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Abstract 

Infectious diseases still remain one of the main causes of death across the globe. 
Despite huge advances in clinical diagnostics, establishing a clear etiology remains 
impossible in a proportion of cases. Since the emergence of next generation sequencing 
(NGS), a multitude of new research fields based on this technology have evolved. 
Especially its application in metagenomics – denoting the research on genomic material 
taken directly from its environment – has led to a rapid development of new 
applications. Metagenomic NGS has proven to be a promising tool in the field of 
pathogen related research and diagnostics. 
In this thesis, I present different approaches for the detection of known and the 
discovery of unknown pathogens from NGS data. These contributions subdivide into 
three newly developed methods and one publication on a real-world use case of 
methodology we developed and data analysis based on it. 
First, I present LiveKraken, a real-time read classification tool based on the core 
algorithm of Kraken. LiveKraken uses streams of raw data from Illumina sequencers to 
classify reads taxonomically. This way, we are able to produce results identical to those 
of Kraken the moment the sequencer finishes. We are furthermore able to provide 
comparable results in early stages of a sequencing run, allowing saving up to a week of 
sequencing time. While the number of classified reads grows over time, false 
classifications appear in negligible numbers and proportions of identified taxa are only 
affected to a minor extent. 
In the second project, we designed and implemented PathoLive, a real-time diagnostics 
pipeline which allows the detection of pathogens from clinical samples before the 
sequencing procedure is finished. We adapted the core algorithm of HiLive, a real-time 
read mapper, and enhanced its accuracy for our use case. Furthermore, probably 
irrelevant sequences automatically marked. The results are visualized in an interactive 
taxonomic tree that provides an intuitive overview and detailed metrics regarding the 
relevance of each identified pathogen. Testing PathoLive on the sequencing of a real 
plasma sample spiked with viruses, we could prove that we ranked the results more 
accurately throughout the complete sequencing run than any other tested tool did at 
the end of the sequencing run. With PathoLive, we shift the focus of NGS-based 
diagnostics from read quantification towards a more meaningful assessment of results 
in unprecedented turnaround time. 
The third project aims at the detection of novel pathogens from NGS data. We 
developed RAMBO-K, a tool which allows rapid and sensitive removal of unwanted host 
sequences from NGS datasets. RAMBO-K is faster than any tool we tested, while 
showing a consistently high sensitivity and specificity across different datasets. 
RAMBO-K rapidly and reliably separates reads from different species. It is suitable as a 
straightforward standard solution for workflows dealing with mixed datasets. 
In the fourth project, we used RAMBO-K as well as several other data analyses to 
discover Berlin squirrelpox virus, a deviant new poxvirus establishing a new genus of 
poxviridae. Near Berlin, Germany, several juvenile red squirrels (Sciurus vulgaris) were 
found with moist, crusty skin lesions. Histology, electron microscopy, and cell culture 
isolation revealed an orthopoxvirus-like infection. After standard workflows yielded no 
significant results, poxviral reads were assigned using RAMBO-K, enabling the 
assembly of the genome of the novel virus.   
With these projects, we established three new application-related methods each of 
which closes different research gaps. Taken together, we enhance the available 
repertoire of NGS-based pathogen related research tools and alleviate and fasten a 
variety of research projects.   
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1  Introduction 

 

1.1 Metagenomics 

 

Metagenomics denotes research of genetic material taken directly from its environment 

without prior cultivation [1]. Metagenomic datasets are therefore mixtures of the 

genomes of heterogeneous communities of organisms. The term was introduced by 

Handelsman et al. in 1998 [2]. Using the literal translation from the Greek, it describes 

studies which are “beyond” genomics, aiming at analyzing more than a single genome 

at once [3].  

Metagenomics have enabled answering a variety of scientific questions.  Two of the 

most influential use cases I will focus on in particular are the study of microbial 

community composition and the study of genomes of organisms which cannot readily 

be cultured [4]. It is supposed that this applies to 99.8% of all microbes [5]. 

Mentionable, viruses can never be cultured independently of a host cell. But for the 

absolute majority of viruses, not even the host can be grown in culture [6]. 

Metagenomics therefore opens a door to a great unknown microbial diversity. 

The first metagenomic studies were based on shotgun Sanger sequencing 

(s. Chapter 1.4) and therefore limited in their sensitivity [3]. To that time, most 

successful studies targeted low-complexity microbiomes such as these of geysers or 

deep sea water [4]. Still, Venter et al. were already able to study the highly complex 

freshwater microbiome of the Sargasso Sea in 2004 [7]. The progress in sequencing 

technology allowed studying more and more complex environments.  

One of the best studied environments in the field of metagenomics is the human body. 

The collective of all microbes inhabiting the human body are called the human 

microbiome [8]. While the human body consists of approximately 1013 cells, it is 

populated by 10 times as many bacteria and even 100 times as many viruses [9]. 

Although a large proportion of the human microbiome is not yet understood in detail, it 

is already known to have a major impact on human health. Amongst many others, there 

is proven correlation of the human microbiome and that of the oral microbiome and 

dental caries [10] or the gut microbiome on obesity [11]. Notably, pathogenic 

organisms such as bacteria or viruses are detectable as part of the microbiome in case 

of an acute infection.  
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1.2 NGS-based pathogen detection 

One field of research which is rapidly growing and already reaches out into clinical 

practice is NGS-based pathogen detection. In extraordinary cases of infectious diseases, 

diagnostic analyses can be extremely difficult. Despite huge advances in clinical 

diagnostics, at some medical conditions no clear etiology can be established for up to 

60% of the cases [12]. Especially if the causative agent of an infection is unknown or an 

infection is caused by an unsuspected pathogen, common methods such as 

non-multiplex PCR  or antibody detection are doomed to fail, as these are restricted to 

test for one species at a time [13].  

With metagenomic NGS, a hypothesis and culture free pathogen detection method has 

emerged. It is based on the identification of a pathogen’s nucleic acids, be it 

deoxyribonucleic acids (DNA) or ribonucleic acids (RNA), in a patient sample. A 

classical metagenomic sample is sequenced, producing millions to billions of reads 

which stem from all species in the sample. The first challenge of this approach is 

therefore, that the majority of reads stems from the host genome in most cases. This is 

owed to the random sampling of reads from all nucleic acids in the sample, where the 

host genome is generally more abundant and magnitudes larger than the pathogen’s 

genome. It has been proven that 0.00001%-0.7% of the total reads from a sequencing 

run may have decisive influence on a successful diagnosis [12, 14]. To compensate for 

this, a high sequencing depth is desirable. 

This leads directly to the second main issue of NGS-based pathogen detection: At very 

high sequencing depths, the data will contain reads from all kinds of sources. These 

may range from contaminations introduced with sample-taking over lab 

contaminations to commonly seen organisms which are regularly colonizing a person 

[12, 15]. As even single reads may be relevant for a diagnosis, it is extremely difficult to 

automatically reject any read without risking losing valuable information. Furthermore, 

it is often impossible to automatically distinguish a normal colonization from acute 

infection. As an example, human papillomavirus, known as the causative agent of a 

variety of different diseases including cancer, was detected in 95% of subjects in a 

study, with no correlation to their disease status [16].  

Thirdly, the overall turnaround time of sequencing a sample at the necessary depth is 

too long to get actionable results in cases of acute infections or outbreak scenarios in 

reasonable time. Despite the massive advances in NGS, sequencing a metagenome at 

very high sequencing depth may still take up to 11 days on an Illumina HiSeq. This is of 

course too large a timespan for most diagnoses. Additionally, library preparation, data 
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analysis and evaluation of results further prolong the overall turnaround time. In order 

to tackle this problem, fast sequencing protocols or usage of third generation 

sequencers have been proposed [17, 18]. These approaches have been shown to work 

in different diagnostic settings, but as all of them rely on a downscaled sequencing 

depth and lower quality data, the risk of missing relevant pathogens is increased. 

As the diagnosis can only be considered as finished after a final decision for one or 

more causative agents has been made, the overall turnaround time does not end when 

the bioinformatic analysis is completed. Bioinformatic analyses can only bring a first 

structure into a metagenomic dataset. We are nowhere near the point where a fully 

automated diagnosis could rely on bioinformatic analyses alone. It is thus very 

important to present the results of the bioinformatic pipelines in an understandable 

form to enable researchers and clinicians to get to actionable results quickly [14].  

Another problem that has been stated by Dutilh et al. in [16] is the data privacy of the 

patient, as large proportions of their genome are sequenced as a byproduct of the 

metagenome sequencing. Different approaches have been implemented to solve this 

problem by removing human background reads from the dataset [19, 20].  

Despite all described difficulties, NGS has already greatly contributed to many 

successful diagnoses. A variety of tools for this purpose already exist, each of them 

tackling some of the above-mentioned problems [21-28]. Especially in the field of 

encephalitis diagnostics, where hundreds of pathogens have been proven to be 

candidate causative pathogens, NGS based diagnostics is at the frontier to be 

incorporated into routine clinical application. A number of successful diagnoses has 

been described by Brown et al. [29]. The outstanding success of NGS-based diagnostics 

in this field of diseases may be owed to the relative cleanness of brain related samples, 

be it from a biopsy or from liquor. This can be explained by the blood-brain barrier, 

which keeps the brain free of most organisms which colonize other regions of the body. 

Yet, other diseases have been successfully diagnosed using metagenomic NGS as well. 

Some of these cases have been listed by Simner et al. [12]. Even commercial companies 

have already successfully conducted clinical tests based on NGS. For example, a 

commercial test was able to diagnose a sepsis induced by Capnocytophaga canimorsus 

[30]. Still, different methods such as polymerase chain reaction (PCR) are necessary 

and widely used for the confirmation of the results of NGS in diagnostic setups to date.  

Concluding, it can be stated that NGS as a basis for pathogen diagnostics can be 

expected to become a very influential method over the next years, although several 

issues still have to be overcome.  
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1.3 Metagenomic data for virus discovery 

 

Novel human pathogenic viruses, distinct from any known species, are regularly 

emerging in the human population. These are often zoonotic agents which can spread 

to humans if they have contact with infected animals, as global epidemics as SARS 

coronavirus [31, 32] but also local outbursts like that of ebola virus in West Africa in 

2014/2015 [33, 34] strikingly proved. Furthermore, the emergence of 

immunosuppressive therapies has led to infections with normally nonpathogenic 

viruses [35]. To date, many of these pathogens have only been discovered after having 

caused serious harm. It is expected that there exist about 320.000 mammal-associated 

viral species – only about 3200 of which are known today [36, 37]. In total, viruses are 

expected to be the most abundant group of organisms on the world, totaling to 

approximately to 5.2-7.5×1031 particles [9]. 

The possibilities of NGS enabled a particularly large increase of the number of newly 

discovered viruses [9, 38, 39]. Since isolating and examining novel viruses in the wet 

lab is eminently difficult, the possibility to obtain a viral sequence directly from an 

infected host alleviates these studies in particular, as has been proven by several 

research projects [35]. One of the best known results is the crAssphage. It has been 

named by the cross-assembly strategy (crAss [40]) which was used to unveil this 

phage. Interestingly, it is the most abundant phage in human feces, totaling 1.68% of all 

reads from human fecal metagenome sequencing sample – despite its relatively small 

genome of under 100 kbp [41]. Still, it had not been noticed before the regular use of 

NGS.  

Tackling this task, a variety of tools allowing the discovery of novel viruses from 

metagenomic samples have been developed [40, 42-56]. Still, this field of research faces 

many difficulties. The key hurdle is that finding viral reads in sequencing data is a 

needle-in-a-haystack problem. The evaluation of sequencing data from purified viral 

particles is comparably easy. Unfortunately, this purification in the wet lab is markedly 

difficult for samples containing a complex mixture of organisms [39, 57]. Furthermore, 

even the computational classification of reads to the highest taxonomic ranks – 

eukaryotes, bacteria, archaea and viruses – is a yet unsolved problem [58]. With this in 

mind, tools for virus discovery need to be able to handle complex mixed datasets.  

Furthermore, viral genomes mutate at comparably high speed. Starting at 10-8 

mutations per base per generation for DNA-viruses, RNA-viruses may have mutation 

rates up to 10-3 per base per generation [59]. This may result in genomes highly deviant 
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from the next known reference. To handle this problem, virus discovery tools need to 

be very sensitive.   

Even though great advances in the development of virus discovery methods have been 

made, analyses are still connected with complex manual work and may even fail 

completely in various cases due to the aforementioned difficulties.  

 

1.4 Genome sequencing 

 

Genome sequencing generally denotes the determination of the order of nucleic acids 

in large molecules. Throughout the last 40 years, several techniques have been 

developed to decipher the genetic code of life.  

All existing sequencing technologies rely on the measurement of a technology-specific 

signal which determines a piece of a nucleic acid sequence. This signal is then 

translated into an alphabet consisting of the corresponding bases of the nucleic acid 

sequenced. This step is called base calling and may also include the assignment of 

quality values which allow conclusions on the error-proneness of a specific base.  

Since it is generally uncommon (yet not impossible anymore) to sequence a complete 

genome in one piece, usually a molecule of interest is fragmented and deciphered piece 

by piece. This is either achieved by selection and sequencing of a desired part of the 

nucleic acid sequence, or by shotgun sequencing. The latter denotes the idea of 

randomly shearing a sequence into small fragments and sequencing those fragments. 

Albeit sounding counterintuitive, this idea facilitated the successful completion of the 

Human Genome Project [60, 61]. 

The very first technique for DNA sequencing was developed by Sanger et al. in 1977. It 

is based on the chain-termination method. In simple terms, a DNA template is amplified 

and then divided into four subsamples. Each of these is then mixed with all four 

standard deoxynucleotides and DNA polymerase. Additionally, one of the four 

corresponding dideoxynucleotides is added. When a dideoxynucleotide is added to the 

growing chain of bases, the polymerase reaction gets interrupted. As this happens 

randomly, products of random lengths are produced.  All produced fragments are then 

submitted to a gel electrophoresis. Via the lengths of the fragments on the different 

bands of the electrophoresis, the order of nucleotides can be determined. This method 

was later improved and used for the first automated sequencing machine by Applied 

Biosystems in 1987. Sanger sequencing can produce reads of length of up to 1000 bp 

and has extremely low error rates, which is why it is still a commonly used method. On 
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the downside, it is comparably slow and expensive compared to newer sequencing 

methods when measured per base [62]. 

Over the past 13 years, NGS has gained influence in a variety of research fields. It 

enables sequencing multiple DNA molecules in parallel, which is why it is also denoted 

as massively parallel sequencing.  This parallelization resulted in a drop of sequencing 

cost and a raise of sequencing capability in an exponential scale.   

There is a variety of technologies referred to under the term NGS. The major division of 

these runs between second generation sequencing also denoted as massively parallel 

sequencing or short read sequencing, and third generation sequencing which denotes 

technologies facilitating long-read sequencing from single molecules. 

Second generation sequencing 

Second generation sequencing was introduced in 2005 [62]. For the first time, it was 

possible to sequence millions of short nucleic acid sequence fragments in parallel, 

leading to a massive increase of sequencing capabilities at once. As second generation 

sequencing can only produce comparably short reads, it is perfectly compatible with 

the idea of shotgun sequencing.  

The first Solexa sequencers were for example limited to read lengths of <25 basepairs 

(bp). Different competitors pushed these boundaries, so that it is by now possible to 

sequence up to 400bp per read, generating as many as a trillion bases per run with 

error rates far below 1% [63]. Illumina, which acquired Solexa in 2007 [64] has become 

the market leader in the field of second generation sequencing [65].  

Illumina dye sequencing technology 

Large parts of our work are closely connected to the Illumina sequencing technology. 

Not only do we build up on Illumina sequencing data, but in some projects we interact 

with the sequencers directly while they are running. Therefore, I will give a short 

introduction on Illumina sequencing technology in the following paragraphs, which are 

structurally oriented at Illumina’s own descriptions [66, 67] and Canzar et al. [68]. 

Illumina’s sequencing workflow is subdivided into three basic steps, as shown in Figure 

1: (i) Library Preparation, (ii) Cluster Generation and (iii) Sequencing itself [66, 68]. 

Every sequencing experiment starts with the purification of nucleic acids from a 

sample. DNA can be sequenced directly while RNA needs to be translated into cDNA 

first [69].  
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Figure 1. Workflow of the Illumina sequencing process. (i) Library preparation: Fragmentation of 
nucleic acids and ligation of adapter sequences, (ii) cluster generation on the flow cell, and (iii) 
sequencing by synthesis itself. ©2015 IEEE. Adapted and reprinted with friendly permission from 
Stefan Canzar and Steven Salzberg.  

In step (i), the purified DNA is then randomly sheared into shorter fragments either 

physically, e.g. by sonication, or enzymatically [70]. Adapters, sequencing primers and 

indices are ligated on both ends of these fragments. Indices denote short nucleotide 

sequences which can be used to distinguish different samples which are sequenced 

together. This process is called multiplexing, while the assignment of reads to their 

indices after sequencing is called demultiplexing. Methods combining fragmentation 

and adapter ligation are also called “tagmentation” methods. The target DNA is located 

between the adapters and also denoted as “insert”. The complete adapter-ligated 

fragments are amplified by PCR and get purified afterwards.  

