is no Landau level left that could be
gapped by a CDW, therefore the fraction of Landau levels
gapped by the CDW then drops to zero.

4 5 6 7 8 9
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30

B[T ]
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with interactions

FIG. 3. Transversal resistivity ρxx (arbitrary units) for a Weyl
semimetal without interactions and with an interaction induced CDW
at a temperature of T = 0.5 K.

The resulting resistivity ρxx obtained from the mean-field
results is shown in Fig. 3 for an intermediate regime of
magnetic fields and compared to the case with no interactions.
We observe a CDW-induced increase in resistivity by a factor
of ∼2–4 in the range of 1.25 T < B < 3.75 T for our choice
of parameters. This relative increase is robust to different
parameter sets for the lattice model and mean-field parameters
(e.g., values of the interaction U ), where the exact range of
the magnetic field is still affected by the size of the pockets
due to the scaling properties discussed above. Note that,
upon approaching the quantum limit at BQ, this factor slowly
decreases with increasing B. We can intuitively understand
this behavior remembering that the fraction of gapped levels
is constant at low magnetic fields and must change at high
magnetic fields.

B. Quantum oscillations

In the large magnetic field regime quantum oscillations
from the discrete nature of the Landau levels appear. In Fig. 4
we show quantum oscillations from low (T = 0.5 K) to high
(T = 27.5 K) temperatures, where “high” temperature has to
be understood in comparison to the critical temperature of the
CDW (here �25 K).

The figure shows only the oscillatory part of ρ, where the
power law behavior was subtracted, vs inverse magnetic field.
The power law is obtained by a numerical least-squares fit
in log-log space. As expected, the frequency of oscillations
is directly proportional to the area of the electron and hole
pockets [36]. Moreover, we conclude that the CDW forma-
tion significantly increases the amplitudes of the quantum
oscillations in resistivity. Note, experimental observations of
the quantum oscillations usually consider the conductivity
(the Shubnikov-De Haas effect), which, being the inverse
resistivity, would be decreased by the CDW.

A main result of the present study concerns the impact
of the CDW formation on the temperature dependence of
the quantum oscillation amplitudes. We determine the am-
plitudes from the oscillatory part of ρ as shown in Fig. 4.
We define the amplitude as the difference of a consecutive
local maximum and minimum below a fixed magnetic field
value (B = 9.5 T for the amplitudes shown in Fig. 5), and
we checked that the qualitative behavior is independent of the
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FIG. 4. Quantum oscillations compared with and without interaction induced CDW. The power law background is subtracted as discussed
in the main text. In the top panel oscillations with and without interactions are compared at T = 0.5 K. The middle panel shows how oscillations
without interactions evolve with different temperatures. The bottom panel displays the temperature evolution when including interactions.

position at which the amplitude is determined. In Fig. 5 we
compare the decay of the amplitude for increasing tempera-
ture for a representative case with and without CDW. While
the case without CDW (blue cross) shows the usual mono-
tonic decrease similar to the Lifshitz-Kosevich temperature
dependence [37], the system with CDW clearly deviates from
this universal behavior. More importantly, we observe a clear
plateau and then an increase of the amplitude for increasing
T at very low temperatures. This result is in clear contrast to

the monotonic decrease of the Lifshitz-Kosevich temperature
dependence. We expect both signatures to be clearly visible in
experiments.

We stress that the oscillations in the CDW case are less
regular both in temperature and in magnetic field, as shown in
the bottom panel of Fig. 4. This behavior can be understood
considering the cascade of CDW transitions discussed in
Ref. [31]. In the noninteracting case, there is only one way of
gapping out Landau levels: by increasing the magnetic field
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FIG. 5. Amplitudes of the magnetoresistance oscillations vs tem-
perature. Amplitudes are normalized to 1 at T = 0.5 K (the smallest
temperature value considered) for the two cases independently. The
numerical results are shown as crosses; the solid lines are a guide to
the eye.

and thereby the Landau level spacing, pushing Landau levels
above the Fermi energy. In the interacting case, however, for
each Landau level there is a competition between two mecha-
nisms: gapping the Landau level by a CDW transition or by
the simple increase of the Landau level spacing similar to
the noninteracting case. Which mechanism is responsible for
gapping out a specific Landau level depends on the magnetic
field and on the temperature. This dependence is different for
each Landau level [31]. Together, this leads to the complex
behavior of the oscillations in the interacting case, as seen in
Fig. 4 (bottom panel).