For the Cluster Generation step (ii), the prepared library is submitted to the sequencer. 

The chemical reaction underlying the sequencing process is conducted on a so called 

flow cell. A flow cell is a glass slide with a varying number of lanes, depending on the 

instrument and the sequencing mode. On the surface of the lanes, two types of short 

oligonucleotides are attached. Each of them is the complementary sequence of one of 

the adapters on the fragments.  For hybridization, the first adapter is ligated to the first 
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type of oligonucleotides. Then, a polymerase creates a complement of the hybridized 

template strand. The template strand is then washed away, leaving only the 

complementary strand. The second adapter region is then hybridized to the second 

type of oligonucleotides on the flow cell, forming a bridge, which is again turned into a 

double-stranded DNA by a polymerase. By repeating this so called bridge amplification 

step several times, large numbers of identical sequences and their complements are 

produced forming clusters on a flow cell. After the bridge amplification step, all 

complementary strands from the original template are washed off. All of this happens 

for all clusters simultaneously, resulting in one cluster of identical sequences for each 

of the billions of fragments. 

The sequencing process itself (iii) begins with the binding of the first sequencing 

primer to the primer region of the template. A polymerase then synthesizes the 

complementary strand of the template, using fluorescently tagged nucleotides with a 

reversible terminator. This ensures that only one base is attached per cycle, which is 

always the complementary base of the corresponding base in the template. Then, the 

sequencing machine detects which base has been attached to a cluster in a given cycle 

by the fluorescent signal sent out by a complete cluster on excitation. Based on the 

measured signal of each cluster, the base call including a measure of base quality for a 

given cycle is calculated and saved. The first few bases of a template are used to identify 

the clusters on a flow cell, as their location is not predefined. Therefore, the signals sent 

out from a cluster in the early cycles must differ from those of a neighboring cluster to 

enable successful cluster distinction. Afterwards, the terminator is removed and the 

next cycle starts. After the first read has been sequenced, usually after 50-350 cycles, 

the product of the polymerase is removed. Then, the first index is sequenced in the 

same manner as the read before. After this product has been removed as well, the 

template is bound to the second type of oligonucleotides on the flow cell. Then, the 

second index is sequenced and the product is removed. A polymerase produces the 

complement of the bridged template and the original template is then removed, leaving 

only the complementary strands on the flow cell. For the last step of the procedure, the 

second read is sequenced in the same way as the first read at the beginning of the 

process. [66-68] 

For single-end-read sequencing, protocols and other types of indexing, the procedure 

slightly differs.  

Notably, the sequencing process is executed cycle-wise for all clusters at the same time, 

which is denoted as massively parallel sequencing. Billions of reads are therefore 

elongated by one base per cycle in parallel.  
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Third generation sequencing 

Third generation sequencing was first introduced by PacBio in 2011 and enables read 

lengths of >10 kilobasepairs (kbp). Oxford Nanopore, the second big player in the field 

of third generation sequencing, claims to achieve read lengths up to 950 kbp [71]. This 

advantage comes at cost of comparably low throughput rates of less than 10 billion 

bases per run, high per base costs and error rates up to 10%. 

Since third generation sequencers do not parallelize sequencing in a way comparable to 

second generation sequencing, they are able to make the reads available in real-time 

during the sequencing procedure. Therefore, these techniques are also called real-time 

long-read sequencing approaches [65]. This feature allows starting analyses even 

before the sequencing run has finished. Especially Oxford Nanopore has been widely 

used for real-time analyses of reads [17, 18].  

With HiLive [72] and PriLive [19], we were able to show that real-time analyses are 

also possible using second generation sequencing devices. This combines the 

advantages of second generation sequencers, namely low per-base costs, low error 

rates and high sequencing depths, with a smaller overall turnaround time of a real-time 

experiment.  

Both types of NGS have advantages and are suitable for certain tasks. Since all 

questions in this work could be answered best using second generation sequencing 

data from Illumina sequencers, the term NGS will by now be used interchangeably with 

Illumina’s technology. 

 

1.5 NGS data analysis 

 

As shown above, NGS provides scientists with powerful tools to answer a variety of 

questions in different fields of research. In general, any sequence of nucleic acids can be 

sequenced. As each of the reads contains only very little information on its own, it is 

necessary to process NGS data with a variety of bioinformatics methods. I will describe 

some of the more basic methods relevant for my work in the following paragraphs 1.5.1 

to 1.5.3. All the described algorithms have large impact on NGS-based pathogen related 

research. 
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1.5.1 Read mapping 

 

If a reference sequence is known, it can be used as a basis for a broad variety of 

analyses. Read mapping, as one of the most prominent ones, allows determining the 

exact genomic position a read stems from. This information obviously also implies what 

references the reads in a sample stem from.   

While the read mapping problem as such has just grown relevant with the rise of NGS, 

it can be thought of as an abstraction of the sequence alignment problem. Due to 

sequencing errors as well as genuine differences between a read and a reference 

sequence, the alignment of two sequences is anything but a trivial problem. Alignment 

methods useful for sequencing data analysis need to account for mismatches, insertions 

and deletions. Needleman and Wunsch proposed the first precursor of most modern 

alignment algorithms in 1970 [73]. It is used to calculate the global alignment between 

two sequences, meaning that the optimal alignment of the full length of both sequences 

is computed. In 1981, Smith and Waterman adapted the Needleman-Wunsch algorithm 

for local alignments, such that similarities between smaller parts of larger sequences 

could be detected as well [74]. 

The first big step from pure alignment algorithms towards read mapping was taken by 

Wilbur and Lipman [75] and later implemented in the FASTA program suite [76] and 

subsequently in BLAST [77]. Both of these rely on the principle of pre-filtering 

candidate sequences which have high chances of allowing a valid alignment. As the 

filtering step is computationally much more efficient than the actual alignment, these 

methods enabled new fields of applications in times of rapidly growing reference 

databases. On the other hand, most of the tools are based on heuristics and do no 

longer guarantee to find all valid alignments. With the growth of datasets as well as 

reference databases, using BLAST as a read mapper is not feasible anymore as it is too 

time consuming.  

Today, there is a huge variety of read mappers which rely on different algorithmic 

principles [78].  What all of them have in common is that they include only small parts 

of a given reference database for the actual read alignment. Large parts of the reference 

database are excluded via highly efficient sequence searches, leaving only little 

candidate positions for the search of a read’s origin via real alignments. I will shortly 

provide an introduction to read mapping at the example of HiLive [72], as it is the basis 

for some of my follow-up work. This illustration is based on  Martin Lindner’s 

description in the supplementary material of  [72].  
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HiLive builds on a k-mer-based approach, where a k-mer is defined a subsequence of a 

read or a reference of length k. The reference database on which HiLive is built is a 

k-mer index: For every k-mer that occurs in the reference sequences, all positions of its 

occurrence are stored and can easily been looked up. For each read produced by the 

sequencer, candidate alignments are calculated in parallel. To account for better 

understandability, I will describe how these calculations are conducted for one read 

only. Whenever the sequencer provides a new base for the read, the alignments are 

calculated in the following steps: database lookup, seed extension, seed creation and 

seed filtering.  

Database lookup 

As soon as a read reaches a predefined length k, the last k bases of the read are 

considered the current k-mer.  This k-mer is then searched in the k-mer index, returning 

a list of (genome ID, position)-pairs, denoted as matches. Negative positions denote 

reverse hits. All matches are then sorted by positions.  

Seed extension 

Existing seeds are being extended using the new matches. Whenever a new match lies 

in a window of w bases from an existing seed and shares the same genome ID, the new 

match is used to extend the existing seed. If more than one candidate database match 

exists, the one closest to the expected position is used for extension. Each database 

match may extend more than one seed. 

Seed creation 

All matches which cannot be used for seed extension are saved as new seeds, if there is 

a chance that they start an alignment that fulfills the user-specified criteria. In other 

words, after the completion of a certain cycle, no new seeds are created anymore. 

Seed filtering 

As all alignments must be kept in memory for the whole time, it is necessary to keep the 

number of existing seeds as low as possible. HiLive provides users with different 

instruments to discard seeds: exact filters, which exclude only alignments that cannot 

reach a given threshold and optional heuristics, which bear the risk of rejecting valid 

alignments. [72] 
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1.5.2 Read binning 

 

One of the most fundamental steps in many metagenome workflows is read binning. 

This denotes grouping the reads into bins, which correlate to their operational 

taxonomic units (OTUs), which are defined as clusters of organisms with high sequence 

similarity.  

Generally speaking, there are two kinds of binning tools: tools based on supervised [43, 

46, 47, 79-85] and tools based on unsupervised [86-88] algorithms. Supervised 

methods rely on a predefined set of groups, to which the reads are assigned. In most 

cases, the sets are defined based on the taxonomic origin of sequences. E.g., a set of all 

sequences below a certain taxonomic rank may be grouped together and constitute one 

bin.  

Supervised binning tools may either be based on alignments or make use of sequence 

characteristics such as GC-content, codon usage bias, k-mer frequencies and the like. In 

simple terms, certain sequence characteristics (including the nucleotide sequence itself 

for alignment-based methods) are measured in a set of reference sequences and 

assigned to predefined bins. In the next step, the reads are assigned to the bins based 

on the same characteristics. 

Unsupervised methods are not provided with references but form bins without a priori 

information. For example, abundanceBin bins reads based on their k-mer frequencies 

which it compares to the overall frequency of k-mer abundances in the complete 

dataset [87]. 

Unsupervised binning tools, but also some of the more sensitive alignment free 

supervised binning tools, may be of great help when working with sequences for which 

no close reference is known. Relying on vague sequence characteristics, it is sometimes 

possible to correctly assign reads which do not even have an alignable counterpart in a 

reference. This may either happen due to a massive amount of single nucleotide 

polymorphisms or in case of structural variations such as insertions or deletions. 

There are different underlying techniques used for read binning. Read mappers and 

other alignment-based methods can be very helpful for this purpose, as presented in 

MetaPhlAn2 [89], DiScRIBinATE [90], SPHINX [91], taxator-tk [92] and MEGAN [46].  

Still, in some cases the use of a read mapper is not necessary or suitable in order to 

retrieve the desired information from an NGS dataset. The calculation of an actual 

alignment may take unnecessarily long. Especially calculating highly sensitive read 

alignments as performed by BLAST [77] is still computationally challenging. To 

circumvent this restriction, various methods based on different classification principles 
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without the need for error-tolerant alignments have been proposed, which yield 

comparable or even better results in reasonable time frames. 

Most of these methods rely on k-mer-based approaches [93-98]. I will shortly explain 

the principle of one k-mer-based classifier at the example of Kraken, as it was the first 

rapid metagenome classification tool and therefore serves as the reference tool for 

k-mer based classification approaches [99]. 

As a basis for the read classification, Kraken builds a k-mer database using the Jellyfish 

k-mer counter [100] with k being set to 31 bp as a default. For each occurring k-mer, the 

lowest common ancestor (LCA) of all sequences containing it is calculated. Here, this is 

defined as the lowest taxonomic clade under which all sequences containing the given 

k-mer are joined.   

All k-mers occurring in a given read are searched within the k-mer database. All paths 

from the root to an LCA taxon of a read are combined to a pruned subtree. The count of 

each appearing in a read is stored. Next, the sums of these counts of all possible 

root-to-leaf (RTL)-paths are calculated. The leaf of the highest scoring RTL-path is 

selected as the resulting classification. If more than one RTL-path reaches the 

maximum score, the read is assigned to the LCA of their leafs. If a read contains no 

k-mer from the database it is left unclassified [94].  

As Marchesi and Ravel [101] discussed, real metagenome classification is not to be 

confused with metataxonomics, a field of research relying on the amplification and 

sequencing of certain marker regions. The most wide spread example of 

metataxonomic methods is 16s RNA sequencing, which can be used for the study of 

microbial community composition analysis only [102, 103]. As there is an explicitly 

biased amplification step and large parts of most environments are excluded from 

sequencing, this is not a real metagenomic application.  For example, there exists no 

universal marker region for viruses. Due to these limitations of metataxonomics, I will 

focus on true whole genome metagenome applications in this thesis.  

Furthermore, we must distinguish between metagenome classification and abundance 

estimation methods. While metagenome classification means to assign each read to its 

taxon of origin, the latter aim at estimating the abundance of OTUs. For example, 

MetaPhlAn2 only uses a set of marker genes instead of a whole genome database, 

potentially leaving a large number of reads unassigned [89]. On the other hand, pure 

sequence classification tools do often not allow precise abundance estimation, as for 

groups with many rather similar subclades, reads may be stuck in higher taxonomic 

ranks [94]. Lu et al. have for this reason developed Bracken [104], a tool which enables 

precise abundance estimation based on the results of Kraken. 
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1.5.3 De novo assembly 

 

If a nucleic acid sequence stems from a yet unknown source or is expected to be distinct 

from known references, it may be necessary to reconstruct the sequence from scratch. 

Although this is often more complicated than the described reference-based methods, it 

can avoid introducing biases into the data analysis and may thus be performed even if a 

reference is available.  

As short reads carry very little information themselves, it is necessary to assemble the 

reads to a longer sequence in order to gain deeper insights. If no a priori information 

from a reference sequence is used, we speak of a de novo assembly. In principle, all 

de novo assemblers combine overlapping reads into contiguous sequences (contigs) 

using different strategies.  

A first simplified theoretical concept of de novo assembly algorithms was published by 

Lander and Waterman in 1988 [105]. Algorithms based directly on this concept use so 

called greedy algorithms. An example of these is implemented in SSAKE [106]: All reads 

in a dataset are stored in a list of unclassified reads. Then, a first read is moved to a list 

of contigs and all unassembled reads are searched for overlaps of a given minimum 

length, which is reduced stepwise when no more overlaps of any read and the contig 

are found. These algorithms are comparably inefficient and prone to sequencing errors. 

Moreover, repetitive regions cannot be resolved using this concept. 

The next bigger innovation was introduced through Overlap-Layout-Consensus 

(OLC)-based algorithms. These are also based on the idea of identifying overlaps 

between reads, but overlapping reads are not unconditionally accepted as contigs. 

Instead, an overlap graph is built, where every read is considered a node. Whenever 

two reads can be aligned and therefore overlap, their nodes are linked by an edge in the 

graph. In this overlap graph, a Hamilton path – a path visiting all nodes of a connected 

graph exactly once – is searched. This reduces the graph to a smaller number of nodes, 

where every node represents one contig. Finally, the consensus sequence of all reads 

constituting a contig is calculated. 

Software based on this concept was for the first time able to assemble large genomes 

[107]. Still, it has the disadvantage to be computationally expensive, both concerning 

memory and computational power, as every read is a node in a graph and calculating 

Hamilton graphs is an NP-hard problem. 

Most modern assembly algorithms such as SPAdes [108], EULER [109], Velvet [110]. 

ALLPATHS [111, 112] or SOAPdenovo2 [113] are therefore based on de Bruijn graphs. 

In contrast to the methods described previously, de Bruijn graph-based assemblers 
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work without calculating an error-tolerant alignment between reads. Instead, reads are 

dissected into overlapping k-mers. These k-mers are used to build a de Bruijn graph. In 

contrast to the graphs from OLC-based algorithms, sequences do not represent nodes 

but edges in the graph. This switch allows searching for an Euler path instead of a 

Hamilton path. In an Euler path, not every node but every edge is visited exactly once.  

For the Eulerian path problem, algorithms which need only quadratic runtime are 

known. Furthermore, the size of the graph does not depend on the number of reads, as 

duplicate sequences are merged into one edge. As most de novo assemblies are based 

on a large number of short reads, de Bruijn-based algorithms can solve this problem far 

more efficiently than alignment-based methods. Since sequencing fewer but longer 

reads becomes more influential again, it is quite possible that OLC assemblers will as 

well experience a revival [114, 115]. 

All aforementioned assemblers are intended to be used on sequencing data from single 

organisms. Yet, they may of course be used on metagenomic datasets after the reads 

have been binned. These groups may then yield good assembly results when treated 

like sequencing data from isolated source organisms.  Still, binning tools may falsely 

assign reads, or, more often and worse, leave reads unassigned which are then lacking 

in the assembly. 

To circumvent preceding binning and its negative side effects such as the risk of 

misclassified reads, efforts have also been made in the field of direct metagenome 

assemblers [116-123]. The assemblers described previously often face difficulties when 

run on metagenomic data. These may have several causes including different 

abundance levels of different species, shared conserved regions between different 

organisms and mixtures of strains, combining both mixed abundances and highly 

similar genomes [116]. This may lead to falsely connected contigs or unnecessarily 

short contigs. Metagenome assemblers are designed to solve these challenges. They 

often rely on splitting de Bruijn graphs into smaller subgraphs based on features like 

coverage or graph connectivity [117, 118]. Therefore, they can assemble metagenomic 

data directly.  

Most NGS-based metagenomic research questions can be answered by one or a 

combination of the aforementioned methods. The choice of methods does of course 

depend on the exact question, the type of the sample, the availability of reference 

sequences and more.  
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1.6 Terminology and abbreviations 

 

auc   Area under the curve 

bam   Binary sequence alignment/map 

BerSQPV   Berlin squirrelpox virus 

bp    Basepairs 

BSL   Biosafety level 

contig   Contiguous sequence 

DNA   Deoxyribonucleic acid 

ds-cDNA   Double-stranded cDNA 

EM   Electron microscopy 

ERV   Endogenous retrovirus 

FTP   File Transfer Protocol 

gbp   Gigabasepairs 

GC    guanine-cytosine 

HERV   Human endogenous retrovirus 

kbp   Kilobasepairs  

LCA   Lowest common ancestor  

NCBI   National Center for Biotechnology Information 

NGS   Next generation sequencing 

OLC   Overlap-Layout-Consensus  

OPV   Orthopoxvirus 

OTU   Operational taxonomic unit 

PCR   Polymerase chain reaction 

PPV   Parapoxvirus 

RAMBO-K    Read Assignment Method Based On K-mers 

RNA   Ribonucleic acid 

ROC   Receiver operating characteristic  

RTL   Root to leaf  

sam   Sequence alignment/map 

SQPV   Squirrelpox virus 

TaxID   Taxonomic identifier 
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1.7 Thesis outline 

 

In this thesis, I will approach the problem of rapid and sensitive diagnostics for known 

and unknown pathogens based on NGS from different angles. In the following chapters 

2, 3, 4 and 5, I show our contributions to the field of research. Each of them tackles 

different research gaps and thereby enables new applications or provides new insights.  

The chapters are arranged in the order in which the described applications could be 

used on a metagenomic NGS dataset if very little information is available beforehand. I 

will finish with a chapter which shows the application of some of my introduced work 

as well as several other bioinformatic analyses in a real setting.  

In Chapter 2, I describe LiveKraken, a tool that enables the use of Kraken’s core 

algorithm [94] on Illumina sequencing data in real-time. LiveKraken enables accurate 

classification of reads even up to days before the sequencer has finished. This very 

general approach facilitates getting a first insight into a dataset without investing extra 

time, making it suitable as a standard application for any sequencing project. I 

conceptualized the real-time reporting feature, the visualization and the user interface 

of LiveKraken, designed and performed the benchmarks and wrote the manuscript for 

this project. The tool was developed by Benjamin Strauch, who implemented the new 

data handling into Kraken’s source code. Andreas Andrusch helped with the 

implementation of the visualization. Andreas Nitsche assisted writing the manuscript. 

Tobias Loka gave substantial input on the concept and helped writing the manuscript. 

Benjamin Strauch, Martin Lindner, and Bernhard Renard had the initial idea 

LiveKraken is based on. The project was performed under the guidance of Martin 

Lindner and Bernhard Renard. LiveKraken has been published at the journal Oxford 

Bioinformatics: 

 

Simon H. Tausch1, Benjamin Strauch1, Andreas Andrusch, Tobias P. Loka, Martin S. 

Lindner, Andreas Nitsche, Bernhard Y. Renard. LiveKraken – Real-time metagenomic 

classification of Illumina data. Bioinformatics, 2018. [124] 

 

Chapter 3 addresses a more profound and exhaustive approach of a real-time 

application on Illumina data, which is tailored to accurate pathogen diagnostics. The 

described software tackles not only the problem of long turnaround times of NGS-based 

                                                           
 

1 These authors contributed equally to the article 
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diagnostics using the enhanced core algorithm of HiLive [72], but also implements a 

new approach of contamination and background masking and visualizes the results in 

an intuitive way. This allows getting actionable results in minimal time. I 

conceptualized the workflow, implemented the visualization and the result evaluation 

including the pathogenicity rating, designed the scoring method and invented the novel 

background masking method.  Tobias Loka, Jakob Schulze and Kristina Kirsten helped 

enhancing HiLive to enable real-time output, gapped k-mer functionality and 

implemented many more necessary features. Jeanette Klenner produced the dataset 

used for benchmarking. Andreas Nitsche gave virological insights and supervised the 

generation of the benchmarking datasets. Wojtek Dabrowski, Martin Lindner and 

Andreas Andrusch gave substantial input on general questions regarding algorithmics, 

parametrization, visualization, and scoring methods. Bernhard Renard led the project. 

 

Simon H. Tausch, Tobias P. Loka, Jakob M. Schulze, Andreas Andrusch, Kristina 

Kirsten, Jeanette Klenner, Piotr Wojciech Dabrowski, Martin S. Lindner, Andreas 

Nitsche, Bernhard Y. Renard. PathoLive – Real-time pathogen identification from 

metagenomic Illumina datasets. (Manuscript under final internal revision before 

submission) 

 

Chapter 4 describes an efficient alignment-free read classifier. Especially when 

sequencing viruses, analyses are hampered by large proportions of background reads 

from the host cells. When no reference with appropriate similarity for a meaningful 

alignment exists, as it is common for viruses, a sensitive selection of relevant reads is 

difficult. RAMBO-K assigns reads to fore- and background using a Markov Chain-based 

classifier, yielding more precise classifications than its competitors in minimal time. I 

designed and implemented the Markov Chain-based scoring model in, the visualization, 

the read simulation and the user interface in Python and also designed and performed 

the benchmarks. Furthermore, I helped with writing the manuscript. Wojtek Dabrowski 

helped with the conceptualization and reimplemented the read scoring method and 

Markov Chain trainer in Java in a more efficient manner. Moreover, he guided the 

project and wrote the manuscript. His contributions have also been described in his 

doctoral thesis [115]. Bernhard Renard and Andreas Nitsche helped writing the 

manuscript and co-designed the idea of the tool. I have discussed the basic concept and 

implementation of RAMBO-K in my Master’s thesis [125].  Beyond that, I guided the 

development of a Geneious [126] plugin for the tool, which is work in progress, with 

help of Wojtek Dabrowski, René Kmiecinski and Alona Tyshaieva. I also conceptualized 
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the idea for a high-level-binning based on RAMBO-K to classify reads as viral, bacterial 

or eukaryotic. This has been implemented by Sophie-Meier zu Ummeln but yielded no 

significant results.  

RAMBO-K has been published in PlosOne:  

 

Simon H. Tausch, Bernhard Y. Renard, Andreas Nitsche, Piotr Wojciech Dabrowski. 

RAMBO-K: Rapid and Sensitive Removal of Background Sequences from Next 

Generation Sequencing Data. PLoS One, 2015. 10(9): p. e0137896. [85] 

 

An example use case of RAMBO-K and a number of general bioinformatics analyses are 

shown in Chapter 5. There, the discovery of a novel squirrelpox virus which is believed 

to establish a whole new genus of poxvirinae is presented. Studying the dataset using 

the established default mapping tools, no viable results could be found. Only after I 

assigned the viral reads using RAMBO-K, I was able to assemble the genome. I also 

assembled and aligned resequenced samples from other specimens, helped with 

genomic analyses and wrote parts of the manuscript. Gudrun Wibbelt wrote major 

parts of the manuscript and conducted the electron microscopy as well as the histology. 

Olivia Kershaw provided the samples to RKI. Wojtek Dabrowski performed the 

phylogenetic analysis. Andreas Nitsche designed the PCRs and gave valuable input to all 

parts of the complete project. Livia Schrick guided the project. All authors contributed 

in writing the manuscript. This chapter has been published in the Journal Emerging 

Infectious Diseases: 

 

Gudrun Wibbelt1, Simon H. Tausch1, Piotr Wojciech Dabrowski, Olivia Kershaw, 

Andreas Nitsche, Livia Schrick. Berlin Squirrelpox Virus, a New Poxvirus in Red 

Squirrels, Berlin, Germany. Emerg Infect Dis, 2017. 23(10): p. 1726-1729. [127] 

 

Further contributions 

Besides these first author contributions which are presented in detail in this thesis, I 

also contributed methodology I developed and data analysis based on it in the following 

journal publications: 
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Andreas Andrusch, Piotr W. Dabrowski, Jeanette Klenner, Simon H. Tausch, Claudia 

Kohl, Abdalla A. Osman, Bernhard Y. Renard, Andreas Nitsche. PAIPline: Pathogen 

identification in metagenomic and clinical next generation sequencing samples. 

Bioinformatics, 2018 (in press) 

 

With PAIPline, we present a pathogen identification pipeline, enabling the alignment 

based taxonomic classification of metagenomic reads with a focus on clinical samples. I 

gave input on the conceptualization of the workflow and parametrization of the 

modules. Furthermore, I conducted extensive testing and proof-read the manuscript.  

 

Tobias P. Loka, Simon H. Tausch, Piotr Wojciech Dabrowski, Aleksander Radonic, 

Andreas Nitsche, Bernhard Y. Renard. PriLive: Privacy-preserving real-time filtering 

for Next Generation Sequencing. Bioinformatics, 2018. [19]  

 

In this project, we present a real-time filtering tool for Illumina sequencing data which 

removes host reads while they are being produced and at the same time minimize the 

risk of deleting relevant data. I gave input on the algorithmics of HiLive and especially 

on the adaption of the algorithm to real wet lab settings. I furthermore tested Tobias 

Loka’s developments and proof-read the manuscript. 

 

Livia Schrick, Simon H. Tausch, Piotr Wojciech Dabrowski, Clarissa R. Damaso, José 

Esparza, Andreas Nitsche. An Early American Smallpox Vaccine Based on Horsepox. 

New England Journal of Medicine, 2017. 377(15): p. 1491-1492. [128] 

 

This letter in the New England Journal of Medicine is based on the sequencing of an 

ancient smallpox vaccine capillary from 1902. We were able to show that this vaccine 

was probably derived from horsepox instead of cowpox, gaining new insights to the 

mystery surrounding the history of smallpox vaccines. I analyzed the data from the 

highly fragmented genomic material using Trimmomatic [129], RAMBO-K [85] and 

SPAdes [108], which resulted in the complete genome of the ancient vaccine after 

manual correction. I furthermore calculated alignments using MAFFT [130] to related 

vaccinia, cowpox and horsepox genomes, finding major vaccinia-typical deletions in the 

ends of the ancient vaccine genome. Based on these, I designed figure 1B of the paper. I 

also wrote parts of the manuscript.  
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Martin S. Lindner, Benjamin Strauch, Jakob M. Schulze, Simon H. Tausch, Piotr 

Wojciech Dabrowski, Andreas Nitsche, Bernhard Y. Renard. HiLive: real-time 

mapping of illumina reads while sequencing. Bioinformatics, 2017. 33(6): p. 917-319. 

[72] 

 

HiLive is the first real-time read mapper for Illumina data giving results by the end of a 

sequencing run. After extensive testing, I conceptualized several enhancements of 

HiLive, making it easier applicable to real world settings. My most relevant 

contributions were made on user interface design and efficient and understandable 

output including demultiplexing and the handling of paired-end reads.  

 

Tobias P. Loka, Simon H. Tausch, Bernhard Y. Renard. Reliable variant calling 

during runtime of Illumina sequencing. (under review) 

 

This paper introduces HiLive2, a follow-up version of HiLive with a novel underlying 

alignment method, and combines it with xAtlas to enable SNP-calling while the 

sequencer is still running. I continuously supported the development of HiLive2 in 

technical as well as algorithmic questions and evaluated the performance of HiLive2 on 

different types of data. 

 

Cesare E. M. Gruber, Emanuela Giombini, Marina Selleri, Simon H. Tausch, 

Andreas Andrusch, Alona Tyshaieva, Giusy Cardeti, Raniero Lorenzetti, 

Giuseppe Manna, Fabrizio Carletti, Andreas Nitsche, Maria R. Capobianchi, 

Gian Luca Autorino, Concetta Castilletti. Whole genome characterization of OPV 

Abatino, a zoonotic virus representing a putative novel clade of Old World 

Orthopoxviruses. (Manuscript under final internal revision before submission) 

 

In this project, we assembled and characterized the genome of a novel poxvirus from 

Macaques, revealing hints towards genomic recombination. I helped assembling and 

annotating the genome with the aid of RAMBO-K and a self-developed assembly 

pipeline. Furthermore, I designed and implemented data analyses measuring the 

similarity of open reading frames to genes of different related species and drew figures 

visualizing these results.   
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Simon H. Tausch, Andreas Andrusch, José Esparza, Andreas Nitsche1, Clarissa R. 

Damaso1. Genome analysis of the Mulford 1902 smallpox vaccine.  (Manuscript under 

final internal revision before submission) 

 

In this project, we further characterize the genome of the ancient smallpox vaccine 

from [128]. This includes genome annotation, phylogenetic and metagenomic analyses 

as well as detailed investigations on gene level. I designed and implemented data 

analyses measuring the similarity of open reading frames to genes of different related 

species and drew figures visualizing these results. Moreover, I co-performed the 

metagenomic and gene level analyses and helped writing the manuscript.   
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2 Real-time metagenomic classification using LiveKraken 

 

In metagenomics, Kraken is one of the most widely used tools due to its robustness and 

speed. Yet, the overall turnaround time of metagenomic analysis is hampered by the 

sequential paradigm of wet and dry lab. In urgent experiments, it can be crucial to gain 

a timely insight into a dataset. 

Here, we present LiveKraken, a real-time read classification tool based on the core 

algorithm of Kraken. LiveKraken uses streams of raw data from Illumina sequencers to 

classify reads taxonomically. This way, we are able to produce results identical to those 

of Kraken the moment the sequencer finishes. We are furthermore able to provide 

comparable results in early stages of a sequencing run, allowing saving up to a week of 

sequencing time on an Illumina HiSeq in High Output Mode. While the number of 

classified reads grows over time, false classifications appear in negligible numbers and 

proportions of identified taxa are only affected to a minor extent. 

LiveKraken is available at https://gitlab.com/rki_bioinformatics/LiveKraken. 

2.1 Introduction 

 

Real-time analyses of genome sequencing data have been gaining particular attention 

over the last years, as they enable to analyze data while the sequencer is still running. 

Yet, the possibilities of live analysis approaches based on MinION sequencers are still 

limited due to low throughput rates and sequence qualities of these devices. With 

HiLive [72] we proposed the first method for real-time analyses of high-throughput 

sequencing data from Illumina machines, enabling a new field of applications. For 

metagenomic studies, classification tools such as Kraken [94] have also been used in 

time-relevant applications. These are, however, affected by the sequential paradigm of 

wet and dry lab, setting the lower limit of the overall duration of an experiment to the 

runtime of the sequencing machine. To tackle these limitations, we present LiveKraken, 

a real-time taxonomic classification tool based on the core algorithm of Kraken. We 

show that it yields results comparable to those of established tools long before the 

sequencer has even finished and that it guarantees results identical to those of Kraken 

as soon as a sequencing run has ended. LiveKraken has been tested on HiSeq and MiSeq 

systems and is as robust and easy to use as Kraken. The field of applications may range 

from controlling sample composition, contamination identification, or outbreak 

detection in real-time. 

https://gitlab.com/rki_bioinformatics/LiveKraken
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2.2 Materials and methods 

 

Originally, Kraken has a linear workflow [94]. Sequencing reads are read from FASTA 

or FASTQ files and subsequently classified using a precomputed database. Since the 

reads are independent of each other, they can be processed in parallel. The LCA 

classification results found for each read are written to Kraken’s tabular report file.  

To make this workflow fit for the purpose of live taxonomic classification, similar to the 

approach taken in HiLive [72], a new sequence reader module was implemented which 

allows reading sequencing data from Illumina’s binary BCL format. LiveKraken can be 

used to analyze continuously and refine the metagenomic sample composition, using 

the same database structure as the original Kraken.  

Illumina sequencers process all reads in parallel in so called cycles, appending one base 

to all reads per cycle. For each cycle, basecall (BCL) files are produced in Illumina’s 

BaseCalls directory, which is declared as input for LiveKraken instead of FASTA or 

FASTQ files. New data is collected by the BCL sequencing reader module in user-

specified intervals of j sequencing cycles, starting with the first k-mer of size k. The 

collected data is sent to the classifier which refines the stored partial classification with 

the new sequence information. Temporary data structures of Kraken are stored for 

each read, such as the LCA list, a list of ambiguous nucleotides, and the number of k-mer 

occurrences in the database. This leads to an overall increase of memory consumption 

proportional to the number of LCAs found for each read sequence. Additionally, and 

crucial for the iterative refinement, a variable is stored that is holding the position up to 

which each read was classified. After each refinement step, output in the same tabular 

format as known from Kraken is produced. This enables early classification while also 

ensuring that the classification output after reading the data from the last sequencing 

cycle is exactly the same that Kraken would produce (cf. Figure 2a). 

LiveKraken can be installed via the included script install_kraken.sh analogous to 

Kraken with an additional dependency to the boost library. It has been tested with gcc 

v. 4.9.2 and v. 7.2.0 and boost v. 1.5.8. Furthermore, a Conda package is available [131]. 