The highest critical CDW temperature for any Landau level
is �25 K in our exemplary model. Below this temperature,
the cascade of CDW transitions affects the oscillations, and
the oscillation amplitude is not as clearly defined as in the
noninteracting case. Following our fixed protocol of determin-
ing the oscillation amplitudes, we obtain the results shown
in Fig. 5. These amplitudes correspond to the first set of
consecutive minima and maxima, i.e., at the highest magnetic
field as shown in Fig. 4, where local extrema are marked by
crosses.

IV. DISCUSSION

We calculated the magnetoresistance of a type-II Weyl
semimetal without and with a magnetic field induced CDW.
Earlier, the unsaturated and (nearly) quadratic magnetoresis-
tance of several compounds was attributed to the compen-
sation of electron and hole pockets, based on semiclassical
computations. Here, we confirmed this result for noninteract-
ing type-II Weyl semimetals using a microscopic model and
linear response theory. Further, we showed that a critical field
strength BQ exists, at which the quadratic scaling breaks down
even for perfect compensation. We discussed how this field
strength, which corresponds to the quantum limit, depends on
the materials parameters.

We then focused on the effects of interactions, which lead
to a CDW transition as reported in Ref. [31]. In terms of
magnetoresistance this CDW transition leads to numerous

effects: At low fields, the resistivity (and hence the mag-
netoresistance) is increased significantly and at high fields
the resistivity approaches again the values of the nonin-
teracting case. Most importantly, the temperature depen-
dence of the resistivity oscillations is in contrast to the
universal Lifshitz-Kosevich behavior. Therefore, magnetore-
sistance measurements are an appropriate tool to look for
signatures of the conjectured CDW phase in type-II Weyl
semimetals.

We note that the number of Landau levels crossing the
Fermi level is determined by the magnetic field component
B⊥ projected onto the tilt direction. Hence, a magnetoresis-
tance from Landau level formation of the form (B⊥)2 suggests
a cos2 θ angular dependence similar to measurements on WP2

[24].
At the time of this writing, it seems likely that all

materials showing unsaturated magnetoresistance may in-
deed have perfectly compensated electron and hole pock-
ets. This has been consensus for WTe2. Another material,
WP2, likewise displaying an extreme magnetoresistance but
with a more controversial provenance, has recently been
argued to be particle-hole compensated as well [38]. For
WTe2 it indeed appears that the extreme magnetoresistance
is sensitively depending on fine-tuned particle hole symmetry
[39,40].

We also note that an extreme magnetoresistance has been
identified in the topologically trivial material LaAs [41]. In
our setup it is quite clear that the topology of the Weyl
node is not the root of this effect—nevertheless, the band
structure of a type-II Weyl node is perfectly primed to allow
this effect. Via the emergent nesting in a strong magnetic
field, we argue that the appearance of a CDW is almost
unavoidable.

Intriguing prospectives for future research include tak-
ing into account interactions within the n = 0 chiral Lan-
dau level, to consider finite frequency optical conductivity
and to investigate the effect of doping away from particle-
hole compensation. The latter generalization would include
the relaxation of several approximations made and jus-
tified in Ref. [31], including the simple contact interac-
tion and the restriction of the interaction to Landau level
branches with equal Landau level index. Finally, beyond
Weyl semimetals it will be worthwhile to extend the general
idea that field-induced density wave transitions can strongly
affect the amplitude scaling of quantum oscillation measure-
ments [42,43] and hence interpretation of the corresponding
data.
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APPENDIX: MATRIX ELEMENTS

After the publication of Ref. [31] we gained some more insight in the structure of the interaction matrix elements, also
generalizing to arbitrary combinations of Landau level indices n1,2,3,4, as defined in the main text and the supplementary material
of Ref. [31]. Recall the matrix elements formula

Mn1,n2,n3,n4 (q) = U (q) Jn4,n1 (qx, qy )Jn3,n2 (−qx,−qy )︸ ︷︷ ︸
F (qx,qy )

(A1)

Jm,n(qx, qy ) =
√

n!

m!
e−|q|2/4

(
qx + iqy√

2

)m−n

Lm−n
n

( |q|2
2

)
with |q|2 = q2

x + q2
y for m < n (A2)

Jm,n(qx, qy ) = J ∗
n,m(−qx,−qy ), (A3)

that we want to evaluate at finite kz but qx = qy = 0. The following analytic results are obtained in the basis of the cA, cB

operators, therefore a basis transformation introducing a dependence on n, kz, and B needs still to be applied.