LiveKraken uses the same command line interface as Kraken. 
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Figure 2 Timeline of LiveKraken: Upper part (a) showing the method, lower part (b) an exemplary result. (a) Method: Raw parts of 
sequenced reads are streamed directly from the sequencer into Kraken’s classification algorithm. K-mers are taxonomically classified 
using Kraken’s precomputed map of each k-mer to the lowest common ancestor of all genomes containing the k-mer, as color coded in the 
taxonomy tree. The highest scoring path from the pruned subtree of the taxonomic tree is selected as classification of each read [88]. (b) 
Results: In this example (SRR062462), results are reported after 40, 80, 120, 160, and 200 sequencing cycles or approximately 12, 9, 6, 3, 
and 0 hours on an Illumina MiSeq before the sequencer finishes and data can be prepared for other tools to start. The results are 
visualized in a Sankey diagram of read classifications on species level after all cycles are reported. The top five groups with the most hits 
are shown, while groups with fewer hits are conflated as “other”. Reads which cannot be assigned on species level are denoted as 
unclassified.  The unclassified nodes are optically narrowed by approximately 1,500,000 reads each for better recognition of relevant 
groups. Thickness of the flows encodes the number of reads going from one node to another, where blue flows represent unchanged or 
new classifications and red ones show changed classifications. While the number of unclassified reads decreases, the overall proportions 
of taxa stay the same. Misclassifications occur in negligible magnitude. The visualization of results as an interactive Sankey-plot is part of 
LiveKraken., put color to white 
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2.3 Results and discussion 

 

LiveKraken builds on the well-known tool Kraken. Hence, we show its results in 

comparison to the classic Kraken approach. While we guarantee identical results as 

Kraken with the end of a sequencing run, we also show that preliminary classifications 

allow a reliable estimate of the sample composition long before the sequencer has 

finished. We ran LiveKraken on three datasets from the NIH Human Microbiome 

Project [132] (cf. Table 1), returning results after every 40th sequencing cycle or 

approximately 12, 9, 6, 3, and 0 hours before the sequencer finished, respectively. As 

reference database we used all bacteria and archaea sequences from RefSeq [133] 

downloaded on June 2nd 2015. We compared the results to the output of Kraken on the 

full datasets (Table 1). An example is visualized in Figure 2b, showing that the number 

of unclassified reads decreases over time, but only a minor number of reads is 

misclassified in earlier stages. While the peak memory requirements of LiveKraken 

increase by <1% compared to Kraken in our experiments, speed decreases by 15% 

(cf. Figure 3). It is still orders of magnitude faster than the sequencer and therefore not 

the runtime bottleneck. Our results confirm the hypothesis that a classification is 

already possible long before classical metagenomic tools can even be started. 

 

Table 1 Recall (tpr) and precision (ppv) of LiveKraken at different time points, based on read 
classification on species level at each cycle compared to Kraken classification after 200 cycles as 
ground truth. 

Cycle 40 80 120 160 

Dataset tpr ppv tpr ppv tpr ppv tpr ppv 

SRR062371 0.85 0.99 0.94 0.99 0.96 0.99 0.99 1 

SRR062462 0.80 0.98 0.92 0.98 0.95 0.98 0.99 0.99 

SRR062415 0.80 0.98 0.92 0.98 0.95 0.98 0.99 0.99 
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Figure 3. Comparison of runtime and memory consumption of Kraken (upper) and LiveKraken 
(lower) on dataset SRR062462. Both tools were run on 40 threads with default parameters. 
Kraken uses slightly more memory throughout the run. The computational runtime of 
LiveKraken increases by ~15% compared to Kraken.  
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3 Sensitive real-time pathogen diagnostics using PathoLive 

 

Over the past years, NGS has been applied in time critical applications such as pathogen 

diagnostics with promising results. Yet, long turnaround times have to be accepted to 

generate sufficient data, as the analysis can only be performed sequentially after the 

sequencing has finished. Additionally, the interpretation of results can be further 

complicated by various types of contaminations, clinically irrelevant sequences, and the 

sheer amount and complexity of the data. 

We designed and implemented PathoLive, a real-time diagnostics pipeline which allows 

the detection of pathogens from clinical samples up to several days before the 

sequencing procedure is even finished and currently available tools may start to run. 

We adapted the core algorithm of HiLive, a real-time read mapper, and enhanced its 

accuracy for our use case. Furthermore, common contaminations, low-entropy areas, 

and sequences of widespread, non-pathogenic organisms are automatically marked 

beforehand using NGS datasets from healthy humans as a baseline. The results are 

visualized in an interactive taxonomic tree that provides an intuitive overview and 

detailed measures regarding the relevance of each identified potential pathogen. 

We applied the pipeline on a human plasma sample that was spiked in vitro with 

vaccinia virus, yellow fever virus, mumps virus, Rift Valley fever virus, adenovirus, and 

mammalian orthoreovirus. The sample was then sequenced on an Illumina HiSeq. All 

spiked agents were detected after the completion of only 12% of the sequencing 

procedure and were ranked more accurately throughout the run than by any of the 

tested tools on the complete data. We also found a large number of other sequences and 

these were correctly marked as clinically irrelevant in the resulting visualization. This 

tagging allows the user to obtain the correct assessment of the situation at first glance. 

PathoLive is available at https://gitlab.com/rki_bioinformatics/PathoLive.  
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3.1 Introduction 

 

The ability to sequence large amounts of nucleic acids in an unbiased manner through 

NGS is particularly interesting for metagenomics studies. Metagenomic NGS has been 

proposed as a valuable technique for clinical application. Nucleic acids of pathogens can 

be detected in metagenomic clinical samples even in cases where routine procedures 

fail to identify the underlying causes of a patient’s symptoms [134-137]. Most other 

pathogen detection methods such as polymerase chain reaction (PCR), cell culture, or 

amplicon sequencing, aim to detect predefined organisms. On the contrary, NGS 

facilitates the detection and even characterization of pathogens without a priori 

knowledge about candidate species. NGS, unlike any other method, generates sufficient 

data to detect even lowly abundant pathogens without targeted amplification of 

defined sequences. Thus, it allows for an unbiased diagnostic analysis.  

There is a variety of tool able to address NGS-based pathogen related questions with 

different focuses: either aiming to discover yet unknown genomes [40, 42-56, 85, 138] 

or to detect known species in a sample [21-28, 80, 89, 94, 96, 139-144]. Among both 

groups, there are different underlying algorithms, the main distinction running 

between alignment-based [21, 24-26, 28, 43, 45-47, 80, 89, 96, 140-144] and 

alignment-free methods [27, 40, 52, 55, 85, 94]. Many tools of course combine both 

approaches [22, 23, 42, 44, 48-51, 53, 54, 56, 138]. While being faster in most cases, 

alignment-free methods are limited to the detection of sequences, whereas alignment-

based methods potentially allow for a more detailed characterization of genomes.  

Existing approaches based on unbiased full genome sequencing of metagenomic 

samples are facing various obstacles, especially concerning the ranking of the results 

according to their clinical relevance and the long overall turnaround time [9, 16, 102, 

145-149]. 

A central issue in NGS-based pathogen detection is that the clinically relevant data is 

very hard to identify. Not only is the host genome usually the dominating part in a 

metagenomic patient sample, but additionally there are nucleic acids of various 

clinically irrelevant species such as some endogenous retroviruses (ERV) or 

non-pathogenic bacteria which commonly colonize a person. 

Even viruses may contain sequences of ERVs, as for example gallid herpesvirus type 2 or 

fowlpox virus, potentially confusing the correct assignment of reads [150]. For these 

reasons, the number of reads hinting towards a relevant pathogen can be very limited 

and even be as low as a handful of individual reads. To compensate for the 

overwhelming amount of background sequences without introducing unwanted biases 
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and thus risking a loss of signal, large numbers of reads are necessary. Still, there is no 

guarantee to get a sufficiently high coverage for the detection of a targeted pathogen 

genome.  

To put it more generally, it is a widespread misconception to rely only on quantitative 

measures when ranking the importance of candidate hits. While the amount of nucleic 

acids of a pathogen in a sample may correlate with the phase or intensity of an 

infection, it may not be sufficient to select the most abundant species as the causative 

pathogen. On the contrary, not the amount but the uncommonness of a species in a 

given sample may give decisive indications on its relevance. Based on the premise that 

a large proportion of the produced reads may stem from the host genome, species 

irrelevant for diagnosis, or common contaminations, even highly accurate methods 

struggle with false positive hits potentially concealing the relevant results. To date, 

there are several pipelines tackling this problem in different ways. Many pathogen 

detection pipelines propose to define a reference database of host and contaminating 

sequences [21, 22, 27, 28, 40, 51]. While facilitating cleaner results, it may lead to a 

premature rejection of relevant sequences. The definition of precise contamination 

databases proves rather difficult and has not yet been adequately solved. Thus, deletion 

of relevant hits and misinterpretation of irrelevant hits still remains a common 

problem.  

Generally, handling high numbers of detected species with a low number of reads each 

makes it very difficult to get a clear definition of relevant and irrelevant hits. A 

presentation of all detected hits without any weighting would be hard to interpret, 

wasting precious time at the end of the workflow. Yet, deleting any results to gain a 

better overview comes at great risk of overlooking the true cause of an infection. Not 

only background and contamination removal introduces the risk of losing information 

that might be relevant in the following diagnostic process. Intensity filters, as 

implemented e.g. in SLIMM [141], disregard sequences with too small genome 

coverages. As the author states, this step eliminates many genomes. This problem even 

intensifies for marker-gene based methods such as MetaPhlAn2 [89], as large parts of 

the sequenced reads cannot be assigned due to the miniaturized reference database. 

While this may lead to a better ratio of seemingly relevant assigned reads to those from 

the background, it comes with the risk of disregarding actually relevant candidates.  

Moreover, sequencing and analyzing the necessary amount of data is very time 

consuming. An Illumina HiSeq run in High Output Mode, potentially necessary to detect 

lowly abundant viruses, takes up to 11 days. Thus, in urgent cases or acute outbreak 

situations, standard workflows take too long to generate results in time to take the 
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necessary measures. There is a plethora of infectious diseases which can be lethal, 

especially if not treated timely. For example, ebola patients who die from the disease 

die after 9.8 ± 0.7 days after the first symptoms occur on average [151]. To obtain 

actionable results within an appropriate time frame to help these patients and to 

prevent further spreading of the disease, it is crucial to reduce the time span of the 

entire workflow from sample receipt to complete diagnosis. 

Efforts to speed up NGS based diagnostics have been made but come with significant 

disadvantages: Quick et al. introduced a fast sequencing protocol for Illumina 

sequencers that allows obtaining results after as little as 6 hours [17]. This speedup is 

accompanied by lower throughput and lower data quality, making it less suitable for 

whole genome shotgun sequencing approaches without a priori knowledge. 

There are several promising approaches of pathogen detection using the MinION 

handheld device for in field studies. While allowing impressive throughput times, these 

devices yield only approximately a million reads with comparably low per-base 

qualities, limiting their areas of application to targeted sequencing so far [17, 152-155]. 

Higher read numbers are indispensable for reliable pathogen detection. Therefore, the 

development of efficient methods to generate, analyze and understand large 

metagenomics datasets in an accurate and quick manner is crucial if NGS is to become a 

standard tool for clinical diagnostics. This enforces NGS-based diagnostics workflows 

to generate and evaluate large numbers of reads to facilitate adequate sequencing 

depths while at the same time reducing the time span between sample receipt and 

diagnosis.  

To overcome the named obstacles, we present PathoLive, an NGS based real-time 

pathogen detection tool. We present an innovative approach to handle common 

contaminations, background data and irrelevant species all at once. Tackling the 

problem of slow overall turnaround times, we applied and enhanced our in-house 

developed real-time read mapper HiLive that enables analyzing sequencing data while 

an Illumina sequencer is still running [72]. 
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3.2 Methods 

 

3.2.1 Implementation 

 

In order to generate a quick, easy and robust pathogen diagnostics workflow, we 

implemented PathoLive. Our workflow follows a different paradigm than other 

frameworks to tackle the existing problems, as shown in Figure 4: (i) prepare 

informative, well defined reference databases, (ii) automatically define contaminating 

or non-pathogenic sequences beforehand, (iii) adapt HiLive, a real-time read mapper, 

to yield robust results even before the sequencer finishes, (iv) identify the 

hazardousness of candidate pathogens and present results in an intuitive, 

comprehensible manner. The details on the modules for each of these steps are 

provided in the following sections. 

 

i.    Prepare reference databases to be more efficient in runtime 

 

In order to save computational effort during the post-processing of the live-mapped 

reads, reference databases including the full taxonomic lineage of organisms are 

prepared before the first execution of PathoLive. For this purpose user selectable 

databases, for example the RefSeq Genomic Database [156], are downloaded from the 

File Transfer Protocol (FTP) servers of the National Center for Biotechnology 

Information (NCBI) and annotated accordingly with taxonomic information from the 

NCBI Taxonomy Database . The obtained data are then merged. While preserving the 

original NCBI annotation of each sequence, additional information is appended to the 

sequence header. This information consists of each taxonomic identifier (TaxID), rank 

and name of each taxon in the lineage of the source organism of the sequence.  

Afterwards, user definable subdatabases of taxonomic clades relevant for a distinct 

pathogen search are automatically created. For the experiments in this manuscript, we 

focused on viruses. The database updater used for this purpose is available at 

https://gitlab.com/rki_bioinformatics/database-updater. 
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Figure 4: Workflow of PathoLive including four main modules: (i) Reference information from NCBI 
RefSeq is automatically downloaded and tagged with taxonomic information; (ii) NGS datasets from 
the 1000 Genomes Project are downloaded, trimmed and searched for sequences from the 
pathogen database from step (i), marking abundant stretches as clinically irrelevant; (iii) Reads 
from the clinical sample are mapped to the pathogen database obtained from (i) in real-time, 
producing intermediate alignment files in the bam-format at predefined time points; (iv) results 
are visualized in an easily understandable manner, providing all available information while 
pointing to the most relevant results. Only the steps highlighted in green are calculated in 
execution time, steps in white are precomputation. Graphical results are presented only minutes 
after the sequencer finishes a cycle if desired. 
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ii.     Mark clinically irrelevant hits 

 

A main obstacle in NGS based diagnostics is the large amount of background noise 

contained in the data. In this context, this refers to various sources of contamination 

including artificial sequences, ambiguous references and clinically irrelevant species, 

which hinder a quick evaluation of a dataset. Defining an exhaustive set of possible 

contaminations is a yet unachieved goal. Furthermore, deleting those sequences 

defined as irrelevant from the set of references carries the risk of losing ambiguous 

but relevant results. Since in this step raw sequencing data from a human host is 

examined, the logical conclusion is to contrast it to comparable raw datasets instead 

of processed genomes.  We implemented a method to define and mark all kinds of 

undesired signals on the basis of comparable datasets from freely available resources. 

For this purpose, raw data from 236 randomly selected datasets from the 1000 

Genomes Project Phase 3 [157] (s. section 7.1 in Supplementary material) were 

downloaded, assuming that a large majority of the participants in the 1000 Genomes 

Project was not acutely ill with an infectious disease. These reads are quality 

trimmed using Trimmomatic [129] and mapped to the selected pathogen reference 

database using Bowtie2 [158]. Whenever a stretch of a sequence is covered once or 

more in a dataset from the 1000 Genomes Project, the overall background coverage 

of these bases is increased by one. Coverage maps of all references from the 

pathogen database hit at least by one dataset are stored in the serialized pickle file 

format. Stretches of DNA found in this data are marked as clinically irrelevant and 

visualized as such in further steps of the workflow. The coverage maps of the 

background abundances are thereto plotted in red against the coverage maps of the 

reads from the patient dataset in green on the same reference (s. Figure 5). This 

enables highlighting presumably relevant results without discarding other candidate 

pathogens, giving the researcher the best options to interpret the results in-depth but 

still in an efficient manner. The code for the generation of these databases is part of 

PathoLive. 
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 iii.     Adapt HiLive, Enhance to get results before sequencing finished 

 

Due to the runtime requirements already mentioned, we aimed at breaking the 

sequential paradigm of wet and dry lab applications by parallelizing data generation 

and analysis. We used the real-time read mapper HiLive which yields results by the end 

of the sequencing run. To alleviate the high computational requirements to align all 

reads in parallel as they are sequenced, HiLive makes use of a highly efficient k-mer 

seed-and-extend approach. Therefore, errorless k-mers are looked up in a hash index. 

Each entry in the index contains matching positions for a k-mer in the database of 

reference genomes. Based on these k-mer positions, the q-gram lemma is applied to 

decide whether a certain k-mer position will be used to create, extend or discard an 

alignment candidate, referred to as seed [72]. Thereby, the user can decide how many 

errors to tolerate in an alignment. The algorithm results in a set of alignments for each 

read, including information about the matching genome and position but potentially 

missing detailed alignment information for regions with an accumulation of errors [72].  