A. Hartree terms

In Jm,n there appears a factor of (qx ± iqy )m−n, as the matrix elements for the Hartree terms are evaluated at qx = qy = 0,
this factor cancels any contribution for m �= n and the only contribution is for m = n, giving a factor of 1, as L0

n(0) = 1. Due to
the shift of cα=B,n → cB,n+1, the factor J corresponding to cB,ni

depends on ni − 1, leading to the full interaction matrix:⎡
⎢⎢⎢⎣

δn1n4δn2n3 δn1,n4−1δn2n3 δn1n4δn2,n3−1 δn1,n4−1δn2,n3−1

δn1n4δn3,n2−1 δn1,n4−1δn3,n2−1 δn1n4δn2−1,n3−1 δn1,n4−1δn2−1,n3−1

δn2n3δn4,n1−1 δn2n3δn1−1,n4−1 δn2,n3−1δn4,n1−1 δn2,n3−1δn1−1,n4−1

δn3,n2−1δn4,n1−1 δn3,n2−1δn1−1,n4−1 δn4,n1−1δn2−1,n3−1 δn1−1,n4−1δn2−1,n3−1

⎤
⎥⎥⎥⎦. (A4)

B. Fock terms

To calculate the Fock terms of the mean-field expansion we can use the rewriting introduced in Ref. [44]. Therefore we
are interested in M̃ (q) at q = 0, which turns out to be the integral over qx, qy of the M . Introducing the complex variable z =
qx + iqy this integral is equivalent to the integral over the complex plane, and the argument of the Laguerre polynomials becomes
|z|2. For each factor of J in the matrix element we get zα with α = m − n being the second index of the associated Laguerre
polynomial. Further we distinguish α = n4 − n1 and α′ = n3 − n2 and we use the polar notation z = reiϕ . Note that negative α

corresponds to exchanging the two indices of the Laguerre polynomial and additionally introduces a complex conjugation. Now
two cases can occur:

(1) α = −α′: this leads to an integral of the form∫
C

dzzαz∗−α
Lα

nLα
n′e

−z2 =
∫

C

dz|z|2αLα
nLα

n′e
−|z|2 (A5)

which is exactly the orthogonality relation of the associated Laguerre polynomials, leading to δn,n′ , with n = max n1, n4 and
n′ = max n2, n3 with the appropriate ±1 shift for the B operators.

(2) α �= −α′: We introduce β as α′ = −α − β and manifestly nonzero β. The integrand now includes a factor of |z|2αzβ (or
z∗β). The part |z|2αLα

nLα
n′e−|z|2 of the integrand only depends on |z|, i.e., is independent of the complex phase, and consequently

the integral over the complex plane can be split into integrations over r and ϕ, and the integration
∫

dϕzn is 0. As a negative
value of α always is related to the complex conjugate of J with positive α, this case rules out any contribution of elements where
the product of two Laguerre polynomials with different α indices occurs.

Together this leads to the following matrix elements of M̃ (wrapping the 4 × 4 matrix to two lines):⎡
⎢⎢⎢⎣

δ−n1+n4,n2−n3δmax (n1,n4 ),max (n2,n3 ) δn2−n3,−n1+n4−1δmax (n1,n4−1),max (n2,n3 )

δ−n1+n4,n2−n3−1δmax (n1,n4 ),max (n3,n2−1) δ−n1+n4−1,n2−n3−1δmax (n1,n4−1),max (n3,n2−1)

δn2−n3,−n1+n4+1δmax (n2,n3 ),max (n4,n1−1) δ−n1+n4,n2−n3δmax (n2,n3 ),max (n1−1,n4−1)

δ−n1+n4+1,n2−n3−1δmax (n3,n2−1),max (n4,n1−1) δ−n1+n4,n2−n3−1δmax (n3,n2−1),max (n1−1,n4−1)

δ−n1+n4,n2−n3+1δmax (n1,n4 ),max (n2,n3−1) δ−n1+n4−1,n2−n3+1δmax (n1,n4−1),max (n2,n3−1)

δ−n1+n4,n2−n3δmax (n1,n4 ),max (n2−1,n3−1) δn2−n3,−n1+n4−1δmax (n1,n4−1),max (n2−1,n3−1)

δ−n1+n4+1,n2−n3+1δmax (n2,n3−1),max (n4,n1−1) δ−n1+n4,n2−n3+1δmax (n2,n3−1),max (n1−1,n4−1)

δn2−n3,−n1+n4+1δmax (n4,n1−1),max (n2−1,n3−1) δ−n1+n4,n2−n3δmax (n1−1,n4−1),max (n2−1,n3−1)

⎤
⎥⎥⎥⎦. (A6)
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In most of the cases n1 has to be equal (up to ±1) to n3,
while it is independent of n2, n4, which in turn are equal
up to ±1 as well. This is comparable to the situation of
the Hartree results where n1, n4 were independent of n2, n3,

but here with switched pairs. One can easily verify this
when n1, n3 are much larger (or smaller) than n2, n4, as the
terms δmax (n1,n4 ),max (n2,n3 ) then can be simplified, regardless of
some ±1.
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