For the purpose of pathogen detection, we extended the current version (HiLive v0.3) 

by several features, resulting in a new version (HiLive v1.1). Instead of only obtaining 

Figure 5: Two examples of fore- and background coverage plots. The upper, green bars show the 
coverage of a given genome in the foreground dataset, namely the reads sequenced from the patient 
sample. The lower, red part indicates in how many datasets from the 1000 Genomes Project a 
sequence is abundant. Bases covered in background datasets are regarded as less informative. Left: 
Fully covered genome of human mastadenovirus B, showing no hits resulting from data from the 
1000 Genomes Project. Right: Coverage of human endogenous retrovirus (HERV) K113, partly 
covered in the patient dataset and completely covered in ~110 datasets from the 1000 Genomes 
Project. Based on these illustrations, Human mastadenovirus B can be considered a relevant hit 
while HERV K113 is rightly found in the dataset, but not considered a clinically relevant candidate 
due to its common abundance in non-ill humans. 
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results by the end of the sequencing run, HiLive now also contains the option to 

provide intermediate results at any point of a sequencing run with negligible delay. For 

the first time, this functionality allows not only to obtain mapping results at the same 

time the sequencing finishes but already during sequencing. The output of the mapping 

results was parallelized to handle even huge amounts of seeds that usually arise during 

intermediate steps. Additionally, we modified existing and created new output filters to 

reduce the number of random hits in the resulting alignment files. A separated 

executable can be used to create the output with different filter settings without re-

executing the complete alignment algorithm. To further improve sensitivity, especially 

for the mapping results in early sequencing cycles, we adapted the core algorithm to 

support arbitrary gapped k-mers. This means that single or consecutive mismatches are 

tolerated within a single k-mer. As shown by Kucherov et al. [159], this concept results 

in significantly higher accuracy especially after few cycles of a sequencing run, even 

though the q-gram lemma does not hold for gapped k-mers. For our study, we used 

SpEEd to select an optimal k-mer gap pattern for seeds of weight 15 and an expected 

similarity of 0.95 on 40 basepairs, resulting in the pattern 11111100111101 [160]. 

PathoLive is implemented in a modular manner. Instead of the real-time read mapping 

using HiLive, any other read mapper providing sequence alignment/map (sam) or 

binary sequence alignment/map (bam) files can be used for the mapping step of the 

workflow.  

 

iv.    Visualization and hazardousness classification 

 

A key hurdle in a rapid diagnostics workflow, which is often underestimated, is the 

presentation of results in an intuitive way. Many promising efforts have been made by 

different tools, e.g. providing coverage plots [21, 161] or interactive taxonomy 

explorers [27, 46]. While being hard to measure and thus often ignored, the time it 

takes for groups of experts to assess the results and come to a correct conclusion 

should be considered. 

Our browser-based, interactive visualization is implemented in JavaScript using the 

visualization library D3 [162]. For an example of the visualization, see Figure 7. While 

providing all available information on demand, the structure of a taxonomic tree allows 

an intuitive overview at first glance. Detailed measures are available on genus, family, 

species and sequence level. We provide three scores for each node of the tree:  

 



 
 

Sensitive real-time pathogen diagnostics using PathoLive 

41 
 

(a) Total Hits: the total number of hits to all underlying sequences in this branch,  

 

𝑇𝑜𝑡𝑎𝑙 𝐻𝑖𝑡𝑠 = # 𝑅𝑒𝑎𝑑𝑠 𝑚𝑎𝑝𝑝𝑒𝑑 𝑡𝑜 𝑐𝑙𝑎𝑑𝑒 

 

(b) Unambiguous Bases: the total number of bases covered in the patient dataset but 

not in any background dataset 

 

𝑈𝑛𝑎𝑚𝑏𝑖𝑔𝑖𝑜𝑢𝑠 𝐵𝑎𝑠𝑒𝑠 = #𝐵𝑎𝑠𝑒𝑠 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑦 𝑓𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑 𝑏𝑢𝑡 𝑛𝑜𝑡 𝑏𝑦 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑑𝑎𝑡𝑎 

 

(c) Weighted Score: the ratio of Unambiguous Bases to the number of bases covered by 

background reads 

 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑆𝑐𝑜𝑟𝑒 =  
𝑈𝑛𝑎𝑚𝑏𝑖𝑔𝑢𝑜𝑢𝑠 𝐵𝑎𝑠𝑒𝑠

𝑚𝑎𝑥(# 𝐵𝑎𝑠𝑒𝑠 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑦 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑑𝑎𝑡𝑎,1)
× log (𝑇𝑜𝑡𝑎𝑙 𝐻𝑖𝑡𝑠) . 

 

The weighted score introduces an intensified metric of how often a sequence is found 

in non-ill persons, therefore allowing drawing stricter conclusions from the 

background data. Not only exactly overlapping mappings of fore- and background are 

regarded, but the overall abundance of a sequence within the background data is 

considered.  

The values of these scores are reflected in the thickness of the branches, which draws 

the visual focus to higher rated branches. By default, the visualization uses the 

weighted score, but users can switch between all three scores.  

In order to enable users to make early decisions regarding the handling of a sample as 

well as to further enhance the intuitive understanding of the results, the hazardousness 

of detected pathogens is color-coded based on a Biosafety level (BSL) score list [163]. 

The BSL score gives information on the biological risk emanating from an organism. 

Therefore, it qualifies as a measure of hazardousness in this use case. The BSL-score is 

color-coded in green (no information/BSL1), blue (BSL2), yellow (BSL3) or red (BSL4), 

and the maximum hazardousness-level of a branch is propagated to the parent nodes. 

Phages are displayed in grey, as they cannot infect humans directly, but may imply 

information on the presence of bacteria. 

Details about the sums of all three available scores of all underlying species are 

provided on mouse-over (Figure 7). When expanding a branch down to sequence level, 

additional plots of the foreground coverage calculated in step (iii) as well as the 

abundance of bases in the background datasets calculated in step (ii) are shown when 
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hovering the mouse over the node (Figure 5). These plots thus provide an intuitive 

visualization of the significance of a hit. The hits of a species in the patient dataset are 

shown in green while very common genomes or parts of their sequences are drawn in 

red on a correlating coverage plot. This way, it is easy to evaluate if a sequence is 

commonly found in non-ill humans and therefore can be considered less relevant, or if 

a detected sequence is very unique and could therefore lead to more certain 

conclusions.   

 

3.2.2 Validation 

 

We compared the results of PathoLive to two existing solutions, Clinical Pathoscope 

[28] and Bracken [103]. We selected Clinical Pathoscope for its very sophisticated read 

reassignment method, which promises a highly reliable rating of candidate hits. It also 

is perfectly tailored to this use case. Other promising pipelines such as SURPI [21] or 

Taxonomer [27] were not locally installable and had to be disregarded. Bracken was 

included in the benchmark as one of the fastest and best known classification tools 

which makes it one of the primary go-to methods for many users. The experiment is 

based on a real sequencing run on an Illumina HiSeq 1500 in High Output Mode. We 

designed an in-house generated sample in order to have a solid ground truth. We ran 

all tools using 40 cores, starting each at the earliest possible time point when the data 

was available from the sequencer in the expected input format. For the non-real-time 

tools, the BaseCalling was executed via Illumina’s standard tool bcl2fastq and the 

runtime was regarded in the overall turnaround time. Clinical Pathoscope and Bracken 

were both run with default parameters, apart from the multithreading. The reference 

databases for PathoLive was built from the viral part of the NCBI RefSeq [133] 

downloaded on 2016-07-06. For Clinical Pathoscope we downloaded the associated 

database from http://www.bu.edu/jlab/wp-assets/databases.tar.gz on 2017-12-09 

and used the provided viral database as foreground and the human database as 

background. The results of Bracken were generated based on the viral part of the NCBI 

RefSeq [133] downloaded on 2017-12-18. The Bracken database was generated with 

default parameters and an expected read length of 100 bp.  
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Sample preparation 

Viral RNA metagenomics studies were performed with a human plasma mix of eight 

different RNA and DNA viruses as well-defined surrogate for clinical liquid specimen. 

The informed consent of the patient has been obtained. This 200µL mix contained 

orthopoxvirus (Vaccinia virus VR-1536), flavivirus (yellow fever virus 17D vaccine), 

paramyxovirus (mumps virus vaccine), bunyavirus (rift valley fever virus MP12-

vaccine), reovirus (T3/Bat/Germany/342/08) and adenovirus (human adenovirus 4) 

from cell culture supernatant at different concentrations. The sample also contains 

dependoparvovirus as proven via PCR.  

The sample was filtered through a 0.45 µM Filter and nucleic acids were extracted 

using the QIAamp Ultrasense Kit (Qiagen) following the manufacturers’ instructions. 

The extract was treated with Turbo DNA (Life Technologies, Darmstadt, Germany). 

cDNA and double-stranded cDNA (ds-cDNA) synthesis were performed as previously 

described [164]. The ds-cDNA was purified with the RNeasy MinElute Cleanup Kit 

(Qiagen). The purification method takes ~6h to complete. 

The Library preparation was performed with the Nextera XT DNA Sample Preparation 

Kit following the manufacturers’ instructions (Illumina). NGS libraries were quantified 

using the KAPA Library Quantification Kits for Illumina sequencing (Kapa Biosystems). 

If the starting amount of 1 ng of nucleic acid was not reached the entire sample volume 

was added to the library. 

  

3.3 Results 

 

The human plasma sample spiked with a viral mixture was subjected to sequencing on 

an Illumina HiSeq 1500 in High Output mode on one lane. PathoLive was executed from 

the beginning of the sequencing run using 40 threads. Intermediary results were taken 

after 40, 60, 80 and 100 cycles or after 36, 55, 74 and 93 hours, respectively. Raw reads 

usable for the testing of other tools were available only after 95 hours as they had to be 

translated into the human readable fastq-format first. As a ground truth, we selected all 

sequences associated to the species described as abundant above. Turnaround time, 

runtime and results are shown in Table 2. The area under the curve (auc) of the 

receiver operating characteristic (ROC) was calculated using the 16 highest ranking 

species, as given by the tested tools. The scores of all sequences attributed to a species 

were summed up. The top 16 of the identified species are considered because hits 
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appearing after twice the number of true positives cannot be expected to be regarded 

by a user in this experiment. Furthermore, none of the tested tools found more true 

positives within the next 50 hits. For PathoLive, the weighted score is used, for Clinical 

Pathoscope we used the “final guess” metric and for Bracken, the species with most 

estimated reads were ranked highest. The corresponding ROC-plot is shown in 

Figure 6. 

 
Table 2 Results of PathoLive, Clinical Pathoscope and Bracken on an Illumina HiSeq High Output 
run of a human plasma sample spiked with different viruses. Input data denotes the number of 
cycles the sequencer finished before results were generated. The turnaround time specifies the 
complete runtime of the sequencing from start of the sequencer to result presentation, whereas 
tool runtime is the time the tools take to generate results after all necessary input data has been 
provided. ROC-auc denotes the area under the ROC-curve as a combined measure of sensitivity and 
specificity. Best values are printed bold. PathoLive performs best according to all measures 
throughout the complete run. 

 PathoLive Pathoscope Bracken 
Input data [cycles] 40 60 80 100 100 100 

Turnaround time [h] 36 55 74 93 95 95 

Tool runtime [m] 22 25 18 4 25 13 
ROC-auc 0.94 0.92 0.92 0.90 0.88 0.45 
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Figure 6 ROC-plot of benchmarked tools on a spiked dataset. Lines have slight offsets in x- and y-
dimensions for reasons of distinguishability. We compared PathoLive to Clinical Pathoscope and 
Bracken on a real human sample containing 7 viruses. PathoLive performs best regarding the ROC-
auc at all sampled times (cycle 40, 60, 80 and 100) when compared to the results of the other tools 
after the sequencing run completed read 1 (cycle 100). 

 

 

We were able to detect all abundant spiked species in the library after only 40 cycles of 

the sequencing run. While the overall number of false positive hits decreases with the 

sequencing time, the weighted score and the number of unambiguous bases yield 

accurate results throughout all reports. Reported phages are included in these 

numbers, although they are optically grayed out in the visualization, as they cannot 

infect vertebrates directly. 

As an example report, a screenshot of the resulting interactive tree of results after 80 

cycles is shown in Figure 7. 
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Figure 7 Example of the interactive taxonomic tree of results. It shows the visualized results of the 
described plasma sample at cycle 80 based on the weighted score. Thickness of the branches 
denotes the sum of scores of underlying sequences. The color codes for the maximum of the 
underlying BLS-levels (red=4, yellow=3, blue=2, green=1 or undefined; phages are shown in grey). 
On mouse-over, detailed information (here on genus Mastadenovirus) is displayed. The selected 
score (here: weighted score) is highlighted in grey. The visualization clearly emphasizes all spiked 
pathogens through the thickness of their clades, while other species are shown only in smaller 
clades and therefore ranked lower. 
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3.4 Discussion 

 

NGS has been shown to be state of the art for pathogen detection, reaching out into 

clinical usage as well. Although Third Generation Sequencing approaches are also 

becoming more and more influential, the sequencing depth necessary for open-view 

diagnostics is only achievable via NGS. This does of course come at cost of higher 

overall throughput times. PathoLive is, to our knowledge, the first NGS-based 

diagnostics tool using a real-time approach, facilitating to gain insights into a clinical 

sample before the sequencer has finished. Real-time output before the sequencing 

process of the first read has finished lacks information about multiplex-indices, though. 

Therefore, multiplexed sequencing runs can only be assessed after sequencing of the 

multiplex-indices. For paired-end sequencing runs, this still means analyses are still 

possible far before the sequencer ends, and single-end sequencing runs can produce 

results at the very moment the indices have been sequenced. A solution for this 

problem would be to sequence the indices before the first read, which attracts some 

problems for the sequencer regarding cluster identification, but is currently worked on. 

The algorithmic functionality for this is already available.  

We furthermore changed the basis for the selection of clinically relevant pathogens 

away from pure abundance or coverage-based measures towards a metric that takes 

information on the singularity of a detected pathogen into account. Still, we decided not 

to completely trust the algorithmic evaluation alone, but provide all available 

information to the user in an intuitive interactive taxonomic tree. While we assume that 

this form of presentation allows users to come to the right conclusions very quickly, 

more sophisticated methods for the abundance estimation especially on strain level 

exist. Implementing an additional abundance estimation approach comparable to the 

read reassignment of Clinical Pathoscope [28] or the abundance estimation of Bracken 

[103] could enable more accurate results, albeit this would not be applicable trivially to 

the overall conception of PathoLive.  

The sensitivity and specificity of PathoLive varies with the time of a sequencing run. In 

the beginning, when only little sequence information is available, every matching k-mer 

must be regarded as a candidate hit, leading to comparably high false positive rates. At 

the end of a sequencing run on the contrary, the number of sequence mismatches in the 

longer alignments may lead to the erroneous exclusion of hits. To cope with that, we 

recommend running PathoLive allowing high numbers of errors to ensure sensitive 

results at the end of a run and to report only reads with a low error-per-base ratio to 

exclude random hits at the beginning. This may however lead to the effect observed in 
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our validation experiment, where the results vary over the runtime with the optimal 

outcome being measured at cycle 80.  

Besides these challenges which are unique to PathoLive, we do of course struggle with 

the same problems as comparable tools. Firstly, the definition of meaningful reference 

databases is difficult. No reference database can ever be exhaustive, since not all 

existing organisms have been sequenced yet. Besides that, there may be erroneous 

information in the reference databases due to sequencing artifacts, contaminations or 

false taxonomic assignment.  

The definition of the hazardousness was especially complicated, as to our knowledge 

no established solution for the automated assignment of this information exists. 

Therefore, the basis for our BSL-levelling approach might not be exhaustive, leading to 

underestimated danger levels of certain pathogens. 

Furthermore, in-house contaminations, some of which are known to be carried over 

from run to run on the sequencer while others may come from the lab, could interfere 

with the result interpretation of a sequencing run. Especially since no indices are 

sequenced for the first results of PathoLive, comparably large numbers of carry-over 

contaminations might lead to false conclusions. Candidate lab contaminations should 

therefore be thoroughly kept in mind when interpreting results. 

Using in-house generated spiked human plasma samples, we were able to show the 

superiority of PathoLive not only concerning its unprecedented runtime but also the 

selection of relevant pathogens. While being very fast and accurate, a limitation of 

PathoLive lies in the discovery of yet unknown pathogens. This is due to the limited 

sensitivity of alignment-based methods in general, which hampers the correct 

assignment of highly deviant sequences. As this would imply tedious manual curation, 

it is not the core task of this tool.  

We hope to provide a helpful tool for accurate and yet rapid detection of pathogens in 

clinical NGS datasets, overcoming many limitations of existing approaches. 
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4 Detection of novel pathogens using RAMBO-K 

 

The assembly of viral or endosymbiont genomes from NGS data is often hampered by 

the predominant abundance of reads originating from the host organism. These reads 

increase the memory and CPU time usage of the assembler and can lead to 

misassemblies. 

We developed RAMBO-K (Read Assignment Method Based On K-mers), a tool which 

allows rapid and sensitive removal of unwanted host sequences from NGS datasets. 

Reaching a speed of 10 Megabases/s on 4 CPU cores and a standard hard drive, 

RAMBO-K is faster than any tool we tested, while showing a consistently high 

sensitivity and specificity across different datasets. 

RAMBO-K rapidly and reliably separates reads from different species without data 

preprocessing. It is suitable as a straightforward standard solution for workflows 

dealing with mixed datasets. Binaries and source code (Java and Python) are available 

from http://sourceforge.net/projects/rambok/. 

 

4.1 Introduction 

 

The rapid developments in NGS have allowed unprecedented numbers of different 

organisms to be sequenced. Thanks to the output of current generation sequencing 

machines, viral and endosymbiont genomes can even be directly sequenced from their 

host since the huge amount of data generated counterbalances the presence of host 

sequences. However, especially de novo assembly of genomes from datasets from mixed 

sources is complicated by the large number of background reads, necessitating some 

form of pre-filtering in order to identify the relevant foreground reads [165]. 

Here, we present RAMBO-K, a tool which allows the rapid and sensitive extraction of 

one organism’s reads from a mixed dataset, thus facilitating downstream analysis. 

 

 

 

 

 

 

http://sourceforge.net/projects/rambok/
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4.2 Implementation 

 

In order to separate reads, RAMBO-K uses a reference-driven approach. The user 

must provide FASTA files containing sequences related to both the foreground 

(usually the virus or endosymbiont of interest) and the background (usually the 

host organism). The reference sequences do not have to represent finished 

genomes; collections of contigs from a draft genome or lists of sequences from 

different related organisms can be provided if no exact reference is known. Based 

on these inputs, RAMBO-K performs the sorting of reads in three steps: 

simulation of reads from reference sequences (s. section 4.2.1); calculation of two 

Markov Chains, one for the foreground and one for the background, from the 

simulated reads (s. section 0); and classification of real reads based on their 

conformance with the Markov Chains (s. section 4.2.3). This workflow is 

visualized in Figure 8. 

 

4.2.1 Simulation of reads  

 

It is important to ensure that the training set used for the calculation of the Markov 

Chains is as similar to the real data set as possible. As such, in the first step the mean 

and the standard deviation of the read length are calculated from a user defined 

number of reads n. There is a trade-off involved in choosing the number of reads to 

simulate–while more simulated reads allow a better characterization of the foreground 

and background genomes, simulating more reads also takes more time. In our tests 

(data not shown), we have found 50’000 Reads to yield good results for the 

characterization of genomes of up to 3 gbp while not slowing down the calculation too 

much. We have thus chosen 50’000 as the default value for n. 

The n reads matching the length characteristics of the raw data are generated–error-

free and evenly distributed–from both the foreground and the background respectively 

by generating n sorted random positions in each reference file. Starting from each of 

these positions, a string of the length of a read is read and checked for non-base 

characters. If no such characters are found, the characters are saved as a simulated 

read. The number of successfully simulated reads m is saved in each iteration and n-m 

reads are generated in the next iteration until a total of n reads have been generated. 

This approach has been chosen since it substitutes reading the whole reference 

sequence from the hard drive with a series of seek operations which speeds up the read 
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simulation on very large reference genomes while only slightly slowing down the 

simulation from small reference genomes, which is fast due to the small file size. The 

simulation process is repeated twice to generate both a training set and a test set. 

 

 

 
 
 
Figure 8 Graphical representation of RAMBO-K’s workflow. Reads are simulated from the reference 
genomes and used to train a foreground and background Markov Chain. The simulated sequences 
and a subset of the real reads are assigned based on these matrices and a preview of the results is 
presented to the user. If this preview proves satisfactory, the same parameters are used to assign 
all reads. 
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4.2.2 Calculation of Markov Chains  

 

Markov chains of user-specified order k are calculated from the foreground and 

background read training sets: for each k-mer of length 𝑘 − 1  the observed probability 

of being followed by A, G, T or C is calculated. Based on these Markov Chains, a score S 

for each read from the test set is calculated as follows: 

𝑆 =  ∑ log (𝑃𝑟𝑓 (𝐵𝑖|𝑀𝑖−1)) −  ∑ log(𝑃𝑟𝑏(𝐵𝑖|𝑀𝑖−1)) 
𝑙

𝑖=𝑘

𝑙

𝑖=𝑘
 

where l is the read length, Bi is the base at position i, Mi is the k-mer ending at position i 

and Prf and Prb are the observed transition probabilities in the foreground and the 

background Markov Chain, respectively. Conceptually, this is the difference in how well 

the read is described by the foreground and the background Markov Chains. In order to 

avoid numeric complications which are likely to arise at higher orders, where the large 

number of possible k-mers leads to small observed probabilities, the logarithms of the 

probabilities are summed instead of multiplying the probabilities themselves [79]. 

The score is also calculated for the first 50,000 reads and the scores of both test sets 

and the reads are then plotted. This allows the user to choose a good cutoff for the 

subsequent classification (Figure 9). It also allows the user to assess whether 

separation of the reads is likely to succeed based on the provided reference sequences. 

If the score distributions from the simulated data overlap well with the score 

distributions from the real data, as is the case in the example shown in Figure 9, the 

separation is likely to be successful. In such a case, the plot also gives a first overview of 

the dataset’s composition, since fitting the distributions of scores obtained from the 

test set to those from the reads allows RAMBO-K to provide a first estimation of the 

ratio of foreground to background reads in the data. On the other hand, a bad fit of the 

distribution of real and simulated read’s scores indicates a potential problem. One 

reason could be that the organisms present in the sample are different from the 

organisms whose genomes were provided as references to RAMBO-K. Often though, it 

can indicate a poor quality of the data and the resulting need for trimming. In Figure 10, 

we have provided plots resulting from running RAMBO-K on the same dataset as used 

in Figure 9, but without first trimming the data. 

Since the order of the Markov Chain strongly influences the performance of RAMBO-K, 

a range of orders for which the calculation is automatically repeated can also be 
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provided (Figure 9). Additionally, ROC plots showing the performance on the simulated 

data for each k are provided. 

 

 
Figure 9 Example of the graphical output of RAMBO-K for a dataset containing human and 
orthopoxvirus sequences. The score distribution of both simulated and real reads is displayed for 
two different k-mer lengths (left: 4, right: 10), allowing the user to choose the best k-mer length and 
cutoff. In this case, a cutoff around -100 at a k-mer length of 10 would allow a clean separation of 
foreground and background reads, as visualized by the clearly separated peaks. The estimated 
abundance of foreground and background reads in the dataset is displayed in the figure title. 

 

 
Figure 10 The dataset used in this graphic is the same one as used in Figure 9 and the results for the 
same k-mer lengths (left: 4, right: 10) are shown. However, in this case, the reads have not been 
trimmed. Two effects are visible: Firstly, the distribution of the real reads’ scores deviates much 
more strongly from the distribution of the simulated reads’ scores than is the case with trimmed 
data. Secondly, due to this discrepancy, RAMBO-K is not able to reliably estimate the relative 
abundance of reads from the two organisms and the estimate varies widely between the two k-mer 
sizes. 

 

 



 
 

Detection of novel pathogens using RAMBO-K 

54 
 

4.2.3 Classification of reads  

 

Once the user has decided upon an upper or lower cutoff and a k-mer value, RAMBO-K 

can be run to classify the real reads based on the previously computed Markov Chains. 

A score is calculated for each read following the formula given in section 0 and a result 

file containing only the reads with scores below the upper or above the lower cutoff is 

created. 

 

4.3 Benchmarking 

 

In order to assess the usefulness of RAMBO-K, we compared its performance with that 

of several other tools. We used three datasets: (i) Vaccinia virus sequenced from cow 

lesions; (ii) Bat adenovirus sequenced from a bat, and (iii) Wolbachia endosymbiont 

sequenced from Drosophila. In addition to RAMBO-K, we used Kraken [94], 

AbundanceBin [166] and PhymmBL [79] to classify the datasets. While bowtie2 [158] is 

not a classifier per se, it is often used in preprocessing to either discard all reads not 

mapping to the foreground reference or to discard all reads mapping to a background 

reference. We have included both of these mapping-based approaches in our 

benchmark. 

At the time of sequencing of the Bat adenovirus, the closest known genome was that of 

the distant canine adenovirus. We created our ground truth by mapping the reads to 

the now known Bat adenovirus genome, but gave all tools only a set of Adenovirus 

genomes known at the time of sequencing as references for benchmarking. 

 

4.4 Results 

 

As shown in Table 3, RAMBO-K is by far the fastest of all tested tools. Unlike the other 

tools we tested, which tend to excel either in the high sensitivity or in the low false 

positive rate department, RAMBO-K gives a high sensitivity at a low cost in terms of 

false positive assignments. Particularly when working with datasets where an exact 

reference is not known (such as the Bat adenovirus dataset) – which is becoming more 

common, especially with the expanding use of NGS in a clinical context – RAMBO-K 

performs better than current approaches. 

A large advantage of RAMBO-K for the preprocessing of NGS data lies in the graphical feedback 
given to the user. This allows choosing the k-mer size and cutoff best suited for each run ( 
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Figure 8). Together with its low runtime and easy installation (RAMBO-K requires only 

Java and Python 2.7+ with numpy and matplotlib); we believe that it represents a 

valuable and easy-to-implement step in the preprocessing of NGS data before assembly. 

 

4.5 Additional developments 

 

Several enhancements have been implemented on RAMBO-K since its publication.  

Cesare Gruber worked on a function called “I’m feeling lucky” which allows full 

automation of RAMBO-K with optimally selected parameters. The parameters which 

cannot be set to meaningful default values easily are being set using two methods: The 

optimal k-mer size is calculated using a Wilcoxon test based on the score distributions 

of the assigned simulated reads. The cutoff is set based on the minimum difference of 

specificity and sensitivity from the ROC-plot. In various tests, these automatically set 

parameters yield good results (data not shown). 

A high-level-binning based on RAMBO-K has been worked on to classify reads as viral, 

bacterial or eukaryotic. The standard Markov Chains from the RAMBO-K algorithm 

have been trained on sets of all bacterial, viral and eukaryotic genomes from the NCBI 

RefSeq [133]. Simulated reads from the same database have then been scored based on 

all three Markov Chains, resulting in three scores per read. These scores have then been 

scatter-plotted in a three-dimensional space to get a quick visual estimate of the 

capabilities of this approach. Although slight tendencies towards a signal were 

noticeable under perfect conditions using errorless reads, this approach would not be 

of much use in a real scenario due to its low accuracy and was therefore not progressed 

with.  

For maximum availability and user-friendliness, RAMBO-K has been packetized and 

made available over the official Debian sources under 

https://packages.debian.org/sid/rambo-k by Andreas Tille.  

Additionally, I have made RAMBO-K available on bioconda under 

https://bioconda.github.io/recipes/rambo-k/README.html, where it has been 

downloaded more than 850 times to date. A Docker container is available under 

https://quay.io/repository/biocontainers/rambo-k. 
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Table 3 Benchmark results. The best value for each dataset is in bold. While Bowtie2+ (keeping reads mapping to the foreground 
reference) generally gives the lowest false-positive rate (FPR) and Bowtie2- (discarding reads mapping to the background reference) the 
highest sensitivity (SEN), RAMBO-K shows the best balance, providing high SEN and low FPR (F-Score) with the consistently lowest run-
time. RAMBO-K outperforms other methods by the largest margin when the nearest known reference has a low identity to the sequenced 
genome, as in the Bat adenovirus dataset. 

 

Cowpox (1.3 M reads, 

unpublished) 

Bat adenovirus (33 K reads, 

SRX856705) 

Wolbachia (12 M reads, 

SRR1508956) 

 

Time

[s] 
SEN FPR 

F-

Score 

Time

[s] 
SEN FPR 

F-

Score 

Time

[s] 
SEN FPR 

F-

Score 

RAMBO-K 31 0,87 
3,00E-

04 
0,92 2,1 0,79 0,05 0,86 297 1 

4,00E-

05 
1 

Kraken 157 0,83 
2,00E-

05 
0,9 4,4 1 0,42 0,8 7004 0 0 N/A 

AbundanceBin 20938 0 0 N/A 73 0,99 0,88 0,65 
1,10E+

06 
0,5 0,48 0,07 

PhymmBL 82556 0,68 
1,00E-

04 
0,8 

1,00E+

05 
0 0 N/A 1.7E7a 0,5 2E-3a 0.64a 

Bowtie2+ 146 0,85 
1,00E-

05 
0,92 5,1 0,11 0 0,2 419 0,99 

3,00E-

06 
0,99 

Bowtie2- 550 0,95 0,76 0,03 93 1 0,91 0,65 1274 1 0,97 0,07 

aThe values for PhymmBL on the Wolbachia dataset were extrapolated based on the analysis of a subset of 

5% of the reads 
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5 Discovery of a new poxvirus genus 

 

Near Berlin, Germany, several juvenile red squirrels (Sciurus vulgaris) were found with 

moist, crusty skin lesions. Histology, electron microscopy, and cell culture isolation 

revealed an orthopoxvirus-like infection. Subsequent PCR and genome analysis 

identified a new poxvirus (Berlin squirrelpox virus) that could not be assigned to any 

known poxvirus genera. 

 

5.1 Introduction 

 

The Eurasian red squirrel (Sciurus vulgaris) is the only species of tree squirrels 

endemic throughout most of Europe. Although they are usually abundant, red squirrels 

are endangered or extinct in some regions in Great Britain and Ireland that are 

co-inhabited by invasive eastern gray squirrels (Sciurus carolinensis), which were 

introduced from North America in the late 19th century. One major threat is the 

transmission of squirrelpox virus (SQPV) from the gray squirrel reservoir host to red 

squirrels, which succumb to lethal infections [167]. SQPV had been assigned to the 

parapoxviruses due to morphological similarities [168], but the latest viral genome data 

placed it in a separate clade within the poxvirus family [169]. Recently, different 

poxviruses have been associated with similar lesions in American red squirrels 

(Tamiasciurus hudsonicus) from Canada [170], but except for a single case report from 

Spain [171], no poxvirus infections in squirrels have been reported in continental 

Europe. 

 

5.2 The Study 

 

In 2015 and 2016, at least 10 abandoned weak juvenile red squirrels were submitted to 

a sanctuary near Berlin, Germany. The animals had exudative and erosive-to-ulcerative 

dermatitis with serocellular crusts at auricles, noses, digits, tails, and genital/perianal 

regions. Skin specimens from affected animals were investigated by electron 

microscopy (EM) and PCR. Three animals that died under care were submitted for 

necropsy. We obtained samples of all organs for histological and PCR examination. We 

used 1 sample of a skin lesion for virus propagation in cell culture. 
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EM-negative staining of skin lesions from all animals led to the discovery of 

brick-shaped poxvirus particles with irregular threadlike surface fibers and an average 

size of 294 nm × 221 nm (Figure 11). Pathological findings of corresponding skin 

lesions were consistent with poxvirus infection (ballooning degeneration of epidermal 

keratinocytes, numerous intracytoplasmic inclusion bodies, epidermal ulceration with 

suppurative inflammation, and secondary bacterial infection). All inner organs had 

either no pathological changes or lesions unrelated to poxvirus infection. 

 

 
 
Figure 11 Ultrastructure of Berlin squirrelpox virus particles from skin lesions on a red squirrel in 
Berlin, Germany, visualized by negative staining (uranyl acetate) (original magnification ×68,000). 
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To confirm the morphologic diagnosis, we extracted DNA from skin lesions and 

performed various PCRs. An orthopoxvirus (OPV)–specific PCR showed negative results 

[172]; a parapoxvirus (PPV)–specific PCR [172], a leporipoxvirus-specific PCR 

(A. Nitsche and L. Schrick, unpub. data), and a poxvirus-screening PCR [173] were 

positive for some samples. Obtained sequence fragments indicated poxviral relatedness 

but did not allow for the assignment to a poxvirus genus. Thus, we performed massively 

parallel sequencing. We directly subjected DNA extracted from a skin lesion on the foot 

of a dead animal to Nextera XT Library preparation and sequenced it on an Illumina 

HiSeq 1500 instrument (Illumina, San Diego, CA, USA), yielding 7,242,301 paired-end 

reads (150 + 150 bases, rapid run mode). Mapping [158] the obtained reads to all 

poxvirus reference sequences available in GenBank in high-sensitivity mode provided 

no notable results, which pointed to a virus with a highly deviant genome. Therefore, 

we separated poxviral reads from background data using RAMBO-K version 1.2 [85] 

and assembled the resulting 1,520,811 reads [174], yielding 1 single contig of 

142,974 bp with ≈460-fold coverage after manual iterative mapping and scaffolding. 

We confirmed the genomic sequence by resequencing (Illumina MiSeq) of a Vero E6 

cell-culture isolate obtained from a different skin specimen of the same animal. We 

named the new virus Berlin SQPV (BerSQPV), and uploaded the combined sequence 

information to GenBank (accession no. MF503315). Direct sequencing of DNA from 

skin samples of three other animals from the same origin yielded sequences with 

>99.9% identity to BerSQPV. 

We compared characteristics of BerSQPV to related viruses and found that the EM 

structure shows features typical for OPV but the genome size of ≈143 kb is more 

consistent with PPV or SQPV from the United Kingdom [175] than with the large 

genome of OPV, whereas the guanine-cytosine (GC) content of 38.5% is more consistent 

with OPV and leporipoxvirus than with PPV and SQPV from the United Kingdom. 

Therefore, we explored the genomic relationship of BerSQPV to other chordopoxviruses. 

Pairwise alignments of each of the chordopoxvirus genomes available in GenBank with 

the BerSQPV genome resulted in a pairwise identity of at most 47% to tanapox virus 

isolate TPV-Kenya (accession no. EF420156.1). The retrieved phylogenetic tree 

(Figure 12Figure 12) demonstrates that BerSQPV cannot be assigned to any of the 

known poxvirus genera; moreover, it does not cluster with the only other squirrel 

poxvirus with a published genome sequence [175]. Further phylogenetic analyses 

based on conserved single genes frequently used for poxvirus tree calculations (A3L, 
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F10L+F12L, F13L, E13L, E9L [VACV Copenhagen nomenclature]) showed similar 

results (A56R was not used for tree calculations because this open reading frame is too 

divergent among the Chordopoxvirinae), with BerSQPV forming a unique branch (data 

not shown). In addition, any partial sequences of SQPV available in GenBank were 

aligned to BerSQPV, showing a maximal sequence identity of 64.3% to gene E9L 

(GenBank accession no. AY340976.1), further emphasizing the uniqueness of this 

newly identified virus. 

We designed a BerSQPV-specific quantitative PCR based on the genome sequence as a 

tool for future investigations (primer BerSQPV_F: ggAAgTTTTCCCATACCAACTgA, 

primer BerSQPV_R: ATCTCAAACCgCAgACggTA, probe BerSQPV_TM: FAM-

ACTgTTATTCTTAgCgTAATT). Sensitivity was <10 genome equivalents per reaction 

amplifying plasmid dilution rows. We first validated the specificity in silico during the 

design process, revealing the highest identity of 88% to cowpox virus Kostroma 

(GenBank accession no. KY369926.1), with mismatches in crucial positions in the 

primer and probe binding sites. Squirrel poxvirus strain Red squirrel UK (GenBank 

accession no. NC_022563.1) showed only 84% identity, with additional mismatches in 

amplification-relevant positions. Practical PCR testing using DNA from cowpox, 

monkeypox, ectromelia, parapox-ORF, myxoma, avipox, and molluscipox viruses showed 

no cross-reactivity. 

The new specific quantitative PCR was subsequently applied to DNA from skin lesions 

archived from 1 squirrel found dead in 2014 in the Berlin area, 2 live squirrels from 

2015, and 5 live squirrels from 2016, as well as various organs from 3 affected squirrels 

necropsied in 2015 (Table 4). Organ tissues yielded high BerSQPV DNA loads in the 

affected skin but low viral DNA loads for inner organs, findings in concordance with 

pathological findings, indicating the detection of viral DNA in the blood homogenously 

distributed throughout the organs with specific tropism for the skin. Low virus loads in 

inner organs are usually observed in poxvirus infections that do not generalize. PCR 

results indicate that this virus has been circulating in the Berlin area over the past 10 

years. 

 

 

 

https://wwwnc.cdc.gov/eid/article/23/10/17-1008-t1
https://wwwnc.cdc.gov/eid/article/23/10/17-1008-t1
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Figure 12 Phylogenetic position of BerSQPV (bold) from a red squirrel in Berlin, Germany, within  
the Chordopoxvirinae. We used MAFFT [130] to perform multiple alignments of all complete 
genome sequences within a species of the Chordopoxvirinae subfamily available in GenBank. The 
minimum pairwise identity found within any of these intraspecies alignments was 79.1%; the 
maximum pairwise identity of BerSQPV with any chordopoxvirus genome available was 47%. 
Because of this extreme difference in minimum pairwise identities, we selected individual 
prototype genomes for each species and the viruses with highest identity to BerSQPV for 
phylogenetic analysis (as indicated in figure). We performed a multiple alignment of these 
representative sequences with the BerSQPV genome and removed low-quality regions from the 
alignment using Gblocks version 0.9 [176], yielding a stripped alignment of 52,563 gap-free 
positions. The maximum-likelihood tree was then calculated using PhyML [177] (general time 
reversible plus gamma, 4 substitution rate categories, no invariable sites, BEST topology search, χ2-
based parametric branch supports). Scale bar indicates nucleotide substitutions per site. BPSV, 
bovine papular stomatitis virus BV-AR02 (NC_005337); CMLV, camelpox virus CMS (AY009089); 
CNPV, canarypox virus Wheatley C93 (NC_005309); CPXV, cowpox virus Brighton Red (AF482758); 
CRV, Nile crocodilepox virus (NC_008030); DPV, deerpox virus W-848–83 (NC_006966); ECTV, 
ectromelia virus Moscow (AF012825); FWPV, fowlpox virus NVSL (NC_002188); GTPV, goatpox 
virus Pellor (NC_004003); LSDV, lumpy skin disease virus NI-2490 (NC_003027); MOCV, Molluscum 
contagiosum virus subtype 1 (NC_001731); MPXV, monkeypox virus Zaire-96-I-16 (AF380138); 
MYXV, myxoma virus Lausanne (NC_001132); ORFV, Orf virus OV-SA00 (NC_005336); PCPV, 
pseudocowpox virus VR634 (NC_013804); PEPV, penguinpox virus (KJ859677); PGPV, pigeonpox 
virus FeP2 (NC_024447); RCNV, raccoonpox virus Herman (NC_027213); RDPV, red deer pox virus 
(KM502564); RFV, rabbit fibroma virus Kasza (AF170722); SKPV, skunkpox virus (KU749310); 
SPPV, sheeppox virus 17077–99 (NC_004002); UK SQPV, squirrel poxvirus Red squirrel UK 
(HE601899); SWPV, swinepox virus 17077–99 (NC_003389); TATV, taterapox virus Dahomey 1968 
(NC_008291); TKPV, turkeypox virus HU1124/2011 (KP728110); TPV, tanapox virus (EF420156); 
FukVACV, vaccinia virus Copenhagen (M35027); VARV, variola major virus Bangladesh-1975 
(L22579); VPXV, volepox virus (KU749311); YLDV, Yaba-like disease virus (NC_002642); YMTV, 
Yaba monkey tumor virus (NC_005179); Yoka, Yokapox virus (NC_015960)]. 
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Table 4 Results of PCRs of different tissues from seven live and four deceased squirrels showing 

poxvirus lesions* 

Year 

of sampling 

Live/ 

Deceased 
Tissue 

Cq  

BerSQPV 

Cq 

c-myc 

ΔCq 

(BerSQPV- 

c-myc) 

2014 Deceased Archived skin  

(paraffin) 

23.7 34.8 -11.1 

2015 Live Crust‡ 12.5 17.7 -5.2 

2015 Live Crust‡ 14.8 18.3 -3.5 

2015 Deceased 

Skin (foot)‡ 11.1 18.8 -7.7 

Skin (tail) 9.7 17.9 -8.2 

Skin (toe)†,‡ 10.1 18.6 -8.5 

Lung 33.2 27.0 6.2 

Liver 34.7 23.1 11.6 

Spleen 34.9 23.9 11.0 

Brain 33.9 24.5 9.4 

2015 Deceased 

Skin (forefoot)‡ 10.9 18.2 -7.3 

Skin 26.3 28.0 -1.7 

Lung 33.6 23.1 10.5 

Liver neg 22.1 - 

Spleen 38.3 23.9 14.4 

Kidney neg 24.1 - 

Small intestine neg 21.8 - 

Large intestine neg 24.4 - 

Brain neg 25.3 - 

2015 Deceased 

Crust 19.0 23.2 -4.2 

Lung 35.2 25.4 9.8 

Liver neg 20.8 - 

Spleen 34.0 25.1 8.9 

Kidney neg 25.9 - 

Small intestine 36.4 21.6 14.8 

Large intestine 35.0 23.5 11.5 

Brain neg 24.6 - 

2016 Live Crust 15.0 22.0 -7.0 

2016 Live Crust 12.1 18.6 -6.5 

2016 Live Crust 14.1 20.8 -6.7 

2016 Live Crust 13.2 17.7 -4.5 

2016 Live Crust 12.9 18.3 -5.4 

*BerSQPV DNA was quantified in relation to cellular c-myc DNA; lower values for 

ΔCq indicate higher virus loads in a respective tissue. Cq, quantification cycle; neg, 

negative. 

†Specimen used to obtain the cell culture isolate  

‡Specimen applied to next generation sequencing 
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5.3 Conclusions 

 

We describe a new poxvirus, BerSQPV, isolated from red squirrels in Berlin, Germany, 

that causes pathological changes consistent with other epidermal poxvirus infections. 

Genome analysis revealed a unique sequence within the poxvirus family, as BerSQPV is 

not clustering to other poxvirus genera, including UK SQPV from red squirrels from 

Great Britain. In contrast to UK SQPV, which resembles PPV ultrastructurally [168], the 

ultrastructure of BerSQPV is comparable to that of OPV. Two other poxviruses from tree 

squirrels with ultrastructural appearance similar to BerSQPV have been reported: a 

Eurasian red squirrel from Spain with epidermal poxvirus lesions [171] and American 

red squirrels from Canada [178]. Although no sequence information is available for the 

SQPV from Spain, the partial sequence analysis of SQPV from Canada showed the virus 

to also be distinct from all known mammalian poxviruses but most closely related to 

PPV, followed by UK SQPV [178]. 

BerSQPV is suspected to have been circulating for several years among Eurasian red 

squirrels in the greater Berlin area. Although diseased animals in care were handled in 

close contact, caretakers have remained asymptomatic, suggesting a negligible risk for 

human infection. Further detailed characterization of the isolated virus is ongoing. 
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6 Summary and conclusion 
 

NGS has proven its applicability in a variety of research fields. It has led to an explosive 

increase in the number of sequenced species as the discovery of new genomes has 

become easier than ever before. With the growth of reference databases as well as 

sequencing capacities, the need for fast and efficient algorithms has become more 

urgent. Especially in clinical settings, the turnaround times of NGS-based experiments 

need to be accelerated. Furthermore, the sheer amount and the complexity of data 

being produced necessitate easily interpretable result presentation. The discovery of 

novel pathogens has been hampered by a lack of efficient, easy to use tools enabling to 

assemble the genomes of novel species in an easy way if there is no closely related 

reference sequence available.  

In this thesis, I approached these problems from different angles. We developed three 

different tools which shorten the turnaround times and greatly simplify the evaluation 

of NGS-based pathogen related research projects. We were also able to show the 

possibilities and impact of our developments on a real case in which we combined one 

of our tools with a variety of other methods. 

In Chapter 2, I presented LiveKraken. With this tool, we provide the first and only real-

time metagenomic classifier for second generation sequencing data available to date. 

The method builds directly on the core algorithm of Kraken [94].  We showed that we 

guarantee to find identical results to those of Kraken by the end of a sequencing run. In 

this case, we still save the time for base-calling and the execution of Kraken. More 

importantly, we could show that we achieve comparable results to those of Kraken 

even at very early stages of a sequencing run. While we do have a slightly lower 

sensitivity at early stages of the run, the overall abundance ratio of the groups stays 

approximately the same at all time points. This allows saving up to several days of the 

overall turnaround time of an experiment for a first overview. LiveKraken is completely 

focused on minimizing the turnaround time of an experiment including drawing 

conclusions from its results. To simplify this last step, we have implemented an 

interactive, browser-based Sankey visualization. This visualization allows a good 

overview over the predominant taxonomic groups abundant in a sample over a range 

of time points in a sequencing run. A variety of possibilities opens up with LiveKraken, 

reaching from real-time quality control over contamination search to rapid selection of 

candidate pathogens in clinical settings. 

A more specialized and sophisticated approach tailored to sensitive real-time pathogen 

diagnostics has been presented in Chapter 3. We implemented PathoLive, a tool based 
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on the real-time mapper HiLive [72]. Besides being able to report first results days 

before the sequencer has finished, we also tackle most other challenges of NGS-based 

diagnostics pipelines with innovative developments. To our knowledge, PathoLive is 

the first tool integrating information on biosafety levels of candidate hits. Furthermore, 

instead of a classical background removal step, we mask commonly found sequences as 

clinically irrelevant. This way, we prevent the unintended deletion of relevant results. 

Furthermore, a user-defined set of background species will very probably always be 

incomplete. With our approach, we define an unbiased set of presumably irrelevant 

sequences independently of the species they belong to. This facilitates getting a more 

complete background database than those used in comparable tools. Integrating the 

information on the abundance of sequences in non-ill humans into the scoring of the 

hits, PathoLive moves the focus away from pure abundance estimation of candidate 

pathogens towards relevance estimation. This is backed by providing biosafety levels in 

the visualization.  As the abundance alone is evidentially not a meaningful metric of 

relevance, we hope that our workflow contributes to a new understanding of NGS-

based pathogen diagnostics. As in LiveKraken, we again tried to optimize not only the 

algorithm runtimes but to keep an eye on the overall turnaround time, including the 

final evaluation of the results. We implemented an interactive visualization showing a 

taxonomic tree encoding different optional scoring methods for all taxonomic levels. 

PathoLive furthermore includes coverage plots and color codes the biosafety level of 

each branch. We were able to show that PathoLive performs superior to the other 

tested tools at all time points of a real sequencing run – even days before the other 

tools could be started.  

Given the strict focus on minimizing the turnaround times of an experiment with 

LiveKraken and PathoLive, both of these tools are not meant to address complex 

research questions which require time-consuming additional work. Although PathoLive 

does report real alignments and therefore enables deeper characterization of detected 

pathogens, this is not its key task. 

In Chapter 4, I presented RAMBO-K, a tool for the binning of reads into fore- and 

background [85]. This enables the detection of reads of interest even if no close or 

complete reference is available. The algorithm is based on a k-mer Markov Chain which 

is used to determine the sequence characteristics of reference sequences as well as 

those of the reads. It is trained on user-provided sets of fore- and background 

sequences. According to these characteristics, all reads from a sequencing run are 

scored and afterwards assigned to either fore- or background. Since this method is 

tailored to highly complex cases with a large bandwidth of unique difficulties, we 
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decided to provide the user with detailed visual feedback. This visualization allows a 

good estimate at the optimal parameter selection by combining simulated reads from 

the user-defined references as a simplified ground-truth with a subset of the real 

dataset. We showed that RAMBO-K outperforms other tools we tested in three real 

cases in terms of runtime and F-score. Especially for the discovery of novel pathogens, 

this method can simplify the overall project significantly. It has already been used to 

discover several new viral genomes [127, 128, 179, 180].  

In Chapter 5 we made use of RAMBO-K as well as several other bioinformatics methods 

to discover what is believed to establish a new genus of poxviruses.  The common 

techniques failed to identify significant amounts of viral material in the sequencing data 

from a squirrel infected with a yet unknown poxvirus. Only after we used RAMBO-K to 

select candidate poxviral reads, we found that there were viral reads which had a very 

low similarity to any known reference. Afterwards, we were able to assemble the 

genome of Berlin Squirrelpox Virus (BerSQPV) from these reads. Although morphologic 

attributes suggested that BerSQPV was part of the clade of parapoxviruses, genomic and 

phylogenetic analyses found that it rather establishes a whole new genus of poxvirinae.  

Together, the developed methods enable the rapid detection of pathogens in different 

settings. LiveKraken may give a good first overview of any sequencing project, whereas 

PathoLive produces a full-featured foundation for pathogen diagnostics. With 

RAMBO-K, even novel pathogens can be discovered in a comparably simple manner, as 

showcased at the example of BerSQPV.  

Future research  

Although each of the proposed tools closes major research gaps in the field of NGS-

based pathogen related research, the conducted experiments also indicate that further 

development promises even better results in some aspects. Additionally, these newly 

established methods open up a number of follow-up ideas and questions which should 

be explored. 

LiveKraken proved to work just as well as the original Kraken and comparably well if 

provided with early-stage data of a sequencing run. Still, we are aware that Kraken was 

the first rapid metagenomic classifier of its kind in 2014. Although it is still widespread 

and commonly used as a default tool for many projects, there are enhanced methods 

available by now.  Some of these methods outperform Kraken regarding its runtime, 

but due to the real-time implementation of LiveKraken this bottleneck can be ignored 

as long as sequencing runtimes do not outpace the read classification. More 

interestingly, Kraken is continuously worked on by the Salzberg Lab with Bracken 
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being the most recent published result. Integrating the Bracken extension into 

LiveKraken would result in the first real-time abundance estimation tool. Although the 

reassignment step could only be started after a LiveKraken report for a given cycle has 

been finished, this would still be a great extension of LiveKraken’s current 

functionality.  

With PathoLive, we proposed a variety of innovations approaching different challenges 

of NGS-based pathogen detection pipelines. While we already showed that it enables 

unprecedented turnaround times and highly accurate results, these novelties are also 

meant to be a proof of principle for a new perspective on NGS-based diagnostics.  

The presentation of BSL-levels of detected taxonomic clades is one example for this. 

While giving information on the hazardousness of abundant pathogens helps to put 

focus on the relevant conclusions and thus getting actionable results quickly, the 

BSL-level is still a too superficial measure.  Instead, more sophisticated metrics should 

be implemented. They should include clinical symptoms and other anamnesis data of a 

patient, e.g. on the travel history, age, risk factors and many more. While computer 

programs for the integration of these data into diagnostics already exist, they have to 

our knowledge not been implemented in NGS-based diagnostics pipelines so far [181]. 

Including anamnesis data into PathoLive would allow emphasizing promising 

candidate pathogens even better.  

Regarding the masking of clinically irrelevant sequences, there is also room for 

improvement left. While the data from which we derive our model is appropriate, it is 

not directly meant to be used for this kind of conclusions. We cannot guarantee that all 

participants of the underlying experiments were really free of potentially relevant 

infectious material. Furthermore, the data may stem from different tissues. With the 

number of available raw sequencing datasets steadily growing, a more specific choice 

of datasets to define a baseline can be made. Sampling tissue specific sequencing 

datasets for masking may further reduce the amount of falsely masked bases. As an 

example, we currently mask parts of several herpes viruses as they are commonly 

carried by healthy humans. Nevertheless, these viruses may cause serious medical 

conditions if they reach the brain. In order to cope with these cases, we currently 

provide different metrics, so that such an event would not remain undetected at a 

second glance. Yet, having more detailed information on the baseline data could 

alleviate this problem even further.  

Another problem which has to our knowledge not been addressed by any of the 

established methods including PathoLive is the handling of lab-specific contaminations. 

In different experiments, we found that the inevitable device-specific carry-over 
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contaminations on Illumina sequencers are detectable for as many as five subsequent 

runs (data not shown). As each and every read in a dataset must be considered 

relevant, even low-level contaminations from previous sequencing runs may confound 

the results of an experiment. These lab-specific sequences cannot be captured by our 

background masking, which only relies on publically available data from a multitude of 

different sequencing facilities and machines. Instead, a number of preceding 

sequencing runs on a specific machine should be monitored for recurring sequences. 

This could enable the prediction of a machine-specific baseline of expected 

contaminating sequences for a given run. Implementing such a contamination detection 

feature in the result presentation could help to prevent misdiagnoses.  

The aforementioned ideas for refinements are based on the understanding that 

NGS-based diagnostics should be more than just metagenome abundance estimation, as 

the abundance of a species is evidentially not a meaningful metric of clinical relevance. 

Additionally to the suggested possible refinements of the relevance estimation of 

detected sequences, there is also potential for algorithmic improvement. As stated 

before, the final evaluation of results is designed to be made by clinicians or 

researchers, as we believe a fully automated selection is not yet feasible. Therefore, 

PathoLive does not follow a sophisticated method for read reassignment. Ambiguous 

hits can thus sometimes not be meaningfully classified. Although strain-level 

classification is not the core task of PathoLive and generally difficult on early stages of a 

sequencing run due to lacking sequence information, implementing a read 

reassignment step may yield even more precise results.  

Although theoretically already possible, PathoLive has not yet been tested with 

bacterial or eukaryotic pathogens. The generation of a more complete reference 

database for testing should generally be unproblematic. Especially for complex 

bacterial communities such as the gut microbiome, pure abundance estimation yields 

mostly clinically irrelevant species. We expect our proposed background masking to 

have an even bigger positive impact on these datasets if a meaningful baseline is 

selected. 

Some general questions came up when we started implementing real-time NGS tools. 

For example, reporting demultiplexed results is only possible after the index has been 

sequenced. Although algorithmically already possible, sequencing indices before the 

first read has not yet been tested by us and is expected to be problematic, as the first 

sequenced bases of a run are used for cluster detection by the sequencer. If these 

clusters contain too many similar bases at the same positions and therefore send out 

the same fluorescent signal, neighboring clusters cannot be distinguished reliably. As 
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this is the case with most low-complex sequence sets like multiplex-indices, the 

sequencing run may fail altogether. Thus, the base composition of index sets would 

have to be taken into account for the switch of the sequencing order to work.  

As reads are processed while sequencing, it is impossible to prefix any quality control 

programs. To cope with this, a real-time read trimmer or at least the inclusion of base 

qualities into the existing live tools could enable further improvements of all existing 

real-time NGS tools. While pure quality based read trimming is trivial to achieve, 

further quality control measures like adapter trimming would need to be based on an 

alignment step. Using HiLive in combination with a database of expected adapters 

could provide a solution and allow more sophisticated real-time quality control. 

Finally, the functionality of real-time analyses of NGS data is still restricted to 

metagenome classification and mapping-based applications as provided by HiLive [72], 

PathoLive and PriLive [19]. Like all reference-based methods, these require the 

availability of somehow similar sequences. Alignment-free methods such as de novo 

assemblers enable the discovery of deviant or even completely novel species, as proven 

by crAss proved [40]. Having a real-time de novo assembler could enable reporting a 

pathogen’s genome at the end of a sequencing run. Furthermore, even if full genome 

assembly does not work in every case, working with longer contigs instead of short 

reads may simplify other follow-up analyses. Since deBruijn graphs are a data structure 

which is based on the decomposition of reads into shorter k-mers independently of 

their order, their usage for the real-time assembly of massively parallel sequenced 

reads seems trivial.  As an example, Faucet proves that streaming bases into a de Bruijn 

graph-based assembler is possible [182]. Although the proposed approach is 

structurally different to that of Faucet, which streams read by read instead of cycle by 

cycle, we expect the concept to be transferable. With this, we could shut another major 

methodological gap of real-time NGS-based analysis tools for pathogen detection.  

The development of the read assignment tool RAMBO-K aimed at facilitating efficient 

and highly sensitive selection of reads of interest from mixed datasets. It proved itself 

in practice especially for the distinction of viral reads from host reads in virus 

sequencing projects. The limitation to two groups in one dataset is not a problem in 

these cases. Still, enabling read-assignment for a larger number of groups could open 

up new applications. The visualization is currently limited to two-dimensional score 

distributions. With larger numbers of bins, the number of dimensions would increase, 

complicating the concept of the visualization. An automated parameter selection as 

proposed by Cesare Gruber in personal communication could still be implemented for 

higher dimensions. 
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As RAMBO-K relies on a k-mer based approach, it could rather easily be implemented as 

a real-time NGS tool as well. There is no big conceptual difference to LiveKraken. It 

could therefore act as a read preselection tool for the real-time assembler proposed 

above. In cases where no similar reference sequence is expected to be available but a 

hint towards a candidate group of pathogens exists, this workflow could potentially 

yield the pathogen’s genome with the end of a sequencing run. RAMBO-K could in this 

workflow reduce the memory requirements and increase the chances of assembling the 

desired genome. This could have for example been used for the assembly of BerSQPV, 

where we expected to find some poxvirus but lacked detailed information on the 

species in the sample. 

Finally, the discovery of BerSQPV has of course opened up further research questions. 

Although we have already conducted research and published results beyond the 

absolute basics of the discovery, further characterization of the virus and the genome 

are work in progress. One important basis for deeper characterization on the genomic 

level is the annotation of the genome. Unfortunately, the low similarity of BerSQPV to 

any annotated reference sequence hampers this step. None of the annotation tools we 

have tested so far yielded satisfying results. Therefore, a new genome annotation 

pipeline is being implemented. The general workflow is comparable to available 

solutions, but instead of selecting candidate open reading frames with high probability 

of being a coding sequence, we BLAST [77] all available ORFs in the genome against all 

annotated coding sequences from a given set of genomes. Our new annotation pipeline 

will therefore be designed to be more sensitive than any comparable tool. Besides 

enabling the annotation of BerSQPV, it could as well help with the annotation of other 

novel genomes without closely related and therefore highly similar reference 

sequences.  
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7 Supplementary material  
 

7.1 List of evaluated datasets  

SRR190845, SRR068180, ERR251013, ERR251014, SRR099960, ERR229780, 
SRR189815, ERR015529, SRR099967, SRR099969, ERR251012, ERR251011, 
SRR099961, ERR013139, SRR099959, ERR013142, SRR701450, SRR098436, 
ERR018404, ERR015530, ERR251010, ERR251009, ERR015533, SRR098442, 
ERR015517, ERR013112, SRR701451, ERR015880, ERR019906, ERR015763, 
ERR013144, SRR707169, ERR015762, SRR099955, ERR018557, ERR015532, 
ERR013156, ERR015515, ERR013145, ERR013161, ERR013152, ERR016162, 
ERR013158, ERR018405, SRR098439, SRR043393, ERR018402, ERR018547, 
SRR707168, SRR741387, ERR018420, ERR016155, SRR062639, SRR062636, 
SRR741386, SRR101476, SRR101463, SRR101475, SRR043351, ERR015879, 
SRR101469, SRR718071, ERR016351, SRR062637, ERR016161, ERR018418, 
ERR018419, SRR101474, SRR060290, SRR037754, SRR037755, ERR031937, 
SRR101473, SRR051599, ERR031965, SRR060294, ERR016168, ERR013101, 
ERR016167, ERR031933, SRR101466, SRR101470, SRR764703, SRR037756, 
SRR101472, SRR035595, SRR038565, ERR016158, SRR060289, ERR016345, 
SRR037753, SRR764730, ERR016157, SRR035596, SRR101471, SRR101478, 
ERR016350, SRR701480, SRR044231, SRR765995, SRR101464, SRR044232, 
ERR031964, SRR101465, SRR035677, ERR034564, SRR060292, SRR060291, 
SRR044233, SRR766045, ERR031932, SRR707198, SRR060293, SRR101467, 
SRR711355, ERR031936, ERR031935, SRR044235, SRR060295, SRR060296, 
ERR016160, SRR711356, SRR035676, SRR707196, SRR038561, SRR038564, 
ERR031934, SRR038563, SRR043360, SRR035673, SRR043357, SRR043396, 
SRR035600, SRR101477, SRR043410, SRR035674, SRR038562, SRR035675, 
SRR043354, SRR043384, SRR043392, SRR101468, SRR035594, SRR035593, 
SRR035672, SRR043379, SRR043372, SRR035591, SRR043378, SRR043381, 
SRR043386, SRR035592, SRR043370, SRR768526, SRR043382, ERR016005, 
SRR043405, SRR035590, SRR035601, SRR037782, SRR035589, ERR013146, 
SRR037783, ERR018521, ERR013131, SRR718072, SRR764729, SRR701483, 
SRR764704, SRR037777, ERR019904, SRR070801, ERR018523, SRR070516, 
ERR015527, SRR233084, SRR316803, SRR233083, SRR233086, SRR233075, 
SRR233102, SRR233105, SRR233085, SRR233088, SRR233069, SRR233079, 
SRR233087, SRR233074, SRR233101, SRR233082, ERR016166, ERR016159, 
ERR016156, ERR016169, ERR018403, ERR016163, ERR016165, ERR016164, 
SRR098444, SRR098432, SRR098438, SRR233073, SRR316801, SRR098437, 
SRR098441, SRR098433, SRR233107, SRR233106, SRR098435, SRR233097, 
SRR233104, SRR233094, SRR233078, SRR233091, SRR233096, SRR233071, 
SRR233100, SRR233099, SRR233089, SRR107017, SRR101146, SRR101150, 
SRR101144, SRR101145, SRR101147, SRR101148, SRR101149, SRR043361, 
SRR043362, SRR035485, SRR043383, SRR043408, SRR043367, SRR035484, 
SRR043356 
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Zusammenfassung  
Infektionskrankheiten sind bis heute eine der häufigsten Todesursachen weltweit. Trotz großer 
Fortschritte im Bereich der klinischen Diagnostik ist es in vielen Fällen nicht möglich, eine eindeutige 
Ätiologie zu erstellen.  Seit Aufkommen des Next Generation Sequencing (NGS) 2006 ist eine Vielzahl neuer 
Forschungsfelder entstanden, die auf dieser Technologie basieren. Insbesondere die Anwendung von NGS 

in der Metagenomic – der Forschung an genomischem Material, das direkt aus seiner Umwelt genommen 
wird – hat zur sprunghaften Entstehung neuer Anwendungsfelder geführt. Metagenomisches NGS hat sich 
als vielversprechendes Werkzeug im Feld der pathogenbezogenen Forschung erwiesen.  
In dieser Arbeit präsentiere ich unterschiedliche Ansätze zur Detektion bekannter und Entdeckung 
unbekannter Pathogene anhand von NGS-Daten. Die gezeigten Beiträge lassen sich unterteilen in drei neu 
entwickelte Methoden sowie einen realen Anwendungsfall dieser Methodologie und darauf aufbauender 
Datenauswertung.  
Zuerst präsentieren wir LiveKraken, ein Echtzeit-Klassifikationswerkzeug, das auf dem Kernalgorithmus 
von Kraken aufbaut. LiveKraken nutzt Ströme von Rohdaten von Illumina-Sequenzierern, um Reads 
taxonomisch zu klassifizieren. Dadurch sind wir in der Lage, mit dem Ende eines Sequenzierlaufs 
identische Ergebnisse wie Kraken zu generieren. Darüber hinaus lassen sich vergleichbare Ergebnisse in 
frühen Stadien eines Sequenzierlaufs produzieren, wodurch bis zu eine Woche Sequenzierzeit eingespart 
werden kann. Während die Anzahl der klassifizierten Reads mit der Zeit zunimmt, kommt es nur zu einer 
vernachlässigbaren Zahl falscher Klassifizierungen. Die Mehrheitsverhältnisse der identifizierten Taxa 
schwanken nur geringfügig. 
Im zweiten Projekt haben wir PathoLive, ein Echtzeit-Diagnostikpipeline entworfen und entwickelt, die die 

Detektion von Pathogenen aus klinischen Proben schon vor Ende eines Sequenzierlaufs ermöglicht. Wir 
haben den Kernalgorithmus von HiLive, einem Echtzeit-Read-Mapper, angepasst und seine Genauigkeit für 
unseren Anwendungsfall optimiert. Darüber hinaus werden Sequenzen, die wahrscheinlich irrelevant sind, 
im Vorfeld markiert. Die Ergebnisse werden in einem interaktiven taxonomischen Baum visualisiert, der 
einen intuitiven Gesamtüberblick gibt. Des Weiteren werden detaillierte Metriken bezüglich der Relevanz 
jedes detektierten Pathogens ausgegeben. Ein Testlauf von PathoLive während der Sequenzierung einer 
mit Viren versetzten realen humanen Plasmaprobe zeigte, dass wir die Ergebnisse zu jedem gemessenen 
Zeitpunkt der Sequenzierung präziser einstufen als jedes getestete Tool nach Ende der Sequenzierung. Mit 
PathoLive verschieben wir den Fokus NGS-basierter Diagnostik weg von der reinen Readquantifizierung 
hin zu einer aussagekräftigeren Beurteilung der Ergebnisse. 

Das dritte Projekt hat zum Ziel, neue Pathogene aus NGS-Daten zu detektieren. Wir haben mit RAMBO-K 
ein Werkzeug entwickelt, das schnelles und sensitives Entfernen von unerwünschten Wirtssequenzen aus 
NGS-Daten erlaubt. RAMBO-K ist schneller als alle anderen von uns getesteten Werkzeuge, während es 
durchgehend hohe Sensitivität und Spezifität auf unterschiedlichen Datensätzen erreicht. RAMBO-K 
unterscheidet schnell und zuverlässig zwischen Reads von verschiedenen Spezies. Es ist als unkomplizierte 

Standardanwendung in Arbeitsabläufen geeignet, die sich mit gemischten Datensätzen auseinandersetzen.  
Im vierten Projekt haben wir durch RAMBO-K sowie mehrere darauf aufbauende Datenanalysen das Berlin 
Squirrelpox Virus entdeckt. Dies ist ein weit entferntes Pockenvirus, das ein neues Genus der Familie der 
Pockenviren  begründet. In der Nähe von Berlin, Deutschland wurden mehrere junge rote Eichhörnchen 
(Sciurus vulgaris) mit feuchten, krustigen Läsionen gefunden. Histologie, Elektronenmikroskopie und 
Zellkulturisolate offenbarten eine Orthopoxvirus-ähnliche Infektion. Nachdem die gängigen 
Standardanalysen keine signifikanten Ergebnisse erbrachten, wurden pockenvirale Reads mit RAMBO-K 
zugeordnet, wodurch das Assemblieren des Genoms des neuen Virus ermöglicht wurde.  
Mit diesen Projekten haben wir drei anwendungsnahe Werkzeuge entwickelt, die verschiedene 
Forschungslücken schließen. Zusammengenommen erweitern wir das Repertoire verfügbarer NGS-
basierter pathogenbezogener Forschungswerkzeuge und erleichtern und beschleunigen eine Vielzahl von 

Forschungsprojekten.  


